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EXECUTIVE SUMMARY 

Detailed measurements of the mean flow and turbulence have been 

made with the use of a micrometeorological facility consisting of an 

instrumented 76-m ·tall tower located within a 100-m distance from 

the Atlantic Ocean at Wallops Island, Virgi.nia. An interpretation of 

the eJcperimental results demonstrates that under moderately strong 

wind eonditions (hourly mean wind speed between 10 mls and 20 mls at 

a height of 10 m), the popular neutral boundary-layer flow model faUs 

to provide an adequate description of the actual flow. 

For daytime westerly winds the convective boundary layer, which 

has b~~en previously observed at sites on the continent, provides an 

adequate model for the surface flow at the Wallops Island site. 

Howev~~r variations from this model have been observed for certain 

wind directions and under certain atmospheric conditions such as 

low altitude cloud cover combined with precipitation. The observed 

10w-flC'equency velocity fluctuations give ri.se to increased turbulent 

intensities and larger turbulence integral scales. These low­

frequlmcy fluctuations also occur in the surface layer where the 

observed mean velocity profiles generally fit the logarithmic law quite 

well. 

For on-shore winds the surface flow is complicated as the re-

sult of the development of an internal boundary layer (IBL) as the air 

cross:lng the beach generally experiences a change in surface roughness 

and surface temperature. The internal boundary layer has a height 

betwelm 15 m and 30 m at the tower location depending on wind direction 

and change in surface conditions. For southerly winds the warmer alr 

v 



flows over the cooler water allowing the existence of a surface-based 

inversion of variable depth. Under these conditions a low-altitude 

maximum velocity (surface jet), occasionally below the highest 

observation level of 76 m, has been observed. Under extreme stable 

conditions at hourly mean velocities in excess of 10 m/s the tur­

bulence has been observed to vanish completely. In addition, 10w­

frequency internal gravity waves have been observed to co-exist 

with the turbulence. 

In addition to detailed flow information for all wind directions, 

averages of the important flow parameters used for design such as 

vertical distributjon of mean velocity, turbulence intensities and 

turbulence integral scales have been presented for wind-direction 

sectors with near-uniform upstream terrain. Power spectra of the 

three velocity components for the prevailing northwesterly and southerly 

winds are presented and discussed in detail. 

The experimental results indicate clearly that the non-uniformity 

of the upstream surface conditions, the non-neutral thermal stratifi­

cation and the presence of appreciable low-frequency velocity fluctu­

ations have a pronounced effect on the surface flow. Consequently it 

is impossible to find a simple and single PBL model to describe the 

flow at this site even under moderately strong wind conditions. More­

over, there is no evidence that under still stronger wind conditions 

(hourly mean wind speed at z=10 mover 20 m/s) the surface flow will 

alter sufficiently as to conform to the neutral boundary-layer model 

whose turbulence is of purely mechanical origin. 
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1. INTRODUCTION 

The purpose of this report is to provide information on the local 

wind climate at a mid-At1ant:Lc coastal site. The acquired information 

can ble used for the design of wind-turbine generators at similar sites. 

Since wind is a very important design parameter for these generators, 

information is provided in this report on wind speed, wind direction, 

wind shear and wind turbulence. 

The data presented in this report were collected from an instru­

mented meteorological tower, 76.2 m (250 flaet) tall and located at 

Wallops Island. This island is one of the barrier islands at the 

Atlantic coast along the Eastern Shore of Virginia and is used by 

the National Aeronautics and Space Administration as a sounding rocket 

launch facility. The results acquired frOln this facility should be 

typical for any Atlantic coastal site, although local effects such as 

upstream buildings and obstacles and changes in surface roughness and 

surface temperature modify the flow near the surface. At Wallops 

Island, the surrounding terrain beyond a distance of 100-300 m from 

the tower can be considered as homogeneous and uniform, so that the 

flow above a height of approximately 10-30 m should not be affected 

by local terrain nonuniformities. 

The wind and temperature data from this site were acquired under 

moderately strong wind conditions with an hourly mean velocity of at 

least 10 mls at the 76.2 m(250 ft) level. For wind directions be-

tween northeast and southwest this requirement had to be reduced to 

approximately 8 mis, since strong winds from this sector occur very seldom. 
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Mean wind and turbulence measurements were made with two types of 

instrumentation consisting of cup-vanes and resistance temperature 

probes primarily used for mean profile measurements of velocity and 

temperature respectively. In addition, the cup-vane instruments were 

used for turbulence intensities of the two horizontal velocity compo­

nents and horizontal and vertical turbulence integral scales. The hot­

film and thermocouple system was used for measurement of turbulence 

intensities, turbulence fluxes and velocity spectra in all three 

directions. The cup-vane system was used to acquire wind data from 

all directions, while the hot-film system was only used for turbulence 

measurements from the two prevailing wind directions, south and north­

west. 

The results of this experimental research are presented in a form 

suitable for design purposes. Where ever possible the results are also 

compared with previously published results and with existing empirical 

models for near-neutrally stratified low-level winds. 

2. SITEDESCRIPTION 

Wallops Island consists of a narrow strip of dunes, appr9ximately 

3 meters above sea level, and is situated in a northeast-southwest 

direction. The island is separated from the "Delmarva" peninsula by 

a tidal marsh on the west side, and with the Atlantic Ocean on the east. 

Winds with directions varying between west and north are usually 

encountered following the passage of a cold front. Winds from this 

sector will have crossed in succession (Fig. 1) the mainland, the 

Chesapeake Bay (20-50 km), the "Delmarva" peninsula (20-50 km) and the 

tidal marsh (3-5 km). Depending on the wind direction, for the last 
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200-300 m the air travels over land before it arrives at the tower 

location (Fig. 2). The tidal marsh between the island and the 

peninsula consists of shallow areas of water interchanged with swamp 

vegetation, mostly grass of a maximum height of 1 m. Some taller 

vegetation consisting of bushes and brush of a maximum height of 5 m 

exists in several upstream d:lrections. For wind directions between 

255° and 270°, a 6.5 m high rocket fuel storage bunker is approximately 

90 m upstream (Fig. 2). An elevated roadway (levee) 2 m above the 

surrounding terrain passes the tower on the west side within 200 m. 

Winds with directions varying between north-east and south approach 

the island from the Atlantic Ocean. 

Sectors with approximately the same immediate upstream roughness 

have been established as shown in Fig. 3. Between 0° (north) and 

30° the upstream terrain features two bunkers within a distance of 

100 m from the tower. In addition, a few small buildings and inter­

mittent patches of brush are upstream as far as 750 m. Between 30° 

and 45° (wind direction parallel to the island) many buildings are 

upstrea.m and winds in this sector should encounter the roughest terrain 

at this site over a distance of approximately 4 km. For wind directions 

between 45° and 210° the winds approach the island over water, and cross 

the beach at varying distances from the tower depending on the direction. 

For wind directions between 1400 and 170° a one-story rocket assembly 

building is about 100 m upstream of the tower. The prevailing southerly 

winds vary in direction between 1700 and 210°, however in the sector 

between 195 0 and 210° the 45-m tall Aerobee tower and associated 

buildings are about 300 m upstream. For directions between 210 0 and 

230°, the wind direction is approximately parallel to the island 
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with part of the Aerobee tower complex approximately 300 m upstream. 

In this same sector a few other buildings, levees and sand dunes are 

upstream at greater distances. Between 230° and 330° the upstream 

terrain is very uniform with no big obstacles other than the afore­

mentioned bunker and roadway. For the sector between 330° and 360°, 

several patches of brush, 2 levees and one radar building are upstream 

of the tower within a distance of 500 m with marsh at further upstream 

distances. 

3. INSTRUMENTATION 

3.1 Cup-Vane Instruments 

The 76 m (250 ft) micrometeorQlogical tower is a self-standing non­

guyed tower with working platforms at 15.2 m (50 ft) intervals (Fig. 4). 

The cup-vane velocity-direction instruments and aspirated temperature 

probes both primarily used for profile measurements are mounted at 5 

levels near each platform. Two sets of cup-vane instruments are mounted 

at each level on 2m booms on opposite sites of the tower (Fig. 4). 

An automatic electronic switching circuit ensures that data are taken 

only with the instruments on the upwind side of the tower. The 

electronics associated with this instrumentation system, together with 

a digital readout panel of all instruments from one side of the tower, 

are located in a small instrumentation building at the base of the 

tower (Fig. 4). From this location the digitized data are transmitted 

to the NASA control center at the main base on the peninsula about 

13 km to the northwest. Here the data from each level sampled at a 

rate of 1 sample each 2 seconds are recorded on digital tape. At 

this sample rate, data can be acquired without interruption for about 
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8 hours. This instrumentation system is used by NASA in conjunction 

with its rocket launching operations. Regularly scheduled mainten­

ance and calibration of this system are performed by personnel under 

NASA's supervision. 

3.2 Hot-film Anemometers 

Six three-dimensional split-film anemometers (TSI-10S0D) are 

used for turbulence measurements, which include turbulence intensit:les, 

turbulence fluxes, spectra and cross spectra of all three turbulence 

components and temperature. These anemometer systems were chosen for this 

research program since they have the advantage of small physical size, 

fast response and high sensitivity over a wide range of velocities. The 

instruments are mounted on 1.S m booms at the same levels as the cup­

vane instruments and also at the 9 m (30 ft) level. Each hot-film probe 

is mounted on a rotor, which is capable of rotating the probe about a 

verti.ca1 axis so as to align the probe axis approximately into the mean 

wind direction. The probe·-rotor combination is mounted on a 1.8 m-boom, 

which in turn is mounted 011 the railing at each platform. The probes 

were mounted on the south side of the tower for measurement of the 

preva.i1ing south winds during the summer and on the north side of the 

tower for measurement of the prevailing northwest winds during the 

winter and spring. The electronics as well as the data-acquisition 

and data-handling system for this instrumentation system are located 

in an instrumentation trailer parked at the base of the tower (Fig. 4). 

Each hot-film probe consists of three split-film sensors used for 

measurement of wind speed and direction and a copper-constantan 

thermocouple used for temperature measurements. Each sensor consists 

of a 0.15 mm diameter quartz rod coated with a platinum film of about 
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1000 angstrom in thickness. The platinum film on each rod consists 

of two segments, separated from each other by two longitudinal splits 

1800 apart. The active elements on each rod are electrically heated 

to the same constant temperature by separate anemometer circuits. 

The total sensor length is about 5 rom, and the three sensor5 are mounted 

mutually perpendicular to form a Cartesian coordinate system. When the 

instruments are not used for data acquisition, the three sensors and 

thermocouple are protected by an aluminum shield which can be moved 

pneumatically to cover the sensors. As an added precaution, dry fil­

te~od air is allowed to blow across the sensors when the shield covers 

the sensors. This is done to protect the sensors from contamination in 

the salt-air environment and moisture while not in operation. For a 

more detailed review of the hot-film anemometer system th~ reader is 

advised to consult Reference 1. 

Calibration of the hot-film anemometers is carried out in a low­

speed wind tunnel located at the main base. In order to obtain data of 

a desired accuracy from the hot-film instrumentation system, a new 

calibration and operating procedure was developed. Instead of using 

the calibration constants supplied by the manufacturer, all constants 

were obtained from calibration procedures carried out in the low-speed 

wind tunnel and thermal chamber. This procedure proved to be both time 

consuming and complicated but necessary. Calibration of each instrument 

in the wind tunnel was carried out for 11 wind approach angles between 

plus and minus 50 0 and for 13 velocities in a range varying between 

0.3 and 15 mise The best accuracy of the data was obtained for wind 
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directi.ons parallel to the axes of the instrument, and consequently 

the tower mounted instruments were rotated in the direction of the 

mean wi.nd before the data acquisition was started. For details of 

the calibration procedure and the relations for the conversion from 

output voltage to velocity components it is suggested that the reader 

consult References 1 and 2. 

4. DATA HANDLING AND DATA ANALYSIS 

4.1 Cu.p-vane Instruments 

The output signals from the cup-vane instruments and temperature 

sensing probes are sampled and digitized at a rate of 1 sample per 

second. This information is transmitted to the control center of 

the mai.n base, where every other sample is recorded on digital tape. 

The data from these tapes, each capable of storing up to 8 hours of 

data, IlLre then analyzed on the HW-625 computer at NASA, Wallops Flight 

8 Center. The data are analyz~d in blocks of 2 =256 samples, representing 

a data record of 512 seconds. For each l3ample the east-west and north-

south velocity components are calculated and averaged over 256 samples 

from which the mean velocity and the mean direction for each block are 

obtained. Also a block mean for the temperature is calculated. 

Reasonably stationary sample records of 5 to 10 blocks in length are 

selected for further analysis. This selection is based on the inspection 

of the printout of the block means of velocity, direction and temperature 

for all five levels. 

Next the east-west and north-south velocity components and tempera-

ture are averaged for the selected sample, from which the sample mean 

velocity and sample mean direction are calculated. This direction 
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defines the mean-wind coordinate system with the x-axis parallel to the 

direction of the sample mean wind, the y-axis in the horizontal plane 

perpendicular to the x-axis and the z-axis vertically upward. For all 

the data points in each block the velocity components in the mean-wind 

coordinate system are calculated and averaged to obtain the block means. 

