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Summary

This report describes a novel numerical procedure
for the iterative solution of inviscid flow problems
and demonstrates its utility for the calculation of
steady subsonic and transonic flow fields. The
method is more general than previously developed
iterative methods in that no assumptions concerning
the existence of either a velocity potential function or
a stream function are required.

Application of the surrogate-equation technique
defined herein allows the formulation of stable, fully
conservative, type-dependent finite difference
equations for use in obtaining numerical solutions to
systems of first-order partial differential equations,
such as the steady-state Euler equations. Included
among the results presented are steady, two-
dimensional solutions to the Euler equations for both
subsonic, rotational flow and supersonic flow and to
the small-disturbance equations for transonic flow.
A computational efficiency in excess of that obtained
by means of the standard perturbation-potential
approach is indicated for the small-disturbance
equations. Possible improvements to, and extensions
of, the method are discussed.

Introduction

Motivating Factors

The present study is concerned with the numerical
solution of steady inviscid flow problems. Many
important physical situations encountered in modern
engineering and applied science can be accurately
modeled within the constraints of steady inviscid flow
theory. Timely substantiation of this claim is provided
by the generally good results presently being obtained
from the use of such mathematical models for the
design and analysis of transonic airfoils.

Most work, both past and present, has, however,
dealt with that subset of inviscid flows that are
irrotational and hence for which a velocity potential
function exists. Although many flows of interest can
be successfully modeled within this additional
restriction, many others, constituting in ali
probability a larger class, cannot. Certainly all those
flows of practical interest where significant gradients
of entropy or total enthalpy can occur require a more
general model than one based on potential flow

theory. Significant gradients are virtually certain to
occur in many internal flows, in particular in those
through modern turbomachinery, and can also occur
in external flows, especially when the flow over a
number of interacting components is considered.

Of course the hyperbolic partial differential
equations describing supersonic steady inviscid flow
problems can be solved, for both potential and more
general flow situations, by means of existing
mathematical and numerical techniques.
Consequently such flows are not the object of the
present study. Rather it is the subsonic and transonic
flow problems, described respectively by elliptic and
mixed elliptic-hyperbolic equations, with which the
research described herein deals.

At this juncture the issue of computational
efficiency makes its importance felt. Subsonic and
transonic inviscid flow problems can be solved by
computing a temporal asymptote to the unsteady
equations of motion. However, the computation
times can be quite long. In contrast to this approach
the present research describes a method for the direct
solution of the steady equations. By proceeding in
such a fashion the resolution of the transient physical
states between the initial state and the desired final
state is avoided. Thus a means for the more efficient
solution of subsonic and transonic steady inviscid
flow problems is provided. As described
subsequently in this report the method is based on the
creation of a higher order system that serves as a
surrogate for the first-order partial differential
equations of inviscid flow theory.

Literature Review

When written in primitive variable form the
systems of partial differential equations used to
describe the steady motions of an inviscid fluid are of
first order and of mixed elliptic-hyperbolic type.
Common examples of such systems are the transonic
small-disturbance equations, the potential flow
equations, and the Euler equations.

Because of the difficulties associated with both the
formulation of robust finite difference analogs for
such equations and the construction of stable
iterative procedures for their numerical solution
(refs. 1 and 2), these partial differential systems are
not usually solved in their steady, primitive variable
form. Rather, as is well known, the transonic small-
disturbance equations and the potential flow
equations are transformed into scalar, second-order,



partial differential equations by introducing either a
velocity potential function (refs. 3 and 4) or a stream
function (refs. 5 and 6). The steady Euler equations,
on the other hand, are replaced by their unsteady
versions, for which a temporally asymptotic steady
solution is sought, either in real time (refs. 7 and 8) or
in pseudo time (refs. 9 to 11).

Relatively few departures from these approaches
are to be found in the literature. Steger and Lomax
(ref. 12) developed an iterative procedure for solving
a nonconservation form of the steady Euler
equations for subcritical flow with small shear.
Chattot (ref. 13) solved the transonic small-
disturbance equations by differentiating them to
obtain a second-order system, a special case of the
approach discussed herein. He later adopted a
variational formulation (refs. 14 and 15) and applied
it to model problems representing the Euler
equations. Ozer (ref. 16) developed a relaxation
procedure for solving the equations of motion when
they are reformulated in such a manner as to yield a
second-order partial differential equation in the
logarithm of the pressure, together with first-order
equations for the remaining variables.

The work of these authors notwithstanding,
contemporary numerical simulations of steady
inviscid flow generally resort to either relaxation
solutions of steady second-order equations with
derived dependent variables or time-asymptotic
solutions of unsteady first-order systems. In the
former case, generality is lost; in the latter case the
computational efficiency can be quite low.

Scope of Present Study

As is readily apparent in the foregoing literature
survey there are two general approaches to the
numerical solution of steady inviscid flow problems.
One approach involves the time-accurate solution of
the complete, unsteady Euler equations of motion.
Taken in their time-dependent form the governing
Euler equations are of hyperbolic type and their
numerical solution is a relatively straightforward
matter. Hence, one may attempt to obtain the
solution to a steady flow problem as the temporal
asymptote of the solution to an unsteady flow
problem. This approach has been successfully
employed by several researchers.

An alternative approach is to solve the Euler
equations by a method that is not time accurate but
that produces the desired steady-state result. Such
methods are generally referred to as relaxation or
iterative methods. There is substantial opinion and a
considerable body of evidence that relaxation
methods can provide a converged solution more
quickly than can time-accurate methods and hence

lead to more efficient use of computer resources.
Because of the limited capacity of presently available
computers and the complex nature of the phenomena
under investigation, this issue of computational
efficiency is of great importance. This is especially
true if numerical solutions are to be used for design
purposes, which typically require large numbers of
cases to be computed.

At present, steady-state solutions of the Euler
equations for subsonic and transonic flow problems
are found primarily by means of the time-accurate
approach. Since this approach can in the words of
Lomax and Steger (ref. 2) be ‘‘disastrously slow,”’
the development of efficient relaxation procedures
could be quite beneficial. It is, however, no
coincidence that with the few exceptions indicated
previously little has been achieved toward creating a
suitable relaxation procedure for the complete,
steady Euler equations. The task of constructing
stable iteration algorithms for equations such as the
Euler equations, which involve only first derivatives
of primitive variables, has received little attention in
the literature. The questions as to whether, and under
which circumstances, such procedures exist have not
yet been satisfactorily answered.

The present work describes a new procedure,
referred to as the surrogate-equation technique, that
is designed to circumvent the difficulties associated
with the nature of the steady Euler equations and to
permit their solution by means of conventional
iterative techniques. The numerical stability
problems normally encountered when attempting to
formulate finite difference equations for the steady-
state, first-order Euler equations in regions where
they exhibit elliptic behavior are avoided by
introducing an alternative higher-order partial
differential system for which proven numerical
solution techniques are readily available.

