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PREFACE

On September 25, 1979, the Soviet Union launched Cosmos 1129, an unmanned
spacecraft carrying biological and radiation physics experiments from nine
c untries, including fourteen from the United States. The launch marked
t e third time the Soviet Union has flown US experiments aboard one of its
unmanned spacecraft. The first two, Cosmos 782 and 936, were launched
November 1975 and August 1977, respectively.

Cooperation between the US and USSR in the area of Space Biology and Medi-
cine began in 1971 with the signing of the US'JUSSR Science and Applications
Agreement. A Joint Working Group for Space Biology and Medicine was estab-
lished and met periodically to exchange information obtained during space
flights and to discuss problems and topics of mutual scientific interest.
In October of 1974, during the fifth meeting of the Joint Working Group,
the Soviets offered to fly US experiments aboard an unmanned spacecraft
which was scheduled for launch during the winter of 1975. The US accepted
this offer and submitted experiment proposals to the Soviets. A group of
11 experiments was selected and subsequently flown on Cosmos 782 which re-
mained in orbit 19.5 days. Since Cosmos- 782, the US has flown seven exper-
iments on Cosmos 936 and fourteen experiments on the most recent joint US/
USSR venture:, Cosmos 1129.

Cosmos 1129, like the Cosmos 782 and 936 flights, contained experiments 	 i

= which were directed at determining the effects of spaceflight on a variety
of biological	 specimens, including animals, plants, and insects. 	 Although -!
all three of these Cosmos flights were unmanned, many of the experiments

' they contained focused on problems common to both man and animals during
prolonged spaceflight. 	 Rats, for example, were used to -investigate alter- 	 .

^-
ations in normal bone chemistry, muscle structure, and general physiology
resulting from spaceflight, alterations that have been observed in both
astronauts and cosmonauts during and following stays in space. 	 Rats were
also used, together with a variety of other biological and nonbiological
material, to measurecosmic radiation and assess its potential hazard to
man during prolonged spaceflights.

The scientific results of U.S. experiments flown on Cosmos 1129 are pre-
sented in two separate volumes; one entitled, "Final Reports of U.S. Plant
and` Radiation Dosimetry Experiments Flown on the Soviet Satellite, Cosmos
1129," and the other entitled,; "F3nal Reports of U.S. 	 Rat Experiments Flown
on the Soviet: Satellite, Cosmos 11290" 	 As evidenced by the scientific
results presented in these volumes, the Cosmos 1129 mission has made a
substantial contribution to 'Space Biology and Medicine. 	 In addition, a
low-cost systematic approach to the development, testing, and utilization

..h of experimental hardware has been established which will be applied to the
preparation of US biological experiments for flight aboard the Space
Shuttle.	 But perhaps the most important result derived from the Joint
US/USSR Biological Satellite Program has been the level of international

°^1
'

cooperation achieved.	 American and Soviet. scientists and engineers working
together overcame the difficulties of language and logistics to conduct
spaceflight experiments, share the results, and discuss their significance.
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It has been a pleasure to have taken part In this program and, on behalf of
all members of the NASA and the scientific community who participated in
the Cosmos 1129 mission I`would like to extend our sincere thanks to the
Soviet government for making our participation possible and to our Soviet
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Abstract

On September 25, 1979, the Soviet Union launched Cosmos 1129, an unmanned

spacecraft carrying biology and physics experiments from 9 countries

including both the Soviet Union and the U.S.A.	 The launch marked the third

time the Soviet Union has flown U.S. experiments aboard one of its unmanned

spacecraft.	 The first was Cosmos 782 in November 1975 and the second,

Cosmos 936 in August 1977. 	 All three fli ghts have carried a variety of

biological species and remained in 'orbit approximately 19 days. 	 Aboard r<
Cosmos 1129 were: 1) 30 young male Wistar SPF rats used for a wide range of

physiological	 studies, 2) experiments with plants, fungi, insects, and

mammalian tissue cultures; 3) ,radiation physics experiments; 4) a heat

convection study	 5) a rat embryology experiment in which an attempt was

made to breed 2 male and 5 female rats during the flight; and 6) fertile
y

I quail eggs used to determine the effects of spaceflight on avian

c embryogenesis	 After 18.5 days in orbit the spacecraft landed in Central

Asia where a Soviet recovery team began experiment operations, including
R

animal autopsies, within a few hours of landing. 	 Seven animals were 

autopsied at the recovery site and the remainder returned to Moscow for

readaptation studies. 	 Specimens for US experiments were initially prepared
i

at the recovery site or in Moscow and transferred to US laboratories for

complete analyses.	 An overview of the mission focusing on preflight,

on-orbit	 and postflight activities,	 p	 g	 pertinent to the fourteen US

experiments_ aboard Cosmos 1129 is presented.

i
i
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Introduction

A series of Soviet Biological Satellites has been launched at approximately

2-year intervals, beginning with Cosmos 605 in 1973. Participation of the
4

United States began in 1975 with the third mission (Cosmos 782), by

invitation of the USSR. The fifth and most recent mission, Cosmos 1,129,

was launched September 25 and recovered 18.5 days later on October 14, 1979

(Table I) The principal objective of the Cosmos missions i:s to determine

the effects of spaceflight on biological materials, focusing on biomedical

problems observed in both men and animals during spaceflighto Areas of

special interest include muscle atrophy, space sickness, bone mineral loss,

radiation, and plant growth and development. Cosmos 1129 differed from

'previous-missions in providing an opportunity to study the progeny of rats

bred during spaceflight and the development of Japanese quail embryos

during weightlessness*.	
-

Nine countries participated in the Cosmos 1129 mission. In addition to

C	 experiments from the US and USSR, the mission included experiments from
E

i

*Although the term " o;ifIghtl e, ssness" is used here and in other reports of

this 'volume, it should be noted that complete weightlessness '(the absence

of all accelerations) was not achieved. The spacecraft rotated in orbit x

r	 ;`	 and imparted accelerations to experiments located at the edge of the

spacecraft of 1.7 x 10 - 7 to 15 x 10-4 x g. Accelerations to rats were_

actually lower because .rat holding units ,were located near the center of
F	 the spacecraft. These accelerations are generally thought to be below the

threshold of biological sensitivity.

{	 3
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Czechoslovakia, France, l:ungary, Poland, Rumania, Bulgaria, and the German

Democratic Republic.	 Every attempt was made to maximize the scientific

return from the mission and, to this end, investigators from the nine

participating countries examined virtually every organ and piece of tissue

from all the specimens flown. 	 Exemplifying such attempts were the wide

variety of experiments perfonred on the rats.	 Approximately 50 experiment

were conducted with the rats, involving over 190 scie4tists. 	 A short

descriptive title and the sponsoring country fvr these pxperme ►tts is given
f in Table 2.	 Sable 3 lists the participating instit^^*i;,ns from each i

I country.

The involvement in the mission of scientists from countries other than the

t USSR was much the same. 	 In nearly all cases, Soviet Scientists were

trained by the principal investigators to perform preflight and postflight

procedures (e.g.,, drug injections, blood sample collection, tissue removal

y

fii
and preparation), required for various experiments. 	 Following the flight,

o

a team of Soviet scientists and engineers were transported to the satellite

l anding site where a portable field laboratory was set up.	 Experimental
1

procedures at the recovery sites were designed to obtain and process tissue

specimens to a point where they could be frozen or preserved and

subsequently sent to the principal investigators for analysis.
i6

a

In the following secti ons of 'this chapter,, a general' description of the

H Cosmos 1129 mission operations, particularly those pertinent to US

experiments, is presented and will provide _a foundation for understanding

and interpreting the reports of US experiments contained in this volume.

4
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The prey and post-flight activities performed in support of non-US

experiments, and which had no impact on them, will appear in the Soviet

final mission report and were not included here,

THE SPACECRAFT

A modified Vostok spacecraft similar tQ that used for previous biological

satellites, Cosmos 605, 690, 782.1, and 936 as well as the early Soviet,

manned spoceflights_,. was _used for the Cosmos 1 .129 mission. It was a

spherical craft approximately 2.5 meters in diameter with a 900 Kg

payload and a gross weight of approximately 2250 Kg ( Fig. 1). During

flight, the power required by the spacecraft was supplied by batteries.

The atmosphere within the ;..aft was maintained at approximate sea level

conditions. Total pres0re averaged 780 mm throughout the flight, with a

P0
2
 of 135-212 mm mercury and a pCO 2 of up to 7 mm. Relative humidity

within the spacecraft during flight was 56-66 %. Gaseous impurities

generated within the cabin, e.g., ammonia and methane, were kept at low

level s by circulati ng cabin air through cannseers containing absorbent

materials. Ambient temperature within the spacecraft during flight ranged

from 22-250C.

^	 1

Within the spacecraft,p biol ogical9 specimens and experi ments were containedp a
ir

in a variety of hardware.	 Of primary interest, to US investigators were the {

rat holding units ( Fig. 2).	 Rats were held throughout the flight in

individual cages_, each containing its own light, food, water, air

circulating, and waste management systems.	 Each cylindrically shaped cage

was approximately 200 mm deep and 100 mm in diameter.	 Light was regulated

t 5
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to a 12/12 hour light;/dark cycle with a Z•lux intensity within each cage.

Ten-gram quantities of a special paste diet were provided to the animals

four times/ds,^y at 6-hour intervals throughout the flight, This same diet

was provided to both flight and ground control animals. All animals were

placed on this diet approximately 10 days before launch and I-ept on the

diet throughout the flight and 29-day recovery phases of the mission.

Water was provided ad libitum at all times. Cabin air was drawn into each

cage at the rear and was dispersed from the cage ceiling through a series

Y	 of holes in a plastic cage liner. The air flow passed downward over the

i	 animal, forcing animal wastes and debris into a waste collection trap which

rotated to present a clean trap to the animal at 2-day intervals. Air

passing through the waste trap was then circulated through activated

charcoal filters and returned to the cabin. Surrounding the plastic cage

t:	 liner was a wire coil through which an electric current was passed and

changes in current were monitored as the animal moved through the cage and

the data used to determine gross motor activity during flight.

r
In addition to the 30 cages described above, the spacecraft conta ined a

rodent mating chamber which housed 5 female and 2 male rats (Fig. 3)o The

chamber was partitioned into two sections which segregated the males from

the females until day two of flight whereupon two doors in the partition 	 s

were opened, ?emitting males and females to mingle. The dimensions of the

t	 mal e chamber were 17.0 cm x 20.0 cm x 16.0cm.j Ondl of the female chambers

48.0 cm x 20.0 cm x 16.0 cm. Within the chamber the animals had access to

8 feeding stations, each of which presented approximately 10 gram aliquots

of the standard paste diet at 6 hour intervals throughout the flight. The

light/dark regimen was the same as that used for the standard rat cages,

12/12 hours.
!	 6
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Pa load

The Cosmos 1129 payload consisted of

o Rats

Thirty male Wistar specific pathogen free (SPF) rats were obtained from

CC	 the institute of -Experimental Endocr I inology of the Slovakian Academy of
ff
f	 Sciences, Bratislava, Czechoslovakia. These animals were used for a

F	 wide variety of physiological studies. The rats were approximately 85

days old and weighed,-an average of 300 gms at the start of the

► 	 experiments.

r

These th irty mal e rats were divided i nto fi ve groups:

i	 Group 1 - 7 rats

Group 2 - 6 rats
Group 3 - 7 rats

Group 4 5 rats
Group 5 - 5 rats

Following spacecraft recovery, animals in Group 1 were sacrificed 7=11 t

hours after the spacecraft landed; Group 2 and 3 animals were sacrificed

six days postflight; Group 4 animals were sacrificed 29 days postflight; 	 f

and Group 5 animals were sacrificed 32 to 37 hours postflight.
F

x	 ;

t
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In addition, there were 5 female Wistar SPF rats and 2 males which

constituted the rodent embryology experiment. Both males and females 	 {

were proven breeders and their approximate weights at launch were 340

gms and 260 gms, respectively.

o Plants and Fungi

Carrots (Daucus cardta) were used as a substrate for the growth of Crown

Gall -tum+ors and as a source of totipotent single cel1s and small

plantle,:s. Tumor growth was used to assess the effects of spaceflight

on the rate of cellular metabolism. The carrot cell culture was used to

determine if spaceflight affected plant, growth and de,^ lopment.

In adi.Lition to carrots, small sprouts (Arabidopsis thaliana) and corn

seedlings (Zea mays) were flown to investigate the growth and

development of these species. A multinucleated fungus, (Ph sarum

of ce hill Um) was flown to determine if fungal migration over the solid

7

r

9

a

surface of the growth medium was affected by weightlessness.

o Insect

A grav ity-gradient experiment with the fruit fly, Drosophila 	 r
u

F melanogaster was designed by Soviet scientists to determine if a gravity

preference could be detected in this species. Drosophila eggswere

placed in a feeding dish at the hub of a centrifuge (Fig. 4)

r	 Connecting the hub to the perimeter of the centrifuge were four tubes

inside of which were "three food dishes placed along the tube so that
y

8
m	 I	 ,,r



when the centrifuge rotated at 53 rpm the gravity levels at the three

dishes were 0.39, 0.69 and 1.00. Flies hatched on the first day of

flight were free to move along the tubes and select the feeding site of

preference. Post flight the quantity of eggs and pupal cases found in

each feeding dish showed that there was no gravity preference.

f	 o Japanese Quail

9

i	 Fertilized eggs of the Japanese Quail (Coturnix coturnix) were flown to
r

determine the effects of spaceflight on avian embryological development.

E

o Mammalian Cell Cultures

a

Cultures of Chinese hamster and mouse cells were used to determine if

weightlessness and/or radiation experienced during spaceflight affect`

their metabolism and reproduction

o Radiation Physics Experiments

Y	 i

Radiation physics experiments consisted of dosimetry using biological

i
and nonbiological materials to measure the radiation environment inside

i	 and outside the spacecraft, and radiation shielding studies to evaluate 	 R

electrostatic and dielectric techniques for reducing the-level of cosmic

radiation within the spacecraft.

o Heat Exchange Experiment

An experiment was designed and flown to study the process of heat

exchange between a heated surface and the spacecraft cabin air during

x	 spaceflight.	 9

F'
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MISSION OPERATIONS

In support,of the investigat°ions aboard the spacecraft, two different types

of ground controls were performed: the Synchronous Control and the Vivarium

Control,	 The. Synchronous Control attempted to provide an environment as

similar as possible to that experienced by the biological specimens during

spaceflight.	 A spacecraft mockup was loaded with all of the-experiments,

+ and specimens were housed p	 in the same type of hardware as that used for

r
flight (Figure 5).	 Food, water, lighting, temperature, humidity, and

airflow were similar for both flight and control groups.

Five days after launch, the -Synchronous Control was initiated (September

30,	 1979).	 Animals were subjected to launch stresses similar to those i

experienced during the actual launch.	 The noise level was raised to 11.0 db

and a vibration frequency of 50-70 Hz at an amplitude of 0.4 mm was applied

to animal holding units for 10 minutes.	 Immediately following noise and

vibration stresses, animals were subjected to acceleration for a period of b
r

10 minutes with a plateau of 4 x g for 7 minutes.

After completion of the Synchronous control on October 19, 1979, reentry

stresses were applied to the animals.	 Those in Groups 4 and . 5 were first,

accelerated far 5 minutes to a. plateau of 6 x g for. 3 minutes- on a

centrifu9e, and subsequently subjected to an impact shock with a magnitude

f
of 50 x g'and a duration of 10 msec	 Animals in the embryology experiment

z

and in Groups 1, 2, and 3 received only the 50xg impact shock. 	 Following
^

the application of reentry stresses, the animals as, well as all other

biological specimens, were handled exactly as the flight specimens.

10
t;
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The purpose of the Vivarium control was to provide a group of minimally

stressed animals for comparison with the Flight and Synchronous Control

	

E	 groups. Groups 1,,2, 3 and 5 animals were housed individually in polyvinyl

cages (18 x 18 x 12.5 cm) and maintained in that arrangement throughout the

flight and postflight periods. Group 4 animal s -were housed 2-3 per

standard vivarium cage (55 x 19.5 x 33 cm) during the flight and postflight

phases except on days 3, 8 and 13 postflight when the animals were housed

for 36 hours in special metabolic cages 18 x 18 .x. 12.5 cm. A paste diet

identical to that provided to the Flight and Synchronous Control animals
k

was provided to the animals once per day in 40 gm/animal quantities during

the preflight and on-orbit phases of the mission; 45 gm/animal was provided

I

once per day during the readaptation period. 	 t

In order to simplify information transfer among the many scientists

r	 conducting experiments with rats, a common identification code for the rats

was established. The code, which is used extensively in the scientific

reports which follow, consists of three characters, "A 8 C", where A is the

group number (1-5), B is the test condition (F-flight, S-Synchronous
x

Control-, V-Vivarium Control, and..FB or SB--a special preflight basal

control group for bone experiments), and C is the rat number.

	

j,	 Thus, the rat designated "14-1" was a member of Group `1 which flew in

space and was designated rat number 1.
}

Prelaunch Activities

	x,	 Wistar SPF male rats which comprised the reservoir of experimental animals,

were shipped from the Institute of Endocrinology, Slovakian, Academy of

	

z^	 ^
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Sciences, Bratislava, Czechoslavakifk to Moscow during August 1979. 	 In

Moscow the animals were placed in a vivarium at the Institute of Biomedical

Problems with approximately a rats per cage, held at an ambient temperature

of 22 ± 2 0C,_ a relative humidity of 80 + 5% and a 12-hour light day.

During the preflight period, flight and Control specimens were prepared

similarly, e.g., injections, surgery, etc. 	 For example, five Group 4

Ef flight rats and a similar number of animals in the Synchronous control had

r
body temperature transmitters surgically implanted within their peritoneal

i

i
cavities approximately 1 month before launch. 	 Table 4 lists some of those

preflight activities of general interest and those relevant to one or more

US experiments.

While in the vivarium, the general health of each animal was monitored

through daily examinations.	 Selection of the animals for the experiments

consisted of an initial stage when clinically healthy animals were
s

segregated for preparation for specific experiments.	 Final selection of

animals was carried out during the last few days before launch, after

completion of all	 required injections and surgery.

Approximately 2 weeks before the start of the Flight and Control t

experiments, all animals were switched from a pellet/seed diet fed ad-

libitum to the same paste diet which was used during the flight., Forty

grams of the paste diet were provided once a day for each animal and water

` was provided ad libitum. 	 The composition of this diet is giver, in Table 5.

ar 12



On-Orbit Activities

On September 25,,1979, at 6:30 p.m; (Moscow time), Cosmos 1129 was launched

into an elliptical orbit with , a perigee of226 km, an apogee of 406 km an

orbital inclination of 62.8 0 , and a period of 90.5 minutes. In parallel

with the launch, the Vivarium Control commenced at the Institute of

Biomedical Problems in Moscow. Five days l ater, on September 30, the

Synchronous Control was initiated.

During the 18.5 day flight, animals were fed and cared for as previously

^	 described. Total gross body movement of the Flight and Synchronous .Control 	
f

animals was monitored for 2'hour blocks of time on odd-numbered days

throughout the flight phase of the mission. Body temperature was obtained'

v
from the Group 4'animals by bio-telemetry on even-numbered flight. days. On

	

p	
i

the second day of the flight, the divider separating male and female rats

in the rat embryology experiment was opened and remained opened throughout 	 j

the remainder of the mission. On the seventh day of flight the temperature
}x,

r	 of the quail eggincubator was elevated from the spacecraft ambient of

22-2500 to approximately 37'aC. Simultaneously, the relative humidity in

the incubator was raised to about 80%. Unfortunately, the humidity control

system failed in the flight incubator on day thirteen of flight resulting

in a serious drop in the humidity which detrimentally affected the

developing embryos.	 3

On flight day '10, the light/dark cycle was reversed in the cages of the

G Group 4 animals. The reversal was accomplished by subjecting the animals

to 24 hours of darkness. This shift in the light/dark cycle was performed

13	
F
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as part of a study to deternnine if spaceflight affected the biorhythm of

these animals and their ability to adapt to an altered day / night cycle.

After the flight., these animals were maintained at the inverted light

regime.

Postflight Activities

On October 14, 1979, at 7:59 a.m. ((Moscow time), Cosmos 1129 touched down

near the central Asian city of kustanay. Within several hours a recovery

team consisting of Soviet scientists and engineers arrived at the scene and

began assembling a field laboratory (Figs. 6 and 7). The general condition

of animals postflight was good. They gained an average of 47 gms-during

the flight as ,compared to 54 and 59 gms for Synchronous and Vivarium

control animals, respectively.
_	 _	 y

y

Only the 7 Group 1 rats were autopsied at the recovery site.- Autopsies

began at 1:50_ .m. and each autopsy took approximat ely 30 minutes. All
l

9	 p	 y	 _ p	 _.yp	 p

scientific studies were completed in less than 18 hours whereupon the

r	 recovery team,- specimens,, and equipment departed the recovery site and

arrived 
in 

Moscow in the afternoon of October 15.

,t

During the return trip to Moscow, animals were kept individually in cages

measuriog 17.0 an x 17.0 cm x 12.5 an. The trip lasted approximately 10

hours, and during the trip the animalswere provided with 45 gms/animal of

the flight diet and water ad libitum. After arriving in Moscow, the Group

2 and 3 animals were transferred to individual metabolic. cages 18 cm x 18 .y
cm x 12.5 cm and housed in the Vivarium at the Institute of Biomedical

14
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s	 Problems. These animals continued to rece-ive the flight paste food four

times daily but with the total daily quantity increased from 40 to 45 gms.

The 5 animals in Group 4 were fed one 45 gm portion per day and were housed

2-3 per cage in the standard vivarium cages (55 cm x 19,5 cm x 33 cm).

However, these 5 Group ,4 animals were transferred to individual metabolic

cages (18 an x-18 an x 12._5 cm) on the evenings of postflight days 3, 8

and 13 and held in these cages for 36 hours in order to conduct a variety

of metabolic studies. During this period, they were given the flight paste

diet in four portions at 6 hour intervals as they had been during the

flight. The corresponding control animals were treated similarly.

During hours 7-10 following landing and on days 3, 4, 5, and 6 of the

readaptation period, Group 3 animals were subjected'to a special stress

test designed by Soviet and Czechoslovakian scientists. The animals were 	 rt

fixed in a prone position to a board for 2.5 hours and blood specimens'

taken before and after this stt , ss. Following the stress on day 6, the

animals were sacrificed. The purpose of this stress regime was to 	 #

determine if animals in the flight group exhibited immediately postflight

and during the 6 day rea daptation period, blood chemistries indicative of

acutely or chronically stressed animals; that is, does the biochemistry of

the animals reflect the chronic stress of spaceflight or the more acute

za
stress of reentry.

On October 19, the "flight" phase of the Synchronous control was completed	 r
nmA +1%n emmn wnnnunnv *nnm hhn+ nnnnneenn +hn 'flinh+ cnenimnne nlen



procedures employed at the recovery site were again followed. Groups 2, 30

4, and 5 animals were transferred to the Vivarium and treated like the

flight animals throughout the readaptation period.

Following the autopsy of the rats and the unique operations required by the

many investigators sharing the animals, the specimens were packed for

shipment to the appropriate U.S. laboratories according to procedures

worked out in advance between Soviet and US mission managers: specimens

were packed in dry ice, immersed in a preservative, or brought back alive

at 40C. Specially designed shipping containers were developed to maintain

the temperature requirements and integrity of the specimens during transit.

On October 29, US specimens and scientists arrived in San Francisco and

specimens were transferred to the laboratories of US_ investigators•

 1Two weeks after the arrival of the specimens in the US, a_second group of

US scientists was sent to Moscow to attend the autopsies and experimental

operations on the animals (Group 4) allowed to readapt to terrestrial

gravity.; The same autopsy procedures and team members were utili,tzed for

both recovery and readaptati.on studies. Autopsie$ of the flight,

Synchronous Control and Vivarium Control Group 4 animals occurred on

November 12, 17, and 12, respectively. Samples were again escorted by US

scientists .back to the US and arrived in San Francisco on November 20,

1979. Temperature recorders contained in all shipping containers indicated

that the temperature in all but one container remained'wi '	 thin

specifications throughout both recovery trips. The exception occurred in a

container of preserved Group 4 specimens of some bone and nasal mucosae.

In this case a small quantity of dry ice was added to the shipping
f

16
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container by overzealous cargo handlers in Tokyo. This resulted in the
a

temperature dropping below the specified Q o for a few hours during the
t;

Tokyo to San Francisco flight. Fortunately, damage to the specimens was

minimal. A summary of the above postflight operations is given in Table 6.

r^

With the'return of the experimental samples and materials on November-20,

the mission operations phase was brought to an end. For the many

investigators involved in the US experiments aboard Cosmos 1129 9 their work
1

was just beginning, the results of which are contained in the reports which

follow.	
L
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TITLE PALCOUNTRY/PRINCITRVE3'1`'^°'
I.	 EXPERIMENTS WITH RATS

;,L,	 TABLE 2

DESCRIPTIVE TITLESo SPONSORING COUNTRIES, AND PRINCIPAL INVESTIGATORS

FOR THE EXPERIMENTS OF COSMOS 1129

1. Whole Body Composition USSR/A. Ushakov
f

USA/G. Pitts

w 2. Studies of the Central Nervous System Czechoslovakia/S. Baransky
USSR/R• T°Igranyan

s 3 Endocrine Studies Czechoslovakia/R',.
. Kvetnansky

USSR/R. Tigranyan

k ^°
Bulgaria/*

P.
4. Studies of the Cardiovascular System Czechoslovakia/S. Baransky

USSR/R. Tigranyan

5. Studies of the Musculo-Skeletal System USSR/V. Oganov

r
i

S. Oganesyanf
V. Nesterov
E. Koval enko
G. Stupakov
A. Prokhonchukov
R. Tigranyan

USA/ E. Morey-Holton
L. Kazarian
D. Simmons

r C. Cann
Hung ary/T. Szi l agyi

6. Blood and Bone Marrow Studies- Czechoslovakia/ N. Ahlers
E. Mishurova
N. Chernaya
I. Al ers
A. Bacek

USSR!R. Tigranyan4
L. S- rova

j V. Korol'kov
Bulgaria/*

*Principal Investigator not known

x
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TABLE 2 (Continued) 4

7. Studies of Lymphoid Organs Czechoslovak-la/ I. Alers
E. Mishurova 1

USSR/ I. Egorov
L. Serov a

8. Studies of Connective Ti ssue USSR/L. Serova
F Bulgaria/*

9. Studies of the Hepatic System USA/ S. Abraham
USSR/R. Ti granyan

1. Egoro v
Czechosl ovaki a/l. Alers

10. Excretory System Studies USSR/M. Natochin
k, A. Pankova

11. Adipose Tissue Studies Czechoslovakia/I.; Alers
 j

USSR/R. Tigranyan

12. Studies of the Gastrointestinal Tract USSR/K. Smirnov
Rumania/P. Groza-

1'3. Studies of Sensory Organs and Mucosae USSR/F. Sushkov`
USA/ L. Kraft

14. Embryological Studies USSRA. Serova \
N. Chel' nays
V. Yagodovsky

V. Oganov

Yu. Natochi n
Z. Apanasenko

15. Embryolog ical Studies USA/ J. Keefe
S. Abraham
E.	 Sabelman

Bul garia/A• Vygl enov
Poland/V. Stodol ni k-
Baranskaya

S. Kozlovsky-
K. Ostrovsky

^^ r

1I.	 EXPERIMENTS WITH PLANTS r

1. Studies of Carrot Crown, Gall Tumor USA/ R. Baker
s Growth USSR/M. Gusev

2. Studies of Carrot Tissue Culture USA/ A. Krikori ar

? Mor,pho jenes i s

:

*Principal Investigator not known
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TABLE 2 (Continued)

3.	 Studies of Higher Plant Morphogenesis USSR/M. Tairbekov

4.	 Studies of Fungal Sue-face Migration O$SR/M. Tairbek9y

111. EXPERIMENTS WITH INSECTS

1.	 Drosophila melanogaster Gravity USSR/*
—Fr—e7eirFence

r IV. EXPERIMENTS WITH BIRDS

1.	 Study of Embryog,enesis in the USSR/Y. Shepeley

Japanese Quail USA /J. Keefe

V. EXPERIMENTS WITH MAMMALIAN CELL CULTURES

I.	 Cytological Studies of Mawalian Cell USSR/*

Cultures

VI. RADIOBIOLOGICAL RESEARCH

1.	 Bioblock Studies USSR/E. Kovalev
France/Planel

2.	 Radiatioti Dosimetry USSR/E. Kovalev
USA/ E. Benton

*Principal Investigator not know
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TABLE 3

LIST OF SCIENTIFIC INSTITUTIONS PARTICIPATING IN THE

EXPERIMENTS OF COSMOS 1129

INSTITUTION COUNTRY

NASA-Ames Research Center USA
Colorado State University USA
University ^f Delaware USA
State University of New York, Stony Brook USAr
University of California, San Francisco USA
Veterans Administration Hospital-, American Lake USA

i°	 University of Utah	 ___ USA
Baylor University Medical Center USA

`	 University of the Pacific Dental School USA
Columbia University USA
Wright-Patterson Air Force Base USA
University of Southern CaliforniaMedical Center USA
Jet Propulsion Laboratory USA n

University of San Francisco USA r
Washington University School of Medicine USA
Yale University USA

►;	 Children's Hospital 	 Medical Center, Oakland USA
`	 Biospace Incorporated, Ohio USA t

University of Virginia USA
University of California, Berkeley USA x
University of California, Davis USA
Institute of Medical and Biological Problems 	 USSR9	 , USSR
Ministry of Health

i	 Institute of Evolutionary Physiology and Biochemistry, USSR
a	 USSR Academy of Sciences
r	 Bach Institute of Biochemistry, USSR Academy of Sciences USSR

Pavlov Institute of Physiology, USSR Academy of Sciences USSR
Central Dental Research Institute, USSR Ministry of Health USSR
Priorov Central	 Institute of Traumatology and Orthopedics USSR
Research, USSR Ministry of Health

-	 Central	 Institute of Gastroenterology Research, :Moscow USSR f
Municipal Executive Committee of the Council of Workers'
Deputies
Institute of Medical Radiology, USSR Academy of Medical USSR z
Sciences 
Institute of Nutrition, USSR Academy of Medical Sciences USSR
Sklifasovsky Central First Aid Institute, RSFSR Ministry USSR
of Health z
Institute of ;Cardiology, Armenian-SSR Ministry of Health USSRl
Bratislava Institute of Experimental Endocrinology, Czechoslovakia

.	 Slovakian Academy of Sciences
Shafarik State University, Kosice Czechoslovakia

k

Military Institute of Aviation Medicine, Warsaw Poland

k	 22
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TABLE 3 (Continued)

s

 H
ar
j INSTITUTION COUNTRYA.^^^'

'

e

Bucharest Institute of Physiology Romania

Institute of Roentgenology and Radiobiology, Sofia Bulgaria

Medical Academy
Institute of PhysiologyO Debrecen Medical College Hungary

Institute of Pathophysiology, Debrecen Medical College Hungary
Szeged Institute of Biochemistry Hungary
Humboldt University GDR

s ;:
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TABLE 4

PRELAUNCH EXPERIMENT ACTIVITIES

DATE (1979)
	

ACTIVITY

r
"i July 3-5 Date of birth of experimental .animals

i

r
August15 (approx.) Temperature transmitters implanted intraperitone.ally

into Group 4 Flight and Synchronous Control animals

September 2 Cartpt tumor preparations loaded into flight
nardware at Colorado State University

September 3 Carrot tissue preparation loaded into flight
hardware at State University of New York, Stony
Brook !

September 10 Approximate start of cage training:: animals complete
30 hours of training before launch

September 14 Animals transferred from standard vivarium diet to
` 40 gms/animal/day of flight diet given once each day r

September 15 U.S. plant experinients and radiation dosimeters
shipped to Moscow

September 2.2 The bone label, Declomycin, was injected
intraperitoneally into all Flight, Synchronous

f

Control and Vivarium Control animals -

September 22 Flight animal and other experimental material loaded
into spacecraft

Septemberp 25 Launch. 6:3Q p.m. Moscow time, North Cosmodrame,
Plesetsk, USSR

September 25 Start of the Vivarium Control

September 30 Start of the Synchronous Control
r

M

a:f
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TABLE ,6

r
POSTFLIGHT CHRONOLOGY OF MAJOR EVENTS !`

DATE (1979), EVENT

'Fk Oct. 14 7:59 a. m.(	 ,.Moscow time) Spacecraft landed near Kustanay
i n Central Asia

Autopsies of Flight Group 1 animals commence (1;50 p.m., P

i Moscow timed

Oct. 15 Specimens arrive at the Institute of 'Biomedical Problems,
Moscow

I Autopsies of Group 5 Fl ight animals

Oct. 17 Autopsies of Vivarium Control Group 1 animals

Autopsies of Vivarium Control Group 5 animals

Oct. 19 Termination of "Flight" phase of Synchronous Control

Autopsies of Synchronous Control Group 1 animals
r

Oct. 20 Autopsies of Synchronous Control Group 5 animals

Autopsies of flight Group 2 and 3 animals

r
Oct. 22 Autopsies of Vivarium Control Group 2 and 3`animals

.;

Oct. 25 Autopsies of Synchronous Control Group 2 and 3 animals

Oct. 29 Experimental Material Arrives in USA

Nov. 12 Autopsies of Flight Group 4 animals

Autopsies of Vivarium Control Group 4 animals

' Nov. 17 Autopsies of Synchronous Control Group 4 animals_

Nov. 20 Experimental material arrives in USA
`I

3

26
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Experiment X304

STUDIES Or 'SPECIFIC HEPATIC ENZYMES A ND LIVER CONSTITUENTS

INVOLVED IN THE CONVERSION OF CARBOHYDRATES TO LIPIDS IN RATS
I	

EXPOSED TO PROLONGED SPACE FLIQHT

Principal Investigators:	 E

`	 r S. Abrabamil and H. P. Klein+

C

x

I	 Collaborating Investigators;

C Y. Lin* C. Volkmann*
R. A. Tigranyan and E. G. Vetrovat 	

r

Bruce Lyon Memorial Research Laboratory, Children' s Hospital
Medical, Center of Northern California, 51st and Grove Streets,	

e jOakland ., California 54609.

National Aeronautics and Space Administration, Ames.Research
Centers Moffett Field, California 94035.

Institute of Medical and Biological. Problems, Moscow, U.S.S.R.
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SUMMARY

We have investigated the effects of space flight on the activities

is of 26 enzymes concerned with carbohydrate and lipid metabolism in hepa-

tic tissue: taken from male. Wistar rats flown in Earth orbit for 18.5

days aboard the Cosmos 1129 biosatellite. 	 These activities Wore mea-

cured in the various hepatic cell compartments, i.e., cytosol, mitochon-

dria and microsomes. 	 In addition, the levels of glycogen, total lipids,

phosphplipids, triglycerdes, cholesterol, cholesterol esters, and the
t

i fatty acid composition of the rat livers were also examined and quanti-

ffed	 A similar group of ground-based rats (synchronous controls) treat-

ed in an identicalmanner served as controls. 	 Both flight and synchro-

nous control rats were sacrificed at three time intervals: RO, 7- 11 hours

after recovery; R+6, after 6 days'; 
R+6(S)' 

after 6 days (having undergone

2-5 hour periods of fixed stress in a "backupward" position on days 0	 3,
1

4 0 5 and 6) and R+29 , after 29 days post-flight.

Although most of the enzyme activities and the amounts of liver con-

` stituents studied were unaffected by the period of "weightlessness", some

a^
significant differences were observed. 	 Generally, all of our new findings ,i

ik

fs agree well with ' our previous observations in the livers of rats kept in

the weightless condition aboard Cosmos 936 flown during August 1977.	 A

`

statistically greater amount of liver glycogen was observed in flight rats
f

s than in synchronous control rats sacrificed at R O .	 In addition, in con-
e

firmation of our results aboard Cosmos 936, a significant difference was

again found in the ability of flight animals to complex long-chain .fatty

acids.	 Thus, both the microsomal diglyceride acyltransferase and microso-

' 4
36
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'

i

1

f mal cholinephosphotransferase of the flight rats showed reduced activities

^
when compared with synchronous controls at ltp

' x The activity of one hepatic enzyme concerned with gluconeogenesis,
A

1. glutamate-pyruvate transaminase found in the cytosol 	 was increased in the

t livers of rats in the weightless group sacrificed at 	 Q .	 On the other hand,

' the activities of two mitochondria) enzymes which function in the terminal

oxidative sequence (Krebs Cycle), isocitrate dehydrogenase and aconitase,

i
were significantly depressed as a result of the weightless condition at

it this same time after flight.

Stressing the flight rats for 6 days after space flight produced

V, changes in some of the parameters we measured. 	 Increases in the amounts of
"

total lipids and of phospholipids as well as an elevation in the activity

Fi of glutamate-pyruvate transaminase were noted. 	 On the other'handa stress

was responsible for lowering the activities of the following: 	 a)	 soluble

enzymes:	 (cytosolic) gl,ucokinase, hexokinase, and fatty acid synthetase,

and b) microsomal, enzymes diglyceride acyltransferase, cholinephospho-

transferase, and both the palmitoyl-CoA and the stearoyl-•CoA desaturases.

	

#	 As a result of our experiments aboard Cosmos 936 and Cosmos 1129 we

"

	

	 have concluded that a) weightlessness can indeed affect metabolic path-

ways concerned with lipid and carbohydrate metabolism by influencing the

activities of specific enzymes, ^ b) these metabolic changes are in some
z

cases independent of stresses other than weightlessness which are involved 	 f

in space: flight, and c) flight rats react more dramatically to imposed
14 i

stress than their synchronous controls.
K t

o,37i
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INTRODUCTION	 j

Examination of liver, blood, muscle an4 skeletal tissues from rats {

aboard earlier Cosmos flights, indicated cbAnges in the lipid and the car-

bohydrate levels of these tissues in response to space flight (1-5).

After the Cosmos 936 space mission, we observed (6,7) specific alterations

in hepatic enzyme activities (di,glyceride acyltransferase, palmitoyl-CoA

desaturase and glycogen phosphorylase) as well as chenges in liver glycogen
I:
CC	 and the levels of specific fatty acids in the livers of flight rats but not
!N

I	 in comparable animals subjected to continuous 1 x g centrifugation during

the flight.	 These metabolic alterations, both in enzyme levels and in he-

patic constituents, appeared to be unique to the weightless condition.	 In

addition, our previous data seem to justify the conolusion that centrifu-
I

_

!l
'.	 gation during flight is equivalent to terrestrial gravity (6,7).

It

The present study (Cosmos 1129) °was designed to reinvestigate some of

936)	 of inquiryour earlier observations ( Cosmos	 and to extend the range

i	 to ;include additional hepatic microsomal and mitochondria) enzymes, as well

r	 as other liver constituents (total lipids, triglycerides, phospholipids and ff

I

sterols) not included in our original. Cosmos 936 protocol.

MATERIALS AND METHODS

Our experiment aboard the Cosmos 1129 biosatellite called for the use

eof 25 male Wistar -rats caged individually within the spacecraft.	 Seven rats
i

i

were sacrificed at 7-11 hours after recovery (R0).0 and 5 rats after 29 days

(Rt29 ).	 Of the remaining flight rats, " 7 were stressed by immobilization in

a "bac} upward" position for 2-5 hour periods on days 0, 3 0 4, 5 and 6 after

. recover	 and were sacrificed ( R	 )	 after the final stress on day'6.recovery,	 t6(S) ^

t	 The other 6-rats served as unstressed flight controls, and were also sacri-
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fice9d on day 6 (Rt6 ) Synchronous control rats, housed and fed in the

same manner as the flight animals were included in the experimental de-

sign. Analogous to thin scheme a similar ,;timber of vivarium control rats

housed 3-4 per cage in standard lab 4atopy cages and fed the same diet,

but with a different schedule than flight and synchronous control rats,

were also sacrificed and their livers processed. Table 1 lists the con-

ditions of our experiment and gives the number of rats in each group

The specific detaii.s for the flight conditions (duration 18.5 days) are

given elsewhere io this volume.

Sacrifice of the animals, preparation of the liver homogenates, and

separation of the homogenate into supernatant and mitochondria were done

in the Soviet Union.. These procedures followed the genera, plan as given

below.

Tissue and Homogenate Preparation. All rats were sacrificed by decapita-

tion and their livers removed as quickly as possible and immediately

placed in ice-cold 0.25 M sucrose solution. Two small pieces of liver 	 a

(about 200 mg each) were taken for glycogen, total lipid, and fatty acid

analysis. These were wrapped in aluminum foil and frozen in dry ice.
I a

Four-gram portions of each liver were minced and individually homo-

genized in a Potter-Elvehjem-type tissue grinder with exactly 12.10 ml of

fresh ice-cold 0.25 M sucrose solution as given previously (8). All sub-

sequent procedures were carried out at 0-40C. Nuclei and cell debris were	 i

sedi.mented at 800 x g for 10 minutes (8,000 g. min, 2,400 rpm) in a refs-i-

Berated centrifuge (Beckman). The mixed pellEted fractions were discarded

?	 and the supernatant fractions (obtained with the aid of a disposable pipet

from 'under the free floating fat) retained. These supernatant fractions
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'	 were again subjected to centrifugation at 4,500 x g for 30 min (135,000 g.

min, 6,700 rpm) to separate the cytosol plus microsome fraction (superna-

tant) from the mitochondria (pellet). The cyto gol. ,plus microsome frac-

tions were frozen immediately 'to -8000. The pelleft containing the crude

mitochondria were washed 'try resuspension in fresh 0.25 M sucrose solution

r.
and sedimented by centrifugation at 4,500 x g for 30 minutes (135,000 g•

min, 5,700 rpm). The supernatant solution was discarded, and the washed

mitochondria were frozen for shipment to the United States at 80eC

(These procedures are depicted in Figure 1)

Extensive preliminary experiments with rats of the same strain coming
i

from the same source (Institute of Experimental Endocrinology, Slovakian a

Academy of 'Seale-lees) and fed the identical diet [Soviet paste suet (6)]
1

demonstrated that all of the activity of each enzyme assayed was stable

under the conditiot'is of storage used (i.e., at -80 0C) (6).	 In addition,
i

all enzyme activities were retained in the appropriate cellular location, x
li

even after freezing of the post-mitochondria) supernatant fractions for
i

as long as two months...	 Thus, the data contained in the pertinent Tables

k
represent the specific activity 'values for enzymatic; activities in the

^

H

livers of the rats at the time of sacrifice. f

'	 When the liver homogenate samples, which arrived frozen from the So-

viet Union, were gently thawed in our laboratories, in preparation for

the isolation of the cytosol and microsomal fractions, most of the frac-

tions appeared to have large amounts of 	 material which sedi-;,particulate

mented on standing.	 We have recorded our impressions for each fraction

and these appear in column, 4 of Tables III A-D under the heading condi-

tion of homogenate.	 Thus, we found it necessary to clarify all homoge•-
a
k

40



nate fractions by an additional centrifugal-spin at 8,000 x g for 1 p mi-

nutes (80,000 g. min, Spinco Ultracentrifuge). The resulting pellets

were stored at -8000. for further biochemical antilysise The supernatant

fractions thus cleared of the large particulates, were centrifuged in a

Spinco U,ltra gentrifuge at 100,000 x g for 60 minutes at 4-4°C. The cy-

tosol. (particle-free supernatant fraction) and the microsmes (pellet)

were separated. The cytosol fractions from each rat liver were divided

into several small aliquots which were placed into individual plastic	
E^

test tubes, quick frozen, and stored at -80 00 until used for enzymatic

analysis. Once thawed, the sample was immediately used for the assay

of its enzymatic activity and was not repeatedly frozen and thawed.

The microsomal and mitochondrial fractions were treated in a similar

manner.

The washed mitochondria fractions were kept frozen at -806C until

used for analysis of enzyme activity. 	 When needed, mitochondria contain-

ing about 50 mg protein were suspended in 7.5 ml of 10 mM Tris-phosphate

t buffer, pH 7,5, by means of a Teflon pestle fitted into the centrifuge

tube.	 after standing at 0°C for 5 minutes, during which time the mito-

chondria undergo swelling, 2.5 ml of a solution containing 1.8 M sucrose,

2 mM ATP, and 2 mM MgSO 4 were added to the suspension.	 After another 5

minutes. at OOC, the suspension was subjected, in aliquots.'of 3.5 ml, to

` sonic oscillation at 3 amperes with a Branson Sonifier for 15 seconds at

O°C (9).	 The resulting material was used immediately for enzyme analysis

Total Lipid, Fatty Acid and Glycogen Analysis. 	 Samples of frozen liver

were thawed; weighed (50 mg), and extracted for total lipids (10'). 	 Total
r

'
;t

lipids were extracted from the tissues with chloroform:methatol (2:1, v/v)

,,
a r

r
s

f
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and washed with Folch.upper phase (10). Lipid classes were separated by

thin-layer chromatography on 0.25 mm silica gel.. plates (Whatman) with the

solvent mixture of petroleum ether;diethyl ether: acetic acid (85:15;1.5).

The phosphol.ipid and triglyceride fractions were extracted from the sili-

ca gel and saponified. Aliquots of the fatty acid fractions were taken

for quantitation and others were subjected to esterification in the man-

ner given below.

Total lipids were determined gravimetrically. The phospholipid and

triglyceride fractions isolated by thin-layer chromatography were quanti-

tated by measuring the fatty acid contents of these fractions, by the me-

thod of Ho (11) which employs 63Ni.	 Cholesterol was determined by the x

method of Zlatkis and Zak (12) as modified by R ►.idel and Morris (13).
r

Total hepatic fatty acids were isolated by refluxing small pieces of

tissue (100 'mg) with 1 ml of 30% KOH:methanol ^1:1) overnight at 850C.

Hydroquinone (0.01%) was added to retard the oxidation of unsaturated

fatty, acids.	 Sterols and unsaponifiable material were removed by extrac-

tion with petroleum ether (30-60 0C) and after acidification, fatty acids

were extracted with hexane and the fatty acid methyl esters were prepared
i

with diazomethane (14). 	 Gas chromatography was carried Out in a Varian

aerograph (model. 3700) equipped with a .flame ionization detector and a
a

stainless-steel column (6 ft. x 1/8 in.) packed with 10% DEGS-PS on Supel--

coport (Supelco	 Bellefonte, PA).

Fatty acid methyl esters were identified by means of their chromato-

graphic retention times with the use of appropriate standards. 	 The per-
3

tentage fatty acid composition was determined with a Varian model CUS111

f	 data, system.	 The heat program had an initial temperature of 110°C and
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at 2 min. after sample injection the temperature was increased at a rate

of 1000/min. to a temperature of 1850C. At 26 mi.n the temperature: was

elevated to 19000 at'a rate of 1000/min. and stayed at that temperature

for the remainder of the analysis.

Other liver samples (100 Ong) were taken for the analysis of glycogen

contents by the anthrone procedure as given previously (15).

Enzyme Assays All enzyme assays, unless otherwise noted, were performed

CC	 with a) the lOQ,000 x g supernatant fraction (cytosol):, or b) the pellet

(microsomes) obtained from this centrifugation after removal of the mito-

chondria, or a) the purified mitochondria. Enzyme activities were deter-

mined by following the changes in optical density of the reaction mixtures

at 3000 -With a rilford automatic recording spectrophotometer. In all en-

zyme assays, concentrations of substrates and of added enzymes (where

needed) were at least 10 times those required to yield maximal activities.

Absorbancy changes were measured with reference to reaction mixtures, de-

void either of substrates or of coenzymes. The reactions were started by

additions of substrates, after a brief period of preincubation of the en-

zymes in the reaction mixtures. 	 Measurements of initial_velociti.es weve

made under conditions in which kinetics were zero-order, and activities

were proportional to enzyme concentrations.

Specific activities of the cytosol enzymes are reported as nanomoles, a

either of pyridine nucleotide oxidized or reduced, or of substrate con-

verted to product, per milligram ofprotein per minute, whereas those for

the mitochondria) and the microsomal enzymes are given in the footnotes to

the tables.	 The following extinction coefficients were used in the calcu-

lations:	 reduced NADP (NADPH) and NADH (340 nm), 6.22 x 103 ;liter x male-1 1`
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CM- (16) cis-aconitate (240 nm), 3.54 x 103 liter x mole
-i 

x cm (17).

Protein was determined by the microbiuret method of Goz (18).