After the block means were removed from each set of components, variances 

and covariances are calculated for each block. Sample variances and 

covariances are obtained by averaging of the block variances and covariances 

over the total number of blocks. The. covariances calculated in this manner 

include all the combinations of like velocity components at the different 

levels, allowing for the calculation of the vertical turbulence integral 

scales of both the u and v components. In addition, the autocorrelation 

function, R (T) of the streamwise velocity is calculated from which the 
u 

turbulence integral scale, L~, is obtained as follows: 

R (T)dT, 
U 

(1) 

where Tl is the time delay for which the first zero-crossing of the 

calculated autocorrelation function occurs. The turbulence data 

acquired with the cup-vane system are analyzed in a limited frequency 

range of 0.00195-0.25 Hz. 

A total of 195 digital data tapes were generated during the period 

of July 1974 and December 1978. Approximately 300 data samples were 
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analyzed each varying between 43 and 85 minutes. Initially data were 

acquired with the cup-vane system only, it was not until February 1976 

that the temperature system came on line. However this system is not 

too rel:iable and often temperature at one or two levels is missing 

as the result of the equipment being down or out of calibration. Before 

a lightning-arrester system was installed on the tower, excessive 

amount of damage was inflicted on all systems during thunderstorms as 

a result of line power surges and voltage induction in the cables that 

(!onnect the instruments on the tower to the electronics at the base of 

the tower. During the summer of 1976 a thermograph for recording the 

,air temperature at ground level was added to the system. 

Oceasionally when the equipment on the 76m (250 ft) tower was down, 

data-acquisition was switched. to the 91 m (300 ft) tower located at the 

north end of the island. This tower is instrumented with cup-vane 

systems at six levels but has no temperature instruments. Its location 

from thE~ beach is 280 m as compared to the 76 m (250 ft) tower which is 

approximately 150 m from the beach. No major buildings or other obstacles 

I;!xist bE~tween the 91 m (300 ft) tower and the beach. However, for ocean 

winds the overland distance is longer and more modification of the undis­

turbed ocean winds can be expected at the 91 m (300 ft) tower. 

1+.2 Hot-film Anemometers 

The data-acquisition and data~hand1ing system is designed to 

handle output from six split-film anemometer systems, sampled at a rate 

of 200 samples per second for a period of approximately one hour. 

This system consists of two main parts: (a) the multiplexing and 

~ma10g recording system and (b) the demu1tip1exing, digitizing and 
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digital recording system. The seven output voltages from each anemo~ 

meter are frequency modulated by voltage-controlled oscillators each 

with a different center frequency. There is one set of voltage-con­

trolled oscillators for each probe. The seven frequency-modulated 

signals together with a 100 kHz reference signal are fed into a summing 

amplifier to produce one single multiplexed signal. The multiplexed 

signals from each instrument are recorded on separate channels of an 

analog tape recorder together with time-of-day, which serves as a 

reference for the recorded data. 

At a later time, each of the multiplexed signals is demultiplexed 

into its seven analog components after passage through seven discri­

minators. In order to avoid aliasing of the velocity spectra the 

six output voltages corresponding to the six split films are passed 

through a 100 Hz low-pass filter. Next the analog voltages are sampled 

at a rate of 200 Hz, digitized and recorded on digital tape. 

A mini-computer (DEC Model PDP 11/20) controls the multiplexing analog­

to-digital conversion and the digital recording. Access to the mini­

computer is obtained with a teletypewriter. The data conversion starts 

at a time-of-day prescribed by the operator, and the analog-to-digital 

converter performs successive scans and conversions of seven analog vol­

tages into 16 bit words at a rate of one scan each 5 milliseconds. 

These words are stored in one of the buffers of the mini-computer which 

in turn transfers the data to a 9-track digital magnetic tape. Each 

buffer has a capacity of 209 scans representing 1.05 seconds of data. 

A total of 3300 records make up a single sample record over a time 

period of slightly less than one hour. 'The tapes with the digitized 
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data are taken to VPI and SU where the data are analyzed on an IBM-370 

computer. Four separate computer programs have been developed to 

calculate the following major statistical parameters: mean values, 

variances, covariance spectra and cross spectra. 

The first step in the data-analysis procedure is to convert the 

seven output voltages from each film to three velocity components in. 

the sensor-oriented coordinate sYEitem and temperature, using the con­

stants obtained from the calibration data. The converted data are 

transferred on another magnetic tape to await the next step of the data 

reduction. 

In the second program velocity and temperature data are analyzed 

in blocks of N=2l3=8l92 data points, representing nearly 41 seconds 

of data. For each of these blocks of data mean velocity components, 

mean velocity and direction, mean temperature and the four standard 

deviations are calculated. A total of 80 data blocks (almost 55 

minutes) are analyzed in this manner. A stationarity trend test is 

performed on each of the calculated parameters to check for un­

acceptable nonstationarities. Also inspection af the printout of the 

block parameters helps in the decision whether or not to continue with 

the statistical anlaysis. At this point blocks with unrealistic data 

can bE~ recognized and omitted from the data sample in future analysis. 

The sample mean velocity components are obtained by averaging the block 

means, allowing the calculation of the horizontal angle between the 

sample~ mean-wind direction and the probe axis. In the following step 

this angle is needed to tranfer the original velocity components in 

the sensor-oriented coordinate system into u, v and w velocity components 

of the mean-wind coordinate system as defined previously. 
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Block means are calculated for the temperature and for the velocity 

components in the mean-wind coordinates system and removed from the data 

in each block. The resulting fluctuating components are recorded on 

magnetic tape for further analys~s. Also variances and all covariances 

for each block are calculated and averaged over 80 blocks to obtain the 

sample variances and covariances. The statistical parameters, including 

the spectra to be calculated in the next step, contain only contributions 

from the fluctuations in the frequency range of 0.0244-100 Hz. In order 

to include contributions from frequencies below 0.0244 Hz, sixteen con­

secutive data points are averaged into one data point to form a new 

data record, which is also recorded on magnetic tape. This averaging 

is performed after the data are transformed into the mean-wind coordi­

nates and before the block means are removed. In this way only 5 blocks, 

each 10.92 minutes long, are analyzed allowing for data analysis in the 

frequency range of 0.00153-6.25 Hz. For these new data records, block 

variances and covariances and sample variances and covariances are also 

calculated. For the lowest frequency range the data, a~ter transformation 

into the mean-wind cooordinates, are subjected to an 80-point non-over­

lapping averaging for analysis in the frequency range between 0.00031-

1.25 Hz. 

The last step of the data analysis is the spectral analysis of the 

high, middle and low frequency data in the frequency range QfO~0244-

100 Hz, 0.00153-6.25 Hz and 0.00031-1.25 Hz respectively. Spectral 

estimates are calculated for each block using a specially developed 

Fast Fourier Transform algorithm [4]. The combined averaging 

technique is employed, averaging first all the block estimates at a 

given frequency (ensemble averaging) and then averaging these results 
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over appropriate frequency intervals (frequency averaging). 

In total, 24 one-hour data records were generated with the hot­

film system. Nine runs were generated during warm summer afternoons 

of the year 1976. This set of data was acquired for southerly winds 

only, and the detailed results are presented in Reference 3. The re­

maining 15 runs were acquired during the spring of 1977 for winds 

of northwesterly direction. For some of these data records, data 

were acquired simultaneously with the cup-vane system. 

The hot-film system is extremely delicate. Lightning and power1ine 

fluctuations have often caused difficulties with the operation of the 

system. It is very seldom that the entire system is fully operational 

Clt one particular time. The hot-films also have a tendency to undergo 

l:esistance shifts. If an appreciable shift is detected, the probes 

are reca1ibrated. Corrections have to be made for changes in cable 

resistance due to changes in ambient temperature. Similarly, heat 

transfer corrections have to be made for changes in temperature. 

Uecause of the uncertainties in these corrections and other variations, 

the mean v!'!locity and mean temperature measured with this system 

are not reliable. Resistance shifts in the active part of the system 

(films Clnd cables) result in a parallel shift of the heat transfer 

(voltagE~)/ve10city calibration C~rve. This shift of course will 

affect the mean quantities a great deal but should not affect the 

ealculated turbulence quantitites as much. As pointed out in 

Referenee 5, the results from these instruments become less accurate 

for wind directions of +40 0 and ±90° with respect to the probe 

axis. Consequently, the probes are rotated in the direction of the mean 

wind prior to data acquisition. For southerly winds this is no problem 
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since these winds especially at the higher elevations are very steady 

and have low turbulence levels. For northwest winds the alignment 

with the mean wind is more of a problem because of the presence of long­

period fluctuations in direction. Precautions were made as much as 

possible to ensure that data of the highest quality were acquired, 

and it is believed that the measured turbulence quantities fall within 

an accuracy level of less than 10%. 

5. PLANETARY BOUNDARY LAYER (PBL) 

The planetary boundary layer (PBL) may be defined as that part 

of the atmosphere where the effect of the earth's surface is directly 

felt. The flow structure of the boundary layer is extremely complex 

due to the variability of surface roughness changes in terrain, changes 

in surface temperature, variability of water vapor, presence of clouds 

and the fact that the flow is turbulent. Consequently, a simple model 

describing all the variables in the PBL such as velocity, wind direction, 

temperature and humidity, and covering all possible conditions is still 

not available. 

The unstable or convective PBL is characterized by a strong upward 

heat flux from the surface and by strong vertical mixing due to positive 

buoyancy forces. Under these conditions above the surface layer, a 

well-mixed layer exists with an almost uniform potential temperature 

and an almost constant wind speed and direction. Due t·o the convective 

mixing a relatively sharp inversion is created on top of the mixed layer 

that delineates the depth of the PBL. Above this inversion the atmo­

sphere is relatively undisturbed by the presence of the earth's surface 

and only gravity waves are generated. During the course of a sunny day 
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the convective PBL increases in depth as the land surface heats up and 

extends up to the inversion layer, which is the result of the convective 

mixing of unstable air below with warmer stable air above. Under these 

conditions the convective PBL can be characterized by three different: 

layers, which are, starting from the earth's surface: 

1) a surface layer, 2) a mixed layer, and 3) a capping inversion. The 

existence of this model for the convective PBL is based on theoretical 

consid,erations [6], numerical flow modeling [7,8,9,10], laboratory flow 

modeling [11] and actual observations [12,13,14]. 

In the case a layer of stable air is present at the surface, and/or 

one or more stable layers exist at higher altitudes, no capping inversion 

exists. In stable air, turbulence is suppressed and may vanish completely 

under extremely stable conditions, and the air in the different layers 

becomes uncoupled as a result of reduced mechanical mixing. No simple 

model is available to describe this situation. A surface-based inversion 

with or without one or more stable layers at higher elevations has been 

observed over water surfaces, as warm air flows over the cooler water 

during either day or night [3,18]. Under these conditions a low-level 

wind maximum (surface jet) is usually observed and the interpretation of 

the wind fluctuations near the surface is often complicated as a result 

of the co-existence of turbulence and internal gravity waves. These two 

phenomena have quite different properties although a non-linear inter­

action.. may exist between them. 

Mlore complications are introduced in the flow analysis of the PBL 

when c.louds are present and condensation of water vapor occurs within 

the PBL. As condensation takes place in the layer where the clouds are 

lO'cate!d, latent heat is released and an inversion layer develops below 
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the cloud base that is responsible for some degree of suppression of 

the turbulence. Under these conditions the large-scale plume structure, 

normally present in the convective PBL, does not develop resulting in 

a considerable suppression and reduction in low-frequency velocity 

fluctuations. This phenomenon in turn results in reduced velocity 

variances and an increased roll-off in the low-frequency range of the 

spectra of the horizontal velocity components. 

Just above the earth's surface the shear-production of turbulence 

dominates the buoyant production or suppression of turbulence. However 

the importance of the shear-produced turbulence diminishes with height 

as the effect of buoyancy on the turbulence gains importance. In the 

layer just above the earth's surface where shear-produced turbulence 

dominates and the Reynolds stress is nearly constant, the velocity is 

adequately expressed by the well-known logarithmic law, provided the 

roughness of the terrain is uniform. As buoyant production or buoyant 

suppression of turbulence gains importance with height relative to shear 

production, modification of the logarithmic velocity profile will result. 

The buoyant production of turbulence is associated with the upward heat 

flux of sensible and latent heat, which usually occurs when the atmosphere 

de near the earth's surface is unstably stratified (dz < 0). The buoyant 

suppression of turbulence is associated with the downward heat flux 

de which usually occurs when the atmosphere is stably stratified (dz > 0), 

where e is the local potential temperature. 

Under strong-wind conditions on a sunny day, the layer in which the 

shear-produced turbulence dominates increases in height, and the logarith-

mic velocity profile exists to higher elevations before it is eventually 
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modified as a result of convective activity, even under the strongest 

wind conditions. 

Following this discussion of the PBL, it is unlikely that its 

flow characteristics are based exclusively on mechanically or shear-­

produced turbulence. Experimental results describing the mean flow 

and turbulence in the PBL, under a variety of stability conditions 

ranging from unstable via near-neutral to stable conditions, clearly 

indicate that some basic d:lfferences exist between the PBL and the 

typical zero-pressure gradient wind-tunnel boundary layer. The most 

noticeable differences are observed in the evolving convective PBL 

on a sunny day with the mixed layer occupy:ing about 90% of the height 

and the surface layer consisting of the lower 10% of the PBL. In the 

mixed layer the velocity and wind direction are practically uniform 

[12,13]. Also, the downward entrainment of heat and momentum at the 

base of the capping inversion is a phenomenon that makes the assumption 

of vanishing turbulence at the edge of the boundary layer untenable 

[12,13,14). 

The entrainment of heat and momentum of different magnitude and 

direction into the mixed layer is mainly responsible for the low­

frequency fluctuations observed in the horizontal velocity components 

down to near ground level [19,20]. These low-frequency fluctuations 

are not present under stable conditions, although as mentioned before, 

low-frequency fluctuations associated with gravity waves have been 

observed under stable conditions [15,18). 