For clarity the essential ideas comprising the
surrogate-equation technique are introduced within
the context of a quite simple and well-understood
first-order system of partial differential equations,
namely, the Cauchy-Riemann system. More
interesting subsonic and transonic flow problems are
subsequently discussed and solved.

By proceeding in this fashion a basis for the
iterative solution of subsonic and transonic inviscid
flow problems that lie beyond the restrictions of
potential flow theory is developed. Although the
efficient use of computer resources is a motivating
force, no attempt is made here to proceed beyond the
now standard, successive-line-relaxation solution
procedure. The application of convergence
acceleration techniques is reserved for future study.
It is nevertheless interesting to note that when applied
to the transonic small-disturbance equations, as



discussed in the section Transonic Flow, the
surrogate-equation technique leads to an algorithm
that, on the basis of the computational
experimentation reported herein, appears to exceed
the computational efficiency of the standard
Murman and Cole algorithm by several multiples.

Cauchy-Riemann Problem

To illustrate the essential aspects of the surrogate-
equation technique, we examine its application to a
first-order system of partial differential equations of
minimal complexity. Consider the equations
describing in two dimensions the flow of an
incompressible and irrotational fluid,

Uy +uv,=0 1)
ve—u,=0 2)

where u and v represent the components of velocity
in the x and y directions, respectively. As is well
known, these equations are simply the Cauchy-
Riemann equations.

Potential Formulation

To solve equations (1) and (2), hydrodynamicists
have long made use of the fact that a velocity
potential, ¢ = ¢(x,y), can be introduced such that the
condition of irrotationality (eq. (2)) is identically
satisfied:

Px=Uu
Yy =V

Substitution of the velocity potential into the
incompressibility condition (eq. (1)) then leads to a
Laplace equation in ¢:

Pxxteyy =0

A succinct and informative discussion of this
development from the viewpoint of complex variable
theory is given in reference 17.

Hence for a particular incompressible and
irrotational flow problem the resulting boundary
value problem for the first-order Cauchy-Riemann
system can be reformulated as a boundary value
problem for the Laplace equation in the single scalar
dependent variable ¢. As the theory of harmonic
functions is a quite mature branch of mathematics, a
large number of particular solutions are available for
this problem. Furthermore, if circumstances should
indicate the desirability of a numerical solution, the

fact that most of the equations of mathematical
physics are second-order partial differential
equations means that a large variety of proven
numerical methods exist and are at our disposal.

Surrogate-Equation Formulation

Consider now another approach to obtaining a
solution to equations (1) and (2) that for convenience
is referred to as the surrogate-equation technique. This
technique is of general application and is not restricted
to the class of irrotational, incompressible fluid flows
that we are treating here only by way of an example.

By defining the two-component vectors f and g
such that

]

and

e=[1]

we can rewrite equations (1) and (2) as

fx+gy=0 3)

Equation (3) can then in turn be reexpressed as
fx+Af, =0, where the Jacobian matrix A is defined
such that 4 =3dg/df. Since A is a constant matrix, we
can write fy+(Af), =0 or more conveniently in
differential operator notation,

a a
[a U )+ 54 £|f=0 @

where [ represents the two-dimensional identity
matrix.

If we now operate on equation (4) with the
differential operator

a

ad
M)+ 5(1\/) (%)

with M=7 and N=—A (or N=AT), we obtain a
second-order partial differential equation for f that
has many pleasing properties. The form of M and N
might be suggested by analogy with holomorphic
function theory (ref. 18). In any case the present
exposition undertakes to illustrate the utility of such
a choice.



Clearly the equation resulting from an application
of operator (3) to equation (4) is

62 I 62 A2 )] =0
Q( )"ay—z( NJS= ©)

In the case under consideration, where
01
A= [—1 0]

and hence A2= —1, equation (6) reduces quite
simply to

I 62 I 62 0 @)
- + - _
ax2  9y? J

This is the two-dimensional Laplace equation for the
vector dependent variable f. This should come as no
surprise since the generality of the surrogate-
equation technique should not prevent the specific
nature of the particular partial differential equations
to which it is applied from manifesting itself. Indeed,
in this case the appearance of the Laplace equation is
a consequence of the fact that holomorphic functions
are harmonic.

Problem Specification

At this point it is instructive to consider an
application of the surrogate-equation technique to a
particular boundary value problem for the Cauchy-
Riemann system of equations (1) and (2). We choose
the closed rectangular domain D in the x—y plane
such that

D={(xy) |0=<x=ly, 0<y=<l,}

We require that the Cauchy-Riemann system be
satisfied on D, subject to the boundary conditions

u(0,y)=q10)
ully,»)=q2() ®)
v(x,0)=q3(x)
v(x,1y) =qa(x)

Following the classical approach, this Dirichlet
problem for the Cauchy-Riemann system would be
transformed into a Neumann problem for the
potential equation ¢y, t+¢,, =0, subject to the
boundary conditions

<Px(0,y) ={q1 (6]
ox (e, ) =q2(9)
#y(x,0)=g3(x)
ey(6ly)=q4(x)

and also to the additional constraint that the line
integral of g¢,, (n=1, . . ., 4) around the boundary of
D must vanish (ref. 19). The solution to this problem
is unique to within an arbitrary constant and, given a
solution for ¢, the unknowns « and v can be found
by differentiating ¢ with respect to x and y,
respectively.

An application of the surrogate-equation
technique, on the other hand, requires the solution of
a mixed boundary value problem on D. As we now
deal with the Laplace equation (7) in the two-
component vector dependent variable f, we require
that one condition on f be specified at each point of
the boundary of domain D. Half of the required
conditions can be immediately obtained from the
boundary conditions (8), which were applied to the
original Cauchy-Riemann formulation. If we let f;
and f, denote the first and second components of f,
respectively, these conditions can be written as:

Jf10,9)=q1()
J1Ue:)=q200)
S206,0)=g3(x)
f2061)) =q4(x)

We are left with the task of formulating the
remaining four conditions. Since the ultimate
objective is to obtain a solution to the Cauchy-
Riemann system on D, it is natural to invoke
equations (1) and (2), as required, to obtain the
additional four conditions on the components of f.
Note that, if we proceed in this manner, no
additional information that might have an
overconstraining effect is introduced into the
problem. In particular, the use of the Cauchy-
Riemann conditions merely restates the fact that u
and v are harmonic conjugates. Hence, in the case at
hand, the remaining conditions are found to be:

%fz (O,y): %fh
%fz v y)= %ch
%fl (X’O)= %43
%f} (x,l_v)= %‘M



If we now solve the resultant mixed boundary
value problem, we will find the two conjugate
harmonic functions « and v that satisfy the boundary
conditions (8) imposed on the original Cauchy-
Riemann system. Hence, we will have found a
solution to the original Cauchy-Riemann problem by
solving a second-order partial differential equation
and without having made use of either the
irrotationality or incompressibility conditions as field
equations in our development. This is precisely the
objective of the surrogate-equation technique: to
find a second-order partial differential system that
can serve during the solution procedure as a
surrogate for the original first-order system while
neither broadening nor restricting its set of
admissible solutions.

