NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

PROCESS DEVELORMENT FOR AUTOMATED SOLAR CELL AND NODULE PRODUCTION

TASK 4: AUTOMATED ARRAY ASSEMBLY

4 Quarterty Report No. 1

In Reference To:
JPL Contract No. 953699

Prepared For:
det Propulision Labonatory
4800 Oais Gruve Drive
Pasadena, California 91103

```
(#:ASA-CR-1646B2) PRCCESS LEVELOPMENT FOH NÓ1-20516
AUTCMATEL SOLAR CELL AND LCUULE EAODUCTLUN.
TASK L: AUACHATED AFEAY hSSLMELY vuarterly
Report (ME Associates) 42 p HC AO3/AF A01 Unclas
CSCL IJA G3/44 <7195
```


15 July 1981

?, MB-R-81/1I

FREPARED EY
ctibr yid

PROCESS DEVELOPMENT FOR AUTOMATED SOLAR CELL AND MODULE PRODUCTION

 TASK 4: AUTOMATED ARRAY ASSEMBLYQuarterly Report No. 4

JPL Contract No. 955699

PREPARED BY: JOHN J. HAGERTY

15 July 1981

MB-R-81/11

The JPL Low-Cost Silicon Solar Array Project is sponsored by the [. S. Department of Energy and forms a part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NAS.A and DoE.
Section No. Title Page : :
INTRODUCTION:
2.0 TECHNICAL DISCUSSION 2
2.1 Cell Preparation and Interconnect Station 2
2.2 Automated Lamination Station 2
2.2.1 Mechanical 2
2.2.2 Control Electronics $-$
2.2.3 Operational Testing $-$
2.3 Automated Lamination Chamber 6
2.4 Final Assembly Station 8
2.5 Fabrication of Deliverables 10
2.6 SAMICS 11
2.7 Drawing Package 11
3.0 CONCLUSIONS AND FUTURE WORK 12
4.0 PROGRAM PLAN 12
APPENDIX A - SAMICS Format A and B with appendices 1-
Figure No. Title Page: :
1 Laminated Station Junction Bcx 3
2 Shuttle Wheel and Rail Assembly 5
3 Lamination Chamber Rigid Cover 7
4 Edge Seal Shuttle Cable Control 9
ABSTRACT
Good progress has been made on this program during the last quarter in a number of areas:
The Unimate robot was programmed for the final 35 -cell pattern to be used in the fabrication of the deliverable modules.
Phases $3^{\text {- }} \mathrm{d} 4$ of this project (mechanical construction of the Automated Lamination Station and Final Assembly Station) weve completed on schedule and as contractually obliged by 31 May 1981.
All final wiring and interconnect cables have also been completed and the first operational testing is underway.
The final controlling program has been written and is curzentiy being optimized.
A local fabricator has been contracted to produce the Giass Reinforced Concrete (GRC) panels to be used for testing and deliverables.
A video tape showing all three stations in operation has been producad for display at the 18 th PIM this month (July).

INTRODUCTION

The program is proceeding well with good progress being made last quarter, especially on the edge sealing machine and control system.

With all of the equipment being developed, the project has outgrown its original area so the entire equipage (robot, cell preparation station, lamination station with chamber and edze seaiing machine) was moved to the adjacent, larger room and re-instalied.

All the machines in the system are much more accessible now making them much easier to work on which facilitates development.

Construction of both the Automated Lamination Station and the Final Assembly Station was completed, as reçuired, by 31 May 1981. Also complete is the checkout and installation of the control electronics as well as the various interconnect cables. All of the Eunctions of both stations have been operated under program control by using test routines that operate whole subsystems. These test routines have been grouped together and refined to produce the final control program. Tins progran. is now in the process of being refined in preparation for the manusaczure of the deliverable panels.

2.0 TECHNICAL DISCUSSZON

Progress on each machine in the system will be discussed separately. Following this is a discussion of the other progran areas. 2.1 Cell Preparation and Interconnect Station

The Cell Preparation Station has remained essentially unchanged since the completion of its upgrading last December. After being moved, the station was started up and required oniy minor re-alignments to become operational. Two $3 / 8^{\prime \prime}$ aluminum plate shields were installed to help protect the delicate mechanisms in the event of a robor "excursion" from its normal program (in the two years of our experience on this project, these have been very infrequent and always attributable to opera:or error).

In preparation for the fabrication phase, the rojo: was programmed with the final 35 cell pattern to be used in building the deliverable modules. This is a very tedious process on the Unimate 2000 and required over two days to complete.

```
2.2 Automated Lamination Station
Progress on this machine has centered around the completion of the final mechanical assembly and upgrading to complete cons:ruction as contractually required by the end of May (see Section 2.5). The con:rol electronics were also installed and the individual function rou:ines arit:en. These have been grouped into an overall controlling progran zitch is being optimized.
```

2.2.1 Mechanical

Mechanical completion involves final piumbing and it:inz.
An enclosure has been installed ac the base of the framework (Fizure .) which houses all of the solenoid valves, terminal strips and connectors. The plumbing is completed and terminal strips/connectors have been \because : red. The numerous interconnect cables that run from the driver boards i.: tie cell preparation station enclosure to the other machines ste $-\operatorname{a=zazin}$ Station, the Automated Lamination Chamber and Final Assemb:. s:a:i.t \%ave also been fabricated.

Tracor MBA

ORIGNAL PAGE IS
OF P(H)R QUALITY

FIGURE 1
LAMINATION STATION JUNCTION BOX

OSHA-style knife guards have been fabricated and installed as a safety precuution.

As mentioned in the previous Quarterly Report (Section 2.1.2.1), the shuttle drive motor was replaced with one of much higher torque to prevent stalling when a load was applied to the web. The new motor was tested using a quickly devised BASIC program. Although the motor ran quite slowly (about $1 / 4$ of its ultimate speed with an assembly language controlling program) its increased torque, plus the new rail-guided free end (see below) make the shuttle literally unstoppable. A load in excess of 50 lbs failed to stop it at which point the cogged drive belt began to slip.