An abrupt discontinuity (increase) in low-frequency content has 

been observed in the spectra of the horizontal velocity components as 

the thermal stratification changes from stable to unstable [19,20]. 
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Similarly, the variances of the u and v velocity components and the 

reduced peak frequencies of these spectra increase abruptly as the 

stratification changes from stable to unstable. These abrupt 

changes have been observed in the horizontal velocity components 

u and v only, and do not occur in the vertical velocity component w. 

Experimental evidence of the abrupt increase in variance of the u 

velocity component and of the total velocity variance as the flow 

changes from slightly stable to slightly unstable is clearly presented 

by Busch [21]. For slightly stable stratifications the ratio of the 

standard deviations of the vertical and longitudinal velocities 

a la = 0.36 and for slightly unstable stratifications this ratio w u 

is reduced to 0.25. 

It has been observed that shortly before sunset the convective 

boundary layer disintegrates suddenly in a matter, of minutes as a 

surface-based inversion begins to develop [22,23]. During the 

night (or when there is a heavy cloud cover and water-vapor condensation 

in the PBL) the large-scale turbulence structure of the convective PBL 

is suppressed and no low-frequency components are present in the u and 

v velocity spectra near the earth's surface. 

Some of the experimental evidence, used previously in support of 

the flow description of the PBL, was obtained under relatively 

strong wind conditions. For example, during the Minnesota experiment 

[12] two data records (2A1 and 2A2) were acquired each with an hourly 

mean velocity of approximately 10 mls at a height of 10 m. For these 

two data records the mean velocity is practically uniform above 60 m, 

which is typical for the mixed layer. Also the standard deviations 
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of the three velocity components do not change appreciably with elevation 

up to an elevation of 1220 m, indicating that there is little evidence 

of vanishing turbulence at the edge of the PBL. In addition, the 

horizontal turbulence stresses uw and vw exhibit minima near the 

surface and a considerable upward heat flux is observed up to the top 

of the mixed layer where the heat flux changes direction due to entrain-

ment of warm air at the base of the capping inversion. The gradient-

Richardson numbers for these two records of Reference 12 are approximately 

-0.30 and -0.46 respectively, which excludes these records from the near-

neutral stability category. 

In. another example, extremely strong winds ·with mean velocities up to 

28 mls have been observed at 10 m heights over water [24]. The turbulence 

intensi.ties of the u and v components show an abrupt increase for mean 

velocities in excess of 12 mls (0" Iu from G% to 15%, 0" lu from 8% to 
u v 

11.5% and 0" lu remains constant at 5%). There is strong evidence that 
w 

helical vortices, which form over the ocean under near-neutral conditions, 

are responsible for this increase in turbulence intensity of the 

horizontal velocity components. Also nocturnal jets near the earth's 

sUrfaCE! with a jet velocity of approximately 20 mls and a gradient 

Richardson number of +0.5 have. been observed in Nebraska [16]. 

Based on these examples and other experimental evidence presented 

in the cited references, there is no basis for the assumptions that 

under strong wind conditions t.he turbulence in the PBL is purely of 

mechanical origin and that the PBL flow-structure is similar to that 

of a ZE!rO-pressure gradient wi.nd-tunne1 boundary layer with vanishing 

turbulEmce at the free stream. 
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For the benefit of structural engineers and wind engineers who 

deal with a large number of problems requiring the knowledge of the 

mean flow and turbulence in the atmosphere, the atmospheric flow 

characteristics near the earth's surface under strong wind conditions 

have been reviewed and summarized in several review papers [References 25 

through 31]. The input data to most of these review papers were obtained 

from many different sources and include multi-level tower data and airplane 

data usually taken over horizontal terrain with near-uniform roughness. 

The results from these strong-wind experiments have formed the basis 

for empirical models of the wind structure near the earth's surface 

and of the atmospheric flows at hi~her elevations. In many of the 

review papers it is assumed that under strong wind conditions the 

turbulence is purely mechanically generated, and that buoyant produc-

tion and suppression of the turbulence can be neglected. Under these 

conditions it is then assumed that the atmosphere is neutrally stable 

and the mean and turbulent flow behave similar to the flow in a 

zero-pressure gradient turbulent boundary layer developed in a low-speed 

wind tunnel. 

The review papers generally indicate tht the PBL under strong wind 

conditions is neutrally stable but may be modified as the result of 

thermal effects. However, it is generally assumed that under strong 

wind conditions there is sufficient mixing that thermal effects can be 

completely ignored. The neutrally stable PBL-flow model, which is 

generally assumed in the review papers, has never been experimentally 

verified at different sites for a large variety of strong wind con­

ditions. Nevertheless, it is widely assumed by many engineers and 
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scientists in the field on wind engineering that this model provides 

an adequate description of the flow in the PBL under strong wind 

conditions. 

Upon reading of the review papers one does not always get a clear 

picture when neutral conditions exist. Deaves and Harris [30] do 

not give any conditions for the existence of neutrally stable flow 

in the PBL other then the mean velocity has to be strong enough. 

Counihan [26] considers only those data which specifically indicate 

adiabatic or near adiabat.ic conditions, or which have wind speeds in 

excess of 5 mls at a height of z = 10 m. ESDU [27,28,29] considers 

neutral stability to exist when the hourly mean wind at a height of 

10 m is greater than 10 m/s. Using the gradient Richardson number 

as a measure for the degree of thermal stability in the PBL, near­

neutral conditions are suggested to exist by Teunissen [25] for IRil <O:~.03 

and by Panofsky [31] for IRil<O.Ol for flow near the surface. 

Panofsky [31] also states that wind shear, and therefore mechanical 

produlCtion of turbulence, decreases rapidly with height and that the 

effect of buoyancy becomes progressively more important. Consequently 

thermal effects can no longer be neglected even under strong wind 

conditions for heights above approximately 50 m. 

Most of the observations at Wallops Island presented in this 

report have been made with the mean wind speed at the 76 m (250 ft) 

level between 10 m/s and 20 m/s and therefore can be considered to be­

long to the strong-wind cat.egory. However the results of these ob­

servations will be presented and discussed in the framework of non­

neutral PBL-flow. 



22 

6. RESULTS AND DISCUSSION 

This chapter deals with the discussion of the mean flow and 

turbulence measurements obtained with the two instrumentation systems 

mounted on the 76 m (250 ft) meteorological tower at Wallops Island, 

Virginia. 

Data were acquired with the cup-vane and resistance temperature 

probes during a period of more than 4 years (August 1974 - December 1978). 

Most of these data records were taken during daytime, although some 

night records are included. The prevailing wind directions at this 

sjra are southerly during the summer and fall, and between west and 

north during winter and spring. Consequently, for these two direction 

sectors many data records are available but the data base for on-shore 

winds in the sector between northwest and south is limited. For this 

set of data, mean velocity U, mean direction ~, mean temperature T, 

the turbulence variances cr and cr *, and the turbulence integral scales 
u v 

LX LZ
, LZ were obtained for each data record, based on the measure­

u' u v 

ments from 5 levels at 15.3 m (50 ft) intervals on the 76 m (250 ft) 

tower. 

A second set of data was taken with the hot-film instrument 

system. Nine data records, each one hour long and for southerly wind 

directions, were acquired during 3 days in July and August of 1976 [3]. 

In addition 14 data records for winds from northwesterly directions 

were acquired during several days in March, May and June of 1977 [23]. 

*The symbol cr refers to the standard deviation, but for simplicity 
the word variance will be used in the text. 
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For these data records the following parameters were obtained: variances 

and covariances of the three turbulence components and temperature, 

spectra and cospectra, and lon.gitudinal integral scales LX, LX and LX 
u v w' 

all measured at the same levels as the cup-vane instruments and at 9.1 m 

(30 ft). For some of these records data were acquired simultaneously 

with the cup-vane system, allowing direct comparison of the measure-

ments,with the two instrument systems. 

6.1 ME!an Wind and Mean Temperature Profiles 

Fc,r near-neutral stratification the wind profiles over homogeneous 

terrain obeys the relation 

U =(U*/K) In(z/z ) o 0 

where U* is the friction or shear velocity, which is ideally equal to o 

lTo/p, where Lo is the surface stress and p the air density, K is 

Von Kax~an's constant taken at 0.4 and z is the roughness length. o 

The he:l.ght z below which the log-law (2) is valid depends on the 

stabi1:1.ty of the flow or on the relative importance of the buoyant 

(2) 

production or suppression of the turbulence with respect to the mechani-

cally produced turbulence. The height where the measured velocity 

profilE! starts to deviate from the logarithmic profile varies a great 

deal and the deviation increases progressively for increasing heights. 

Under strong convective conditions and under extreme stable conditions 

the neaLr neutral part of the surface layer is well below 15.2 m (50 ft), 

the hei.ght of the lowest mean-velocity measurement. Consequently under 

these conditions it is incorrect to fit the log-law (2) to the measured 

mean-ve.locity data in order to obtain values of z . and U*. 
o 0 
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The theoretical velocity profile over uniform terrain for the 

upper part of the surface layer where non-neutral stratification 

exists, is based on the Monin-Obukhov similarity theory and is given 

by [32] 

(3) 

where ~ is a universal function of the stability parameter zit and 

t is the Monin-Obukhov length defined (in the absence of moisture) as 

[32] 

c p e U*3 
t =-L (4) K g Qo 

where T is the absolute temperature, U* = IT7P and Q is the surface 
0 0 

heat flux, which can be approximated by c p we measured in the surface p 

layer. The stability parameter, zit, depends on the gradient Richardson 

number [32] 

y + dT/dz 
Ri -.8. a , 

- T (dU/dz)2 
(5) 

where y is the adiabatic lapse rate (O.Ol°C/m for dry air and a 

O.0065°C/m for air saturated with moisture). With the use of the 

expressions relating Ri, zit and ~ as given by Panofsky [31], the 

departure from the logarithmic profile due to buoyancy effects 

in the surface layer can be obtained so that (3) can be used to 

obtain estimates of z and U*. 
o 

This approach can be taken. for velocity profiles measured in 

the surface layer, which is loosely defined as that part of the PBt 

where the horizontal stress and vertical heat flux are nearly con-

stant. The height of the surface layer is frequently estimated as 
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the 10wE~r 10% of the convective PBL depth, Z., and is limited to a 
]-

height z<L [13]. 

For stable conditions L varies a great deal and is relatively 

small [JL7]. The surface layer is not well defined and often is only a 

few metE!rS high [33]. Under these conditions the velocity profile for 

Ilon-neutral conditions cannot be used for estimation of z and U*, with 
o 0 

velocity measurements taken well above the surface layer. 

In general, Monin-Obukhov (M-O) similarity theory can only be applied 

:I.n the surface layer, when the flow conditions are stationary, when 

surface conditions are uniform (roughness and temperature), and over 

level tE~rrain without major topographical features such as mountains 

E!tC. If the measured velocity data are linear with In z, then this 

observation does not automatically guarantee that the profile is truly 

logaritt®ic. For the majority of sites including the Wallops Island 

site the~ above conditions are not met, and application of the M..,O 

similarity concepts such as the empirical flux-profile relationships, 

which are based on data with the above conditions satisfied, is 

questionable and should probably be avoided. 

For neutral conditions the temperature profile should follow 

the adiabatic lapse rate of either 0.01 or 0.0065°C/m for dry and 

saturated air respectively. It is very seldom, even under the strongest 

wind conditions, that a truly neutral stratification is encountered 

for any length of time. The usual daytime thermal stratification near 

dT dT 
the surface is - - > y (unstable stratification) and - -d < Y (stable dz a z a 

stratification) for nighttime. There is a short time around sunrise 

and in the late afternoon before sunset when a neutrally stable strati--

fication is observed near the surface in the first 10 or 20 m. The 
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stratification of the air at higher elevations varies a great deal with 

time of day, cloud cover and season. For southerly flows over the ocean 

the air temperature is usually higher than the water temperature and 

a surface-based inversion (-dT/dz < y ) exists day and night. 
a 

Changes in temperature and velocity profile occur also as the flow 

experiences a sudden change in surface roughness and surface temperature, 

and an internal boundary layer (IBL) develops as the flow adjusts itself 

to the new surface conditions. On-shore winds at Wallops Island usually 

experience an increase in roughness and an increase in surface temperature 

in daytime as they cross the beach. For westerly winds the surface 

temperature changes as the wind moves from the wet marsh over the warm 

land surface during daytime. Within the observation height of 76m at the 

Wallops Island site, temperature gradients vary greatly with height and 

even change from positive to negative or vice versa. Under these condi~ 

tions the local Richardson number is not a true indicator of the overall 

thermal stratification of the observed flow and ~O similarity does not 

apply. 

Typical temperature profiles for southerly winds on a summer afternoon 

are shown in Figure 5. These temperature profiles clearly indicate the 

stable conditions above the IBL in the early afternoon, and the surface 

cooling in the late afternoon. Daytime and nighttime temperature profiles 

for strong westerly winds are shown in Figure 6. During daytime the 

surface temperature is maximum and gradually decreases with height. On 

a rainy day with low cloud cover a stable stratification is observed above 

40 m. Neutral temperature profiles throughout the tower height are seldom 

observed; the second temperature profile shown in Figure 6 is the closest 

to an observed neutral temperature" profile. Typical nighttime temperature 

profiles show a stable stratification near the surface with near neutral 
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conditions above 15 m. 