For convenience the
problems discussed thus
illustrated in figure 1.

three boundary value
far are schematically

Computational Results

Given the potential and surrogate-equation
formulations of the Cauchy-Riemann problem, as
described in preceding sections, it is a quite
straightforward matter to compute approximate
numerical solutions to both of these boundary value
problems.

Such illustrative computations are reported in
detail in reference 20. There each problem is
discretized by using second-order accurate central
differencing, and the resulting systems of algebraic
equations are solved by successive line overrelaxation
(SLOR). The problem specification is completed by

choosing the functions g, through g4 for 0 <x =</,
and 0 <y =/, such that

0.5
g1 = TZ
y
q:00)=1.0
0.5x(1.0—0.5x/1
g3 = X0 0.%/ ) j M)
y
GaC) = 0.5x(1 .01— 0.5x/1,) _ 0.715 ly
y X

The exact solution to this problem is

0.59(1.0—x/ly) . x
- 27 + —_
I, I

_0.5%(1.0—0.5x/1,)

- R

u(x,y) =

v(x,y)

_ y(l.O—?.ZSy/Iz )
X

For both the computations with the potential
formulation and those with the surrogate-equation
formulation, the SLOR procedure was continued
until the resultant approximations to the v and v
velocity components differed from the exact solution
by at most 1.0x10-6 at any point in the

Vo= x)
yl A Ux * iy o O -
u ql Y VX = = 0 u-= qZ(Y)
X
Vo= gy x)
/ Cauchy-Riemann for mulation \
3.8
ay 1 Oy 4
by =0y (x) fo = Q4 (x)
= fi = Qo (y)
fr=qy (y 172
= - - 149
AR Pt Py =0 o oL fox * Ty = 0 >, .2
| — fy) =x— @
3 1273, 9 VI M
Py, = 63 ) o .8
y 93 f1= q
Potential formulation o0y 1o oy B
f2 = Q3 (x)

Surrogate-equation formuiation

Figure 1. - Three equivalent formulations of the same boundary value problem.



computational domain. With the parameters /,, and
l, set at values of 2.0 and 1.0, respectively,
computations were carried out on three meshes of
successively doubling point density.

As expected, the numerical solution to the
potential formulation behaved such that the ¥ and v
velocity components, as computed from the x and y
derivatives of ¢, respectively, converged to within the
above specified tolerance of the exact solution in an
orderly fashion. Hence the principal nontrivial result
is that, as expected from the foregoing theoretical
considerations, the numerical solution to the
surrogate-equation formulation also behaved well,
producing the desired approximate solution to the
required degree of accuracy.

Summation

By using the Cauchy-Riemann equations
describing the two-dimensional, incompressible,
irrotational flow to provide a model problem, the
essential features of the surrogate-equation technique
have been illustrated. The objective of constructing a
second-order partial differential system to serve
during the solution procedure as a surrogate for the
original first-order system while neither broadening
nor restricting its set of admissible solutions appears
on the basis of both theoretical considerations and
the results of computational experimentation to have
been achieved.

Euler Problem

Having illustrated the essential features of the
surrogate-equation technique by means of the simple
Cauchy-Riemann model problem, we now proceed to
the consideration of more realistic and more
complicated problems, where the utility and
generality of the surrogate-equation technique can be
more thoroughly displayed. This section treats the
computational simulation of the steady flow of a
perfect fluid under either purely subsonic or purely
supersonic conditions. Transonic flows are discussed
in the following section.

The conventional approach to the computational
solution of steady, subsonic inviscid flow problems is
to make use of either the potential or the stream
function. By doing so, the Euler system of partial
differential equations, which has only first-order
derivatives of primitive variables, is replaced with a
second-order partial differential equation in a
derived dependent variable. Given this second-order
equation, one can then draw on the large body of
experience concerning the design of relaxation
procedures for such equations in order to arrive at a

solution algorithm. This convenience is compensated
for by a loss of generality. The potential function
formulation is limited in application, by definition,
to irrotational flows. The stream function
formulation 1is essentially two-dimensional and
furthermore for transonic flows is hampered by
density being a double-valued function of the mass
flow parameter and by the saddle point that exists at
the sonic line (refs. 1, 21, and 22).

An alternative to this approach is to seek a steady
solution that is the temporal asymptote of solutions
to the unsteady Euler equations. Assuming that such
an asymptote exists, this method has the advantages
both of avoiding the restrictions inherent in the
potential and stream function formulations and of
allowing one to deal with purely hyperbolic first-
order partial differential equations. For such
equations one may once again draw on a large body
of experience when designing a solution procedure.
" In the case of time-accurate, time-asymptotic
solution of the unsteady FEuler equations the
principal disadvantage lies in the long computing
times to be expected. As a result of efficiency
comparisons of time-accurate methods with
relaxation methods for certain model problems,
Lomax and Steger (ref. 2) found ‘. . . that relaxation
methods converge from one to two orders of
magnitude faster than time-accurate ones.’’ This led
them to conclude that ‘. . . there is a real need to
improve our relaxation techniques for many types of
equations modeling steady-state fluid flows.”’ More
specifically, they found that, although ‘“. . . some
techniques for relaxing isentropic-flow equations in
terms of the primitive variables have been
developed’ (refs. 1 and 23 to 25), ‘“. . . a suitable
relaxation procedure for the general Eulerian
equations has not emerged, so far as the authors
know’’ and further that ‘‘a major problem area
where relaxation schemes have yet to be exploited is
in the calculation of inviscid rotational and energy-
input flows.”’

The absence of suitable relaxation procedures for
the steady Euler equations can be accounted for in
the observation that for regions of subsonic flow,
where the equations exhibit elliptic behavior, the
natural differencing techniques, when applied to
these first-order equations, lead to unstable finite
difference equations. At this writing, several
attempts by various researchers at resolving this
difficulty have, as discussed previously, provided
interesting results and useful insights but have met
with less than complete success.