Enzymes were measured according to well established methods or modi-

fications of currently used techniques, as indicated below.

a) CytosoZie Enzymes - Hexokinase and glucokinase (19), glucose-6-

phosphate dehydrogenase (20), 6-phosphogluconate dehydrogenase (20), gly

-cogen synthetase (21), glycogen phosphorylase (22), isocitrate dehydro-

genase (23), fatty acid synthetase '(19), aconitase (24), glutamate-oxalo-

acetate transaminase (25), glutamate-pyaruvate transaminase (26), gluts-

mate dehydrogenase (27), malate dehydrogenase (28) and lactate dehydroge-

nase (29).

irftoa'riv=iZr'cayn;s -	 Ly-toch.o;no oXid3se (3!x) 3 glutam?±a de--

hydrogenase (27), aconitase (24), isocitrate dehydrogenase ( 23) and malate

dehydrogenase (28).

c) Aficroscma4 Enzymes - Palmitoyl-CoA and stearoyl-CoA desaturase

activities were measured as given for pal.mitoyl-CoA desaturase as follows:

The complete system contained 30 nmoles of either palmitoyl-l- 1 ^C-CoA or

14	
4

stearoyl-1- C-CoA (saturated fatty acid), 0.3 pmoles Tris-MgCl2 buffer,
p

pH 7.5 and sufficient microsomal protein to yield a linear rate of desatu-

ration in a total volume of one ml. The enzyme and buffer mixture were
_ 	 1

equilibrated in air at 370C for 2 min., and the reaction was started by the

addition of the substrate. At the end of 5 minutes of incubation, the reac-

tion was stopped by the addition of 0.5 ml of saturated KOH. The samples

r 	 _
were then saponified, and the fatty,acids were extracted and methylated as

A

reporttid previously (31). After methylation, methyl palmitate (C-16) and n

methyl palmitoleate (C-16:1) were separated by gas chromatography (32), and

44



r
the radioactivity	 ssociated with eachy	 ;peak was counted.	 Enzyme activity

x is calculated as nanomoles of palmitoleic acid produced as follows: 	 Ccpm

in methyl C-16:1/cpm in methyl. C-16 + methyl, C-16:11 times the initial

amount C-16-CoA used in nanomoles and is expressed per 5 minutes per 'mg pro-

tein.

The 3-hydroxy-3-mathylg].utary,l-coenzyme A reductase activity was

assayed according to the procedure described by Goodwin and Margolis (33).

a-Glycerol.phosphate acyl.transferase and diglyceride acyltra,nsferase

activities of hepatic microsomes were measured according to the procedures
I

`
reported previously (34 $ 5).	 Phospholipid transferases were assayed by an

established procedure (36) modified in our laboratory. 	 Since in both cases

(for PC and for PE) our modifications were substantial and allow for amore

rapid analysis, we present them here.

PHOSPHORYLCHOLINE (PC) OR PHOSPHORYLETNANOLAMINE (PE)

GLYCERIDE-TRANSFERASE ASSAY PROCEDURES

Constituents for
Assay System	 umoles/assay	 ml/assayI
Tris-HCI,	 (0.5 M, pH 8.>0) 	 25	 0.050

r

bithiothrei.tol,,	 (0.05 M)	 1	 0.020
MgCl2 , (0.5 M)	 10	 0.020
Y4TA, (0.1 M)	 14	 5	 0.050

i C-GDP-choline, or	 C-CDP-ethanolamine,	 0.150	 0.020
(7.25 mM}

Bovine serum albumin, (5 mg/ml) 	 0.25	 0.050
Water	 -	 0.140

0.350
Diglyceride preparation (14 umoles/ml)

P sonicated in 0.25% Tween 20 for 10 minutes	 0.700	 0.050

,

Start assay w$,th enzyme preparation; 	 0.25	 0.100
5 mg/m1 suspension (0.02 M Tris-HC1, 	 or 0.5 mg ,1
pH 7.5, 0.001 M MTA)

TOTAL VOLUME	 0.500 3^
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After 00 minutes of incubation at 37 100, the reaction is arrested with

1.5 ml of 95% ethanol. Following centrifugation, the supernatant fraction

is removed and combined with three subsequent 1.5 ml ethanol extractions of

the protein prec4pitate. The precipitate is macerated by grinding with a

small amount of microm*sh glass beads prior to each ethanol extraction.

Ethanol extracts (6.0 ml) are combined with 2.5 ml of CCI 4 
and washed twice

with 10 ml of 2 M KCl and once with 10 ml of water. The CC14 phase is re-

moved from beneath the water phase and transferred to a 20 ml scintillation

vial. One ml of CC14 is added to the wash water phase and after vortexing

and centrifugation, the CC14 is removed from beneath the water phase and

combined with the first extract in the vial'. After evaporating the CC14

under an airstream, 10 ml of scintillator solution 045% PPO (2,5-dipheny-

loxazole), 2 parts toluene, 1 part 2-etboxyethanol are added to the vial

and the contents of the vial is assayed for 
14C 

in a liquid scintillation

spectrometer (37).

Chemicals. All chemicals were obtained from commercial sources and were of

r

	

	
the highest purity available. ATP, glucose-6-phosphate dehydrogenase, 6-

phosphogluconate, phosphoeriolpyruvate, were purchased from Boehringer Mann-

heim Corp., San Francisco, CA. Glucose-6-phosphate, NAD RADPH NADP NADPH,

ethylenediaTninetetraacetate (EDTA), coenzyme A, GDP-choline and CDP-ethanol-

amine were purchased from Sigma Chemical Co., St. Louis, MO. Dithiothreitol,

ADP, a-glycerol-3-phosphate were purchased from Cal-biochem, San Diego, CA.

Acetyl-CoA, malonyl-CoA and HMG-CoA were purchased from P-L Biochemical,

14	 14
Milwaukee, WisconsiA. Palmitoyl-1- 14C-CoA, * stearoyl-l- C-CoA,	 C-CDP-cho-

14line, C-CDP-ethanolamine, 3-hydroxy-3-methyl glutaryl- 14 C-CoA (14C-HMG-CoA)

were obtained from New England Nuclear Corp. Boston ) Mass., and ICN, Irvine,
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CA. PPA (2,S-diphenyloxazole) was purchased from the Fisher Scientific
t

Company, Fair Lawn, N.d.
^a
	

RESULTS AND DISCUSSION

1
	

Individual values for some _specific liver constituents from rats sa-
I

	

crificed at R0 , R+6 , R+6(S)% and R,t29 are given in Table II A-B. It should

be noted that livers from flight rats at RO were generally larger than

those of either the synchronous or vivarium controls. These differences

were highly significant (P < 0.01).

Tables Il'through VIII list the individual values for the liver con-

stituents and the hepatic enzyme activities that were examined in this sttx-

dy. Each group average and its standard deviation is given in Table TY.

The statistical significance of the differences found between groups are

presented in Table X.	 =

When the values for each animal within a group were compared, we

noted that the standard deviations were greater than one would expect from	 j
1

a normal group sampling of rat Liver tissue. In addition, several micro

somal enzymes (specifically, the acyltransferases) had specific activities

which were from 1/10 'to 1/20 those previously found in the liver of normal
x

ratsor of those flown aboard the Cosmos 936 biosatellite. This great varia-

bility in enzyme activity within a group and the lour specific activity of

certain enzymes might be a result of the presence, in the .frozen homogenate 	
k

fractions, of the easily sedimentable large particulates which we removed.

Subsequent biochemical analysis of these contaminating particles showed

that they had considerable cytochrome oxidase activity (Figure 2). Since`

this enzyme is found exclusively in the mitochondria) fraction of liver

homogenates these data suggest that hepatic lysosomes would also be present.

4^
s	 ,
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We have previously noted that such contamination	 of the cytosol and micro-

somal fractions could adversely affect certain enzyme activities. 	 In view

of these observations, we are cautious in interpreting our Cosmos 1129

enzyme activity results.

Further, although values for the vivarium control rats are presented

in the tables, we question the advisability of using these data, since there

appear	 to be many anomalies in the results obtained with these. retsk 	 This

is very dramatically ,illustrated when one compares the Levels of hepatic

glycogen for the vivarium control rats sacrificed at various times (Table

11 ,A-A).	 Whereas those killed at Ro and at R+29 gave values of 0.2310.06%

and 0.34±0.18$ wet weight respectively (Table 11 A and "Table 11 U), those

sacrificed at R U and	 yielded levels of 0.6±1..1 and 2.56±0.92% wet6(SO) i>
weight respectively (Table 11 :B and Table 11 C). 	 Although the values at R O , Y.

and R29 were similar, and those after 6 days post-flight whether stressed

or not stressed were, similar, these two groups were vastly different from

each other.	 It would suggest, therefore, that the conditions of these vi-

varium animals were not the same at all periods studied.	 Thus, we feel that

the most meaningful comparisons are those between the flight animals and

the rats that served as ground-based synchronous controls.

Given these constraints, the data, when compiled and statistically

evaluated, did generally confirm many of our Cosmos 936 findings. The acti-

vities of most of the hepatic enzymes and liver constituents were unaffected
"
t	 i

by space flight (Table X).	 A statistically significant difference was seen

between the flight and synchronous control rats at R O with respect to their

contents of ,liver glycogen (Table	 X) (Figure, 3).	 The livers of the flight

rats had 30% more glycogen than thoce of the synchronous controls. 	 This

48
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finding confirms our previous observations aboard Cosmos 936• The actual

increases in hepatic glycogen, however, were not as great as those racor-

dad for the Cosmos 936 flight rate. In addition # the Cosmos 1,129 flight

animals showed no significant changes in 
the activities of glycogen syritbe-

tase or of phosphorylase at R O that could fully explain the increased gly-

cogen contents (Table III). The glycogen of the fli ght animals also did

not return to normal levels within the post-flight recovery period as did

the glycogen of the Cosmos 936 rats, Indeed, the hepatic glycogen of the

flight rats on this mission decreased to abnormally low levels 29 days

after recoveryo while the synchronous contrQls were virtually tinchanged

(Table 11 D, Figure 3). To explain such a marked decrease in glycogen

levels, one would have to postulate either a change in the diotary regimen

or the application of additional stress on the flight animals. The gly- 	 )P

cogen phosphorylase activities (enzyme concerned with glycogen breakdown)

of the flight rats did increase 58% after the 29 day readaptation period,

and thus biochemically, could account for the decreased liver glycogen ob-

served in the flight animals (Table 111),

in confirinati-op of our results aboard Cosmos 936, a significant dif-

ference was found In the ability of the flight animals to complex long-

chain fatty acids (Table X, Figures It and 5). Bath the diglyceride acyl-

transferase and the cholinephosphotransferase of the flight rats showed re-

duced activities when compared with the synchronous controls at ROV How

ever these decroased enzyme activities did not appear to affect the hepa-

tic j4pid values (Table Ti A).	 triglyceride and phospholipid contents

wets similar for the flight and synchronous control ,rats at R0' The appa-

rent discrepancy between the observed decrease intransferase activities

49
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and the normal triglyceride and phospholipid values most probably re

fleets the fact that we were not able to measure a dynamic metabolic

process under the conditions of this experiment. 	 It is conceivable,

however, that the decreased transferase activities could precede a a

measurable change in meta^+olic end products.	 All transferase activi-

ties returned to normal values after 29 days post-flight (Table III D).

The values for total fatty acids in the individual livers as well

as those for the triglycerides and phospholipids isolated by our thin- A;

4

layer chromatographic procedures are given in Tables VI A through D and

i VII A and B.	 The pertinent ratios of 16/16:1, 18/18:1 and 18:2/20:4 are

given in Tables VIII A through D. 	 It is interesting to note that the

values for the ratios of 16/16:1 and 1$/18:1 for the total fatty acids are

` very similar to those found with the pnosphollpid. and triglyceride fatty z

acids for the animals sacrificed at RQ (Tables VII A and B).

It is also interesting that the activity of one hepatic: enzyme con-

cerned with gluconeogenesis, namely, glutamate-pyruvate transaminase, was
a

increased in the livers of the weightless group sacrificed at Ro when com-

pared to the synchronous controls (Tables III A and X).	 On the other hand,

mitochondrial enzyme activities for isocitrate dehydrogenase and aconitase ^ I
tf

were significantly depressed as a result of the period the rats spent in the
r

weightless condition (Tables V and X) 	 (.Figures 6 and 7).

Stressing the flight rats, after space flight, produced changes in the

levels of liver constituents not seen in the R	 flight animals (Table II B,
0

II G and X).	 Total lipids and phospholipids increased in the flight rats E

F= ` after stress while the control groups showed no differences (Table X and

Figure 8).	 Several enzyme activities were affected. 	 We observed lower acti-

vities for the soluble enzymes, glucokinase (Figure 9), hexokinase (Figure 10),

,F

50

p	 .

^	 Y	 a31C^.yv?WC 	 .3n...:M..»'..	 ': 	 ^	 M	 '..	 -	 -	 . 	 ,,

................... _....._tee sis...iL Er..L wS..«.:,...w..<.s._ee,,.........l..a .... 	 .....3..	 ..,.-..w.ta ..:....LAYYt,w'..'X.s-: ia...i ..d'2:.:% ...sx.«	 _	 .._	 ,.	 , ,



fatty acid synthetase, and for the microsomal enzymes diglyceride acyl-

trans;ferase (Figure 11), phosphatidylchdline (Figure 12) and phosphatidyl-
x

t ethanolamine (Figure 13) transferases palmito l-CoA (Figure 14) and stea

royl-Cod. desaturases. The cytosol.i.e glutamate-oxaloacetate transaminase,

however, was increased (Figure 15) in the flight stressed group vss non-

stressed group at R+r. In a few instances the stressed synchronous con--

}y	 trots for the R+6 were affected by the applied stress. Glycogen (Figure;
C

r 16), hexok nase, glucokinase and PF acyltransferase activities were all

depressed in these animals. However, the response of these control ani-

mals to stress was less pronounced than the response of the rats that had

been exposed to weightlessness (Table X). We may conclude, therefore,

that the flight rats react more strongly to stress than their synchronous
6

controls.

It is also clear from our data that the particular type of stress ad-

ministered to the rats, whether applied to flight or synclironous control

animals, caused ,a decrease in the levels of hepatic ,glycogen. Since we ob-

served that weightlessness caused an increase in hepatic glycogen values

in the rats sacrificed at RQ in both Cosmos 936 (6,7) and Cosmos 1129, we

have concluded that the environmental conditions of spaceflight may not

be _similar to those of the applied stress, at least with regard to hepatic
i

glycogen levels.
_a

It would: appear, from the data presented in this report and front our

results with rats aboard Cosmos 936 (E,7) that weightlessness can indeed j

affect metabolic pathways concerned with lipid and carbohydrate metabolism,

and that such metabolic changes are in some cases. independent of stresses,

r: other than weightlessness which are involved in spaceflight.

x»	 {
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TABLE I

COSMOS 1129 ,gXPERIMENT K304

Number of Rata ' per Group

Rat Group Rn R46 R_,̂ c^ R

Flight, F 7 6" 7 5

Synchronous
Control, S 7 6 7 5

Vivarium
Control, V 7 6 7 5

Sacrificed on:

F 10-14-79 10-20-79 10-20-79 11-12-79

S 10-19-79 10-25-79 10-25-79 11-17-79

V 10-17-79 10-21-79 10-21-79 11-12-79

Arrived In:

USA 10-X29-79 10-29-79 10-29-79 11-20-79

BLMRL* 11-05-79 11-05-79 11-05-79 11-29-79
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E

Rat No.	 bitochondrial Enzymes (nmolep /m

Group	 USSR	 USA	 GDH	 ICDH	 AC	 NDH

Might	 1F-1	 42	 602	 66.1,	 12.0	 1668
1F-2	 43	 1307	 36.3	 2.7	 2043
F-3	 14	 249	 34.4	 5.7	 682

1F-4	 46	 404	 32.6	 3.9	 862
1F-5	 50	 272	 34.0	 3.5	 797
1F-6	 8	 657	 76.6	 10.0	 2118
11'-7	 18	 532	 34.2	 6.7	 806

Ave. 1 S,.D,	 603:369	 45.2118.2	 6.413.5	 12821636

Synchronous	 15-1 	20	 1041	 63.1	 13.7	 1477
Control	 1S-2	 45	 790	 57.8	 6.1	 1580

1S-3	 9	 554	 55,2	 15.3	 1160
1S-4	 3	 56.7	 66.1	 20.6	 1444
is--5	 44	 788	 52.3	 6.6	 1477
1S-6	 49	 1251	 65.8	 13.2	 1909
1S-7	 24	 762	 73.4	 15.8	 1775

Ave. t S.D.	 822t25C	 62•,017.3	 13.3±4.8	 1546±243

Vivarium	 1V-1	 1	 1411	 72.9	 3.4	 2969
Control	 1V-2	 12	 1859	 65.9	 14.8	 3;73

1V-3	 4	 853	 60.1	 9.9	 1795
1V-4	 7	 867	 51 . 5	 9.2	 180E
1V-5	 38	 1096	 61.3	 8.2__	 2968
1V-6	 27	 861	 67.1	 11.6	 2128
1V-7	 30'	 743	 60.3	 3.2	 1793

Ave. 1 S.D.1099±403	 65,6111.1	 8 . 6±4.2°	 2390±654
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Ileswrement5 96 Groups

Control
synchronous VivariumParameter	 Uoit66 Flight

weights
-Z!a ss s 8Hss 330	 * 9.3 337	 3 17,8 359	 t 12.3

Liver grams 13.071 0,65 12.101 0.64 11.673 0,78
Liver/carcass 6 3,961 0.19 3.601 0.09 3.251 0,19

Liver Constituents
-Cytoso Trot=@" maiwa 20,7 3 1.4 22.6 f 1.8 2),.9 3 2.4

Glycogen 9 tiasus wt. 4.7 1 0.97 3.3 1 0.79 0.231 0.06
Total Lipids i tissue wt. 3.0 t 0.68 3.7 t 6,77 4,4 1 0,56
Phospholipids % tissue wt. 2.3 t 0,20 2.4 1 0.43 2.8 * 0.28-
Triglycerides 9 tissue wt. 1.1 1 0.49 0.871 0.33 1.0 1 0.39
Pme cholesterol 6 tissue wt. 0.251 0,06 0.281 0.04 0.341 0.02
Cholesterol esters % tissue wt. 0.201 0.07 0,251 0.12 0.261 0.05
Total cholesterol t tissue wt. 0,371 0.09 0.431 0.10 0,491 0.05

Ratios
Cholesterol/cholesterol esters 146t 0.33 1,321 0,57 1,321 0.22
Phospholipide/triglycerides 2,531 0,88 3.011 0.97 3.09t 1.25
Fatty acids
16/16sl 8.891 1,54 9.641 4,90 13,501 2.44
18/18t1- 0.971 0.26 0.88* 0.34 1.431 0.35
M2/20t4 1.201 0,42 1,191 0,30 1.151 0,27

Cns	 Activit
ytoso	 c
GS b 942 t 1.7 9.1 1 2.9 9.1 1 19
GP b 27.2 1 3.9- 28,4 1 4,9 44,2 1 6.5
GK b 29,4 1 9.6 36.5 1 9.9 14.6 1 11,1
HK b 4.8 1 1,2 5.2 t 1.4 3.3 1 0.7
06PDH b 27,6 1 11.5 20.5 1 8.3 66.9 1 21.8
15PGDH b 16.3 t 2.3 la,l 1 2.6 22.5 3 57

FAS b 9,8 1 4.7 9,3 1 3.7 10.4 t 5.2
AC b 61.5 1 14,4 61.6 * 12,6 60.4 1 11.4
CPT b 632,3 1 85.8 532,9 1 66.1 449.3 1 98.2
GOT b 464,3 1 74,7 339,0 1 50,6 330.2 1 77.9
1CDH b 330.2 t 56.2 377.5 1 55.7 457,6 1 36.8
LDK b 6547	 11384 .6406	 1 457 6343	 1 764
RADII b 5452	 * 697 5229	 1 352 5464	 1 808
CDH b 7.4 1 6,0 5,9 1 5.0 11.0 1 7.1

2.	 Microsoeul
Acyl transferees
a,	 oGP • 12,8 1 6.2 21.6 3 9,7 1.0 1 1.5
b-DG a 39.3 = 23,9 13249' 1 71.6 10.5 1 12,3

Glyceride-transferase
a.	 PC b 0.901 0.22 1.161 0.20 0.36t 0,22
b	 `PE b 0,471 0.09 0,561 0.08 0,151 0.10
Dssaturass
a.	 Palmitcyl-CoA c 4.1 1 1.2 *	 3.3 1 2.4 2.2 * 1.2

b.	 Stearoyl-CoA c 3.7 1 r2.0 4.711 3.6 3' 2 1 1.6
HMG-CoA-rsductase a 24	 1 15 27	 1 15 17	 1 4

3.	 Mtochondrial
GDH b 603	 t 369 822	 1 250 1099	 t 403
^CDH b 45.2 1 16.2 62.0 1 7.3 65.6 t 11.1
AC b 6.4 1 3,5 13.3 1 4.6 8.6 1 4.2
MDH b 1282	 1 636 1546 ' 1 243 2390	 j 654

r

TABLE ix A

AVERAGE VALUES  FoR MT3 sACM1rICED AT Ro



Measurement 506
_

Grou s

Cont rol

Synchimmous VivariumParameter	 Units6 rlilLht

Miiilhts
Carcass gro" 345	 t 16,6 365	 3 22,9 367	 t 12.1
Liver 6ramo 11.693 0.52 12.071 1.42 12,731 1,57
Liver/carcass • 3,39i :0,11 36301 0,23 3.461 0.39

Liver Constituents
typtosol Protein a6/el 22.2 t 1.4 22.0 3 2.0 23.6 t 0.9
Glycogen 6 tissue wt. 3.4 1 0.69 2.9 1 0.77 3.6 1 1.1
Total lipids 6 tissue wt, 364 1 0.76 3.9 3 0,63 4.1 3 0.61
Phospholipids 6 tissue wt, 2.1 1 0.40 2.7 t 0.43 2.5 t 0.20
Triglycerides ♦ tLeaus wt, 0,691. 0,34 0.751 0,29 1.1 1 0,57
rre p cholesterol 6 tissue wt. 0.241 0,09 0.281 0.04 0.261 0.02
Cholesterol esters % tissue wt. 0.171 0.09 0.111 0.05 0.171 0.10
Total cholesterol 6 tissue wt, 0,321 0.10 0.311 0,07 0.36# 0.06

Fitior
Cholesterol/cholesterol-esters 1,621 1.38 1.621 0.35 2.101 0.19
fbospbolipidm/triglycerides 265i1 0066 4,05i 1 . 32 20W 1.61
ratty acids

16/1611 9.381 3,57 9.641 2,16 6.95t 3.53
10/1811 LOU 0.26 1443 0.30 1,043 OM
1612/20:4 0.961 0,27 0.981 0.29 0.901 0.19

Ens sie Activity
1.	 cytosOI7,c

GS b 8.7 1 1,5 10.8 3 1.6 7.9 1 2.3
GP b 32,2 1 7.0 33.3 t 3.5 28.9 1 3.0
GK b 25,8 1 10,8 3119 1 516 31.6 3 6.8
HK b 5.3 1 1.5 6.3 t 1.4 4.9 t 0.1
G6PDH b 48.3 1 2119 27.8 1 6,1 58.0 1 12.4
6PGDH b 23,8 t 6.1 16.6 1 3.$ 17.3 t 3.1
rAS b 13.5 1 4.5 9.6 t 1.4 19.3 1 4.0
AC b 63,4'1 18,4 $2.9 t 21.6 63.4 t 11.5
GPT b 595.6 1185.0 556.9 t 77.6 657,5 t 126.8
GOT- b: 376,9 3 94.2 422,11 94.0 400.7 1 57,7
SCDH b 396,2 3 32.5 430.0 t 46.1 318.1 t 3311
LDH b 6738	 11355 6878	 MO =5707	 11173
HDH b 6449	 3736 5526	 3548 5299	 1 252
GDH b 5.7 1 6.1 7.9 1 11.0 20.6 t 21.1

2,	 Hicrosowa
Acyl transferees

a,	 aGP a 22,2 1 4.1 28,6 t 15.2 29.3 t 18,2
b,	 DG a 193.6 t128.2 217.4 3179.0 126.0 t 71.4

Glyceride-tranafarave
6.	 PC b: 0.911 0.33 1.251 0.27 1.121 0.20
b,	 PE' b 0.431 0.15 01603 0.09 0,52Y 0.05
Desaturase
a.	 Palmitoyl-CoA c 4.6 3 ` 1.5 2.8 1 1.2 5.1 t 3.6
b.'	 Stearoyl-Co.A c 6.4 1 4.0 4.1 t 2,4 1.4 t 6,3
HMG-CoA reductase a 15	 t 3 23	 1 14 20	 t 9

^(
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TAILS ix G

AVMGC VALULS 7 root MTs wa rscrD AT Mt6(S)

Naasurwnc5^6 Age

Control

Synchronous VivscieParameter,	 _ Units b Flight

Weights

Carcass grams 320	 1 15.6 332	 1311,4 341	 A 6.9
Liver [rams 9,661 2.01 9.3613 0.73 11.661 1.06
Liver/carcass 3.011 0.51 2,121t 0.17 3,411 0.26

Liver Constituents
Cytosolsol per" rotT- Wei 20.9 1 2.5 23,4 t 1.4 22.4 1 0.00
Glycogen 1 tissue rt. 0,441 0.16 1.061 0133 2,563 0.92
Total lipids 9 tissue wt. 4.4 1 0.62 5.0 1 1,4 411 1 0.9
Phospholipids 9 tissue wt. 2.0 1 0.25 2,6 1 0,10 2.6 1 0,30
Triy,lycarides tissue wt. 1;3 1 0167 1.9 1 0.07 0.961 0.56
rrae cholesterol 9 tissue wt. 0.311 0.05 0,261 0.06 0.311 0101
Cholesterol asters t tissue wt. 0,231 0.10 0,201 0.00 0.211 0.11
Total :cholesterol 1 tissue wt. 0.451 -0,10 0.451 0.09 0,451 0.14'

Mtio1
.^.holesterolfcl-bl"tero-1 stars 1.491 0.43 1.013 0 , 26 1.921 1.07_
Phospholipids/trillycerides 2.591 137 1.651 '0.14 3.231 1.66
ratty acids
16/16:1 12.791 5,15 16.131 1191 10,691 3.35
3,1/1631 1.231 0,49 1.411 0.46 1.141 0,52
101212014 1.471 0.60 1.261 0.43 1.214 0.26

}its	 a Activity_
tote	 c
GS b 10.9 1 2.2 7.3 1 2.9 9.0 1 1.9
GP b 36.5 1 104 41,4 1 6,0 31.2 1 6.4
GK b 3.6 1 1.3 16.4 1 10,6 24,8 1 6.4
HK b 2.6 i 1.2 44 1 1.3 4.4 1 1,1
G6PDH b 39.1 1 23.0 42.2 1 $0.1 40.0 i 20.7
6PGDH b 25.0 1 9.6 17,1 1 3.9 17.6 1 2,9'
rAS b 4.6 1 4,6 0.9 1 2.6 10.4 t 4.4
AC- b 74.5 1 16.4 66.0 1 20.1 66,7 1 16.2
GPT b 690,2 1162.5 572.6 11.66.6 730.9 1 116.1
GOT b 616,6 $101.4 307:7 1 - 04.0 402.7 1 91.6
ICDH _b 429.6 1 79,1 424,8 1 33.6 421.1 1-'41.2
LDH b 7022	 1734 5672 	 1600 6564	 111197
MDH b 6753	 1911: 5903	 1930 5105	 11106
GDM' b 9.9 1 4.2 3,7	 t, 3.6 0.6 1 6,2

2.	 Microsomal
Acyl transferees
a.	 qGP a 29.9 1 22.3 35.4 1 11.9 34.7 1 20.4
b.	 DG a 11.1 1 4,0 227.0 #181.2 230.4 1 23842

Glyceride-transforasa
a.	 PC b 0.451 0.30 1,151 0.21 1.001 5.29
b,	 PC, b 01111 0.09 0.461 0.13 0.491 0.16
Desaturass
•,	 Palsltoyl-COA c 0,353 0.33 1.4 1 1.2 1.9 f- 1.3
b.'	 Stearoyl-CoA- c 1.4 1 2.4 1.6 1 1.3 3.1 1 2.6
HMG-CoA reductass a 14	 1 5 17	 1 5- 22	 1 0

i

t

i;

k

1

s

a

s
i

^a



C

CA

II

1

i

C

r

r

Mssaursmmt516 Grows

Control

synchronous vivariumParameter	 outs, Plight

Ysi^ht
Carcass Brass 392:	 1 34,2 447	 # 44,9 365	 1 34.'5

Liver grass 14,051 0,54 13061 2 0 74 10.241 0.56

Giver/carcass t 2,57# 0.10 3,063 0.22 20681 0,26

Liver Constituents
Cytosol pmtsin Mg/101 22.0 1 l.i 1903 1 1.1 21,6 1 1.6

Glycogen a tissue wt, 0118= 0107 7,90# 0,93 0.34! 0,10

Total lipids % tissue wt, 4.3 # 0.48 464 1 0 0 33 4.4 0,70

Phosphollpids 1 tissue wt. 34 1 0 , 30 2.6 t 0.18 2.9 1 0131
Triglycerides 6 tissue wt, 0.663 0.15 0,961 0,21 0.861 0440

rrec cholesterol % tissue wt, 04421 0.05 0,351 0.06 0,391 0.07

Cholesterol astero 6 tissue wt. 0,251 0.05 0 , 231 0 .03 0,241 0,04
Total cholesterol % tissue wt, 0.574 0.98 0,491 0,07 0.521 0.09

_pati01
Cholesterol/cholesterol esters 1,731 0.21 1,511 0,14 1.661 6.35
pbaa .hniiptds/trig>yasri.lea 4.72£ 1.12 31061 0172 3,901 .1,66
ratty acids
16/1611 1$.681 5192 20,25: 7,37 16,601 6.36

18/1611 7.761 0.13 1,971 0.60 2.571 1.20

1812/10S4 00971 0129 1,08: 0,26 1.251 0.31

Enzvmt Activi
yt`
GS b 9,2 t 2.4 11.0 1 3.4 9.3 1 1.8

GP b 5068 1 1.9 21.4 t 2.9 17.6 1 14.3

GK b 6.3 1 3.4 6,0 1 3,7 9.4 1 4.0

HK b 3,7 1 1,4 9.4 1 3,0 3.9 : 2.1

G6PDH b $3.0 1 14.9 62.7 1 17,9 66.8 1 17.6

6PGDH b 15,5 1 1.6 17.3 1 4,$ 20.7 1 6,0
PAS b 12.1 1 2.9 1109 1 1,0 13.2 ! 3.4

At b 53.5 1 110 6919 1 27,0 62.2 1 10,8

an b 610.1 1 50.1 551.2 1129.6 769.4 #151,8
GOT b 444.1 1 58,6 301.9 1 57.4 405.1 1 45.5'

1CDH b 366.5 1 27.6 419.6 1 4513 452,4 1 39.5
yDH b 6779	 11053 6339	 1866 1051	 1320

MDH b 5965	 1567' 6678	 1457 6351	 =536

GDH b 5.0 1 6.4 5.9 1 2.1 2.8 1 07

2.	 Nicrosoma
Acyl. transferasc
r,	 aGP a 16.8 1 12. 15,9t 14.9 11.6 1 6.0
b.	 DG s 43,1 4 36,1: 35.3 1 23,9 32.0 1 46,1

Glyceride-transfermse
a.	 PC b 0,891 0.30 0.871 0.14 0.801 0.43

b." PE b 0,461 0.09 0.391 _0.06 0.401 0.19

Dtsaturas*
a.	 Palmitoyl-COA 0 0.9 1 0.5 1.8 1 0.8 1.0 1 0,7
b,	 Stearoyl-COA a 116 1 1.2 311 1 60. 9 3.3 1 3.9

HMG-CoA s*ductase- a 15	 1 5 72	 1 48 23	 2 9

I
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Compw isons between, t

At RO At R+29 Flight Synchronous

Flight vs.
Synchronous

Flight vs
Synchronous

(R	 S ) vs. (11+6) (R46S ) va• `(11+6)Measurement $

Liver Constituent
ycogen +30% < 0,02 -94 < 0.001 44 < 0.007 -53i < 0.01

Total lipids noste non* +231 < 0,05 none
Phompholipide none none +951 < 0005 none
Total cholesterol none none none none
Triglyceridee none -311 < 0005 none +611 < .0.02
Fatty acids

16/1611 none none none +401 < 0.001
16/1611 none none none none
18s2/20s4 none none none none

Enzm activity
1.	 cytomoi_

GS none none none *321 < 0.05
GP none +58% < 0.001 none +201 < 0.05
0K none none -851 < 0.001 -491 < 0.01
HK none -56% < 0.05 -511 < 0,01 -351 < 0.02
GGPDH none none none none
6PGDH none none none none
FAS none none -70% < 0.01 none
AC none nose
GPT +16% < 0.05 none

non:
none none

GOT nom none +391 < 0.001 none
ICDH none none none none
LDH none none none none
MDH none none none none

2.	 Mitochondria
GDH none - _
ICUH -271 < 0.05 -, -
AC -521 < 0,01 - -
MDN none

3#	 microsome
aGP acyl tram . none none none none
Dr acyl trans.
PC tranmferase

-701 < 0.01,
-22%,-4 0.05

Aone
none

-941 < 0.01
-541 < 0.02

none
none

PE transferase non* none -581 < 0.01 -234 < 0.05
Pal-CoA Desat. non* none x-92% < 0.001 none
Stear-CoA Des#t. none	 : none -78% < 0,02 •734 < 0.05
HMG-CoA Red. none -791 < 0.05 none none

,r

s
s

d

TOM X

SiamiriCANCE OF DIFFERENCES FOUND IM VALUES FOR LIVERS OF MIS
SACRIFICED AT RO, M+29, R+6 (NON-STRESSED) MD 116(6) (STRESSED)
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1.. Total lipids: seam of triglycerides + phosphol pids + cholesterol

esters; the small amounts of other constituents, free fatty acida,

monoglycerides and diglycer des are not included.

2. Cholesterol.. esters = cholesterol.. + FA; + by 1.67 to get cholesterol.

"'	 value. Total cholesterol = (free cholesterol) + (cholesterol ester)
1.67

3. ) value, 'not used to calculate average

4. Condition of Homogenate:

n	 Code for appearance of port-mitochondria) supernatant fractions ob-

tained in U.S.A.
4

A = Large particulates in homogenates (pellet on standing at
l ri ^)a	 -,:

S = Foamy homogenate.
C	 Small amount of tat layer.
D = No microsomal pellet obtained; 	 pellet used to be a mto-

chondrial subtraction. 	 I

E = Presumption of mitochonra or other Large particles (pellet
at 8, 000 x g for 10 m1n)

s
Si	 Abbreviations used arcs:	 12 :0 for laurate; 14:0 for myristate; 16:0

? for palmitate; 16:1 for palmitoleate; 18:0 for stearate; 18:1 for
.1

ol.eate; 18:2 for linoleate; 1$:3 for linolenate; 20:2 for eacosadi-
p

enoate; 20:3 for eieoaatrenoate (w6)	 and 20:4 for arachidonate;

GS for glycogen synthetase; GP for glycogen phosphoryl.ase^ GK for

glucokinase- HK for hewokinase; C6PDH for glucose-6-phosphate de-

hydrogenase; 6PGDH for 6-phosphQgluconate dehydrogenase; FAS for	 1i

t fatty acid synthetase 	 AC for acon tase; GPT for glutamate- pyruvate

s:
transaminase; GOT for glutamate-oxaloacetate transaminase; 1CDH for

isoeitrate dehydrogenase; LDH for Lactate dehydre%enase; MDH for
z«

q

malate dehydrogenase; GDH 'for glutamate dehydrogenase; aGF for a-

9l
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glycerol, phosphate; DG for d glyceride; PC for phosphatidyl

choline; PE for phosphatidyl ethanolamine; Pal-CoA for palm-

toyl-CoA; stear-CoA for stearoyl-CoA and HMG-CoA Red. for 3-

hydroxy-3-methyl.-glutaryl-CoA reductase.

6. Units of Enzymatic Activity;

a = pmol.es/min/mg protein
b runoles/min/mg protein
c = nmoles/unsaturated fatty acid/5 min/mg protein,

I

7. Each value is presented as the meant standard deviation.
i

i

i

1

a

,a

i

i

1
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Figure Y.- Procedure for liver homogenate fractionation.

CYTOCHROME OXIDASE ACTIVITY
OF 80,000 g min. PELLETS

Flomopnic liver

1800 X 4(2400 rpm)

	

_	 10 min

	

Sups nate	 Nuclei, I debrisb
(et/trW, micro a, tfMachondria)	 Discard

45N X q (5700 rpm)
30 min

supernat^ 	 Mitochondriaicytosol and microsomes)
Freeze	 45M X a (5,700 rpm)

30 min

Supernetc	 Mitochondria

	

(wash)	 Freeze
Discard
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SUMMARY	
s

The skeletal alterations induced by space flight were determined to be a
reduced raise of peri osteal bone formation in the tibial and humeral
diaphyses,,and a decreased trabecular bone volume and an increased fat
content of the bone marrow in the proximal tibial metaphysis. An increased
incidence of arrest lines in flight animals suggested that periosteal bone
formation may have ceased during space flight. Endosteal bone resorption

^.`	 was not affected markedly. 	 }'

fT
101

ry ^	 ^

TM,
t



INTRODUCTION

Changes in calcium homeostasis have been noted during space flight.

Metabolic studies of the Skylab astronauts indicated that a significant

increase in urinary calcium (I.)s similar to bed rest immobilization,

occurred in flight (2 3). No change in hYdroxyproline was observed (4).

Bone density determinations in the Skylab astronauts showed a significant

decrease in the os calcis density after 84 days of flight while no change

in the radius or ulna was detected (2). Such data suggest that loss of

bone mineral is more prevalent in the weight- bearing bones.

Microscopic examination of the metaphysic, of the long _bones of _young Wistar

rats after a 22-day space flight 'aboard the Soviet biological satellite'

Cosmos 605 suggested that an inhibition of bone. growth occurred during

flight but returned to normal by 27 days postflight; no gross changes were

observed in the diaphysis (5)

r
R

a

Following Cosmos 182, a significantg	 in hibition of periosteal bone formation

was noted in the tibial diaphysis of the flight rats (6). A significant

decrease in cross ,sectional area and medullary canal area in the femoral 	
j

diaphysis was also noted (7). The ash content of the -femoral epiphysis was

r decreased 13%. while the humeral epiphysealash content decreased 8% and no

change was noted in the radius or ulna ash content (8). 46CaC1 2 , injected

4 hours prior to sacrifice of rats following Cosmos 782, showed an increase

in uptake in the epiphysis of the femur and humerus with a: decreased
n	

surface uptake in the diaphysis of the femur, ulna, and radius (8).

102
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Following Cosmos 936, more information was obtained concerning the

decreased bone formation during flight (9). 	 Mean periosteal bone formation

rate was decreased about 45% ari +ai was not corrected by on-board

centrifugation.	 No gross change in endosteal bone resorption was noted

.' during flight or postflight.	 The cessation of bone formation was

calculated to occur somet ime after the eleventh day of flight and continued

; until the second postflight day.	 Although centrifugation did not correct

the defect in periosteal bone formation rate during flight, it appeared to

hasten the recovery following flight.	 Postflight, all flight rats

corrected the defect in periosteal bone formation rate. 	 Following Cosmos

936, about a '30% decrease in femur stiffness was detected in the flight

animal s,but the defect was corrected by centrifugation (9).

i

j

A significant decrease in the weight of coleus (32x) and extensor dig'torutn

longus (12X) muscles were reported after Cosmos 605 while nonsignificant

decreases in the gastrocnemius or quadriceps muscles and no change in the
a

biceps brachii or diaphragm muscles were noted (10). Similar results were	
p

found following Cosmos 782 (1). Mechanical forces imposed by muscle	 b

utilization and gravity are known to influence bone turnover; therefore,

differential bone responses to space flight might be predicted . Such a

differential response (nay be evident in the rat, a quadriped, since the

rear limbs are used primarily for weight-bearing while the front limbs are

y	 used for grasping, grooming, and feeding. According to the above space
x

flight results, differential effects are noted not only between

weight- bearing and non-weight -bearing bones, but also ' are seen Within

{f	 different regions of the same bone. Therefore, one of the objectives of

this study is to determine growth at the periosteum in different regions
a	 ,
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both in weight-bearing (tibia) and non-weight-bearing (rib) bones.

k

Following both Cosmos 782 and 936, an arrest line was found In all flight

rats and was both more distinct and more extensive, than in control rats (6,

9).	 The arrest line stains with thionin suggesting that it contains acid

polysaccharide or a basic substance which is not fat extracted (9^.

Osteocyto lacunae and walls of canal'iculi stain similarly. 	 Another

' ob3ective of this study is to obtain more precise measurements and further

define the arrest line.

MATERIALS AND METHODS

r

Specific pathogen-free, male Wistar'rats from the Institute of Experimental..

Endocrinology of the Slovakian Academy of Sciences were approximately 83

' ' days of age and weighed an average of 290 grams at the beginning of the

experimental period.	 The rats were divided into three groups.	 The flight

animals were placed in orbit in individual cylindrical cages aboard a

modified Soviet Vostok spacecraft for a period of 18.5 days. 	 There were

two groups of ground-based controls. 	 The synchronous control rats were

al so housed individually i;n a modified Vostok spacecraft and subjected to

the conditions associated with launch and reentry. ,	An attempt was made to
a

simulate as closely as possible the spacecraft environment ,experienced by

t the flight animals.	 The vivarium control rats were housed in animal.

_. quarters and were not subjected to flight conditions. 	 The first 'group of

flight, synchronous control, and vivarium control rats were sacrificed at

the end of the 18.5 day flight period. 	 The second and third groups, were

..	 z sacrificed at 6'and 29 days postflight, respectively.

•
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4
All rats were injected intraperitoneal ly with 1 mg/kg body weight of

peclanycin three days prior to launch. Declemytin is a tetracycline

derivative which labels areas of bone formation (11). A second Deol omyc i n

inf ection was a(Wini stered to the postflight group 5 days after flight.

The rats were decapitated atthe end of the experimental periods and the

left tibia and humerus were removed. The bone lengths were measured with a

vernier caliper, after whichthe bones were placed in a fixative composed

of paraformaldehyde, glutaraldehyde, and diflourodinitrobenzene. The vigils

iY	 containing the bones were refrigerated and shipped to the United States.

i

t
The bones were sawed into three parts corresponding to the proximal,

middle, and distal thirds. The proximal tibia was dehydrated in increasing

concentrations of acetone and embedded undecalcified in methyl
2

methacrylate. Multiple sections of approximately 511 m thickness weri a.aL

parallel to the longitudinal axis of the bone with a Jung model K

microtome. Following removal of the plastic with xylene, the sections were

^I
stained accordi ng to the von Kossa method (12). 	 a

a
The fractional area of trabecular bone and the fractional area of fat in 	 a

y

the bone marrow were quantified i n a 2 by 2.5 mm area of the proximal
i

tibial metaphysis with the aid of a Merz grid (13). This grid consists :of

6 semicircular lines and 36 points within a square. The number of points

p	 p	 gsu e^^zin osed over bone and bonemarrow were counted 	 a magnification of

160 X. The fractional area of trabecular bone was calculated by dividing

	

	 i
,w

the number of points lying over bone by the total number of points lying

over bone and bone marrow. The fractional area of fat in the bone marrow

was quantified its a similar manner.
i

].n5
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Portions of the tibial and humeral diaphyses were processed for ultraviolet

microscopy of fluorescent tetracycline labels. 	 The bone specimens were

dehydrated in a series of acetone and ether changes and embedded 	 -

undecalcified in a styrene monomer which polymerizes into a polyester resin

Crap Plastic Inc., San Jose, CA). 	 The portions of the tibial diaphysis

immediately proximal to the tibiofibular function and the portion of the

'r
humeral diaphysis immediately distal to the deltoid tuberosity were sawed

into 50 um thick cross-sections with a Gillings-Hamco thin sectioning:

I

machine.

The Merz grid was also used to quantifythe rate of periosteal bone

formation in the tibial and humeral diaphyses.	 In a growing rat, the

periosteal surface is forming bone and will therefore be labeled with

' tetracycline.	 The number of points superimposed over the newly formed bone

between the fluorescent tetracycline label and the periosteal surface was

counted at a magnification of 160 X under ultraviolet illumination. 	 The

area was calculated by multiplying the number of points by the constant d2,.

with d equal to the distance between points.	 The rate of periosteal bone

r
formation was calculated by dividing the volume of newly formed-bone

(assumi.,,) that the cross-sections were 1 mm thick) by the time interva?

between administration of the tetracycline label 	 and sacrifice.	 The

medullary area in cross-sections of the tibial and humeral diaphyses was 1

also quantified by point counting with a Merz grid.

Y

Polaroid photographs were taken of cross-sections of the tibial and humeral''

diaphyses at a magnification of 25 X. 	 The arrest Tine lengths of the

i postflight group were quantified with a map measure (Dietzgen Corp., Santa
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Clara, CA).	 The distance between--units of the map measure was calibrated

with a 25 X photograph of a stag",- micrometer.

Additional cross-sections of the tibial diaphysis were used for chemical'
I;

characterization of the arrest lines.	 The sawed sections were hand ground

to a final thickness of about 30	 pm.	 The following procedures were used: n

1)	 Unstained: unstained, mineralized ground sections were mounted in

I
Abopon (Valmor Corp., Brooklyn, NY) a water soluble mounting

medium.

2)	 Nuclear fast red: mineralized ground sections were stained for 1

min. with 1% nuclear fast red (aq.)

3)	 Toluidine blue: mineralized and demineralized (15 min. in 0.2 M

acetate buffer,p H 4) ground sections were stained for 10 min. with

0.02% tol uidine blue.

4)	 Sudan black: mineralized arid demineralized ground sections were

stained with 1% Sudan black-B in 70% EtOH for 10 min.

5)	 Nethylene blue: mineralized and demineralized ground sections were

k stained with 1% alkaline methylene blue for 15 min.
r

A segment of the tibial diaphysis was demineralized and embedded in glycol

methacrylate.	 Thin sections (approximately 5 pm thick) werel stained for

k

s

acid phdsphatase enzyme (14), counter stained, with aqueous methyl
t

;1.07
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r
green-thionine in citrate buffer, and then mounted in Fluoromount (E. Gurr

Ltd., London, S.W.N., England).

RESULTS

The body weights and weight gain data are shown in Table 16	 The weight

gained by the rats sacrificed immediately following flight (Group 1) was

significantly less than that gained by the synchronous. (p=0.01) or the

vivarium (p<0.005) control rats; the rate of gain was significantly less in

the flight as compared to the vivarium (p<0.025) but not as compared to the

synchronous due to the larger variability in the latter control group. 	 The

non-stressed animals killed 6 days after flight appeared to gain weight
n

during that per=iod following flight; however, the flight animals still t
k

gained significantly less weight than either the synchronous (p<0.05) or

vivar',ium (p<0.001) control group. 	 Again, the rate of weightgain was less

in the flight group than the vivarium 'groups (p<0.001) but 	 not signifi-

cantly less than the synchronous rats. due to the large variability in this
r

control group.	 In the stressed animals sacrificed 6 days following flight,

the control groups appeared to maintain their weight as ,compared to Group 1

rats while the flight rats lost weight (p<0.05); all groups showed a EE

decrease in the rate of weight gain as compared with Group 1 rats. 	 The i?

decreased weight gain of the 3F group 	 was significantly different from

that of either the synchronous (p<0.001) or vivarium (p<0.001) groups and

the rate of weight gain was significantly less than either control group

C
(p<0.001 vs either control).	 The Group 4 rats did not gain as much weight

2

during the flight period as did the Group 1 rats; this difference is i

probably related to a weight loss during the 5 days after flight since the

108
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4S group weighed 38$++6.4 gms on 10/19 and only 369±20.4 on 10/24. The

weight loss during this 6 day period may be attributed to the volume of

physiological studies performed during this time period• The synchronous

controls in Group 4 gained weight at a higher rate than did the other

groups; the reason for this is unknown. However, since the Group 4 animals

weighed more than any other group, at the beginning of the experiment,

these animals may have been somewhat immobilized during the flight period

as indicated by the increased length of the arrest line in these rats

(Table 4).

Table '2 lists values for the length of the left tibia and humerus and the

bone cross-sectional area of the tibial and humeral diaphyses.	 The bone

lengths for the three experimental groups were approximately the same for

both the tibia and hu"e rus. The bone cross-sectional area of both the

tibial and humeral diaphyses was significantly decreased in flight animals

relative to vivarium control animals immediately following flight.	 This
t

difference was not significant in the animals sacrificed at 29 days

` postflight.

x

Values for periosteal bone formation rate in the tibial and humeral

diaphyses and the rib are listed'in Table '3. 	 During the flight period, the

r	 3
r,

flight rats exhibited a reduced rate of periosteal bone formation in the

i tibial and, humeral diaphyses i n comparison to both synchronous control and j

vivarium control rats.	 These differences were evaluated by means of

Student's t-test and, in the tibia, found to be highly significant at the

4 level of P<0.001.	 There was also a reduced rate of periosteal bone.,,
formation in the humerus during spaceflight, but it was not as marked as in

>n
y

109

i

.	 ?4rki51.

