WASAH 7M-33191

NASA Technical Memorandum 83191

NASA-TM-83191 19810024646

A PROGRAMING SYSTEM FOR RESEARCH AND APPLICATIONS
IN STRUCTURAL OPTIMIZATION

JAROSLAW SOBIESZCZANSKI-SOBIESKI AND
James L. RoGers, JR.

AUGUST 1981

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

A PROGRAMING SYSTEM FOR RESEARCH AND APPLICATIONS
IN STRUCTURAL OPTIMIZATION

Jaroslaw Sobieszczanski-Sobieski* and James L. Rogers, Jr,**
NASA Langley Research Center
Hampton, VA 23665

Abstract

The paper describes a computer programing system
designed to be used for methodology research as well
as applications in structural optimization. The
flexibility necessary for such diverse utilizations
is achieved by combining, in a modular manner, a
state—of-the~art optimization program, a production
level structural analysis program, and user supplied
and problem dependent interface programs. Standard
utility capabilities existing in modern computer oper-
ating systems are used to integrate these programs.
This approach results in flexibility of the optimiza-
tion procedure organization and versatility in the
formulation of constraints and design variables. Fea-—
tures shown in numerical examples include: (1) vari-
ability of structural layout and overall shape
geometry, (2) static strength and stiffness con-—
straints, (3) local buckling failure, and (4) vibra-
tion constraints. The paper concludes with a review
of the further development trends of this programing
system.

List of Symbols

objective function

- function in general sense, denotes
F or g

~ constraint function

~ stiffness matrix

- load

- number of constraint functions

number of design variables

- load factor used as a variable

- magnitude of the target level for P

~ thickness

~ vector of displacements

- velocity

~ vector of design variables

- a design variable

-~ vertical displacements in a box beam

cumulative constraint

(e
[ad
|

¥ g £ rrUUsS g0 RM
I

ST
[SlgyeA

e}
i

Subscripts:

- design variable

j ~ constraint function
o - original value in extrapolation
Acronyms:

A-0 Processor — program converting the analysis
program output to the optimization
program input

a particular optimization program
used in PROSSS

program converting the optimization
program output to the analysis
program input .
Programing System for Structural
Synthesis

CONMIN -

0-A Processor -~

PROSSS -

* Head, Multidisciplinary Analysis and Optimization
Branch, LAD
*% Computer Scientist

SPAR ~ a particular analysis program used
in PROSSS
Introduction

The purpose of this paper is to describe a struc-
tural optimization program, called a Programing System
for Structural Synthesis (PROSSS), which uniquely
combines the almost unlimited flexibility required of
a research tool for method development, with the reli-
ability and simplicity of use expected from an
application tool.

To provide a rationale for the implementation
approach presented, the paper begins with a review of
the requirements posed by the intended uses of the
program in both research and applications. The imple-
mentation options are examined next, leading to a
programing system alternative as a logical choice.

The principal components of the system, the way
they are integrated, and the execution options are
examined; and numerical examples are provided to 1l-
lustrate the salient features pertinent to research
and application. Included in the examples is a de-
scription of a version of the system operating in a
distributed manner on a mainframe and a minicomputer,

The paper concludes with a brief review of the
development trends stemming from the system capabi-
lities and the current directions of the state-
of-the-art evolution.

Structural Optimization Application
and Research Requirements

In general, the function of the optimization
procedure is to find a vector of design variables x
that minimizes an objective fumction F(X) while
satisfying constraint equations g(%). In a stand-
ard notation:

F(X) - min (1)
subject to
gi(®) <0 l<j<m @

In various applications, the variables in eq. 1
and eq. 2 acquire different meanings, and solution of
the equations with acceptable efficiency and accuracy
may require a fairly elaborate numerical process.
Therefore, building a computer program to support
both the development and application of structural
optimization methods poses a unique challenge of
making the software flexible and adaptable, yet
reliable and easy to use.

Diversity of Applications

The need for flexibility and adaptability
stems, in part, from the need to be able to use the
program to optimize structures of various types,
e.g., an aircraft fuselage, a large space truss, or a
nuclear reactor vessel. A single program general
enough to answer all analysis needs for all types of

GIESSY ?Ci#

structures of interest, and efficient enough to
perform well in an optimization loop at a reasonable
cost, is not available. Consequently, an open-ended
library of analysis programs has to be used.

In addition to the variety of types of
structures, a variety of optimization problem formula-
tions that differ by unique definitions of the design
variables, constraints, and objective function will be
of interest for each type of structure. Therefore,
these portions of the code in which these formulations
are embedded should be easy to replace.

Diversity of the Optimization Techniques and
Procedures

A distinction between an optimization technique
and an optimization procedure will be useful in this
discussion. An optimization technique is a search
algorithm whose function is to find a constrained
minimum in a space defined by the design variables in
which the objective function and constraint functions
are computed by another algorithm--an analysis
algorithm. A few examples of optimization techniques
are: (1) a nonlinear mathematical programing using an
interior or exterior penalty functions (Sequential
Unconstrained Minimization Technique, SUMT, ref. 1),
(2) a usable-feasible direction algorithm, ref. 2, (3)
a linear programing algorithm (e.g., ref. 3), and (4)
optimality criteria methods, such as the fully
stressed design method. An optimization procedure is
~an entity of higher order and as such may command
execution of several optimization techniques, analysis
algorithms, and auxiliary housekeeping and
user-interface algorithms. Two examples of
optimization procedures are: (1) a simple arrangement
in which the executions of a search algorithm (an
optimization technique) and an analysis alternate
until the search algorithms localize a constrained
minimum, and (2) a more complex arrangement in which a
linear programing algorithm is combined with the exact
and approximate analyses to solve a nonlinear
optimization problem as a series of linearized sub-
problems.

By its very nature, the optimization methodology
development requires use of many existing techniques
and procedures and a continual creation of new ones,
hence, only a program of practically unrestricted
flexibility in its organization will qualify as a test
bed for such development. If the same test bed
program is also to be used for solving quickly and
efficiently the application problems as a routine
support of ongoing design projects, then there is a
need to reconcile the seemingly contradictory require-
ments of "researchy" flexibility on one hand, and the
reliability and relative constancy expected from a
production tool, on the other hand.

Hardware Adaptability

An additional consideration in development of an
optimization program for research and applications is
a need to capitalize on the opportunities periodically
created by improvements in computer hardware. One
such recent opportunity is distributed computing
which, potentially at least, should improve
computational efficiency by judiciously exploiting
special features of the digsimilar computers in a
network, and performing calculations in parallel
whenever possible. It will be shown later that
software flexible enough to meet the requirements
pointed out in the previous two sections can also be
adapted rather ,easily to distributed computing.