Ratios of mean velocities at the 15.2 m (50 ft), 30.5 m (100 ft), 

45.7 m (150 ft) and 61 m (200 ft) levels with respect to the mean velocity 

at the 76.2 m (250 ft) level are shown in Figure 7. The plotted data in 

this figure represent the mean and the plus and minus standard deviation 

from the mean, as well as the maximum and minimum values of the velocity 

ratios for the data records acquired in each IS-degree sector. Because 

the mean velocity at higher elevations is less disturbed by local surface 

obstacles and is outside the developing IBL, the mean velocity at the 

76.2 m (250 ft) level was chosen as the reference velocity. For the one 

sector between 0° and 15° and the 5 sectors between 90° and 165° (east­

southeast) the number of data records available in each sector was four 

or less, an insufficent number for determination of the standard deviation, 

and only the average velocity ratios are presented. 

B4~tween 230° and 360° (southwest-north) the variation in mean wind 

speed between the different elevations is relatively minor under moderately 

strong wind conditions. Conversely, for southerly winds in the sector 

160° < ~ < 230, large variations in mean wind speeds relative to the 

mean velocity at the 76.2 m (250 ft) level are observed. For example 

iIi the sector between 180° a.nd 195° the mean wind-speed ratio, V50/V250, 

varies from 0.4 to 0.8, clea.rly indicating the great variability of mean 

velocity distribution near the surface. Relatively large variations of the 

mean velocity ratios are also observed for wind directions approximately 

parallel to the island for sectors 30°-45° and 210°-225°. For winds from 

these two sectors a small change in wind direction gives rise to a large 

variation in upstream terrain roughness. Generally the variations of 

the mean velocity distribution near the surface for on-shore winds are 
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much larger than for westerly winds. For on-shore winds, the changing 

development length of the IBL, the thermal stratification and other 

atmospheric conditions have a great effect on the velocity distribution 

near the surface as the data indicate. For southerly winds, a surface-

based inversion exists during the daytime as the result of warmer air flowing 

over the colder water [3]. Under these conditions the existence of a sur-

face jet with a maximum mean velocity (jet velocity) within a few hundred 

meters from the surface has been observed. The jet velocity has been 

observed as low as 45.7 m (150 ft) as shown by the maximum values of 

the velocity ratio V150/V250 of larger than one for wind directions be-

tween 170° and 210°, and by one of the velocity profiles of Figure 8. 

Typical strong-wind velocity profiles for wind directions between 

southwest and north are shown in Figure 9. The stronger wind profile 

is linear over the entire observation height when presented in 

semi-logarithmic coordinates. In the second profile with somewhat lower 

velocities, a distinct "kink" is observed. The majority of the measured 

velocity profiles for westerly wind directions shows similar "kinks". 

The values of z obtained from the velocity profiles above the "kink" 
o 

are much too small for the upstream terrain. Moreover the two velocity 

profiles of Figure 9 are approximately from the same direction. Therefore 

the "kinks" in the profiles cannot be the result of an upstream change 

in roughness, but must be interpreted as the beginning of the transition 

from the surface-layer flow to the uniform mixed-layer flow [13]. 

6.2 Velocity Profile Parameters z and a 
o 

The roughness length, zo' can be evaluated from fitting of either 

the logarithmic law (2) or the non-neutral profile law (3) to the 

measured mean velocities in the surface layer. The height of the 
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surface layer in which (2) and (3) are valid is roughly defined a,s the 

layer near the surface which t.he fluxes uw and we are approximat~ly 

constant and not less than 80% of the surface stress~ ~p~ and surfaee 
o 

heat flux, Q /c p, respectively. Measurement of the turbulent fluxes at o p 

WallQPs Island indicate that t.he thickness of the surface layer varies a 

great deal with wind speed, wind direction and thermal strat:l.fication. 

For on-shore winds the top of the surface layer is generally 

below the lowest observation level of 9.1 m (30 ft) and for the 

strongest westerly winds the surface layer extends above the height of 

the tower. For on-shore winds when an IBL develops as the air crosses 

the beach, turbulent heat-flux measurements show an upward flux at the 

lower levels and a downward flux at the higher elevations [3]. Transi--

tion usually occurs between the 15.2 ~ (50 ft) and 30.5 m (100 ft) levels, 

which should correspond to the height of the IBL at the tower location. 

The flow above the IBL is still associated with the ocean surface, but is 

w~dl apove the surface layer, which for southerly winds extends only a 

fl~W meters above the water surface. Consequently no values of the 

r()Uglmess length, zo' for either the land or ocean surface can be ob­

tained f:r:-om the measured velocity profiles. Despite the fact that two 

velocity vrQ£iles of Figure 8 show a linear variation of velocity with 

Inz, fitting of the log-law (2) to the velocity data leads to values 

of Zo of the order of Im~ which are much too high for either the exist:lng 

4pst~eam terrain or the ocean. The parameters describing the on-shore 

turbulen"1: flow depend in part on the roughness of the underlying surfaee 

(ocean) but also to a great extent on the stability of the flow. Con-

sequently, knowledge of the roughness length, zo' for flows over the 

oeean is not sufficient for the prediction of the turbulence 
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parameters for higher elevations as presented by ESDU [28,34]. 

For westerly winds the local shear velocity U*=[uw2 + vw2]1/4 

is approximately constant over most of the observation height, in-

dicating that the surface layer extends well above the lowest obser-

vation level of 9.1 m (30 ft). Also the values of the local shear 

velocity, U*, compare quite well with the profile friction velocity 

U~, obtained from mean velocity measurements below the profile "kink". 

The roughness length, z , obtained from fitting of the log-law (2) to 
o 

the measured mean velocities below the profile "kink", vary with up-

stream roughness and thermal stability of the flow in the surface layer. 

Figure 10 shows the variation of z with wind direction, clearly 
o 

indicating the effect of the 6.5 m high storage bunker for mean wind 

directions of 270°. In the sector between 350° and 30° the upstream 

terrain is much rougher which results in higher values of z. For the o 

sectors between 230 0 and 260°, and 280° and 340°, the terrain is 

reasonably uniform and the average value of the roughness l~ngth, 

z =0.034 m , corresponds quite well to the predicted values .of 
o 

ESDU [28,29] for similar terrain. In Figure 11 all values for z ob-
0' 

tained for wind directions in the before-mentioned sectors, are shown 

as a function of the gradient Richardson number evaluated at z=15.2 m 

The values of z were obtained by fitting of the log-law to o 

the velocity measurements below the profile "kink". The scatter of the 

data is appreciable for Ri15>-0.15, however the values of Zo decrease 

rapidly for Ri15<-0.15. At this point the mean velocity 

profile in the surface layer can no longer be estimated with the log-

law (2), as stability effects start to dominate. An attempt was made to 

estimate the roughness length by fitting the non-neutral profile (3) 

to the mean velocity data above the "kink" as outlined by Panofsky [31]. 
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However, this correction technique leads to unrealistic estimates of 

z , which seem to indicate that the velocity profile above the "kink" 
o 

is not part of the surface-layer profile but instead is the transition 

of the surface layer profile to the mixed layer profile. 

In Table I mean profile parameters and turbulence parameters are 

presented for strong-wind data records with wind directions in the 

above-mentioned sectors with near-uniform upstream terrain and measured 

with the cup-vane system and the hot-film anemometers. For the data 

records with a thermal stratification close to neutral the semi10garith-

mic velocity profiles (S) are generally linear throughout, and for the 

records for which the flow is more unstable, kinks (K) start to appear 

in the~ profile. 

Engineers generally favor the power law as an expression for the 

velocity profile through the entire PBL over uniform terrain 

(6) 

Although under certain conditions this law has fitted observed profiles 

over uniform terrain quite well, it is now generally accepted that the 

log-law (2) is preferable over the power law (6) for flow in the sur-

face layer. Also the power law (6) cannot be expected to be a good 

apprOldmation for wind profiles 'in the convective PBL. The latter seems 

to be prevalent over the North American continent even under the strongest 

wind (~ond it ions. 

The mean velocity profiles of records 2A1 and 2A2 acquired during 

the Mjlnnesota 1973 atmospheric boundary layer experiment [12] as well as 

the v,docity profile acquired at the Boulder Atmospheric Observatory 

(300 In mast [35]) on the morning of the 11th of September 1978 under 
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extremely strong wind conditions (20-minute average velocity of 18.67 mls 

at z=lO m) show clearly that the power law with one constant exponent 

does not fit the velocity measurements. The measured strong-wind 

velocity profile at the Boulder site starts to deviate from the log-law 

(2) at z=22m a.nd becomes more or less uniform above 200 m. 

On the other hand mean-velocity measurements made at 3 levels (10m, 

80 m and 200 m) of the 2l3-m mast at Cabauw, the Netherlands, under 

extremely strong westerly winds (30-minute average velocity of 22.2 mls 

at z =10 m) [36] indicate that the power law (6) fits these data quite 

well. The Cabauw tower is operated by the Royal Netherlands Meteorological 

Institute and is located about 50 km east from the North Sea coastline. 

For westerly winds the upstream terrain is flat low-lying pastureland with 

a very shallow water table. Simultaneous temperature measurements 

made at 8 levels between 2 m and 200 m indicate a near- neutral thermal 

stratification with possibly a minimal upward heat flux from the mostly 

wet upstream terrain that inhibits the formation of a convective PBL, 

which is typical for the observations of the two North American sites. 

As Panofsky [31] has pointed out the power law can be expected 

to fit the velocity data in the surface layer only over a limited height 

range. In the near-neutral surface layer where the logarithmic law 

applies the power-law exponent can be approximated by [31] 

(7) 

clearly showing the variation of a with roughness, z , and geometric mean 
o 

height, Izl z2 where zl and z2 represent the elevation boundaries of 

the layer over which a near constant a may be expected. Near the sur-

face a has a relative large value depending on the value of z , but 
o 
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decreases with height and should approach zero outside the surface 

layer as transition to the mlxed layer takes place. 

For westerly winds at the Wallops Island site, power law exponents 

based on the mean velocities of the three lower levels (zl=15.2 m, 

z2=45 .. 7 m) are shown in Figure 12 as a function of the roughness length, 

z. Similarly, power law exponents based on the mean velocity measure­o 

ments under strong-wind conditions (no "kinks") at all five levels and 

the three highest levels are shown versus roughness length, z· in 
0' 

Figurl~s 13 and 14 respectively. Panofsky's relation (7) fits the 

measurements extremely well except for the results based on the mean 

velocities of the three highest levels (Figure 14). The reason for this 

is that on a semi-10garithmie plot of U vs. In z, the results of the 

higher levels fall close together and may seem to vary in a linear 

fashion. However in reality the data already deviate from the log-law (2) 

and all three prediction methods, which are based on known roughness 

lengths, overestimate the power law exponents obtained from the measured 

veloc:ity profiles. No attempt was made to obtain power law exponents 

for the velocity profiles of on-shore winds, because of the variability 

of the profiles, the presence of an IBL and the absence of values for 

z • 
o 

6.3 Turbulence Intensities 

Average turbulence intensities of the horizontal velocity components 

u and v measured with the cup-vane instruments at 5 levels, are shown in 

Figures 15 and 16 for each 1.5-degree sector. In addition to the average 

turbulence intensities, the maximum and the minimum observed turbulence 

intensities for each sector and the mean intensity plus and minus the 
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standard deviation are shown. In the sector 0°-15° and the 5 sectors 

between 90° and 165° only average turbulence intensities are shown, 

because the number of data records available in each of these sectors 

is four or less. For on-shore winds a Iu is approximately 10% at 
u 

z=15.2 m decreasing to 5% or less at the highest observation level 

(z=76.2 m). For westerly winds the a Iu decreases from about 20% at 
u 

the lowest level to about 14% at the highest level (Fig. 17). In 

general the variation of the turbulence intensity, a IU, in each 
u 

section is relatively small, except for the two sectors between 195° 

The turbulence intensity of the v component, a lu, shows much the same 
v 

pattern, although some differences can be observed. For on-shore winds 

the average value of a lu at the lowest observation level (in the IBL) v 

is about 8%, decreasing to about 4% at the highest level (above the IBL)~ 

For southerly winds in the three sectors between 165° and 210° turbulence 

intensities for both u and v components of less than 2% have been ob-

served at the highest observation levels above the IBL. These observations 

have been made under stable conditions, and on several occasions the 

mechanical turbulence has been observed to vanish completely at these 

elevations at mean velocities of 10 mls and higher. 

The average turbulence intensity alU is nearly constant at each u 

level for wind directions between 240° and 345°. The ~verage turbulence 

intensity a lu at each level increases with wind direction from 240° to 
v 

about 300° where a maximum is reached and decreases gradually with wind 

directions from 300° to about 50°. Figure 17 shows the variation of the 

average turbulence intensities of the u and v components with height 

in the two sectors 240°-255° and 300°-315°. The averaged results are 

also compared with the estimates of Teunissen [25] and ESDU [28] both 
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based on the roughness length, z , whose average is 0.037 m for either 
o 

one of these sectors [Fig. 10]. Although the upstream terrain for the 

two sectors is about identical, the values of cr Iu in the sector be­
v 

tween 300° and 315° are considerably higher than those for the sector 

between 240° and 255°. The average values of cr Iu for the latter sector 
v 

correspond extremely well with the Teunissen estimate, but for the 

sector between 300° and 315° the average values of cr lu are about 3 
v 

to 4% higher. On the other hand the average values of cr lu for these 
u 

two sectors are about identical and fall between the estimates of 

Teuriissen [25] and ESDU [28]. 