. wah, ^.^Lu .,.,u..._`^ tx. _	 _ 	 any	 .. _x.n 	 ^.e	 ^	 w r	 fkx a_ta



t	 _

l

the tibia.	 The value for the flight rats was significantly different from

the flight control rags at the level of P<0.01, and from the vivarium

control rats at the level of P<0.-001. - 'Peri osteal bone formation rate i n

' the rib did not appear to be affected by-spaceflight conditions.

During the postflight period, the flight rats exhibited an increased rate

4
of periosteal bone formation in the tibia in contrast to the reduced rate

which was observed during the flight period.	 This increase was significant

at the lever of P<0.025 and P<0.05 from synchronous control and vivarium'

control values, respectively. 	 A similar increase was not observed in the
m.

humerus.	 a
7

The mean medullary area in cross=sections of the tibial and humeral

diaPhyses and the rib did not exhibit significant differences among the

three experimental groups.

The arrest line data are shown in fable 4.	 In the animals sacrificed at 29 s

days postflight, the length of the arrest lines in the humeral diaphysis
C

was significantly greater (P<0.025) in the flight group in comparison to

i both control groups.	 In the tibia, there was also a significant difference
r
! (P<0.001) in arrest line lengths between the flight and vivarium animals,

but not between the flight and synchronous control animals.

The staining characteristics. of the arrest lines are listed in 'Table 5.

Y Arrest lines in mineralized ground sections' were not stained cr'were only
,t

weakly stained by Nuclear fast red, Toluidine blue, and Sudan black.- 	 In

contrast, arrest lines in demineralized ground sections were stained by
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Q severalprocedures: Sudan black methylene blue and Toluidine blue. The
i!.

most intense staining was achieved with Sudan black. In addition to
f	 staining arrest lines the above procedures also stained cement lines,

osteocyt--* lacunae and osteocyte canaliculi. When ground sections were

r
stained with Sudan black and viewed under oil', it was clear that most

osteocyte_canal'iculi terminated at the arrest line. Acid phosphatase

,.	 activity was not observed at the arrest 'line in 5µ sections. In contrast,

acid phosphatase was observed at cement lines and in osteoclasts. Arrest

lines as well as cement lines were stained by thionine..
,r

The fractional area of trabecular bone, commonly referred to as trabecular

bone volume, is plotted vs. time in Figure 1. There appears to be a trend

for a reduced trabecular bone volume in the proximal tibial metaphys; s in

flight rats. This parameter was significantly lower in the flight group

relative to the vivarium control group at all time periods. The flight

rats also had a consistently lower trabecular bone volume in comparison r

to the synchronous control rats. This difference was not significant'

(P<0.10) at days 19 (9+0) and 25 (R+6) but there was a significant

difference (P<005) at day 48 (R+29). The trabecular bone volume remained 	 z

rrelatively constant in each of the three groups throughout the experimental

period. If the data from all three time periods were combined, the m

trabecular bone volume in the flight group was sign-ificantly different from

both the synchronous control (P<0.025) and the vivarium control (P'<0.001)

groups.

s

Figure 2 is a similar plot of the fractional area of fat in the bone marrow

vs. time. The data suggest that the fat content of the bone marrow in the

3



proximal tibial metaphysic increased during spaceflight. The difference in

fat content at day 19 (R+0) between the flight group and both control

groups was significant at the level of Pt0.05. By the end of the post-

flight period (day 48). there were no significant differences among the

three groups

DISCUSSION

The flight, animals gained about 35% less weight and at a rate about 25%

lower than either control group (Table 1). 	 If the food consumption of the

flight and control animals was equivalent, these data confirm the findings,

of previous Cosmos experiments (9) that the rat gains less weight per gram

of food consumed while in space.	 The greatest difference between flight

and control	 animals occurred in the animals stressed postflight, and killed

at R+6 days.	 This suggests that the flight animals were less able to

compensate for the immobilization stress than were the controls.	 Extensive

handling of the R+29 animals postflight appears to mask the differential
r	 '
s response in weight between flight and control animals-, weights taken

1

-immediately postflight, rather'than at R+6, in this group would probably be

more consistent with other groups and would aid in the interpretation of

the postflight effects on weight gain.

r

This study demonstrates that peri osteal bone formation in the tibial and

humeral diaphyses was inhibited during orbital flight, aboard the Soviet

Cosmos 1129 biological satellite.	 A similar effect was ._observed in the

tibia during previous Cosmos experiments (15), but the humerus was not

included in prior investigations. 	 The inhibition of periosteal bone
i
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4	 formation in the huerus was not as drNnatic as in the tibia. This may be

due to the lower rate of periosteal bone formation in the humerus relative

to the tibia. The decrease in bone cross-sectional area in the tibial and

humeral diaphyses may be related to the inhibition of periosteal bone

formation. The;rate of periosteal bone formation in the rib was not

significantly decreased during spaceflight, possibly due to its

non-weight.-bearing nature. Also, the periosteal bone formation rate in the

rib may be too low to exhibit a significant change during the relatively

short flight period.
Y

x I

The rebound in periosteal bone formation rate in the tibia during the

postflight period has also been previously observed. The humerus did not
f '	

exhibit a similar rebound, but periosteal bone formation did return to

normal during the postflight period.

The results from Cosmos 7$2 (6) and Cosmos 936 (9) demonstrate that arrest

lines are greatly increased during space flight. The results of the
r

	

	 ,
present study add further support to that conclusion. Interestingly, the

length of the arrest line in flight and synchronous groups (Table 4) was

more extensive than that noted in previous flights (Cosmos 782 flight, 5.3
9

mm synchronous, 2.1 mm Cosmos. 936: flight, 4.0 mm; synchronous, 1.6 mm). 	 j

The dramatic increase in the extent of the arrest line, 'particularly in the

synchronous animals, in Cosmos 1129 may have been related to the larger a

size of the rats confined to a small space. The starting weight of the

flight rats for the two previous missions was about..2?.Q gms while the

synchronous_ groups weighed about 190 gms; for Cosmos 1129, the 4F rats had

an initial weight of about 320 gms while the corresponding synchronous

113'`
a

a



r

group had an average mass of about 310 gms. This increased initial mass of

around 100 gms in Cosmos 1129 rats may hue somewhat immobilized them- rats

for all missions were housed in cylindrically shaped cages which were

approximately 8.12 inches deep and 3.75 inches in diamete r. Conversely,

the vivarium animals for all flights had similar arrest line lengths 	
i

(Cosmos 782 = 1.5 mm; Cosmos 936 1.6 mm Cosmos 1129 * 15 mm) For

Cosmos 936, the vivariumanimals (205 gms) were housed 5/cage in standard

polyvinyl cages (450 x 310 x 160 mm) while for Cosmos 1129, the vivarium

controls (305 gms) were housed 3-4/cage in similar cages (550 x 334,1 x 195

mm). Thus, cage restraint may increase the length of the arrest 'lines, but

weightlessness even with cage restraint increases the length of the arrest

line greater than cage restraint alone.

Formation of arrest lines appears to be associated with a temporary

cessation of bone formation.	 Arrest lines clearly differed from cement

lines.	 The latter were highly irregular in appearance and exhibited acid , r

phosphatase activity, 	 Arrest lines were smooth and showed no residual acid

t

r

j phosphatase from prior osteoclast activity. 	 The staining properties of

arrest lines (lack of staining by mineralized ground sections and no

selective staining by ,a variety of methods in demineralized ground
1

sections) and the demonstration that osteocyte canaliculi rarely pass }^

P through arrest lines suggest that arrest lines represent a cessation of
k	 ir

(bone matrix formation followed by reinitiation of bone formation at -a later

time.  ,.x

F

There were no significant differences among the three experimental groups,

in cross- secti onal medullary area in the tibial and humeral diaphyses and
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the rib. The predominant activity along the endosteal surface of the

medullary canal in growing rats is bone resorption. An alteration i n bone

resorption during spaceflight would presumably be accompanied by a change

in the dimensions of the medullary canal. Since this did not occur, these

data suggest that no gross changes in endosteal bone resorption occurred

during spaceflight. However, subtle changes in bone resorption may not be
i

revealed by this technique.

r:	 A decreased trabecular bone volume and an increased fat content of the bone

marrow in the proximal tibial metaphysis appear to be a consequence of 	 4

spaceflight. However, these parameters are difficult to evaluate due to a

t'	 great deal of variability within groups. A decreased mass of trabecular

sI3bone in the femoral and tibial metaphysic has been reported in half of the

rats subjected to spaceflight aboard the Soviet. Cosmos 605 biosatellite

(5). A marked elevation of triglycerides in the bone marrow of flight rats

during the Cosmos 936 experiment (16) supports our finding of an increased	 }

fat contentin the bone marrow.

In summary, the findings in this study demonstrate: 1) the rate of

periosr;teal bone formation in the tibial and humeral diaphyses decreased

during the spaceflight period; 2) the decrease in formation may be due, in

part, to a cessation of bone formation, as evidenced by the increased

,..	
incidence of arrest lines in flight animals; 3') endosteal bone resorption

was not affected markedly by spaceflight conditions; 4) the trabecular bone

volume in the proximal tibial metaphysis decreased during the flight and

1	
postflight periods; 5) the fat content of the bone marrow in the proximal

t:
tibial metaphysis increased during spaceflight.
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r TABLE 1

}

' GROUP N W9IGHT WEIGHT 0 DAYS WEIGHT CHANGE RATE of waGHr GAIN

F
(9) (g) (^) i3 (9/day)	 e

controlsj	 1s contro l s

IF 7 287+6.5* 336+8.8 22 48±9 .1 	-33 2.2+0.41	 -21

1S 7 270+17.7 344+18.3 27 74+18.9 2.7±0.70

^ca	 ! IV 7 297+16A 367+12.8 25 70+9.4 2.8+0.38

2F 6 291+13.3 354+17.0 28 6317.6	 -36 2.2+0.21	 -30

2S 6 274+18.6 373+23.4 33 99+33.3 _ 3.0+1.01

2V 6 277+9.7 376+13.0 30 99+10.5 3.3+U.35

3F 7 291+11.5 326+15.8 28 34*10.8	 -51 1.2+0.39	 -45

3S' 7 268+1.3.5 331+12.6 33 69+8..1 2,.1+0.25

; 3V' 7 285+13.0- 355±6.9 30 70+12.1 2.3±0.40

'•.	 to •j

4F 5 317+18,6 356+21.9 27 39±6.7 1.4±0.25

4S 5 311+28.8 369+20.4 32 58+15.2 1.8+0.48

4V

r_

5 307+27.3 348±25.1 27 41f5. 5

1
1.5+0.20-

41`' 5 356+21.9 392+34.2 24 36+15.2 1.5+U.63

4S' 5 369+20.4 447+44.9 24 78+24.6 3.3+1.U3
^	 t

0' 5 343+25.1 385+34.5 24 37¢2.7 1.5+0.11

mean+lS.U.

The first weight was taken upon the first inject-ion of tetracycline in all
' groups except 4' which was taken upon the second injection of tetracycline.

' The second weight was taken upon sacrifice of the rats in all groups
except 4 which was taken upon the second 'injection of tetracycline.

N n number of rats'
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r	 TABLE 2

BONE DIMENSIONS

LENGTH (cm)
BONE CROSS-

SECTIONAL AREA(=2)
LEFT LEFT LEFT LEFT

GROUP N TIBIA HUMERUS TIBIA HUMERUS

GROUP 1 (R+O)

3.80k 2.71 3.68** 3.31**
FLIGHT 7 ±0.06 ±0.09 ±0.17 40.18

3.77 2.69 4.10 3.43
SYNCHRONOUS CONTROL 7 +0.09 +0.06 +0.47 +0.29

3

3.90 2.79 4.09 3.64
VIVARIUM CONTROL 7 ±0.09 ±0.07 +0.33 ±0 .27 3

GROUP (R+29)
i

3.97 2.77 4.23 3.76
FLIGHT 4 ±0.05 ±0.10 4-0.34 -0.25

r

T
f SYNCHRONOUS CONTROL 5 40.11 +0.10 +0.48 +0.52

3.90 2.85 4.51 4.03
r VIVARIUM CONTROL 5 +0.12 40.06 ±0.38 +0.4$

f *	 Mean+l S.D. T^
**	 SigJficwitly different from vivarium control values (P< .025).

r	 .
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TABLE 3
`s

EFFECT OF SPACEFLIGHT ON BONE TURNOVER

t,

PERIOSTEAh BONE
i FORMATION RATE MEDULLARY CROSS--

2€ 3(].0'3 ma /DAY) SECTIONAL AREA(mm ) 	

j

. GROUP N	 TIBIA	 HUMERUS	 RIB* N	 TIBIA	 HUMERUS RIB*

:i
GROUP 1 040)

F ` 1040** 10.9**	 3.66 0.99	 1.11	 0.09
FLIGHT 11	 +2.1	 +2.2	 X1.45 7	 ±0.19	 ±0.12	 ±0.04	 s

;i
17.9	 14.2	 4.52 0.92	 1.16	 0.18

SYNCHRONOUS CONTROL 11	 +2.7	 +2.8 - -±2.06 7	 x±-0.13	 40.17	 #0.03

22.6	 17.9	 - 0.99 	1.21	 -
VIVARIUM CONTROL 11	 +4. 7 	 +_5.3	 - 7	 ±0.13	 ±0.32

F
^iB

*** (R+29)M(

18.4** 11.7	 - 0.92	 1.43	 -
FLIGHT 4 ,	 ±2.1	 ±1.4	 - 4	 40.08	 40.12	 -

,,

12,6	 10.7	 - 0.88	 1.45	 -
SYNCHRONOUS CONTROL 4	 +2. 4	 ±2.4	 - S	 +0.14	 ±0.18

a

f 14.5	 12.3	 - 0.79	 1.20	 -
;. VIVARIUM CONTROL 4	 ±2.a	 ±3.0	 - 5	 4-0.13	 40.14

}
Each value for the rib is the mean +-the standard deviation of
5 animals.

**	 Significantly different from control values (see text).
**	 Although . 5 'rate were used for each group, only 4 were analyzed since

rat 4F-3 appeared to have traumatized his tibia and was forming woven
k bone following flight and rats 4S -4 and 4V-5 did not label when given

their second tetracycline injection.
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TABLE 4

EFFECT OF SPACEFLIGHT ON FORMATION OF ARREST LINES

",. ARREST LINK
LENGTH (mn)

^y
GROUP N	 TIBIA	 HUMERUS

t

i

GROUP 4 (R+29)

I 7.3*	 6.0*

FLIGHT 4	 ±0.6	 ±l.l

+4.0X 6.1 {
SYNCHRONOUS CONTROL 5	 1.4	 0.7

h +1.6	 +4.1

VIVARIUM CONTROL 5	 - l.2	 - 0.2
t^

*Significantly different from control values (see text)
^ s

i

x

4

{
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TABLE 5

Staining Properties of Arrest Lines

STAIN	 INTENSITYI

Nuclear Fast Red (mineralized)	 0

Toluidine Blue (mineralized)	 0

Tolyidine Blue (demineralized) 	 **

Sudan Black (mineralized)	 0

Sudan Black (demineralized) 	 **

Methylene Blue (mineralized) 	 0-*

Methylene Blue (demineralized) 	 **
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Figure 1. The fractional area of trabecular bone (trabecular bone volume)
k in the proximal tibial metaphysis vs. time. 	 The spacecraft

was launched on day 0, and recovered on day 19. 	 pay 25 is
f equivalent to recovery + 6 days, and day 48, the end of the

postflight period, is equivalent to recovery + 29 days. 	 Each
point is in the mean of 7 animals at day 19, 6 animals at day
25, and 5 animals at day 48.	 The vertical lines represent the

b standard deviations.	 The point at daffy 0 is, the mean of 10
basal control rats + the standard deviation,	 These rats were
housed in animal quarters and sacrificed; at the beginning of
the flight period.	 The flight control group is equivalent to

' ► the synchronous control group.
z
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Figure 2	 The fractional area of fat in the bone marrow in this proximal
tibial metaphysis vs. time.	 See the legend for Figure 1 for a

' detailed description.
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K305: QUANTITATIVE, ANALYSIS OF SELECTED BONE PARAMETERS

,a	 Supplesental Repw,#t 1: Effects of Weightlessness on Ostsoblast

Differentiation in Rat Molar Periodontiur	 a

W Eugene 'Roberts and Peter C;. Mozeary

University of the Pacific Det4tal School

1	 San Francisco, CA

h	 l	 Emily Morey-Holton;
{ NASA-Aces Research Center

Moffett Field, CA 94035

SUMMARY

.s 3
Periodontal .ligament (PLIL), the osteogenic interface between tooth and bone,

wa

e

s morphometrically analyzed in :rats subjected to 18.5 dayi of

weightlessness. Immediately post-flight, PDL width and total cell number

I`	 were decreased. Frequency distributions of nuclear volume revealed that

presumptive preosteoblasts (nuclei > 130µm3) were particuls ►rly depressed...
Depleted, numbers of preosteoblasts may be an important factor, in the

mechanism of inhibited bone ,formation during Weightlessness.
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INTO

Marked depression or arrest of bone formation is associated with space

flight and simulated weightlessness (6,7) The mechanism of this

suppression of osteogenesis is unclear, but probably involves altered

induction.

The maxilla to not a weight-bearing 'bone and is not directly subjected

to antigravity posturing as are the long bones. Thus, alveolar bone of the

maxillary periodontium is an interesting experimental contrast to the axial

skeleton to determine whether the depression of bone formation is a

generalized, systemic effect.

!#

	

	 Using cytomorphonetrie methods, fibroblast-Pike cells in the rat PDL are

separated into four compartments (A, B, C, D) according to increasing

nuclear volume. "D" fraction nuclei Q 175pa3 ) are fire first to proliferate

following osteogenic stimulus and are the immediate kinetic precursors of

osteoblasts. "A" fraction nuclei, the smallest in the aeries (180 VO),

are less differentiated cells which are the source of D fraction nuclei
t .ar

	

	
(15). Theme data indicate that nuclear volume frequency distributions are

an effective means of assaying preosteoblast differentiation in a population

of connective tissue cells.

_	 1

Thus, the objective of this experiment was to determine whether spaceflight

would-alter cellular induction in the fibroblast-like cells in the rat PDL.
i

a

^a
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MATERIALS AND MTHODS

Specific pathogen-free, male 'Ratair ruts from the InatiCute of Experimental

Endocrinology of the Slovakian Academy of Sciences voro approximately

83 days of ago And weighed an averoge of 290 grams at the beginning

of the experimental period. The flight animals were placed in orbit in

Individual cylindrical cages aboard a modified Soviet Vostok spacecraft for

a period of 18.5 days. There were two types of grougd -based controls. Us

synchronous control rats were housed identically like the flight animals and

subjected to the conditions arasocated with launch and reentry, An attempt

was made to simulate as closely an possible the spacecraft environment

experienced by the flight animals. The vivarium Control rats were housed in

animal quarters and were viot subjected to flight conditions.

E The ruts were divided into four groupe. 	The first group of flight,

synchronous control, and vivarium control, rats were sacrificed at the and of
the 18 . 5 day flight period. 	 The second and fourth groups were sacrificed at	 E;^

6 and 29 days postflight, respectively. 	 The third group, which was sub-

jected to immobilization streos and sacrificed 6 days after flight, was not

analyzed in this expermenit. 	 All rats were injected introperitoneally with

t	 I 1 mg/kg body weight; of Declomyci .n three days prior to launch. 	 Declomycin is	 ^+

a tetracycline derivative which labels areas of bone formation (T). 	 A

second 'Declomycin injection was administered to the postflight group 5 days

after flight.	 The rats were decapitated at the and of the experimental

periods, and skulls were preserved in triple-fix (3).

r Maxillary left first molars and eurrounding'periodottium were dehydrated in

E	 €` a series of acetone and ether chengae and embedded undccalcifisd in a

styrene monomer which 	 into a polyester resin (Tap Plastic Inc.,_polymerizes

San Jose, GA).	 The menial root of the maxillary left first solar was sawed

f
in the mideagittal plane into 50 gmthick sections with ;v'Gillings-Hamco

thin sectioning machine.	 Fluorescent tetracyclinelabels, 'were-observed at

16OX under ultraviolet illumination.
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Maxillary right first molars and surrounding porledontiuin Mere dentneralized

in 10% EDTA (pD 1.4) for two vacks, enW.Aded in modified methyl methacrylate

(5), stA serially sectioned at ) pa. The menial root of the %axillary first

molar wits cut in whe aid-sagttsl plane, parallel to the long, axis of the

Groot. Sarial sections were mounted an gelatinised slides and stained with

hematoxylln and eosin/phloxins.

The region studied was a 300 pm length of midroot PDL on tho mesial Aspect
of the mescal root of the maxillary first molars. Undor Wk immersion at

1000X 0 the length (2a) and width (2b) of the nucl ip-j of all.fibroblast-like
PDL cello were measured vi,.th, an ocular micrcuseter Since nuclei in the area
studied are prolate opheroid'(w14tt ► approximating depth, correlation of r •
0.9) and are 90-95% oriented in the mideagittal plane, nuclear volume of
each nucleus 'vas calculated according to V . 4/3 7T 	 Replication error,

for determining nuclear volume with this method, is inversely related to
width and ranges from ±5 to ±15X. For groups of 100 to 1000 nuclei, repro-
ducibility of relative frequency distributions is ±5 to ±10X, inversely
related to sample size.

Each nucleus was categorized according to location within the PDL. Zone I
Is within 25' Nm of bone, Zone IIis further than 25 pa but within the bone
half of the PDL, Zone III is on the cemeotum side but further than 25 pm
from the root surface, and Zone IV is within 25 pm of the cementum surface.
As previously described, about 909 of PDL vascularity in this area is
located in Zone II (10),

Volumes for 100 nuclei from throughout the width of the PDL were determined
for each animal. Tive animals were quantitated for a total sample of 500
nuclei per subgroup (i.e., flight, vivarium, or synchronous)

i

Frequency distributions of nuclear volume for each of the nine subgroups
	 x

were calculated (Tables I III). Means and standard deviations are given in

-

	

	 I
i
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Table IV, Table V Is a statistical comparison of subgroups utilising

Student 's t-test, Table VI Is mean nuclear volumei, according to

histological zones and Table VII Is Interzone statistical comparisons

(t-test with p<.05 considered significant).

RESULTS

7

In geoerol, the alveolar 'bone surface adjacent to the area of PDL studied

(me tall aspoet of maxUlary First molar) was a bone forming surface, as
revealed ba► tetracyline labels. Compared to vivarium controls (1V), fre-

quency distributions of nuclear volume (intervals of 10 ` um3 ) for the 18.5

day flight subgroup (IF) sacrificed at recovery revealed a relative increase

l	 in smaller nuclei Q 80 µm5 ) at the expense of larger nuclei ( 130 um3)

In contrast, synchronous controls (1S) showed a relative increase In larger

nuclei compared to either the flight or vivarium controls (Table I, Figure

1)

These observations were confirmed by comparing the nuclear volume means for

subgroups IF, 1S, 1V in Table IV.	 Relative to the vivarium controls (IV), a
t

significant ( p <0.001) decreases In mean nuclear volume was observed for P
flight (1F), while synchronous controls (1S) displayed a significant

(p <0.001) increase (Table V).	 At 6 and 29 days after flight, mean nuclear
volume Gall zones combined) of post-flight animals (2F, 4F) and synchronous'

controls (2S, 4S) were no longer significantly different from vivarium {
controls (2V, 4V) (Tables IV and V )«	 Figure 2 depicts the nuclear volume

frequency distributions of the flight animals at the three different time

periods and shows that a shift in the curve toward normal in obvious by 6

days after return to 1G. t(

x
No significant differences in interzone mean nuclear volumes were observed

i for Groupq 2 or 4 (6 or 29 days post-flight, respectively). 	 Compared to

vivarium controls (IV), Zone I nuclei of synchronous controls (1S) sere

^s	 E significantly	 <.02	 larger, while those of flight rate 	 1F	 were signifi-

cantly (p <.Ol) smaller (Table VI. and V11).	 Synchronous controls were
s ^,

^' -	 131 ;
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significantly

The fi significant

cantlY P'.0a) larger than animals exposed to weightlessness (1F).,

y 	 difference in Zone II was a smaller mean nuclear size

of flight (1F) versus synchro-hous controls (IS). In Zone III', IS nucloi

were significantly larger than either the IF or 1V subgroups. Flight rats
l

(1F) had significantly smaller mean nuclear volume than vivrium controls

(1V).

As shown in Table VIII ,.__width of the midroot PDL was signif eantl-y ( 'p <.pl)

' lese for flight (IF) animals than for either, control group.	 However, there

were no significant differences in PDL nuclear density of fibroblast-like

cells for the lF, 1S and 1V subgroups (Table IX).

Compared to the vivarium control range (mean + 1 standard deviation of all

zones at all time periods), meaty nuclear volumes in Zones II, III, and IV of

IF rats recovered, to near control values, by 6 and 29 days after flight.

Zone. I is no longer significantly different at 6g	 g	 y	 ^	 days and	 s within the

control range by 29 days (Figure 3).	 Synchronous controls, Which have

significantly (p < .01) larger mean nuclear size in Zone I immediately after

flight, are back in the control range by 6 and 20 days (Figure 4).
r

I.
DISCUSSION

- Bone formation, adjacent to the area of the PDL 
,
studied in this experiment,

k

^	 - is an interesting observation because similar rata maintained. on a standard

pellet diet normally resorb bone 
in 

this area.	 Roberta (9) attributed the

resorbing -surface to mesial movement of the firs .*, molar roots in response to

F	 i physiological approximal drift.	 As the interdental areas are abraded,

the first molar tips distally to maintain contact with the second molar.

_ This general growth pattern for rats and mice has been confirmed by bone

i labeling studies (2,18).	 Tlie low grit, paste diet for thepresent study may

I	 , f cause less approximal attrition and distal tipping of the first molar. 	 The

s

net effect is a tendency toward bone formation as the tooth extrudes in

_
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response to intermaxillary growth. Thus, bons formation on the wesial
C

(rather than the distal) surface of the maxillary first molar is probably all
diet effect.

In contrast to previous studies of formaln fixed. tissue (14,15), control

frequency distributions are about 25% smaller, overall. Since the relative

distributions are quite similar, this probably reflects a difference in
tissue processing shrinkage associated with the "tiriple fix" used in these
studies. Consequently, the immediate precursors or; osteoblasts, previously

described as > 17.5 X03 (15) are probably ?130 um3 in the present study.

Relatively undifferentiated (germinal) precursor would be expected in the

480,u13 range (15)+

N

The most extensively studied cell kinetic model of mechanically induced bone

formation is experimental orthodontics (10,12 0 13,16,20,21).	 The specific
osteogen a response in Ppb is increased conversion of small to large nuclei
within 8 hours (15) and recruitment of fibroblast-like cells into DNA
synthesis beginning at about 21 hours after application of orthodontic force

(17).	 Subsequent kinetic studies have confirmed that cells of the large
nucleat fraction are the immediate precursors of osteoblasts (15).

These studies suggest that the shift in nuclear volume (from 	 80 to>130 pm3),
independent of DNA synthesis, is a critical, mechanical stress mediated
event in osteoblast differentiation. 	 his shown in Figure 1, synchronous

r
controls (1S) show a significant increase in presumptive preosteoblasts

(nuclei >130 VO).	 This may reflect high endogenous corticosteroid levels
A in response to the physiological stress of-simulated space flight and con-

finement in a rather small cage. 	 These data are consistent with more rapid,

orthodontically induced bone formation in cortisol treated rats (11).'

Apparently co.rticoateroids enhance formation of pre.osteoblasts, and may be

an important factor in the change in genomic expression, which is manifest
by an increase in nuclear volume, independent of DNA synthesis (;15).

E

s

133
s	 _



It is possible that the enhanced preoskeobin$t saturation aAsociated with

corticoeteroide is mediated by parathyroid,hormone because the secondary

hyperparathyroid - effect of corticosteroide is well established (4, 19), , and

parathyroid extract specifically stimulates proliferation of the large

nuclear- fraction (14).

Weightlessness appears to deplete preosteoblasts, as evidenced by

significantly ( p <0.001) decreased mean nuclear volume in PDL from rater

killed :,immediately after space flight, compared to either synchronous or
vivarium controls (Table V)	 Frequency distributions (Table I-XIl and
Figures l and 2) confirm a lower proportion of cells with larger nuclei,

while numbers of smaller nuclei arerelatively increased. 	 This may be a

generalized systemic effect on bone since the PDL /maxilla complex is not

weightbearing.

M interesting dichotomy between simulated (synchronous) and actual space

flight is evident.	 Enhanced preosteoblast formation, subsequent to

physiological stress, may be blocked by lack of mechanical stress during

weightlessness. 	 The critical step may be the failure to convert cells ;with

smaller, leas differentiated nuclei to "preosteoblasts", which are charac-

terized by relatively large :nuclei.. 	 This is a key mechanism in the first

r hours of orthodontically induced osteogenesis (15), and could be a differen-

tiation &vent that is inhibited in a weightless environments

This explanation would predict normal and possibly elevated rates of bone

formation during early stages of space flight, with rapidly decreasing bone,;

accretion as the supply of viable osteoblasts is exhausted. 	 Return to a

terrestrial environment reverses the suppression of preosteoblast

production, as evidenced by increased mean nuclear volumes at 6 days (2F)

and 29 days (4y) after flight.	 Frequency distributions (Figure 2) confirm -
t

,i
recovery of the relative number of presumptive preosteoblasts (nuclear

f volume > 130 pm 	 at 6 and 29 days.

134
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Studies of orthodontically induced osteogenesis have shown that new

osteoblasts are produced and bone formation initiated in about 40-48 hours.

Since the overall cell census, as well- so relative number of preosteoblasts,

is depressed immediately following space flight, cell replenishment would be

expected to require an additional 20-31! hours (15). This cell kinetic data

predicts a minimum of 60-80 hours to reestablish significant bone formation

following space flight, which is essentially identical to the three day

estimate calculated from tetracycline labeling; studies of tibias from

Cosmos rats (Table X).

The 29% decrease in PDL width of flight rats (Table: VILI) may be related to

the 56.2% reduction in extracellular water observed in the same animals
(22). _Since a major portion of PDL is ground substance, which is pre-

dominantly water, the decrease in thickness isprobably a relative

dehydration..	 The lose of water apparently does notaffect nuclear si.e,i;

1 because the overall range of nuclear volume for flight versus control ani-

mals is unchanged (Figures I and 2). 	 Thus, tissue shrinkage in the PDL

appears to involve primarily extracellular matrix and/or cytoplasm.
Aasuming the total census of PDL cells is unchanged between groups, cell den-

r
sity should increase as the PDL width decreases. 	 In fact, cell density is

P

not significantly different in flight rats (Table IX), even though PDL width
t

i is less (Table VIII). 	 This indicates a net loss of cells during

weightlessness.	 Therefore, the preferential loss of preosteoblasts (large s	 1

nuclei) probably involves not only a block in differentiation, but a failure'

of proliferation and/or enhanced cell death, as well.

This morphometric study suggests that depleted numbers of preosteoblasts may q

v be an important factor in the arrest of bone formation during

weightlessness. 	 Data are consistent with either a-defect in proliferation j

! and/or differentiation.	 Additional cell kinetic studies utilizing
3g-thymidine are needed to define the mechanism of this important aerospace

problem.

i
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TABLE" 	M

NUCLEAR VOLUME FREQUENCY DISTRIBUTIONS
(Mean (ie) and Standard Deviation- '(SD) at each 10 00 interval)

Nuclear Volume	 1F	 1S	 1V
3	 -	 -	 -

g (u m x- SD x SD

up to 40 1.40 0.89 0.40 0.55 1. g0 2.68
41 - 50 7.60 2.97 3.60 1.67 4.40 1.34
51 - 60 11.20 2.17 6.20 3.63 '10.00 4.06
61 - '70 13.60 2.07 5.60 1.82, 6.40 1.34
71 - 80 12.40 2.97 6.80 2.49: 11.20 2.28
81 - 90 10.20 4.49 7.60 0.55 8.40 2.07
91 - 100 10.40 2.51 9.80 2.28! 7.80 1.30

} 101 - 110 8.20 0.55 9.00 2.92 13.20 1.79
111 - 120 6.80 2.59, 1.20 5.40 7.60 2.07
121 - 130 3.80 1.95; 3.60 1.52, 5.20 1.64
131 - 140 4.00 2.00 7.20 0.84 6.20 1.92
141 - 150 2.60 1.14 6.80 3.35 4.00 1.87
151 - 160 4.80 1.48 9.20 3.49 6.60 0.89
161 - 170 1.20' 0.84 2,80 1.79 1.20. 0.45
171 - 180 1.20 1.64 4.00 2.35: 2.60, 2,07
181 - 190 1.00 0.71 2.40 1.82` 1.20 0.84
191 - 200 - - -1.20 1.10 2,00 1.22

`. 201 - 210 0.20 0.45 080 0.84 0.40 0.55
211 - 220 - - - - - -
221 - 230 - - 0.80 0.84 0.40 0.55

R - recovery

Sample size (n) is 100 nuclei for each specimen (animal), with five animals
(500 total nuclei) for each subgroup (lF, 1S, 1V).
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TABLE II.	 R+6

NUCLEAR VOLUME FREQUENCY DISTRIBUfiIONS
(Mean (x) and Standard Deviation (SD) at each 10 pu3 interval;)

Nuclear Volume 2F 2S 2V
(Um3) x SD x SD x SD

up to 40 1.20 1.30 0.20 0.45; 0.40 0.55
41 - 50 3.40 1.52 5.00 2.00, 1.60 0.55

o- 51 - 60 8.40 3.85 7.20 2.28 8.40 2.07
61 - 70 7.40 6.11 5.40 2.19' 6.6,0 1.32
71 - 80 8.20 1.48 9.00 1.87 11.40 4.72
8l - 90 7.80 2.28 6.80 1.64 6.20 1.79
91 - 100 9.80 4.15 9.60 1.95 10.40 4.04

101 - 110 12.40 3.44 14.80 3.27 12.80 2.59
111 - 120 10.80 2.68 9.60 3.13; 12.80 2.05
121 - 130 4.20 1.30 6.00 2.24 7.20 1.30
131 - 140 7.60 2.30 8.60 1.95' 7.40 1.67
141 - 150 5.40 1.14 4.40 1.14 2.60 1.14
151 - 160 8.80 3.42 5.80 0.84 6.40 2.07x; 161 - 170 1.40 1.14 2.80 2.49 1.80 1.10

`. 171 - 180 1.80 0.84 °'	 2.80 0.45 1.40 1.34
181 - 190 0.80 1.10 0.60 0:55 0.80 1.30

' 191 - 200 0.20 0.45 '1.20 1.30 1.20 0.84;
201 - 210 0.40 0.89 0.20 0.45 0.20 0.45

r* 211 - 220 - - - - 0.20 0.45
221 - 230 - - - 0.20 0.45 1

R - recovery

Sample size (n) is 100 nuclei for each specimen (animal), with five animals P
(500 total nuclei) for each subgroup (2F,	 2S, 2V).
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TABLE III.	 R+29

NUCLEAR VOLUME FREQUENCY DISTRIBUTIONS
(Hean (x) and Standard Deviation (SD) at each 10 pM3 interval)

Nuclear Vblume 4F 4S 4V
(pm3) x SD t SD ai SD

up to 40 1.20 0.80 0.84 0.45 0.40 0.55
41 - 50 3.40 2.30 3.80 1.30 3.40 1.95
51 -_60 7.80 3.56 9.80 4.44: 7.00 1.87
61 - 70 8.20 3.90 7.00 0.71 6.60 2.97
71 - 80 11.80 0.45, 9.20 1.9211 9.80 2.68
81 - 90 9.40 3.,58 8.00 2.74 7.60 3.29
91 - 100 9.60 2.61 7.00 2.92 10.60 2.19

101 - 110 11.60 2.41 12.60 0.89 10-60 0.89
Ill - 120 8.40 4.04 8.40 2.70 11.40 2.79
121 - 130 4.40 3.05 5.60 0.89 6.60 3.71
131 - 140 6.00 2.35, 7.00 2.12 6.00 2.45
141 - 150 4.60 0.89, 5.00 2.24, 4.60 0.89
151 - 160 7.20 2.86 8.00 3.082 8.40 0.89
161 - 170 1.60 1.34 1.00 1.22 1.20 1.30
171 - 180 1.40 1.14 4.20 1.64 2.60 3.13
181 - 190 0.60 01.89 1.40 0.55 0.40 0.55
191 - 200 1.00 1.00 0.60 0.55 1.80 0.84
201 - 210 0.20 0.45 0.40 0.55 0.60 0.55
211 - 220 - - - - - -
221 - 230 1.00 1.00 0.20 0.45

R - recovery

$ample size (n) is 100 nuclei for each specimen (animal), with five
animals (500 total nuclei) for each subgroup (4F, 4S, 4V).
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TADLE_IY

NUCLEAR VOLUME OF PERIODONTAL LIGAMENT FIBROBLAST-LIOM CELLS FOR SPACE
f FLIGHT (F), SYNCHRONOUS CONTROL (S) AND VIVARIUM CONTROL (V) RATS!

TOTAL, SAMPLE*

Time After Flight	 Group x SD n

0 days	 IF 85.90 19.41 $00	 g
(Group 1)	 is 112,69 41.13 500

1V 101.96 38.10 500
f

6 days	 2F 103 i 43 36.41 500
° (Group 2)	 23 10,5.25 36.02 500

2V 104.57 34.75 500

a
29 days	 4F 100.51 38.46 500
(Group 4)	 4S 104.92 38.78 500	 i

4V 105.00 36.02 500

ip *Mean (x),,standard deviation (SD), and sample size (n) for the total
sample (all frequency distribution intervals) of each subgroup, based

3

on quantitation of 100 nuclei from each of five animals (5 x 100	 500)	 -i
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TABLE	 V - TESTS FOR STATISTICAL SIGNIFICANCE*

Interaroue	 iris<`s

Post-flight
Sacrif` ces Times	 A t p

ti 0 days IF vs. 1S	 500 13.20 <.001
(Group 1) IF vs. 1V	 500 8.41 <.003,

Is vs. 1V	 500 4.23 4.007

E
6 days 2F vs	 2S	 500 0.35

(Group 2) 2F vs. 2V	 500 0.22 -r ,
f 2S vs. 2V	 500 0.15

29 days 4F vs. 4S	 500 0.74
(Group 4) 4F vs. 4V	 500 0.81

4S vs. 4V	 500 0.07 -

Int7ragroup Comparisons

1F/2F/4F IF vs, 2F	 500 9.46 <.001
IF vs. 4F	 500 7.57 <<.001
2F vs. 4F	 500 1.22 - x

tS/2S/4S IS vs. 2S	 500 1.25 -
1S vs. 4S	 500 1.22 -
2S vs. 4S	 500 0.17 -

_
1V/2V/4V 1V vs. 2V	 500 0.49

1V vs. 4V	 500 0.62
2V vs. 4V	 Soo 0.09

* n 'ls oucle1 x 5 animl*lss); t refers to Student's t-test;sample size (100
p:s probability based on 499 degrees of freedom -

R
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k TABLE VIII

MIDROOT PDL WIDTH OF ANIMALS
KILLED IMMEDIATELY AFTER FLIGHT

^c

PDL Wi4th; 00)

F

MEAN	 SD	 SEM:.	 n

$ IF	 IMOO	 6,52	 2,02	 5

1S	 148.75	 7.4 0 	 3.31	 5

E
1V	 147.5 0 	17.50	 7.63	 5

IntergrouP t-tsst r

t	 D.F.	 P

IF vs. 1V	 4. 97	 4	 <. 01

1V vs. 1S	 0.10	 4
a

IF Vs. 18	 9.69	 4	 <.001

';
N
u

TABLE IX

PDL NUCLEAR DENSITY OF ANIMALS KILLED
IMMEDIATELY AFTER FLIGHT

5

Nuclei/10OW2 of Midroot PDL

MEAN	 S.D.SEM	 fl

IF	 0.292	 0. 011	 0.005

1S	 0.289	 0.014	 0.006	 5

1V	 0.282	 0.006	 0.002	 5
F

Intergroup t-tests
t	 D.P.	 p

IF Va. IV	 1.667	 4

1V Va. is	 1.000	 4	 -

IF vas,, is	 0.375	 4 z

a^
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TABLE X

CALCULATED TIME AFTER RETURN TO 1G FOR BONE FORMATION TO BE REINITIATED

COSMOS 782	 3.5 days

COSMOS 936	 2.3 days'

COSMOS 1329	 2.8 days i

p
average	 2.9 days

a	 y

a

These data are from cross -sections of rat tibia at the tibiofibular junction
and were taken from Cosmos experiments K005, K205, and K305; bone formation
rate was measured using tetracycline labeling. The calculations were based
on the amount of bone area formed in those animals sacrificed immediately
following flight versus the amount of bone formed in those animals which
received a second tetracycline label following return to earth (3 days
postflight in-Cosmos 782, & days postflight in Cosmos 936, and 5 days
postflight in Cosmos 1129). The difference between these 2 values was

^.

	

	 divided by the rate of bone formation of the synchronous rats for the flight
period to give the number of days of bone formed during this period. To
determine when bone formation was reinitiated, the latter value was
subtracted from the number of days between recovery and the second tetra-
cycline injection. Interestingly, Cosmos 782 rats injected postflight.
formed slightly less bone during the flight period than did those animals
sacrificed immediately following flight; however, a very faint second label

f	 given 3 days after flight suggested that bone formation was, indeed, just
i	 being reinitiated.
r
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Figure l - Frequency distributions of nuclear volume for Group 1, killed
immediately after 18.5 days of space flight. 	 The 18.5 days fl,ight,^ synchronous
control and vivarium control curves correspond to the 1F, 1S and III subgroups,
respectively (Tables I-TII).	 The sample size for each distribution is 500

i (5 animals x 100 nuclei).
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Figure 2`- Frequency distributions of nuclear volume for all flight animals.
The flight, F+6 days and F+29 days curves correspond to the 1F, 2F, and 0
subgroups, respectively (Tables I-IT.1)„	 The sample size for each distribution
is 500 (5 animals x 100 nuclei).
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Figure 3 - Mean nuclear volume for the four histological zones of the PDL from
rats exposed to 18.5 days of weightlessness. The crosshatched area is the
vivarium control range, which is the mean + 1 standard deviation of all four
zones combined. Immediately
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significantly (p <.01) less thanrvivarium(controls.zo
nes I II and III are
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Figure 4 Mean nuclear volume for the four histological zones from synchronous 	 a

i	 control rats. The crosshatchedarea is the vivarium control range, which is
x	 the mean + 1 standard deviation of all four zones' combined. Immediately after

flight .(0 days), mean nuclear volume of zone T is significantly (p < .01)
greater than vivarium controls.
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K 305; QUANTITATIVE ANALYSIS OF SELECTED BONE PARAMETERS

3	 SUPPLEMENTAL REPORT 2; BONE ELONGATION RATE AND BONE MASS IN

3 METAPNYSIS OF LONG BONES

W.S.S. Jee, D.B. Kimmel, C. Smith, and R.B. Dell

Division of Radiobiology, Department of Pharmacology

`° '	 Bldg. 351, University of Utah

_	 Salt Lake City, UT 84112

SUMMARY

The proximal humeral metaphysis of rats from time periods recovery

plus zero days (R+O), recovery plus six days (R+6), and recovery plus

twenty nine days (R+29) :.as analyzed.	 The volume of calcified carti-

lage and bone in flight and synchronous controls was reduced in groups

R+0 and R+6, but was normal in group R+29. 	 The number of functional

bone cells (osteoblasts and osteoclasts) was decreased in proportion

to the amount of bone in the early groups, and was normal in the last
r
t group.	 The fatty marrow volume was increased only in flight animals

of groups R+0 and R+6, but was normal in.the R+29 group. 	 Accumulation

of excess fatty marrow was seen only in flight animals.	 The decreased

amount of bone and calcified cartilage is believed tobe the result of
E

a temporarily slowed or arrested production of calcified cartilage as

t a substrate for bone formation. 	 This would have resulted from slowed
T

bone elongation during flight and synchronous control conditions.

µ Bone elongation returned to normal by twenty nine days after return.

}
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INTRODUCTION

The purpose of this study 1s to determine whether bone elongation

rate and bone cell number in the metaphysis of long bones are altered

by Cosmos 1129 spaceflight. The proximal humeral metaphysic from ani-

mals of groups killed at recovery plus zero days (R+0), recovery _plus

six days (R+6), and recovery plus twenty-nine days (R+29) was measured

using quantitative light microscopic techniques (1). An attempt was

made to measure the rate of bone elongation directly in the proximal

tibial metaphysis by the use of tetracycline labeling.

MATERIALS AND METHODS

Specimen Processing'

Upon receipt of the left proximal humerus, a parasagittal slice

containing growth plate and adjacent metaphysis was cleaved for elec-

tron microscopic studies (see Supplemental Report 3A). The remaining

portion was decalcified, trimmed to one cm in length and parasagit

r	 tally halved, and embedded for parasagittal sectioning. Sections were

i	 then prepared, all as previously described (1).

The tibia was trimmed to leave only the most _proximal one cm. A
'^

	

	 x

frontal cut was made to expose the epiphysis, growth cartilage, meta

j	 physis, and marrow cavity. These specimens were gradually dehydrated

in increasingly concentratedentrated acetone, and then embedded in ulethyT
r

k	
methacrylate. Fifteen ten-micron thick frontal sections were prepared

with a motor-driven Jung microtome (2). They were affixed to glass

slides with Haupt's adhesive. Coverslips were affixed to the un-

stained sections with Permount.

f^
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The remainder of the embedded sample was sent to the bone la_bora-

tory at NASA-Ames where 100 jrm-sections were cut with a Gillings -Hamco

thin sectioning machine. The sections were returned to Utah, where

microradiographs were prepared (12 kV, 26 mA, 3 minutes; Spectroscopic

Plates X1649-0, ;Eastman Kodak, Rochester, NY). The microradiographs.

were shipped to Dr. Judy at Baylor for laser analysis (see Supplemen-

tal Report 3B)

' Microscopic Examination

6
s

One section of the proximal humerus of each animal was randomly

selected, blind-coded, and subjected to quantitative histologic analy-

sis by a trained operator.	 The method is identical to that previously

described (1).	 In addition, the number_of Merz grid points over fatty

and red bone marrow was counted. 	 It resulted in presentation of vari'-

ous quantitative histologic parameters from a series of metaphyseal

tissue bands of increasing age, whose physical locations were 0.108,

0.324, 0.768, 1.182, 1.620, 2.052, 2.484, 2.91,6, 3.348, and 3.780 mm

on center from the growth cartilage-metaphyseal junction (GCMJ). 	 Pre- °	 a

' vious'ly established criteria of bone cell identification were used (1), 4

The following parameters were calculated for each band analyzed

i'n the metaphysis:	 1) fractional bone volume, 2) fractional calcified

cartilage volume, 3) osteoblast number, 4) osteoprogenitor cell number,-

5) osteoclast nucleus number, 6) osteoblast number/surface area of

bone, 7) osteoprogenitor cell number/surface area of bone, 8) osteo-

f.
clast nuclei/surface area of bone, and 9) fractional fatty marrow vol- Sgt

{ ume.

e
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The 14 um sections of the proximal tibia were examined under ultra-

violet light for thelocation of tetracycline label, with theAntent of

measuring the amount of longitudinal growth which had occurred since

the time of administration of the label.

Data Processing

The raw data from each individual field of each band of each bone

was coded into a Hewlett-Packard 9825 desktop computer and stored on

tape, The values for each parameter for each group in each band were

compared. Paired t-tests' were done for each of the calculated parame-

ters from the different groups. Figures comparing quantities of the

various parameters as a function of distance from the 'GCMJ are presen-

ted (Figs. 1-15).

RESULTS
k

The tetracycline label was present, but of such low intensity that

it was inadequate to allow measurement of the bone elongation rate. 	 j

For each parameter, the important changes in the minds of the in-

vestigators are described. 	 y

Bone Volume '(Figs. 1-3)

All vivarium control animals showed a marked maximum for bone vole-
.	

^	

b	 ,'

ume in the area 0.3-0.8 mm from the GCMJ. The flight animals showed

no such maximum in the R 0 and R+6 groups. However, in the R+29 group,

there was no apparent difference between the vivarium controls and the

^ fEE{f=	 flight group. The synchronous controls showed an intermediate trend

which tended to resemble that of the flight animals more than that of

the vivarium controls.
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Calcified Cartilage Volume (Figs. 4-6)

As with bone volume, there was less calcified cartilagein the

0.3-1.1 mm region, in the flight animals of Groups R+O and R+b, when

compared to the vivarium controls. Again, in Group. R+29, there were

no appreciable differences between vivarium control and flight groups.
VW

The synchronous animals again tended to resemble the flight group.