Considerations Leading to Programing

System Approach

Regardless of the manner of implementation, the
basic function of an optimization procedure is to
carry out an iteration shown by a flowchart in figure
1 in which a search algorithm and an analysis
algorithm are labeled Optimizer and Analyzer. The
procedure can be implemented on the computer in a
number of ways illustrated in figure 2 and reviewed in
this section in order of increasing application
flexibility.

The discussion begins with a "closed box"
approach which is the least flexible, but potentially
the most efficient in execution, the simplest to use,
and progresses to the concept of a programing system
of potentially complete generality. Between these two
extremes, the concept of concentrating the search and
analysis functions in separate subroutines is
discussed.

Special Purpose "Closed Box"

By definition, the inner workings of a "closed
box” program {fig. 2(a)) are set up for a
predetermined scope of applications but not for easy
access and modification by the users. This leaves the
users with the input data as the only means for
controlling the program functions within a range of
options prescribed by the program developers. This
adaptability limitation is an inevitable consequence
of the "closed box" approach.

On the other hand, developers of a "closed box"
program, being free of the user access and modifi-
cation considerations, can gear the program
organization for maximum computational efficiency,
frequently by means of dispersing and intertwining the
search and analysis functions with each other. Thus,
in addition to being efficient, the program is
practically impossible to "tinker" with and,
therefore, maintains a permanent configuration and a
repeatability of results. These are important
features expectéd from a production tool in an
engineering organization that might be concerned with
a large number of applications of a limited variety
and driven by stringent project deadlines.

Search and Analysis Algorithms as Subroutines

Under this approach, shown in figure 2(b), the
user has available the two basic elements of an
optimization procedure in the form of separate
subroutines. It is up to the user to assemble these
subroutines in a functional program and to include
various convenience features such as stop and restart,
intermediate result displays, and special termination
criteria.

This implementation approach has the advantage of
modularity, so that everything that depends on the
physics of the program can be isolated in the analysis
subroutine while the best available search algorithm
can be selected and coded in the search subroutine.
However, the obviously attractive option of using
preexisting codes for these subroutines is restricted
by the practical limitations the main
program-subroutine organization imposes on the
subroutine sigze.

Programing System

In comparison to the main program-subroutines
arrangement, the concept of a programing system shown
in figure 2(c) is the next logical step toward greater
application flexibility. In a programing system (term

introduced in ref., 4), a user must furnish problem
dependent code modules in addition to input data, in
contrast to an ordinary program or system of programs
which need only the input data to execute. A
programing system allows the use of large stand-alone
programs, or even systems of several large programs
for the analysis and optimization functions, and
isolates the definitions of the design variables,
objective function, and constraints in separate
problem dependent, user supplied programs executed
between the Optimizer and the Analyzer. The system is
controlled by an executive command language and other
software utilities that constitute a connecting
network, thus, in principle, any optimization
procedure can be implemented, including optimization
problems that in their analysis require many engineer-
ing disciplines in addition to structures. An example
is a system for optimization of airframes including
aerodynamic loads and aeroelastic effects, described
in references 5 and 6. The concept of a programing
system for optimization in general is a multifaceted
subject for which literature references exist (e.g.,
refs. 4 and 7), therefore, the focus of the discussion
which follows is on a particular programing system
specialized for structural optimization.

Features of the PROSSS System

The particular system to which the attention is
now turning is called PROSSS for Programing System for
Structural Synthesis. Its principal components are,
in general terms: optimizer, analyzer, processors
interfacing optimizer to analyzer (0-A) and vice versa
(A-0), and the connecting framework. Executions of
these components can be sequenced in various ways as
required by a particular optimization procedure. The
components and the procedure execution options are
reviewed in this section.

Analyzer

The function of the analyzer is to compute values
of the behavior variables which characterize the
physical object's response to the input quantities.

Overall characteristics. In PROSSS, the analyszer
is the finite-element program SPAR documented in
reference 8. SPAR was selected for the analyzer's
function because of its computer efficiency,
modularity, and data base capability. Input
quantities consist of structural cross-section
dimensions, material properties, element connectivity
data, nodal point coordinates, and loads. Output
quantities consist of displacements, internal forces,
stresses, eigenvalues, and eigenmodes for vibration
and buckling, etc. Another output quantity is the
structural mass which is commonly used as the
objective function. The library of finite elements in
SPAR is adequate for analysis of skeletal and
thin-walled structures.

SPAR is a collection of individual programs
(processors that communicate with each other through g
data base as indicated in fig. 3). The data base
consists of one or more files which contain data sets
output from the different processors. FEach data set
has a specific identifying name with which any
processor can access it for input. Subroutines
documented in reference 9 are available to store and
retrieve the SPAR data sets by name from the SPAR data
base. These subroutines can be executed by FORTRAN

CALL statements and hence can be used to make the SPAR

data storage aqcessible to non-SPAR FORTRAN programs.

SPAR executes on a processor-by-processor basis;
each processor execution is commanded by a separate

N

explicit command. A string of such commands
interlaced with the input numerical data is written by
the user for the problem at hand, and will be called a
runstream in this paper. The data base facilitates an
efficient and selective data transfer from SPAR to
other programs, and the individual processor control
allows the user to limit the number of processors
executed repetitively in an optimization loop. TFor
this purpose, the analyzer is divided into a
nonrepeatable part executed once at the beginning of
the procedure and a repeatable part executed many
times in the optimization loop. Specifically, for
invariant overall geometry, the nonrepeatable part
generates nodal coordinates, material properties, .
constraint data and defines the loads. The repeatable
part generates solutions of the load-deflection
equations.

Computation of gradients. Most of the efficient
mathematical optimization algorithms require not only
the objective function and the constraint values but
also their gradients to be evaluated for a given set
of input values of the design variables x;. The
gradients can be computed by a finite-difference
technique or by an analytical technique. An example
of an analytical gradient is the differentiation of
the matrix load-deflection equation, Ku = L, with
respect to a design variable x;. The result is a

i
" matrix equation
du_ 3K 9L
5x, ox, 7 3x, ()
1 1 1

from which au/aki can be obtained at a relatively
small computational cost by reusing the previously
decomposed stiffness matrix K, as shown in references
10 and 1. In SPAR, the analytical gradient
computation is implemented by means of runstreams
which are established specifically for this purpose
and are a permanent part of PROSSS.