A possible explanation for this unusual behavior of cr Iu can be v 

derived from the visual inspection of several years of strip-chart re-

cordings of wind speed and direction obtained continous1y from a 

propeller-vane anemometer located about. 1 km northeast from the tower 

on Wallops Island. These recordings clearly show that for northwesterly 

winds the instantaneous wind direction experiences frequently large 

f1uctua.tions toward the north (Fig. 18). These direction fluctuations 

are larger than usual and are not normally distributed as shown in 

(Fig. 19), which explains the large values of both (J Iu and the co­
v 

variance vw measured in this sector. 

The turbulence intensity, (J lu, which is constant over near-uniform 
u 

terrain for westerly wind directions (Fig. 17), instead varies with time 

of day. Nighttime measurements are systematically 1% higher than the 

daytime~ results (Fig. 20). The vertical distribution of the vertical 

turbu1emce intensity, cr lu, based on five strong-wind data records ob­
w 

tainedwith the hot-film system, is shown in comparison with the ESDU 

[28] and Teunissen estimates in Figure 21. 
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The vertical distributions of the turbulence intensity of all 

three components for southerly winds are shown in Figures 22, 23 and 

24. For these wind directions an internal boundary layer (IBL) develops 

as the air crosses the beach. Based on the change in direction of the 

daytime vertical heat flux we, which is expected to be positive in the 

IBL and negative above it [3], the height of the IBL at the tower must be 

between the 15.2 m (50 ft) level and 30.5 m (100 ft) level. This 

observation agrees with the relationship given by Elliot [37], which 

predicts a height of the IBL of approximately 26 m, based on an upwind 

roughness length over the ocean of z 1=0.001 m and a downwind roughness 
o 

length of z "=0.01 m and a development length of 300 m. The average o 

turbulence intensities of the uand v components from nine data records, 

obtained with the hot-film instrumentation during sunnner afternoons, com-

pare surprisingly well with the average turbulence intensities from 29 

data records, obtained during winter and early spring under strong wind 

conditions with the cup-vane system (Figs. 22,23,24). The turbulence 

intensities in the IBL compare reasonably well with the ESDU [28] pre-

dictions based on a roughness length of z =0.01 m. However above the 
o 

IBL the ESDU [28] predicted values of the turbulence intensities, based 

on a roughness length z =0.001 m, overestimate the actual measured values o 

by a factor of two. The turbulence intensites for run 7 [3] obtained 

under extremely stable conditions (Rf =+25.5, U=10.7 mls atz=6l m), which 

are included in Figures 22 through 24, show lower than average values above 

the iBL. Under similar conditions it has been observed that the turbulence 

vanishes completely for some time. The variation of the ratios of 

average turbulence intensities, a la and a fa , for all wind directions 
v u w u 

is shown in Figure 25. The measurements indicate that the values of 
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these ratios are more or less independent of height, and the data 

shown in Figure 25 are not only the ratios of the average turbulence 

intensities of all data records in each sector but are also averaged 

over all observation levels. For most wind directions the values of 

a /a are between 0.75 and 0.85 in comparison with the predictions 
v u 

of 0.75 and 0.80 by Counihan [26] and Teunissen [25]. The estimates 

of ESDU [28] are not single valued but are dependent on height and rough-

ness length. Smaller values than 0.75 for a /a are observed for wind 
v u 

directions approximately parallel to the island at ~~40° and ~~230o. 

Values of a /a higher than 0.85 are observed for southerly winds for v u 

~~170° and for northwesterly winds in the sector 280o<~<350o. That 

the values of a /a are relatively high in this last sector is no 
v u 

big surprise since often large direction fluctuations have been 

observed in this sector (Fig. 18). Values of a /a and a /a obtained 
v u w u 

from the hot-film data records are also sh()wn in Figure 25. The val.ues 

of a /a obtained with this system compare quite well with the cup-·vane v u 

results. The values of the ratio, a /a , for winds from the sector w u 

between south and southwest: I:!-nd northwesterly winds fall between 0.55 

and 0.60 as compared to values of 0.50 and 0.52 as predicted by 

Counihan [26] and Teunissen[25] respectively. 

The results discussed so far in this report show clearly that at 

the Wallops site large variations in mean as well as turbulent flow 

occur varying with wind direction. The important observed deviations 

from the simple neutral boundary-layer models are: 

1. The development of an internal boundary layer (IBL) for 
on~shore winds as they cross the beach. 

2. The existence of a surface jet for southerly winds with 
extremely low turbulence intensities (2% or less and occasionally 
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vanishing under stable conditions) coexisting with gravity 
waves. 

3. Large direction fluctuations towards the north for north­
westerly winds, observed during the daytime, which are 
responsible for higher than usual lateral turbulence intensities. 

These observations were made under strong wind conditions and there is 

no reason to believe that for still stronger wind speeds (maximum observed 

speeds) these deviations from the neutrally stable boundary-layer model 

will suddenly vanish. 

6.4 Turbulence Integral Scales 

6.4.1 x z z Integral Scales, L , Land L from cup-vane data 
u u v 

In this section the distribution of the turbulence integral scales 

obtained from measurements with the cup-vane system will 

be discussed and compared with the estimates from several review papers 

[25,26,28,29]. The streamwise turbulence integral scale of the u 

x component, L , is calculated from the autocorrelation function (1), 
u 

R (T), assuming that Taylor's hypothesis is valid. Averages of all 
u 

x scales, L , obtained from the data records in each I5-degree sector, 
u 

are plotted along with the maximum and minimum and plus and minus the 

standard deviation from the average value in Figure 26 for each ob-

servation level. Averages only are plotted in the sector 0°_15° and 

between 90° and 160° because of the limited number of available data 

records in these sectors. The integral scales, LX, increase 
u 

systematically with height and show a great deal of variability for all 

wind directions. In general the magnitude of these integral scales 

is larger for westerly winds than for on-shore winds except for southerly 

wind directions. At the highest observation level two distinct extremes 

for the maxima can be observed in the two sectors between 180° and 210°, 

and between 300° and 330°. For southerly winds between 180° and 210° 
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the air is frequently stably stratified which under certain conditions 

may lea.d to the coexistence of turbulence and low-frequency gravity 

waves. If gravity waves are present the integral scale obtained from 

the autocorrelation function can be expected to be high [3], a maximum 

value of 800 m at the 76.2 m (250 ft) level has been observed. On the 

other hand, if the low-frequency gravity waves are absent and only tur-

bulencE! of less than 5% intensity is present (Fig. 15), minimum turbu-

lence i.ntegral scales of less than 100 m have been observed for the 

southeI'ly winds. In the sector between 3000 and 3300 large variations 

x in L are also present, which are the result of either the presence 
u 

or absE!nce of low-frequency velocity fluctuations as can be observed 

from mE!asured u-spectra. 

VE!rtical integral scales of the horizontal velocity components 

obtainE!d from the measurements with the cup-vane system can be cal-

culated by integration of the vertical correlation coefficients of either 

the u ()r v components. 

00 

J 
o 

where 

and i •• u or v 

RZ (z')dz' ii. 

1 
T 

T J ui(t,z) ui(t,z+z')dt 

o 

(8) 

(9) 

R~i(z') is the vertical correlation coefficient of either the u or v 

velocity fluctuations measdured at two different levels separated by 

a distance z'. For this research program with the Wallops Island 

tower the separation distance, z', can be either 0, 15.2 m (50 ft), 
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30.5 m (100 ft), 45.7 m (150 ft) and 61 m (200 ft). The integration 

(8) should be performed to the point where the correlation coefficient 

R z(z') changes for the first time from positive to negative. However uu 

only a maximum of five values of the correlation coefficients are 

available for either upward or downward integration according to ex-

pression 8, and often the correlation coefficient has still a large 

positive value for the maximum separation distance z'. 

In order to arrive at a reasonable estimate of the vertical scales, 

it is assumed that the vertical correlation coefficients of the hori-

zontal velocity components u and v decay exponentially in the same 

manner as has been observed by Dryden et al. [38] for high Reynolds-

number grid turbulence, according to 

z z R,.(z') = exp[-z'/L.] 
11 1 

(10) 

Vertical integral scales of either the u or v velocity components can 

then be obtained from a least-squares fit of (10) to the available 

measured correlation coefficients. 

Because of the non-symmetric flow in the boundary layer, integral 

scales obtained from upward and downward integration of the correlation 

coefficients with the origin at a common point cannot be expected 

to be the same. Instead a slightly different definition for the 

vertical integral scale is used as· suggested by ESDU [29], where the 

correlation coefficient is defined as 

where i = u or v. 

1 
T 

T 

I v.(t,z+z')v.(t,z-z')dt 
1 1 

o 

(11) 
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With thE~ use of this definition only one vertical integral scale is 

defined for each height z. However this definition can be used for 

the evaluation of the integral scales of the u or v component at the 

45.7 m (150 ft) level only. 

The distribution of the vertical turbulence integral scales of 

the horizontal velocity fluctuations and obtained with the cup-vane 

system is shown in Figure 27 and 28 respectively. Calculation of 

these seales is based on expression (10). Integral scales obtained 

from upward integration of the correlation coefficients are shown 

as LUZt or LVZt on the figures and as LZt 
u 

z or L t in the text. 
v For 

the intE~gral scales obtained from downward integration the direction 

of the arrow is reversed. The two-sided integral scales obtained 

according to the definition (11) are shown as LUzl or LVzl on the 

figures and as L~! or L~! in the text. Averages of all the integral 

scales for each sector as well as the maximum and minimum, and the 

mean plus and minus the standard deviations for each each sector are 

shown in these figures. In the sectors 0°-15° and between 90° and 

165° not: enough data records were available to calculate a' standard 

deviation and only average values are plotted. 

The integral scales LZ for on-shore winds are generally smaller u 

than those for westerly winds by less than a factor of two. The 

i.ntegral scale LZt measured at the 15.2 m (50 ft) level and the scale u 

L~+ measured at the 76.2 (250 ft) level are of the same magnitude. 

The smallest observed value of LZ is about 10 m for southerly winds 
u 

without the presence of gravity waves. . Z 
The larger values of L are 

u 

also observed for southerly winds when gravity waves are present. 
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Large values of LZ are also observed for northwesterly wind directions 
u 

between 300° and 320°. The upward integrated scales, LZ+ , obtained 
u 

from the lower three levels for wind directions between 0° and 100° 

Z show much less variation than the downward integrated scales, L + , u 

from the upper three levels in the same sector. Comparison of the 

three different scales, LZ+ LZ+ and Luzt of the measurements at 
u ' u + 

the 45.7 m (150 ft) level shows that for winds between 0° and 100° 

the upward and downward integrated scales are of the same magnitude 

(37 m) with the scale L~t having an average value of approximately 

43 m. For westerly winds between 250° and 360°, LZ+ is about 20 m u 
Z larger than L + • 
u 

Z The vertical integral scale of the v-component, L , behaves in a 
v 

Z similar fashion as the scale L , but the latter is generally 
u 

twice as large. The magnitude of LZ for winds from westerly directions 
v 

is about twice the value of LZ for on-shore winds.. Minimum values of v 

just a few meters are observed for on-shore winds. Maximum values of 

these integral scales are associated with winds from northwesterly 

directions (~~3100) for which large direction fluctuations have been 

observed (Fig. 18). For southerly winds (~~1800) no large maximum 

values for LZ have been observed as for LZ. For on-shore winds the v u 

magnitude of the three different scales at the 45.7 m (150 ft) level 

are about the same but for westerly winds LZ+ > LZ+ with the value 
v v 

of L~ t in between. 

Figures 29 and 30 show the variation of the relative magnitude 

x Z of the average turbulence integral scales L /L with wind direction u u 

for each observation level. For southerly winds between 135° and 225°, 

the ratio LX/Lz increases with height from about 3.7 at the lowest 
u u 
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level to values between 10 and 15 at the three highest observation 

levels. For all wind directions outside this sector the ratio LX/L
z 

u u 

is 3.3 and 3.7 at the 15.3 m (50 ft) level and the 76.2 m (250 ft) 

level respectively. The magnitude of the ratio of average integral 

Z Z scales, L IL , is 1.9, generally independent of height and wind 
u v 

direction. 

6.4.2 Comparison of the Cup-Vane Scales with Predicted Values 
from References 25, 26' and 29 

From the above discussion it is clear that the measured turbu-

1 . 1 1 LX LZ d 1z ., f . 1 . h . ence 1ntegra sca es , an vary s1gn1 1cant y W1t terra1n 
u u v ' 

roughness, wind direction, time of day, thermal stability and other 

atmospheric conditions. In this section the measured integral scales 

are compared with the predicted scales from either Teunissen [25], 

Counihan [26] and ESDU [29]. 

In Figure 31 the averaged turbulence integral scales, LX ob­u' 

tained from the cup-vane data are shown for two westerly wind-

direction sectors over near--identical terrain and are compared with 

the estimates of References 25, 26 and 29. At the higher elevations 

the values of LX in the sector 300 o <<P<3l5° are approximately 100 m 
u 

larger than those in the sector 240 o <<P<255°. The Counihan [26] pre-

dictions match the measurements below 30 m but for higher elevations 

all three references under-estimate the measured integral scales. 

Averaged values of LZ and LZ for the same two wind direction sectors 
u v 

are shown in Figures 32 and 33 and compared with predicted values from 

Counihan [26] and ESDU [29]" The results show the decrease in magni--

tude when the change is made from upward to downward integration. 
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Values of ~ in the sector 3000<~<3l5° are about twice as large as those 

in the sector 24Qo<~<255°, which is in contrast with the values of 

LZ which are approximately identical in the two wind-direction sectors~ 
u 

Z z The ESDU [29] predictions of both Lu and Lv match the measured data 

in the wind sector 2400<~<255° reasonably well~ but underestimate 

the scales for wind directions between 300 0 and 3150 for which large 

wind-direction fluctuations have been observed [Fig. 18]. 