Osteoblast Numbers (Figs. 7-9)

;y	
In flight animals of Group R+0 and R+6, there were fewer osteo-,F

blasts in the area between 0.108 and 0.768 mn of the GCMJ, where most

bone formation activity is normally found. In Group R+29, there was
'i

no such difference. It was not clear where the synchronous group fell.

Osteoprogenitor Cell Numbers (Figs. 10-12)
}	 t

There was no convincing difference in osteoprogenitor cell num-

ber among any groups at any time. There was an overall tendency for

there to be fewer osteoprogenitor cells in flight and synchronous con-

trols, when compared to vivarium controls.

_ Osteoclast Nucleus Number (Figs. 13-15)

There were fewer osteoclast nuclei in the flight and synchronous

r	
;

animals of Groups R+O and Group R+6, than in thevivarium controls, 	 i

while there were no differences in Group R+29.

Fatty Marrow Volume (Figs. 16-18)

F

	

	
There was more marrow space occupied by fat in flight animals of

i

Group R+O than in either synchronous or vivarium controls. This was

less marked in Group R+6, and no longer noticeable in Group R+29. It

is particularly of note that the flight and synchronous controls were

l
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different for this parameter, while they were similar for hard tissue

a

mass and cell numbers.

Cells and Nuclei per Bone Surface

In all cases, when cells were evaluated based on the perimeter of

bone surface available, there was no difference from the interpreta-

tions which were based upon cells and nunlei/area of tissue.

DISCUSSION

It is our interpretation that the study demonstrates a reduction

in bone and calcified cartilage volume in flight-and synchronous ani-

mals, in a region of the metaphysis where a maximum is seen in controls

(0.3-0.8 mm from the GCMJ). This is associated with a decreased num- 	 r

ber of functional bone cells (osteoblasts and ostedclasts) in both

flight and (probably) synchronous groups. There was an increased

amount of fatty marrow in flight animals when compared to both synchro-

nous and vivarium controls. These changes persist at six days after

recovery, but seem to have subsided by twenty nine days after recov-

ery, when the appearance of the metaphysis ` had returned essentially to

normal:	 ?

The decreased amount of bone and calcified cartilage is probably

due to a decreased roduction rate of calcified cartilage-cou led withpp 	 A,

a normal or mildly decreased rate of removal. Though it is conceiv-

able that the decreased amount of either calcified cartilage or bone

could be due to a normal rate of production coupled with an increased

rate of removal, the reduction in function of bone cell population

sizes makes this an unlikely explanation. The most likely explanation

r
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is that the function of the growth cartilage in providing calcified

cartilage as a substrate for bone formation has been temporarily slowed

or arrested by the experimental treatment of flight and synchronous

control animals. This leads to the conclusion that the growth carti-

lage is functioning at a slower rates which results in a slower rate of

bone elongation. This is not an unreasonable conclusion because inhi-

bttion of bone.elongation and a reduction in primary spongiosa hard

tissue mass have been reported in two previous Cosmos experiments

(4,5)•

The impression is that the synchronous group shows changes quite

similar to those of the flight group. It is unfortunate that the pro-

per statistical analysis of the data, one which considers the trend of

a particular parameter through the complete metaphysis'(6), is not

available at the present time. If this synchronous group did indeed

prove to show significant changes quite similar to the flight animals,

this would indicate that the general stress as well as the flight it

`

	

	 self, had an effect on the rate of bone elongation. The appearance of

excess fatty marrow in flight animals and not in synchronous controls

is at least one specific effect of flight over and above the synchro-

nous conditions.

It is also clear that the metaphysis has returned to normal by

the end of the twenty nine day recovery period. It is reasonable to

assume that the bone elongation rate, which was slowed or arrested

during flight, resumed shortly after the return and after several z

F

weeks provided, sufficient calcified cartilage that bone formation

i{
a,
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could begin anew and metaphyseal bone mass could again approach that

of controls.	 It is vitally important to point out that the recovery

of bone mass in these animals is associated with a resumption of activ-

ity of a growth cartilage.	 It is recommended that all future experi-

ments dealing with growing animals shouta be designed to determine di-
k

r rectly the rate of bone elongation.	 The fact that these growing ani-
t

mall recovered bone mass in the month following spaceflight has no re-	 r

lationship to what might happen in a mature animal where epiphyseaT

growth cartilages have long since closed.
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while flight animals show still legs.
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mals is decreased in the 0.168 - 1.620 regions.
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Figure 14. Osteoclast Nucleus dumber as a function of distance

from the growth cartilage metaphyseal junction is
plotted for Group R+6, The osteoclast number remains
basically low in the flight and synchronous animals	
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(0.768 1.62 mm) when compared to the controls.
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from the growth cartilage metaphyseal junction is
plotted for Group R+29. There is essentially nodir.`
ference in the curves now, indicating that the ap-
pearance of the metaphysic 'is relatively normal.
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Figure 16.	 Fraction of Metaphysis Occupied by Fatty Marrow as a

function of distance from the growth cartilage meta-
physeal junction I;s plotted for Group R+O.	 There is
markedly more fat in the .narrow of flight.. animals t

than in either synchronous or control animals all 3
through the metaphysis.
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volume of fatty marrow is markedly reduced in flight4.
animals, but is probably Somewhat above control 	 jlevels.4
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SUPPLEMENTAL REPORT 3A:

i`r TRABECULAR SPACING AND ORIENTATION IN

THE LONG BONES
{

} M. M. JUDY, DEPARTMENT OF PATHOLOGY,

BAYLOR UNIVERSITY MEDICAL CENTER,

^ DALLAS, TEXAS	 U.S.A.

SUMMARY

Values of mean trabecular spacing computed from optical diffraction
t patterns of 1:1 x-ray micrographs of tibial metaphyses and those
r obtained by standard image digitization techniques show excellent

agreement.	 Upper limits on values of mean trabecular orientation
deduced from diffraction patterns and the images are also in excellent
agreement.	 Values of the ratio of mean trabecular spatial density in
a region 300,A m distal to the downwardly directed convexity in the
cartilageg	 growth plate to the value adjacent to the plate determined
for flight animals sacrificed at recovery were significantly smaller
(P410.2) than values for vivarium control animals. 	 No significant
differences wer° found in proximal regions. 	 No significant differences
in mean trabecular orientation were detected. 	 Decreased values of
trabecular spatial density and of both osteobl.astic activity and
trabecular cross-sectional area noted in collateral researches suggest
decreased modeling activity under weightlessness
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INTRODUCTION

The primary objective of this research was to quantitatively

determine, by optical diffraction techniques, changes in trabecular

spacing, (i.e., areal density) and orientation under effects ofr,

weightlessness.	 One major goal of the proposed, research was to study

changes throughout the area and height of both primary and secondary
a,

spongiosa in a trabecular region which is primarily weight supporting.

The second research goal was comparison of measured values of chan^3es

in metaphyseal trabecular cross-oectional area, and metaphyseal

osteocl.astic activities, deterriired in collateral researches with the

changes in trabecular spacing and orientation determined from this

research.

BACKER	 D^ti	 AND RATIONALE- 

Radiographic measurements of bone density in Skylab astronauts (l}

showed significant bone loss in os calcis after 59 and 84 days oft

flight; no density changes were detected in radius or ulna.	 These data

suggest mineral loss is prevalent; in weight bearing bones.

{

Optical micrographic studies of the metaphyses-of young rats after

k
22 days of space flight showed significant decrease in number of

' trabeculae within the primary spongiosa (2). 	 However, no quantification

of changes in trabecular spacing or orientation were performed.
H
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r

diffraction techniques, both experimental, and theoretical,Optical

for determining mean trabecular spacing and orientation have been

developed (3). These techniques are applicable to trabecular bone

because plastic imbedded sections and x-ray micrographs of sections

behave optically as quasi-periodic diffraction gratings. In the case

of the actual thin sections, the grating is comprised of alternating

regions of different refractive index and, in the case of the x-ray

micrographs,''it is comprised of alternating regions of emulsion having

different optical transmissivities
t

One advantage of the use of optical diffraction to determine mean

trabecular spacing and orientation over image scanning techniques is

that a single diffraction pattern contains unique information about

these parameters for all trabeculae in the field sampled by the incident

light beam.	 Furthermore, for trabecular arrays in which the spacing
s

and orientation are quasi-periodic and characterized by distribution

functions, an additional important advantage of optical diffraction
f

t	 techniques is that the contribution to the diffracted light intensity

from each diffracting element (e.g. trabecula) is correctly weighted

according to its position in the distribution function mathematically

describing the variation of the structural parameter about mean values.

This weighting arises from the integration of the diffracted light

intensity over the distribution function W.	 Additionally, thev

shape and height characteristics of diffraction peaks along the

F	
meridional direction from approximately periodically spaced diffract-

ing arrays (e.g. trabeculae or myofibrillar sarcomeres) have been

shown to depend directly on the standard deviation of the distribution
. a
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function describing their spacing and the correlation oi' spacing

between serially arranged diffracting elements (4). Further work (5)

has shown that the presence of tilting of the diffracting elements

relative tq,each other and the distribution function describing the

variation of the angle of tilt about its mean value uniquely affect

peak height and width along the equatorial direction (perpendicular

	

h	 to the meridional direction) of the -diffraction pattern. These results

suggest that the distribution functions characterizing trabecular
r

spacing and orientation can be characterized from analysis of diffraction

peak shale

METHODS

P

a
t

`bearing and locomotion was studied.

Longitudinal, plastic imbedded sections of tibia and 1:1 x-ray

micrographs of these sections were used in the optical diffraction

measurements. Both 100 .Apoand 3-^i thick sections, unstained and

stained with Wilder's stain (6) to darken the bone relative to 	
g.

s ,	 z	 .

cartilage and plastic were studied. The x-ray micrographs studied s

were of the 100 4*thick sections and were obtained at 5 kv using 1.25

min e3:posure times. Sections and x-ray micrographs obtained from

180
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We use optical diffraction measurements to determine the magn

tudes of changes in mean trabecular spacing and in mean trabecular

orientation. The trabecular region immediately below the inferiorly

directed convexity of the cartilage growth plate which is functionally

related predominantly to sustaining mechanical forces of weight



in this study.

The optical diffraction measurements and their analysis have been

described previously (3). The measurements were performed using the

optical diffractometer shown schematically in Figure 1. The helium-neon

1

FY.

z
E
i

laser provided :monochromatic light of 632.8 rim wavelength.	 The inten-

sity of the sight incident upon the sample was modulated by the

polarizing optics.	 The light diffracted by the sample was focused

upon, the target of the detector vidicon by the Fraunhoffer lens. 	 Use of

lenses of up to 133 cm focal length ensured that Fraunhoffer or far-

field diffraction conditions (7)	 were met for trabecular arrays with

spacing less than 160.,A m.	 Under these diffraction conditions analysis

of diffraction patterns for mean trabecular spacing using equations

(3, 4, a) derived using straightforward Ki.rchoff scalar field d ffrac=

tion theory (9) is valid.	 The detector electronics were modified (3)
a

so that the diffraction pattern could be displayed on a monitor and

the diffracted light intensity along any one of 256 scan lines could be

displayed on the oscilloscope and routed to the PDP-11 computer of the

associated data acquisition system for signal avere.gi.ng to reduce

effects of random noise due to detector 'dark current and laser light

intensity fluctuations. 	 Reproducible patterns with acceptable signal{

to random noise levels were obtained as the average of 10-20-line scans i

for all samples studied.

The sample could be moved in the plane perpendicular to the incident i

light beam so that various regions of the trabecular array could be .;
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positioned opposite to the 100,or m x Imm slit used to limit the areal

extent of the incident light. In this way, any region of the trabecular

array, 100 omx 1= in size,, could be chosen for study. For this research

each sample was placed so that diffraction patterns were obtained from

four contiguous regions, each 10oom in height and located sequentially

away from the cartilage plate. The trabecular area denoted by Region A

was located so that the 1 mm, long upper edge of the slit was tangent to

the apex of the contour of the downwardly directed convexity of the

cartilage growth plate. Region B through  in order were located at

100p in increments away from the initial position of A. In this 'way,

mean tr0ecular spacing was determined at distances of 0" 100 9 200, and

30 
OO 

m. away from the tangency point of Region .A and the cartilage plate.

For 
all 

of the measurements the nominal orientation of the

trabeculae was parallel to the height of the slit and thus perpendicular

to the tangent line at the cartilage -mate. Therefore the region of

the trabectilar array of each sample defined by the slit at each

measurement position behaved as a linear grating because of the alter-

nating optical refractive index. properties of trabeculae and plastic

in the case of the actual sections and alternating clear and darkened

areas of emulsion in the case of the x-ray micrographs.

Previously developed theory (4, 5 1 8) has shown that the location

of the centroid of major order meridional diffraction peaks is direotly

proportional to the inverse of the mean value of the spacing between

regions of alternating refractive index or optical transmission, hence,

to the inverse of mean trabecular spacing. The proportionality constant
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depends on the known values of the focal length of the diffractometer

and the wavelength of the monochromatic laser light incident Ripon the

sample (10) Accordingly mean trabecular spacing for each region was

computed from the distance between the centroid of the first order

diffraction peak and the zero-order peak or undiffracted 'beam (3)

The amount of displacement or smearing of meridional peak

intensity in the perpendicular equatorial direction has been shown to

depend directly on the mean angular orientation of the diffracting

elements of trabeculae relative to the vertical axis of the slit (5).

For small angular ti1 :t the equatorial displacement was found to scale

directly with the mean tilt ang e 9 this being zero for zero Lean ^, 4 l t

For purposes of comparison with results of diffraction measurements,

values of mean trabecular spacing were obtained From projected images

of l.Ox optical micrographs of the I:l k-ray micrographs using standard

digitizing techniques Care was taken to include QAl.y those trubeculae

actually within each region as defined by the slit for the diffraction.

C

	 measurements. Accuracy of the digitized values is estimated to be 1%

for a trabecular spacing of 30,,+m and 0.31, for a value of 100 M.

This uncertainty is attributed to the 100m resolution of the position

F	 of the digitizing cursor during operation.

RESULTS AND DISCUSSION

3

`
	

Diffraction patterns obtained from 100m thick: sections, both

heavily stained with Wilder's stain and unstatned, were -'extremely noisy

184



and contained no recognizable diffraction peaks vith uniform spacing

which related to trabecular spacing or orientation. Polishing of both

surfaces of the plastic embedded sections and/or immersing the section

in a uniform thickness of oil 
having the 

some refractive index (1,49)

as the plastic resulted in 4 lose noisy pattern, but recognizable

diffraction peaks were not obtained. This result is attributed to

Intense geometrical scattering (11) by interlayored calcified co&Ilage

and bone in these thick sections.

Both unstained and Wilders stained 3-5.A m thick sections surround-

ed with refractive, index matching oil have yielded diffraction patterns

;whiah were noisy but contained recognizable diffraction peaks with

L uniform spacing unil quely related to la7albecvaar apdaing in the secondary

spongiosa.	 Patterns from the primary opongloss, in both stained and

unstained sections contained no recognizable diffraction peaks.

Diffraction.peak amplitudes in patterns obtained from the secondary

r spongiosa In unstained bone were very small indicating a very smallF.
difference in refractive Index, and hence, optical path difference (12),

between bone and plastic.	 Peaks in patterns obtained from the secondary

1.
spongiosa, of intentionally overstained bone sections (3) were

x.
larger in amplitude, indicating that, at least in part, the tr4l,'.ecalar

bone was behaving as a linear diffraction grating covipriaed of

alternating dark and light areas.	 However, noise due to scattering

from smq.211 size organic and mineral constituents (13), and from optical

path differences due to uneven bone thickness, severely redUced the

precision with which trabecular spacing could be determined,

185



bitch of recognizable diffraction peaks :from the primary apongiona

of stained and unstained sections is attribute4to a combination of noise

4u* to scattering as described above, and amall amplitude of diffraction

Soak due to the closevese in dimensions of trabecular spacing and width

of marrow cvylty. This closeness In values of the dimensions leads to

a small value near zero for the amplitude off' the pattern of light

dirfracted by each marrow cavity (14) in the vicinity 
of 

the diffraction

peak A

Judged on the basis of signal to noise ratio of the diffracted

Light intensity, the diffraction patterns of beat quality were obtaited

from the ',-mray micrographs. Those obtained from micrographs of 'bone

Ifrom fli ght animals were usually less noisy than those obtained from

.micrographs of vivarium control animal sections. This is attributed to

the pre4ence of fewer grey regions in the flight animal micrographs.

As a consequence, these Images of the trabecular array better approximate

a true amplitude grating in which light transmissive areas alternate

with completely light absorbing areas. However, the noise present in

patterns obtained from vivarium control animals was not of sufficient

magnitude to 'prevent their use in computing mean values of trabecular

spacing or i.n estimating mean trabecular or i entation. Typical

diffraction patterns obtained from x-ray, micrographs of flight and

vivarium control animals are shown in Figures 2 and 3.

Examination.of the diffraction, patterns shows that the single first

order diffraction peak of the hypothetical trabecular array with per-

fectly periodic spacing has split into subpeaks. This phenomenon,
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Figure 2. 0 ical diffraction patterns from four contiguous regions,
A through. D of tibial metaphysis of vivarium control animal 6. The
regions were loceted at 0,'100,200, and 300,A m distal to the
downwardly directed convexity of the growth plate. The dots on the
horizontal axis of each pattern locate the centroid'of the first order
diffraction peak comprised of all subpeaks between vertical bars.

+	

t 	
.,._

ORIGINAL PAGr. is
OF POOR QUALITYry	

187

v	 ,

i



r
a	 i

i, 1

•

B	 {}

it
1 a

•

D. 1

'
.art	 !•	 •^w..•	 .	 i. 	 Y

i

Figure 3.	 Optical diffraction patterns from four` contiguous regions,'
A through D of tibial metaphysis of flight control plus zero animal 7.

f The regions were located at 0, 100, 200 and 300,,.#* distal, to the
downwardly directedd convexity of the growth plate. 	 The dots on the

F horizontal axis of each pattern locate the centro.d of the first order
diffraction peak comprised of all subpeaks between vertieal,_hars.
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typical. of all sections studied, shows that the trabecular array is

only quasi-periodic in these samples. Additionally, splitting into

subpeaks suggests spatial correlation between serially arrayed trabeculae

(4). Preliminary analysis of the digitized data shows that values of

trabecular spacing near the middle of the array within the optical slit

a
dij/ing diffraction are usually smaller than those for trabeculae located

p'^arer each end of the slit. Thus, these trabeculae are roughly

{	 ;Arranged into three seriO zones with at ,least the middle one having a

different mean value of trabecular spacing. We are currently extending

hour previous theoretical treatment of diffraction by an array of serial

domains with different characteristic values of diffractor spacing to

include effects of statistical fluctuations in spacing about; mean values

in hopes that a complete analysis of the diffraction pattern for values

of modality, population fraction, and standard deviation can be obtained

in order to characterize not only mean trabecular spacing but also its

distribution function.

r	 Values of mean trabecular spacing calculated from the position of 	 a
7

the centroid of first order diffraction peaks ^md values obtained by

digitization of the micrographic images are presented in Tables I and

ST for vivarium control and flight animals, respectively,, Values of

A	 the standard deviation computed from digitized data accompany each

`	 - mean value, These ;typically are largecompared to 	 uncertainty	 1.
j

of l% or less in the mean value introduced by dig itization error.

Values of mean trabecular spacing X computed from diffraction patterns

are stated within an estimated error given by
2 EX/

a
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in which Eh is she error in the average subpeak hei ght and A is, the

integrated area of the first order diffraction peak.	 The quantity Eh

is estimated to be of the order of .01 times the average subpeak height.

P This error equation was derived by straight-forward application of the

theory of propagation of errors to the defining integral equation for the

centrod,

t
' The data of Tables I and TI show values of mean trabecular spacing

j
. obtained by optical diffraction technique and values obtained by image

Ji

digitization to be in excel.lvat agreement.	 This .result and that obtained

N

previously (3) suggests that the use of optic al diffraction measurements

r

gives reliable values of mean trabecular ,spacing.
^

Examination of Tables I and II show that for each animal mean

trabecular spacing increases with distance away from the cartilage plate

in both vivarium control and flight animals.	 However, values of mean	 1

trabecular spacing in Regions A through D averaged for all vivarium
r

j cortrol, ttncl all flight animals have not been directly compared	 This is
i'

F; because of the unknown relationship between the plane of the longitudinal

tibial, section and the two directions of maximum lateral packing

density of the trabecular array. 	 If the plane of the section were to
r

contain one of the directions parallel to tightest packing, theta the

r measured value of mean trabecular spacing would be its minimum.. 	 If,

f however, the section were to be oriented along the diagonal. to this
r

tightest packing direction then the value obtained would be a maximum.

i
In order to provide a basis for comparison of trabecular spacing in

g

control axed flight animals	 the ratio; of mean trabecular spacing

r 190



i
TABLE I

MEAN TRABECULAR SPACING X

VIVARIUM CONTROL, R + 0

Animal	 Metaphyseal Region

-aab
A B C D

s
}k 1. 53.6 + 1.1 67.8 + 1. 5 89.8 + 1.,1 109.9 ± 1.3
a 53.0 112. 65.6 ± 16.8 91.3 ± 19.4 110.2 ± 26.4

2. 36.7 + 1.4 43.0 + 1,.0 53. 4 + 240 61.3 ± 1.5

34.8 112-7 4o.6 + 21.1 51.4 + 201 58.9 + 12.9s
f

3. 4o.i + 2.0 52.0 + 1.6 58.6 + 2.4 68.4 ± 1.5
39.8 ± 17.5 50.7 117.5 56.1 7 19.9 66.9 + 16.9

4. 42.3 + 1.9 46.3 + 1.7 60.6 + 2.0 90.9 + 1.8

40 .$ + 13. 2_ 44.7 + 23.5 61.9 +-._ 19.5 88.2 + 31.2
a

3 5. 53.8 ± 2.0 59.7 + 1.3 71 .7 + 1 .4 85.8 + 1.2
3 54.8 + 1,0.4 59.9 + 28.0' 7o:4 + 24.6 85.2 + 32.5

6. 53.5 +_ 1.9 72.8 ± 1.3 80.3 + 1.6 90.5 ± 0.9
51.9 ± 19.3 76.6 + 22.7 78.4 + 24.7 91.1 + 22.9

7. 50.7 + 2.6 6o.4 + 1.3 88.6 + 2.8 97.0 ± 2.13
48.8 ± 19.3 61.5 +_ 18.7 87.4 + 32,0 95.9 ± 4o.4

r	

i ^

t

a. Values are given in microns; first value is from diffraction
data (X + E); second is from digitized image (X + S. D.).

i
b. Regions A through D;respectively are located 0, 100, 200, and 300

microns distal to the downwardly directed convexity in the cartilage
plate.

1

z
i
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TABLE IZ

MEAN TRABECULAR SPACING

FLIGHT ANIMALS, R + 0

Animal Metaphyseal Region

A
alb

B
C

D

1. 49.4 ± 1.1 6o.1 ± 1.4 64.'T ± 1.3 91.5 ± 3.6

50.1 ± 21.1 61.5±15.7 63.3± 21. .7 88. 0 ±WA

2. 41.7 _+ 2.2 58.6 + 2.4 62.5 + 1. 7 75.1E + 1.0
39.2 +_ 12.1 57.9 ± 22.9 63.9 ± 27.1 'T6.0 +_ 37.4

3. 44.8 + 1.4 49.9 + 1 .4 61.0 ± 1..9 66.5 ± 1.3
45.2' 22.3 48.8±15.1 61.5 T21,.7 65.1±23.5 ^	 1

4. 35.2 +1.5 54.8+ 1 .6 58.7+2.3 1.24.7±1..2
36.2 +_ 10.3 5 3. 7 ± 20.5 59.7 + 1.8.7 126.7 ± 37.4 p

_

5. 46.o + 2.2 53.3 + 1.5 62.9 ± 1.3 84.3 + 3.7
45.2 + 16. o 52.4 +_ 16.9 62.1 + 19.3 82.0 + 33.2

6. 45.6 + 2.3 55.0 + 1.3 76.5 + 1.1 207.7 + 6.3
47 .0 ± 19.3 56.7 +_ 22.3 77.2 + 30.1 208.0 ± 83.0

7 45.0 ± 2.3 52.3 + 1.9 67.0 ± 2.5 89.2 ± 1.0
42.2 ±11.5 50.7±23.5 67,5±24.1 91..1.±16.3

a.' Values are given in microns; first value is from diffraction data

(X +-E); second is from digitized image (X + S. D.)

b. Regions A through D respectively are located 0, 100, 200, and 300

' microns distal to the downwardly directed convexity in the cartilage f

plate.

E

F
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TABLE .III
µwk

RATIOS OR MEAN TRABECULAR SPACING

s

VIVARIUM CONTROL, R + 0

.Animal Metaphyseal Region_
1

y'
Aa	 B	 C D

1 1	 1.26 	 1,68 2.05

ti 2 1	 1.17	 1.46 1.67
i

3 1	 1. 30	 1.46 1.70

4
4 1	 1.09	 1.43 2.15

5 1	 1.19	 1.33 1.59

6 1	 1.36 	 1.50 1.69

7 1	 1.19 	 1.75 1.91

Mean ±S.D. 1	 1.21 ± 0`.16 	1.52 ± 0.19 1.82 ± 0.25

a.	 Regions sequentially distal. at 0, 100, 200, 300 microns to the
downwardly directed convexity in the growth plate,

^I

i
.

4
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3
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TABLE IV

RATIOS OF MEAN TRABECULAR SPACING

(XK/XA ), K = A, B, C, D

FLIGHT ANIMALS, R + 0

`
x

Animal Metaphyseal Region

A B	 0

1 1 1:22	 1.31 1.85

2 1 1.41	 1.50 1.93

3 1 1.10	 1.36 1.49

4 1 1.55	 1.66 3.54

5 1 1.16	 1.37 1.81

6 1 1.21	 1.68 4.56

7 1 1.16	 1.49 1.98

Mean +S.D. 1 1 .26+0.15 	 1.48 + 0.17 2.46 + 1.0

1

a.	 Regions sequentially distal at 0, 100, 200, 300 mitarons to the
downwardly directed convexity in the growth plate, j

e

v

s:
fl	 ,

r ^	
i

6
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P

determined in each region, A through D. to the value determined for

Region.A was computed for each animal. This ratio does not depend 'upon

the angular orientation of the section plane and the tightest packing

direction provided that the lattice of trabeculae does not twist about

a direction parallel to the trabecular- axis with distance from the

cartilage plate. The long relatively straight trabecular contours

evident in the micrographs suggest this provision is met in the samples

studied. Value of the ratios of trabecular spacing in vivarium control

and flight animals, respectively, are presented in Tables III and IV.

i

1

It is worthwhile to call attention to the physical picture

described by these ratios. They not only mirror the increase in mean

trabecular spacing with increasing distance away from the downwardly
i

` directed convexity in the cartilage plate but their inverse represents the

decrease in meaty trabecular density.	 Thus, ratio values for, say, thef

hypothetical average flight animal show that for every 10 contiguous
a

trabeculae arrayed over the distance 10 XA , where XA is mean trabecular

spacing in Region A. there are approximately 8,7, and 4 arrayed over
i

the same distance st, distances of 100, 200, and 300.,a m away from the

:J cartilage plate.	 Therefore, mean trabecular density has decreased

respectively to approximate values of 8/(10RA )t MORA), and 4/( 10^A)'.
t

Comparison of values averaged over the vivarium control and flight
}

animal group shows a significant increase (M.2, student-t test) in

the value of the ratio of mean trabecular spacing in Region D (300 ,Am

distal. to Region A) to that in Region A for flight animal a relative to,
a

vivarium control animals. 	 Differences between ratios computers for
i

195

I



Regions B and C (100 and 200r m distal to A) were judged to be

insignificant (P!1 0.8) .

Values of mean angular trabecular orientation were found to deviate

/ by less than t 5 deg. from alignment perpendicular to the uangent line

^,	
f

to the apex of the inferiorly directed convexity of the eartil,agfi plate

for all vivarium control and flight samples studied.	 This upper limit

{ to angular misorientation was established by noting that angular

shifting of any first order diffraction peak or of the mean trabecular

trajectory in the micrographic image was less than 5 deg. relative to
cursors on the diffractometer monitor and digitizing table.

The increase in the ratio of trabecular spacing at 30OMm distal

to that at the cartilage plate in the flight animals means that the

linear trabecular density at this distance decreased under the reduced

loading of weightlessness. 	 This decrease and that notable in more

distal regions by even casual visual observation probably reflects

Macreased modeling activity under weightlessness as evidenced by de-

creased osteoblastic activity (15) and decreased trabecalar area (16)

in this and proximal regions.
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INTRODUCTION

E

The major objectives of this project were;

1, A microscope study of growth plates and metaphyseal trabeculae to

assess the type and functional state of bone cells and to char-

acterze the zone of calcification of the cartilagenous growth.

plate, particularly the presence and condition of matrix vesicles.

2. An optical birefringent study of the trabeculae in order to assess

trabecular number, size, shape, and orientation as it is presumed

that this metabolically active bone will reflect subtle changes that

may result from a zero-gravity condition.

METHODS

`
	

Thin slices (less than 1 um thick) have been fixed in aldehyde fixatives

immediately following sacrifice and bone dissection. Thin slices of
trabecular bone and longitudinal slices of growth plate were post-osmicated

in buffered osmium ,tetroxide, washed, dehydrated in an alcohol series and

r
	 embedded in spur media in preparation for ultra thin sectioning on a Porter

x

	

	 Blum microtome. Half micron thick sections were made and stained with

Paragon to permit orientation and study with the light microscope. Adjacent

ultra-thin sections were made with a Sorvall ►_4!T-2 oltra-microtome, and

stained. with uranyl acetate and lead citrate in preparation for'examinatioh

with the Ph i llips 300 transmission-electron microscope. The attached check

list of cell organelles, inclusions, and ultrastructural features were used
g	 during examination of all tissue sections in ao effort to give a complete

descriptive profile of the bbne cells and matrix of representative sections

'f	 of all experimental bones frrom both flight and ground control' animals 	 The	 fl!

, k	
R
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same check list was used to characterize cells of the cart'(age growth plate

including study of the resting zone zone ofproliferati !rn, zone of matrix

synthesis, zone of cell hypertrophy, zone of provisio ►el calcification, and

zone of ossification. Matrix vesicle conditions waOe examined in each of

the lower 4 zones. Emphasis on matrix vesicles i ,,s felt to be important, as

these structures are associated with the initiation of hydroxyapatite crystal 	 J

formation In the longitudinal septa of the cartilage. These structures form

by budding from the adiacent cells. (1) They possess high phosphatase activ-

ity and the first crystals are observed within these membrane -limited struc-

tures. Bones made " rachitic" by treating the animals with diphosphonate
	

a

compounds, especially ethane hydroxy diphosphonate ( ENDP), show numerous but

empty matrix vesicles. The state of these mineral associated vesicles in

both bone and cartilage of zero gravity animals is not presently known.

	

1

	
RESULTS

1,°1 trastructural Studie s

Specimens of ti bial metaphys is and epiphyseal growth pl ate were received in
r

fixative from NASA Ames Research Center. Following routine processing,

embedding, ultra thin sectioning, and staining of twenty randomly selected

diced. pieces from each control and immediate post flight groups, sections

were vi ewed with a Phi ll ips 300 transmission electron microscope and the

following scaring was made by averaging observations _ from all viewed speci-

mens of each study group. The following descriptions are of R + 0 - time
Y	

flight and from comparable age synchronous and vivarium control groups. (No

significant differences were noted between the ultrastructure of these two

control groups.)

S
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A Osteoblasts on surface of primary and secondary metaphyseal trabeculae

Flight Group	 Control Group

(R + 0)	 (Both Synchronous & Vivarium)

(Figure 1-3)	 (Figure 4-7)`

1.	 Cell size	 Flattened cells 6-10 um 	 Large cuboidal pyramidal
j	 and shape	 high	 cells 12-1.6 um high

^aF	 2.	 Nucleus	 rounded configuration, 	 Nucleus is round to oval,
pronounced peripheral	 centrally positioned in the
clumping of heterochro-	 cell.	 Neterochromatin is seen
mati n, l ittle euchro-	 at nuclea r margins but
mat-in,  i ntac ► nuclear	 euchromati n is also dispersed
pores.	 Peri'nucl ear	 in nucleus.	 Nucl eol us. i s
space dilated, no inclu- 	 single, large, and-eccen-

-sions, one irregular	 trically located.	 Nuclear
shaped` nucleolus reduced 	 membrane has nuclearpores.	 4
to 78% of control size. 	 Perinuclear space is dilated 	 1

No nuclear inclusions	 (a likely artifact of fix-
noted.	

sions,^Inor^perichroma,inu- 	 1	
3

granules, were present.

3.	 Cytoplasm	 Cytoplasm has low opti- 	 Cytoplasm density higher
cal density, dilated 	 than experimental group,
mitochondria, sparse	 mitochondria are dilated
endoplasmic reticul um, 	and comparable in number,
few dilated cysternaegranular endoplasmic yeti-
of granular endoplasmic	 culum is distributed through-

!	 reticulum, Golgi complex	 out cell, and cysternae of
occupies area comparable 	 rough endoplasmi c reticulum
to control	 Gol-gi -ves-	 are dilated containi ng elec-
icles on mature face 	 tron dense substance.	 Golg
and assembled lamellae	 complex occupies basilar or
are reduced;in number	 basi-lateral position, is
but are more widely	 large, and consists of stacks

' dispersed-,-single	 of lamellae with vesicles
vesicles are larger ,	on the formative or maturing
than i n control, free	 face.	 Glyco9en granules

t	 ribosomes were not	 sparse, no unusual lipid in-
different from control, 	 elusions noted.	 No phago-
glycogen granules	 somes noted, some lysosomes
sparse, no unusual lipid	 are randomly located, pino-
inclusions on crystals 	 cytotic vesicles are abundant

F	 were noted.	 Phagosomes	 on cell surface. 	 Gap

r.

s  
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Flight Group	 Control Group
i
7

r '	 Cytoplasm	 not noted, few lysosomal	 junctions were not regularlyf	 ,
cont.	 bodies noted, no coated	 observed.

P

=i

	

	 vesicles, few pinocyto-
tic vesicles. Gap junc-
tions between adjacent
osteoblasts not common -

'`

	

	 ly found, no detectable
cell lamina.

4. Matrix	 Adjacent osteoid matrix	 Osteoid consists of bundles

contains sparse number of	 of collagen fibers, i rregu
P 

Fs	 collagen fibers with	 larly placed, but closely

axial periodicity.	 packed. Mineralized surface
Fibers are randomly 	 shows regular contour,
directed. Few processes	 microvilli of osteoblast and

elonated cellof
cellsspenetrate oraextend 	 penetrate osteoid.

processes
	 I

into the osteoid. Few 	 zation nodules are abundant
mineralization nodules	 in osteoid close to mineral
noted, mineralized 	 front.
surface shows an irregu-
lar contour. The osteoid
thickness is less than 50
of control.

i

Summary of differences in osteoblasts:
i

All of the differences noted: reduced nucleolus, increase in heterochro-

matin, dispersion of Golgi components, reduction in Number but increase in

size of golgi vesicles (fusion?), reduction in rough surfaced endoplasmic

reticulum, reduction in number and size of rough endopl'asmic reticulum

cysternae, reduction in evidence of pinocytotic activity, and overall flat-

tening of the cell characterize a reduction in cell metabolic activity,

F	 :, particularly its protein synthesizing and secreting activity. This is further

.!R	 confirmed by a thinning of the osteoid with a reduction in number of mature

collagen fibers. Reduction of new mineral nodules and irregularity of

t,	 mineral surface contour suggests that the newly secreted osteoid is immature.
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B.	 Osteoclasts on trabecular surfaces,

I
Flight Group Control Group

;a (Figure 6-7) (Figure 8-9)

1.	 Nucleus	 Nuclei are rounded to Nuclei are round to oval.
ovoid with peripheral Heterochromatin predominates;
clumping of heterochro- some dispersed euchromatin;
matin.	 Nuclei number nuclei number 4-7/section,
per section range from A single nucleolus is present
6-9; 	nucl eoli are in most nuclei, nuclear mem-
singlewnen observed, branes are dilated, smooth,
Nuclear pores are surfaced membranes are
present., The nuclear present at nuclear membrane.
membranes are dilated. No significant nuclear inclu-
Few smooth surfaced.mem-: sions observed,
branes are attached to
nuclear membrane. 	 No
significant nuclear
inclusions observed,

2.	 Cytopl asm	 Numerous dil',ated mito- Numerous dilated mitochondria
chondria are found are found throughout the
throughout cytoplasm, cell.	 All but three osteo-
approximately 20% of 44 clasts of 51 observed were
cells are not directly found associated with bone
associated with bone resorption surfaces.	 A clear
surfaces.	 These un- zone bounding the resorption' k
associated cells contain edge was present surrounding
sparse vacuoles, few in- a microvil'lus brush border
vaginati'ons of plamsa width in excess of 40 um.

r membrane, and sparse micro- Numerous infoldings of plasma
villi are present, 17 of	 membrane-occur between micro
44 cell's touched the bone	 villi forming vacuoles that
but their brush border	 occupy a large part of apical
width is less than 30 um	 cell cytoplasm. No special
i nfoldings between micro-	 inclusions are _noted.
vi ll i a re present termi -
nating in dilations in an
apical region containing
some vacuoles. These
vacuoles are typically in-
volved in endocytotic
activity and represent less
that half the number of
vacuoles observed in control
bone. No special filaments,
crystals, inclusions or
evidence of cell deteriora-
tion was noted.
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Summary of Observations on Osteoclasts.

r Larger numbers of nuclei per cell, reduction in brush border and cytoplasmic

vacuoles in the flight group are indicative of a reduction of activity for

each osteoclast-.	 If histomorphometric data confirm that osteoclast;numbers
}

are the same in control and flight groups, then resorption reduction in

flown animals should still be expected as each clast reflects reduced activity.

Some resorption activity is noted, however, and shallow matrix resorption

cavities in flight bone are observed. 	 Whether each clast ultimately resorbs

the same bone volume, simply requiring more time, will have to be established

by double tetracycline labeling studies,

C.	 Osteocytes Summary
a

No ultras tructural di fferences were noted ,between osteocytes of flown and	 s

control group other than the reduction in number of osteocytes, due likely

to smaller size of trabeculae.	 No differences in osteocyte spacing or

I axial orientation was noted.

1

1
I

D.	 Cartilagenous Growth Plate	
z
a

Chondrocytes and cartilage matrix were examined. 	 Each growth plate was	 r

a

divided into classic zones, i.e.,, resting zone, zone of proliferation,

zone of matrix synthesis, zone of cell hypertrophy, zone of provisional 	 s

calcification, zone of ossification. 	 Particular attention was given to

the distribution of matrix vesicles, site of onset of mineralization, and

maturation of mineral clusters.6
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Flown
	

Control

(figures 10-14 and 19-25)
	

(Figures 15-18 and 26-29)

Resting Zone

t Multiple chondrocytes occupy ovoid same
^ lacunae surrounded by carti lage

matrix of thin collagen filaments
and ground substance. 	 No vesicles
are present in matrix. 	 Cells are
small, irregular in shape, and
contain some rough surfaced endo-
plasmic reticulum, a small Golgi

- complex.	 Few cytoplasmic pro-
cesses are seen. 	 Mitochondria

it are dilated.	 No special inclusions
are noted in cells.

Zone of Proliferation
re

Multiple cells occupy lacunae. same
The cells are flattened and
arranged in stacks oriented in rows
parallel to the centralbone axis,
The nuclei are ovoid and contai n
both euchromatin and heterochro-
matin and a prominent nucleolus.
Rough surface endoplasmic reticu-
lum occupies the periphery of the 9
cells.	 A Golgi coo,p i .ex is situated
in a juxtanuclear position. 	 A few
electron dense prematrix inclusions
are seen- at secretory face.	 Nests I
are surrounded by a,filamentous
matri x. 	Little or no matrix is

? seen between cells within one i
k lacuna.	 The cell surface shows #	 ^,

some irregularity, bearing short
protoplasmic extensions.

##

. Zone of Matrix Synthesis T

Single large, more rounded chondro- Single large, more rounded
cytes occupy matricial	 'lacunae. chondrocytes occupy matrical
The rough surfaced_endo plasmic reti- lacunae.	 The rough surfaced
culum occupies more of ;ytoplasm. ER is extensive with dilated
The nuclei are large, ct^ntrally , cisternae.	 The nuclei are'
positioned.	 The chromatin is pri- large, oval and show primar-
marily euchromatin with some margin- ily euchromatin formation.
ation of heterochromatin:. 	 The The Golgi complex is large,
nucleolus is smaller than in prolif- .sometimes cleaved, juxtanu-
erative zone ._ The Golgi complex is clear, and contains many.

r
:t
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Zone of Matrix	 nthesi s

juxtanuclear, large, containing vesic l es -» some coalesced.

'r. many vesicles with granular Mitochondria are randomly
mate-ri'al within them, 	 Many located.	 No special in-
vesicles appear fused and irregu- clusions are noted.	 The

k lar leaving voids in the cell. cell surface is irregular
This was also observed in this with some showing bulbous
and subsequent zones in both ends.	 The matrix contains
flight and control animals and many vesicles at each cell
is suggestive of poor infiltra-- Level.
tion of initial fixative into
this avascular tissue. 	 Only
short cell processes and micro-
villi are observed.	 The matrix
surrounding the cells contains
few or ;:o vesicles or cell
processes.	 The matrix consists
of collagen filaments and granular
ground substance.

Zone of Hypertrophy W

f	 x

Cells are irregular in shapes Cells are large, scalloped,
containing vacuoles and distend- and processes from cells
ed Golgi vesicles.	 The rough extend to matrix. 	 The
surfaced endoplasmic reticulum nucleus has both hetero-
is widely scattered. 	 The mito- chromatin and euchromatin.
chondra are. located peripherally. The Golgi vesicles are large,
Some short cytoplasmic processes irregular and show fixation
extend into the lacunae.	 Matrix artifact..	 No special changes

i vesicles are isolated, 2-5/cell, in mitochondria or inclusions
The nuclei are oval showing some are noted.	 Matrix vesicles
heterochromatin and euchromatin. are distributed in matrix

i No special inclusions are noted'. 10 per cell.
}
r:

Zone of Provisional Calcification

Only 2-3 cells in a column are A gradient of 4-0 tells occu-
` bounded by mineralized cartilage pies a cell column bounded by
r matrix.	 The matrix has many mineralized matr-ix beginning

small needle-like clusters of with mineral clusters of
. hydroxyapatite that converge as needles progressing to' con-

the metaphysis is reached.	 Numer- vergence of clusters into
ous vesicles are observed in the relatively solid calcified

l= lacunae and lacunar boundary in cartil age trabeculae.in the
' the first two cells of columns longitudinal axis.	 Cells

The cells are distended, irregular contai n vacuoles, are i rregu-
and contain sparse organelles and tar shaped and the 'lower

F.
vesicles and vacuoles. cells show deterioration.
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Summary of observations on cartilage.
r

The significant differences between .flight and control cartilage are the

location of onset of mineralized matrix and the distribution of matrix

vesicles. The latter appear first in the hypertrophic zone and only

become prominent in the zone of mineralization as compared with control

bone where matrix vesicles bud from chondrocytes beginning in the zone

of matrix synthesis. The difference in mineral distribution can be

accounted for in two ways: 1) Matrix vesicles initiate mineral deposition

and are not extended from processes or released from cells in flight bones

at development times comparable to control. However, no differences are

found between flight and control groups at R + 29 (Figures 30-32). 2) The

matrix of flight Wnes is less dense, as it has fewer collagen bundles

that show axial periodicity, hence matrix maturation appears to laq. Cell
,a

division does not appear to Differ significantly as total cell column height

is not significantly different from control. Rates of synthesis of matrix
}

products should be studied with isotope labeled precursors to assess matrix

production capability and histochemical studies of enzymes alkaline phos

phatase, ATPase and/or_ pyrophosphatase should be done on future experiments

to help delineate location of onset of mineralization activity.

C. Work remaining to be done.

At present, specimens of animals killed immediately post- flight and both

vivarium and synchronous control groups have been completed. Flight and

control group specimens obtained from later recovery periods are embedded,

}f	 thin sectioned, and their examination is in progress. The oldest flight

group (R + 29) shows no difference in ultrastructure vesicle numbers,
s

distribution of mineral, or-organellar content, or cell shape from control
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Thus, a "recovery" is noted within 29 days. Intermediate stages are now

being studied in an effort to establish the time of first noticeable

change of flight group structure during the earlier recovery stages.

,
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Figure Legends

Electron micrograph of osteoblasts from R + 0 flight group. Note
paucity of osteoid and flattened cells, often tapering to zones
where cell thickness is less than 2 pm. (2 jum scale)

Electron micrograph of osteoblasts from R + 0`flight group. Osteoid
is irregular and shows zonation of collagen bundles. Nr) new nodules
of mineralization are found in osteoid. Basilar processes of osteohlast
are sparse and short. Cell morphology is flat. The endoplasmic reti-
cul um is condensed. (2 Nm scale)

Electron micrograph of osteoblast'of R + 0 flight roup. some regions
of bone are covered only by thinned cell margins. 72 jn scale) x

Electron micrograph of osteoblast of vivarium rat group 1. 04eoid
shows mature collagen fibers throughout and includes nodules of new
mineral initiation. Cells are cuboidal and show dilated endoplasmic
reticulum. (2 pm scale)

Electron micrograph of osteobl' ast of synchronous control group 1.
Osteoid is mature and some mineral nodules are present. The cell
has a well developed Golgi complex and the endoplasmic reticulum is
dilated into cysternae. Cells meet at well demarked intercellular
junctions. (2 hum scale)

6. Electron micrograph of osteoclast of R + 0 flight group.	 There is
no ruffled border.	 No vacuoles are noted, within cell.	 Flattened
osteoblasts are interposed between bone and osteoclast.	 Cytoplasm
of a single nucleated clast-like cell lies adjacent to blood vessel
wall.	 (2 }gym scale)

7. Electron micrograph of osteoclast from R + 0 flight group. 	 A limited
brush border is seen at lower right. 	 Few vacuoles are noted.,	 ( 6 im scale)

8. Electron micrograph of osteoclast of synchronous control group. 	 A #.'
wide brush border bounded.by a clear zone is shown.	 Intracellular
vacuolation indicative of resorptive activity is noted. 	 Some mineral'
is found in vacuoles. 	 (2 yam scale)

3

g . Electron micrograph of osteoclast from vivarium control group 1.
Active brush borders, wide clear zones,-and vacuolation typify osteo-
clasts of this group.	 (2 pm scale)

10 Electron micrograph of zone of cell proliferation of flight group R + 0
New matrix separates cells in common lacunae indicative of continued
matrix synthesis.	 No vesicles are noted. 	 ( 5 pm Ccale), }

:

11. Electron micrograph of chondrocyte in zone of matrix synthesis of
}i -R + 0 flight group.	 Matrix is mature but cell processes are short and
r vesicles, if present, are limited to cell margins. 	 (2 ,um scale).e
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12. Electron micrograph of chondrocyte in zone of matrix synthesis of
R + 0 flight group. Matrix is mature but cell processes Are short
and vesicles, if present, are limited to cell margins. (2 ,um scale)

13. Electron micrograph of chondrocyte in zone of matrix synthesis of
R + 0 flight group. Matrix is mature but cell processes are short and
vesicles, if present, are limited to cell margins. (2 pm scale)

14. Electron micrograph of chondrocyte iri zone of matrix synthesis of R + 0
group. This animal showed greatest amount of matrix Vesicles in this
zone being more comparable to control that rest of flight group which
showed a paucity of matrix vesicles. 	 (2 hum scale)

15,	 Electron micrograph of chondrocytes of zone of matrix synthesis in
k	 group 1 of vivarium control. 	 Cell processes extend well into matrix

and some matrix vesicles are present. 	 (2 ,mm scale)

16.	 Electron micrograph of chondrocytes and matrix of group 1 vivarium
;

control.	 Note vesicle formation in matrix above zone of cell hyper-
trophy. 	 (2 ,pm scale)

17.	 Electron micrograph of chondrocyte of hypertrophic zone of group 1
vivarium control.	 Vesicles are prominent among connective tissue fibers
in longitudinal septa.	 (2 pm scale)-

-	 15.	 Electron micrograph of intercellular septa in zone of hypertrophy of
group 1 synchronous control group. 	 Note vesicles in matrix in hyper-
trophic zone and beginning of mineral clusters about vesicles in the zone
of provisional calcification. 	 (i Nm scale)

19.	 Electron micrograph from R + 0 flight group showing zone of cell hyper-
trophy and provisional calcification.	 The matrix is lacking new sites
of mineral clusters. 	 Vesicles are limited to the lacunar space of
adJacent cells and are absent from cells on layer above. 	 (5 jum ;kale)

r
20.	 Electron micrograph of zone of cell hypertrophy and provisional calci-

fication of R + 0 flight rat.	 Note vesicle. release occurs from cells'
nearest matrix mineralization.	 ( 5)jm scale)

21.	 Electron micrograph of zone of provisional calcification of R +-0
flight rat showing limited matrix mineral deposits.	 vesicles and cell
processes lie close to cell.	 (2 pm scale)

22.	 Electron micrograph of zone of provisional calcification of R + 0
flight rat showing limited matrix mineral deposits. 	 Vesicles and cell
processes lie close to cell.	 (2 ,pm scale)

r	 23`,	 Electron micrograph of zone of hypertrophy of R + 0 flight rat showing
b	 paucity of matrix vesicles. 	 (2 pm scale)	 R

24.	 Electron micrograph of chondrocyte 1,1 zone of provisional calcification.
in flight group	 -+ 0. p	 Note vesicles in lacunae and absence of matrix

-	 vesicles in more distal region. 	 (2 jum_scale)
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25., Electron micrograph of zone of provisional calcification of R + 0
flight rat. Only a limited number of vesicles are noted in zones
between adJacent cell columns of hypertrophic zone, (Z pm scale)

26,. Electron micrograph of zone of provisional calcification and hyper-
trophy of group 1 of vivarium control. Extensive new matrix mineral'
sites are noted. No vesicles remain in lacunae. (2 pm scale)

27. Electron micrograph of zone of provisional calcification and hyper-
trophy of group 1 of vivarium control. Extensive new matrix mineral
sites are noted. No vesicles remain in lacunae. (2 pm scale)

28. Electron micrograph of zone of cell hypertrophy and provisional calci-
fication of group 1 vivarium control. Extensive new matrix mineral
sites are noted as compared to sparse distribution in flight group.
(5 Pm scale)

a
29. Electron micrograph of hypertrophic chondrocyte of synchronous group	 }

control. New mineral slues are seen here and maturing granules are
fused into septa in zot1e of provisional calcification, (2 pm scale)

30. Electron micrograph of flight group R + 29. Note mature collagen
bundles in longtudinaI septa and 50+ matrix vesicles prior to onset
of mineralization of septa. Vesicles were not noted in this site in
R + 0 group. (2 pm scale)

31. Electron micrograph of flight group R + 29 zone of mineralization.
Note vesicles in matrix and new sites of mineral formation. No
vesicles are noted within lacunae as seem in R + 0 group. (2 pm scale)

32. Electron micrograph of zone of provisional calcification - cell hyper-
trophy, of flight group R + 29. New mineralizing vesicle sites are
noted. (2 pm scale)
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K-307 - VERTEBRAL BODY STRENGTH % RAT SPINAL COLUMNS

LEON E. KAZARIAN, Dr,Ing.