Optimizer

The function of the optmizer is to calculate a
new vector of design variables £ on the basis of the
values of the objective function and the constraints,
and, optionally, their gradients returned by the
§palyzer in response to a previously defined vector
X

In PROSSS, the optimizer is the program CONMIN
(ref. 12), which is based on the mathematical
nonlinear programing technique of usable-feasible
directions. In this report, CONMIN is viewed as a
"black box" and attention is focused on the type of
data it requires from the rest of the system, and on
its execution options, since these features influence
organization of the programing system.

The following execution modes are available in
CONMIN:

(a) Execution that requires current values of
the objective function and constraints.

(b) Execution -that requires current values of
the objective function, constraints and
their gradients.

(¢) Execution accelerated because of the
linearity of either the objective function
and/or the constraints.

In PROSSS, program CONMIN is embedded as a subroutine
in a program which calls it, and saves intermediate
data for restart.

Interface Processors

The optimizer provides input information to the
repeatable part of the analyzer through an
Optimizer-to-Analyzer (0-A) Processor and the analyzer
supplies the information to the optimizer through an
Analyzer-to-Optimizer (A-0) Processor. The 0-A and
A-0 processors are user supplied and problem
dependent. Capability of adding these two programs is
the basis for the system's generality.

Optimizer-to-analyzer processor. The function of
the O-A Processor is to convert the design variables
to a set of input parameters written in a format
required by the analyzer. In the case of structural
optimization, these parameters are structural member
sizes and nodal point coordinate data which are actual
physical quantities and are seldom directly
equivalent, one~to-one, to the design variables output
by the optimizer. Thus, in a typical application, the
conversions within the O-A Processor are not limited
to formal changes only but also include such commonly
used techniques as variable linking,scaling, and
changing from direct to reciprocal variables (e.g.,
ref. 13). In PROSSS, the O-A Processor reads an
ocutput vector ¥ from CONMIN, computes the structural
parameters, and embeds them in a runstream written for
the SPAR execution.

Analyzer-to-optimizer processor.’ The function of
the A-0 Processor is to compute the objective
function, the constraints, and their gradients (if
required) and to provide them in the format required
by the optimizer. To do so, the A-0 Processor
extracts the pertinent behavior variables such as
stresses, displacements, natural vibration
frequencies, mode vectors, or buckling loads from the
SPAR data base and combines them with the allowable
values to form the constraint equations. Frequently,
the allowable values are functions of % (instead of
being constants) as, for example, in the case of local
buckling constraints (e.g., ref. 14). Computation of
such variable allowable values can be included among
the functions of the A-0 Processor. This processor
may also be equipped with a logic to limit the set of
constraints to those whose probability of remaining or
becoming active is high, as proposed in reference 13.
Organization of the A-O Processor, illustrated by the
flow chart in figure 4, is problem independent, but
the processor contains a section of code (box 4) which
does depend on the problem at hand and must be
tailored to it. In addition, the parameters in the
call statements to the subroutines (vox 3) (see ref.
9) that access the SPAR data base depend on the kind
of data sets that need to be extracted as required by
the particular constraints and objective function.

Connecting Network

A connecting network (executive software) is
required to carry out a computational process such as
shown in figure 1. It is also required to enable the
user to monitor progress of the optimization process,
and to stop and restart without loss of information
generated before the interruption.

In PROSSS, the CDC-NOS (Network Operating
System)1 documented in reference 15 serves as the
connecting network using the approach described in

10se of commercial products and names of manufacturers
in this report does not constitute an official
endorsement of.such products or manufacturers, either
expressed or implied, by the National Aeronautics and
Space Administration.

reference 5. The CDC-NOS furnishes the user with a
repertory of commands (Jjob control language, (JCL))
for executing programs in sequences, including if-test
branching and transferring to & labeled statement, and
for manipulation of permanent and temporary files.
These capabilities are common in most current operat-
ing systems, consequently such systems as IBM's MVS
or UNIVAC's Exec 8 could function as a connecting
network instead of CDC-NOS,

Execution Flow Options

A variety of execution flow options can be set up
using the components described previously. Organiza-
tion of each flow option depends on how the optimigzer
is used, and on whether gradients are required ag
input to the optimizer and, if so, whether these
gradients are generated analytically or by finite
differences. The flow options currently available in
PROSSS are the five shown in Table I,

Basic flow options. The two optimization
procedures in Table I are: nonlinear mathematical
programing (NLP) and piecewise linear approximations
(PLA). Under the conventional NLP approach, the
objective function and constraints are treated as
nonlinear functions of the design variables. In the
PLA procedure, which has been successfully used in a
number of applications (e.g., refs. 13, 16, 17) the
nonlinear optimization progresses as a sequence of
linear optimization subproblems (stages)., A linear
approximation bﬁsed on the Taylor series expansion,
£= £yt VfOT A%, is used to compute the objective
function and the constraint functions within each
subproblem (stage)., Side constraints on X control
the linearization error.

Efficiency of PLA stems from replacing the full
analysis of the physical problem with approximate
analysis by linear extrapolation, which in structural
applications requires a computer time of at least an
order of magnitude smaller than the full analysis
time. Additional time savings result at each stage
because the optimizer executes faster when the problem
is defined as linear (mode ¢ in section "Optimizer"),
The number of consecutive linear stages required for
overall convergence depends on the degree of the
problem nonlinearity.

The analysis capabilities with respect to calcu-
lation of gradients in Table I are: (1) computation
of the behavior variables without gradients; (2)
inclusion of gradients computed by finite differences;
and (3) inclusion of gradients computed analytically.

Each of the five resulting options shown in Table
I requires its own organization of the procedure
flow. The organizationally simplest and most complex
execution options, 1.1 and 2.3, respectively, are
illustrated by flow charts in figures 5 and 6, The
other options are described in detail in reference 18
and documented in reference 19. The flow chart in
figure 5 is self-explanatory. In figure 6, the boxes
2, 3, and 4 may be regarded as functions of a single
main1program which calls the optimizer represented by
box 1.

Auxiliary Option for Fully Stressed Design
(FSD). If strength constraints are present in the
problem, then convergence of all the foregoing
optimization procedures can be improved by using a
limited number (e.g. 3 to 5) of FSD iterations to
generate initial cross~sectional dimensions of the
structural members. Allowable stresses used in the
FSD procedure can include material allowables (e.g.,
yield stress) and local buckling stresses which are

functions of the cross-sectional dimensiens as
described in reference 20.