As mentioned, this performance was attributabie, in part, to a new guide system on the shuttle's free end. Originally, this was a set of needle bearing rollers placed above and below the frame rail which both supported the shuttle and offered torque reactions to the ball scres. Hovever, it offered no resistance to rotation in the horizontal plane. In Eact, a load of 30-40 lbs on the shuttle (well within the range expected for normal operation) would "cock" it severeity enough to lock the beil nuts and stop the screw. To correct this situation and to give a more positive location of the encapsulant, the free side of the shuttle was fitted with a floating wheel-and-rail set-up (Figure 2) identical to those in the Final Assembly Station described in the previous Quarterly Report.
2.2.2 Control Electronics

Control routines were written for each individual Eurcsion on the machine e.g. shuttle drive, shear solenoid, etc. Each Eunction can be operated from the computer keyboard simply by giving the NL C , corana for the appropriate routine. The generalized controlling program was then created by placing all of the individual function routines in the correct order separated by timing waits. The duration of these waits are deteraned empirically making this (naturally) a repetitive and time consuming p:ocess.

```
2.2.3 Operational Testing
    The results of the first operational tests are cuize encouraginz
with most of the mechanisms working correctl% with lit:le or n= aj*us=ue:=s.
```

Tracor MBA

An early concern was alleviated when the feed rollers were able to easily feed the encapsulant materials intn the shuttle. It was feared that either the motor torque and/or the rolier friction againet the encapsulant would be insufficient to overcome the brake force. Happily, this was not the case although the very fragile Craneglas weo did tear while starting during several tests showing that the brake's holding force was still slightly too high. Lowering the brake preload solved this problem. The shuttle, too, had more than adequate torque for pulling the web against the control brake. However, it appeared at first as if the shuttle's clamp would need some modification. Although the material fed smoothly into the clamp, the clamping force was 500 Lo\% :o prevent the materidl from pulling out of the clamp while is was being drawn out against the brake. The problem turned out to be self correcining since we lowered the brake force as mentioned above. The shut:le now pulls the material smoothly and evenly in both directions.

```
2.3 Automated Lamination Chamber
    The Lamination Chamber has also been compleve Ecr some
time although there has been a change in the cover seal. Earl# :ests oz
the original cover (Quarterly Report No. 3, Section 2.2) were cuite en-
couraging showing that a plain rubber sheet could be self-sealing and have
good draw-down. Unfortunately, the chamber vacuum could not be pulled
below 20 in-Hg with this arrangement, far short of the 27-28 in-:#g recuired
for encapsulation. A rigid frame was built (Figure 3) rhich is piaced on
top of the rubber sheet so that the edge of the sheet is comp:essed between
the frame and the chamber walls. However, this means removing the auto-
mated cover opening mechanism as the tubular supports would be in the wa%.
This renders the opening and closing of the chamber a manual operation as
there is neither time nor budget left in this program to automate this new
cover. It should be noted, though, that the new cover design is identica:
to the original concept as described in the First Quarter:% Repor: (:5
October 1980) Sections 2.3.3.2 and 2.3.3.3, and that preli-inar: desiz.s
for automating the cover therefore exist.
```

Tracor MBA

FIGURE 3
LAMINATION CHAMBER RIGIU COVER

OPICN: bat a
OP: 2

Even though the chamber cover is no longer automated (actually this was not a contractual requirement, but rather was done in the spirit oi the program i.e. tctally automating tias process) ties process cycle is completely automatic. This includes the controlied pumpdown (t) avoid cell breakage), rapid heat to cure temperature, holding at cure temperature for the correct duration, cool down and fina:iy vacuum release.

The chamber heaters have not yet been tested due to deiays in building and installing the new cover. They are wired into place, however, and full operational testing (vacuum and heat) should be well undervay by the end of this month (July).

```
2.4 Final Assembly Station
    Very good progress has been made on this machine %isit a:2 of
the design, machining, assembly, control installation and inita: testing being
completed during this period.
```

A method to control the cables as the shuttie moves across the panel has been developed. The two sets of wires (one set for the drive motor and one set for the hot melt gun) ave each run through a piece ot : 2" I2 coiled air hose. These are then supported in a manner that aiscis tie hose to uncoil as the shuttle travels across the panels (Figure 4). Shen the shu: he returns, the hose, being self storing, simply coils up out of the way.

Tests have been run that drive the hot melt gun boti in :ec:anzies (i.e. running the X axis and Y axis motors individua:iv) and a:onz diazznais (running both motors simultaneously). To expand or tha: las poins; ac:ua: the control system cannot run both motors at the same time. Instead, site scasware routines that run the motors are set up to operate each me:2r for oni one step ($1 / 200$ of a revolution or 0.04 " of travel) at a time. These are sher: placed in a loop to control the number and speed of the steps. The speed of tien computer's execution is such that the motion is indistinguishabie $z=0=: r: e$ simultaneous operation.

The hot melt gun itself has been tested and found :o be operating properly. The tests were run to determine two inpo: an: zperavinz pazameters: the extrusion rate of the bead and the consump:iv: $=3: 4$:
Tracor MBA

FIGURE 4
EDGE SEAL SHUTTLE CABLE CONTROL

Butyl supply rope. The results turned out to be an almost exact $2: 1$ ratio with the bead extruded at approximately $2 \mathrm{in} / \mathrm{sec}$ and the supply rope being consumed at $1 \mathrm{in} / \mathrm{sec}$. The supply spools are approximately 50 ft . each meaning that 100 ft of bead could be extruded from each spool. This is sufficient to edge seal two $4^{\prime} \times 8^{\prime}$ panels consisting of eight $l^{\prime} \times 4^{\prime}$ modules each.

2.5
 Fabrication of Deliverables

Contractually, the construction of the Automated Lamination Station and Final Assembly Station had to be completed by 31 May 1981 . This does not include any tests or adjustments which, for the purposes of this contract, are considered to be part of the three month fabrication phase. In addition to operational testing, this phase includes, naturall $\%$, the fabrication of the deliverable modules The contract specifies that these shall be six $4 \mathrm{ft}^{2}$ modules produced on the equipment developed in this progran.

It was decided early in the program that the module size would be $1^{\prime} \times 4^{\prime}$. In order to demonstrate the multiple-size capability of the Final Assembly Station, these six modules should be laid up on at least vwo difierent size GRC substrates. At a recent program review meetirg, the final size of the substrates was decided upon. For ease of portability during JPL testing i: was decided to keep the overall size small. The final deliverable panels will be a combination of $1^{\prime} \times 4^{\prime}$ (one module per panel) and $2^{\prime} \times 4^{\prime}$ (2 modules per panel) substrates. The panels have a 1 " wide raised lip around their perimeter which acts as an edge frame.

The actual fabrication of these panels has been sub-contractec to a local firm that has GRC spraying equipment and specializes in protot:\%e runs. This should provide a considerable savings to the progran as the major cost of any short run GRC fabrication involves the setup and breakdown (and in our case refurbishment) of the spraying equipment. Since this vendor is already set up for short runs, we need pay only for the materiais and labo: involved with the actual spraying of the panels. The molds to be used in the fabrication were built and checked by MBA and have been sinipped to the vendor. Spraying has been scheduled for the middle of July and, with a two weti curziz time, should be delivered by the end of the month.