3

BIODYNAMIC EFFECTS BRANCH
BIODYNAMICS b BIOENGINEERING DIVISION

AIR FORCE AEROSPACE MEDICAL RESEARCH LABORATORY
r WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Summary

The effects of space fli ght  on vertebral body borne strength excised

from male Wistar rats flown in earth orbit for 18.5 days aboard COSMOS

1129 have been investigated.	 This report describes results of comparative

biomechanical investigations of vertebral body strength for flight,__

synchronous, and vivarium rats following spacecraft recovery (R+O), at

R+6 and R+29 days post flight recovery. 	 The groups for which differences

are anal yzed were formed by different combinations of en vironment, spinal

column position and three different loading rates.	 Statistical analyses l

are presented for the mechanical properties of stiffness, ultimate load,

displacement to ultimate load, and energy to ultimate load. 	 At R+O all of

F
the above properties. show that the vertebral body exhibits an increasing

susceptibility to fracture.	 The reduction of bone strength is

inhomogeneous and dependent on vertebral level. 	 The R+6 recovery data was ",

inconclusive since it varied above and below the R+O data.	 At R+29

ultimate load values showed a statistically significant increase in
r

bone strength approaching that of the vivarium or control group.
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INTRODUCTION`

This report provides a comparative analysis of aiomechanical property

t 	 data of rat vertebral bodies following 18.5 days exposure to earth orbital

space flight. The purpose of this report is to shed light on the

effects; of environment, relative vertebral body position and loading rate

on groups of rats killed immediately at spacecraft recovery (R+O), at 6

days ( R+6) and 29 days (R+29) post flight.

MATERIALS / METHODS

Specific pathogen free, dale Wistar rats from the Institute of

Experimental Endocrinology of the Slovakian Academy of Sciences,

Bratislava, Czechoslovakia were used. The animals were approximately 83

days of age and ranged in weight between 270-320 grams at the beginning of

the experimental period. The rats were divided Into three groups,

Flight (F): The fright animals were placed in earth orbit in

individual cylindrical containers aboard a modified Soviet Vostok

spacecraft for a period of 18.5 days.

Synchronous Control (S)	 The synchronous control rats were caged y

individually in a modified Vostok spacecraft and subjected to environmental

conditions associated with launch, reentry, pressure, light cycle, air

temperature, humidity etc. An attempt was made to simulate as closely as
k

possible the spacecraft environwint exposure by the flight animals.

Vivarium (V): The vivarium control rats were housed in animal

quarters and not subjected to the flight conditions.

f	 Following the Experiment, the animals were sacrificed in three phases:_

E	
A group of flight, synchronous and_viverium rats were sacrificed at the

end of the 18,$ day flight period (.shortly following ground landing

230
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impact).	 A second and third group of rats was sacrificed 6 days post

flight and a fourth group at 29 days post flight. 	 The sacrifice schedule

is shown in Table 1.

i '	 Table 1

s Synchronous, and;	 Sacrifice Schedu le -Fright,	 Vivarium Rats.

(R-space craft recovery)	 j
Sacri fice

Group	 Group Number	 Rat Number	 Schedule	 Number of Rats	 j

F l i ght	 1	 F	 1. -	 7	 R+ 0	 7
2	 F	 8- 13	 it 	 6
3*	 F 14 - 24	

R + 6,^------------13

4	 F 21 - 25	 R + 29	 5
Total number of rats	 25

Synchronous	 I	 S 	 1: -	 7	 R+ 0	 7
2	 S	 8-13	 R+63*	 S 14	 20	 R	

6	 --13

4	 S 21 - 25	 R+ 29	 5
T t 1 u	 fmb	 t. 25	 lo a n 	 er o ra s -	 ^ ,

A: Vi vari um	 1	 V I- 7	 R+ 0	 7
2	 V 6	 13	 R+6	 {
3*	 V 14 - 20	 R +

6 ------	 -13

4	 V 21	 25	 R+ 29	 5	 t

Total number of rats = 25	 i

There are two groups of R+6 rats. Group Number 3(*) of the R+6 rats were

handled differently than groups 1, 2, and 4. Group 3 rats underwent readapta-

tion functional tests just following and for several days after spacecraft

recovery. Since` this group was handled differently than the others, the results

of vertebral compression tests on this group of animals are not reported for R+6

or R+29.

fi	 The animals were decapitated at the end of the prescribed experimental

period and their vertebral column and sacrum grossly dissected. The specimens

were frozen, refrigerated, and forwarded to the AFAMRL. Upon arrival, each

vertebral column was radiographed, the number of vertebral bodies in the

respective thoracic and lumbar regions identified.

3
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Preparation and Testing	 --

The individual vertebral centra were disarticulated from one another

by slicing through the mid section of the intervertehral disk, the

3
articular capsules were sectioned and the vertebral bodies were cut away.

Each vertebral centrum was cleaned of all soft tissue clinging to its

surface.	 The individual vertebrae in the spinal coluon were assigned the

following groupings.

Co lumn Position	 As signed Vertebral Levels

P1	 T2-T3-T4

P2	
T5-T6-T7

P3	 T8-Tg-T10
,p

k p4	 T11-T12 -L1

Pb	 L2-L3-L4
r

P6	 L5-L6-L7

The test matrix is shown in Table 2.

The Test Machine

r
Vertebral centra properties were determined by subjecting the

specimens to simple compression loading using an Instron Model TTC-L; this

screw gear test machine applies a load in compression by the motion of a	 1

movable crosshead.	 Details regarding the operation of the test machine are

given in manufacturers catalogs.
Y

For this particular test matrix the column groupings were assigned so

F that compression loading could be conducted at three separate and distinct

loading rates.	 These rates were selected to be

8 * 467 x 10-4 m/s = 2.0 'in/min

F 4,233 x 10- 4 m/s	 1.0 in/min

4,233 x 10- 5 m/s	 0.1 in/min
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The Force-Displacement Curve - Data Reduction Methodology

The values of stiffness, ultimate load, displacement to ultimate load,,.

and energy to ultimate load were analyzed. Each of these parameters was

defined and/or determined from individual load-displacement curves.

A typical load displacement curve is shown in Figure 1.

DISPLACEMENT TO
2es TIMATE LOAD

23 TIFFNESS
20 .
Ie

FORCE 16 
(LB.)	 12	 I5NERGY

10	 TO .,.o 
ULTIMATE LOAD

UI.TIMAT i

6	 LOAD
2 /
	

a
0

.000 .066 ,010 .016 .02o .09576'30 1035 .040 .046 .060	 j
DISPLACEMENT (IN.)

SUBJECT 10	 zRAT R* 63F6COLUMN POSITION	 s4VS LEVEL	 all
DISPLACEMENT RATE 	 :2.000	 INJMIN.
MAXIMUM a RAIN	 =0.3000	 NUIN,SPECIMEN PRETEST LENGTH	 X0.1600	 IN.SPECIMEN PRETEST AVERAGE AREA 	 .1.0200E-02 SCIAN.

t
Figure l

The test specimen load is plotted on the ordinate versus the cross head

;. displacement on the abscissa.	 Each of the above material properties was

extracted directly from the test curves.

The initial portion on the load-displacement curve, following the

apparent elastic section, where the tangent to the curve- becomes parallel
a
a

to the displacement axis is defined as the ultimate; load;,. Ultimate load

;. has to do with the maximum compressive load developed by'the specimen.	 The

ultimate load can be >lo-k.ed upon as the load at which the specimen has

become permanently defot.-:*d and/or structurally damaged. The displacement

o- 234'



at this point is defined as the displacement to ultimate load.

t=;f The energy to ultimate load is defined as the area under the load

jA versus displacement curve, from the point of zero displacement up to the

displacement at ultimate load; the capacity of a specimen to absorb or store

3 energy.

The specimen stiffness ( loading slope) is determined by fitting the

A

apparent linear elastic section of the load displacement curve with a

least squares linear fit. 	 Stiffness has to do with the relative
,

deformability of a specimen under load,
^k

a

Statistical Analysis

' Two procedures were used for analyzing the experimental results; (1)

Analysis of variance (ANOVA) and (2) Duncan's Multiple Range test. 	 The

' ANOVA was used to test for a difference in means among several di fferent

groups.	 If the ANOVA procedure indicated a difference, Duncan's multiple

range test was used to give an indication of which groups differ from the

others.

The groups for which differences were being analyzed were formed by

different combin ations of environment, spinal column position, mid

loading rate.	 Different types of differences were analyzed within these

combinations and identified as interaction and main effects.

An_interaction occurs when there is a difference in means for

;. different values of one variable, but the difference depends on one or more
s

of the other variables..	 For example, if for two loading rates the ultimate

Load were higher for the vivari um group than for the synchronous or flight }

group, but for the third loading rate the synchronous and flight groupsF

were higher than the vivarium group, then we say there is an interaction

between these two variables. 	 (Note this is for explanatory purposes onl y.

z' 235
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1
This effect did not happen in the data..) If an interaction occurs, it does

{ not make statistical significance to look at ore of the variables involved

without taking the others into account. for these data there could be two

j way interactions (two variables involved) or three way interactions (all
J

{ three variables involved).

An interaction term reflects the fact that although a particular

variable is statistically significant it is also related to, or interacts
'	 with, another variable to a high statistical significance. The smaller the

number of inter-action terms associated with a_ particular material

property, the easier the data can be interpreted.

Main effects are environment, column position and loading rate.	 That

is,'we are interested in whether or not each of these variables has an

effect on the parameters measured, Without 'regard to the other two. 	 If the

k ANOVA procedure detects a difference, the effect was identified as
significant main effect.

Statistical analysis of the K=307 (COSMOS) vertebral body rate data

was prepared on the following dependent material parameters:

1)	 Stiffness - N/M (Newton/Meters)

2)	 Ultimate Load - N (Newtons')

3)	 Displacement to Ultimate Load - M (Meters)

4)	 Energy to Ultimate Load - J (Joules)

For all parameters an analysis of variance table reflects those

independent variables which were significant to the95% level of confidence
vA}

or above (okless	 than 0.05).	 The independent variables of environment_

(ENV), column position	 (CP) and loading rate (LA) were analyzed along with
their associated cross.- products or interaction terms (ENV*CP, ENV*LR,
CP*LR, ENV*CP*LR).
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RESULTS (R+O)

STIFFNESS

The stiffness analysis of variance data are presented in Table 3.

TABLE 3

ANALYSIS OF VARIANCE FOR STIFFNESS (N/M)

Source of	 Degrees of	 Probability
Variation	 Freedom	 Mean Square	 F Ratio	 of > F

ENV 2 7.84227 x 1011 6.98 < 0.01

AN(ENV)+ 18 1.12319 x 1011 2.00 0.01

CP 5 5.40023 x 101.1 9.60 < 0.01

LR 2 1.28709 x 1011 2.29 0.10

ENV*CP 10 7.77499 X 1010 1.38 0.19

ENV*LR 4 3.10750 x 1010 0.56 0.70

CP*LR 10 8.65246 X 1010 1.54 0.13

ENV*CP*LR 20 5.43643 x 1010 0.97 0.50

ERROR 283. 5.62702 x 1010

+AN(ENV) mean square was used as the error term to compute the ENV F

ratio.

The effects due to both environment and column position were significant at

thei.= .01 level.	 The loading rate effect was not significant and there

were no significant interaction terms. 	 Further analysis of the stiffness

means using the Duncan's Multiple Range test showed that at theck = .05

level, the flight and synchronous means were significantly larger than the

vivariun mean.	 Very little difference in stiffness was noted between the

flight and synchronous. groups.	 Similarly, the mean stiffness for the first

three column positions ( P1, P2 and P3) was significantly greater than

for the last three column positions (P4, PS and P6).	 These results
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are illustrated in Figure 2, which is a plot of average stiffness over all

loading rates for the flight, synchronous, and vivarium groups for each

j(
column position.

ij

PAT VERTESPAL 800198 - K307 R-0 OVERALL LOADIliJ RATES
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Figure Z

The plots in Figure 2 are in agreement with the above statistical

results, excepting for the first column position (PI). For this column

positron the vivarium and synchronous rats constantly exhibited larger
s

stiffness values than the flight rats. 	 The values of stiffness appear to

{ decrease with increasing column, position; 'however, this decrease in

stiffness is not consistent over all _column positions. 	 Rather, it appears
} i

i that stiffness as a function of column position can be divided into two 	
i

l
levels, with the first three column positions (Pl, P2 and P3) at one
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level and the last three (No P5 and P6) at a second sharply lower

bevel, (The geometry of the vertebral bodies also exhibits a comparative

change at these levels. The vertebral bodies at the P1, P2, P3

levels are coni)aratively shorter than those in the lower spinal

column.)
A

ULTIMATE LOAD

.	 ,.	 The ultimate load analysi s of variance data are 'presented in Table 4.

TABLE 4

ANALYSIS OF VARIANCE FOR ULTIMATE LOAD (N)

Source of Degrees of Probability
Variation Freedom	 Mean Square	 F Ratio of ? F

:g
ENV 2 43642.32 10.15 < 0.01

AN( ENV) + 18 4298.08 6,28 < 0.01

CP 5 56718.74 82.92 < 0.01

LR 2 22122.39 32.34 < 0.01

ENV*CP 10 1140.13 1.67 0.09

r
ENV*LR 4 599t98 0.88	 ,.. 0.48

CP*LR 10 606.69 0.89 0.55

:.
t

ENV*CP*LR 20 375.57 0.55 0.94

ERROR 281 684.04

+AN(ENV) mean square was used as the error term to compute the ENV F ratio.

The effects Oue to environment, loading rate and column position were

r
significant. Further testing of the ultimate load means using the Duncan's

t t Multiple Range test'innicated the following at the J,= ,05 level.

(a)	 the vivarium mean was significantly larger than the synchronous

mean which in turn was significantly larger than the flight
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P

mean,

(b) the ultimate load means for the two larger loading rates (R1

8.467 x 10-4 and 92 = 4.233 x 10-4 meters/s^tond) were

significantly larger than the ultimate load mean for the

s lowest loading rate (R3 4.233 x 10-5 meters/second),

(c) the column position ultimate load means were approximately the

same for P1 and P2 but increased significantly for each of

the remaining column positions (Pi _ P2 < P3 < P4 <

P5 < p6)

These results are presented in Figure 3 which is a plot of average

-1



^Y	 n

J';
5

Figure 4 which is a plot of average ultimate load over all environments

for each level of loading rate at each column position.

PAT VERTEBRAL BODIES K307 R •0 OVER ALL ENVIRONMENTS
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Figures 3 and 4 are consistent with the statistical results. Figure 3

indicates that ultimate load was the lowest for the flight vertebrae and

the hicohest for the vivarium vertebrae with the synchronous data falling

approximately midway in between. Figure 4 shows that the ultimate load

was loading rate _sensitive, that is, the ultimate load for the R3 loading
i

I	 rate was clearly less than the ultimate load for the two larger loading

rates (R1 and R2). Loading rate Rl was only a factor or two larger

than R2. This difference was insufficient to demonstrate a significant

change in the resulting ultimate load.

241

.rt



Both figures clearly i llustrate that vertebral body ultimate load

increases from column positions P1 to P6.	 The results indicate a

decrease in bone strength for the flight and synchronous groups.	 13.5 days

of space flight appears to weaken bone structure.

DISPLACEMENT TO ULTIMATE LOAD
*

 The displacement to ultimate load analysis of variance data aree

F,

presented in liable- 5.

}
TABLE 5

i
ANALYSIS OF VARIANCE FOR DISPLACEMENT TO ULTIMATE LOAD (M)

Source of	 Degrees of Probability
Variation	 Freedom	 Mean Square F Ratio of > F

ENV	 2	 -6.140 x 10- 7 9.56 < 0.01

AN(ENV)	 18	 6.440 x 10-8 2.24 < 0.01
t

CP	 5	 2.602 x 10-6 90.58 < 0101

LR	 2	 4.750 x 10- 7 "16.60 <	 0.01:`

ENV*CP	 3.0	 3.300 x 10-8 1.14 0.34

ENV*LR	 4	 5.500 x 1,0- 8 1.92 0.11
.t

CPArLR 	 10	 6.1.00 x 10-8 2.11 0.02

ENV*CP*LR	 20	 2.550 x 10-8 0.88' 0.61
^

ERROR	 280	 3.0	 x 10-8
t a

+AN(ENV) mean square was used as the error term to compute the ENV F ratio.

t

The effects due to environment, and to the interaction between column

a
position and loading rate were significant ._ Because of this interaction,

E the effects of loading rate and column position were not considered

separately.,	 Testing of the displacement to ultimate load means, using the

Duncan's Multiple Range test at theCk = 	 .05 `significance level, showed that
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F

the displacement to ultimate load for the vivarium rats was significantly

greater tha4 for the synchronous or flight rats.

The significant interaction means that, although both loading rate

and colum position effects were significant, the displacement to

ultimate load did not respond the same over column position for the

three loading rates. That is, displacement to ultimate Load response
rP

i	 over column position was dependent on loading rate. Because of this

loading rate dependence, the displacement to ultimate load data were

not averaged over all loading rates. The effect of environment at

M	 each loading rate is presented in Figures 5, '6, and 7.
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The displacement to ultimate load was consistently larger for the vivarium

vertebrae. The overall mean displacements for synchronous and flight were

approximately the same; no consistent trends were evident,

g

	

	 The inconsistent Slope of the response curve from column positions 5

to 6 in these three plots is typical of the type response which, will

result in a significant interaction between column position and loadingi

rate. That is, the three slopes for the two extreme loading gates (fastest

.	 and slowest) are reasonably consistent; however, the slopes for the 4.233 x

r	 } 104 meters per second loading rate show a very different rate of change of

displacement with column position.	 The effects of loading rate is shown in

Figure 8 which is a plot of displacement to ultimate load versus column

position for each loading rate averaged over all environments.
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The displacement for the 8.467 x 10 4 meters/second loading rate '- was greater

than for the two slower loading rates. All four figures clearly

demonstrate the increase in displacement with increasing column position.

These results also show that less displacement was necessary to fail the

hypogravity exposed rats indicating a loss in bone strength which

correlates to the ultimate load results.

ENERGY TO ULTIMATE LOAD

The energy to ultimate load analysis of variance data are presented' in

Tab le 6

TABLE 6

ANALYSIS OF VARIANCE FOR ENERGY TO ULTIMATE LOAD (JOULE)
i

Source _of	 Degrees of Probability
Variation Freedom Mean Square' F Ratio of > F

ENV 2 1.31144 x 10-2 7.81 0.01

AN(ENV) 18 1.67845 x 10-3 2.47 < 0.01

CP 5 5.34479 x 10" 2 78.57 < 0.01

` LR 2 1.34479 x ,t0- 2 21.45 < 0.01
t,

` ENV*CP 10 5.43855 x 10`4 0.80 0.63 s^

ENV*LR 4 3.22155 x 10- 4 0.47 0.76

CP*LR 10 1.73723 x 10'3 2.5,^i < 0.01

ENV*CP*LR -20 5.15330 x 10`4 0.76 0.76

ERROR 280 6.804 x 10"4

+AN(ENV) mean square was used as the error term to compute the ENV F ratio.

The effects due to en vi ronment and the interaction of 'loading rate and

column position were significant. Further testing of the energy to

ultimate load means, ,using the-Duncan's Multiple Range test at the	 a = .05
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3	 significance 1eVe1^ showed that the energy to ultimate load for the vivarium

and sychronous vertebrae was significantly greater than for the flight

vertebrae. The effects of environment are presented in Figures 9, 10, and

11

k.
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Due to the loading rate interaction with column position, a separate plot

is presented' for each loading rate., The energy to ultimate load for the

vivarium and synchronous vertebrae were inconsistent over loading rate and

column position; however, the energy for both was greater than for the

flight vertebrae.

These three plots provide a good graphic demonstration of the meaning

Y

	

	 of a significant interaction. In general, energy to ultimate load

increases with column position and also with increasing loading rate;

however, this increase is not consistent over all column positions and

loading rates. This is evident from the wide variation in the slope of the r
€t

corresponding curves at each loading rate. The effect of loading rate is

presented in Figure 12 which is a plot of energy to ultimate load for each
3

E
loading rate averaged over all environments. 	 j

RAT VERTEBRAL BODIES - K307 R•4 OVER ALL ENVIRONMENTS



All four figures: show that energy ,,increases with column position.

In all cases the vivarium group required more energy to ultimate load

failure than the flight groups. The synchronous group was not

conclusive, but averaged between the flight and vivarium groups. These

results correlate with the previous parameter analysis, in that there

was a probable loss of bone strength due to space flight since less

energy was required to fail the flight .specimens.

RECOVERY TIME EFFECTS
r

Due to the number of recovery time/environment ihteractirn effects

that were statistically significant in the R+O analysis, it was decided

to break the data down into three groups by environment. ` This can be

done since the data showed that environment had a statistically

significant effect on the rat vertebral strength. The previous (II+O)

original analysis indicated a decrease in bone strength for the Flight

and Synchronous groups. One additional change was also made to the i
r

original `est matrix. Test group 3 con,^isting of seven rats was removed

from each of the three e-fivironments at the R+6 recovery period. This
3

resulted in a more balanced test matrix whereby seven rats were run at

R+O, six at R+6 and five at R+25.

ULTIMATE LOAD

	

r	 Only the material property of ultimate load is 'presented

The other material properties also indicated' significant recovery time

effects, but are not presented in this report to simplify the analysis_.

` For ultimate load, are analysis-of-variance table reflects those

k	
independent variables which were significant to the 95% level of

confidence or above (chess than 0.05). The independent variables of
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recovery time (RT),^column position (CP) and loading rate (LR) were

analyzed along with their associated interaction terms (RT*LR, RT*CP,

CP*LR, RT*CP*LR). The following summarize the results within the three

environments of vivarium, synchronous and flight.

^r

VIVARIUM

The ultimate Toad analysis of variance data for the V group is

shown in Table T.

r TABLE 7

ANALYSIS OF VARIANCE FOR VIVARIUM GROUP ULTIMATE LOAD (N)

Source of Degrees of Probability
Variation Freedom Meann Square F Ratio of > F

RT 2 378.88 0.07 0.9286

AN(RT)+- 1S 5092.25 4.84 0.0001

► LR 2 18269.92 17.36 0.0001

CP 5 70186.16 66.69 01-10001

RT*LR 4 190 . 34 0.18 0.9482

RT*CP 10 1039.52 0.99 0.4547
r

CP*LR 10 781,.03 0.74 0.6843

RT*CP*LR 19_ 918.42 0.87 -0.6177

ERROR 233 1052.35

+AN(RT) mean square was used as the error term to compute the RT F ratio.

r The main effects due to loading rate and column position were all

significant at

n

the 95% level of confidence. These results are presented

,x
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in Figure 13, which is a plot of average ultimate load over all loading

rates for each level of recovery time, at each column position, and

Figure 14, which is a plot of average ultimate load over all recovery

times, for each level of loading rate, at each column position.
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Figures 13 and 14 are consistent with the statistical results.

Figure 13 shows, as would be expected since the vivarium group is a
t	

F control group, that 	 there is no significant effect due to recovery time

since the R+O, R+6, and R+29 curves are essentially the same,	 Figure 14

shows that the ultimate load was loading rate sensitive.	 The ultimate	 j

load for the slowest rate (R3) was 	 clearly less than the two larger

loading rates (R1 and R2) ., 	 Loading rate R1 was only a factor of

two larger than RZ«	 This difference was insufficient to demonstrate a

significant change in the resulting ultimate load.	 Both figures clearly

illustrate how vertebral body ultimate load increases from column

)4

position P1 to P6.
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SYNCHRONOUS

The ultimate load analysis of variance data for the Synchronous

group is shown in Table 8

TABLE 8

ANALYSIS OF VARIANCE FOR SYNCHRONOUS GROUP ULTIMATE LOAD (N)'

Source of	 Degrees of	 Probability
Variation Freedom Mean Square F Ratio of > F

RT 2 1143865...4 84 0 0232af ,

AN(RT)+ 15 8975.12 13.87 0.0001

LR 2 24320.11 37.59 0.0001

CP 5 59934.23 92.53 0.0001

RT*LR 4 534.26 0.83 0.5094-

RT*CP 10 2281.26 3.53 0.0002

k CP*LR 10 1317.08 2.04 0.0307

f'
,q RT*CP*LR 20 580.78 0.90 0.5904

ERROR 235 646.99

+AN(RT) mean square was used as the 'error term to compute the RT F ratio.	 a

There were no independent significant main effects, but there were

t
significant interaction effects between recovery time and column

position,`and loading rate and column position. These interaction

effects were significant to the 95% level of confidence (d = 0.05)

The RT*CP interaction effect is presented in Figures 15, 16, and

L

17.
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n

r Because of the additional interaction terms of-LR*CP the effect of RT

data can not be averased over all loading rates, but must be presented 	
3

as separate plots at each of the three loading rates of R1, R2, and

R	 -	 4	 2-	 X 1`0'4 M/S, R3	
r

3 ( R1 - 8.467 x 10' M/S, R - 4.233 

4.233 x 10- 5 M/S)' The ultimate -load at R+29, in all cases, was	 P

greater than the ultimate load at R+6, and R+O. 	 The ultimate load data

at R+6 was inconclusive, since it varied above and below the R+0

ultimate load curve. These curves indicate that an increase in bone'

t
strength, relative to the R +O level, was apparent at the R+29 level

et

°	 These curves also demonstrate the increase in ultimate load with

increasing column position.
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The LR*CP interaction effect is presented in Figures 18, 19, and

20.
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FLIGHT

5

4{

Again, because of the additional interaction teem of RT*CP, the

effect of loading rate can not be averaged over all recovery times,

but must be presented as separate plots at each RT level (R+O, R+6

R+29)	 The ultimate load was lowest at the R3 loading rate, while the

R1 and R2 loading rates showed an ultimate load greater than that at

R3. No conclusive trends were noted between R1 and R2 loading

rates. These plots also show the increase in ultimate load as column

position increased from P1 to P6.

The ultimate load analysis of variance data for the Flight group is

shown in Table 9.

TABLE 9

ANALYSIS OF VARIANCE FOR FLIGHT GROUP ULTIMATE LOAD (N)

Source of	 Degrees of	 Probability
Variation	 Freedom	 Mean Square	 F Ratio	 of > F

RT	 2	 11293.95	 4.21	 0.0355
1

AN(RT)	 15	 2685.34	 5.87	 0.0001

LR	 2	 15059.84	 32.92	 0.0001

CP	 5	 55508.96	 121.35	 0.0001
i

RT*LR	 4	 1;117.04	 2.44	 0.0475
9

RT CP	 10	 1243.09	 2.72	 0.0035

CP*LR	 10	 732.59	 1.60	 0.1069

RT*CP*LR	 20	 274.4.5	 0460	 0:9110

ERROR	 236	 475.43

+AN(RT) mean square was used as the error term to compute the RT F ratio.
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There were no independent significant main effects, but there were

significant interaction effects between recovery time and column

position, and recovery time and loading rate. These interaction

effects were all significant to the 95% level of confidence (a ¢ 0.05).

The RT*CP interaction effect is shown in Figures 21, 22, and 23.
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Because of the additional interaction term of RT*LR the effect of RT can

not be averaged over all loading rates, but must be presented as

separate plots at each of the _three loading rates. The ultimate load at

R+29 was gv 4ter than the ultimate 'load at R4-6,, and R+0 1  However, the

ultimate load data at the R+6 level was inconclusive, since it varied

above and below the R+0 ultimate load curve. As with the synchronous

data, these plots indicate an increase in bone strength, relative to the

a
R+0 level ,, at R+29, These curves also demonstrate the increase in

ultimate load with increasing column position.

The RT*LR interaction effect is presented in Figures 24 thru 29.
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Because of the additional 'interaction term of RT*CP the effect of

T	 loading rate can not be averaged over all column positions. As can be

seen from the graphical plots, the ultimate load was lower for the

slower loading rate (R3) and progressively higher for the R2 and R1

faster _loading rates. In general, the R+O, R+6,- and R+29 recovery time

curves all decreased in ultimate load as loading rate decreased. Minor

inconsistencies were noted at column .positions 4 5, and 6, where the

ultimate load leveled off across- loading rate or peaked at the R2

F	 loading rate. These plots also show that the R+29 recovery time curves

exhibited greater ultimate loads, as a function of loading rate, than

did the: R+6 and R+0 curves.
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By breaking down the vertebral body rat data into.separate

environmental groups of vivarium, synchronous and flight, it was

,t

possible to statistically analyze the data for recovery time effects.

The results indicate that after a 29-day recovery period following

flight, there was a statistically significant increase in bone strength

approaching that of the vivarium or control group.	 The results

relating to the synchronous group were not consistent, in that at the

end of the 29-day recovery period the ultimate 'load data, in some cases,

was greater than the ultimate 'load data of the vivarium.

ACKNOWLED6MENTS

Wrk for this project was supported and funded in part by NASA PR

A416690 and the Air Force Aerospace Medical Research Laboratory under
a

project 7231-14-AA.

Instrumentation andoperation of the Instron Testing Machine, and

production synthesis, analysis and specimen preparation were

accomplished by personnel of the University of Dayton Research Institute

under contract F-33615-76-C-0401 and the Air Fo •ce Aerospace Medical

Research Laboratory, Biodynamic Effects Branch.

The Author gratefully acknowledges the technical assistance of
s

Louis Muhic, Ray Becton and Tom Collins,

The Author thanks Ms, Carla Carpenter for typing.

l
e

266



Automatic Analysis of Muscle. Fibers from
Rats Subjected to Spaceflight

Kenneth R. Castleman,'Ph.D.*
Luis A. Chui , M, D. **

Joseph P. Van Der Meulen, M.D.**
ii

SUMMARY
a

?	 The morphology of histochemically prepared muscle sections from the

t
	 gastrocnemius and plantaris muscles of flight and vivarium control

rats was studied quantitatively. Both fast*twitch and slow-twitch

fibers were significantly smaller in flight groups than in control

groups. Fibers in group 4F were somewhat larger than in 1F, presumably

due to growth after recovery. Fibers in 4V were slightly larger than 	 Y

in 1V, presumably due to age. The slow fibers showedmore spaceflight
r

induced size loss than fast fibers, suggesting they suffered more

a'	 from hypogrzvity. The proportion of slow fibers was also lower in the
i	

flight groups, suggesting spaceflight induced fiber type conversion

from slow to fast.	 ;.
,,	 r

k	 '	 i

V

* Jet Propulsion Laboratory, Pasadena, California

** USC School of Medicine, Los Angeles,.California.
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INTRODUCTION

Space flight and hypogravity are known to produce systemic and

metabolic changes in animals and humans (1, 2). Even though the effects

of weightlessness in various organ systems are well described, the

'	 pathophysiological mechanism is largely unknown. During adaptation 'to

hypogravity during space flight, the musculoskeletgl system is dynam-

ically responsive to insufficient loading mechanism, leading to

hypokinesia and hypodynamia. Decreases in body mass and leg volume have
f;

been described in manned space flights, resulting in loss of muscle

b lk (3 4)u	 ,

Skeletal muscle is capable of two basic types of contraction. 	 Some

fibers utilize a glycolytic anaerobic energy mechanism.	 These fibers

(fast twitch glycolytic) contract rapidly, but fatigue easily.	 Other

fibers require an available oxygen supply since they utilize an

oxidative metabolism for their energy (slow twitch oxidative). 	 They

contract more slowly and are resistant to fatigue.	 These fibers are

important in maintaining posture against gravity, while fast twitch

glycolytic fibers are required for quick, forceful movement (5).	 Upon

close analysis, it becomes apparent that the above scheme is an over-

f
simplification, and that all muscle fibers are not readily classified

into one,of only two distinct groups.	 In fact, there are fast twitch

fibers hFivin	 high level of enzymesg	 ymes for both glycolytic and oxidztive

4	 h

metabolism.	 These fibers exhibit both fast contraction and fatigue-
1

resistant characteristics. 	 It has also become apparent that for any

given fiber, the type of energy metabolism employed is not immutably

fixed throughout its life. 	 During _fetal development for example, the

fibers undergo.. type-changes depending upon the type of innervation they r
4 ..
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receive.	 More importantly, they change with exercise and with the

demands put upon the muscle by the environment. 	 Electrical stimulation

of muscle can also change the contracting mechanism (6, 7 9 6).	 These

observations have far reaching implications for the effects of space	 J

flight on human and animal neuromuscular systems.

Previous flights in the COSMOS biosatellite series, involving

similar exposures of rats to spaceflight conditions, have demonstrated 	 j

# atrophic and dystrophic changes in various muscles due to hypoki'nesis

` and hypogravty.	 On the 22-day COSMOS-605 flight the weight of the

e.d.l. muscle was 12% lower in flight than vivarium animals, and fiber

area was downby 13% (9)	 Changes in the soleus muscle were more

pronounced, 32% down in weight and 22% down in fiber area. 	 On those	 ?

k° rats used in the radioisotope experiment the muscle weight changes were

slightly larder:	 1% for the e. d. l . and 37% for the soleus (10) .	 Both

muscles exhibited a decrease in strength and a slowing of the twitch

response.	 In the soleus, contracting time was shorter in the flight
Y,

animals	 (11).

On the 20.5 day COSMOS..-690 flight, which included a 24 hour

exposure to an 800 rad dose of radiation, the soleus showed a 25
r

weight deficit, and the gastrocnemius a 19% weight deficit when flight

animals were compared with vivarium controls (12). 	 In this experiment

Y

the e.d.'l. showed no significant weight change.	 In the soleus the area

of "red" fibers showed a 28.7% decrease while "intermediate" fiber

area went down by 36.4%.

On COSMOS- 182, the weight of the soleus was 38% lower in flight
^t

animals and 17% lower in the synchronous experiment than in vivarium

¢.
cortrols (13).	 In all previous flights the large mixed -fiber muscles

(quadriceps; biceps and, except as noted above, gastrocnemius) failed

.; to.-how significant weight changes.

f 269
r
^a



Muscle fiber size and type distribution were studied in the extensor

digitoriom longus (e.d.!,) muscles of 15 COSMOS-936 rats (14). Five

flight stationary, five synchronous stationary, andfive vivarium

control animals were examined, Of the. three groups, average fiber

diameter was largest in the vivariurr, control animals, 7% smaller in

synchronous control, and 17% smaller iii the flight animals. Flight

muscles appeared tobe shorter than those of the other groups,, Fiber

number showed no significftnt differencu.. The e.d.l. contains predomiwm

nantly "fast twitch" fibers. The "slow ." fiber percentage was quite

variable in these animals, and no statistically significant fiber type

conversion was noted (14).

The.jeffects of hypergravity haVe been.studied in rats which spent

the first 3 months of life in a 2g centrifuge. Fiber type conversion

was observed in the soleus muscle which went from 84% slow fibers in

controls (16% intermediate fibers) to 100% slow fibers in experimental

animals (15). The soleus also showed a fiber diameter decrease in males.

The plantaris muscle showed statistically significant fiber diameter

increases in females and decreases in males.

MATERIALS AND METHODS

A total of 75 pathogen-free adult Wistar rats recovered from 18.5

days, ^of o6ital flight were included in the present study.

They were divided into three groups:

flight (F), 25 animals.

Synchronous Control (S), 25 animals.

Vivarium Control (V), 25 animals.
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Seven animals of the flight groups were sacrificed at the recovery

site within six hours of landing (R+0). Six were sacrificed six days

later (9+6). Seven additional flight animals_ were also sacrificed six

days later, but after ir^mobilization stress. Finally, five flight

animals were sacrificed twenty-nine days ,after recovery, Similar

number of animals were obtained from 6 ;ari,um and Synchronous Control

_Groups.

The left gastrocnemius and plantaris muscles were carefully removed

immediately after sacrifice by decapitation. Specimens were placed in

pre-labeled and pre-chilled poly Q I_I scintillation vials (Beckman nR,

and immersed in liquid nitrogen for a perM of approximate ly ten

minutes. Vials containing muscle specimens properly labeled and color

coded were stored in insulated containers, packed with dry ice and

shipped to the University of Southern California, Neuromuscular Research

Laboratory', and stored in a deep freezer for histochemica`l processing.

41
A. Histochemical Processing

7

	

	 Whole gastrocnemius and plantaris muscles were cryostat sectioned

at 10'um thick. Three consecutive serial Sections were obtained for

	

every 2000 um interval. In addition to routine hematoxylin, eosin and	 il

trichrome histological stains, the following histochemical reactions

	

were performed reduced nicotinamide adenine dinucleotide tetrazolium 	 .
F	

reductase (NADH) (16), myofibrillar adenosine triphosphatase (ATP ase)
	. r	,

incubated at ph 9.4 (17), 4.6 and 4.3 (18), and glycogen by periodic
c	 r	 '

acid-Schiff (PAS) reagent. Fiber sizes were measured ire sections.

	

a:	
processed for ATP age at pH 4.6 	 3

;E
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B. quantitative Analysis

Muscle histochemistry from all theeelgroups 'Of animals were analyzed

in the Medical Image Analysis Facility at the Jet Propulsion Laboratory.

e	 This facility includes a microscope-mounted television camera capable

I	 of converting the specimen image into numerical form and feeding it

into a computer for analysis.	 a is a rectangular arraysis	 The digital imageP	 y	 9

}	 of 512412 optical density measurements. 	 The operator selects for

analysis a-portion of the center section on the slide. 	 The specimen
{

image is digitized and processed in a PDP-11 minicomputer (19).	 The ;-

computer program isolates the individual fibers and measures the area,
s

perimeter and average optical denslq of each.	 The operator corrects

any inaccuracies in the automatic fiber isolation step.	 Fiber diameter €

Q is computed as the diameter of that circle having the same area by

the formula D = 2	 AI	 This as sumes that basically cylindrical

fibers have been pushed into polyp(..:al cross set„tianal shape by close

packing, assuming that all fibers are cut normal to their axis.	 The

r fiber diameter measurement error is less than '3% (14).

The computer program produces a scatter plot showing how the

fibers are distributed in diameter and optical density.	 The operator

selects a density threshold which separates light (slow) from dark

(fast) fibers and the program plots fiber diameter histograms:, m
(distribution curves) for both dark and light fibers.	 it also prints

individual and mean fiber area and diameter measurements (19, 20).

Several non-overlapping fields are _processed on the central section

r from each slide until from 200`to A 500 fibers have been measured.	 Then

mean fiber diameter ., mean fiber area, and light fiber percentages are

tabulated for each slide,
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Cross sections of the gastrocnemius muscle were identified into

three distinct regions (I, I-I and II), primarily by the distribution

and clustering of dark and light fibers. Measurement of muscle fibers

of each of the regions was made according to the previously described

method (14).

RESULTS

Upon histological examination, all slides appeared essentially

normal. The PAS specimens showed no major accumulation of glycogen.

Loss of mitochondria in the NADH specimens was not observed. There were

no major cytoarchitectural changes, and necrotic changes and "moth

eaten" fibers were not seen. Morphometric analysis of muscle fibers

was obtained from the gastrocnemius only since this was the only

muscle containing enough slow fibers for comparison of both fiber

types. Table I shows fiber area measurements in square microns

(ATHase ph 4.6) from the region 11. The flight animals showed a reduc-

tion in total area of both slow (dark) and fast (light) fibers.

However, the slow fibers were more affected as evidenced by the

decrease in slow-to-fast fiber area ratio. This is the region of the

muscle where fast and slow, fibers are most nearly balanced, and it

demonstrates the observed°trends quite well.

Table II indicates the percent changes compared by groups (flight

vs. control) and by regions. Both fiber types showed a significant {
reduction in fiber area. With only two exceptions the proportion of j

slow fibers was reduced by spaceflight. Finally, the ratio of slow

fiber area to fast fiber area was lower in the flight groups, indicating	 :a

that slow fibers suffer size loss more than do fast fibers.
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Table III lists the quantitative data obtained from all three

regions of the gastroc from four experimental groups. With few

exceptions the fiber area, the slow fiber proportion and the ratio of

slow to fast fiber area all increase in the order 1F, 4F, 1V, 4V.

This suggests that the primary effect is spaceflight, with a secondary

effect due to the post-flight activity of the 4F and the age of the

4V animals.

DISCUSSION

Animals subjected to hypogravity showed a significant reduction

in fiber size for both fiber types.	 The mechanism of these changes. is
1

not clear and can only be postulated. 	 Hypogravity produces insufficient

loading rf musc'Ie, leading to hypokinesi.a (motion) and hypodynamia

k

(force).	 This in turn produces trophic changes, particularly in

antigravity muscles (or slow twitch oxidative fibers), decreased protein

metabolism, negative nitrogen balances etc., producing muscle atrophy .

r	 as the final result, with the possible consequence of decreased muscle gi

tone,. strength and altered tolerance to physical work capacity. 	 These
a

observations have far reaching importance in prolonged manned space u

flights, where preventive :measures could perhaps be achieved by

designing appropriate exercise programs.

'	 These results appear to give a snapshot of how muscle physiology

adapts to the spaceflight environment.	 Slow fibers, important	 in

maintaining posture against gravity, are little used in space, and their

size, and even their proportion, are reduced by the adaptation process.

Fast fibers also suffer a disuse atrophy, but to a lesser extent since

they are still used for locomotion. i
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.r
The conversion of fibers from slow to fast is particularly interest-

ing since it has not previously been demonstrated in spaceflight.
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Table I

This table compares the muscle fiber measurements from region II of the

gastroc its IF and IV animals.. ATPase reaction, pH 4.6
{
I

3

7

GASTROCNEMIUS REGION P4

GROUP
NUMBER OF AREA FIBERS % SLOW SLOW FIBER FAST FIBER

SLOWRIFFAAST

ANIMALS EXAMINED MEASURED FIBERS AREA AREA RATIO

IV 4 11.9 m m2 2066 42, 3798 µ2 3267 µ2 1,157'
CONTROL

IF FLIGHT 3 22.8 m m2 894 38,9% 24M µ2 2642 µ2 0,975



Table II

This table shows the percentage changes in fiber parameters for various

Flight/Control group comparisons. In all Cases the control values are

the basis for percentage changes. ATPase reactions pH 4.6

GROUPS

COMPARED

NUMBER

OF RATS

No,
FIBERS

MEASURED

SLOW

FIBERS

SLOW
FIBER'

AREA

FAST
FIBER

AREA

SLOW/FAST
AREA

RATIO

IF vs 1V (I) 5 1833 +35 -44 -32 .16

IF vs 1V (II) 7 2950 -9 -35 -20 -16

IF vs	 1V (111 6 3844 -20 -32 «26 -20

1, 2,3F vs 1, 2, 3V 0) 12 3647 +28 -25 -13 -13

1, 2,3F vs 1, 2, 3V (11) 17 4291 -2 -33 "13 -23

1,2,3F vs 1, 2, 3V 	 (111) 16 7437 -20 -25 "30 T5

Table III

These are the mean values of the muscle fiber parameters tabulated by

group. Included are the number of animals and the number of fibers

analyged in each group. ATPase reaction, pN 4.6

GROUP REGION	 RATS FIBERS SLOW F18ER FAST FIBER % SLOW SLOWIFAST

AREA 1 u 2I' AREA l µ 2} AREA RATIO

IF 1'	 3 1491 1644 2973 20.6 0.553
IV 1	 3 981 2,797 3967 19.4 0.705

F 11	 3 894 2480 2602 39.2 0.953

4F 1 1 	3 838 3278 3721 43.8 0.881
1V 11	 4 1621 3876 3271 44.7 1.185

4V 11	 3 873 4153 3947 36.8 1.052

3i

1

1F 111	 4 2000 2365 2946 19.2 0.803
4F 111	 3 658 3230 4989 24.5 0.647
1V 111'	 2 1844 3465 3379 , 22.3. 1,025
4V 111	 4 1425 3445 3627 21.1 0.950
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$Ly
Rats flown for 18.5d In the COSMOS 1129`Biosatel lite exhibited normal rates

i	 of denflnogenesis and osteogenesis in the body of the mandible during O-G'.
The total calcium, inorganic phosphorus and hydroxyprollne levals In the t

,jaws and'i nc is+rs of J he fli ght rats were normal. Gravity density fraction-
ation studies suggested, however, that spaceflight caused a delay In the
normal maturation of bone mineral and matrix; normal values were reestablish-
ed by 6d Postflight. The teeth were spared The circadian and ultrad`ian
patterns of dentin calcification were normal during spaceflight and recovery
periods, but the enamel rhythms displayed a greater ampl itude of sulfur
concentrations and thus abnormal caicium:sulfur ratios only during exposure;
to O-G. We conclude that the rat mandible and teeth do not suffer the defi

'	 cits;of bone formation common to weight-bearing parts of the skeleton during'Y
spaceflight. The only derangements detected at 0-0 were In the quality of
the matr ix and minera1 moieties. 	 i

t
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(tibias) suffered reduction in the rate of cortical bone growth and in femur

bone strength.	 Quite unexplained was the fact that periostea l growth was

diminished while ondosteal growth remained unchanged.	 Bone resorption rates

(specific osteoclast surfaces) were relative ly normal_.	 The COSMOS 936 bio-

satellite also included some animals maintained in a centrifuge which pro-

vided a IG envi ronment, and their skeletons were spared the deleterious

effects of null gravi ty on bone strength. _Healing of the periosteal growth

deficit and restoration of long bone mechanical strength was noted in the

O-G group after a 25d post-flight recovery period in a Moscow vivarium. 	 In

the most recent COSMOS 1129 fli ht(Se tember-October 1979)	 there was an9	 P

opportunity to examine the effect of null gravity on the integrated growth

and remodelling of a non-weight bearing bone-- the mandible and its teeth.

How might 0-G affect tissuesin a skeletal element which Is only supplied

with a large antigravity muscle(masseter)?