Two Basic Forms of the System

PROSSS exists in two basic forms: Skeleton Form
and Specialized Form. The Skeleton Form consists of
the following:

(1) The problem independent component programs
such as SPAR, CONMIN, and the programs controlling
execution of the linear stage optimization (figure 6)
and FSD procedure.

(2) The SPAR runstream files for analytical
gradients.

(3) The procedure files.
(4) The sets of JCL statements for each option.

To be used in a specific application, the
Skeleton Form has to be turned into a Specialized
Form., Problem dependent Interface Processors and the
input data, including the SPAR runstreams, must be
created and stored as files. In addition, standard
names in the JCL statement file corresponding to the
option chosen must be replaced with names selected for
the problem dependent files.

Once the Specialized Form has been set up for a
particular application, it can be protected from
unauthorized alterations by using "software locks"
(passwords) on all its files except the input data
files. Several such Specialized Forms can be created
from the common Skeleton Form for a variety of appli-
cations as illustrated in figure 7. BEach such
"frozen" Specialized Form can be used as a "black box"
for a given class of problems that differ only by
their input data. It is important to realize that
although a Specialized Form is intended for use as a
"black box" whose user is concerned only with the
input and output data, it never becomes a previously
defined "closed box" because it is always modular and
accessible for modification.

In industrial organizations, preparation of the
Specialigzed Forms would fall naturally into the domain
of the staff specialist, while their application would
be the task of the production oriented engineers. In
research applications, the system modularity permits
its major components SPAR and CONMIN to be replaced
with other equivalent programs, and execution flows
different than those described previously can also be
constructed. Thus, PROSSS can be used as a test bed
for development of new optimization procedures as well
as an application tool.

Numerical Examples

Examples presented in this section illustrate
PROSSS as an application tool and as a research test
bed. The application examples have been selected from
a larger sample (given in ref. 18) to show the variety
of design variable formulations, types of constraints,
and some of the execution options. The purpose of the
research examples is to illustrate usefulness of
PROSSS in trying out improvements in the ways of
conducting the optimization, including the case of the
system distributed between a mainframe and a mini-
computer.

Application Examples

Example 1: Stiffened cylindrical shell. Several
variants of a circular cylindrical shell reinforced by

frames and longerons were studied. Finite~element
model of the computationally largest variant (referred
to as variant 1) is shown in figure 8. This variant
is built up of membrane panels to represent skin, ang
beam elements (axial, bending and torsional
stiffnesses) simulating transverse frames and
longerons, Bach frame and longeron may be regarded as
a lumped representation {ref. 14) of several real
frames and longerons. One end of the shell is clamped
around the circumference, the other end is loaded by
concentrated loads simulating distributed forces
equivalent to a transverse force and torque. Thig
variant has a large cut-out and a floor, and
represents a simplified model of a transport aircraft
fuselage segment.

This structure was expected to constitute a
demanding test case for the following two reasons,
First, the model contains 798 degrees of freedom, so
it is a computationally large problem as far as
optimization by mathematical programing is concerned.
Secondly, the overall bending state of stress in a
shell of this type depends on the in-plane stiffness
of the frames; therefore, the design variables that
govern the member crogs-sectional dimensions become
strongly coupled (e.g., ref, 14) and the optimization
process is more difficult to converge.

Variant 1 was optimized by PLA using
finite-difference gradients (Option 2.2) and the 10
design variables shown in figure 8. As indicated in
the figure, many structural parameters are linked to a
single design variable, so that 10 design variables
govern the cross-sectional dimensions of all 356
elements in the finite-element model. Variables x
through Xg govern the cross-sectional areas of the
beam elements which have a channel cross-section whose
proportions remain constant as its area changes,
Thus, the cross-sectional area becomes a single
variable that governs all the beam stiffness
parameters. Variables x~» through X410 govern the
membrane panel thickness. The optimization
constraints were on the beam element stresses and
equivalent stresses (Huber-von Mises stress) in the
panel elements. The iteration history of the design
variables is shown in figure 9. Convergence is quite
good considering the problem size and use of the
piecewise linear approximations. As expected, the
elements flanking the cutout have "grown" in the
optimization process, as illustrated in figure 10.

To further demonstrate the adaptability of the
procedure, a simplified variant 2 of the shell
structure was formed by eliminating the floor and two
end bays and substituting rods for longerons.
Initially, the structure was optimized with stress
constraints only. Subsequently, the resultant
structure was optimized with an additional overall
shell buckling constraint which required a 21 percent
increase of the buckling load over and above the
buckling load computed for the structure optimized
with stress constraints only. Both optimizations were
carried out by Option 1.1, A comparison of these two
results showed that the structural mass increased by
9.6 percent because of the additional buckling
constraint. Additional optimization of this variant
(with two loading cases) was carried out with stress
constraints using only analytical gradients (Option
2.3). Use of analytical gradients was found to reduce
the execution time to approximately one-sixth of that
required for Option !1.1. Three design variables,
one for longerons, one for transverse-frames, and one
for the skin were used in this case.

Locations of the node points in the
finite-element model were considered as design
variables in a further simplified variant 3 of the

shell structure. This variant has the cut-out
eliminated, is subject to only one loading case
(transverse force), and has the longerons restored to
the beam form. Previouwsly defined cross-sectional .
variables were retained. The three geometrical
variables governed locations of the three intermediate
frames. Optimization using Option 1.1 with stress and
overall shell buckling constraints resulted in
translation of the frames toward the loaded and
unsupported end, as seen in figure 11.

Example 2: Portal framework shape optimization.
A framework shown in figure 12 has been optimized with
geometrical variables only to demonstrate the
structural shape optimization. The variables defined
in figure 12 are intended to allow the frame to
transform into a truss. The constraints were imposed
on stress and horigontal displacement as indicated in
figure 12. Optimization, carried out by means of
Option 1.1, has indeed produced the expected transfor-
mation of shape to an almost triangular truss. A side
constraint on the length of the top horizontal member,
necessary to preserve that member's nonzero length to
avoid a matrix singularity, has kept the top of the
frame from shrinking to a point.