All lamination materials are now in house, the polyester covered aluminum foil being the last to arrive. The multi-ply supply spoois have been wound using our multi-ply roller described in Quarterly Report No. 3, Section 2.1.2.4. Due to the loose wrapping of this hand operated device, there are only about 250 ft . on a $12^{\prime \prime}$ diameter spool. Commercial rẹwinders, with tighter web tension control, could achieve two or three times that amount for the same diameter.
2.6 SAMICS

Preparation of SAMICS Format A's, with appendices, was performed for the entire process sequence covered by this contract. The sequence was broken into four processes: ROBOTBOND, which represents the cell stringer; ROBOTLAY, which represents the layup of encapsulated materials into the chamber; CURE is the curing of modules using a large number of automated chambers cycling continuously (to get the curing throughput rate to match the layup rate); and ROBOTSEAL which is the edge sealing and framing onto the GRC panels.

A Format B was also prepared which groups these processes together into a company called ROBOTMOD. This company would take the place of MODULECO in the standard SAMICS industry.

These forms are all included at the end of this report as an appendix. 2.7 Drawing Package

The drawing package has, in a sense, been in production zor the entire duration of the contract since all of the machining prints used in the assembly of these machines are included.

Now that the machines are completed and operating, however, the assembly drawings can be produced. These have already been done for the Automated Lamination Station and are approximately 50% complete Eor the Final Assembly Station.

3.0 CONCLUSIONS AND FUTURE WORK

With the completion of the construction phase of this contract, we find ourselves well into the fabrication phase. All of the materials necessary to make the modules: cells, interconnect ribbon, solder paste, EVA (white and clear), Craneglas, polyester/foil and cover glass; are all in house. The encapsulant materials have been slit to width and rolled into spools. The GRC panels have been designed, the forms built, and fabrication by an outside vendor scheduled.

The current major effort involves preparations for the 18th PIM in July. A videotape of all three work stations in operation has been produced which will be on dispiay.

4.0 PROGRAM PLAN

Included is a program plan that shows progress-to-date on the various phases as well as their projected completion dates.

PROGRAM PLAN

APPENDIX :

SAMICS Formats A and B with appendices

FORMAT B - COMPANY DESCRIPTION
(b) (Final) Product(s) Produced PANEL
0
(a) (Final) Process(es) ROBOTSEAL
(c) Ideal Ratio(s) with units

1. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units
2. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units
3. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units
4. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units
5. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with inits
6. (b) Intermediate Product(s)
(a) Process (es)
(c) Ideal Ratio(s) with units
7. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units
8. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units
9. (b) Intermediate Product(s)
(a) Process(es)
(c) Ideal Ratio(s) with units

Purchased Product(s)

Supplier and Percentage

Supplier and Percentage

A- 1 Process (Referent) ROBOTBOND

Note: Names given in brackets [] are the names of process attributes requested by the SAMIS computer program.

A-2 [Descriptive. Name] of Process Placement and soldering of cell string using an industrial			
robot			
PART 1 - PRODUCT DESCRIPTION			
A. 3 [Product. Referent] STRING			
A-4 Descriptive Name [Product. Name] Interconnected String of Cells			
A. 5 Unit Of Measure [Product. Units] STRINGS			
PART 2 - PROCESS CHARACTERISTICS			
A-6 [Output. Rate] (Not Thruput) 0.1622		Units (given on line A-5) Per Operating Minute	
A.7 linprocess. Inventory. Time] 6.1667		Calendar Minutes (Used only to compute in-process inventory)	
A.8 [Duty. Cycle] 0.97		Operating Minutes Per Minute	
A-8a [Number. Of. Shifts. Per. Day]	3	Shifts	
A-8b [Personnel. Integerization. Override. Switch]	off	(Off or On)	
PART 3 - EQUIPMENT COST FACTORS (Machine Description)			
A.9 Component [Referent]	ROBOT	CELLPREP	I-HEATER
A.9a Component [Descriptive. Name]	Unimate	Cell	Induction
	$2000 \mathrm{~B}$	Preparation	Heater
	Robot	Station.	Generator
A. 10 Base Year For Equipment Prices [Price. Year]	1979	1979	1981
A. 11 [Purchase. Cost. Vs. Quantity. Bought. Table] (Number Of and \$ Per Component)	49,685	56,500	8,000
A-12 Anticipated [Useful. Life] (Years)	4.83	7	10
A. 13 [Salvage. Value] (\$ Per Component)	24,842	2825	400
A-14 [Removal. And. Installation. Cost] (\$/Component)	700	500	200

Note: The SAMIS computer program also prompts for the [Payment. Float. Interval], the [Inflation, Rate. Table], the [Equipment. Tax. Depreciation. Method], and the [Equipment. Book. Depreciation. Method]. In the LSA SAMICS context. use 0.0, (19756.0•), DDB, and SL. (The asterisk is a signal to the computer, not a reference to a footnote
A. 15 Process Referent (From Front Side Line A-1) ROBOTBOND

PART 4 - DIRECT REQUIREMENTS PER MACHINE (Facilities) OR PER MACHINE PER SHIFT (Personnel)[Facility. Or. Personnel Requirement]			
A. 16	A. 18	A. 19	A. 17
(Expense Item Referent)	Per Machine (Per Shift) [Amount. Per. Machine]	Units	Requirement Description or Name
A2064D	125	ft^{2}	Type A Manufacturing Space
B3752D	0.25	Person/shift	Production machine operator
B3736D	0.0179	Person/shift	Mechanical maintenance
B3688D	0.0089	Person/shift	Electrical maintenance

PART 5 - DIRECT [Byprod	UIREMENTS PER MAC and IUtility. Or. Commo	MINUTE remerit]	(SAMIS will ask first for Byproducts)
A 20	A. 22	A. 23	A. 21
Catalog Number (Expense Item Referent)	Amount Required Per Machine Per Minute [Amount. Per. Cycle!	Units	Requirement Description or Name
E1140D	0.0446	m^{2}	Solar cells
EA3D	0.0063	1 b	Copper ribbon
EG1600D	0.0031	1 b	Solder paste
C1032B	0.3083	KW-Hr	Electricity
C2032D	18.55	ft^{3}	Compressed air
-			

PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED None

A. 24
(Required. Product) (Reference)
A. 28
[Yield] *
(\%)
A. 26
[Ideal. Ratio] * Of Units Out/Units In
A. 27

Units Of A.26**
Product Name

$\cdot 100 \%$ minus percentage of required product lost in this process.

- Assume 100\% vield here.
...Examples: Modules/Cell or Cells/Wafer.
A. 1 Process [Referent]

ROBOTLAY

Note: Names given in brackets [I are the names of process attributes requested by the SAMIS computer program.