Figures 34, 35 and 36 show the averaged values of LX, LZ and 
u u 

LZ obtained from the cup-vane data, in comparison with the predicted 
v 

values for southerly winds. Since no measured values of roughness 

length are available for this wind direction, values of Z were 
o 

selected in accordance with the nature of the upstream terrain and 

Table 1 of Reference 28. Below 20 m, for the flow in the IBL, a 

roughness length Z =0.01 m is appropriate and for the flow above 
o 

the IBL a roughness length of Z =0.001 m was selected. The measured o 
x longitudinal scales, L , are generally larger than the ESDU [29] 
u 

Z Z 
predicted values, while the measured vertical scales Lu and Lv are 

generally smaller than the ESDU [29] predictions. These results support 

the likelihood that internal gravity waves exist in the surface-based 

inversion over the ocean. The extent of the waves is much longer 

in the direction of the flow than in the vertical direction because 

of the suppression of vertical velocity fluctuations by buoyancy 

forces in stable air. The results of Figure 30 show clearly the 

large extent of 

vertical scale, 

the streamwise integral scale, L~, relative to the 

LZ for southerly winds only. For these winds the 
u 

scale ratio LX/Lz above the IBL varies between 10 and 15, for all 
u .u 
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other wind directions the magnitude of this ratio is of the order 

of 4. 

Longitudinal integral scales, LX, obtained for westerly winds 
u 

over near-uniform terrain are dependent on time of day (Fig. 37). 

The scales acquired during nighttime are approximately 50% longer 

than those obtained from morning records with the scales from 

afternoon data falling in between. The increase of the scales 

during daytime can be explained with the increase of the height 

of the mixed layer (See Fig. 5, Reference 13). However, no definite 

explanation for the large integral scales observed during nightime 

is available. 

In Figures 38 and 39 individual values of the turbulence integral 

scales, L~, at the 15.2 m (50 ft) and the 45.'7 m (150 ft) levels 

a.re plotted versus roughness length, z. These results are for o 

near-neutral strong wind data recorde for wind directions varying 

between ~=250° and ~=30o. The scatter of the data is appreciable 

as is to be expected since the previously discussed results also 

in4ic~Fe variation of L~ with wind direction (Fig. 31) and time of 

day (Fig. 37). The ESDU ~29] and Teunissen [25] predictions are 

consistently lower than th~ measurements, while the Counihan predic-

tions [26] fit the measured integral s~ales reasonably well. 

Simila:r:1y, th~ corresp<;mding vertical scales L~l and L~l are shown 

versus r04ghness length, zo' :l..n Figures 40 and 41. The ESDU [29] 

predicti.oq.~ :I;or L~l match the measured results quite well, while the 

predict~.OIlS for L~l of the same source fall generally below the 

measured data except in the range 0.1 m<z <1.0 m. 
o 
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6.4.3 The Direct and Spectral Methods for Obtaining Turbulence 
Integral Scales 

Integral scales of turbulence are defined for any correlation 

coefficient as the integral over the entire range of the independent 

variable, which can be either time or space as previously discussed. 

In practice the integration process is carried out between the origin 

and the first zero-crossing. Time scales are related to the length 

scales in the direction of the flow by assuming the existence of 

Taylor's frozen turbulence hypothesis. The magnitude of the time scales 

varies significantly depending on the presence of low-frequency fluctu-

ations and or trends. IIi order to omit these fluctuations from the 

time-correlation coefficients, the data should be high-pass filtered 

at some low frequency. The filtering of the cup-vane data takes place 

as a result of the block averaging, excluding trends and low-frequency 

fluctuations below 0.00195 Hz from the sample. Similarly, the hot-film 

data are high-pass filtered at either 0.0244 Hz or at 0.00153 Hz de-

pending on whether the data are analyzed in the high-frequency range 

(0.0244-100 Hz) or middle-frequency range (0.00153-6.25 Hz) (See section 

4.2). Turbulence integral scales calculated in this way are said to 

be obtained by the direct method. 

An estimate of the size of the energy-containing eddies can also 

be obtained from the Von Karman interpolation formula for the three-

dimensional power spectrum covering the wavenumber-range from the 

energy containing eddies to the inertial subrange [39]. 

C(k/k )4 
= ___ ..:;e_-::--::-=-

[l+(k/k )2]17/6 
e 

S(k/k ) e (12) 
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where k corresponds to wavenumbers in the range of the energy-conta:lning 
e 

eddies. With the assumption of isotropic turbulence, expressions for 

the physical realizable one-·d:lmensional spectrum functions Su (kl ) , 

Sv(kl ) and Sw(kl ) can be obtained (see expressions 3~72 and 3-73, 

Hinze [40]). The wavenumber of the energy-containing eddies, 

be replaced by the inverse of the turbulence integral scales, 

k , 
e 
x L
i

, 

can 

in the 

appropriate spectrum functions and the constants can be adjusted to fit 

the measured spectra. The one~dimensional Von Karman spectrum functions 

obtained in this manner and presented by Teunissen [25] fit the measured 

spectra of mechanically produced wind tunnel turbulence quite well 

[41,42]. The spectral expressions for the streamwise and lateral velocity 

components are given by 

and 

nS (n) __ u __ = 

2 
(] 

u 

where i = v and w. 

4 (nLx/U) 
u 

x nL
i = 4(--) u 

1+188.4(2nL~/u)2 

(13) 

(14) 

For the comparison of these wind tunnel spectra with the normalized 

x spectt:um functions, the turbulence integral scales, L
i

, were determined 

indepE!ndently using the previ.ously discussed direct method. The 

-5/3 Von Karmon spectral equations show the correct n -dependence in 

the inertial subrange. Integration of these expressions over the entire 
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frequency range leads to unity. At vanishing wavenumbers these 

x I 2 spectral equations also predict the proper integral scale Li=Si(O)U 40i • 

At low frequencies the logarithmic spectra vary as n+1 , which also fits 

the wind tunnel spectra quite well. 

However, caution must be taken with the automatic adaption of the 

Von Karman spectral functions to atmospheric turbulence under near 

neutral thermal stratification. The work of Kaima1 et a1 [20] clearly 

points out that under near-neutral conditions the low-frequency content 

in the spectra of the horizontal velocity components can vary appreciably. 

In the convective boundary layer spectral data approach a definite shape 

when near neutral conditions are approached from the stable regime. 

Under these conditions significant low-frequency velocity fluctuations in 

the u and v components are absent and the spectral shape of these components 

is similar to the Von Karman model. On the other hand no unique spectral 

shape for the u and v component exists for near neutral conditions 

approached from the unstable regime. Under these conditions, the low-

frequency spectral content is much higher and the Von Karman model does 

not represent the spectral data well. 

In order to check the validity of the Von Karman spectral 

functions, it will be necessary to check these relations against measured 

spectra, where. the frequency is normalized with the local mean velocity 

and the turbulence integral scale obtained independently via the direct 

method. In Figures 42 and 43 logarithmic spectra of the u-component 

measured at 5 different elevations for data record 19 (Table 1) are 

compared with the Von Karman spectral function. The difference in those 

two illustrations is that variances and integral scales used in Figure 42 
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were obtained in the middle-frequency range (0.00153-6.25 Hz) while 

for Figure 43 the variances and integral scales were obtained in the 

high-frequency range (0.02[.4·-100 Hz) filtering out the low-frequency 

fluctuations. In the latter case the Von Karman expression fits the 

measured spectra quite well in the -2/3 region but in the low-frequency 

range the measured spectral values are considerably higher than the 

predicted values. Consequently no distinct spectral peak at the 

predicted value of the reduced frequency of nLx/U=O.146 is present. 
u 

Similarly, the measured v spectra follow the Von Karman spectrum in the 

~2/3 region only if variances and integral scales are used from which the 

low-frequency components are filtered out. Figures 44 and 45 show 

the w-spectra for run 1119 :In comparison with the Von Karman spectrum 

function for variances and integral scales obtained in the middle and 

high frequency range respectively. In the latter case the measured 

spectra fit the theoretical Von Karman spectrum function much better 

especially for the spectra from the higher elevations. 

Based on these results the conclusion can be drawn that the theoreti-

cal Von Karman spectrum functions do not represent the spectra of atmo-

spheric turbulence in the low-frequency range or in the high-frequency 

range~ when turbulence integral scales are used that are obtained via the 

direct method when low-frequency fluctuations are included. Better fit 

of the measured spectra in the -2/3 region is achieved when variances 

and turbulence integral scales are used that are obtained from data 

records from which the low-frequency fluctuations have been removed. 

Inversely, if the theoretical Von Karman spectrum functions are used 

to obtain streamwi.se turbulence integral scales, 
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x L
i

, as is suggested in references 25 and 28, then these scales are 

not equivalent to the integral scales obtained via the direct method. 

The integral scales obtained via the Von Karman method must be inter-

preted as integral scales associated with velocity records from which 

all low-frequency fluctuations with periods longer than approximately 

40 seconds have been filtered out. 

The expressions for the streamwise turbulence integral scales, 

L~ for i=u,v and w, listed in references 25 and 29 are based on scales 

obtained via the Von Karman method by either matching of the measured 

spectra at the peak reduced frequency or by using a best overall fit 

of the spectra. Consequently the predicted integral scales from these 

sources must be interpreted as integral scales associated with the high-

frequency content of the turbulence components. 

6.4.4 Comparison of Integral Scales Obtained Via the Direct and 
Spectrum Methods With Predicted Values from References 25, 26 
and 29. 

x . 
The turbulence integral scales, L , obtained from the cup-vane data 

u 

are obtained via the direct method in the frequency range from 0.00195 Hz 

to 0.25 Hz. Integral scales obtained from the hot-film data and dis-

cussed in this section, are obtained by one of the following three 

methods: 

1. The direct method in the middle-frequency (MF) range 
(0.00153-6.25 Hz). 

2. The Von Karman method, with the spectra and variances obtained 
from filtered data in the middle-frequency range (VK-MF). 

3. The Von Karman method, with the spectra and variances obtained 
from filtered data in the high-frequency ra~ge (0.0244-100 Hz) 
(VK-HF). 
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For method 2 and 3 values of L~ were obtained by matching the measured 

logarithmic spectra (nSi(n)/o~ versus nz/U) at nz/U=IO to the Von Karman 

spectrum functions in the -2/3 range. Averaged and single-record stream-

x 'wise integral scales, Li' obtained from the cup-vane data or from the hot-

film data, the latter derived through one of the above three methods, are 

shown for the two basic wind directions (south and northwest) in Figures 

46 through 57 and are compared with the pred:lcted values of references 

25, 26 and 29. 

Figures 46, 47 and 48 show the variation of the averaged integral 

scales, Li with i=u,v and w, obtained from the hot-film data (methods 2 

and 3) versus height for southerly winds. The predicted values are based 

on a roughness length, z =0.01 m in the IBL below 20 m and on a roughness o 

length z =0.001 m above the IBL. o 
x The values of L from the cup-vane 
u 

data match the ESDU [29] predictions and the scales obtained from the 

hot-film data via the Von Karman method in the middle-frequency range 

match the Teunissen [25] predictions. Values of LX and LX obtained 
v x 

with the use of the Von Karman method in either frequency range fall 

well below the predictions. Of course, as previously discussed, the 

ratio of longitudinal scales and lateral scales is much higher for 

southerly winds than for the other wind directions (Figs. 29, 30). 

The effect of buoyancy in the inversion layer tends to suppress the 

vertica.l motion and consequently the measured scales LX are much smaller 
w 

than the predicted scales. It must be assumed that the predicted scales 

are based on data records taken under conditions where buoyancy had 

very H.ttle effect on the turbulence. The lateral scales, LX and LX 
v w 

obtainE~d via the Von Karman method in the middle-frequency range are 

about twice as long as the sca.les obtained from the same data in the 

high-frequency range. 
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x Figures 49, 50 and 51 show the averaged integral scales, Li for 

i=u, v and w, obtained from the hot-film data and analyzed according 

to methods 1 and 2 for northwesterly wind directions. In Figure 49 

comparison of LX is also made with the cup-vane data. The scales 
u 

obtained via the direct method from the cup-vane data are generally 

smaller than the scales from the hot-film data via the direct method 

in the middle-frequency range. The scales obtained with the Von Karman 

method in the middle-frequency range are systematically smaller than the 

scales obtained with the direct method from either the cup-vane or 

hot-film data in the same frequency range. The Teunissen [25] and 

ESDU [29] predictions only fit the measured scales obtained via the 

Von Karman method below a height of 20 m. Above this height the pre-

dicted values are $ystematica11y lower than the measured values. The 

Counihan [26] predicted scales of LX fit the observed scales obtained 
u 

via the direct method below 20 m, however above the height of 20 m the 

Counihan prediction falls between the measured scales obtained via the 

direct method and those obtained via the von Karman method. 

The measured lateral scales LX and LX obtained via the direct method w v 

in the middle-frequency range are three to four times as large as those 

obtained via the Von Karman method in the same frequency range (Figs. 50, 

51). The latter scales match the Teunissen [25] and ESDU [29] predictions 

very well. 