Example %: Torsion box vibration. This example
demonstrates a "tuning" of the stiffness and masg
distributions to achieve a prescribed change in an
original structural vibration mode shapes. The
structure is a torsion box shown in figure 13(a),
built up of membrane panels, with thicknesses as the
design variables indicated in the figure. Because
concentrated nonstructural masses are affixed to one
side of the box as shown in figure 13(a), the
vibration modes for a structure that was initialized
uniformly to a minimum gage exhibit a distinct
torsion~-bending coupling in the first four modes.
This is illustrated in figure 13(b) by displacement of
segment AB seen in view C. To reduce that coupling,
the constraints of (z2 - 21)/21 < 2 are imposed on the
free end vertical displacements ~z; (point A) and =z
(point B) in modes 1 through 4. The result is a set
of new modes shown in figure 13(b) which comply with
the constraints. The thickness changes required to
meet the constraints are indicated in figure 13(c).
There are increases of thicknesses %z and tg in
the SPAR beam directly supporting the concentrated
masses, and t in a panel that forms a counter-
balance to the fixed masses.

Research Examples

Cumulative constraint. A direct search method
such as usable-feasible directions method in the
current PROSSS optimizer has a drawback--namely a
large computer memory is required to keep track of
each individual constraint in application to
structures with numerous stress constraints, such as
the stiffened cylindrical shell in the previous group
of examples. To overcome this drawback, a cumulative
constraint (ref. 7) was tried. The constraint is, in
essence, the same as the well-known exterior penalty
function and is formulated as:

Q=3 (<g? (4)
5 j

where
., if g. > O
837 gJ
<gj>:
0., if gj_s 0

The cumulative constraint § is a single measure
of many constraint violations and its zero boundary is

interpreted for purposes of usable-feasible directions
algorithm as a hypersurface which is continuous
through the first derivatives, providing the 83
functions are also continuous.,

The stiffened cylindrical shell, variant 3 of
example 1 above, optimized for minimum mass subject to
individual strength constraints was taken as a
reference case. The single cumulative constraint was
introduced to replace 190 constraints by modifying the
A-O processor. Relative to the reference case, the
results indicated a slight (3 percent) reduction of
the objective function, an increase of the total
number of iterations from 6 to 8, and the optimigzer
memory requirement reduced by 99.7 percent.

Influence of the move limits. It is expected
that the results of a piecewise linear optimization
procedure such as Option 2.3 in PROSSS depend to some
extent on the move limits allowed in each linear
stage, but the extent of that dependence is not
known. To shed some light on the dependence, the same
stiffened cylindrical shell was optimized using PROSSS
Option 2.3 by systematically changing the relative
move limits. The result is shown in figure 14 as a
plot of the objective function versus the relative
move limit value imposed on all design variables and
maintained constant from one linear stage to the
next. The plot indicates that a wide interval of the
move limit values exists where the optimal objective
function is practically independent of these values,
while the dependence is strong outside of the
interval.

A leading variable technique. The same stiffened
shell used in the two preceding examples was optimized
for minimum mass subject to individual strength
constraints using a somewhat unusual technique.

The two basic elements of the technique are: (1)
adding the load magnitude P as another variable to
the vector of design variables whose initial values
were set large for the structural design variables but
very small for the load variable, (2) restricting the
load variable P by constraints, g = 1 -~ P/P, and
0 <P S-Pt' in order to make P grow to, and remain
at, the desired level of fully-developed load Pye
Under this formulation, the load variable becomes a
"leading” variable which grows to its target level
"pulling" the entire design toward its final state.

The technique is of interest because of its
implications for those cases where conventionally
formulated optimization fails to find a ‘feasible
design. (The design feasibility per se was not an
issue in the example case itself.) In such cases, it
is usually easy to identify a physical quantity which
is not a natural design variable but whose reduction
in magnitude renders the initial design feasible.
Such physical quantity may then be converted to a
leading variable of a suitably low initial value, and
therefore remove the difficulty of finding a feasible
design.

A good example of this would be an optimization
of a strength-sized wing structure for a required
flutter speed and a minimum of a flutter structural
mass penalty. In this case, the velocity v would be
a candidate for a leading variable, analogous to P,
and the required flutter speed would be analogous of
Pie A naturdl starting value for v would be the
flutter velocity of the strength-sized structure.

Implementation of the technique required changes
only to the O-A and A-0 processors and produced a
result illustrated in figure 15 by a plot of the
objective function versus the consecutive iterations.

The final result is practically the same as in the
reference case, and examination of the stress
constraints as they were changing over the iterations
illustrated in figure 16 for the constraints active at
optimum, shows that they were never significantly
violated. The only constraint that was ever strongly
violated was the computationally trivial one imposed
on the load variable (leading variable).

Distributing the system between a mainframe and a

minicomputer. To test the system adaptability to
different hardware configurations, a version of PROSSS
was constructed placing the analyzer and the A-0
processor on the CDC mainframe computer and the
remainder of the system on the PRIME minicomputer as
shown in figure 17. It was found that the modular
organization of PROSSS was essential for expeditious
development of the distributed version. The distri-
puted version of PROSSS was verified (ref. 21) for
correctness of its results as compared to the
mainframe-only version and was used to explore system-
atically the relative efficiency of the five PROSSS
options. Results of the efficiency results are
plotted in figure 18 and show that Option 2.3, and PLA
with analytical gradients as, by far, the most
efficient one.

This distributed implementation, documented in
detail in reference 21, has advantage of the optimal
use of the best features of each type of computer--
namely, the mainframe computer capability to perform a
magsive numerical analysis and the miniccmputer flexi-
bility and fast interactive response helping in the
preparation of the problem, judgmental conirol of the
execution, and review of the results. The main
resulting benefit is improved productivity of the
"man-machine system" manifested by a very significant
reduction of the calendar time needed to complete
optimization tasks. Various factors leading to that
reduction are examined in reference 21.

Summary of the Examples

Summarizing the application examples, the
following observations are noted. Transforming the
system from one optimization option to another was
simple to accomplish by changing the sequence in which
components of the system were called for execution.
Adaption from one variable and constraint combination
to another was carried out by changes in the 0-A and
A-O processor codes. These adaptations as well as
changes from one structure to another did not require
any changes to the Connecting Network nor to the
Analyzer and Optimizer.

Similarly, the research examples demonstrated
adaptability of a programing system fto the algorithm
procedural changes that reached deep into the problem
formulation and yet required only minor and very
localized modifications to the system modules.

It was a routine matter to monitor the status of
the optimization process by means of displaying the
intermediate data files. Stopping and restarting were
facilitated by storing intermediate data.

This monitoring and interaction with the process
was particularly easy and efficient in the distributed
version owing to the quick response of the

" minicomputer in the interactive mode.

PROSSS Development Trends

Because of its test bed nature, PROSSS undergoes
continual development; some possible future changes
are summarized in this section.