A- 2 [Descriptive. Name] of Process Layup of Encapsulant Materials using an Industrial Robot

PART 1 - PRODUCT DESCRIPTION
A. 3 [Product. Referent] LAYMOD
A.4 Descriptive Name [Product. Name] Laid-up module ready for curing

A- 5 Unit Of Measure [Product. Units] Modules
PART 2 - PROCESS CHARACTERISTICS

A. 6	[Output. Rate] (Not Thruput)	1.0	Units (given on line A-5) Per Operating Minute
		1.0	
A. 7	[Inprocess. Inventory. Time]		Calendar Minutes (Used only to compute in-process inventory)
A. 8		0.956	
	[Duty. Cycle]		Operating Minutes Per Minute
		3	
A-8a	[Number. Of. Shifts. Per. Day]		Shifts
A.8t	[Personnel. Integerization. Overr	off	(0ft or On)

PART 3 - EQUIPMENT COST FACTORS (Machine Description)
A. 9 Component [Referent]
A.9a Component [Descriptive. Name
A. 10 Base Year For Equipment Prices [Price. Year]
A. 11
[Purchase. Cost. Vs. Quantity. Bought. Tabie]
(Number Of and \$ Per Component)
A-12 Anticipated [Useful. Life] (Years)
A. 13 [Saivage. Value] ($\$$ Per Compunent)
A. 14 [Removal. And, Installation. Cost] (\$/Component)

ROBOT*

Unimate
Robot

1979
$\frac{33,105}{\frac{4.83}{16,553}} \frac{\frac{110,000}{10}}{467} \quad-\frac{6,000}{800}$
\qquad
\qquad
\qquad
\qquad
\qquad
$-$

Note: The SAMIS computer program also prompts for the [Payment. Float. Interval], the [Inflation. Rate. Table], the [Equipment. Tax. Depreciation. Method], and the [Equipment. Book. Depreciation. Method]. In the LSA SAMICS context, use 0.0. (19756.0 •) , DDB, and SL. The asterisk is a signal to the computer, not a reference to a footnote
*The robot is used as both an assembly and transfer device between this station and the edge seal station (pages $7 \& 8$). Its time is split $/ 3$ here and $1 / 3$ there. The values on $\mathrm{A}-11, \mathrm{~A}-13$ and $\mathrm{A}-14$ on both forms are pro- ated by that proportion. The same applies to maintenance and direct machine requirements.

PART 4 - DIRECT REQUIREMENTS PER MACHINE (Facilities) OR PER MACHINE PER SHIFT (Personnel) [Facility. Or. Personnel Requirement]			
A. 16	A. 18	A. 19	A. 17
(Expense Item Referent)	Per Machine (Per Shift) (Amount. Per. Machine]	Units	Requirement Description or Name
A2064D	150	ft^{2}	Type A manufacturing space
B3752D	0.5	person/shift	Production machine operator
B3736D	0.0119+	person/shift	Mechanical maintenance
B3688D	$0.0060{ }^{\text {F }}$	person/shift	Electrical manntenance

PART 5 - DIRECT REQUIREMENTS PER MACHINE PER MINUTE (SAMIS will ask first for Byproducts)
[Byproduct] and [Utility. Or. Commodity Requirement]

A. 20 Catalog Number (Expanse Item Referent)	A. 22 Amount Required Per Machine Per Minute [Amount. Per. Cycle]	A 23 Units	A. 21 Requirement Description or Name
E1828D	4	ft^{2}	Float glass (tempered)
E1807D	12	ft^{2}	Crane glass
EP1003	8	ft ${ }^{2}$	1 sheet clear EVA
			1 sheet white EVA
EMBAO1	4	$\underline{\mathrm{It}}$	Polyester/foil laminate
C1032B	0.136	KW-Hr	Electricity
C2032D	2.458	ft^{3}	Compressed air

PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

A.24 [Required. Product] (Reference) STRING
A.28 (Yield] (\%)

[^0]Note: Names given in brackets | | are the names of process attribut requested by the SAMIS computer program.

[^1] use 0.0, (19756.0 •), DDB, and SL. The asterisk is a signal to the computer, not a reference to a footnote

PART 4 - DIRECT REQUIREMENTS PER MACHINE (Facilities) OR PER MACHINE PER SHIFT (Personnel) [Facility. Or. Personnel Requirement]			
A. 16	A. 18	A. 19	A. 17
(Expense Item Referent)	Per Machine (Per Shift) [Amount. Per. Machine]	Units	Requirement Description or Name
A 2064D	1014	ft^{2}	Type A manufacturing space
B 3752!	0.5	person/shift	Production machine operator
337365	0.0064	person/sinft	Nechantcal matntenance
B 3688D	0.0139	person/shift	Electrical maintenance

PART 5 - DIRECT REQUIREMENTS PER MACHINE PER MINUTE (SAMIS will ask first for Byproducts)
[Byproduct] and [Utility. Or. Commodity Requirement]

| A.20
 Catalog Number
 (Expense Item
 Referent) | A-22
 Amount Required
 Per Machine Per Minute
 (Amount. Per. Cycle! | A-23 |
| :---: | :---: | :---: | :---: |

PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

A.24
[Required. Product]
(Reference)

LYied]
(\%)

LAYMOD

Note: Names given in brackets [] are the names of process attributes requested by the SAMIS computer program.

A-2 [Descriptive. Name] of Process Apply edge seal and frame using an industrial robot		
PART 1 - PRODUCT DESCRIPTION		
A. 3 [Product. Referent] PANEL		
A4 Descriptive Name [Product. Name] Completed panel, ready for packing and shipping		
A-5 Unit Of Measure [Product. Units] Panels		
PART 2 - PROCESS CHARACTERISTICS		
A.6 [Output. Rate] (Not Thruput) 0.12	0.125	Units (given on line A-5) Per Operating Minute
A. 7 [Inprocess. Inventory, Time] 8.0	8.0	Calendar Minutes (Used only to compute in-process inventory)
0.9	0.97	
A-8 [Duty. Cycle]		Operating Minutes Per Minute
A-8a [Number. Of. Shitts. Per. Day]		Shifts
A-8b [Personnel, Integerization. Override. Switch]	ff	(Off or On)
PART 3 - EQUIPMENT COST FACTORS (Machine Description)		
A. 9 Component [Referent]	ROBOT*	SEAL-STN
A-9a Component [Descriptive. Name]	Unimate	Edge Seal
	2000B	and Framing
	Robot	Station
A. 10 Base Year For Equipment Prices [Price. Year]	1979	1981
A. 11 [Purchase. Cost. Vs. Quantity. Bought. Table] (Number Of and S Per Component)	16,562	50,000
A. 12 Anticipated [Useful. Life] (Years)	4.83	10
A. 13 (Salvage. Value) (S Per Component)	8,281	2,500
A. 14 [Removal. And. Installation. Cost] (\$/Component)	233	500