In Figures 52, 53 the integral scales, LX, obtained from a single u 

early-evening record are compared with the predicted scales and with 

the average scales from the daytime records all analyzed in the 

middle-frequency range. It has been observed [13, 23] that just before 

sunset the convective boundary layer dissolves abruptly and the low-

frequency velocity fluctuations normally associated with t~e convective 
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PBL suddenly disappear as can be clearly seen from the comparison of 

the plotted records of the horizontal velocity components of record 16 

(evening run) and record 19 (afternoon run) (Fig. 54). The results 

indic.ate much smaller scales if the low-frequency fluctuations of the 

horizontal components are absent. For record 16 the scales obtained via 

the d.irect method are system.atically larger than those obtained via the 

Von Karman method, although the difference is less significant for this 

early evening run than for the daytime records, which contain low-

frequency fluctuations (Figs. 49-51). 

x Figures 55 through 58 show the averaged integral scales, Land v 

LX from the daytime records and those for record 16 obtained via the w' 

Von Karman method in either the high-frequency range or the middle-

frequency range. The Von Karman method for obtaining integral scales 

provides near-identical results independent of the frequency range if 

largE! low-frequency fluctuations are absent (e. g. record 16) or if the 

low-·frequency fluctuations are removed from the data records. If the 

largE! low-frequency fluctuations are present (e. g. u and v components of 

daytime records Fig. 54) and are not removed from the daytime records 

the Von Karman method leads to much larger integral scales. If no 

apprE!ciable low-frequency velocity fluctuations are present in the data 

records, the integral scales obtained via either the direct or the Von 

Karman method are about the same in magnitude. However, if low-frequency 

components are present the magnitude of the scales depends ort the method 

by which they were calculated and also depends on the frequency range in 

which the data are analyzed. 
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When the integral scales, L~, obtained via the two-methods in 

either one of the frequency ranges, for data records with or without 

low-frequency content are compared with predicted values (Figs. 49, 52 

and 53) one observes appreciable variation. In general, the Teunissen 

[25] predicted values correspond to scales obtained from data records 

for which the large low-frequency fluctuations are absent or are filtered 

out, and obtained via either method. On the other hand the Counihan 

[26] predicted values correspond more to the scales obtained from data 

records with low-frequency fluctuations and obtained via the Von Karman 

method in the middle-frequency range and to the scales obtained from 

the cup-vane data. The magnitude of the scales obtained from the 

same data records via the direct method are generally larger than 

those predicted by Counihan [26]. The ESDU [29] predicted 

scales fall between the two previously mentioned predictions. The scales 

obtained from data records of north-west winds with low-frequency 

fluctuations vary almost linearly with height, while the predicted scales 

show more a tendency toward independency with height at higher elevations. 

Similarly the lateral integral scales, LX (Figs. 50, 55 and 57) also v 

show appreciable variation. The Teunissen [25] and ESDU [29]· predictions 

correspond reasonably well to the scales obtained during daytime via 

the Von Karman method in the middle-frequency range. The scales obtained 

from the same' daytime records via the direct method are significantly 

larger than the predictions. On the other hand if low-frequency compo-

nents are absent or filtered from the data records the measured values 

for the lateral integral scales, LX, fall well below the predicted values. v 

The integral scales, LX, (Figs. 51, 57 and 58) show a similar 
w 

pattern, the ESDU [29] and Teunissen [25] predictions correspond best 
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to the scales obtained via the Von Karman method in the middle 

frequency range. The scales obtained via the direct method in the 

same frequency range are considerably larger than the predicted values. 

If low-,frequency components are absent or r~noved from the data records 

the mea.sured scales are generally lower than the ESDU [29] and Teunissen 

[25] predictions. 

In, general it can be concluded that the ESDU [29] and the Teunissen 

[25] predicted LX and LX scales should be interpreted as scales obtained v w 

via the Von Karman method for turbulence with low-frequency fluctuations. 

X 
On the other hand the Teunissen [25] predicted Lu scales should be inter-

preted as scales obtained from data records from which the large low-

frequen,cyfluctuations are absent or are filtered out. In general the 

horizontal scales L~ and L~ obtained from the daytime data records via 

the Von Karman method in the middle-frequency range vary linearly with 

height, while the predicted scales show a tendency of independnece with 

height at the higher elevations. 

6.5 Power Spectra 

In this section the power spectra of the three velocity components 

obtained from the hot-film data are discussed for the two basic wind 

directions, south and northwest. Ample discussion of the spectra in the 

previous section has indicated that the spectral shape in the low-frequency 

range depends greatly on the absence or presence of large low-frequency 

velocity fluctuations. 

The logarithmic spe~tra obtained from south-wind records generally 

show very little variation in shape and vary as f-2/ 3 in the high-frequency 

~·l range and approximately as f in the low-frequency range. These two ranges 
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are separated by a distinct spectral peak. Kaimal (43) suggests that 

under stable conditions in the absence of appreciable low-frequency . 

fluctuations all spectra can be brought in coincidence and approximated 

by the empirical relation 

nS.(n) 0.164(f/f) 
__ ~1___ = _________ o~ __ ~ 

0. 2 1+0.164(f/f )5/3 
1 0 

with i=u, v and w, 

where f=nz/U is the reduced frequency and f is the reduced frequency 
o 

at the point of intersection of the extrapolation of the inertial 

(15) 

subrange of the spectra and the line ns i (n)/oi2=1. Kaimal's spectra and 

variances are obtained from data in the frequency range 0.005~n~10 Hz. 

The Von Karman spectrum functions (13, 14) can be modified into 

similar expressions 

and 

with i=v and w. 

nS (n) 
u 

-2-= 
o 

u 

nS. (n) 
1 

0.156f/f 
o 

= 
[ 

1+0.679(f/f )2 ] 
0.12(f/f ) 0 

o {1+0.255(f/f
o
)2}ll/6 

In this set of equations the reduced frequency is defined as f=nL~/U. 

However the parameter f/f for ,either the Kaimal or the Von Karman 
o 

expressions represents the wavelength ratio A lA, where A is the 
o 0 

(16) 

(17) 

wavelength associated with the reduced frequency, f. In both spectral o 

expressions the parameter f/f is independent of the length scale which 
o 

X is either the elevation or the turbulence integral scale L
i

. 
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The Kaimal (15) and the Von Karman (16,17) spectrum functions are 

n.early identical in the inert:lal subrange, but the Kaimal spectrum 

predicts a slightly smaller spectral peak. In the low-frequency range 

the u-spectra again are about identical, but the Von Karman v and w 

spectra fall slightly below the Kaimal spectrum. 

In Figures 59, 60 and 61 the normalized logarithmic u, v and w 

2 spectra (nSi (n)/ai ) are plotted as a function of the modified reduced·-

frequency f/f. The spectra were taken from different data records for 
o 

winds from southerly directions, which were classified according to the 

local stability parameter z/L. The spectral data and the variances 

were obtained from data analyzed in the high-frequency range 0.0244~n~100 Hz. 

The velocity spectra obtained from stable-air records above the IBL do 

n.ot differ from those obtained in the unstable air in the IBL and all 

fit the Von Karman and the Kaimal spectral functions remarkably well. 

The empirical spectrum functions (15,16,17) for estimation of the 

velocity spectra in the case low-frequency fluctuations are absent can 

be extremely useful if values of f can be predicted. Based on the o 

experimental results it is obvious that f varies with height and with 
o 

the presence or absence of appreciable low-frequency velocity fluctuations. 

The results did not indicate any systematic variation of f with stability 
o 

as suggested by Kaimal [43]. Averaged values of f =(nz/U) for each 
o 0 

velocity component and obtained from normalized logarithmic spectra in 

the high·-frequency range are shown as a function of height in Figure 62. 

However, values for f obtained from the same data records but analyzed 
o 

in the m:lddle-frequency range (O.00153.:sn~6.25 Hz) depend greatly on the 

presence of low-frequency velocity fluctuations. If no appreciable low-
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frequency fluctuations are present, the values f are independent of the 
o 

frequency range the data are analyzed. 

For all u-spectra investigated low-frequency fluctuations are 

present between the low cut-off frequencies for the midd1e- and high-

frequency ranges, 0.00153 Hz and 0.0244 Hz respectively. These spectra 

do not exhibit a distinct spectral peak but instead values of the 

iogarithmic spectra are approximately the same for f<O.l. Values of 

f obtained from the u-spectra analyzed in the middle-frequency range 
o 

are generally smaller than those obtained from the same data records 

but analyzed in the high-frequency range arid seem to converge to a 

general value in the range 0.02<f <0.03, independent of height. o 

For those records where internal gravity waves affect the spectra 

above a frequency of n=0~00153 Hz, the frequency range for which 

spectral values are increased varies with elevation. At the lowest 

elevation (z=9.1 m) only the spectral values at the lowest frequencies 

are affected and an appreciable range where the normalized logarithmic 

+1 spectrum varies as f is still present (Fig. 63). However for spectra 

+1 from higher elevations the f -range becomes gradually smaller as the 

effect of the waves is felt at increasing frequencies until no appreciable 

+1 frequency range with a f spectral distribution is present (Fig. 64). 

For those cases values of f for the u-spectra seem to vary between the 
o 

lower limit of f =0.02-0.03 and the values of f obtained in the high-
o 0 

frequency range as shown in Figure 62. Similar observations can be made 

for the v and w spectra. The values of f obtained from spectra analyzed o 

in the middle-frequency range are generally lower than those obtained 

from the same spectra analyzed in the high-frequency range. 
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Spectra obtained from data records for westerly winds exhibit 

significant low-frequency content for all elevations and the spectral 

data fit the Kaimal or the Von Karman spectrum functions (15,16,17) in 

the inertial subrange (-2/3 region) only (Figs. 65,66,67). The v-spectra 

(Fig. 66) show a peculiar shape which is typical for spectra of the 

lateral velocity component in the surface layer of a convective boundary 

layer [19]. Kaimal's explanation for this shape is based on the fact 

that in the inertial subrange the spectral values of the v-component 

are 4/3 times larger than the u-spectra, a requirement for isotropy in this 

range. (A similar situation exits for the w-spectra.) As the w-spectra 

reach their peak and start to roll off with lower frequencies, the v'-spectra 

instead continue to increase and start to follow the u-spectra. The 

result of this is the peculiar shape of the v-spectra in the transition 

between the -2/3 range and the low-frequency range where the u and v spectra 

both are independent with elevation but instead vary with the height, zi' 

of the convective boundary layer. 

In the case the low-frequency fluctuations are absent as is the case 

just before sunset, as the convective boundary layer.disintegrates rapidly, 

the u, v and w spectra ,(Figs. 68,69,70) and specifically the v-spectra 

(Fig. 69) have a completely different .character. The v-spectra show a 

distinct spectral peak and a rapid roll-off at lower frequencies although 

the spect,ra values fall above the Von Karman prediction in this range. 

However in comparison with the spectra of the daytime run 19 [figs. 65, 

66,67], the spectra of the evening run 16 show much lower spectra values 

in the low-frequency range and the peculiar shape of the daytime v-spectra 

as discussed above has disappeared and the v-spectra resemble the Von Karman 
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prediction. 

Values of the reduced frequency, f , defined as the intersection 
o 

of the extrapolation of the spectra in the inertial subrange and the line 

n8 i (n)/oi2=1, were obtained from, spectra ~n~lyzed in both the high-

and middle-frequency range. For the daytime u and v-spectra for which 

appreciable low-frequency velocity fluctuations are present, the values 

of f obtained in the high-frequency range are systematically three 
o 

times as large as the corresponding values obtained from the spectra 

analyzed in the middle frequency range, while for the w-spectra the 

ratio (fo)HF/(fo)MF is approximately 1.6, indicating that the 10w­

frequency content is larger in the u and v spectra than in the w-spectra. 

For run 16 this ratio for the u-spectra is 1.9 ~nd for the v ~nd w spectra 

1.25. These results c1~ar1y indicate the effect of the 10w-frequen~y 

fluctuations on the location of th~ inertial subrange when the spect~a 

are presented in the logarithmic form with n8
i

(n)/012 and f=nz/U as 

coordinates. The distribution of fowith elevation for daytime spectr~ 

and evening spectra analyzed in the middle-frequency range are shown 

in Figure 71. The results from the daytime spectra show that the values 

of f for each velocity component are approximately independent with 
o 

height and are (f ) ~O.Ol, (f ) ~O.02 and (f ) ~O.07. This observation ou ov·, ow 

is in agreement with some of the results obtained fOr southerly winds 

although the values are somewhat higher because of 1es§ low-frequency 

content. If no low-frequency fluctuations are present in the velocity 

components, the values of f generally increase with height (Figs. 62,71). o 

The values of f can be used to obtain the wav~lengths corresponding 
o 

to the spectral peaks associated with either the Kaimal or the Von Karman 

spectral functions. Since for both empirical relations the logarithmic 
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spectral peak is approximately located at f/f ~3.8, then f ~3.8f and o m 0 

for i=u,v,w. (18) 

HI~re the wavelep,gth, Am=(U/l1)m.' corresponds to the peak of the Kaimal 

and Von Karman spectrum functions and to the peak of the measured spectra 

if no appreciable low-frequency fluctuations are present in the data 

records. The peak wavelengths, (Am)i' are often used in micrometeorology 

as measures of the energy containing eddies, or they can be slightly 

modified to fit the original VOll Karman spectrum functions (13,14) 

x from which values of Li can be predicted as proposed by Teunissen [25] 

and 

LX = 0.146 (A ) 
u m u 

LXi = 0.106 (A ). for i=u,w m 1. 
(19) 

However it must be realized that these predicted scales associated with 

the empirical spectrum functions are equiv~lent to ,th~ turbulence 

integral scale obtained from correlation functions only if no large 

low-frequency velocity fluctuations are prel',lent. In tile case large 

low-frequency velocity fluctuatio11s are present and not filtered from 

the ~at~ 'f~cords, the scales qbtained from correlation functions are 

gel1erally larger in magnitude (see section 6.4). 
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7. SUMMARY AND CONCLUSIONS 

A rather detailed description has been given of a micrometeoro-

logical facility consisting of an instrumented 76 m (250 ft) tower 

located within a 100 m distance from the shore at Wallops Island, 

Virginia. The instrumentation system consists of cup-vane and 

temperature instruments mainly used for profile measurements and a 

hot-film system for turbulence measurements. The data acquisition 

and handling system for the hot-film instruments is located in an 

instrumentation trailer located at the base of the tower. The heart 

of this system is a PDP 11/20. DEC minicomputer which controls the 

digitization of the data (ZOO Hz sample rate) and the data transfer 

onto digital tape. The digitized data have been analyzed on an IBM-

370 computer located on the VPI and SU campus. 