Optimization Algorithms

Several improved optimization algorithms became
available in recent years. Particularly, promising
among these are: The augmented Lagrangian technique
and the primal—-dual methods (e.g., ref. 22). Programs
based on those algorithms are logical candidates to
convert the current single optimizer in PROSSS into a
library of optimizers.

Optimum Sensitivity

It was shown in reference 23, that information
about sensitivity of the optimum solution with respect
to problem parameters can be generated at a relatively
minor cost. An example of such sensitivity informa-
tion might be a set of derivatives of the optimum
cross—sectional areas and the structural mass with
respect to the allowable stress value. It was also
demonstrated in reference 23, that accuracy of extrap-
olation based on such derivatives is quite good for a
fairly wide interval of the parameters. The modular
organization of PROSSS should make insertion of the
sensitivity analysis and the associated extrapolation
capability a relatively straightforward task.

Multilevel Optimization

It is now widely recognized' that a multilevel
optimization scheme which breaks one large problem
into a hierarchy of separately solved but coupled
subproblems has a potential of making truly large
structural optimization applications practical. One
such scheme is proposed in reference 24. There is al-
s0 a possibility to build a multilevel scheme on the
basis of the optimum subproblem sensitivities to the
parameters which themselves are the master problem
design variables.,

The fairly complex organization of the computa-
tional sequences and the associated data flow required
by the multilevel schemes should be well supported by
the flexible organization of PROSSS.

Distributed Computing

Starting from the two-computer version of PROSSS
referred to in the research example section, a more
ambitious undertaking may be initiated of a multi-
computer network in which advantage would be taken of
distributed processing. This concept fits well in a
multilevel optimization scheme, because many sub-
problem optimizations could be performed simulta-
neously on many computers acting in parallel.

Shape Optimization

In comparison to the wealth of experience with
cross—sectional optimization to structures, the expe-
rience with the optimization of the overall shape is
very limited. The PROSSS capability to work with var-—
ious types of design variables including those of
overall geometry encourages exploration of the shape
optimization. A development already initiated in this
direction involved optimization of trusses using an
analytical gradient technique in which the derivatives
of the stiffness matrix with respect to the shape
design variables were computed by means of finite
difference.

Connecting Network and High-Level Language

The operating system and its command language
(JCL) are an ultimate in flexibility and continue to
support the PROSSS development. Their drawbacks are
vulnerability to the operating system changes and the
overhead penalty of the system operations. One means

available now for improvement in this regard is an
Engineering Analysis Language (EAL) (ref. 25). The
EAL is a system of programs and a data base which is a
successor to SPAR program and is operational on many
different types of computers. It is enhanced by a
command language that possesses a FORTRAN-like
capability of loop, branch and jump. In addition to
the standard structural analysis processors (the same
ones as in SPAR), the EAL library of programs can be
routinely augmented by user supplied codes. Thus,
implementation of PROSSS in EAL may be done by adding
to EAL the optimizer, the 0O-A and A-O processors for
each application, and by translating the JCL
procedures for the PROSSS options to the EAL command
language (runstreams).

Still, the EAL is not the English-like language
many users would like to have available to command a
computer. Such language can, in principle at least,
be provided so that an engineer could issue, for exam-
ple, a command: "OPTIMIZE TRUSS FOR MINIMUM MASS AND
STRENGTH CONSTRAINTS." For a command such as this to
have the intended effect, a translator program stand-
ing between the user and the EAL would have to gener-—
ate a corresponding sequence of the EAL instructions.
However, the exact meaning of all the words used in
the command would have to be coded first into the
translator program, hence, the loss of flexibility.

A reasonable option appears to be to equip the
specialized versions (see the previous discussion of
the Skeleton and Specialized versions of PROSSS) with
an English-like language for a production oriented
user, while allowing a researcher to use the EAL
command language directly.

Conclusions

A computer programing system is described which
combines an optimization program, a structural analy-
sis program, and user supplied problem dependent
interface programs, for use in the structural optimi-
zation method development and applications. Standard
utility capabilities existing in modern computer oper-—
ating systems are used to integrate these programs.
This approach results in flexibility of the optimiza-
tion procedure organization and versatility of the
formulation of constraints and design variables.
tures of the programing system are illustrated by
numerical examples, which include design variables of
cross~sectional dimensions and overall shape and con-
straints on static and dynamic behavior. Included in
the examples is a version of the system distributed
between a mainframe and a minicomputer,

Fea-

Five options are described for organizing the op-
timization procedures. The options comprise various
combinations of nonlinear mathematical programing and
piecewise linear approximations with analytical and
finite-difference gradient techniques. Because of the
system's inherent modularity, other software compo-—
nents could be substituted for the particular ones
used herein to achieve a similar capability.

The system can be used in the following two basic
ways:

(1) As a research test bed for development of
optimization techniques and analysis oriented towards
optimization applications. In this role, the system
offers flexibility of execution and sequencing
including restart and monitoring capabilities.

(2) As an application tool that.cén be adapted
by a specialist to a very wide scope in types of

problems and then used as a "black box" by production
oriented engineers.

The

system development trends are reviewed in the

areas of the optimization algorithms,; including
multilevel schemes, optimum sensitivity analysis,
distributed computing, overall.structural shape
optimization, and use of an improved connecting
network and higher level command languages.

(6)

(7)

(10)

(11)

(12)

(13)

References
Fiacco, A+ V.; and McCormick, G P.: Nonlinear
Programing: Sequential Unconstrained
Minimization Techniques. John Wiley and Sons,
New York, 1968, Section 2.4.

Zoutendijk, G.: Methods of Feasible
Directions. Elsevier, Amsterdam, 1960,

Garvin, W. W.: Introduction of Linear
Programing. McGraw-Hill, New York, 1960.

Schrem, B.: From Program Systems to Programing
Systems for Finite-Element Analysis. Paper
presented at U.S.-Germany Symposium:
Formulations and Computational Metheds in
Pinite-Element Analysis. MIT, Boston, MA,
August 1976.

Sobiesgczanski, J.: Building a Computer Aided
Design Capability Using a Standard Time Share
Operation Systems Proceedings of the ASME
Winter Annual Meeting, Integrated Design and
Analysis of Aerospace Structures, Houston, TX,
November 30-December 5, 1975, pp. 93-112.

Dovi, A. R.: ISSYS -~ An Integrated Synergistic
Synthesis System. NASA Contractor Report
159221, Kentron International, Inc., Hampton
Technical Center, Hampton, VA., February 1980.