MATERIALS AND METHODS'
ro

k Three groups of 5-7 SPF male rats(270-3208 body weight) were injected
t

r
with 1.0 mg/kg body weight Declomy^in to mark forming and mineralizing

a

surfaces of bone and dentin, 3d prior to being loaded into block modules

of 5 cages(singly housed) mounted in a'imodified Vostok spacecraft. 	 The
^a

animals were then launched into orbit for a period of 18.5d. 	 The particu-
it

2'80
1

j - _._

^c

INTRODUCTION

Efforts to understand how prol onged spacef li ght effects Changes in ca lc ium

homeostasis and bone formation-resorption have been pursued in laboratory rats

during thrco joint NASA-Soviet Biosateli'ite flights of 18.5-22d duration

(COSMOS 782, 936, and 1129)(1-4). The appendicui-ar weight bearing bones

F
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'	 tar details of the flight and tetracycl Ina labeling schedule have been

'.

	

	 described by Wronski g± IL(5). Water was supplied ad-I lb, and they were

fed lOg aliquots of a nutritionally defined paste diet four times per day.

Control animals were maintained in a land bound mock-up of the biosatellite

under naarly identical conditions, and these were subjected to simulated

stresses of launch and recovery. Additional groups of (unstressed) con

trol animals were maintained _in a Moscow vivarium. The control groups

and one group of flight rats received a second and /or third Injection of

Declomycin(I.Omg/kg) on the 6th and 27th days following recovery, and they q

were sacrificed 48h dater. The total number of groups of animals were as

follows;

Groups

I Flight Basal
2 Synchronous Basal
3 Vivarium Control's
4 Synchronous Controls
5 Flight Fiats

One group of 5 flight rats was used for analyses of circadian changes in

r
(a) motor activity during the flight and recovery periods(6) 0 and (b) the

J
excretory patterns of Na+ r K+ , Ca+t, PO4-3 , and hydroxyproline(AH-Pr)(7).

These animals were subjected to a 1800 inversion of the light-dark cycle

after IOd-at O-G to test their 'ability to "resynchronize" their metabolic

patterns. However, during the postflight_ test periods.at R+3, R+8 and

R+26, the animals each spent 3d in metabolism cages and were fed six times

per day rather than the usual 4 times per day.'

At autopsy, the mandibles were recovered, cleaned of soft tissues, and

fixed	 in either 706 or 95% ethyl alcohol, for subsequent analysis of the
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growth(tetracycline data) and matrix-mineral maturation.

Analysis of Growth

' The left J aw was divided Into 3 regions-- the premolar, molar and post-

^Y

molar areas.	 The premolar and postmolar areas were embedded undecalcified

t, In methylmethacrylate and sectioned transversely on_- high speed rotary

saw at 50-60pm(Fig.	 l).	 Tho.molar rigion was sectioned in the frontalh

plane at lOpm on a Jung Microtome to reveal -the roots of the molar teeth,

and these sections were stained with the Goidner Method to reveal mineralized

bone and osteold.	 All the sections were examined by UV microscopy to reveal

the distribution of the tetracycline time markers. 	 The mineralization rate

(equal to the rates of appositional bone growth and dentinogenesis) was

estimated by measuring the distance between the tetracycline bands, and
^,

e

dividing that value by the time interval(days) between i njection.	 These

measurements around the roots of the molar teeth, based on Vignery and

Baron's model(8),provided information about the rate of tooth migration via

t resorption on the anterior surface and formation on the posterior surface

1

of alveolar bone(see Tran Van Thuc et al	 in this Report). 	 In addition,

they also measured the area of the periodontal 	 ligamentand the specific
i

surfaces of bone undergoing formation(osteoblest-covered) and 'resorption

(ostooclast-covered) with a Zeiss ocular grid.
i

Dentinogenesis was estimated in the i)ort ion of the mandibula r i nci sor; i

that lay within the d'iastema, where the dentin was thick enough to record
l

a growth period of 19-21d. 	 When the tetracycline labeling intervals were

longer than 21d, we used sections of the erupted portions of the teeth where

the dentin had formed almost exclusively during the fl ight period.

:^ l
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Matrix-Mi nera lization Maturation Rate

The Incisor was removed from the right Jaw and it was divided into 3

regions representing the distal region of tooth formation, the middle

region of tooth maturation, and the coronal or erupted portion(Fig. 2), The

teeth sectors and Jaw bones were individually frozen, ground to a 40^m

powder, and separated by a bromoform-toluene density gradient Into 3 sped

tic gravity froctions(I.3- 1.9, 2.0-2.1, 2.2-269), which were analyzed for

1
calcium(Ca), inorganic phosphorus(Pi), and hydroxyproline(OH-Pr)	 In the

normal growing rat, most of the mineral and OH-Pr in bone and teeth are con-

centrated in the highest gradient density fractions(2.2-2.9).	 The less

` mature bone and tooth matrix-mineral 	 is distributed in fractions 1.3-1.9 and

f 2.0-2.1.	 Thus, these analy ses recorded a maturat iona l p rofile for bone

matrix and mineral(9).

Circadian Changes in Dentin-Enamel Formation

Polished slabs of the rower Incisors were scanned across the labia l

surface at continuous I.Oym Intervals from the pulp to the enamel surfacec

to measure the .local variations in calcium, phosphorus and sulfur.	 Sulfur,

^

was used as an index to the glycoseminoglycans of dentin and tp the keratin-

l ike protein	 in enamel.	 A chlorapatite(IO) with a weight percent of Ca and

Pi of 53.89 and 41.00, respectively, -; served as the standard from which to

calculate the Ca and P concentrations in the teeth. 	 Figure 3 shows the
JJ-

?"v track etched by the electron beam from a MAC-V microprobe(Monsanto Corp.,
t.•

St. Louis, Mo.)	 the diameter o	 the beam was I.Opm	 The data was refined

by Fourier analysis to compute the normalized power spectra. 	 The techniques
r

used have been described by Rosenberg and"Simmons(I 1- 12), and they provide

1
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estimates of the repeatability of rhythms of Ca, P, and S concentrations that

may be present owing to circadian, ultradlan, and infradian per iod icities

RESULTS

Dentinogenesis

At the mandibular diastema, the average preflight rate of denti nogenesis

was 17-18pm/d(Fig. 4), and this was unchanged during the flight and post-

flight recovery periods(Fig. 5) in the vivarium and synchronous control

groups. However, the rates of dentinogenesis increased slightly during the

recovery period In the control groups.

3

Qsteo enesis

Body of the Mandible; No changes from the normal rate of osteogenesis was

noted i n the area of the mandibular diastema during spaceflight. The normal

rate of growth of about 3-4pm/d was also maintained during the post-flight
r

recovery_period(Fig. 6)	 Growth in the groups of control animals proved 	 3

to be the more variant, but generally the data showed the anticipated reduc-

tion in growth rates with age. Intergroup variations were also absent in the

ossification of the 'post-molar mandibular ramus. Periosteal growth along the

superior and inferior rami averaged 2-3pm/d, both during the flight and

postflight recovery periods(Pig. 7).

These data suggested that spaceflight had no significant effect upon the
r

appositional growth of the body of the rat mandible'. These results, then,	 k

stand in sharp contrast to the data presented by Wronski et al(5), that bone

i
ii	 formation rates In the weight-bearing bones(appendicular skeleton) were

^i
depressed 30-60%. In fact, however, the ,jaw bones were not entirely normal.

There were distinct changes in the rates of remodeling of the alveolar bone

284
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around the roots of the molar teeth(see Tran Van Thuc In this Report) and

In the maturational status of the bone mineral and collagen of the mandi-

bles which suggested that the rates of 'bone remodeling and bone maturation

were reduced.

Bone Maturation

When the ,jaws and each of the 3 regions of the lower incisor were ana-

lyzed for total Ca, Pi and OH-Pr, we could not distinguish the flight from

the control animals by any change in their hard tissue chemistry(Fig. S).

The illustrations also include, for comparison, data from animals of the

same age and sex which were fed Purina Laboratory block chow and tap water:

The density gradient fractionation studies indicated, however, that rat

alveolar bone was distinctiy abnormal after spaceflight(Figs. 9-11). in
I

all flight rats, there was a highly significant diminution of bone collagen

and mineral moieties in the most dense mature fractions(2.2-2.9), with a

corresponding increase in the least dense, most immature fractions(1.3-1.9,

2.0-2.1). The highest density fractions of the flight rat 'bones had 30%

less mineral and collagen(OH-Pr) than the corresponding fractions from the 	 t

control rat bone. These changes suggested that there was a distinct deficit 	 E

In the flight animals-- that there was a delay in the maturation of the
i

collagen(lack of intramolecular cross Finks?) and apatite mineral. Impor-

tantly, these deficiencies tended to normalize after 6d at 1-G, and they 	 z

;i	 were fully corrected during the postflight recovery period of 29d("Figs.12

Y 	 15). 4

Similar changes were not apparent when the 3`regions of the teeth were

analyzed(Figs.. 16-19)-- suggesting that the teeth were highly conserved
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elements, i.e., vitally essential to life itself.

Microradiographs of the growth surfaces of the bones(Fig. 1) did not

detect the mineral deficit associated with the period of'nuii gravity, but

they did reveal alternating bands of high and low densl'i.y i n rat incisor

dent In(FIg. 20). There were no_ob ,,';lous differences between the flight and

control rats in this regard. Given this difference in mineralization, an

attempt was made to define the biorhythmicai components of growth in the

incisor dentin and enamel, since it was passible that spaceflight interfer-

ed with the normal rhythm ic behavior of the odontoblasts and amelobiasts.

Biorh_ythmicity of Dentin and Enamel Formation (Electron microprobe)

(A) Dentin Formation: Fourier analysis of data derived from continuous

I.OPm traces with the electron microprobe from the pulp to the dentin-enamel

,junction revealed that there were repeatable Ca	 P, and S peaks at Intervals

of about Mom during both the flight and postflight recovery periods.

Since	 labial dentin was deposited at a rate of_20pm/d, these 5.Opm perio-

dicities must represent periods of formation/mineralization at times shor-

ter than 24h (=ultradian), and multiples of this rhythm represented a cir-

cadian time period(=24h). 	 figure 21' shows that while the fluctuations in

Ca and P were generally	 Pin- hase ► the Ca and S concentrations were not

always In-phase. 	 The rhythms In the phosphorus concentration were the most

regular.	 The obvious increase in the amplitude of Ca and S concentrations

within 30.Opm of the pulp,	 i.e., the dentin formed during the last 24-36h .

of the flight period, may signal a disturbance associated' with -reentry- ;-

recovery.

(B) Enamel Formation:	 In contrast to dentin, the analyses indicated that
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during exposure to 4-G, the concentration of S was much less regular than

either phosphorus or calclum(Fig. 22). Wide variations In S concentration

occur throughout the enamel In the. flight group. These are absent to the

v ivarium controls, but they 'exist with a much lower ampiitude (vvss the flight

group) in the synchronous controls. Nevertheless, even In the f)/fight rats,

the P concentrations exhibited persistent periodicities at 5.Opm intervals

during the flight and recovery periods. If enamel is deposited at a rate

of 10-15pm/d(13) 0 then the data speak to the persistence of a normal bio-

rhythmicity during spaceflight, involving l circadian period and 3 ultra-

than periods every 24h. Here too, the changes i'n Ca and P concentrations

were usually in-phase, while the relationship between Ca and 5 was more

variable.

Thus, these observations suggest that the enamel records_a specific

response to weightlessness during null gravity and that this is superim-

posed upon disturbances due to the 180 0 inversion of the light-dark cycle

10d after "Lift-off, ! i.e., at mid-enamel thickness.

il	 A

DISCUSSION	 i

There were few direct measurable effects of spaceflight I n the mandible

of the rat. This suggests that, as opposed to the long bones which are
1

weight-bearing parts, the non-weight bearing skeletal elements would

f
tend to be unaffected` even when supplied w ith powerful antigravity muscles.

This was not surprising since the growth of the entire. body of the rat man-

dible most be coordinated with the production of the incisor teeth which

grow along a spiral axis. The lower incisors must appose after eruption if

the animal is to continue eating and assure its survival. Whi le'the apposi-

I	 ^	 i
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tional growth of the body of the mandible is relatively normal, we did

detect changes in the maturation of bone collagen and mineral, Such

changes,	 Involving a delay in the maturation of the collagen and mineral
r

fractions, is typical of some other skeletal problems, such as the derange-

ments in mineral metabolism common to uremic(9) and rackitic rats(14).

It was also notable that the rates of bone formation and resorption around

the roots of the molar teeth were s light ly reduced(see Tran Van Thuc, this

Report).	 Th is mi ght occur If there were a flight-related reduction in the

maturat ion of the osteoprogenitor cel l population to the osteoblast class,

or in the generation of the monocytic-macrophogic cells which serve as the

precursors of osteoclasts. 	 Roberts(15) noted that on the basis of nuclear: 	 a

cytoplasmic volume ratios( large ratios being typical of the mature osteo-

` blast), there was a predominance of cells with a low volume ratio, 	 i'.e.,'

more than the normal number of pre-osteoprogenitor cells in the space

around the roots of the maxillary molars. 	 Thus,	 in the flight rats, there

seems to be a deficit of cell maturation, and this may have been due to

some alterations in blood corticosteroid levels and/or parathyroid gland
{ ^a

funciion(or end-organ response) during spaceflight.

Cann's estimates of whole body fecal and urinary calc i um losses during

spaceflight(16) complement the h-istomorphometric assessment of the skeletons
0

which signal the si gni ficantly reduced rates of bone formation and resorption,

However, the histomorphometry indicatos that these processes had been un-

coupled, such that there Is a residual component of bone resorption(80% of

J normal-) which exceeds the rate of bone formation during flight.	 While the

t

weight.-bearing long bones(5) and the vertebrae(17) seem to be the most
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pointed ly affected skeletal parts, an al tered state of mineral metabolism

certainly existed in the ,jaw bone.	 The aberrant picture of cell prollfer-

ation kinetics Is apparently ,notIIm ted to bone.	 Lymphocytes from crew-

^r members of Soyuz 6	 7 0 8, Skylab 2, 3, 4 Lnd Apollo-Soyuz suffered failure

of cell proliferation/maturation when challenged with mtogens(18).

-`` Whil e there appears to be little soft tissue evidence that spaceflight
t.

is chronically stressful(19), the hard tissue evidence is such that one must
X

presume some degree of disturbance.	 Incisor enamel recorded widely fluctua-

ting amplitudes of S concentration throughout Its thickness. 	 Tigranian and

his coworkers(20) have emphasized the presence of stress at the time of re-

entry and recovery of the spacecraft(in-reased concentrations of circulating

catecholamines	 corticosterone and thyrotrophic hormone), and It is inviting

` to view the Irregular patterns o f Ca and S concentration in the dentin formed` 33.

during this time in this light.	 The failure of bone and tooth cells to

properly "process" the matrix and its mineral may be related to Matthew's l

demonstration of abnormal accumulations of mineral 	 i n ep i physea I plate 

chondrocytes(see Supp lementa l Report 3p)-.	 In other states of a l tered miner-
r

al metabolism, "extracel f ular lakes" of m ineral have been described around

i osteocytes(21).

Our finding that stable or relatively stabie biorhythms of calcium, phos-

phorus and sulfur persist in the dentin and enamel of the lower incisor

during the spaceflight and recovery periods, despite the reversal of the light-

dark cycles midway through the flight period, attests to the conservative

nature of the teeth.	 The (motor) activity rhythm was also normal during

i, spaceflight, but the rhythms of electrolyte and Ca, P, and OH-Pr excretion(7)

and activity(6) were disturbed during the recovery period at I -G.	 These

t=
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disturbances may relate more to alterations in oaging and the feeding

schedules upon which the regularity of the tooth Oa and P rhythms are

highly dependent(22-26) than to any stress imposed by spaceflight, reentry,

and recovery of the biosatellite. Rosenberg and Simmons(11,12) have re-

viewed the many evidences supporting the concept that the feeding sche-

dule and resultant occlusal stress rctate the blorhythmicity of denting

genesis.

I,.n̂ toto, the data we have presented suggest that the non-weight bearing

bones of the skeleton will not escape the deleterious effects of space-

flight, but it is, rather, the quality of the bone which is Impaired rather

than 
The actual volume of the tissue or its mineralization status(-weight ).
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Figure I

The mandible of an SPF rat, showing microradiographs of transverse
and frontal sections through the molar and postmolar regions.

A 1 = region of the diastema, transversely
sectioned to obtain tetracycline growth
data.

A ,) = region of the diastema used for electron
microprobe analyses of Ca, P, and S
concentration and blorhythmicity

B = rtk-)lar region

C = postmolar region, treated as Al
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Figure 2

Scheme of growth of rat mandibular incisor and positions of tetracycline labels

t
3

i

Figure 3

Photomicrograph of rat labial dentin-enamel, showing the etched track made by
the I.ONm beam of the electron micr-uprobe.
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cosmos 1129
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Figure  5

Calcification rates of dentin in the region of the mandibular diastema in rats
during the Preflight, Flight and Postflight Recovery Periods.
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Figure  6

Calcitication rates of bone In the region of the mandibular diastema in rats
during the Preflight, Flight and Postflight Recovery Periods.
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COSMOS 1129
POST-MOLAR MANDIBULAR RAMUS- PERIOSTEAL

4

	

NS	 <OOt NS	 < oI NS

g $	 T
y 2

^` I
4

0 SB	 v 5 F	 v s F	 V S F

	

FLIGHT	 y R*6d	 R+2W

REC
v
VERY

S6 - synchronous bow , control

V • vivarourn Control

© s - synchronous control

- F • flight

Figure  7

Calcification rates of bone in the postmolar superior and inferior rams of
the rat mandible during the Preflight, Flight, and Postflight Recovery Poriods.
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Figure 8

Total mineral and hydroxyproline content of alveolar bone of rats sacrificed
immediately after an 18.5d spaceflight.
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Density Gradient Fractionation of Rat Alveolar Bone
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Figure 9

The distribution of collagen hydroxyprcline in density gradient(specific
gravity) fractions of "ie alveolar bone of rats sacrificed immediately after

spaceflight vs that in several control groups.
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Figu re 10

The distribution of calcium in specific gravity fractions of the alveolar

bone of rats sacrificed immediately after spaceflight vs that In several

control groups.
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The distribution of inorganic phosphorus in specific gravity fractions of
the alveolar bone of rats sacrificed immediately after spaceflight vs that
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Figure 12

Total mineral and hydroxyproline content of alveolar bone of rats flown In
space for 18.5d and sacrificed after a 29d recovery period at I-G.
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Figure 13

The distribution of hydroxyproline in specific gravity fractions of the
alveolar bone of rats flown in space for 18.5d and sacrificed after a 29d
recovery period at I-G.
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The distribution of calcium in specific gravity fractions of thu alveolar
bone of rats flown In space for 18.5d and sacrificed after a 29d recovery
period at I-G.
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K*AALa

Figure  20

Microradiograph showing a cross section of a lower incisor and
investing bone in the region of the diastema of the mandible of
a rat exposed to 18.5d at 0-G. The appearance of the tissues
is normal. Note the alternating bands of highly and lowly
mineralized dentin laminae.
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The Effect of Space Flight on Osteogenesis and Dentinogenesis

in the Mandible of Rats

Supplement It The Effects of Space Flight on Alveolar none

Modeling and Remodeling in the Rat Mandible

P Tran Van, A. Vignery and R. Baron

Departments of Internal Medicine and Cell Biology

Yale University School of Medicine

333 Cedar Street

New Haven, Connecticut 06510 U.S.A.

SUMMARY

i The histomorphometrc study of alveolar bone, a non-weight-bearing bone

submitted mainly to the mechanical stimulations of mastication,, showed that

space flight decreases the remodeling activity but does not induce a negative
,d

r	 balance between resorption and formation. The most dramatic effect of space 	 r

3
flight has been observed along the periosteal surface, and especially in areas

<-

	

	 not contiguous with(covered with) masticatory muscles, where bone formation

almost stopped completely during the flight period. This bone being submitted

to the same mechanical forces in the flight animals and the controls (synchronous

and vivarium) it is concluded that factors other than mechanical loading might

be involved in the decreased bone formation during ,space'flight.

a

I
{
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INTRODUCTION

Metabolic studies of the Skylab astronauts during space flight goncluded

that there had been a significant increase in urinary calcium (1) similar to

the observations made during bed rest immobilization. 	 In the rat jaw bone,

the highest density fraction in the flight rat had 30% less mineral and

hydroxypro.li,ne (collagen) than the corresponding fraction to the control rat

(2).	 Such data suggested a failure of bone mineral maturation.	 Microscopic

s examination of the long bones of male'Wistar rats after about 20 plays in

space showed that the bone formation rate decreased about 40% compared with

the control's (3).	 A decreased amount of 'trabecular bone near the cartilagi-

nous growth plate was also noticed in space flight rats (4).

Following this information about bone loss and the lack of bone formation,

our study has been concentrated on the dynamic histomorphometry technique de-

scribed by Frost (5) and applied to the alveolar bona (6) to determine the

extent and.duration of each phase of the bone :remodeling, sequence, the mean

calcification rate and the amount of bone mineralized per day.	 In the rat,

alveolar bone remodeling is associated with the continuous drift of the teeth

throughout the life of the animal (6,7).	 As the tooth drifts, there is one

side of the socket which is in continuous bone formation (modeling side) and

the opposite side shows alternative bone resorption and formation within small

foci (remodeling side) (6). 	 This model has already been used to study the

cellular kinetics (7), function and origin of the bone cells (8,9) as well as

the effects of calcitonin (10), parathyroid hormone (8,11), and the short
v

4 and Long term effects of occlusal hypofunction (12,13) on bone modeling and

remodeling.

Y

Under space flight conditions, and assuming the animals are eating nor-

mal,ly,' this `bone should be subjected to only very slightly different mechanical
a
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conditione which should not induce marked changes in bone remodeling if all

other metabolic conditions
s

are unchanged, On the other hand, if the changes

".	 observed by others in long bones (3) are due totally or in pare to systemic

`	 changes, the alveolar bone remodeling should also be affected, and even more

markedly considering its very high normal turnover rate (14).

r
MATERIALS AND METHODS

'
For a description of the experimental protocol and of the group of animals,

I=
refer to Cosmos 1129 experimental protocol. Our own procedure follows: The

molar area was dissected out of the right lower jaws, fixed in alcohol 40% at

4°C, dehydrated in;graded alcohol 70%, 90%, 100%, and embedded , in methyl-
l

methacrylate without. decalcification. Horizontal sections, 4 mi crons thick,

were prepared with a Jun g K Microtome from the cervix to the apex of the root.

One section out of every five in the middle part of the buccal root of the

first molar was stained with Toluidne blue, pH 2.8. One section . out of every

five of these sections was prepared at a thickness of 8 microns, for fluorescent

t

	

	 microscopic analysis. All measurements were made on the socket of the buccal

root of the first molar.

The cellular measurements were made on four stained sections, using a

Planimeter (MOP 3, Carl Zeiss, Germany), at 400 X magnification On a magnetic

R	 table. The following parameters were recorded.:

Extent of the remodeling side.

Active resorption surface: interface between osteoclasts and bone.

Reversal lacunae: extent of Howshp ' s lacunae without osteoclasts3 and

without -osteoid tissue, lined with mononucl,eated cells.
^ r

Remodeling formation: extent of lacunae lined with osteoid tissue

d
along the remodeling side.

Fk	 -
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Resting area or inactive surface; the bone surface covered neither by

osteoclasts, nor osteoid tissue, nor Nowship l e lacunae.

- Number of osteoclasts-on-bone and their number of nuclei.

- Number of osteoclasts off-bone and their number of nuclei.

- Osteoid thickness on the modeling side.

Fluorescent label! Measurements of tetracycline labelings were made on

f 4 x 5 inch black and white polaroid micrographs taken on a Univar microscope

(Reichert, Austria) equipped with ep;tfluorescence at 250 X magnification.

Four sections 8 microns thick were measured on a magnetic table (MOP 3, Carl

Zeiss, Germany) and the following parameters were recorded;

The mean calcification rate per day.

- The volume of bone calcified per day.

- The bone porosity.

- The length of the modeling side.

The length of the remodeling side.

The volume of the periodontal ligament on the modeling side,

► 	 -- The volume of the periodontal ligament on the remodeling side,

The width of the periodontal ligament on the modeling side.

- The width of the periodontal ligament on the remodeling side.

All data are expressed in both relative values (%), absolute values (mm,

mm2 mm3) and standard deviation of the mean calculated.

In addition, the mean calcification rate was also measured on the peri-

osteum along the buccal surface of the mandible at 3 different sites, 2 of

them in areas where the masticatory muscles are contiguous with the periosteum

(m2 and m3) and one area where the periosteum is covered only by the gingival

epithelium (ml)
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RESULTS

A. Alveolar bone remodeling

1. Preflight group (SB and FB, Table I)

The comparison of the preflight groups dfd not show any significant dif-

ferences in the calcification rate and the total amount of bone calcified per 	 w
s

day. There was, however, a significant increase in the number of osteoclasts

and the extent of the resorbing surface (p < 0.02) and a decrease in the

thickness of the osteoid seam along the modeling side (p < 0.01) in the FB

group. These changes can be attributed to the stress of the training period.

2. Groups 1V, lS and 1F (Table 11, Figures 1, 2, 3)

The only change observed between the 1S and 1F `group (flight effect) was

a nearly significant decrease in the mean calcification rate (0.10 > p > M5).

When compared to the vivarium animals (l.V), this difference became clearly

significant (p < 0.05). Concomi,tantl,y, a slight but not significant decrease

was observed in all the resorption parameters in the space flight group of

Wanimals.

i
3. Postflight groups	 1

a. Group 2S, 2V and 2F (Table 111)

s of animals are maintainedprevious groups	 ''	 The tendencies observed. in the 	 g p
I

i	 here. The only difference between the S and F group is a nearly significant
3

(0.10 > p > 0.05) decrease in the mean calcification rate.

`	 When comparing the F and V animals, this difference became significant

(p < 0.05); moreover, other concomitant changes became significant: in the F
a

group there was an increased resting surface (p < 0.05), an increased extent 	 T

of labels on the modeling side (p < 0.02) and a markedly decreased thickness

of the osteoid seam on the modeling side of the socket (p < 0.01). AU, these

cha'ages clearly indicate a decrease in the rate of the drift of the teeth in

the flight group.',
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b. Groups 4S, 4V and 4F (Table .W)

Although the same tendencies were observed between the groups S and F;,

they were not significant, Only one unexplained significant decrease (p <

0.05) was observed in the osteoid surface of the remodeling side in the flight

group. When comparing the F group to the V animals, the same differences were

observed as previously in the groups 2 a decrease in the mean calcification

rate (p < 0.02) and the amount of bone calcified per day (p < 0.01) as well

as an increase in the osteoid thickness on the modeling side (p < 0.05) in the

flight group. Altogether these results indicate a slower drift of the teeth.

in the postflight period as well as during the flight period itself.

When taking all these results into consideration (Fig. 4) it is possible

to show a progressive decrease in the calcification rate as a function of age

in the control animals The synchronous group showed the same tendency but

with a slower, although not significant, rate than the vivarium animals. The

animals subjected to the flight showed a nearly or fully significant slower

calcification rate than the synchronous or vivarium animals. However, these

changes were not associated with any changes in periodontal ligament thick-

ness and/or increased porosity of the alveolar bone, therefore indicating

that they were due to a decrease in the speed of toots drift (and consequently
i
j

	

	 turnover rate or vice versa)' and not to an imbalanoed or abnormal bone forma-

tion per se.

B.-Periosteal bone formation (Tables V and V1, Figure 5)

No differences were noted in the average calcification. rate between the

3 areas that have been measured in the vivarium and/or synchronous groups.

On the other hand, when the animals	 'subjected to the space flight are taken

into consideration, a very significant - difference is observed between zones

covered and not covered by muscles. Although the flight group shows ,
a sig-
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nificant decrease in bone calcificaton`rate this effect is especially dramatic

along the periosteal area not covered by muscle.

The recovery period showed the same trends as along the alveolar socket_t.

bone formation along the periosteum was still very significantly lower than

control during the first 6 days after the flight, but then returned to normal

values.

DISCUSSION

The hypothesis which had to be tested in this study was that the changes

in bone formation observed along the periosteum of space flight rat long bones
i

(3) were essentially due to the lack of weight-bearing mechanical stimulation

I and not to 	 sys temic factor.	 Alveolar bone remodelin g was the ideal . area ofy

the skeleton in which to test this hypothesis because one would assume thatyP ^	 ^

u
f	 a'i

weightlessness would have minimal. effects in this non-weight-bearing bone upon

which comparatively enormous mechanical, pressures are exerted during the mast i-

catory function. In addition, the existence of very accurately balanced bone

modeling and remodeling activities associated with the physiological drift of

the teeth, as well as of a very, high turnover rates make this bone very sensitive

to slight and/or short term changes (14).

j The results obtained in the present study showed the absence of effects of
;I

space flight upon the balance between bone formation and resorption in a bone

where most of the mechanical stimulations have been maintained throughout the

experiment.	 There was, however--, a slight but constant decrease in the alveolar

bone turnover rate. 	 This decreased remodeling activity, although present in sz

the synchronous groups of animals, living on earth under the exact space flight

conditions but without weightlessness, was significantly lower in the space

k flight animals, even after a three week recovery period.	 It is not possible

fi
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tea know if these changes were due to the slight difference in mechanical stimu-

lation one would expect even in the jaws, or to a change in systemic factors.

In terms of bone remodeling activity, our results Indicated a decrease in

the birth rate of new Basic Multicellular Units (BMU) at the tissue level rather

than an abnormal activity at the BMU or the cellular levels. Although the

latter cannot be ruled out, there was, however, a good balance and a good

coupling between resorption and formation. The changes observed by Roberts

in the same animals (15), and suggesting a lack of conversion from osteopro-

gentor cells to mature osteoblasts in the periodontal ligament facing the

modeling side of the sockets, is therefore very likely due to a slowdown of

the whole turnover rate and the physiological drift of the teeth, rather than 	 a
l

to a primary defect in cell differentiation. However, the lack of recovery

in the two postflight groups remains troublesome in this respect. As a mattor	
i

of fact, both Roberts (15) and Morey and-Bayl,ink (3) studies indicated that
i

the osteoblastic differentiation and activity returned to normal levels rapidly

during the postflight periods. This discrepancy remains to be explained.

Of major interest are the results obtained along the periosteal surface
ti	

of the alveolar bone. We observed, at this site, like at all other sited in

the skeleton and along the bone formation side of the tooth socket, a decrease
a

in the average calcification rate in the flight group, despite a maintenance

of mechanical stimulation. However, this decrease in bone formation was ex-

tremely dramatic in _areas not contiguous with muscle and only moderate in

areas contiguous with muscles. In both areas, it is possible to assume that

the mechanical conditions, largely dominated by the masticatory function, are

comparable in the flight and synchronous groups. Such ,local variations in

the effects of spaceflight have never been mentioned before. Further studies
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would be necessary to find out whether this differential decrease in the bone

r'- formation gate during space flight is the result of a combination of local and

systemic factors, either endogenous or environmental,	 One is, however, eiriven

to the conclusion that a factor other than mechanical loading is responsible

} for both the decreased tuii over along the alveolar sockets and the decreased
fM

formation at the periosteal surface, marred differences being observed in this

study between bones essentially subjected to the same mechanical conditions

>t (synchronous voo flight groups).

In conclusion, the alveolar bone remodeling rate, although decreased by

r
the simulated space flight (synchronous controls), was significantly lower in

the actual space flight groups.	 However, the balance between resorption and

formation was not modified in this non-weight-bearing and still mechanically,

stimulated bone. excluding the existence of a systemic factor able to explain

h	 a' the otherwise observed osteopenia in weight -bearing bones.

i
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TAKE 1 t WAL GROUPS

1

trtent of the 0iffereet Attivities Occurring Along the Mina Surface

^, S8 (S) ih (5)

t - , %

Perhotor of hemodal lhoo side	 1186 s 141 1158 A 110

Active resorption surface	 76 1	 22 6 x 1	 176 s	 76 46 t r+

;x Reversal lacunae	 562	 169 46 # 9	 $93 s 110 51 ! b

Mmodeling fov"tion	 101 t 57 9# $	 60 t	 13 4 A 1

Msting	 453 i	 68 39 L 6	 311 3	 63 30 t G'-

Total numbe r of ostieslests	 lot	 5 30 !,	 14

Total number of osteoclasts on-boot 	 12 x	 3 22 1	 !w
Total number of nuclei of osteoclasts oo-bone	 15't	 8 35 1 19'*

- Total number of osteoclasts off-bone	 6't	 4 6 1	 6

Total number of nuclei of osteoclasts off-bone 	 11 t	 10 10 :	 i
(s

Osteoid thickness on the modeling side (p)	 7 1	 0.71 6,40 t	 0.65	 + '6

Fluorescent LabellMasurementS

s8 F6	 .:..,........^ ^..
Iban calcification rate%day (s) 	 e.K_ j sm 5.411	 144
Iona volume calcified/day (msn11K^M 5 ^	 belt 030 3.41t	 0.41
$one density M	 98	 6	 2 99	 1	 s

Length of modeling side (u)	 765	 1	 37 770	 1 114

Length of remodeling side (p)	 1025	 1 217 1163	 t 321 p

Periodontal volume on the modeling side (mws) 	 46	 t	 4 46	 3	 4
a

Periodontal volume on the remodeling side (m) )	 51	 t	 16- 46	 t	 10

Periodontal width on the modeling side (u) 	 77	 t	 8 73	 t	 7

Periodontal width on the remodeling side (u)'	 59	 it 51	 1-	 7`

P < 0.05

..	 p ? 0.02
•.. F { 0.01

a	
,'

f

.

j
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TA6LE I 

Extent of the Different Activities Occurring Along the Ma"lino Surface

Js (6) IF (5) (5)
YV9 i<

5

Foripoter of remodeling
side' 1122 a 106 1115 t 64 1100 t 125

Active resorption
surface 06a 42 ! e4	 7tA31 6s.3 Ms K Wei

'-{ lovers$) tacueas 442 t 120 39 a S	 4991 75 45 t- $ 566 !	 60 f,0 t 6
Remodeling fon^ation 66 a n 9 1 7	 74 i >0 7 e- 1011a	 66 9 a
Resting 406 a sl 44 a i	 469 s rl 42 1 6 422 f 100 35	 it

U01 number of Men.
k clasts 20 t6 19 t 6 20 A i

Total number of ostso-
clasts on-bone 15	 6 lA a 4 11 f 3

i Total number of nuclei
of osteoclasts on-bons 15 a6 9 3 7 19	 0

Total number of ostoo-
Clam off-bo" 6 a! l a b f a1

Total number of nuclei,
Of osteoclssts off•bone A : 7 10	 1 12 2 1

0modelinghsidee(p)en 
the

5.66 t 0.67 5.55 3 0173 4.15 a 040 ,

I. J

Fluorescent Labels Messumnnts

k )S IF 1 V
aMean calcitition

2.*rats/day (u 7.9	 0.6 6.6 t 0." 7.6	 t 4

Done volume Cale
dayday (no ) X (k') 4.7	 t	 0.5 4.3	 t	 0.4 5.0	 t 1.

Pont density (11) 95.5	 t	 107 9507	 t	 1.3 92	 t 23

Length of modeling
side (w) 721	 t 53 79D	 t 09 833	 a 67

length of remodeling
l side (v) 1004	 t 157 955.17 t. 07 959	 t 113 r

Periodontal volume on
the modeling side (wO) 45	 t	 4 51	 9 S6_	 t 7

PsHodontal volume on
the remodeling side
(mms ) 44	 ! 5 47	 e d 46	 3 9

iCHAdontsl width»on the
moeling side (v) 77	 t	 7 77	 t	 5 Dl	 t 11 3

Feriodontal width on the
' remodeling side (11) 63	 t 11 69,	 t	 6 50	 ! 5

'`. • 0.10 > p > 0.05 vs i5; * p < 0.05 vs I 

t	
'

i
I

r
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TALE ill

Extort of the Different Activities Occurring Along the Aomioblsno Surface

tS (6) ^t (5)
MY (6)Z 1l 9

hrlmoter of remodeling
sih W t 106 M t 125 1074 t 36

Active resorption
surface 76 t	 40 1 t 6	 97 f	 23 10 t 3 109 t 21: 10 * 2
Mversal lecunot 472 t 126 45 t /	 267 i 129 37 t 9 417 a 67 46 l 7

Remodeling formation 76 *	 72 7 t 7	 u i, 34 0 t 6 N t 16 0 2 2
11ssting 432 s 122 41 ,t 6	 432 t	 45 45 t 5 30 i $0 >	 6

Total number of often-
clasts A t 9 Is 	 4 91 t 6

Total number of ostoo»
tlasts on-bone 12 1	 A 14	 5 16 ! 4

Total number of nuclei
of osteoclosts on-bons 13 t 12 14 t 4 it t 5

Total number of ostoo-
clasts off-Ow 6 1	 4 3 t 2 7 t 4

Total number of nuclei
of osteoclasts off-bone 7 t	 4 1 t 2 10 t 4

Ostedld thickness on the
modoling side (u) 5,1 1 4 3 1 7 t 1^++

Fiuorescent Labels sbesunnnts
h

23 ?f !Y

gMsn calcification
rate/day (0) 6!	 1 6 t	 la 7 t

cone Volvo calcttfiedl
day (MM ) x (ie" 1 4 t	 0.3 4 !	 0,6 4't	 1
Bone density (f) 95 t	 2 95 2	 2 96 s	 1

l`10h {A) modeling
859 3	 66 M3 t 76 774 t	 16

f Length of rcoodelinb
side (v) e12 t 174 933 t 137 068 t 232
Periodontal volume on
the modeling side (mass ) 50 t	 6 63 t	 7 45 t	 3

Periodontal volume on the
remodeling side (was ) 37 t	 12 x ! 10 21 t	 6

j Periodontal width on the
modeling side (u) 68 t	 13 70 2	 7 70 t	 7

Periodontal width on the
remodeling side (U) 31 1	 11 63 t	 • 42 t	 11

• 0.10 > p a 0.05 vs -S
r

ft

± p < 0.05, H p s 0.02, +++ p < 0.01 vs 2F

{

319;



E

jn„

' TABLE IV
L

Extent of Ahe Different Activities Occerring,-'4on' the Rose	 ling Surface
(4)

4F 
(5) (4)

yV

x x

>Y
m

Parinter of remodeling
,a side1110 * 242 1076 * 26 1119 #	 f5

Active resorption
surface	 79 t	 31	 7	 # 2 63 t 9	 6 t	 1 72 t	 45 6  3

Reversal lacunafr	 462 * 174	 40	 t 8 544 * 112	 51 * 10 536 t 108 46 s 6

Remodeling forration	 122 !	 39	 11.5 * 4 55 #	 36	 5 *	 2► 126 t	 61 11 * 5

Resting	 447 3	 64	 41	 3 7 414 * "	 38 * 10 362 it	 36 34 it 4
i

Total number :of osteo-
clasts	 18 * 4 15 * 4 17 3 10

i Votel number of osteo- j

clasts on-hone	 12 t 5 10 t 2 11 t	 5
Total number of nuclei
of osteoclasts on-bone	 14 * 3 11 * 7 11 *	 •

Total NNW of osteo-
clasts off-gone	 6 t 0.6 6 s 3 6* 6

Total numr►er of nuclei
of osteotlasts off-tW	 7 t 3 6* 5 14 t 14

s

Ostooid 'thickness on the
i

' modeling side (v)	 5 t 1 4* 1 6* 1+

,fluorescent 44beis Measuremtents

4S 4F 0

Mean calcification ?
rate!d^y (y)	 4.48 s	 0.74 3.94 t	 0,66 5.70 s 1.08

Bone volume4elc(fied/
day (MM S ) %VII sJ	 3.19 s	 0.76 2.79 t	 0.53 4.35 * 0.67

Bone density M 	 95	 1 97	 *	 2 96	 t

3

2	 i

Length of modeling;
side (u)	 634	 t 120 794	 *	 62 882	 t 83

I: Length of remodeling
side (N )	 882	 * 259 947	 * 269 1120	 * 193

Periodontal volume on the
modeling side (W)	 53	 *	 13 46	 *	 5 53	 * 4
Periodontal volume on the
remodeling side (mmf )	 42	 *	 13 44	 *	 14 46	 t 9
Periodontal width on the
modeling side (p)	 74	 t	 9 69	 *	 S 71	 * 8
Periodontal width on the
remodeling side (p) 	 S8	 t	 7 53	 *	 5 55	 * 9

« p- 4 0.05 vs. 4S
+ p 4 0.05, ++ p < 0.02, +++ p : 0.01 vs 4F

ql

i
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With Muscle Without Muscle

IF 43.8 ! 4.93
9

22,9 # 4.62b.c

1s 54.30 1'8.74 53.06 t 6.18

V 58.20	 9.44 61.2 t 6.14
1

^ ii
P

r.

TAKE V

toaparifon Of the man calcification rata along the periosteal surface expressed in microm /day, without nitin4

t	 t	 disthetions Oetw on muscle covered and mwnaiacle covered ansas,
l

`	 lV	 is	 1F

t	 2.76 t 0.24	 2,61 t 0.30	 1.71 a 0.10+**

^s	 rr* P c 0.001

f

t	 2V	 25	 IF
s

206 t 0.24	 2.40 ! 0.42	 1.14 t 0.22r

r** P < 0.001

4v 45 4F

Flight  tine Flight tin Flight tier
+ 6 days after 6 days -& 	 days + 6 days after 6 days + 29dsys i6 days attar adays	 29days
reentry after reentry reantty after reentry reentry after reentry

.46 t 0.7 1.90 * 0.60 1.67 3 0.67 1.08 1 0,26 1.18 t 0.26*+* 1,97 t 0.24

rr* p < 0.001

TABLE VI

Comparison of the calclficatiofl rate along the 'periosteal surface 10 the
flight group in areas covered and not covered with masticatory maneles.

I
(The numbers	 wzmbers represent the total^a nt of bone calcified during the flight
period.)

i
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FIGURE LEGENDS

Figures 1, 2 and 3

Buccal root of the first molar. Horizontal section X 100. Fluorescent labels.

P,I

8 dim thick section.

t,
The left side of the socket, the modeling side (M) where continuous bone ;forma

w	
Lion occurs is labeled (arrows) While the remodeling side (R) is not

labeled.

Note a slight decrease in the amount of bone formed on the modeling side from

the groups 1V (Fig. 1) to the group 1S (Fig 2) and , the group 1F (Fig. 3).

Figure 4	 ".
Effect of space flight on the calcification rate on the modeling side of the

alveolar socket (a: p < 0.05 vs. S b: p 	 0.05 vs. V). i

Figure 5 y

Effect of space flight on the Calcification rate on the periosteal surface of

the molar area (c; p < 0.001 vs. S)

i

I

s

f
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EXPERIMENT K-313: RAT AND QUAIL ONTOGENESIS

J. Richard Keefe,PhD.

BoSpace incorporated

SUMMARY

The flight of Cosmos 1129 attempted to provide infor-

mation with respect to potential effects of Spaceflight-

upon the processes of mammalian fertilization, implantation

and embryonic development. Five female and two male Wistar-

derived SPF rats were placed together on Day 2 of , the 18.5

day flight in a common breeding chamber. Upon recovery,, the

animals were weighed, housed-aeparately and observed

for progressive pregnancy. $y R+17, it was determined that

both flight and synchronous females were not carrying

normal pregnancies and three of the flight animals were

laparotomized.	 The uterus and ovaries were processed for

microscopic analyses.	 The two remaining flight females were

allowed to recover from the exploratory operation, rebred

with flight males and delivered normal litters.

As a control for potential	 transplacental effects that

' might be interpreted as direct Spaceflight effects, a

series of fertilized Japanese Quail (Coturnix japonica`)

eggs was flown on Cosmos 1129.	 Although all of the eggs

were adversely impacted by an inflight failure'o-f the

incubator humidifier on flight Bay 13,' several embryos were

able to progress to a_ developmental stage equivalent to

°that of a control 10-12 Day embryo.
f
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INTRODUCTION

The studies of potootial spaceflight effects upon

biological systems have been restricted among mammals to

adult males. Until the flight of Cosmos 1129, only tw,o

female mammals had spent appreciable time in space 	 the

Soviet Cosmonaut Valentina Tereshkova and one experimental

perognathus on Apollo 17.

Previous stud ies of vertebrate embryonic development

during spaceflight have been limited to non-mammalian

species with particular attention to fish and amphibian

eggs which require little in the way of special life -

-support systems.	 4

In the only known spaceflight experiment involving	 n
{

attempted fertilization in a vertebrate species, " Coworkers

of the Institute of General Genetics, USSR Academy of

Sciences" sent four guppies ( six month old females after

C	
the second spawning)p	 g) on Kosmos 7$2. Two of the animals were

t

exposed to null gravity and two to theonboard gravity

j

	

	 control ( 0.6 G on the centrifuge) package on this 19.5 day

mission. The unnamed Soviet investigators concluded,

"Evidently, some flight factors inhibit the fertilization

of oocytes. ", since they were unable to obtain evidence for

fertilization during the flight period in this rather 	 }

restricted experiment (1).
x

^s
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Studies on the development of Arbacia (Gemini III) and

Rana pipiens (Gemini VIII/Biosstellite II) by Young, Tremor

and coworkers have been restricted to ground-based

fertilization of eggs with the earliest flight exposure

commencing during second cleavage. Although brief in time

of spaceflight exposure, these studies clearly demonstrated

: that differentiation to hatching in Rana Is NOT a{aversely

^ affected	 b	 s paceflight- 	 factors	 2	 .y(	 )

On three separate flights, Schel,d and coworkers 'flew

over 1400 developing embryos of Fundulus heteroclitus
(Skylab 3,	 ASTP and Kosmos 782).	 Due to preflight loading

restrictions, all of these embryos were at the mid-gastrula

" stage or later at the time of lift -off.	 In each of these

experiments, embryogenesis continued at a slightly elevated

level, yielding normal hatchlings ( 30 4).

All of these embryological studies have demonstrated

the absence of any significant spaceflight effects upon
I

7

" early-mid developmental stages. 	 In ,several of these

i studies, the embryos have proceded through the time of }

hatching and have yielded a normal to slightly improved

hatch rate and normal ratio.

Two principal problems of embryonic development remain

to	 be studied under conditions of spaceflight.

` 1.	 The process. of egg fertilization and the	 initial

stages of -embryogenesis have not been successfully studied

during spaceflight.

x
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2 The effects of spaceflight upon the processes of

mammalian fertilization, implantation, placentationt

embryogenesis and full fetal development have not been

studied.

The absence of an effect of spaceflight upon the normal

embryological development of free-floating aquatic eggs

should not be extended to the more complicated mammalian

species. In the mammalian system one must consider not only

the DIRECT effects of spaceflight upon the developing,

embryo but must also consider the possible INDIRECT

spaceflight effects brought about by the alterations in

maternal physiology induced by null-gravity. Assuming that

the female mammal will display the same set of alterations

that have been demonstrated in the spaceflown male mammal.,

then the alterations in the endocrine, a ectrolyte

cardiovascular and museulo-skeletal systems could produce

an INDIRECT effect of spaceflight upon the developing

embryo/fetus by acting across the placenta. Any spaceflight

experiment designed to study the processes of mammalian

embryogenesis must take the potential indirect effects of

null-gravity and stress acting across the placenta into the

design philosophy.

The Principal Objectives of the K-313 Experiment flown

on the COSMOS 1129 Flight were:

I.	 To determine the capability- of -a selected

Mammalian species to undertake reproductive
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processes, including copulation, fo rtilization
implantation, placentation and esbcyogeneals

during, Spaceflight exposure.
II.	 To separate potential spaceflight factors from

jindirect factors due: to paten al stress.

E IIl.	 To demonstrate the capability of Avian embryos
t,

to carry-out normal esbryogeness during

spacefl.i,ght.

r

i

I

3F

5

{

C
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EXPE RIMENTAL DgSXGN

F

The K-313 experiment was originally designed to provide

s pregnant female rats at the conclusion of the flight. These

rats were to be terminated on a schedule providing at least

two sets of embryos that had been conceived and undergone

embryogenesis under conditions of weightlessness. 	 The

remaining pregnancies were to be allowed to go to term

delivery to determine possible effects of readaptation.

'the Coturnix (Quail) component of K-313 would have provided

a comparison of direct vs indirect (trans placental) space- 	 £

' fl.igh't effects as well as providing a basic. understanding
}

of the ability of the Avian species to tolerate Null

Gravity exposure during embxyogeness.