Note: The SAMIS computer program also prompts for the [Payment. Float. Interval], the [Inflation. Fate. Table], the [Equipment. Tax. Depreciation. Method], and the [Equipment. Bock. Depreciation. Method], In the LSA SAMICS contex: use 0.0 , (1975 6.0-), DDB, and SL. The asterisk is a signal to the computer, not a reference to a footnote

A-15 Process Referent (From Front Side Line A-1) ROBOTSEAL

PART 4 - DIRECT REQUIREMENTS PER MACHINE (Facilities) OR PER MACHINE PER SHIFT (Personnel) [Facility. Or. Personnel Requirement]			
A. 16	A. 18	A. 13	A. 17
Cataiog Number	Amount Required		
(Expense Item Referent)	Per Machine (Per Shift) [Amount. Per. Machine]	Units	Requirement Description or Name
A2064D	80	ft^{2}	Manufacturing space type A
B3752D	1.0	person/shift	Production machine operator
B3736D	0.0060	person/shift	Mechanical maintenance
B3688D	0.0029	person/shift	Electrical maintenance

PART 5 - DIRECT REQUIREMENTS PER MACHINE PER MINUTE (SAMIS will ask first for Byproducts) [Byproduct] and [Utility. Or. Commodity Requirement]

A-20 Catalog Number (Expense Item Referent) EMBA02
Amount Required Per Machine Per Minute [Amount. Per. Cycle] 4.0

PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

[^2]Appendix for Process ROBOTBOND

$$
\begin{aligned}
& \text { A-6 } \rightarrow \text { A-7 Cycle time } 10 \mathrm{sec} / \text { cycle } \rightarrow 6 \text { cycles/min } \\
& \text { String has } 35 \text { cells }+2 \text { end bus bars }=37 \text { cycles } \\
& \frac{37}{6}=6.1667 \mathrm{~min} / \mathrm{string} \\
& \rightarrow 0.1622 \text { strings } / \mathrm{min} \\
& \text { A-8 Ribbon and solder paste supplies sized to be changed once per } \\
& \text { shift, a } 5 \text { min. job. } \\
& \frac{5}{480}=0.0104 \text { down fraction } 1-0.01=0.99 \text { up Eraction } \\
& \text { Unimate up time } 98 \% \text { (manuEacturer's estimate) } \\
& (0.99) \times(0.98)=0.97
\end{aligned}
$$

$A-9 \rightarrow A-14$
Unimate 2000B
Purchase Price: \$49,685. Includes robot base price, additional memory, teach control.

Useful Life: 40,000 hrs. (manufacturer's estimate) $\rightarrow 4.83 \mathrm{vrs}$.
Salvage Value: 50\% (manufacturer's estimate) before overhaul

- $\underline{\underline{\text { S24,842 }}}$

Installation and Removal Costs: 5700 Based on experience with current robot.

Cell Preparation Station

Purchase Price:	$\begin{array}{r} 50,000 \\ 2,600 \\ 2,300 \\ 1,600 \\ \hline \end{array}$	Construction labor Siltec Cassette Unioader Computer \& Interface Enclosure
	\$ 56, 500	

Useful Life: 7 years (Engineering Estimate)
Salvage Value: 5\% (Engineering Estimate) - 52325
Installation and Removal Costs: S500 (Esti-.ate)

Appendix for Process ROBOTBOND (Continued)
$\mathrm{A}-9 \rightarrow \mathrm{~A}-14$

Induction Heater

Purchase Price: $\underline{\underline{58,000}}$
Useful Life: 10 years (Industrial Estimate)
Salvage Value: 5\% (Engineering Estimate) $\rightarrow \underline{\underline{\$ 400}}$
Installation and Removal Costs: $\$ 200$
$\begin{array}{ll}\text { A-16 } \mathrm{A}-19 & \text { Mfg. Space: } 125 \mathrm{ft}^{2} \text { (based on current machine) } \\ & \text { Machine Operator: One person can watch four systems } \\ & \text { Maintenance: }\end{array}$

$$
\begin{aligned}
\text { Scheduled }-6.5 \mathrm{hr} / 1000 \mathrm{hr} \text { (mfg. est.) } \rightarrow & 1.092 \mathrm{hr} / \mathrm{wk} \\
\text { Unscheduled }(98 \% \text { up time }- & \frac{3.360}{4.452 \mathrm{hr} / \mathrm{wk}} \\
& \\
& =4.5 \mathrm{hr} / \mathrm{wk}
\end{aligned}
$$

Required Maintenance $4.5 \mathrm{hr} / \mathrm{wk}$ assume $2 / 1$ ratio mechanical to electrical.

Mechanical: $3.0 \frac{\mathrm{hr}}{\mathrm{wk}} \times \frac{1}{21} \frac{\mathrm{wk}}{\text { shift }} \times \frac{1}{8} \frac{\text { shift }}{\text { man-hr }}=\underline{\underline{0.0179}}$ person/shift

Appendix for Process ROBOTBOND (Continued)
$\mathrm{A}-20 \rightarrow \mathrm{~A}-23$

Solar Cells:

$$
\begin{aligned}
& 100 \mathrm{~mm}=0.0079 \mathrm{~m}^{2} / \text { cell } \\
& @ 35 \text { cells/string }=0.2749 \mathrm{~m}^{2} / \mathrm{string} \\
& @ 0.1622 \text { strings } / \mathrm{min}=0.0446 \mathrm{~m}^{2} / \mathrm{min}
\end{aligned}
$$

Copper Ribbon:

2 types - interconnect \& bus bar
Interconnect ribbon is $0.1^{\prime \prime} \times 0.002^{\prime \prime}$
two $7^{\prime \prime}$ ribbons per cell $=14 \mathrm{in} /$ cell
@ 35 cells/string $=490 \mathrm{in} /$ string
$490 \times 0.100 \times 0.002=0.0980 \mathrm{in}^{3} /$ string
Bus bar is $0.5^{\prime \prime} \times 0.01^{\prime \prime}$
2 Bus bars per string, 2.25" long
$2 \times 2.25 \times 0.5 \times 0.01=0.0225 \mathrm{in}^{3} /$ string
$0.0980+0.0225=0.1205 \mathrm{in}^{3} /$ string
Density of copper $=0.3237 \mathrm{lb} / \mathrm{in}^{3}$
$0.1205 \times 0.3237=0.0390 \mathrm{lb} /$ string
@ 0.1622 strings $/ \mathrm{min}=\underline{\underline{0.0063 ~} \mathrm{Ib} / \mathrm{min}}$
Solder Paste:
Each cell requires 4 solder beads each $3^{\prime \prime}$ long
For $0.015^{\prime \prime}$ dia. bead: $\quad\left(\frac{.015}{2}\right)^{2}=\times 3 \times 4=0.0021 \mathrm{in}^{3} /$ cell
@ 35 cells/string $=0.0742 \mathrm{in}^{3} /$ string $\begin{gathered}\binom{\text { Includes }}{\text { bus bars) }}\end{gathered}$
Solder paste density $=0.2575 \mathrm{lb} / \mathrm{in}^{3}$
$0.0742 \times 0.2575=0.191 \mathrm{lb} /$ string
@ 0.1622 string $/ \mathrm{min}=0.0031 \mathrm{lb} / \mathrm{min}$