Sobieszczanski-Sobieski, Jaroslaw: From a
"Black Box" to a Programing System: Remarks on
Implementation and Application of Optimization
Methods. Proceedings of a NATO Advanced Study
Institute Session on Structural Optimization,
University of Liege, Sart-Tilman, Belgium,
August 4-15, 1980.

Whetstone, W. D.: SPAR Structural Analysis
System Reference Manual, System Level II, Volume
I. DNASA CR-145098-1, February 1977.

Giles, G. L.; and Haftka, R. T.: SPAR Data
Handling Utilities., NASA TM-T78701, September
1978,

Fox, Richard L.: Optimization Methods for
Engineering Design. Addison-Wesley Publ. Co.,
Reading, Mass., 1971.

Storaasli, O. O.; and Sobieszczanski, J.: On
the Accuracy of the Taylor Approximation for

Structure Resizing. AIAA J., Vol, 12, No. 2,
February 1974, pp. 231-233. f

Vanderplaats, Garret N.: The Computer for
Design and Optimization. Computing in Applied
Mechanics, R. F. Hartung, ed., AMD - Vol. 18,
American Soc. Mech. Eng., c. 1976, pp. 25-48.

Schmit, L. A.; and Miura, H.: Approximation
Concepts for Efficient Structural Synthesis.
NASA CR-2552, March 1976,

(14)

(15)

(16)

(17)

(18)

(19}

(20)

(21)

(22)

(23)

(24)

(25)

Sobieszczanski, Jaroslaw: Sizing of Complex
Structures by the Integration of Several
Different Optimal Design Algorithms. AGARD
Lecture Series No. 70 on Structural
Optimization, AGARD-LS-70, September 1974.

Control Data Corporation; NOS Version 1
Reference Manual, NOS 1.3. CDC No, 60435400,
September, 1979,

Starnes, J. He; and Haftka, R. T.: Preliminary
Design of Composite Wings for Buckling, Strength
and Displacement Constraints. A Collection of
Technical Papers, ALAA/ASME 19th Structures,
Structural Dynamics and Materials Conference,
Bethesda, Md., April 3-5, 1978. AIAA Paper No.
78-466.

Anderson, M. S.; and Stroud, W. J.r A General
Panel Sizing Computer Code and Its Application
to Composite Structural Panels. AIAA J., Vol.
17, No. 8, August 1979, pp 892, 897.

Sobieszczanski~Sobieski, J.; and Bhat, R. B.:
Adaptable Structural Synthesis Using Advanced
Analysis and Optimization Coupled by a Computer
Operating System. J. of Aircraft, Vol. 18, No.
2, February 1981, pp. 142-149.

Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.;
and Bhat, R. B.: An Implementation of the
Programing Structural Synthesis System

(PROSSS). NASA TM 83180, 1981,

Giles, G. L.: Procedure for Automating Aircraft
Wing Structural Design. J. of Str. Div. ASCE,
Vol. 97, No. sTi, 1971, pp. 99-113.

Rogers, J. L., Jr.; Dovi, A. R.; and Riley, K.
M.: Distributing Structural Optimization
Software Between a Mainframe and a
Minicomputer. Proceedings of Engineering
Software Second International Conference and
Exhibition, London, England, March 24-26, 1981,
pp. 400-415, editor, R. A. Adey, CML
Publications.

Fleury, Claude; and Schmit, Lucien A., Jr.:
Dual Methods and Approximation Concepts in
Structural Synthesis. NASA Contractor Report
3226, December 1980.

Sobieszczanski~Sobieski, J.; Barthelemy,
Jean-Francois; and Riley, Kathleen M.:
Sensitivity of Optimum Solutions to Problem
Parameters. Presented at ATAA/ASME/ASCE/AHS
22nd Structures, Structural Dynamics and
Materials Conference, Atlanta, Ga., April 6-8,
1981. AIAA Paper No. 81-0548.

Schmit, L. A.; and Ramanathan, R. K.:
Multilevel Approach to Minimum Weight Design
Including Buckling Constraints. AIAA Journal,
Vol. 16, No. 2, February 1978, pp. 97-104.

Whetstone, W. D.: EISI-EAL: Engineering
Analysis Language. Presented at ASCE Conference

on Computing and Civil Engineering, Baltimore,
Md., June 1980,

OPTIM[ZATION
RESULTS

Table I Optimization flow options

No Gradients Gradients Supplied to
Procedure| Supplied to Optimi zer
Optimizer
[Finite Difference| Analytical
NLP 1.1 1.2 : 1.3
PLA Not 2.2 2.3
Applizable

| NITIALIZATION |

i
[oprmiziR |e—
OPTIMIZATION
LOOP
y
| anavzer |
\ FLOW CHART SYMBOLOGY:

PROGRAM

[]
E BLOCK OF DATA

<§I?P

Fig. 1.- Generic components and a basic flow organi-
zation of an optimization procedure.

INCREASING PROGRAM FLEXIBILITY

ENTIRE PROGRAM (OR ITS OVERLAYS)
RESIDES IN CORE

-

REQUIRES DISK STORAGE FOR
EACH PROGRAM MODULE

™ L— -
MAIN c STAND O |
PROGRAM 0l ALONE
N PROGRAM)
STAND ALONE A N |
SPECIAL PURPOSE SUBRO%?:*NE E Ol
OPTIMIZATION ¢ v g
PROGRAM ANALYSTS 7= ALONE K
SUBROUTINE | PROGRAM)
N
MATN G /Q T
PROGRAM “STAND 0
N{—= ALONE R
E PROGRAM A
! b |6
w E
0 stand 1]
RI—| ALONE
k| |rrocram F—O

(a}) CLOSED BOX (b} SEARCH AND ANALYSIS
ALGORITHMS AS

SUBROUTINES
INCREASING PROGRAM EFFICIENCY

(¢} PROGRAMING SYSTEM

Fig. 2.~ Approaches for implementing optimization
methods.