Data have been acquired with the cup-vane system under moderately 

strong wind conditions for all wind directions during a 4 l/2-year 

period. From this data-base mean velocity and mean temperature pro-

files and associated parameters (roughness length, z , and power1aw 
o 

exponent, a) have been derived as well as turbulence intensities, 

x z z a Iu and a Iu, and turbulence integral scales, L ,L and L • u v u u v 

Averages of the calculated flow parameters from all data records in 

each 15-degree sector have been presented. In addition averaged mean 

velocity ratios V/VZ50 ' turbulence intensities, au/U, av/U>and 

turbulence integral scales, LX, have been obtained for 11 
u 

sectors each with near-uniform upstream terrain. The results provide 

information about the microclimate at this site under moderately strong 

wind conditions. This information is graphically presented in 
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Figures 72 through 75 from which average wind design data for this 

coastal site can be established. In addition, data have been ac-

quired with the hot-film system for the southerly and northwesterly 

prevailing wind directions. With this system turbulence parameters 

such as turbulence intensities, Reynolds stresses, turbulence heat 

x x x fluxes" integral scales (L ,L and L ) and power spectra of the 
u v w 

three velocity components have been obtained. 

Fc)r all observations made at this site under moderately strong 

wind conditions, truly neutral thermal stratifications have never 

been encountered throughout the observation height of 76.2 m for 

any length of time. For westerly wind direction under sunny daytime 

condit:lons the measured velocity and temperature profiles suggest 

that the surface flow at the Wallops Island site is similar to the 

surfac4~ flow observed during the Minnesota experiment [12]. The 

observed PBL flow at Minnesota is an example of a typical convective 

boundalt'y layer, a model of which is described in detail in Reference 

13. In addition to mechanical and convective turbulence generated in 

this atmospheric boundary layer, large-scale turbulence due to the 

interaction of the mixed layer and the capping inversion (entrainment) 

affects the mean and turbulent surface flow regardless of the wind 

velocity. However, appreciable deviations from the convective 

boundary-layer model may occur depending on atmospheric conditions, 

time of day and wind direction. 

It has been observed that just before sunset the daytime 

boundary-layer flow is modified drastically as a result of the 
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disappearance of the large-scale turbulence and appearance of a 

surface-based inversion. Similarly under conditions of low cloud 

cover combined with precipitation, an inversion below the cloud 

cover may develop, impeding the regular development of the day-

time convective boundary layer. Under these conditions the influ­

ence of the large-scale turbulent motions on the flow below the in­

version is reduced, resulting in an appreciable reduction in tur­

bulence intensities and turbulence integral scales. Large negative 

lateral velocity fluctuations or large wind direction fluctuations 

towards the north have been observed for northwesterly wind direc­

tions specifically between 300 0 and 315°. For winds in this sector 

larger values of the lateral turbulence intensity and larger tur­

bulence integral scales have been observed than for winds outside 

this sector but with the same upstream terrain. In addition, tur­

bulence intensities and turbulence integral scales vary during the 

daytime as the convective boundary layer develops. The above 

observations have been made under moderately strong wind conditions 

with hourly mean-wind speeds between 10 mls and 20 mls at z;9.l m. 

Based on all the observations made for westerly winds at Wallops 

Island, there is no evidence that similar flow variations in the 

surface layer would not exist under extreme and potentially damaging 

wind conditions with velocities in excess of 20 m/s. Consequently 

at this point in time it cannot automatically be assumed that for 

extremely strong winds from westerly directions, the PBL flow at 

the Wallops Island site is similar to the purely shear-generated, 
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neutrEl11y-stratified boundary-layer flow model, which is so often 

advocated by wind engineers. 

The mean and turbulent flow for southerly winds also differs appre-

ciab1y from that predicted by the neutral boundary-layer model. During 

the summertime the warm air blowing over the cooler ocean water gives 

rise to a surface-based inversion of variable height. Depending 

on thE~ thermal stability, a low-level jet with a maximum velocity 

occas:lona11y below the highest observation level has been observed. 

Under extreme stable conditions the turbulence at the two highest 

observation levels has been. observed to vanish completely and 

generally internal gravity waves may co-exist with the turbulence. 

Under these conditions the surface layer is very shallow, well below 

the lowest observation 1eve1. Moreover, the flow near the surface 

will also undergo a modification as soon as the ocean air crosses 

the beach and experiences an increase in surface roughness and 

surfalce temperature. TheSE! modifications of the surface flow 

manifest themselves in the form of a developing internal boundary 

layer (IBL) which at the tower location is between 15 m and 30 m in 

height, depending on the change in surface temperature and the 

overland development distance which varies with wind direction. 

The conclusions of the boundary-layer experiment at Wallops 

Island can be summarized as follows: 

I. Westerly wind directions 

1. The observed daytime flow below 76m at Wallops Island is 
described better by the convective boundary-layer model 
[13] than by the neutral boundary·-1ayer model. 
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The height at which transition occurs from the logarithmic 
velocity profile to the mixed-layer velocity profile 
varies with wind velocity surface roughness and thermal 
stability. 

The roughness length, z , obtained from velocity profiles 
below the transition arg in agreement with predicted values 
from PBL-flow review papers. 

The Panofsky relation, a=z lIn Izl z2 , is only useful for 
predicting values of power~aw exponents for velocity profiles 
in the surface layer below the elevation where transition to 
the mixed-layer profile starts. 

Measured turbulence intensities are generally in agreement 
with predicted values, except for the lateral turbulence 
intensities, a lu, in the northwesterly wind-direction sector 
300 o <¢<3l5°. Yn this sector the turbulence intensities of 
the horizontal velocity components (u and v) are of the same 
magnitude. 

Turbulence intensities of the horizontal components also 
vary with time of day and atmospheric conditions, or in 
general with the absence or presence of appreciable low­
frequency velocities fluctuating in the frequency range 
between 0.0015 Hz and 0.02 Hz. 

The magnitude of the turbulence integral scales depends 
on the method (direct method or spectral method) by 
which they are calculated and also on the presence or 
absence of appreciable low-frequency velocity fluctuations. 

If appreciable low-frequency content is present and is not 
filtered from the data records, the turbulence integral 
scales obtained via the direct method are larger than the 
predicted values. 

The turbulence integral scales vary also with time of day, 
wind direction, surface roughness, and atmospheric 
conditions such as cloud cover combined with precipitation. 

z z The measured vertical integral scales, Land L vary with 
direction of integration but are general~y in-agreement with 
predicted values. 
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11. The ratio LX/Lz varies generally between 3 and 4 and the 
u v 

ratio LZ/Lz has an approximate value of 2. 
u v 

12. The daytime turbulence spectra follow the Kaimal model 
[19] and deviate appreciably from the Von Karman model 
especially in the low-frequency range. 

13. The Von Karman spectral model does not fit the measured 
spectra if appreciable low-frequeney velocity fluctuations 
are present and are included in the spectral analysis and 
in the calculation of the variance, ai' and integral scale 
(direct method). 

II. Southerly wind Directions 

1. For on-shore winds an IBL develops as the surface air passes 
the beach and experiences an increase in surface roughness 
and an increase in surface temperature especially in the 
summer during daytime. 

2. For southerly wind directions warmer air flows over the 
cooler water creating a surface based inversion which is 
characterized by a very shallow surface layer, low-level 
maximum velocity (surface jet), low turbulence intensitie~ 
occasional vanishing of the turbulence under extreme stable 
conditions and co·-existence of turbulence and low-frequency 
internal gravity waves. 

3. No simple boundary·-layer flow model is available to describe 
the on-shore flow at the Wallops Island site. Variations 
in observed velocity and temperature profiles, turbulence 
intensities and turbulence integral scales are extremely 
high and can occur within a very short time. 

4. Measured velocity spectra (excluding the low-frequency gravity 
waves) are independent of thermal stability and seem to fit 
the modified Von Karman spectrum model (16,17) and the Kaimal 
stable spectrum model (15) extremely well. 

As the above conclusions clearly indicate, there is no single and no 

simple PBL-flow model available to describe the mean and turbulent 

flow near the surface under moderately strong wind conditions at the 

Wallops Island site. The presence or absence of appreciable low-

frequeI1Lcy velocity fluctuations causes the parameters describing 

this flow to vary a great deal. The non--uniform surface conditions 
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and the presence of the low-frequency fluctuations, either in the 

convective boundary layer or in the on-shore winds in the form of 

internal gravity waves, cause the observed surface flow to be quite 

different from the neutral boundary layer flow model. For the pre­

vailing winds from either the south or westerly directions the 

experimental results do not show any evidence for the PBL flow to 

approach the neutral boundary-layer model as the wind speeq increases 

from moderately strong to extreme. 

It is assumed that engineers, already aware of uncertainty in 

modeling the PBL flow, use safety factors in the design of wind 

turbines to allow for differences in the actual wind environment 

in comparison with the predictions from the neutral PBL model. The 

variation of the turbulence intensities and turbulence integral scales, 

measured under moderately strong wind conditions at the Wallops site, 

is appreciable. Consequently a great deal of difference may exist 

between actual measurements and the neutral PBL model. Experimental 

evidence does not indicate that mean wind and turbulence parameters 

will conform closer to the neutral PBL-model under higher wind-speed 

and slightly unstable conditions. The observed differences appear at 

the lower frequencies which are pertinent to the response characteristics 

of the larger machines. Therefore, the design of large wind turbines 

may need an increased safety factor with respect to turbulence at 

frequencies below about 0.01 Hz. 
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TABLE I. Mean Profile and Turbulence Parameters for Strong Winds Over Near-Uniform Terrain 

Cup-Vane Instruments 

li V~2 IU* LX(m) * Data <P (m/s) U z Ri Type of Date Time EST 
Record (deg) 0 u 0 0 a Profile or EDT at z= at z= at (m/s) (m) at z= 

15.2m 15.2m 76.2m 15.2m 

158C 241.4 13.5 2.83 303 0.81 0.019 0.131 -0.026 S 2-25-'77 12:37-13:45 
158D 244.0 12.9 3.10 149 0.78 0.020 0.137 -0.026 S 2-25-'77 14:02-15:02 
158E 247.0 11.6 2.84 201 0.77 0.037 o .1lI6 -0.023 S 2-25-'77 15:02-15:53 
153B 288.3 13.3 2.98 393 0.86 0.031 0.164 -0.027 S 12-21-'76 12:22-13:39 
153C 291.1 12.5 3.15 420 0.81 0.031 0.146 -0.028 S 12-21-'76 14:30-15:38 
153A 291.9 13.2 3.08 429 0.85 0.031 0.140 -0.028 S 12-21-'76 11 :14-12:13 
168D 297.9 11.4 2.50 342 0.80 0.052 0.157 -0.053 K 3-25-'77 14:12-15:46 
168C 312.2 11.2 2.69 639 0.73 0.034 0.150 -0.060 K 3-25-' 77 12:38-13:38 
128G 316.2 16.8 2.80 191 1.04 0.023 0.136 -0.016 S 8-9-'76 17:07-18:07 f-" 

00· 
128H 316.6 13.9 2.80 125 0.92 0.037 0.150 -0.021 S 8-9-'76 18:07-18:50 +:-

l} 

c 144A 317.8 10.9 3.15 167 0.65 0.018 0.140 -0.044 S 10-14-'76 9:58-10:58 en 169C 319.2 13.1 2.39 319 0.98 0.073 0.173 -0.029 K 3-31-' 77 13:27-14:27 G) 
0 163A 323.0 10.6 2.64 201 0.69 0.030 0.152 -0.046 K 3-16-' 77 10:53-12:01 < m 169D 323.0 12.2 2.70 236 0.87 0.055 0.163 -0.035 K 3-31-'77 15:09-16:09 jJ 
z 128F 340.0 17.1 2.50 209 1.16 0.040 0.160 -0.082 K 8-9-'76 15:08-16:25 s: 
m 
Z 
-I 

" Hot-Film Anemometers 
jJ 

Z 15 294 13.0 2.38 433 0.92 0.082 0.20 -0.039 K 3-23-'77 15:20-16:15 -I 
Z 14 296 12.0 2.79 426 0.85 0.070 0.17 -0.040 S 3-23-'77 13:30-14:25 G) 

0 19 301 11.6 2.57 306 0.78 0.040 0.16 -0.046 K 3-25-' 77 14:21-15:16 "T1 
"T1 17 304 12.5 2.61 541 0.87 0.049 0.15 -0.041 S 3-24-' 77 12:27-13:22 () 
~ 18 322 11.9 2.36 397 0.90 0.073 0.18 -0.025 K 3-24-' 77 16:25-17:20 
U; 16 292 7.1 1.03 78 0.94 0.741 0.25 -0.0014 S 3-23-'77 20:30-21:25 00 

.!oJ 
~ 

~ Note: Type of Profile: S-sing1e logarithmic profile, K-kink in profile. 
~ en 
"-
~ 
co 
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