The realization that the impasse in the
development of relaxation methods for the steady
Euler equations is caused by their first-order nature
leads one quite naturally to consider an application



of the surrogate-equation technique. Since this
technique provides a steady, second-order system of
partial differential equations whose solution also
satisfies the Euler equations, we can at once avoid the
restrictions of the second-order potential and stream
function formulations and use natural differencing
techniques to create stable finite difference
equations. Having thus devised a method for
obtaining stable, discrete algebraic analogs to the
steady Euler partial differential equations, we can
then proceed to investigate various relaxation
procedures with the aim of identifying those that
provide a converged solution more efficiently than
does the time-accurate solution of the unsteady
equations. Note here that it is not the intention of the
present work to perform such an investigation of the
various possible relaxation procedures. Rather, these
computations are of an illustrative nature. The goal
then is to present the surrogate-equation technique
and to show how its application to the equations of
inviscid fluid flow leads to more powerful and
general computational procedures than are presently
available. In particular, we will presently illustrate its
use for the computation of rotational subsonic flows
by using the full Euler equations. In the next section
the surrogate-equation technique is used to create
stable, fully conservative, type-dependent finite
difference equations for the numerical solution of an
inviscid transonic flow problem.

The purely supersonic flow problem can be readily
solved by any number of proven techniques.
Consequently it is included here only to provide a test
case for the surrogate-equation technique.

Equations of Motion

As is well known, the two-dimensional flow of a
perfect fluid can be described by specifying four
partial differential equations, together with the
appropriate auxiliary relations and boundary
conditions. These partial differential equations are
known as the Euler equations and are statements
concerning the conservation of fluid mass,
momentum, and energy. For steady flow they can be
written in vector form as

Sx+gy=0 ®

where x and y are the coordinates of a Cartesian
reference frame,

ou

f= ou2 +p (10a)
puv
(E+p)u

and

pU

puv (10b)
pv2 +p

(E+p

g:

Here the density, static pressure, and velocity
components in the x and y directions and the total
energy per unit volume are denoted by p, p, 4, v and
E, respectively. Furthermore the total energy per unit
volume can be expressed as

E=p[e+ %(u2+v2)]

where the specific internal energy e is related to the
pressure and density by the simple gas law

p={(y—1)pe

with v denoting the ratio of specific heats.

For definitude we now assume that we wish to treat
a flow that is approximately aligned with the x
direction and hence wish to rewrite equations (9)
solely in terms of f. To this end, note (ref. 26) that f
and g are homogeneous functions of first degree in
the components of the vector of conservative
variables w, where w is defined such that

w=(p, pu, pv, E)T

Hence it follows from Euler’s theorem on
homogeneous functions (ref. 27) that f=Aw and
g=Bw, where the Jacobian matrices A and B are
defined such that A =3f/dw and B=43g/dw and their
elements are given explicitly in appendix A. Thus,
wherever 4 ~ 1 exists, we can write

g=Tf

where T=BA ~!. Since A is singular only when the
absolute value of the u velocity component either
vanishes or is equal to the local sonic velocity
(appendix A), assuming A to be nonsingular
introduces no essential limitations for the purely
subsonic and supersonic flow cases presently under
consideration. We can now rewrite equation (9) as

fx+ (TN, =0



This equation can in turn be simplified (appendix B)
to yield

fx+Tf,=0 (11)

Thus far, we have done no more than to rewrite the
Euler equations (9) in the form of equation (11), so
that they are expressed in terms of the single vector of
dependent variables f. Equation (11), together with
the flow tangency condition and the appropriate
upstream and downstream (or far field, if relevant)
conditions, constitutes a completely specified partial
differential problem.

Second-Order System

The Euler equations, as given in equation (11), can
be rewritten by using differential operator notation
to yield

a d

Then, in a manner similar to that used previously for
the Cauchy-Riemann equations, we can create the
desired second-order system by operating on
equation (12) with the differential operator

a a
to yield

92 a2 a

This equation can be reexpressed (appendix B) as

0 29 (TT,-T, 2| f=0
ax2 ay? T [

which can in turn be simplified to
ﬁ_i<7ﬁi>}f—0 (14)
ox2 9y ay

Equation (14) is the surrogate second-order equation
that will be used here to obtain solutions to the Euler
equations. Since this surrogate equation has been
obtained from the original equation by a process of
differentiation, we expect that its solution set will

contain those solutions to the Euler equations that we
seek. Any possible additional elements of the
solution set to equation (14) that do not satisfy the
Euler equations are eliminated by means of the
boundary condition specification, which is discussed
in the next subsection.

This surrogate second-order partial differential
system possesses some interesting properties. By
virtue of the form of the operator (13) the second-
order system has no cross-derivative terms. This
convenience results in a considerable simplification
of its finite-difference equation analog. Furthermore
the choice of the operator leads to a pleasing
behavior of the characteristic directions associated
with equation (14). We first recall that the
characteristic directions of the Euler equations are
determined by the eigenvalues of the matrix 4 ~1B.
We then observe that the characteristic directions
associated with the surrogate second-order system
are determined by the square roots of the eigenvalues
of the matrix 72. However, the matrices A 1B and
T are similar since

A-1B=A-1(DA

and hence have the same eigenvalues. It then follows
that the characteristic directions of the system of
second-order partial differential equations described
by equation (14) have slopes equal to +X\, where the
N\ are the eigenvalues of the matrix 4 ~!B. This
means that, in applying the surrogate-equation
technique to the Euler equations to obtain equation
(14), we have retained the original Euler
characteristic directions and added to them their
reflections through the x axis. For subsonic flows this
property may not be of great importance. However,
for supersonic flow or for the extension of the
method presented here to transonic flow the behavior
of the characteristic directions gains considerably in
significance. It is then quite useful to observe that, if
the coordinate system is chosen such that the flow is
aligned with the x direction, the standard successive-
line-overrelaxation iterative procedure possesses the
same symmetry with respect to the x axis as do the
characteristic directions of the surrogate second-
order system. From this point of view, one would
then expect the introduction of the additional
characteristic directions associated with the second-
order system to have a minimal effect on the
behavior of the SLOR solution procedure.

Boundary Conditions

Here we are concerned, in general, with two types
of boundaries to the physical domain of interest. The



first type, which is referred to as a solid boundary,
occurs at the interface of the fluid with some
substantial obstacle, such as the wall of a passage or
the surface of an airfoil. The second type, which is
called a flow boundary, occurs when for practical
reasons one arbitrarily prescribes a boundary in the
fluid-flow field itself that is not a solid boundary but
beyond which the flow simulation will not proceed.

We seek a solution to the Euler equations and, as is
well known (ref. 28), it is a both necessary and
sufficient solid boundary condition for these
equations that the fluid-flow velocity vector be
parallel to the wall slope at the point of contact.
Hence we require that the surrogate second-order
system also satisfy this wall tangency condition.
Furthermore, to insure that we admit no solutions to
the second-order system that do not satisfy the Euler
equations, we require that precisely these Euler
equations also serve as boundary conditions.
Although no mathematical proof of the sufficiency
of these additional conditions is presented herein, the
computational results to be reported serve as a strong
indication that this is in fact the case.

Since the flows to be treated subsequently are
internal flows, the flow boundaries are of the inflow
or outflow type rather than the far-field type
associated with external flows. These far-field
boundaries are normally treated by assuming that
either ‘‘free stream’’ conditions can be used for the
values of the unknown or that some far-field
solution, obtained by other means, is available to
determine their values.