Both flight and synchronous rat groups were provided a.

dual chambered breeding cage constructed from a modified

Cosmos Bioblock (Figure 1	 ),	 The males were housed in a
N ^,

separate area from FD- 3 	 (3 days preflight)	 to FD+2 at which

time the separator was opened and mingling allowed.	 A

total of eight feeding stations were provided for adminis-

tration of the flight paste diet, adlib water and activity

monitoring.	 The lid of the breeding cage was perforated to

enhance the airflow waste - handling system. a

The flight and synchronous rats were to be placed upon
Es

'•R the flight paste diet for acclimation at FD-10 (;55 - gms/rat

u once / day).	 At FD-3 five females were to be loaded into the

i
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large compartment and two Role* into the smaller compart-
r	 *°

e sent of the brooding chamber ( Figure I ). From FD-3 to the

time of recovery, diet was to be administered at 6-hour

intervals in the quantity of 55 $.so diet/rat/day. Water

was to be available adlibitum. At recovery, the animals

were to be weighed, usually, inspected for pregnancy, and

. housed individually for transportation to and maintenance

in the Moscow laboratories. All rats were to continue upon

ff
the paste diet through parturition.

The incubator designed for maintaining the Coturnix

I eggs during flight in illustrated in higure 2 and con-

sisted of an insulated chamber suspended by heavy-duty
_A

elastic shock cords from the mounting .framework. 'Within

the incubator chamber, the eggs were held between two a

perforated rubber stripswhich were matched to machined

grooves on the inner and outer steel rings.	 The steel rings

could be slightly adjusted to accomodate a minor vari-

ability in egg size. 	 The five egg rings, each bearing 12;

eggs, were capable of being rotated within the incubator

i
housing	 thereby providing for a "turning" of the eggs

before flight and throughout the synchronous control. 	 Each

egg was numbered and its position :identified within the

t '^
incubator by ring and position number.

The airflow within the incubator was from the core "a

through the egg rings, with return along the outside of

the rings.	 Provisions for maintaining a temperature of 37 C

is
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and a relative humidity of 70- 75 X were provided by the

source and monitors mounted in the core probe unit.

The Quail component of K-313 was to have provided the

following sets o f parampters,-

1.	 Loading of 60 fertilised Coturnix eggs into the

egg rings of the ,flight incubator at FD-3 with the

Imposition of a controlled rate of rotation of the

egg rings to simulate a slow continuous egg rotation

a+ring the preflight storage: time.

2.	 InflIght rotation was not deemed necessary due ur

to the lack of u gravitational effect on the eggs.

3.	 Preflight and	 in ;fight egg storage temperatures

could not be keduced, belt;!, the cabin ambient of

2a-25 C

4.	 Inflight activation of the inculr^tor was to be on

r	 FD+7 with the incubator to establish and maintain
4

conditions of 37 C and 70% RN.
R

5.	 The Synchronous control incubator was to provide
i

'
;

a continuous rate of egg ring rotation to simulate

the nullification of the gravity vector (similar to

that observed in the operation of a Clinostat).
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+	 MATERIALS AND METHODS

!

	

	 RATS: All rats were derivd from the Czechoslovakian Institute

of Sciences at Bratislava, and were of a Wistar-derived SPF

strain. All `rata were born July 3-5 and weighed 234-300 g

at the time of Flight experiment initiation. ik

QUAIL: Fertilized Japanese mail (Coturoix japonica) eggs were

k

?	 matched for size to fit the incubator .egg rings (Figure 2)
k

and stored for 5 days at 22 G. At T-3 the egg rings were

loaded with 12 eggslring and five rings mounted into the

flight ,incubator which was loaded into the Cosmos craft.

SACRIFICE SCHEDULE:

RATS: Depending upon the number of pregnant female rate

' }	 recovered, alternative sampling of the litters was established a

with priorities as follows:

3	 PRIORITY 1: Postnatal Day zero - sacrifice _at birth.

t
PRIORITY 2: 10 Week Postnatal.

i

PRIORITY 3; 14 and 28 Days Postnatal.

PRIORITY 4: 5-7 Days Postnatal.

(Number pups/time dependent upan number and size of litters).
,^	 a

Remaining pups were to be raised to sexual maturity for

analysis of reproductive functions.

F-	 QUAIL: The flight load of 60 eggs was assumed to show

50 % viability with recovery site candling of eggs to be	 3
1

utilized to confirm this assumption. The sacrifice schedule

z	 was as follows:
Y,•r

4
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1	 R-O (Day 12 embryos) - seven sacrifice at recovery.

2.	 R+5 - R+7 seven sacrificed at time of hatch.

Remaining live hatched quail wer e to be -retained through

sexual maturity to determine suitability fox postflight

Vgen e ration.'breeding and nomal'ey of secondr

Sacrifice was to be by decapitation with both the Rat

and Quail heads to be immediately immersed 'in a ten-fold

volume of Biostabilizer Fluid (see below) at 4 C 	 Samples

were to be stored and transported in the Biostabilizer fluid

' to	 the U.S.	 laboratory for subsequent pr_epa-rative steps.

BIOSTABILIZER FLUID: The composition and make-up of the
- Biostabilizer fluid was as follows

20.0` cc	 8% Glutaraldehyde (pH 5.0/sealed under Nitrogen`)

20.0 cc	 8% Paraformaldehyde (freshly prepared)

2.0 cc	 Dimethyl sulfoxde

42.8 cc	 0.1 M Cacodylate buffer, p1l 7.4 	 (see below)

10.0 cc	 10% Acrolein solution 	 j

Preparation of the buffer solution: 	 3.198 gms of Sodium;-

cacodylate was dissolved in 100 cc of glass distilled water.

The pH" was adjusted to 7.4 with 0.1 N HCl and the solution

was diluted to a final volume of 200 cc.

Upon arrival in the_U. S. laboratory, each head was bissected

in the mid-line and the two halves divided further into

three portions as follows:

s, LEFT/RIGHT ANTERIOR: From tip of snout through middle	 ,

of the eye.

{
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Y

LEFT/RIGl1T MIA-PORTIONS Middle of eye to behind the ear.

LEFT/RIGHT POSTERIOR; Containing cerebellum and temporo-

mandibular Joint and brainstem/neck.

Each portion of tissue was either poststabil i.zed in

Osmium tetroxide solution (1X in Cacodylate buffer) for

3	 three bourn or transferred directly to the dehydration steps.

Aehydratlon was in ascending concentrations of Ethanol

followed by intermiscing with Propylene Oxide and, embedding

in either Araldite 502 or JB-4 mixtures. Sections were cut

at 1 to 5 mi,cr, a with glass knives, mounted in serial sequence

upon thinly albumenized glass slides and stained for light

microscopy with 0. 2 5% Azure II in O. 5X Borax at 54 C for 3 ,mins.

Sections for electron microscopy were cut from selected

block areas utilizing an LKB Ultratome equipped with ,a

I	
diamond knife. The 80 	 100 mN sections were collected upon

i

75 x 300 mesh grids and stained with a combination Lead citrate

{	 Uran.yl nitrate pteparation prior to study with either a

Siemens ElmsPcop I or a Philips 300 e lectron microscope.

a



To provide sta$ed reference samples of embryos and pups',

female Wistar-SPF rats were singly-placed with males and

examined	 the following morning for vaginal plugs.	 The day

of plug observation was termed Embryonic day 1 with

conception arbitrarily assigned to 12:00 midnight. 	 The

females were shipped from the Pittsburg breeding facility

to Cleveland by air on embryonic day 7 and tolerated the

trip (no losses) well (truck to airport, two hour plane

trip, truck to lab) for a total travel time of 6.5 hours on

gestation day 8.	 Animals were singly housed, fed Purina Lab	 y
t 3

Chow adlb and maintained on a 12/12 	 (0800--2000) light
9

cycle.	 Sample animals were sacrificed on Embryonic days	 10,'	 {

12,	 14,	 16 and 18 while all term animals delivered 'normal

r litters	 (13- litters averaging 12.6 pups/litter).	 Eye'

opening in the neonates was on postnatal days	 13 to 15.

Samples from each set of embryos/fetuses were fixed in
1

Bouins,	 10% neutral buffered formalin (NBF) or Biostab l—

izer and	 processed for serial section/light microscopic

studies to determine developmental correlates between'

peripheral vestibular structures and retinal development as

well as to establish a staged series of specimens in each

E'i	 a
of three standard planes.
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A series of preflight tents were carried out to •

determine_ any possible deleterious effects of ,cramped

housing and USSR paste diet on the breeding of Czech

Wistar-derived SPF rats.	 The tests included a.00ck-flight

+ simulation in which 3 females and a male were housed for an

` 18-day period in a mock-flight cage of dimensions 6" high x

8" wide x 22" long.	 The cage was separated by a partition

into a male compartment (floor area 	 8" x 8") and a female

compartment (area	 S" x 14").	 On do-ck. flight-day 2 the

" divider was withdrawn and male- female interaction was

possible. A similar cage was utilized for the Diet Controls i
1

(2 females and a male) fed Purina Lab Chow (ad lib_).	 Both {
cages were provided with an open 1/4" mesh floor and solid

A
t

sides.	 The tops of each cage were punched to provide for a

movement of air in a vertical pattern.	 Each cage was

elevated 2.5" above the waste collection tray to prevent

r coprophagy by the test animals. 2

' The "Mock-Flight" animals were fed four times per day

by injection of 10 gm aliquots of the USSR Paste diet into

l each of four feeding cups.	 Competition among the animals .

for the food was not observed although the animals appeared

j

to be.-ravenously hungry at each feeding time.	 Feeding times

were matched to the light cycle (12 hr light /12 hr dank) by

rigid adherence to the following schedule: s

F
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0800	 Lights ON feed

1400 - Mid -point Light cycle - Feed

2000 - Feed - Lights Off

0200	 Light On (2 Minutes) for Feed Administration

The Control, cage was placed on the sam,c Lab table two

feet from the Experimental, Cage. Room temperatures varied

from 22	 25 C. Room noise was at an absolute minimum.

Table 1: contains the experimental data generated by

this Preflight study. The animals were housed singly and

weighed daily at 2000 hours. For the first five days ALL

animals were fed Purina Lab Chow. Two weeks before mockf'light,

the four animals randomly chosen to serve as experi,-

menials were switched to the USSR paste diet, receiving

40 gms/day administered in 10 gm aliquots every six flours.
r

The control animals continued on the Purina Lab Chow.	 All

animals continued	 to be weighed daily at 2000 hours.
If

On T-2	 (June 6) the animals were loaded into their
I

respective cages.:	 Each male was placed in the separate male

compartment restrained from the females by a solid metal s

t
#.

door. Once loaded into the cages, the animals were NOT 1.
HANDLED again until Recovery (R+0 on June 28).	 On T+2 (June

10), the metal dividers were removed.	 "Flight" and

"Control" diets and	 the 1.2/12 light cycle continued during
R

the 18 day mock-flight period.

Upon "Recovery"	 (June 28), each animal was weighed,

visually inspected and housed singly with continuation of
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respective diet regimen.	 Visual	 inspection revealed healthy

animals with no signs of fighting in either group and
k^

confirmed that both of the "Control" females and two of the

three "Flight"	 females were past mid-gestation.	 Births

occurred on July 4 (2)	 and July 15 in the	 "Flight"	 group

and on July 3 and 6 in the " Control"	 group.	 Figure 3

presents a summary diagram of weight profiles for the three
9

"Flight"	 females during	 this simulation.
^

s

the post - partum decrease in maternal body weight demon-

strated	 by E-1	 and E-2 failed	 to show a	 turn around as was

observed	 in both C-1 and C-2.	 This resulted	 from two	 problems:

1.	 The continuance until weaning of the Experimental

r	 animals on the USSR diet	 failed	 to ,provide adequate

nutrition for the nursing mothers;

2	 There was competition. with the mother by the offspring

for the administered paste diet.	 Such competition was

NOT recognized until E .-1 and E-2 continued	 to show
;r

significant weight losses.

The competition was recognized on R+25 	 (July 23) and, based

upon observations in E-3 began about PN Day 8-10. 	 All a

Experimental 'mothers were subsequently removed from their home

a'
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` cages for diet administration, involving an approximate five
minute interval of separation four times per day. The weight

losses on all experimental animals continued but at a reducedr
level. Only E-1 failed to recover, becoming comatose and

dying on R+26.

Cannibalism was NOT a problem in the Experimental group.

Control mother C-1 destroyed the remaining mambers of her

litter following litter size reduction on PN - /o.	 Litter size

_reductions were attempted to balance out the nursing loads

on the mothers and establish a comparison basis between the

Experimental and Control litters (Table 2),

r The USSR conducted a series of preflight Bioengineering	 }

t
a

tests that subjected 	 the flight breeding cage with a nominal'

load' of five" female and two male rats to a simulated	 flight-

duration.	 These tests were strictly tests of the Life Support.

systems of the breeding chamber and DID NOT include simulated
r
A lift-off or recovery stresses.	 In each of the tests, breeding,

f
gestation time and litter size/sex ratio was normal (Personal

i Communication,	 Dr.	 L. V.	 Serova;)

COTURNIX JAPONICA	 j

The preflight testing in the Quail embryology experimeot

consisted of the following projects:

1.	 Testing of stated preflight/infligh 	egg'

holding temperature, relative humidity and rotation

conditions on the subsequent development of the

embryos.
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2. Determination of egg viability, fertilisation,

embryonic death rates and normalcy of development

in Coturnix 'under STANDARD and STATED conditions

of preflight holding and infligh't holding/incubation.

3. Establishment; of a series of staged Coturnix
A !:

embryos processed as proposed for the Cosmos mission

to serve as Grouod-based controls.

Since the actual conditions for preflightstorage and

handling were not -known until immediately preflight, the

following parameters were utilized for this series of tests

(See Tables 3 and 4).

A. Incubator temperalture	 37 C (36.1	 37.8)

j.. B. Relative humidity 	 71 +/- 19

C. Rotation of eggs	 3x daily

D. Preincubation Storage of Eggs:

1. -Temperature ' s tented -	 4-6,	 10,	 15,	 20,	 25 C.

2.	 Rotation tested-= none, continuous or 3x daily.

3.	 Relative humidity - 40, '60,	 70,	 80 X

E. Effect of egg freshness was tested by setting

i batches of 100 _eggs at selected times (0-14 days)_-

after laying.

`	
s

During these tests eggs derived from several .suppliers

as well as our own laying flock were utilized.	 In general,

^ the effect of shi	 in	 from distant su ppl iers with un knownp P	 g	 pp

time and storage conditions enroute led us to base the majority
f

of our studies on our own flock.	 As an example, commercially

341
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available eggs showed a fertility between 88-26X to 91-84Z

while our own flock consistently gai ► e a greater then 95%

fertility. Similar differences were observed in mortality rates.

Studies in our labs on another project indicated that

continuous rotation of incubating chick eggs produced a more	 I

rapid development at , 2 RPM while rotation at 10 RPM (14,400/day)

caused serious developmental hags and numerous examples of

multiple twinning (Rgar and Keefe ► unpublished results).

Although, not as extensive in scope, our preliminary results

with Coturnix incubation demonstrate a similar pattern. For

this reason the CONTINUOUS rotation rate was set to 2 RPM

for the egg-storage and egg-rotation tests. We do NOT know

the rate of rotation of the egg-rings in the Cosmos 1129-

simulator.	 3

The USSR conducted basic Bioengineering tests an the flight

incubator to establish the adequacy of the 1 4,fe support	
1

systems. These Bioengineering tests DID NOT include simulatedj

mechanical stresses of lift-off and recovery (Personal <COMMUTI

icaton, Dr. E. V. Shepelev).
1

EXPERIMENT EXECUTION ON COSMOS 1129

This port-ion of the report will be subdivided into 'four
'x	

parts: flight rats/control rats/flight quail /control quail.

FLIGHT RATS: The flight breeding chamber with five

female and two male Czech Wistar-derived SPF rats was

loaded into the spacecraft three days before launch (09-22-79).
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The divider separating sales and females was removed on

the 2nd flight day. We have no reports of unusual events

in the Rat Ontogenesis experiment and amount that the

temperature, relative humidity, air flow, waseo handling

and food administration syotems functioned nominally is

stated.

Upon recovery ( FL/14-14:sY+vx/10-19), the animals were

weighed and visually inspected for signs of pregnancy.

Three of the flight females were felt to be pregnant'

although only two demonstrated a 20% increase from their

preflight weights ( Table 5).	 Two other flight females

showed a slightly lower increase. 	 The fifth animal

demonstrated a negligible weight gain. However, ALL five of

the flight females showed weight gains, attesting to the

adequacy of the 55 gms/day diet.	 Both the synchronous

control and vivarium females showed markedly larger weight ` f

increases ( Table 5). I

1 The animals were transferred to the Moscow laboratories +

k and were housed individually.	 Administration of the flight

paste diet continued but was supplemented with miscel-

laneous vegetables and rat chow.	 No weights were reported

for days R+1 0 3,4,5	 with daily weighIngs reported from g+6

The three " pregnant" flight females and the synchronous

animals showed only slight weight gains (Figures 4 and 5)

compared with the Vivarium control group ( Figure 6). When

no births had occurred by R+17 andrboth the flight and
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TABLE S

HEIGHT GAINS OF RATS DURING 18. 5 DAY FLIGHT PERIOD

FLIGHT SYNCHRONOUS	 VIVARIUM

FEMALES,*veight gain ( X increase)
4

x 1.	 55	 ga.	 (19X') 76 go.	 ('28x)	 82	 gm.	 (33X)

'S 2.	 5 2 	gm.	 (20X) 84 gm.	 (30X)	 70 ga•	 (27x) 3
3.	 14	 sm.	 (	 6X) 52	 gm.	 (19X)	 99 gm.	 (37 9)

4	 36	 gm.	 (14X) 58 gm.	 (22X)	 95 gm.	 (33X)
x

5.	 42	 gm.	 (16X) 42 sm.	 (14%)	 107 goy.	 (40X)

e* AVERAGESa

39	 gm.	 ( 15X)

-----------------------------------

62 gm.	 (23X)	 90 Fm (341)

K.-313 MALE 'S	 (average
}
1

gains):

46	 gm:. 54 sm.	 59 gm.

r 'i
i

(Weight data supplied	 by Dr.	 L.	 V.	 Serova)	
3

synchronous females failed to show significant weight
t,

increases, the animals were laparotomized and the uteri and 	 y

ovaries photographed. The intact uteri and ovaries were 	 i
x

visually inspected anal. " tr iangular imp-lantation sites" and

"yellow bodies"	 ( Corpora lutes.) were tallied by gross

observation.	 This data ( supplied	 by Dr.	 Serova)	 is:zi^
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3'.	 FLIGHT UTERI ( BOTH HORNS / TWO ANIMALS):

26 "Implantation sites^^

28 "Yellow bodies"

4 ''	 SYNCHRONOUS UTERI (BOTH HORNS /TWO ANIMALS'):
E

;.

	

	 23 "Implantation sites"

31 "Yellow bodies"

The uteri from the three "pregnant" flight rats and

two synchronous rats were removed during animal sacrifice
a

on R+17.	 The preparation of microscopic specimens from s

these uteri are in process by Or.	 Serovs. Two remaining

flight females and the remaining synchronous animals were t

surgically restored and mated after a one-month recovery

pe riod.
4

u

The flight males were mated postflight with- Vivarium

_ females, and samples of the litters prepared as described

t ender experimental materials.	 The litters from this pairing

G „ consisted of normal pups with average size, and sex ratio.

Flight males were also mated with the two recuperated
i

flight females and produced 1it.ters. 	 Samples from these

'. litters have been received and histological studies are .in

E''	 I
^-

progress.

1
F CONTROL RATS: The controls for the rat portion of X-313

consisted of both Synchronous and Vivarium groups. The

synchrono u s animals consisted of five females and two
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males which were housed in an identical brooding. chamber

and subjected to the five-day delayed synchronous flight

simulation, including diet regimen, housing, ,lift-off and

recovery stresses. The divider separating the males and

females was removed at Synchronous day 2.

Date on the pre- eund postflight: weights for the

synchronous and vivarium females has been received from Dr.

Serova and is presented in summary fashion in Figures S and

6. NONE of the synchronous females produced a successful

pregnancy, although at least three of these have subse-

quently delivered normal litters of pups. The vivarium

animals were housed in a single cage and all five females

conceived and delivered litters on a standard 27-23 day

gestation. Microscopic analyses of the pups derived from

the vivarium and postflight breeding of flight and

synchronous females reveal normal development in the

peripheral vestibular, retinal and central, nervous systems.

FLIGHT QUAIL The 60 fertilized Coturrkix eggs we're
x

loaded into the Cosmos craft on FD-3 and remained at cabin
A

ambient temperature and relative humidity until FD+7. NO

rotation of the egg rings> was performed during the	 }

preflight period.,r n

On FD+7 the incubator was activated and a temperature

of 37 C with a relative humidity of 700 established. On

FD+13 (incubation day 6) a failure of the humidifier caused

3
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the relative humidity to drop to cabin ambient humidity at
p

the elevated temperature ( calculated to be 23-25% R.H.).

During the re-entry phase of the flight, 40 of the 60
^ E

eggs were cracked.	 Analyses of the contents revealed that

20 of the eggs were either non-fertile or had failed to 	 E
!F

z

begin development.	 Of the remaining eggs, 23 ceased

development at days 2-4, while 17 developed to day 7. 5 	 12

stages (Figure	 T ). Representative samples of the dead

embryos were fixed in Bouins solution and light microscopic

K analysis of serial sections confirms that the one flight

embryo provided to us had been dead for 12-20 hours but 	 t

- had achieved' a normal day 10 development in vestibular and 	 Y
i

h i, retinal development at the time of death.

CONTROL QUAIL: The synchronous incubator was leaded
r,

with 60 eggs at SFD-3 and the egg rings rotated for the 	 9

duration of the synchronous run. 	 NO liftoff or recovery

stresses were applied NOR was the incubator humidifier	 f{ r .

deactivated on Synchronous flight day 13' through Synch-

ronous recovery.

The synchronous run produced the following results:

1.	 One non- fertile egg.

2.	 18 dead embryos between days 2-6 incubation.
x

{

3.	 19 live embryos , at "recovery" ( 12-day incubation).

4.	 14 live/unable to hatch.

,r
3. 5.' 8 h'atchling's.

t
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1

Microseopi+G analyses of the Synchronous and Vivarium

d, x	 Quail show normal, retinal and vestibular development for

the respective ages of each animal (days 10 - :13).

RESULTS AND COMMENTARY

x -----------------------
4,

K-313 RAT ONTOGENESIS:

The results of the rat ontoge,nes s experiment have been

most unsettling.

1. All flight and synchronous females delivered

normal litters during the preflight period, thereby 	 +

i
assuring their fertility.	 a

1	
2. None of the flight or synchronous control

females gave birth as a result of breeding that occurred	 f

during the flight phase of the experiment.
a

3. Flight males have subsequently sired litters

from both Vivarium and postoperative Flight females (see #4
t

4. The one flight and two synchronous females that

have been bred following surgical examination have produced

viable litters with a- normal size and sex ratio. Pups

derived from these litters demonstrate,,-normal morpho-,	 ,T

logical development.

Whatever the limiting, factor on the reproductive perfor-

mance of the flight and synchronous females it cannot be

attributed to direct spaceflight factors. The basic questions

of whether or not. mammalian copulation, insemination, fertiT-
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ization, implantation, placentation and embryogenesia are

`'sKz,,^,flightpossible under the stressful conditions of	 remain

unknowns.

The Life Support systems for the Rat Ontogenesie experi-

ment underwent extensive preflight testing by Soviet Scientists.

In their studies, using flight hardware and housing six

'.; females /two males in the same volume that would house only

five females / two males during the flight phase, normal litters

„ resulted with a normal gestation interval ( Pers.Com .,

Dr.	 Serova).	 Our own preflight simulation using a cage-model

r with equivalent volume/animal also resulted in normal births.

Thus, crowding or an unusual grouping of animals does not

appear to be a limiting	 factor.

Similarly,	 the air-handling and food/water systems do

not appear to be responsible factors.	 In our preflight

simulations,	 the daily diet consisted of only 40 gms/day

i while the amount available during the flight phase was

k
55 gms / day.	 It is significant that all female rats showed

a positive weight response during the flight period but that

their	 average	 inflight ,gain (396'gnis on 94.5 kcal/day) was

less	 then the average -inflight gain of the males from Groups

1-4	 (46 gms on 68 kcal/day).	 Both the Synchronous and Vivarium_G

females showed a much larger weight increment over their

Group	 1-4 counterparts (See Table 5 and 'Figure 8).
.F

,. Simulations are being carried out by both Soviet

j and American scientists in an effort to determine the restric-

I	 ``
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tive factor that limited the Rat Ontogenesis eperiment on

COSMOS 1129; 'However, only further studies of the processes 	 iy
of mammalian reprodurtion and embryogenes,is under conditions

of spaceflight can assure us that this fundamental and basic

biological process will not be adversely affected by either

the direct or indirect stresses of null gravity.

K-313 QUAIL ONTOGENESIS

The Coturnix phase of K-313 demonstrated the hardiness

of the Quail embryo under adverse conditions. 	 The fertile

flight eggs were exposed to at least three days of non-
1	 i

.-

rotation at an elevated storage temperature (20-25 C),
3

f with a low ambient relative humidity, subjected to a set !

of significant lift-off stresses, seven more days of

elevated storage temperatures before incubator activation

and a failure in the flight incubator humidifier on

incubator day 6 (FD+13).	 That none of the embryos survived

beyond Embryonic day 12' is not surprising. 	 That nearly;

one-third (17/60) developed beyond embryonic day 6 is

remarkable	 (but see below). $

Iw	 Based upon examination of the external features anu ,	 .

analyses of serial light microscopic sections of the

one flight embryo that we have received (developmental

stage equivalent to embryonic day 10), development under

conditions of spaceflight appears to be nL ,.nal.
R
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However, with the elevated preflight and early inflight

storage temperatures in this experiment, the Cotgro x eggs	 1

may have been beyond the early stages of cleavage and	 j

gastrulation at the time of lift-off and orbital insertion.

These stages are normally Day I stages for Coturnik and may
I

have led to a moderately developed embryo by the time of

incubator activation on Flight Day 7.

The Coturnix Synchronous control failed to simulate

either lift-off or the reentry stresses and was maintained

at the proper relative humidity throughout the entire

"simulated-flight" interval and provided steady egg
i

rotation during the preflight period.

f
	 Finally, the causeof the breakage of 2/3 of the flight

eggs must be partially assigned to the failure of the 	 i

flight incubator humidifier. The drop in relative humdty

to a level of 23-25 % for a period of 6+ days must have led'

to a dehydration, of the eggs and an increase in the
1

r	 fragility of the shell.

t

i!

:a
z
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TABLE 2

NEWBORN CZECH-WTSTAR SFF RAT DATA

4
t

POSTNATAL E- I E- 2 E- 3 c- 1 c- 2
DAY

-------
#
---

AV/WT
------

# AV/WT
w----

#
----

AV/WT # AV/WT #
----

AV/WT
--

7 6,41
----
10 5.95 14

------
4,79

---
16

------
5,98

-----
16	 6809

?.---> 7 7,50 10 6.82 14 5.22 16 743 16 6084
3---y 7 8,20 10 7,81 14 5.88 16 7,93 15 7,57
4---> 6 9,43 6 _9.77 6 7.25 16 8.30 6. _ 8.78
5---> 6, 9,95 6 10,92 6 8#28 15 Boll 6 9027
6---> 6 9,83 6 12.77 6 9,78 -- ---- 6 9.20
7---r 6 11.23 6 13095 6 11.15 -- ---- 5 11'020
6---> 5 13,34 5 15.74 6 13.22 -- ---- 4 12,739---> 5 15 0,06 5 17.72 6 15.15 4 14,53
10--> 5 16020 5 19M 6 16,03 -- ---- 4, 1b0 18

f	 11"> 5 18,36 5 2102 5 18,74 -- ---- 4 18,4312-- 5 20.22 5 22.66 5 20.20 --, ---- 4 21;.10	 f
13--> 5 22.58 5 24.06 5 21.80 -- ---- 4, 23,80
14--> 5 24.30 5 25.68 5 23.40 — ---- 4 26-.88
15-,—> 4 27,.2.3 4 27,55 5 24.40 -- ---- 4`. 29:,43
161--> 4 28,43 4 29,10 5 25,60 -- ---- 4: 30.60
17--> 4 30,25 4 31,00 5 27.40 -- --- 4 31.75
18--> 4' 31,75 4 32650 5 28.60 -- ---- 4 35.00	

4

19--`> 4 33.50 4 34.50 5 29,20 -- ---- 4 35.75Y	 20--> 4 35.50 4 36.50 5 30.00 -- ----- 4 39,50
21--> 4 35,25 4 36.00 5 31,40 -- ---- 4 43.25

F
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FIGURE LEGENDS

Figures 3 through 6 have been normalized to display body weights

of the female rats over identical time periods. The "inflight" period

is reflected by the dashed lines since no actual weights were obtained

during these time periods i n any of the groups.

FIGURE 3 displays the weight curves of three female Czech Wistar

rats during a preflight simulation in which they were maintained on

40 grams/animal/day paste diet. Breeding was possible following cage

opening on day 22. Two of the animals delivered on day 46 and the third

on day 57 (see Table 1). Note the slope of the dashed f inis.

FIGURE ' 4 displays a	 lot of weight data from the five COSMOS 1129p- 	p	 g	
_

flight females (data provided by Dr	 L.V. Serova). Note the slope of

the dashed lines (inflight potation) represents a continuatioq of the

normal growth curve. Although these animal's were provided wVh a paste

diet of 55 grams/animal/day they showed only an average 15% weight

increase during the flight period.

The weight decline in the immediate preflight period is unexplained

and present in the synchronous and vivari um group data as well.

FIGURE. S: The weights of the five females of the synchronous group

also show a continuation of the normal growth curve if the decrease

}

immediately preflight is ignored.

k, FIGURE +6: The five females from the vivarium group demonstrate a

j marked slope during the "flight" period with prominent rises to parturi-

i
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tion during the postflight period, Again, note the preflight decline

in the weights of these animals although they were being maintained

in the Vivarium.

FIGURE 7 Summary of the COSMOS 1129 Quail ontogenesis data

(provided by Dr. E, Shepelev) The solid figures represent dead embryos

(or non-fertile eggs), while the open circles at day 12 represent live

synchronous group embryos at sacrifice. The 22 live synchronous embryos

at day 18 represent 14 live but unable to hetch and 8 hatchings,

Note the presence of 18 flight embryos that had achieved develop-

ment ages comparable to normal day 8 to day 12 embryos.

FIGURE 8 A summary graph of the group means from each of the

P 
female rat groups displayed in Figures 3 - 6. COLUMN 1 is the starting

weights; COLUMN 2 is the last preflight weight; COLUMN 3 is first
S

weights postflight; COLUMN 4 represents termination weights (either at

parturition or at maximum weight). The line aboveeach bar represents

i
	

one standard deviation.	 j

Recall that weights in the preflight (COLUMN- 2) period in the	 a `''

Flight, Synchronous and Vivarium groups all showed a decrease from the

previous weighing Period.
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Cosmos 1:129 Experiment K-314

Fetal and Neonatal Rat Bone and Joint Development

Following in Utero Spaceflight 	 i

^t.
4

C	 E. E. Sabelnan
University of California San Francisco, CA

E. M. Holton

NASA-Ames Research Center, Moffett Field, CA,

C. D. Arnaud	 i

University of California San Francisco, CA

a

SUMMARY

Infant rat limb specimens from Soviet and U.S. ground-based studies were
examined by radiography, macrophotography, histologic sectioning and stain-
ing and scanning electron microscopy..._ A comparison was conducted between 	 z.
vivarium and flight -type diets suggesting that nutritional obesity may
adversely affect pregnancy. Data were obtained on maturation of ossif-
ication centers, orientation of collagen fibers in bone, tendon and ,liga-
ment, joint surface texture and spatial relationships of bones ofthe

G	 '	 hind limb. Computer reconstructions of the knee and hip show promise as
a means of investigating the etiology of congenital hip dislocation.

t
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INTRODUCTION

_ The thrust of this study was altered by circumstances from the ini-

tial proposal to investigate effect .̀, ` :prenatal exposure to spaceflight

on rat limb development. Since no litters were born following din-flight

`y
impregnation, the only specimens were produced by vivarium and poet.

flight pregnancies. Although it was not possible to test the experiment

hypotheses, these specimens have provided insight into developmental

processes and time sequences. An effort was made to measure differences

between groups of specimens attributable to maternal housing, diet or

stress, which must be compensated for in future mammalian embryology

experiments in space.

C
Spaceflight affords an opportunity to test the contribution of

gravity to the fetal development or pre-adaptation of limb structures

essential to weightbearing and locomotion of the postnatal animal, Al-

r
though mechanisms have been proposed for the detection of gravity vector 	 t

by individual somatic cells [1 ',23, our present hypothesis is that limb

i

	

	 growth in the near-term fetus is influenced by muscle action and mechan-

ical loading s in postnatal life. Evidence exists that8	 p	 prevention ofy	 r,

active motion in utero b genetic muscular dysfunction ` r 	
1

_	 Y	 on38	 Y	 i-[] o infection	 ,.

^
k
	of paralytic drugs [4 , 5] results in retardation of muscle and tendon

l. x	 +
ff	 growth, flattening and adhesion of articular surfaces and failure of 	 i
t.

morphological differentiation of bones, Similar effects are seen post-

natally in cases of joint immobilization [6], bone resection [7], nerve

r

	

	 section [8 ]_ and,periosteal circumsection [9]. Magnitudes of effects of

Lack of gravitational stimuli are not anticipated to be as great as those
9
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t
caused by paralysis, since fetal muscle action is uninhibited but altered

from isotonic to isometric mode [10] by maternal fluid shift, internal

organ displacement, stance or activity (11) . Since spaceflight effects

potentially may be masked by birth order !(12), litter size [13), mater-

nal diet [14,15] or stress (16,171, knowledge of such variables is essen-

tial to the interpretation of data from specimens exposed to orbital

'	 conditions.

Zecause all specimens received from the USSR were from one week old

or younger animals, most analytic work was concentrated on material of

this age range. Of 27 variables ini^j.ally identified as ,potentially sens-

itive to spaceflight effects, 14 were selected for detailed study by hie
3

tomorphometry, polarized light microscopy, scanning electron microscopy

('SEM) and X-ray photogrammetry. Fout variables were, combined for evalu-

ation using a rat hind limb skelet,-'!, itaturity index published by Higher

and Tanner [18).

r
METHODS and MATERIALS

Soviet Specimens

Hind limb specimens dissected and fixed according to the K-314 pro-

tocol were received from the USSR in two batches. The first group com

prised 24 to 36 hour postnatal offspring of coatings -of flight and synch

ronous males with vivarium females; eleven right and four left limbs were }

included, with skin removed to mid -tibia. Dissection artifacts were con-

fined to one instance each of absence of the femoral . head, damage to tibia

muscles and laceration of the foot. State of microscopic preservation was
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compromised by freezing during shipment. The second group comprised 15

hind limbs, divided equally among litters sired by flight, synchronous and

vivarium manes.	 Age of the flight and vivarium-derived specimens was

2 1/2 or 3 days postnatal (24 days post-conception), while the synchron-

ous litter was 4 days postnatal (28 days post=conception) and had corres
a

4	 pondingly higher body weight. Six specimens were left and `nine were right

limbs, All were grossly normal, except for several cases of foot lacera-

tion due to forceps pressure during dissection. Two specimens lacked the

femoral head, while two included the hemipelvis and part of the spine.

Domestic Specimens
y	

9
Both left and right hind limbs of 46 infant Simonsen Wistar rats were

i

obtained at ages of 1 to 15 days, This material was used for refinement

of tissue processing and analysis t-•chniques. In addition, some animals

were given prenatal and/or postnatal bone mineralization labels (tetra-

cyclines [19], lead acetate [20] or tritiated thymidine [21]).

Dr. J. R Keefe obtained five Czech Wistar females from the Soviets

and simulated the Cosmos 1129 housing, diet, and mating schedule on three

females and one male. Offspring were killed at ages of 1 to 13 days and
i

fixed in 10% formalin. Of 39 carcasses sent to Ames Research Center from

this experiment, 27 pairs of hind limbs were processed for histology and

comprise part of the baseline data pool for comparison with Soviet speci-

mens.
3

An additional five female Czech Wistars with two males were located
i

at Ames Research Center to establish a breeding colony. Both hind Limbs

;F	 of 30 offspring of this group aged 2 to 24 days were included. in'the base-

line pool.
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Diet Comparison

Three first-generation Czech Wistar females were fed a paste diet

prepared accordnng to the Soviet flight diet recipe. Ingredients differed

slib:tiy the nutrient yeast contained unspecified quantities of vitamins

R

	

	 in addition to those added in accordance with the recipe; also, the sun

flower seed oil wa probably lesa viscous than that used by the Soviets.

The Soviet instructions specified Pasteurization for one hour at 100OC

following mixing; to reproduce the consistency of samples, it was necess-

ary to Pasteurize for two hours, followed by re,fri8eration and blending.

The female rats were acclimatized to 45 gm/day paste diet for 14 days

before mating, and continued, at this level ~until birth (or sacrifice if

birth was d played)• After parturition the dose was increased to 60 gm/day.

If sacrificed, the females were dissected, abnormalities in internal organs

and adipose tissue were noted, and the ovaries and uteri were preserved

in glutaraldehyde-based "triple fix". The two remaining first-generation

r

	

	 females, plus second- and third-generation animals maintained continuously

on standard lab chow were later sacrificed as controls.

i	 Histology Process ing

Domestic specimens, consisting of both hind limbs, sacral spine and 	 j
t

;s

tail, and single Soviet hind limbs were preserved in refrigerated glutar-

aldehyde-based "triple fix" (22]. After separation into single limbs and

cleaning of skin, and fat_, specimens were superficially examined and macro-
3

photographed at U.

The second step in processing was contact radiography on Kodak Type
P

M film at 38 kV, 225 mA and 1 sec. exposure, using density and dimensional

36
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scales on the film (23). Radiographs were used as references to compensate

for shrinkage or displacement artifacts during subsequent processing. Mea-

surements of tibial and ftmoral cortical length were made with a 1OX mag-

nifying reticle. Radiographic density was measured using an image anal-
F,

ysis system consisting of a Sierra Scientific camera, Spatial Data Systems

"Eyecom. 108PT" video-digitiser terminal and DEC PDP 1.1/34 computer. Skel-

etal maturity was evaluated by the method of Hughes and .fanner [18], in

which shape and relative dimensions of ossification centers in the femur,

tibia, calcaneum, metatarsals and proximal phalanges are assigned values

on a scale of 0-15, which are summed to yield a maturity index for the

whole limb.

An optional step was clearing to render bulk muscle transparent for

}

	

	 visualization of bones in whole specimens. The method employed was suc-

cessive changes of 1,X KOH (24] with alizarin red S added to the lash change

to stain calcified bone [25]; alkali clearingwas detrimental to cellular`
r

microstructure and unable to remove a yellow pigment left by the fixative.
r

Further processing was primarily dehydration in graded ethanol solutions,
R

clearing in cedarwood oil and paraffin embedding [26], although sample

specimens were processed by polyethylene glycol embedding without dehyd-

ration [27] and by glycol methacrylate embedding [28] to reduce shrinkage

artifacts.	
,v

Three sectioning orientations were employed: (a) whole length long- 	 a
,a

itudinal sections, (b) cross-sections after pre-cutting at mid-tibia and

mid-femur, and (c) longitudinal sections of hip, knee and foot with tibia

and femur diaphyses excised and cross-sectioned. Serial sections were

typically cut at 10 pm on an AO Model 820 microtome and mounted 5 or 10 per
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slid* with notation of any missing sections. 	 Stains included routine has-

atoxylin-eosin (26), picro-Sirius Red F3BA for collagen fibers (29] and

toluidine blue-safranin 0 for mucopolysaccharides itt cartilage (30

A computer program for three-dimensional reconstruction from serial

sections similar to that of Sullivan (31] was used for qualitative eval-

uation of knee, hip and tibia -fibula geometry.	 The input program "RE-

i'
CONY" was written in FORTRAN for use on the video image analysis system

with input from a Zeiss "Ultraphot" microscope and Cohu Model 4400 camera.

Elements of the video image such as bone, cartilage, ligament or muscle

were outlined using the Byecom terminal joystick under normal, crossed

polaroid or ultraviolet illumination and the outline vertices were stored

in disc memory.	 Approximately every fourth section in a series of up to

200 sections was scanned. 	 The output program "RECONO" retrieved the out-

line data and displayed them as a stack of color-coded filled or outlined

plane polygons rotated horizontally or vertically at. a selected angle.

r

Specimens selected for SEM processing were either dehydrated or

_
freed from embedding medium, depending on extent of previous processing.

They were then air-dried from xylene or critical-point dried in CO2,

mounted on stubs using conductive adhesive, coated with 18 nm Pt-Au by

vacuum evaporation, and viewed on a AMR Model 1200 scanning electron

microscope.

C

RESULTS

Diet Comparison

Of the three animals fed simulated Soviet paste diet, only one car-
x:

Iit
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rind a pregnancy to term; the litter included several weals pups out of 11

total. One femaleeither xesorbed early or did not implant embryos; she

later developed cardiovascular lesious thought to be unrelated to diet.

The third female gained weight until gestation day 21 at sacrifice three

days later, she was found to have an extreme quantity of abdominal (14.9X'

of body weight) and subdermal fat. Mean wet weight abdominal fat to body

ratio for females of comparable age fed standard lab chow was 6.4 il.2%

The uterus was slightly enlarged but no resorbing fetlaaos were evident,

indicating resorption occurred earlier than implied by weight gain.

Radiographic Measurements

Data obtained from X-ray images comprised (a) femoral and tibial cor-

tex lengths, (b) skeletal maturity indices 1181, and (c) computer-gener-

ated optical density histograms.

Tibial cortex length (L) for specimens up to 6 days old was found to
a
3

be related to body weight (W) by the regression equation:

L	 .026 W + .25

with Soviet, Dr. Keefe's and Ames specimens having »99% probability of de-

riving from the same population at ages under 2 d&ys. 1n animals older

than 6 days, ratio of bane length to body weight declined, reflecting in-

creasing robusticity and muscle growth [32]. Ratios of bone length 1,14,331

and ash weight [34] to body weight cited itt the literature are based on

caliper measurementsof older specimens with calcified epiphyses, but when

extrapolated areapproximately parallel (Figure 1)
F

Mean skeletal maturity scores are given in. Figure 2 and compared to

scores for black hooded rats given by Hughes and Tanner [18]. The values
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for Soviet specimens are depressed 10-15% due to difficulty of positioning

caused by fixation-induced rigidity; an additional radiograph perpendicular

to the ,foot would have aided In identifying phalanges and metatarsals. Se

.	 cause of the small number of specimens, males and females were included in

each age group; other researchers (18,351 have found females to mature sig-

nificantly faster after the tenth postnatal day, implying variance would
E

be less if males and females were separated.	 Femoral head and proximal

tibial ossification centers evident in microocopir sections generally did

not contain enough calcified material to appear on radiographs until times
a

corresponding to published valueei (35,36). i
Histograms of radiographic density based on contrast -enhanced areas "'	 A

circumscribing the femur or tibia-fibula (Figure 3) illustrate the: diffi-

culty of interpreting density data. 	 in some cases (Figure 4 A, B) a bimo-

dal distribution, may be inferred, corresponding to marrow and cortex den-

sit ies.	 Triple peaks may reflect densities of marrow, cancellous and cor-
H

tical bait u, in, increasing order ( ' Figure 4 D, H) . 	 However, a major source

of error exists in rotation causing the tibia and fibula to overlap, with

conmequent reduced area and spurious high density peaks (Figure 4 F)
i

Additional artifacts occurred U the radiographic background was unevenly
9

exposed or reflections caused highlights during digitization,

Gross Observations

No overt anatomical abnormalities were noted in domestic or Soviet

F	 specimens.	 A possible exception is histologic evidence of a blood -filled
r

cyst in the popliteal region of one Wistar newborn; this ma y be merely an
P

extreme variation in the branching of the femoral artery,	 Three categories

371

r	 . 	 ..vet'P..aavu..a.+r--alo'Tea:.z^+'wr^^.°"+tMw:'sbww.....,.



of developmental defect were specifically sought. (a) ectodermal-%even

chymal cell interactions, capaf)le of causing skeletal absence [37)', (b)

collagen synthesis defects (chondrodyoplasias) causing 'bone length retard-

ation X381, and (c) lata fetal. and postnatal foot deformities (39). The

specimens were fixed in a variety of .flexed positions, which prevented

assessment of subtle joint defects (e.g.: varus-vslgue angle of the, ankle) .

Body weight was it gross measurement available for all spexcimene, at

least as an average for the litter. Figure 5 shows weight vs. age (post-

natal) for values from the literature compared to animala from Soviet,

Dr. Keefe and Ames sources. Weights of offspring whose dams were fed

Soviet paste diet do not differ significantly until after day 15 from con-

trols fed standard diet [401. Slight differences between males and females

are evident at birth, but do not reach statistical significance until day

30 or 35 (32) An early paper records birth weights substantially lower

than some modern strains, implying an effect of selective breeding (41).

z

Histologic Observations

Spatial relationship and morphology of bones were most easily observed

in cleared alizarin-stained specimens (Figure 6) Quantitative measure-

ments of tibial axis curvature and tbio-fibular fusion Were made from

serial longitudinal or cross-sections. The centroid of the tibia at dif-

ferent levels from proximal to distal was compared to a straight line
7	

through the centroids of the epiphyseal plates,. The centroid of the fib-

ula was 3!; ,ferred to the same nominal tibial axis (Figure 7). Sample spec

{	 imens-aged 2 to 6 days were examined and Indicate that changes during this 	 zT

span can be repeatably measured and placed on -a time scale from earliest
ii
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appearance of these bones through adulthood (42). Accurate three-

dimen-sional reconstructions require a reference axis exterior to both tibia

and fibula; fiducial marks on the surface of the paraffin embedment (43]

did not remain in register after mounting on slides.
Tendon and ligament insertions of primary interest were the patellar

Ft
tendon/tibial crest (Figure 8), the ligamentun tares/femoral head and the

ilio-femoral ligament/greater trochanter (Figure 9); a secondary interest
F

was the Achilles tendon /calcaneum. Maturation . of the insertion can be

measured by the location of th y! insertion margins relative to the prox

imal or distal ends of the bone: (44] In animals less than two days old

insertions tended to merge with,the , perichondr um rather than penetrate

into underlying cartilase or bone. Older insertions had gradual trans:.=

I tions from tendon to fibrocartilago to bone as described in the liter-

ature (45,46).

Relative parallelism or co-linearity of tendon fibers as well as lim-

ited information on cross -sectional area was derived from Sirius Red

stained longitudinal sections under polarized illumination. 	 Patellar,
P

tendon thickness was .31 1.11 mm at 1-2 days and .49 x.21 at 4 days,	
3

implying rapid growth of the qumdriceps muscle. 	 The anterior cruc ate

ligament increased in thickness relatively little during thia period
^ sw

(.15 i-.07 ass.	 .:17 1. 09 mm	 iacome mid-sagittal sections of at leaed 4 spec-

imens).	 Collagen fiber crimping (47] was seen in the patellar ligament;

fibers in the anterior cruciate were straight as a result of fixation

flexion, and in the posterior cruciate were often folded out of the sec-

tion plane

Articular carnage in consideredto be sensitive to alterations In
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compressive stress and motion (6]. 	 Thickness and structure of the arti-

cular layer are distinguished from deeper hyal ne cartilage by staining

properties [48] and direction of collagen fibers (49).	 Animals younger

than 7 days tend to have little diffareace between articular and adjacent

perosteal collagen fibers (Figure 10), while post-ambulatory animals

have more distinctive orientation and substructure; during the same per-

iod chondrocyte shape changes frgm ovoid to flattened [50].

Epiphyseal plate properties of interest included angle relative to the

bone axis, width and zone depth (Table 1).	 Widths of distal femoral and

proximal tibial growth platen increased as expected with age [51].	 The

depth of all zones (resting, proliferating, hypertrophic, primary and

secondary spongiosa [21]) was not measured, howeverw the primary (calcif-

ied cartilage) zone was compared to the sum of the proliferating, hyper-,

trophic and primary zones.	 Both width and depth of the plates increase

relatively slowly until 9 days of age; after appearance of secondary os-

sification centers the calcifying cartilage layer is expected to increase
j
j

r

	

	 relative to the plate as a whole [52,53] although this is not evident in

these animals. Epiphyseal ossification centers in the femoral head, dis-

tal femoral condyles and proximal tibia appeared prior to published times
i

in about one -third of domestic specimens [35,36], but remained disorg-	
j

a

arsize 'd and uncalcified, consisting of hypertrophic chondrocyte lacunae,

until vascularization occurred. Angle of the plate relative to bone axis

is predicted to change with alteration of force vector across the associ-

ated joint as the animals become ambulatory [56,57]. The plate angle is 	 ?

too indefinite prior to appearance of the secondary ossification center,

but can be seen in the assymmetry of the proximal femoral plate at the

i
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greater trochanter (Figure 9).