Appendix for Process ROBOTBOND (Continued)
$A-20 \rightarrow A-23$

Electricity:

Robot Induction Heater	12.0 KW Preparation Station
5.5 KW	manufacturer specs. 18.0 KW
Sum of electrical equipment in preparation station	

$=18.5 \mathrm{KWH} / \mathrm{hr} \rightarrow \underline{\underline{0.3083}} \mathrm{KWH} / \mathrm{min}$

Compressed Air:

System contains two model B-100 eductors, each rated @ 20 scfm

1) The prep station eductor runs 5.5 sec of the 10 sec . cycle

$$
\rightarrow \frac{5.5}{10} \times 20=11.0 \mathrm{cfm}
$$

2) The robot eductor runs an average of $3 \mathrm{sec} / \mathrm{cyc}$ le

$$
\rightarrow \frac{3}{10} \times 20=6 \mathrm{cfm}
$$

3) The prep station air table runs $2.5 \mathrm{sec} / \mathrm{cycle} \xlongequal{9}=1 \mathrm{cfa}$

$$
\rightarrow \frac{2.5}{10} \times 1=0.25 \mathrm{cfm}
$$

4) The robot "cell release" air is on $3 \mathrm{sec} / \mathrm{cycle} \hat{\}}=1$ cin

$$
\rightarrow \frac{3}{10} \times 1=0.30 \mathrm{~cm}
$$

5) 3 small cylinders and 4 soider paste tubes use $=1$ cf..

Total Air: 11.0

6.0
1.0
.25
$\frac{.30}{18.55} \mathrm{ft}^{3} / \mathrm{min}$.

Appendix for Process ROBOTLAY
$A-6 \rightarrow A-7 \quad$ Machine cycle time $=1 \mathrm{~min}$.

A-8 Bottom Lamina Supply Spool must be changed 4 times per shift (a 2 min . job) : $4 \times 2=8 \mathrm{~min} / \mathrm{shift}$

Top Lamina Supply Spool must be changed 2 times per shift: $2 \times 2=4 \mathrm{~min} /$ shift
$\frac{8 \times 4 \min \text { down }}{480 \min \text { total }}=0.025$ down fraction $\rightarrow 1-0.025=0.975$ up fracti
Unimate up fraction $=0.98$ (mfg. est.)
$0.98 \times 0.975=0.956$
$A-9 \rightarrow A-14$
Robot - Unimate 2000B
Purchase Price: S 49,685 Includes robot base price, $\begin{aligned} & \text { additional memory, teach control. }\end{aligned}$
Useful Life: $40,000 \mathrm{hrs}$. (manufacturer's estimate) $\rightarrow 4.83$ vrs.
Salvage Value: 50\% (manufacturer's estimate) before overhaul
$-\underline{\underline{S 24,842}}$
Installation and Removal Costs: $\$ 700$ Based on experience with current robot.

See note at bottom of page 3
Lamination Station
Purchase Price: Developtient costs of prototype
Useful Life: 10 yrs (engineering estimate)
Salvage value: 5\% of purchase price
Removal \& installation cost: 2 man weeks installation

Appendix for Process ROBOTLAY

$A-16 \rightarrow A-19$

Manufacturing	Space: $150 \mathrm{ft}^{2}$ (based on current machine)
Machine Opera	tor: The operator divides his time between this machine and the curing chambers in process CURE.
Maintenance:	Scheduled - $6.5 \mathrm{hr} / 1000 \mathrm{hr}(\mathrm{mfg}$. est.) $\rightarrow 1.092 \mathrm{hr} / \mathrm{wk}$ Unscheduled (98% up time) - 3.360
	$4.452 \mathrm{hr} / \mathrm{wk}$
	$=4.5 \mathrm{hr} / \mathrm{wk}$

Required Maintenance $4.5 \mathrm{hr} / \mathrm{wk}$ assume $2 / 1$ ratio mechanical to electrical.

Mechanical: $3.0 \frac{\mathrm{hr}}{\mathrm{wk}} \times \frac{1}{21} \frac{\mathrm{wk}}{\operatorname{shift}} \quad \mathrm{x} \quad \frac{1}{8} \frac{\text { shift }}{m a n-h r}=0.0179$ person/

See note at bottom of page 3
$A-20 \rightarrow A-23$
Machine produces one $4 \mathrm{ft}^{2}$ module per minute. Yodule consists of 1 sheet tempered glass, 3 layers of Craneglas (a mat-type fiberglass) 1 layer clear EVA, 1 layer white EVA, and layer of a polyesterfoil laminte back cover. The cell string is obtained in part 6. The polyester/foil was obtained from Gila River Products, Chander, A 2 . The cost to us was $\$ 200$ for a $1500^{\prime} \times 1^{\prime}$ roll ($0.135 / \mathrm{Et}^{-}$). This was a special price for some curplus material, but is probabiy a good number for large production quantities.