The appropriate inflow and outflow boundary
conditions for internal flows are dependent on the
exact physical and mathematical nature of the
problem to be solved. Quite often the inflow
boundary is treated by specifying the values of all
unknowns along its extent. Although such
specification precludes any influence of the flow
conditions downstream on those at the entrance, this
nevertheless often results in a physically realistic
boundary condition. For either supersonic or
subsonic outflow a commonly used boundary
treatment, again assuming that it is compatible with
the physics and mathematics of the flow, is to assume
that the values of the unknowns do not vary in the
flow direction. Use is made of such flow boundary
conditions in the calculations to be discussed
subsequently. However, the simplified inflow and
outflow conditions applied successfully to these
model problems cannot in general be expected to
yield good results in more complicated flow
simulations.

Problem Specification

To test the surrogate-equation formulation

described earlier, we consider the simulation of a
number of two-dimensional internal flows. Since, as
mentioned previously, very little appears to be
known about the design of relaxation procedures for
the Euler equations, the rational development of
such a procedure requires that simple tests be made
of the validity of the concepts involved.

We first compute the flow in the supersonic region
of a two-dimensional hyperbolic nozzle. Any
problems due to the introduction of additional
characteristic directions by the second-order system
should be revealed by such a case. Furthermore the
necessary inflow boundary conditions and a series
solution that is valid close to the sonic line are
available from the work of Hall (ref. 29). A more
complete specification of this test case is given in
reference 30.

The next test is to compute the purely subsonic
flow in a two-dimensional symmetric nozzle with
sinusoidally shaped walls. This geometry is of
interest because the subcritical flow through it should
have two axes of symmetry: the nozzle centerline and
the geometric throat. Further details concerning this
case are given in reference 31.

We then consider the computational simulation of
inviscid shear flows through curved passages. To this
end, use is made of a class of inviscid,
incompressible, rotational flows, presented by
Shercliff (ref. 32), that can be described by the
stream function

¥ =C exp (ky) cosh (ix)

where C, k, and / are constants and x and y are
Cartesian coordinates.

As is explained in greater detail in reference 32,
this stream function describes the flow of
an incompressible fluid through a bend of angle
2 arc tan (//k) that transitions between two
asymptotic flows that are rectilinear shear flows. The
bend is quite abrupt and the streamlines approach
their asymptotes with exponential vigor. Also,as the
streamtube cross section is greatest at the symmetry
axis of the bend, these flows first decelerate and then
reaccelerate as they complete their passage through
the bend.

For precision, we have chosen here to examine
computationally the compressible inviscid flow
through finite sections of 90° Shercliff bends. The
results can then be compared with one another and
for reference with what is subsequently referred to as
the augmented incompressible flow solution.

This augmented incompressible flow solution
consists simply of velocity components obtained
directly from the stream function that represents the



corresponding incompressible flow, together with
density and static pressure values. These values are
estimated by specifying density and static pressure
profiles at the bend entrance and then obtaining their
distributions throughout the flow field by making use
of the constancy of both entropy and total enthalpy
along streamlines while assuming that the perfect-gas
law applies. In this way we obtain information
suitable for specifying the entrance conditions for the
compressible flow computations, for generating
starting conditions for the iterative solution
procedure, and for use as a baseline against which we
can compare the results of our surrogate-equation
compressible flow computations.

For variety a number of computations have been
performed in a different sort of bend, referred to
herein as a circular-arc bend. This is a bend that
transitions between two rectilinear sections by
utilizing a section whose walls are arcs of two
concentric circles, with tangency being required at

the joints. Further specifications for these cases are
given in reference 20. For convenience, all four test
cases are schematically illustrated in figure 2.

Computational Results

Extensive test computations have been carried out
on the surrogate-equation representation of the Euler
equations described previously. Of particular interest
are the results obtained in the four test cases shown in
figure 2. In all computations reported herein, a
sheared coordinate system was chosen for the
physical domain. Such a coordinate system although
nonorthogonal is simple and convenient and, since
the bounding walls are coordinate lines, it facilitates
the precise application of wall boundary conditions.

In each of the subsonic test cases the governing
partial differential equations are elliptic and were
discretized by means of second-order accurate central
differences. The resulting algebraic equations were
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(@) Supersonic nozzle (see refs. 29 and 30 for details),
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(c) Shercliff bend flow, decelerating flow with turn-
ing angles up to 90° (see refs, 20 and 32 for details),

(b) Subsonic nozzle (see ref, 31 for details),
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{d) Circular-arc bend flow, constant-cross-section
flow with turning angles up to 9P (see ref, 20
for details),

Figure 2, - Nomenclature for Euler equation test cases,



=

then solved as a coupled system by using an SLOR
iteration scheme and a block-tridiagonal analog to
the Thomas algorithm (ref. 33). Further details are
contained in references 20 and 30.

The governing equations for the supersonic test
case are of course hyperbolic. They were discretized
by using three-point upwind differences in the flow
direction and three-point central differences in the
transverse direction. The resulting coupled system of
algebraic equations was then solved by using an
implicit marching scheme. More information
concerning the details of both the discretization and
the solution procedure are to be found in refer-
ence 30.

For all results presented in this section the
following normalizations have been employed:

(1) For velocity components, c., the critical speed
at the location of maximum entrance velocity

(2) For density, pg, the density at this same
location

(3) For static pressure, pgc?

(4) For length, bend cross section at the axis of
symmetry or the nozzle throat cross section

The results of the supersonic nozzle test are
summarized in figures 3 through 6. There the velocity
components, density, and static pressure calculated
by using the surrogate-equation technique are
compared with the predictions of the Hall solution.
The agreement is excellent close to the sonic line,
where the Hall solution is valid. As might be
expected, the present solution deviates from the Hall

Finite
difference
solution
for various
x direction
step sizes,
Ax
0O 0.1
A .
(o] . 025

Downstream distance, .
—— Hall soiutior

fraction of throat height

04 -6 8 L0 Nozzle centerline

g Of— ,
S
2
=)
g
S 20—
&
§ 31—
=
& A
3
£ .5
1.0 11 1.2 1.3 1.4

Figure 3. - Nondimensional u-velocity distribution -
supersonic flow,

Fractional transverse distance

Fractional transverse distance

c o\

Finite
difference
solution
for various
x direction
step sizes,

m} 0.1

A .06

O .05
Hall solution

Nozzle centerline

fraction of
throat height

Downstream distance,

ic,

Figure 4, - Nondimensional v-velocity distribution -
supersonic flow,

Finite difference
solution for various
x direction step sizes,
AX
01
L0
.025
Hall solution plus assumption
of homoentropic and homo-
enthalpic flow
Downstream distance,
fraction of throat height