Serial Section Reconstruction

Computer-generated reconstructions were made of up to six tissues of

the hip, knee and distal tibia-fibula.	 In the knee,-(Figures 11, 12) this

t technique shows that the menisci are relatively large in animals less
1

than three days old, and recede toward the joint capsule wall as they ma-
4

r ture [58].	 The proximal-distal oriented collagen fibers of the capsule

and patellar ligament as seen under polarized illumination do not merge

with the tangential fibers of the menisci, suggesting that the latter are

under radial pressure or hoop stress [59]. 	 The patella resides deep to

the highly linearly oriented tensile fibers of the patellar tendon, which

" continue uninterrupted until inserting in the tibial crest [46]; the loose

connective tissue surrounding the remainder of the patella spreads out

in the tibial and femoral perichondrium.

Reconstructions of the tibial and fibular diaphyses have been unable
r,

to depict changes in tibial axis due to lack of a reference axis, but

show that the fibular axis -is helical"relative to the tibia un"til it

approaches the site of impending fusion [60] (Figure 7). j

The hip is sufficiently complex that six components were not adequate

to completely describe it.	 Thp	 y	 e "RECONO" Program permits outlining some

components while shading others, to aid viewing the morphology of the

femur exclusive of surrounding tissue [611 (Figure 13). 	 The ability to H

view the femoral head from various angles is useful indetermining spher-

icity and congruity with the acetabular aawity'[62].— Other views show the

ligamentum teres to insert. into a fossa of the tri- radiate cartilage in
a

i
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sections neat the maximum diameter of the femoral head, but to extend

toward the acetabular labrum in more distal sections (631 (Figure 14).

The coxal ligaments include the ilio-femoral, which with the gluteus

medius wraps` around the trochanter near the femoral neck axis, to merge

dorsally with the piriformis and distally with loose fibers spread over

the acetabular rim (G41 (Figure 11 5). The obturator muscle terminates

in the conmse area between the femoral Hack and trochanter, with facial

fibers making up part of the joint capsule between the trochanter and
i	

acetabular rim. The visceral wall of the innominate consists of highly

oriented collagen fibers (whether a thickened periosteum or an indepen-

dent fibrous sheath is uncertain), distinct regions of f'ibrocartilage and

hyaline cartilage in neonatal animals (Figure 16) between the innominate

sheath and the acetabular socket become merged into bone in the mature

animal, `these structures appear to provide the biomechanical stability

necessary to the function of the hip and also permit the motion essential

to development of a rotating rather than sliding joint. If the ligaments

positioning the femoral head are weak relative to the tensile elements of

the acetabulum during this phase, the Joint may be predisposed to con-

genital dislocation[63,65,66].Gontinued refinement of the computer recon-

struction technique should aid in determining the critical factors in hip

development (431.

Scanning Electron Microscopy

SEM is well suited, for observation of ,joint surfaces, ligaments and

metaphyseal trabeculae, since shrinkage artifacts aid in exposing these

regions. Striations in the articular surface (Figure 17) indicate that
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cartilage cell s are shallow and matrix sparse relative to nature specimens

[491 Projections into the joint space were not seen, implying that the:

joints were mobile, Coils adhering to the surface may have boon intro

duced during processing, but more likely were detached synovial lining

t

:_« t

s

cells or migrating macrophages. 	 The synovial membrane could be visualized

but its surface was easily dama ged during dissection (Figure 18).	 The

texture of the moniseal fibrocartilage was distinct from adjacent ligament,

with prominent cell lacunae which could be indicators of state of mech-

anical stress [57].	 Marrow cavities in some metatarsals were nearly cell-

free (figure 191; although possiblya processing artifact, this could

imply that marrow cavitation was so recent that blood-forming cells had

not yet populated the region.	 Cells of the epiphyseal plate were not ex-

amined in detail, but were distinguishable as to zone under SEM [67);

similar zones were seen in ligament insertions [68].

DISCUSSION and RECOMMENDATIONS

Diet Effects
I

The results of the simulated paste diet feeding study are equivocal

due to the small number of animals and 	 possible differences :from the

Soviet paste diet.	 Feeding studies using actual Soviet diet are contin-

uing at Ames Research Center.	 Since both Dr. Keefe's animals and the
^E

subjects of the Soviet "engineering study" were able to .carry Litters of

normal, size to term, the diet is unlikely to be solely responsible for

t
lack of viable litters in flight and synchronous Cdamos 1129 females.

However, the most notable abnormality in the Ames diet study was elevated;

g
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abdominal fat, which was also noted by Dr. Serova in dissection of three

flight females. preliminary results of the Cosmos 11,29 body composition

study (69] show visceral fat in flight and synchronous males approximately

double that in vivarium controls. Wet abdominal fat weight* gityen in the

Soviet preliminary report are lower since organ fat is not incljtded, but

the ratio is similar. Henca, taales as well as females are subjlect to

excess fat buildup when fed paste diet of this composition.

Although the diet supports lire and weight gain of animals, it may be

subtly influencing results of other Cosmos experiments comparing flight

and synchronous groups with vivarium controls. For example, an unusual

amount of adipose tissue was noted in bone marrow of Cosmos 782 rats [551.

Besides reducing the cell population available for bona growth, particul-

arly in the secondary spongiosa (55], the volume and precursor cell pop

elation participating in erythrocyte formation was probably affected.

Skeletal Maturation and Morphology

Radiography (181 and clearing/alizarin staining (251 are adequate
3

means of quantifying time of appearance and growth of ossification cent-

ers.,	 These morphologic indicators are corroborated by biochemical mess-
i

urements of calcium utilization [70).	 Abnormality occurrence rates of
a

0.5% of normal specimens can be reliably detected [25),

`	 Our initial presumption that skeletal maturation. was unaffected by

factors other than genetic programming and functional loading excluded

'	 a number of significant variables.	 In fetal and neonatal rodents	 these

include: (a) tri-iodothyronine [71), (b) thyroxine and thiouracil (721,

(c) nutritional body weight variations [141, (d) maternal protein def-
,t
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iciencies [73], (a) transplacental cortisone [74 (f) pituitary hormones

(75 1 and (g) noise (16). In older growing rodents, 'known factors are:

(h) hypoxia (761, O exercise [771, (J) hypergravity (78). (k) resorption

inhibitors (541 and (1) chronic vibration (79). These factors presumably

act by modulating the_same routes of cell differentiation andmetabolism

as determine the responses to function and gravity [0 0 81`1. Some or all

of these factors may be present in fetuses due to the dietary, social o r

physical environment of Cosmos females. Hence, thorough control and pre-

flight simulation of mission parameters are imperative if gravitational

responses are to be identified.

Specimen Processing,

Experience has suggested several modifications of the protocol for 	 -'

initial specimen acquisition that should be applied to future experiments.

A single fixative should not be expected tog	 p	 provide ideal preservation for 	 r ,

multiple end uses; rather, where rapid fixation is required, as for SEM

or TEM, small needle biopsies of regions such as articular cartilage or

ep physeat, plate during dissection of fresh tissue, and placed in a, min-

imal volume of "triple fix". SEM may alternatively be enhanced by liquid
x

nitrogen freezing of articular surface biopsies, followed by freeze -

dry-ing [82]. The remainder of the specimen should than be pinned in a Stan-

dard flexed position and preserved in a simple fixative such as 10% buf	
w

r	 feted formalin; this method would facilitate room-temperature storage

with less chance of freezing damage in transit.

In processing of specimens after receipt from the USSR, greater atten -

tion should be paid to extracting quantitative information from cleared
3 t

4
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specimens, and/or using clearing methods lose damaging to microstructure.

No convenient solution has been found to the problem of reference axes

for serial sections; perhaps biopsy sites or markers affixed to the pee-

imen surface would suffice.

The pool of baseline data on body weights, bone lengths and ossifies

tion centers vs. age is .approaching the size at which, reliable strain-

specific growth curves can be established (83,84). With standardization

of fixed joint flexure, similar standard curves could be derived for pos-

ition-sensitive features such as bone tuberosities and tendon insertions

(44,85).

Because	

us
Because of unknown degrees of sensitivity of bone and joint maturation

of Czech Wistars to such factors as litter site [13,74,863, gestation age

[323, uterine position or birth order [123 relative to other strains [87],	 '+

this data should be gathered for all specimens, in addition to the age

and weight at sacrifice provided for Cosmos 1129 material. Certainly, the

environmental parameters to which flight and synchronous control groups

were exposed, such as noise t16], vibration 1793 and possible hypoxia [76]_

should be measured during all future simulations or space missions
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FIGURZ 1: RADIOGRAPHIC FENOM 6 TIBIAL CORTEX LENGTH
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FIGURE 3r ENLARGED CONTRAST-ENHANCED RADIOGRAPH
2 day old Keefe Czech Wistar (KE3.1L) scale in cm.

The proximal metaphysis of the femur (F) is denser than
the distal and Is skewed toward the trochanter. The

tibial proximal metaphysis (PM) is also denser than the

distal, which overlaps the fibula. The tibial diaphysis
(D) contains a region of primary osteons. The calcaneal

ossification center is present (C); no secondary centers
are visible.
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FIGURE 6: CLEARED ALIZARIN STAINED HIND LIMB

4 day old Keefe Czech Wistar (KC1.11L)

Modeling is occurring at the greater trochanter (GT) and

metaphyses of the femur and at the tibial crest (TC).
The ilium (I1; and ischium (Is) are flattened. Ossif-
ication centers of the foot include the primary (and 	 1
possibly secondary) calcaneum (C), 4 metatarsals (Mt),

and 4 proximal and distal phalanges (P). The meniscal
fibrocartilage (M) is revealed by expansion of the

joint space due to cartilage shrinkage.
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FIGURE 7: BONE CURVATURE AND SPATIAL RELATIONSHIP MEASUREMENT

P-D:	 Nominal tibial axis, through centroids of proximal (P)
and distal (D) epiphyssal plates

T:	 Centroid of tibial cross-section
F:	 Centroid of fibular cross-section
A:	 Intersection of nominal axis with section plane

a 
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FIGURE. 6: CLEARED ALIZARIN STAINED HIND LIMB
4 day old Keefe Czech Wistar (KC1.11L)

Modeling is occurring at the greater trochanter (GT) and
metaphyses of the femur and at the tibial crest (TC).
The ilium (I1) and ischium (Is) are flattened. Ossif-
ication centers of the foot include the primary (and
possibly secondary) calcaneum (C), 4 metatarsals (Mt),
and 4 proximal and distal phalanges (P). The meniscal
fibrocartilage (M) is revealed by expansion of the
Joint space due to cartilage shrinkage.
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FIGURE 1: BONE CURVATURE AND SPATIAL RELAfIONSNIP MEASUREMENT

P-D:	 Nominal tibial axis, through centroids of proximal (P)
and distal (D) epfphyseal plates

T:	 Centroid of tibial cross-section
F:	 Centroid of fibular cross-section
A:	 Intersection of nominal axis with section pane
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FIGURE 8= KNEE JOINT AND FATRULA
aaiittA section, 10 on, Sir us Red, polarized illumination
2 day old Soviet Czech Wistai ($F3.2L, el. 16)

Colinear collagen is seen in superficial patellar (PL) an&
posterior cruciate (PC) ligaments. -Patella (P), femur (F)
and tibial (T) cartilages are not birefringent. Deep to
the patellar ligament is vascular synovial (SN) and loose
connective tissue originating in the patellar rise.
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FIGURE 10. 1!U<y1EE AND PROXIMAL TIBIA
Lateral parasagittal section, 10 put Uhl
3 day old Keefe Cxach wistar (KZ2.1L 0 •1. 4)

A OVERVIEW
Pam+tr

Tb	 Tibia (condyle only)
rb	 Fibula
A	 Joint capsule wall:
'M	 Meniscus

EP	 Distal femoral epiphyseal plate

8: DETAIL OF ARTICULAR SURFACE

A	 Articular cartilage sons
H	 Hyaline epiphyseal cartilage
P	 Perichondrius

r

FIGURE lli	 COMPUTER RECONSTRUCTION OF KN3R
60' view" angle, 3 pixels /section spacing
3 day old Keefe Czech Wistaar (KE2 3T=)

PL	 Patelar ligament and joint capsule (birefringent) - outlined4
P	 Patella - solid grayt
M	 Meniscus - white
F	 Femur.  - outlined
T	 Tibia - outlined^y

FIGURE 12;	 COMPUTER RECONSTRUCTION OF KNiE
r 6011 view angle, 2 pixels/section z

r
30 hour old Soviet Czech W'istar (SF3.3R)

PL	 Patellar ligament - solid whits'
P	 Patella - solid svty
M	 Meniscus - out.linodi

FIGURE 13 :	 COMPUTER REWNSTRUC`PION OF FEMVK

72° view angle, 3 pixels/ sect$bn
1 day old Wistar (TA2-12D . 1.1,)
FEi	 Femoral 'head cartilage - light gray
GT	 Greaten trochanter and periostaum (birefringont) - dark gray
11	 Iliac componeat of acatabulum - white outline

Lt—r,
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TABLE 1: CZELN RAT EPIPHYSEAL PLATE PROPERTIES (mean i SD)

SOURCE	 AGE, DIST. FEMORAL	 PROX. TIBIA TOTAL PLATE CAL• C. CART-
days PLATE WIDTH,mm PLATE WIDTH HEIGHT, mm 	 ILAGE HEIGHT

Soviet	 1-2	 .94	 .98 t .08	 .88	 .17

Ke-fe	 2-3	 1.23 t .12	 1.11 t .15

4	 .83 ! .11	 .16 2 .04

6-7	 1.09 ! .13	 1.29 t .13

Ames	 9	 1.59 t .22	 1.90 2 .32	 1.00 ± .05	 .24 3 .01

ScLenk, et al (54) 25- 	 .51 t .02

+ EHDP	 30	 1.85 t .13

Asling [55) flight 85	 .97 i .22*	 .32 ! .002*

synchronous	 1.34 2 .18*	 .55 3 .005*

vivarium

	

	 2.93 t .20*	 .82 ± .002*

* mean t SE

fJ^
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FIGURE 14: COMPUTER RECONSTRUCTION OF HIP
60° view angle, 3 pixels/section
30 hour old Soviet Czech!Wistar (SF IR)

PH	 Femoral head gray outline
IL	 Ilio-femoral ligament (Birefringent) dark gray
Gm	 Gemellus and associated joint capsule (biref.) - White

III
Arrows point to sagittal plane (s) and distally (d)

FIGURE 15: COMPUTER RECONSTRUCTION OF HIP; same specimen as Figure 14
l

-70° view angle, 4 pixels/section

FH	 Femoral head - gray
LT	 Ligamentum teres (birefringent) -,white

0	 Origin in femoral head
I	 Insertion In acetabular labium

Ac	 Acetabular components - gray outline
Arrows point to sagittal plane (a) and distally (d)

f

is

FIGURE 16 COMPUTER RECONSTRUCTION OF ACETABULUM (FEMUR OMITTED)
3 day old Keefe Czech, Wistar (KE2.1L)

j	 60° view angle, 4 pftels/section	 -?

I'	 FC	 Fibrocart:ilage (birefringent) - light gray
HC	 Hyaline cartilage - dark and medium gray
IW	 'Visceral wall of ilium (birefringent) white outline
Ob	 Obturator group - gray outline

C

`	 FIGURE 17: KNEE, TIBIA AND FIBULA, SEM
1 day old Sprague Dawley (H4.XL).

A: OVERVIEW

FA	 Popliteal plexus of femoral artery
PC	 Posterior cruciate- ligament
Ep	 Proximal tibial epphyseal plate
SS	 Secondary spougiosa
FO	 Femoral epiphyseal ossification center ,(hypertrophic)
Fb	 Fibula
Gc	 Gastrocnemius
Ta	 Talus
Mt,. Metatarsals

B: DETAIL OF KNEE ARTICULAR SURFACE AND MENISCUS

400
f,-



401
OHIGIZAI, PAGE I9
nF Po"R QIJA I,M,-

w



o

ORIGINAL P

OF POOR Ql



4

}

FIGURE 1S:	 ANKLE SYNOVIAL TISSUE _, SEH (same specimen as Figure 17)

TE Distal tibial apiphyseal cartilage
SH
Ta

Synovial sfe!^rsne folds
Talus	 cart,' age

r

FIGURE 19	 METATARSAL MEDULLARY CAVITY, SEH
2 day old Keefe Czech Wistar (KE2.3L)

HZ Hypertrophic call zone of proximal apiphyseal plate
PS Primary spongiosa
SS Secondary spongiosa

E HM Hematopoiatic marrow }

r

DP Distal epiphyseal plate

{
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STUDIES OF THE NASAL MUCOSA

Lisbeth M. Kraft

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California

SUMMARY

The posterior regions of the olfactory nasal mucosa of rats

flown on Cosmos 1125 failed to reveal histopathological changes.

These results are at variance with those of the Apollo XVII

Biocore experiment in which severe necrotic olfactory mucosal

lesions were seen in flight animals only. In the anterior aspect

of the nasal cavity of the Cosmos 1129 rats, however, focal

:. lesions of moderate severity and variable extent were seen. These

4 were consistent in character with that of a mild virus infection,
r

which,; it is postulated, was self-limiting. 	 The infection was

present in all groups of animals: flight, synchronous and

vivarium control

^
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INTRODUCTION

The basis for examining the nasal mucosa of Cosmos 1129

rats resides in the extensive lesions that were seen in the

olfactory, but not the respiratory, nasal mucosa of rodents,

pocket mice (Perognathus lon9imembris), in the Biocore experiment

that flew on board Apollo XVII in 1971. Those lesions, observed

upon termination of the mission, were not found in any of

numerous control pocket mice examined. Conjecture as to the

causation of the lesions did not lead to a satisfactory is

concl usion at that time (1).l

The present study was conducted to determine if similar

lesions may occur i n other rodents as a consequence of
h.

spaceflight. A further rationale involved the fact that the

olfactory sense in rodents influences mating behavior (2), and

successful mating was essential for the rat ontogenesis

r	 experiment included in the Cosmos 1129 payload. Thus, should

s

	

	 nasal olfactory lesions develop during flight, with, presumably,

impaired olfactory sense, they might be a, contributing cause of

failure to mate, should that indeed have been the case. If no

lesions developed in the rats, then the etiology of the

alterations in the Biocore pocket mice would remain an open

question.

F	 ^
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f,- This report includes only the results of invest igations inp	 y	 9

the Cosrr,ios 1129 rats,	 Retrospective studies in the Biocore mice,

stimul:ate4 by present results, will be reported separately

(,Kraft, L. M., D'Ameiio, F. E., D'Amelio, E., Broderson, R. J.,

and Hierholzer. J., in preparation).

MATERIALS AND METHODS

Specimens from 54 rats were examined. 	 The number of

animals and the groups to which they belonged are:

Days after	 Number, of rat s

Group	 recovery	 Flight	 Synchronous Vivarium ^.

(F)	 (S)	 (V)

r 1	 0	 7 	 7	 7

2	 6	 5	 6	 b
4	 29	 5	 5	 5

Specimens consisted of the remainder of the head after

removal of brain, pituitary, eyes, and mandible. 	 Cold fixative

(3X. glutaraldehyde, 1% paraformaldehyde, and 0.5% 1,5 difluoro-

2 4 di'nitrobenzene in 0.1 M sodium cacodylate buffer, pH 7.3, at

approximately 900 mOsm`) was instilled into the 'nostrils after

which the specimen was immersed in the same fixative and
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maintained at 40C. The mean time interval between sacrifice and

fixation of the specimens was 19.4 min (11-30 min).

Upon receipt in the laboratory, excess tissue was trimmed

from the specimen of one flight animal of Group 1, decalcified in

10% hydrochloric acid in lox formal i n for 7-8 hours at room

temperature, and processed for paraffin embedding. This was done

in order to detem0ne rif it would be necessary to process the

tissues of any of the other animals for electron microscopy.

Subsequently, all specimens were treated in the manner just

described.

After decalcification, before processing for embedding,

each specimen was divided coronally into three segments. An

anterior cut was made 2 mm behind the lingual eruption line of 	 A	

_

the incisors, and a posterior cutwas made just behind the third

molar. Sections b um thick were made beginning at the posterior

aspect of the anterior segment and at the anterior aspect of the

posterior segment. In this way, respiratory mucosa,
k	 _	 =	

a
predominating in the anterior, and olfactory mucosa, more

abundant in the posterior portion of the specimen, could be

studied without having to make numerous serial or step sections.	 Y

Sections were stained with hematoxylin and eosin ( H&E) and

by the periodic acid 'Schiff (PAS) method. The middle of the

three nasal segments was not sectioned. It was retained for 	 a
r^i	 t

Y	 further processing in the event that provocative results 	 r

r
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requiring confirmation or augmentation would be found in the

other segments.

In evaluating the tissues microscopically, slides were read

without knowing the identity of the tissues until all had been

examined. Any lesions found were scored on the basis of their

severity and extent.

RESULTS

Olfactory Mucosa -'Posterior Nasal Segment

Light microscopic observations in both W and PAS

preparations failed to uncover lesions comparable with those of

the Biocore pocket mice in this nasal segment of all 5e rats on

Cosmos 1129.	 The olfactory mucosa appeared entirely normal, and

the various groups of animals were indistinguishable from each

other in this respect.

Respiratory and olfactory Mucosa -'Anterior 'Nasal Segment

' In the anterior segment of the specimen, some inflammatory j

foci could be seen in the mucosa, both respiratory and olfactory,

in all animals.	 These are depicted in Fig. 1 and 2. 	 Assigning a

values from 1 to 3 on the basis of severity and extent resulted a

in the data seen in Table 1. The individual and mean scores for

` each group of animals suggest that both the flight and

synchronous control rats showed the most severe and extensive
a

lesions at the time of spacecraft recovery, while all other

Y'
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groups did not differ markedly from each other. The method of

evaluation and the small number of animals per group did not, in

our opinion, warrant statistical treatment of the results.

Oil+; DISCUSSION

Lesions sim 11l ar to those in the Bi ocore flight animol s were

not found in any of the Cosmos 1129 rats. Thus it is clear that

the etiology of the former is still in doubt.

With regard to the nasal lesions in the Cosmos 1129 rats,

it appears that the colony was infected with a mild respiratory
i

disease.	 Perhaps a pneumonitis might also be found in some of

l the Animals..	 Cased on temporal considerations, the infection may

F; have been self-limiting, since group-1 flight and synchronous

controls showed the highest incidence and severity of lesions,

group 2 rats: were intermediate in this regard, and group 4
E

demonstrated predominantly mild lesions.	 Since the vivarium

control animals cohabited with each other in standard cages

throughout the duration of the mission and thereafter whereas the

flight and synchronous control animals were housed separately,

they cannot be similarly evaluated. 	 Yet it is clear from the

incidence of the lesions, that the vivarium controls were

undergoing an enzootic at the same time, i.e. the infection was

c
present in the colony before the flight.

.This is not to say that the animals are not to be
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considered specific pathogen free (SPF), for it is only

reasonable to expect SPF animals to become infected from random

sources after they leave the`SPF environment. in any case, the

results seem to illustrate the effect that stress, as exemplified

by actual or simulated spaceflight, may have on an enzootic

infection, even though it may be subclinical in character.
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TABLE 1

LESION SCORES - ANTERIOR NASAL SEGMENT

Rat Number Mean Score

Croup 1	 2	 3	 4	 5	 6 7

IF 3*	 3	 2	 3	 3	 3 3 2.86

2F 2	 1	 2	 2	 1	 2 1.67

r 4F 1	 1	 1	 1	 1 1.0

1S 3 	 3	 2	 1	 3	 2 1, 2.14

2S 1	 2	 3	 1	 2	 2 1.83

45 1	 1	 1	 2	 1 1.2,

-- 1 2	 1	 1	 1	 1	 2 2- 1.43

2V 2	 3	 1	 1	 1	 2 1.67

4V 1	 3	 1	 1	 2_ 1.6 x

*3 =`moderately severe and extensive.

' 2 = of intermediate severity and extent

1 = minimally severe and extensive

r
,

F ^
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Figure 1. Mucosal lesion in anterior nasal cavity. The focal

nature of a typical lesion is demonstrated. Note the

normal epithelium in the lower half of the field. The

bar represents 20 pm.
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a
SUMMARY

Cosmos 1129 included 5 male rats dedicated to K-316. 	 These were sacri-

ficed 32-36 hr after recovery, dissected into 3 major compartments

(musculo-skeletal system, skin, and pooled viscera) and compared with

5 Synchronous Controls on the ground in flight-type hardware.	 In this

comparison the Flight Group showed:	 a 6.7% reduction in total body

water probably attributable to a 36.2% reduction in the extracellular

compartment, reductions of 6.6% in musculo-skeletal water and 17.2% in

skin water, an apparent shift of some water from skin to viscera, and

a 20% reduction in bone mineral mass 	 Among organ fresh masses there

was a 7.5% increase in kidneys and a 14.0% decrease in spleen.
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INTRODUCTION

In genera],, environmental physiology evaluates organismic responses

to changes in environmental parameters, Among such parameters, change

in the chronic acceleration field (4G) is new ir. an evolutionary sense;

i.e., physiologically significant changes in G have probably never

occurred during the evolution of life on earth. While organisms have
z?

evolved defenses against changes in temperature, altitude, osmotic

pressure, insolation, etc., they have had no need or opportunity to

evolve defenses against 6G. Thus, it comes as no surprise that QG
x

perturbs body composition to a degree not seen with changes in most	 r

other environmental factors,

Among the various body compartments, the fat-free body mass (FFBM)

in the adult rat resists perturbation by a variety of environmental

factors, Air being a striking exception (1), An increase in AG caused

by chronic centrifugation results in a prompt decrease in FFBM to a new

steady state level (2), a response which is not altered by the ingestion
i

of excess calories or protein (3). Thus, body composition parameters

which resist perturbation by most environmental factors are clearly,

sensitive to 4G.

Weightlessness represents a virtual extinction of the accelerations

k

	

	 field. It is of basic physiological interest and has obvious applicabi-

lity to space medicine. We report here on the body composition responses

of the adult rat to !weightlessness of 13.5 days duration.

s	 METHODS

The albino rats used were Wistar-derived males, specific pathogen

.free, from the colony of the Institute of Experimental Endocrinology

416
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of the Slovakian Academy of Sciences,, Bratislava t Czechoslovakia and

n.84 days old and 304-318g]%ody mass at launch. Five of these were

placed in the spacecraft (Flight Group) and five in flight-type 'hardware

at terrestrial gravity (Synchronous Control Group). The cages for

individual rats were cylindrical, 9.5 cm. diameter and 26 cm. long.

rem,•;
4

s'.

1

f

is
is

Body wastes were carried to a trap by air flow. 	 The Synchronous Control.
a

G Group was subjected to the physical transients of launch and reentry.

These transients were presented_ serially rather than simultaneously and
a

with a 6-day lag behind the Flight Group.
i

The rats were fed a balanced diet based on casein, cornstarch,

sucrose, sunflower seed oil, dried brewers yeast and comprehensive

mixtures of salts and vitamins with enough 'water added to make a paste.

Each rat received lOg of this diet every 6 hours, providing a daily

ration of 40g or 68.7 kcal (1.72 kcal/g). 	 Virtually all of this was

consumed.	 All rats wera started,-zn the flight diet 10 days before

launch.	 Water was available ad Libitum.

The Flight Group 'arrived at the Institute in Moscow 32 hours after' Y

touchdown, having been fed as scheduled during this interval. 	 Killing

and dissection. began immediately, with the last Flight animal being

killed ti36 hours after , touchdown and dissected during the succeeding hour.

Sacrifice was by ethyl ether inhalation. 	 The procedures used for dia-

section and analyses were those developed at the Environmental Physiology

Laboratory, Un+versity of California, Berkeley (4).	 The dissection

involved separation and weighing of 15 individual organs and organ

systems.	 Determination of water', content (freeze-drying) and of fat

;x content (Soxhlet extraction) were carried out separately on 3 major

^ 417
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body compartments: skinned, eviscerated carcass, i.e., musculo-skeletal

system (designated "carcass") skin; and all other components pooled

(designated "viscera"). Summation of these 3 compartments yielded

whole body water, fat, and solids. The dried defatted residues from

et:--h rat were ground, "ombined, and mixed to provide a homogeneous

whole-body powder for subsequent analyses. Aliquots were analyzed for;

nitrogen, potassium, calcium, phosphorus, magnesium, and sodium.

The following calculations were employed (405). Net body mass

total body mass fur, gut content, and urine. Intracellular water

content • 0.73 x body cell mass. Extracellular water content P total

body water - intracellula,fi water. Body protein - 6.25 x body nitrogen,

Body cell mass - 8.9 x bo4y potassium. Bone mineral - 2.93 x body

calcium.

The statistical significance of the differences between the two

groups was evaluated with the t test (6). The criterion for rejecting

the null hypothesis was P < .05.

RESULTS

Composition of the major body compartments is presented in Table 1.

i

	 in general we shall comment on those differences which are statistically

significant, in each case considering the relative position of the Flight

Group.	 G'

k	
The net body mass was reduced 3.9% in the 'Flight Group. To account

i	

for this one would consider the two major compartments, the fat and the

fat-free. While fat did not contribute to the difference, the total

r	 fat-free body mass was reduced 5.8%. The compartment within the fat-

free mass primarily responsible for this was the skin, which, was 14.6%
t

:F
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lower in the Flight Group. Changes in the fat-free moos can be attri-

butable to either or both water or dry fat-free material (solids). In

this case the reduction in fat}-:free skin must be attributed largely to

a 17,2% reduction in its water content. But there was also a 6.6%

reduction of water in the carcass, and carcass plus skin accounted for

the 6.7% reduction in total body water of the Flight Group. This total

water reduction appeared to be restricted to the extracellular compart-

ment and resulted in the following changes in fractional distribution.

The fraction of the total grater contained within.viscera of the Flight

Group went up 7.4% and that within skin went down 11.1%, representing

a net shift from skin to viscera. Water as a fraction of the individual

fat-free component masses went down in the total body', carcass, and skin.

Finally, body sodium was down 11.3% and bone, mineral (calculated from

calcium) was down 22.1% in the Flight Group.

By contrast with the above we see that organ fresh masses (Table 2);

showed few statistically significant changes, i.e., kidneys were increased
i,

7.5% and spleen was reduced 14.0% in the Flight Group. While these two	 {}
changes corroborate the results obtained by others (7) we have no

explanation for them.

DISCUSSTON

Some questions concerning the Validity of these data should be

discussed. First, did the values reached irL orbit represent steady a

states or transients, i.e., was the 18.5 day exposure of sufficient A-

Y

duration? Chronic centrifugation of adult rats changes the FFBIi,'to a
3

new lower value which appears to be regulated and is characteristic of

the new G-lev	 (2,3). If one imposes 4,15E (AG + 3,15) in this way,,
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the loss in live sass may be 'Mg and in FFBM #v30g and both are completed

within 10 days of exposure. In the presont case the change in acceler-

ation provided by the mission was AIG. It appears highly probably

that by the end of the 18.5 day exposure there was a steady state in

body composition.

Second, did the 32-36 hre. at terrestrial gravity between recovery

and sacrifice evoke a reversal of the condition typical of weightless-

ness? The chronically centrifuged rats upon return to 1G show a

reversal of the centrifugation- induced changes. During the first 7 days

at 1Q they regained ti7O% of the live mass lost at 4.15G (2) It appears

reasonable that they might have regained 15-20% in the 1 1/2 days being

considered here. Thus, while the changes reported in Table '1 might

have been greater if recorded just before reentry, we believe they

reflect true effects of weightlessness.

One response reported in rats during the second day after reentry

from earth orbit was an edema of skeletal muscles observed histologically
r

(8) This should increase the carcass water content. If this response 	 y
Y

was present in our Flight Group, it did not offset the observed reduction

in carcass water (Table 1).

The agreement between our rat data and those observed in weightless

man gives us further confidence in the validity of our observation:.'

Following exposure to weightlessness both species showed, a loss in.

total (or net) body mass (9), a ,loss in bone mineral (10) 0 a loss in

total body water (11), and a, loss in extracellular fluid volume (11).
r

The data in Table 1 can be used to wake several additional -calcu--

atons as checks on reliability and internal consistency, as follows,

420
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r

The pcotein.fraction of the fait-free body calculated from Table 1 is

21.7% for the Flight and 20.9% for the Control Group. The value re-

ported for adult rats at 1G is 22.0% (12). The reduction In bone

mineral found in the Flight Group can be calculated from either cal-

cium or phosphorus (13), and the values obtained (-22.1% ani -18.2%

respectively) are in agreement. Changes in extracallular fluid volume

can be calculated from changes in body sodium. Flight Group minus

Control Group yielded -0.0378 of sodium corresponding to -11.58 of

extrecellular eater. This agrees well with the Flight Group reduction

in total body water (-14.0g).

Finally, our results support: the validity of the rat an an exper-

imental model for gravitational studies (since it obviously responds

physiologically to unloading from gravity), and the usefulness of the
u

body composition approach to gravitational physiology.
,.
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BONE RESORPTION IN RATS DURING SPACEFLIGHT

,a
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San Francisco, California 94143

Richard R. Adachi

Biomedical Research Division
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SUMMARY

Bone resorption was measured directly in flight and synchronous

P control rats during Cosmos 1129.	 Continuous tracer administration

techniques Were used, with replacement of dietary calcium with isotop-
li

ically enriched 40Ca and measurement by neutron activation analysis of

48 . i n bonethe.	 Ca released by the skeleton.	 There is no large change j

resorption in 'rats at the end of 20 days of spaceflight as has been found

}

for bone formation.	 Based on the time course of changes, the measured'

20-25% decrease in resorption is probably secondary to a decrease in total

body calcium turnover.	 The excretion of sodium, potassium and zinc all

increase during flight, sodium and potassium to a level 4-5 times control ;.

values.
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INTRODUCTION

Calcium metabolism is altered in weightlessness. Bone lo:s occurs and

urinary caic.ium output is increased in humans . (l) and there is a signifi-

cant decrease of tibial bone formation rate in young rats (2,3 ;). These

changes Which occur during spaceflight are similar to changes observed in

immobilized humans (4,5) and monkeys (6), but the underlying causes of these

changes arenot known. A primary defect in the development of immobiliza-

tion osteoporosis in adults appears to be an unexplained increase in bone

resorption coupled with a mineralization defect, heading to a rapid loss of

bone. The sequence of metabolic changes which occurs after this postulated

increase in bone resorption includes a slight increase in serum calcium and

phosphorus. The homeostatic response to this change in serum calcium involves

changes in circulating levels of parathyroid hormone and the active metabo-

lites of vitamin D. Calcium turnover and urinary calcium output increase.

This increased calcium excretion coupled with a decline in intestinal cal-

cium absorption produces -a strongly negative calcium balance. In paralyzed
M

	

	

patients and bed-rested subjects, this process appears to be self-limiting.

Following the initial rapid Loss of bone, calcium turnover and urinary out-

put decrease to below-normal values. This chronic phase of immobilization

osteoporosis appears to be a state of rarefied bone with a low turnover rate.

Remobilization in adults does not appear to completely correct the bone mass

defect, so that adult bone loss due to i:mmobiization or weightlessness may

be irreversible.

"	 The characteristics of immobilization osteoporosis are quite different

in young, growing patients or animals. Bone turnover in a juvenile skeleton

428



is qualitatively different from that in an adult skeleton, Adult bone is

characterized primarily by remodeling activity, in which existing bone is

resorbed by osteoclasts and then replaced by osteoblasts with no net change

in bone mass or spatial orientation of the bone. 	 In contrast, juvenile bone

changes are composed of two processes; 	 1) growth and modeling, and 2) re-

modeling,,	 The growth and modeling component includes periosteal apposition,

endosteal resorption and apposition, and growth in the epiphyseal -metaphyseal

x regions of the bones, and dominates bone turnover until the skeleton matures.

^ During this time of growth, tone formation exceeds bone resorpti onp	 on by a

{
significant amount so that net body calcium balance is positive. 	 Little

is

data exists on the quantitative values of bone formation and resorption in

juveniles, and even less on the effects of immobilization or weightlessness
Lr.

on these parameters.	 Experiments on previous Cosmos flights have shown

that bone formation in the tibia is depressed in young, growing rats (2),

but no direct information has been obtained about bone resorption, or any

of the other calcium metabolic parameters such as excretion, absorption or

r
net calcium balance.	 The basis for the present study was to determine the

r,

response of calcium homeostasis and bone to weightlessness.

Calcium tracer kinetic methods were used in this study, using non-radio-

active calcium isotopes as tracers. 	 Natural calcium is a mixture °of the

40,42,43,44,46,48	 40
stable 'isotopes	 Ca in varying percentages, with 	 Ca making	 ?

up the largest fraction ( 96.94%).	 The other stable calcium isotopes- are

present in relatively small amounts, such as 46Ca at 0.0033% and- 48Ca at

1
i

0.185%.	 Natural calcium can therefore be considered a bulk isotope	
40 

Ca)

F labeled with small quantities of stable isotopic tracers 
(46
 Ca,	 Ca).	 In

zw this way, one can consider also that all the skeletal calcium of man or any

r
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other animal is labeled with these stable isotopic tracers, and bone break-

down or resorption can be measured directly if one measures the rate of re-

lease of one of these tracers from bone into the serum/extracellular fluid

pool. The only continuous sources of calcium into the serum pool are bone

and the diet (Fig, l) In the normal situation, both bone and dietary calcium

are made up of natural calcium, and thus both are labeled with stable isotopic

tracers such as 48Ca. If one removes 48Ca from the diet, however, then it is

distinguished from bone calcum . by this lack of tracer. 	 This is done by re-

placing natural dietary calcium with isotopically -separated -JO0^ 40Ca.	 As

calcium is excreted from the serum, it is replaced by calcium coming from both

bone and the diet, but the only source of 
48Ca is the bone.	 Therefore, the

amount of 48Ca in the serum or muscle will fall to a value which represents

` the fraction of calcium turnover coming directly from bone (Fig. 2). $ ,

The primary measurements made in the Cosmos 1129 tracer studies were

the ratio of 
48 

Ca to total calcium in muscle (or serum) and the excreta.

Continuous tracer administration calcium kinetic methods were used. 	 Bone

resorption was measured directly as the release from the skeleton of the

stable calcium isotope 4 8Ca	 Endogenous calcium excretion was also measured.

The 'excretion of sodium, potassium, magnesium and zinc was determined to com-
3

pare with the calcium results as an indicator of overall mineral homeostasis.

(METHODS AND PROCEDURES

Subject material

A total of 10 rats were used in this study: 5 rats from the flight group

killed immediately postflight (1F1-5) and their 5 synchronous controls (151-5).

i#

Specimens received from the Soviets following flight were the rib cage: (left

k and right sides ) from each animal and approximately 50% of each 2-day excreta

r

00
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r
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'	 collection from each animal. A total of 10 ribcages rad 102 fecal specimens

were received. The muscle from each rib cage was used as an indicator of

tracer activity in the serum beck use it has been shown that muscle calcium

equilibrates rapidly with serum calcium in tracer studies (7),

+` E	 Diet preparation

in order to use the continuous calcium tracer methods outlined in the
a;

i'

	

	 introduction, natural dietary calcium had to be replaced with stable,

isotopically-separated 40 Ca. The maJor source of calcium in the Soviet

flight paste diet was calcium carbonate ( CaCO). When the diet was prepared

for the IF and IS groups of rats, the natural CaCO was replaced with the

chemically identical 40CaCO (99.991% 40Ca, < 0.001% 
48
Ca). This diet was

indistinguishable from the normal paste diet except in its 48 Cacontent

which was approximately zero. Animals were started on this diet at the time
	 I

of loading into the flight hardware. 	 }

Sample preparation

r
Approximately 50% of each 2-day pooled excreta col lection was received

dry in a polyethylene vial. These specimens represented pooled urine and

feces due to the manner in which excreta collection was done. Virtually all

tiL-0 c um excretion in the at is through the feces, however, with less than

1 mg/day in the urine. For this reason separation of urine from feces in

^E calcium metabolic studies is not critical and for the pur oses of th isis study

the pooled excreta will be referred to as "feces",. Each sample was weighed,
,

ground in a mortar and pestle, and dried at 110°G. An aliquot of the dried

powder was accurately weighed (±0.1 mg) into a crucible for ashing. 0.1-0.2

gm of feces wasused, depending upon amount received for each sample. Feces
a
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were ashed at 600°C for 48 hours and the ash was weighed (+O.l mg). The ash

was dissolved in 12N HNO, taken to dryness * and the residue dissolved in

HNO3 and diluted to either 25 ml or 50 ml depending on sample size. This was

the stock solution on which mineral and calcium tracer measurements were made.

The rib cage Cleft and right sides) of each animal was received frozen.

The specimens were thawed and the intercostal muscles were dissected out from

between the third and eleventh ribs. Extreme care was taken in the dissec
t tion to be sure that no cartilage or bone 'was included in the muscle samples.
s

To do this only 60-70% of the total musculature was used. Rib cages from left

and right sides of each animal were treated as separate specimens, providing

a total of 20 samples. Each muscle specimen was placed into a crucible, dried,

weighed, asked at 600°C and weighed again to determine ash content. The ashed

samples were then dissolved in HNO 3 for tracer analysis.

Tracer and chemical analysis

Total calcium, magnesium, sodium, potassium and zinc were determined

_ in each fecal sample solution using atomic absorption spectrophotometry.

Results were expressed in terms of mg of each mineral per gram of dried

fecal material and total mg per 2-day collection period.

A 10 ml aliquot of each stock fecal_ solution was taken for calcium

tracer measurements. The sample was adjusted to pH 4-5 with 8N NH
4
 OH.

t

3 ml of saturated ammonium oxalate UNH 4)2C204) was added to each solution

}

	

	 04. Solutions were centrifuged` and superto precipitate calcium as.CaC2 

nate discarded. The precipitate was washed, redissolved and reprecipita-

ted, washed again and finally dissolved in 4N HNO
3*
 1.00 ml of this solution

was used for neutron activation analysis determination of 48Ca content, and
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and total calcium was determined by atomic absorption on an aliquot of the

remaining solution.

Neutron activation analysis for 48Ca was done at the Berkeley Re -

search Reactor, University of Callfornito Berkeley. Each prepared sample

was paired with a standard containing a known quantity of 48Ca and 'irradiated

in the Flexorabbit facility of the BRR for 10 minutes at a thermal neutron

flux of 1.0x1013 cm-2sec- 1. 49Ca (t^ 8.7 minutes) was produced by the reac-

tion 48Ca(n^Y)45Ca. Two minutes after irradiation, the samples were counted

for 5 minutes (real time) with a high efficiency Ge(Li) detector coupled to

a 4096-channel pulse height analyzer. Standards were counted in the same

geometry immediately after the sample count was completed. Live counting

time of the system was determined using pulser electronics. The intensity

of the 3084 keV photopeak from 49Ca was determined in each spectrum using the E

computer node SAMPO. The quantity of 48Ca in each specimen was determined

from sample and standard photopeak intensities, decay times and counting

times, and the known standard mass of 48Ca.

x

r	 RESULTS

The results of the mineral analyses of the excreta calcium, magnesium,

sodium, potassium, zinc and ash are presented graphically in Figure 3.

Each data point is the mean of the values obtained for the 5 rats in the

flight and synchronous control groups. The points are plotted in 2-day col-

lection periods without correcting for actual endogenous excretion 'periods.
k	 ,

Results are expressed in mg per gram of dried feces for the minerals and

percent of dry feces for ash. Total fecal material excreted by flight and

'	 control groups was not significantly different when averaged over the whole
n

x 4?l
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flight period (10 collections)'.	 When averaged over collection periods 2-9,

however, the synchronous control animals excreted approximately 14% more

k feces than flight animals (1,24 g /day vs. 1.09 9/day).
t

Bone resorption expressed as the fraction of the exchangeable calcium

F pool coming from bone was 0.690 + 0.009 in flight animals vs. 0.675 + 0.005

in controls, measured at the end of the flight period. 	 Fecal excretion of
k

4 Ca/total Cc was 0.159 + 0.011 for the flight rats and 0.157 + 0.006 for

control ;pats at the end of the flight period.	 Endogenous excretion of cal-

cium, based on the measured 
48
Ca/total Ca ratio and measured total calcium

excretion was 29.0 + 3.1ug 40Ca/day in flight animals and 37.4 + 3.2pg 48 Ca/

day in control animals.	 Bone resorption rate at the end of the flight period

was 15.7 mg Ca/day in the flight rats and 20.2 mg Ca/day in the controls.

DISCUSSION

Bone formation in rats is known to be decreased during spaceflight. 	 In
a

normal mineral homeostasis, a decrease in bone formation will lead to a

decrease in bone resorption as well, so that bone mass will be maintained.
r If bone resorption either proceeds at its normal rate or increases, then

bone mass will be lost at a rate which is proportional to the difference

between formation rate and resorption rate. 	 Estimates of the kinetics of the

decrease in bone formation in the rat during spaceflight (3) suggest that

formation decreases linearly with time, finally' virtually ceasing of 11-12

days of flight.	 In contrast, the kinetics of bone resorption measured during

this experiment as calcium excretion (Fig. 3), suggest that the breakdown of

bone in flight rats is maintained at the same level as in control rats until

10-12 days into flight, then starts to decrease, reaching a level which is
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20-25% below that for synchronous controls at the end of the flight period.

It is significant that resorption normalized by calcium turnover does not

decrease during flight, so that the decrease seen in the bone resorption

rate is probably secondary to a decrease in total body calcium turnover.

These results indicate that in rats during spaceflight, as in immobilized

humans, bone formation and bone resorption are uncoupled, and the difference

in their rates should head to significantly less bone mass for flight animals

compared to controls. Of particular interest may be the fact that while the

bone resorption rate decreases during flight, it is still 75-80% of normal

at the end of flight. This may indicate that bone loss on even longer flights

will continue unless some method can be found to either turn off resorption

completely or turn on formation again.

The excretion of minerals other than calcium show some interesting

patterns.	 Sodium and potassium are virtually identical in their excretion

with a consistent rise even until the end of flight when levels were 4-5

times normal.	 Whether this is decreased absorption or increased endogenous

excretion is not known, although a rise of this magnitude would be expected
i h

to be due to increased excretion.	 Zino excretion is the most consistent of

all the elements in the control rats, and in the flight rats shows a rapid

rise followed by a gradual fall back to near -normal values.

' The continual imbalance of bone formation and breakdown and the large-

. excretion of other minerals from the body during spaceflight indicate that
F

mineral homeostasis does not adapt to weightlessness at least within the

i time frame studied in this experiment, and that the long-term consequences of

weightlessness are not yet known.
E

.,	 E

435

s

}

ift



l

iS
is

ACKNOWLEDGEMENTS

F
The authors thank the many Soviet Scientists, and especially Dr. Y.

Kondratyev, for carrying out the special procedures and preparing the special

r
diet used for this experiment.

f

pEFLRENCES

1. Whedon GD, L Lutwak, PC Rambaut, MW Whittle, MC Smith, J Reid, C Leach,

CR Stadler, DD Sanford.	 1977. Mineral and nitrogen metabolic studies,

experiment-M071.	 In Biomedical Results of Skylab, NRSA SP-377, p 164-174.

2. Morey ER and DJ'Baylink. 	 Inhibition of Bone Formation During Space

Flight. Science 201:1138-1141 (197.8).

o
3. Holton EM', RT Turner, DJ Baylink.	 1978.	 Quantitative Analysis of Selected

Bone Parameters.	 In Final Reports of US Experiments Flown on the Soviet

Satellite Cosmos 936, NASA TM-78'6,5, p 135-178.

4. Heaney RP.	 Radiocalcium metabolism in disuse osteoporosis in man.

'
1

Amer J. Med	 33:188-200 (1962).

5. Minaire P, P Meunier, C Edouard, J Bernard, P Courpron, J Bourret.

Quantitative histological data on disuse osteoporosis.- 	 Calcif. Tiss.

Res.	 17:57-73 (1974).

64 Cann CE and DR Young.	 Calcium metabolism in disuse osteoporosis in

monkeys: continuous tracer and pulse tracer kinetics (abst). Calcif.

Tiss.	 Internat	 28:162 (1979)-.

f 7. Cann CE:	 Unpublished results.`

436

r



ihH	 ....... ..'.	 ....	 _ .^.lM!' RIE._	
..,w,,,s.	 ,-.^.,	 --^	 -,a-	 m.	 __.	 :;	 ..-w:,yA•-_ F-A-	- 	 _.« '^+^+^

}

t

G

}
x	 1

SERUM

;
f

ECF

T
o

B ,

r
V °. N

r E
i 1VU

1

VF

ii Figure 1.	 Schematic representation of calcium movement in the body, 	 Calcium
enters the serum pool from bone and intestine and leaves via the urine, feces.`
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Figure 2.	 Disappearance of 
48 

Ca from the serum of a monkey with time after
` elimination from the diet. , Asymptotic value represents the fraction of

' exchangeable calcium coming from bone (6).
i
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