Expense Item: EMBAOI
Name: Polyester/Foil laminate, expressed in $f t^{2}$
Cost: $0.13 \mathrm{~s} / \mathrm{ft}^{2}$
Base Year: 1981, Inflation Rate: 8

Appendix for Process ROBOTLAY

$\mathrm{A}-20 \rightarrow \mathrm{~A}-23$

Electricity

Robot $=12.0 \mathrm{KW}$ (mfg. spec.)
Robot 8.00 KW (prorated as per note at bottom of page 3)

Stepper motors \& valve solenoids 0.05 KW Computer/controller 0.10 KN
$8.15 \mathrm{KN} \rightarrow 8.15 \mathrm{KNH} / \mathrm{hr}$

$$
8.15 \mathrm{KWH} / \mathrm{hr}=0.136 \mathrm{KWH} / \mathrm{min}
$$

Compressed air:
Vacuum platen has 35 mini-vac MV-75 eductors each rated at 0.125 cfi
$35 \times 0.125=4.375 \mathrm{ft}^{3} / \mathrm{min}$.
Platen operates for 20 sec each 1 min . cycle (This is only the time spent operating at this machine. Time spent a: edge seal machine is entered on page 8).
$4.375 \frac{\mathrm{ft}^{3}}{\mathrm{~min}} \times \frac{20 \mathrm{sec} / \mathrm{cycle}}{60 \mathrm{sec} / \mathrm{min}}=1.458 \mathrm{ft} / \mathrm{cycle}$
$=1.458 \mathrm{ft}^{3} / \mathrm{min}$ @ $1 \mathrm{~min} / \mathrm{cycle}$
Six small cylinders use approx. $1 \mathrm{ft}^{3} / \mathrm{min}$
Total air used: $1+1.458=\underline{\underline{2.458 ~} \mathrm{ft}^{3} / \mathrm{min}}$
$A-6 \rightarrow A-7$
Our approach to the cure cycle involves using 60 modular thermal/ vacuum curing chambers interfacing with a single chamber loading/ unloading machine (process ROBOTLAY). At present, a one hour cure cycle to evacuate, heat, hold for cure, and cool seems quite feasible (based on current JPL research).

A-8
Based on a 1 min . unload/load cycle, 60 on-line chambers seem to be sufficient for a complete cycle of: 1 min. unload/load, 50 min . evacuate/heat/cool and a 1 min . wait before re-entering the loading machine. This wait allows the change-out of a defective chamber without stopping the line. A one week maintenance of the chamber carrying carousel once a year yields:

$$
\frac{51 \mathrm{wks} \cdot \mathrm{up}}{52 \mathrm{wks} \cdot / \mathrm{yr}}
$$

$=0.98$ up time
A-11

Purchase Cost:

$\$ 1,000$ is the estimated cost of a mass produced chamber based on the production costs of the prototype. $60 \times \$ 1,000=560,000$. Another $\$ 25,000$ is included for the cost of the carousel to carry the chambers, cycle control equipment, power supplies and vacuum pumps.

Useful Life: 20 yrs. is the Iffe expectancy of t':e carousel equipment. The chambers are continually refurbisied to match this life expectancy (cost covered in maintenance).

A-13
Salvage Value: 5\% of purchase cost
A-14
Removal \& Installation cost:
As mentioned above in A8, change-out of a defective chamber:
is considered part of normal operation; therefore, not included here. $\$ 5,000$ is the estimated removal and ins:alia:ion costs of the carousel and control equipment.
$A-16 \rightarrow A-19$
Manufacturing Space: If the 1 ft . wide chambers are spaced 1 ft . apart, then 60 chambers require ($1+1$) $\times 60=120$ linear ft. of carousel.

A circular carousel with a mean diameter 0 of 40 ft . would do it but the floor area required would be $1520 \mathrm{ft}^{2}$ based on an outside diameter of 44 ft .

A stratght sided, round ended carousel (such as used for luggage at airports) with 35 ft . long sides spaced 16 ft . apart has sufficient length and occupies onily $1014 \mathrm{ft}^{2}$ based on outside dimensions. This still leaves a $12^{\prime} \times 35$ ' space in the center for control equipment.

Machine Operator: The operator divides his time between this machine and the lay-up machine in process ROBOTLAY.

Mechanical Maintenance: The one-week maintenance of the carousel once a year requires $\frac{1}{52}=0.0192$ person/day

$$
\text { @ } 3 \text { shifts } / \text { day }=0.0064 \text { person } / \text { shift }
$$

Electrical maintenance - Assume one chamber (essentially an electrical device) per day goes bad requiring an average of 1 hr . to fix

$$
\begin{gathered}
\rightarrow 1 / 24=0.0417 \text { person/day } \\
\text { @ } 3 \text { shifts/day }=0.0139 \text { person/shift }
\end{gathered}
$$

$\mathrm{A}-20 \rightarrow \mathrm{~A}-23$
Electricity: Each chamber heater is rated at 2.6 K N

1) In each 1 hr . cycle, the heater runs 15 mins. at Eull power to heat the chamber followed by 20 mins. at half power to maintain cure temperature.

$$
\begin{aligned}
15 \mathrm{~min} .\left(2.6 \mathrm{KW} ;+20 \mathrm{~min} \cdot(1.3 \mathrm{KW})=65^{\frac{\mathrm{KW}-\mathrm{min}}{\mathrm{hr}}}\right. & =1.0833 \frac{\mathrm{KVH}}{\mathrm{hr}} \\
& =0.0181 \frac{\mathrm{KNR}}{\mathrm{Kin}}
\end{aligned}
$$

$$
\text { for } 60 \text { chambers }=1.0833 \frac{\mathrm{~K} \cdot \mathrm{H}}{\mathrm{~min}}
$$

2) The 1 HP carousel motor runs for 10 sec . every ain. :o index the carousel.

$$
\begin{aligned}
& \text { @ } 1 \text { index } / \mathrm{min} .=0.0021 \frac{\mathrm{kmH}}{\mathrm{~min}}
\end{aligned}
$$

Appendix for Process CURE
$A-20 \rightarrow A-23$
3) A 2 HP vacuum pump, running continuously
$2 \mathrm{HP} \times 0.7457 \frac{\mathrm{KW}}{\mathrm{HP}}=1.4914 \mathrm{KW} \rightarrow 1.4914 \frac{\mathrm{KWH}}{\mathrm{Hr}}=\underline{\underline{0.0249}} \frac{\mathrm{KWH}}{\overline{\mathrm{min}}}$

Total Electricity $=1.0833+0.0249+0.0021=\underline{\underline{1.1103}} \mathrm{KWH} / \mathrm{Min}$

Background: Our system uses Glass Reinforced Concrete (GRC) panels as a substrate. The panels contain a shallow indentation into which the modules are placed. A bead of hot melt Butyl rubber edge sealant is placed around the module's opening just before the module is put in place by the Unimate robot. (The robot is time shared with process ROBOTLAY as per the note at the bottom of page 3).

The modules can be placed in any configuration up to a maximum size of 4 'x8'. The configuration chosen for this simulation is eight l'x4' placed side by side, joined along the 4 ft side.