Lo .8 .6 .4

opnO

Nozzle centerline

plpg

Figure 5. - Nondimensional density distribution -

supersonic flow,

11



Fractional transverse
distance

Fractional transverse
distance

Fractional transverse
distance

Finite difference
solution for various
x direction step sizes,

A
m] 01 @
A .6 5
(e} .05 g
Hall solution plus assumption =1
of homoentropic and homo- T
enthalpic flow 2
Q
Downstream distance, E

fraction of throat height

| Nozzle centerline L0 .8 . -6 ) o

)

DS -

o3
Plipgcd)

Figure 6, - Nondimensional static pressure distribution -
supersonic flow,

Longitudinal distance from throat,
fraction of throat height
L=
_74 63 53 42 32 I 11 Nozzle centerline

1.00

ulc,,

Figure 7. - Nondimensional u-velocity distribution ~
subsonic flow,

ulc,

Nozzle centerline

Longitudinal distance
from throat,

fraction of
throat height
0 01 02 .03 o4 05
|vlic,

Figure 8. - Nondimensional v-velocity distribution -
subsonic flow.

distance

Fractional transverse distance

9

Longitudinal distance from throat,
fraction of throat height Nozzle

ol— - J11.32 .42 .53 .63 .74 centerline
1=
2
]
A
sbo— b lp

.90 .92 94

Npo
Figure 9, - Nondimensional density distribution - subsonic flow,

Longitudinal distance from throat,
fraction of throat height Nozzie

o - (11.32 .53.63 1. 00 __centerline
A

22—

3

A

.5 = V ~ '—,
175 . 800" 850

pl (PQC=:=

Figure 10, - Nondimensional static pressure distribution -
subsonic flow.

. 35—
30— Fractional
transverse
distance
ye 0. 056

—. 167

.25 218
1389
500
. | J
L0 0 Lo

Longitudinal distance from throat, fraction of throat height

Figure 11. - Nondimensional u-velocity profiles - subsonic flow.



solution as the location becomes more remote from
the sonic line and the nozzle axis of symmetry. No
detrimental effects attributable to the additional
charicteristic directions introduced by the surrogate-
equation formulation are apparent in the
computational results.

The subsonic nozzle test also produced
encouraging results. Figures 7 through 10 show the
computed distributions of velocity components,
density, and static pressure; figure 11 presents the u
velocity profiles obtained at several transverse
locations.

To illustrate the utility of the surrogate-equation
technique for obtaining solutions to the Euler
equations in flow situations of contemporary
interest, a computational study has been made of the
effects of compressibility on the flow through a
Shercliff 90° bend. The section of the bend used in
the study, together with the computational grid
employed, is illustrated in figure 12. The density and
the static pressure were assumed to hold their normal
atmospheric values at the bend entrance. The ratio of
maximum to minimum entrance velocities was set
equal to 1.5 for the entire study, while the minimum
entrance velocity was increased from an initial value
of 50 meters per second through 100, 150, 200, and
250 meters per second to a final value of 275 meters
per second.

While the complete results are given in reference
20, a sampling of the results of the study is shown in
figures 12 and 13. There, for the 275-meter-per-
second case the augmented incompressible flow
solution and the compressible flow solution obtained
by means of the surrogate-equation technique are
shown. The intervening cases, which are not
illustrated here, show a gradual transition from
essentially incompressible behavior to the highly
compressible case of figure 13.

Results for a 30° circular-arc bend with a
minimum entrance velocity of 50 meters per second,
a ratio of maximum to minimum entrance velocities
of 1.0, and atmospheric values of density and
pressure at the upstream domain boundary are
shown in figures 14 and 15. Figure 14 shows the
solution obtained on the basic computational mesh;
figure 15 shows the corresponding solution obtained
on the refined mesh illustrated there. Only the
relatively minor adjustments in the solution to be
expected as a result of such a mesh refinement are in
fact observed. It is, however, interesting to see that in
both computations a slightly anomalous behavior is
apparent in the density field. A more refined
treatment of the wall boundary conditions must be
considered as a strong candidate for the eventual
elimination of this behavior.

During the course of the computations reported
herein, some data regarding the efficiency, accuracy,

and stability of the surrogate-equation algorithm for
the Euler equations have also been collected.

The algorithm requires approximately 0.0026
central arithmetic unit (CAU) seconds per grid point
per iteration when executed using double-precision
arithmetic on the NASA Lewis Univac 1100/40
computer system.

For a simple model problem an experimental
determination of the actual order of accuracy of the
surrogate-equation algorithm was performed. For
fixed flow conditions and a computational domain of
fixed dimensions, computations were performed on
three grids, with successive grids having the grid
point spacings in each direction halved from their
previous values to yield normalized mesh sizes of 1.0,
0.5 and 0.25, respectively. The results of this study
are presented in figure 16, where the error,
representing the difference between the exact and
approximate computed solutions at a typical grid
point, is plotted as a function of the normalized mesh
size. By virtue of the logarithmic scales used in figure
16, the observed order of accuracy for the surrogate-
equation algorithm used in this section can be easily
estimated to be approximately 2.

As of this writing the observations made
concerning the stability of the surrogate-equation
algorithm are rather qualitative in nature. Formal
stability bounds have yet to be determined and our
computational experimentation, although quite
extensive, does not suffice to estimate them. It does
appear, however, that by using the surrogate-
equation technique, we have, as a minimum, left the
realm of unconditionally unstable finite difference
analogs to the steady Euler equations and entered
into the realm of conditionally stable, and apparently
quite robust, ones. The conditional stability seems to
be a consequence of the use of the first-order, steady
Euler differential equations in the formulations of
the finite difference equations used at solid
boundaries. Given the rather perverse behavior of
finite difference analogs to these equations in regions
where they exhibit elliptic nature, it is quite plausible
that their introduction would effect such a stability
reduction. Hence an obvious area for further study is
the more exact determination of, and subsequent
improvement in, the stability properties of our
algorithm.

Conservation Form

For the computations discussed in this section, we
have applied the surrogate-equation technique to a
nonconservation form, equation (11), of the Euler
equations. Since the use of this nonconservation
form presents no serious difficulties for the sort of
computations discussed here, it was adopted because
of its simplicity. Should one, however, wish to
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employ the conservation-form analog to equation we can rewrite them in operator notation as

(14), it can be obtained quite simply as follows. P P
Given the Euler equations, written in conservation =+ +(T)|f=0
form as ox gy

To create the surrogate second-order system, we
Jx+(TH, =0 (15)  employ the operator
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This equation can in turn be expanded and simplified

to the form

2 af.o N
6)5_2—5[T5(Tﬂ f=0

(16)

Equation (16) is in conservation form and can be
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differenced by employing the usual techniques (i.e.,
second-order, accurate central differencing for
purely subcritical flows) to yield fully conservative
(refs. 13 and 34) finite difference equations.

Summation

In this section we have shown that the surrogate-
equation technique can be used to perform
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computational simulations of the steady subsonic or
supersonic flow of a perfect fluid. Solutions to the
Euler equations are obtained without resort to either
the potential or stream function formulations, and
the inherent limitations of these formulations are not
shared by the present approach. Furthermore the
time-asymptotic solution of the unsteady Euler
equations is also avoided, and convergence
acceleration by either relaxation or some other non-
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time-accurate process is possible.

The algorithm presented here is reasonably
efficient but possesses ample possibilities for
improvement. It is approximately second-order
accurate and is conditionally stable, with further
study being necessary to determine precise stability

bounds. Although the results presented here were
based on a nonconservation form of the Euler
equations, the development of an algorithm that uses
a conservation form, as discussed in this section,
presents no essential difficulties.
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Transonic Flow

Applications of the surrogate-equation technique
are bv no means limited to the classes of steady
subsonic and supersonic flows from which the
examples discussed in the previous section were
drawn. In fact, as illustrated here, the technique can
be used to good advantage for the computational
simulation of steady transonic flows. Such flows are
of considerable mathematical interest and have great
technological importance.

As discussed previously the main body of methods
for the computation of steady inviscid transonic flow
that have been developed thus far either utilize the
time-asymptotic solution of the unsteady Euler
equations to obtain a steady solution or iteratively
solve the steady potential or perturbation potential
equation. In the former case computation times are
long; in the latter case the generality of the model
equations is sacrificed in the name of computational
efficiency.

The transonic small-disturbance theory, upon
which the perturbation-potential approach is based,
is derived under the assumptions that body surface
slopes are everywhere small (so that flow quantities
are small perturbations about their free-stream
values) and that the free-stream Mach number is near
unity. In practical situations these assumptions are
not always strictly met, but nonetheless many cases
of engineering interest can be adequately treated.
Where the assumptions of small-disturbance theory
are grossly violated, resort is made to the full
potential formulation.

The assumption of potential flow inherent in both
of these approaches and the resultant restrictions to
irrotational and isentropic conditions can prove quite
troublesome under certain circumstances. Clearly
shear flows cannot be treated, and hence a large class
of technologically important flows lies beyond the

18

reach of these methods.

There is a need for a technique for computa-
tionally simulating transonic flows that is, on the one
hand, computationally efficient and, on the other
hand, not subject to the restrictions of a potential
flow formulation. In this section, we demonstrate the
ability of the surrogate-equation technique to serve
this need.

For simplicity and clarity the surrogate-equation
technique is first applied within the context of
transonic small-disturbance theory, where
comparison can be made with the conventional
perturbation-potential approach. In this manner the
validation of the method for use in transonic flow is
separated from the demonstration of its usefulness in
rotational flow, which was presented in the preceding
section. Its extension to the full steady Euler
equations is discussed later in this section.

Small-Disturbance Approximation

The details of small-disturbance theory have been
thoroughly discussed in the literature (refs. 35 to 39),
and our remarks here are accordingly limited. In
brief, if we assume that the flow of interest can be
represented as a disturbance to a uniform flow, that
in particular the disturbance velocity components are
small with respect to the mean velocity, and that for
transonic flow the Mach number of the undisturbed
flow is close to unity, the exact Euler equations can
be replaced by approximate transonic small-
disturbance equations. These equations, although
quite simple, retain the essential nonlinear, mixed
elliptic-hyperbolic character of the exact equations.
Furthermore weak solutions of the transonic small-
disturbance equations that admit discontinuous
jumps approximating shock waves can be obtained.

Although alternative forms of this equation are
readily available and have in fact been employed
successfully by other investigators, the following
formulation is sufficient for our present purposes:

9
[1—M§0—(7+1)M;u]%+6—;)=0 (17)

Here u and v represent the disturbance velocity
components in the x and y directions, respectively,
normalized by the uniform stream velocity, referred
to as Ug. Also, M is the Mach number of the
undisturbed uniform stream and v is the ratio of
specific heats. Equation (17) can be rewritten in
conservation form as

B v _
§(+5)‘,‘0 (18)



where

65(1 —Mﬁ, - ’YTHMi,zOu

We can supplement this single equation in two
unknowns by the irrotationality condition

v du
ax ay =0 9
which is also a consequence of the small-disturbance
assumption, to obtain a closed set of equations.
Equations (18) and (19) then constitute a system of
first-order, partial differential equations of mixed
elliptic-hyperbolic type. They are elliptic or
hyperbolic according to whether the u component of
the disturbance velocity is smaller than or larger than
the critical disturbance velocity u*, which is defined
as

. — I—Mi
(y+ )M,

Perturbation-Potential Equation

Although a computational procedure could be
devised to calculate an approximate solution to the
system of equations (18) and (19) directly, this is not
normally attempted. This is so because equation (19)
implies the existence of a scalar perturbation velocity
potential ¢ such that ¢,=u and ¢,=v. Hence
equation (18) can be rewritten as

v+1
[(I_Mgo“ TM%o‘Px>¢x]x+‘Pyy=0 (20)

while equation (19) reduces to the identity
Pyx —Pxy =0

Equation (20) is a second-order partial differential
equation of mixed elliptic-hyperbolic type in the
scalar unknown ¢. This appears to be advantageous
on two counts. First, in solving equation (20) for ¢
and thence for # and v we can possibly obtain these
velocity components with less computational effort
than would be required by a direct solution of the
system of equations (18) and (19). Second, since
equation (20) is of second order, the formulation of
stable, conservative finite difference equations for its
discrete representation is greatly facilitated.

Although the transonic small-disturbance
equations have been known for a considerable time,
their essential nonlinearity has impeded progress on
their analytical solution. On the other hand, their
mixed elliptic-hyperbolic nature, together with the
fact that the locations at which type changes occur
cannot generally be prescribed apriori, confounded
attempts at their approximate numerical solution. In
1969 Cole (ref. 35) summarized the status of
transonic small-disturbance theory and set up the
problem of plane mixed flow past an airfoil,
including a discussion of the far field. Subsequently
Murman and Cole (ref. 3) devised a numerical
method for the computation of an approximate
solution to this problem. The details of their basic
method and its subsequent improvements and
generalizations are given in the literature,
particularly in references 3 and 40 through 44. A
brief discussion of those aspects of the method that
are germane to our present purpose follows,

Murman and Cole overcame the difficulties
associated with the mixed elliptic-hyperbolic nature
of the transonic perturbation-potential equation by
introducing the idea of type-dependent differencing.
By automatically adapting the finite difference
equations at each grid point of the computational
domain to suit the local nature of the flow, they were
able to construct an iterative procedure for the
solution of mixed flow problems that ‘‘captures’’ any
shocks that may be present and represents them as
steep gradients and that is computationally stable
and in conservation form.