A-6 A-7 Rate: The hot melt sealant is extruded at the rate of $2 \mathrm{in} / \mathrm{sec}$. It must be applied to three sides of the module opening: the side common to two modules (in our case the 4 ft dimension) and the two sides slong the GRC (the 1 ft sides).
Total bead length per module $=\left(4 \mathrm{ft} \times 12 \frac{\mathrm{in}}{\mathrm{ft}}\right)$

$$
+2\left(1 \mathrm{ft} \times 12 \frac{\mathrm{in}}{\mathrm{ft}}\right)=72 \frac{\mathrm{in}}{\text { fodule }}
$$

@ $2 \mathrm{in} / \mathrm{sec}=36 \mathrm{sec} /$ module

This fits well with our lamination cycle of $1 \mathrm{~min} / \mathrm{module}$ allowing a time budget of 5 sec to move the hot melt gun into place, 36 sec to apply the sealant, 5 sec to move the hot melt gun out and 14 sec for robot placement of the module.
One min per module means $8 \mathrm{~min} /$ panel or $: / 8=0.125 \frac{\text { panels }}{\mathrm{min}}$

A-8
The hot melt supply spool must be changed (a 30 sec fob) every other panel or every 16 min .

Up time fraction $=\frac{16 \mathrm{~min} \text { up }}{16+30 / 60 \text { cycle time }=0.97}$
Note: Our prototype uses a modified hand-held hot melt applicator which must be reloaded frecuently. A true production machine vould have remote locsted
heaters and pumps with real-time replenishment which would raise the up time fraction :o nearly : 00%.

Robot:

Unimate 2000B

Purchase Price: S 49,685. Includes robot base price, additional memory, teach control.

Useful Life: $40,000 \mathrm{hrs}$. (manufacturer's estimate)
$\rightarrow 4.83 \mathrm{yrs}$.
Salvage Value: 50\% (manufacturer's estimate) before overhaul
$\rightarrow \underline{\underline{S 24,842}}$
Installetion and Removal Costs: 9700 Based on experienc
See note at bottom of page 3
Edge Seal Station:
Purchase cost: Based on development costs of prototype
Useful life: Engineering estimate
Salvage Value: 5\% of purchase cost
Removal \& Installation Costs: One man week installation time
$A-16 \rightarrow A-19$
Manufacturing space: Based on prototype machine. Does no: include space for robot which is covered in process ROBOTLAX.

Machine Operator: Maneuvering GRC panels (both in and out of machine) and reloading hot melt gun (or tending to a zore sophisticatec remote pump system) make this station a full time job.

Maintenance:
Scheduled - $6.5 \mathrm{hr} / 1000 \mathrm{hr}$ (mf g . est.) - $. .092 \mathrm{hr} / \%$ Unscheduled (98\% up time) -

	$\frac{3.360}{4 .-52} \mathrm{hr} \%$
$=\quad$	-.5 Km

Appendix for Process ROBOTSEAL
A-16 $-\mathrm{A}-19$
Maintenance (Continued)
Mechanical: $\quad 3.0 \frac{\mathrm{hr}}{\mathrm{wk}} \times \frac{1}{2} 1 \quad \frac{\mathrm{wk}}{\operatorname{shift}} \times \frac{1}{\delta} \frac{\operatorname{shift}}{\operatorname{man}-h r}$
$=0.0179$ person/shift
Electrical: $1.5 \frac{\mathrm{hr}}{\mathrm{wk}}$
= 0.00893 person/shift
See note at bottom of page 3
$A-20 \rightarrow A-23$
GRC panel: A 4'x8' panel $=32 \mathrm{ft}^{2}$
for one panel every $8 \mathrm{~min}: \frac{32 \mathrm{ft} / \text { pane }}{8 \mathrm{~min} / \text { panel }}$

Cost: The GRC panel we are using was deveioped by MBA for JPL under Contract 955281. The cost for this Expense Item is from the final report for that program, section 7.2

Expense Item: EMBA02
Name: GRC panel 2 expressed in Et^{2}
Cost: 3.69 S/ft
Base Year: 1980
Inflation Rate: 10
Butyl Rope: The hot melt supply rope is h" diameter and the required bead is $1 / 8^{\prime \prime}$ giving a $2: 1$ ratio of bead length $=0$ supply length.

The relation for total bead length of a panel is:
$\mathrm{L}=\mathrm{n}(\mathrm{c}+2 \mathrm{E})+\mathrm{c} \quad$ where
$\mathrm{n}=$ number of modules in pane:
$c=1 e n g t h$ of the module side comon to two modules
$\mathrm{E}=$ length of the module edge not in comon
For this panel $L=8(4+2(1))+4=52 f t$ bead
52 ft bead $\times \frac{1}{2} \frac{\mathrm{ft} \text { rope }}{\mathrm{ft} \text { bead }}=26 \mathrm{ft}$ rope/panel
(9) $8 \mathrm{~min} /$ panel $=3.25 \mathrm{ft}$ rope $/ \mathrm{min}$

Butyl Rope: (Continued)
50 ft Butyl rope supply spools are available in our area for $\$ 25=0.50 \$ / f t$.

Expense Item: EMBA03
Name: Butyl Rope, expressed in ft. Cost: $0.50 \$ / f t$.
Base Year: 1981
Inflation Rate: 8
Zlectricity:
Robot $=12.0 \mathrm{KN}$ (mfgr. spec.)
Robot $\quad 4.00$ (pro-rated as per note on page 3)
Computer/Controller
0.05

Stepper Motors $\frac{0.025}{4.075 \mathrm{KKN}}$

$$
\rightarrow 4.075 \mathrm{KWH} / \mathrm{Hr}=0.0679 \mathrm{KWH} / \mathrm{min}
$$

Compressed Air:

$$
\begin{aligned}
& \text { Vacuum platen (on robof) has } 35 \text { mini-vac } N-75 \text { ecuctors } \\
& \text { each rated at } 0.125 \mathrm{ft}^{3} / \mathrm{min} \text {. } \\
& 35 \times 0.125=4.375 \mathrm{ft}^{3} / \mathrm{min} . \\
& \text { Platen operates for } 5 \text { second each } 1 \text {-in. c:rle } \\
& 4.375 \frac{\mathrm{ft}^{3}}{\mathrm{~min}} \times \frac{5 \mathrm{sec} / \mathrm{cycle}}{60 \mathrm{sec} / \mathrm{min}}=0.36-6 \mathrm{Et}^{3} / \mathrm{cycle} \\
& \text { for } 1 \mathrm{~min} \text {. cycle }=0.3646 E t^{3} / \mathrm{min} \text {. }
\end{aligned}
$$

[^0]: + See note at bottom of page 3

[^1]: Note: The SAMIS computer program also prompts for the [Payment. Float. Interval], the [Inflation, Rate, Table], the
 [Equipment. Tax. Depreciation. Method], and the [Equipment. Book. Depreciation. Method]. In the LSA SAMICS context

[^2]: ${ }^{\bullet} 100 \%$ minus percentage of required product lost in this process.
 " Assume 100\% yield here.
 .."Examples: Modules/Cell or Cells/Wafer.