For the field equations and boundary conditions,
second-order accurate central differencing is used for
derivatives in the y direction and for derivatives in
the x direction in regions where the flow is subsonic.
Backward (or upwind) differencing of either first- or
second-order accuracy is used in the x direction in
regions where the flow is supersonic. At “‘sonic’’ and
‘‘shock’’ points special switching operators that
preserve the conservative nature of the differencing
scheme are employed. Hence domains of dependence
are everywhere respected and intercellular fluxes are
properly conserved. A further consequence of the
conservation form of the partial differential and
finite difference equations is that, should shocks be
present, the proper (isentropic) jump conditions are
attained.

The finite difference equations are written in
implicit form, thereby avoiding the restriction of
vanishingly small mesh width in the x direction upon
approaching sonic velocity, which would be
encountered with an explicit formulation. This
system of algebraic equations is then solved
iteratively by the method of successive line
relaxation. In this fashion the approximate numerical
solution is recomputed along lines transverse to the
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flow direction as the computational domain is
repeatedly traversed in the direction of the flow. In
subsonic regions the solution is overrelaxed to
accelerate convergence.

The boundary condition treatment is such that
Neumann conditions on the perturbation potential
are specified on the surface of an immersed body and
applied, as is consistent with the small-disturbance
approximation, along a coordinate line. At some
finite distance from the body a domain outer
boundary is chosen along which a far-field solution is
used to provide the necessary boundary condition.

As singularities can be present at the leading or
trailing edges of an airfoil about which the flow field
is to be computed, Murman and Cole chose to locate
the boundary points of their computational domain
one half of a cell width from the leading and trailing
edges. Although this might seem to be a rather
simplistic remedy, the nature of the singularities in
question is such that this approach is reasonably
good. Further details concerning the inner boundary
condition specification are given in the original
Murman and Cole article (ref. 3) and in particular in
the work of Krupp (ref. 41).

Second-Order System

Preparatory to our ultimate goal of using the
surrogate-equation technique to devise an iterative
scheme for the Euler equations, we illustrate the
basic process on the simpler, but nevertheless similar,
transonic small-disturbance equations. In this way,
we can develop the method, test it, and compare its
performance with the Murman and Cole approach.

The transonic small-disturbance equations (18)
and (19) can be written in vector form as

F a> 3
<Aa+B@ =0 @1

where
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Since 8 is not a homogeneous function of first degree
in u, equation (21) is not equivalent to a conservation
form of the transonic small-disturbance equations.
However, as becomes apparent in the subsequent
discussion, this is not an impediment to the
formulation of a conservative second-order system.
In any case this lack of homogeneity is not present in
the full Euler equations.

To create a surrogate second-order equation for
equation (21), we operate on it with a differential
operator of the form

3w

ad
5;(54)—'ay

to yield

[2(oaafvmsd)- 2 walonsd)]rmo

(22)

For any nonsingular choice of the matrix N, if M is
chosen such that

M=NAB-! (23)

the characteristic directions of equation (22) are
determined by the expression

92 3?
— —(MA)~INB—
ax2 ay?

which reduces to

2 2
_a_ —(A4 —IB)Z 3_
ax? ay?

Hence, here again, as was the case in the examples
considered previously, the set of characteristic
directions of the surrogate second-order system
contains those of the original first-order system as a
subset, with the added characteristics being the
reflections of the original ones through the x axis. As
mentioned previously this symmetry in the
characteristic directions of the second-order system is
of the same nature as the symmetry inherent in the
successive-line-relaxation solution procedure to be
employed here. Therefore one would expect the
additional characteristic directions associated with
the second-order system to have a minimal effect on



the solution procedure. Furthermore for the choice
of the matrix M indicated in equation (23)

[0 2)- 2 (va )] -0

so that the surrogate second-order system has no
cross-derivative terms. This will serve to simplify its
finite difference representation. The resulting
second-order system can be written as

2 (as)- 2o 2 )] -
[5)2 MA o > NB@ f=0 (24)

This equation is in conservation form and can be
differenced to yield fully conservative finite
difference equations.

We note in passing that, although the use of
equation (23) results in several pleasant
consequences, one may, under different
circumstances, wish to consider other specifications
of the matrix M.

At this point it is instructive to write out the scalar
equations represented by equation (24) and examine
them. It is a straightforward matter to perform the
necessary algebra to obtain

a(a;sa;;) R2u

m\gman) g O 25)
and

6<668v> 0

3 \quan )t 50 O 26)

These equations are quite simple and present obvious
differencing possibilities, as discussed subsequently.
Having formulated the surrogate second-order
system for the transonic small-disturbance equations,
we now proceed with a discussion of the boundary
conditions necessary to completely specify the partial
differential problem being considered for numerical
solution. As we are numerically investigating a two-
dimensional internal transonic flow, the boundary
condition discussion is presented in such a context.
At the upstream and downstream flow boundaries,
which are located far from any disturbance to the
flow field and in regions where the velocity is
uniform, we require that both the # and v
disturbance velocity components vanish. At solid
boundaries we require that the v component of the
disturbance velocity be equal in magnitude to the

local boundary slope. This is the usual solid-wall
boundary condition of transonic small-disturbance
theory. It then remains to specify conditions on the u
disturbance velocity components at the solid
boundaries. These are easily obtained from the
original first-order system. One may, for instance,
require that at one wall u be such that equation (18) is
satisfied and at the opposite wall u be such that
equation (19) is satisfied.

This then completes the specification of all
necessary boundary conditions and furthermore does
so in a manner designed on heuristic grounds, as
discussed previously, to restrict the admissable
solutions to our second-order system to be identical
with those of the original first-order transonic small-
disturbance equations.

Having discussed the formulation of the surrogate
second-order system for the transonic small-
disturbance equations, we now proceed to define the
physical problem that will be used as a vehicle for
testing the efficacy of the surrogate equation
technique for inviscid transonic flow computation.

Problem Specification

Consider an inviscid flow in a two-dimensional
channel with a uniform inlet velocity Uo and inlet
Mach number M ,. The upper surface of a bicircular
arc airfoil is mounted on the lower channel wall. The
channel height is one airfoil chord length, and the
upstream and downstream flow boundaries are
located one chord length upstream of the airfoil
leading edge and one chord length downstream of the
airfoil trailing edge, respectively. The airfoil half-
thickness is equal to 10 percent of its chord length.
Alternatively, this problem can be viewed as
representing the flow past a 20-percent-thick
bicircular-arc airfoil mounted at zero angle of attack
on the centerline of a two-dimensional wind tunnel or
as an unstaggered linear cascade with a gap-to-chord
ratio of 2. The problem is schematically depicted in

v = Wall slope
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Figure 17. - Transonic flow problem,
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figure 17, where the lengths /,