SPAR DATA BASE OPTIONAL @ OPTIMIZATION LOOP

[LiBRARY A B z

DATA SET 1

DATA SET 2

ANALYZER
NONREPEATABLE PART

[O-A PROCESSOR_]

INPUT FOR ANALYSIS

INPUT = SPAR PRINTOUT / INTIALY /

RUNSTREAM o
COMMAND TO (OPTIONAL) ANALYZER:
EXECUTE OPTIMIZER REPEATABLE
PROCESSOR k PART
==} INPUT DATA FOR D D D

BEHAVIOR VARIABLES,

Z1PROCESSOR k ‘
COMMAND 10 [___] D E] D] .
oot + * PROCESSORS @

PROCESSOR |
Fig. 3.- Finite~element program SPAR. @PROBLEM DEPENDENT
‘ . PROGRAM

A-0 PROCESSOR

OBJECTIVE FUNCTION
AND CONSTRAINTS
Fig. 5.- Flow chart for Option 1.1; the analyzer split

(START) into nonrepeatable and repeatable parts.

i

1 READ X
2 READ ALLOWABLE VALUES
O
OPTILI\sIOZPATION
EXTRACT RESULTS OF STRUCTURAL ' [o4 PRoCESSOR [oprmizer], APEROXIHATE
ANALYSIS FROM SPAR LIBRARY COPARE T BT E’E:{E%Lt‘:‘{:‘[m
(USING SUBROUTINES DESCRIBED IN REF, 9 OF LINGAR EXTRAPOLATION T TERAIATO (COnSTRATS
RELEVANT TO THE CONSTRAINTS OF THE PROBLEM STAGE GRADIENT CAPABILITY STAGE |, |EXTRAPOLATION|;

NO /“SUFFICHENT "\ YES BEHAVIOR VARIABLES, STAGE
@*—@—‘ ZHHEIRGRADIENTSI; TS[T;MGE CONTINUED

NATED

COMPUTE OBJECTIVE FUNCTION,

A0 PROCESSOR |

TERMINATOR) py conTINUED

FOR PLA
PROCEDURE | 4

CONSTRAINTS (AND THEIR GRADIENTS)

OBJECTIVE FUNCTION
AND CONSTRAINTS
{THEIR GRADIENTS

PLA TERMINATED.
PERFORM FINAL
ANALYSIS

WRITE THE OBJECTIVE FUNCTION,
CONSTRAINTS (AND THEIR GRADIENTS) [N
FORMAT REQUIRED BY CONMIN INPUT.

Y

‘ STOP ’

Fig. 4.- A-0 Processor flow chart.

Fig. 6.~ Flow chart for Option 2.3.

10

ADAPTABLE VERSATILE SYSTEM AND A SIMPLE TO OPERATE BLACK BOX

SKELETON FORM MANY SPECIALIZED FORMS

STRUCTURE TYPE 1
(E.G., WING}
NONREPEATABLE PART
CONMIN OUTPUT DATA
0-A, A-0 PROCESSORS
CONTR
pRgng,hs REPEATABLE PART
SPECIALIST AND OPTIMIZATION
INPUT DATA
p%%%&%%fm STRUCTURE TYPE 2
{€.G., FUSELAGE) DESIGN
FULES ENGINEER
NONREPEATABLE PART {BLACK BOX
OUTPUT DATA VIEW
EXECUTION
CONTROL DECKS 0-A, A-0 PROCESSORS
OF FIVE OPTIONS
t+ FSD) WITH REPEATABLE PART
STANDARD FILE ‘ AND OPTIMIZATION
NAMES INPUT DATA
:
L]
OPEN ENDED

Fig. 7.- Skeleton and specialized forms of PROSSS.

/-—— LOADING DISTRIBUTED ON ALL JOINTS WITH A

ey RESULTANT TORQUE = 156 M Ncm

RESULTANT UPWARD THRUST = 98 kN X
X

ALL OTHER STRINGERS X

ALL OTHER FRAMES X4

Fig. 8.~ Example 1, stiffened cylindrical shell,
variant 1,

NORMALIZED
DESIGN
VARIABLES

1 1 .
0.0 1 3 3 0

NUMBER OF LINEAR STAGES
*ITERATIONS WITHIN LINEAR STAGE

Fig. 9.- History of iterations for Example 1.
Variant 1 using Option 2.2.

HEIGHT OF BARS PROPORTIONAL
TO CROSS SECTIONAL AREA

* MEMBERS BORDERING
THE CuTOUT

SECTIONAL AREAS OF FRAMES AND TRANSVERSE
FLOOR BEAMS

L YA
SKIN THICKNESSES (MINIMUM GAGE}I—

SECTIONAL AREAS OF STRINGERS
AND LONGITUDINAL FLOOR BEAMS

Fig. 10.~ Relative member sizes obtained by optimi-
zation for Example 1, variant 1.

" —
GCLAMPED ; | .
EDGE) Loy R e
RInT gty ’
£‘JX5 - _ Xy Xy X3
NSNS N\ 7N\ INITIAL FRAME
[X N A N\ LoCcATIONS
AL W R AR T B 7. 3,

l [PTIM
Y R R e
N

AN ~ ~ /. “—EDCE
Scamped T | | SUBJECTED TO
EDGE X %) LOADING

X| T0 x3 ARE GEOMETRICAL LOCATIONS OF FRAMES

Fig. 11.~ Initial and optimized positions of
transverse frames in Example 1, variant 3.

P
"4""‘1
A L‘FJ A
X, X.
2+
777777777, 7777777777 T-ﬁ TITT7TTTIIT 7777777 TrrrrrIr
ORIGINAL AFTER 157 FINAL TRUSS
FRAMEWORK ITERATION AFTER
4TH I TERATION
MASS 100% MASS 60%

STRESS 188% ALLOWABLE
DISPLACEMENT 200% ALLOWABLE

STRESS 68%
DISPLACEMENT 100%

Fig. 12.~ Transformation of a framework (Example 2)
to a truss by optimization with geometrical
variables.

t fixed = min, gage
min, gage =0.1cm
max. gage = 1,0cm
INITIALt's = 0.1cm
m=5kg

STRUCTURAL fINITIAL 16.8 kg
MASS [FINAL 30.2 kg

m-CONCENTRATED MASS

(a) Thicknesses used as design variables.

—— UNDISPLACED SEGMENT A-8

MODAL
DI SPLACEMENT ‘O—BEFogE;OPTIMIZATION

OF SEGMENT A Blo——AFTE

5
)
oA 8 A/ 2 A A d B
B — B l P |
Zl b4 Z1 Z1 Zl

2
MODE 1 MODE 2 MODE 3 MODE 4

(b) Modal displacements of segment AB (Fig. 13(a)),
seen ih view C.

(c) Dimensional arrows mark the spar beam web
thicknesses increased in the optimization
process; other thicknesses remained at
the initial values.

Fig. 13.- Optimization of a torsion box (Example 3)
to reduce torsion bending coupling in
modes 1, 2, 3, and 4.

L5 w MOVE LIMIT TOO RESTRICTIVE,
NO CONVERGENCE

14

134 .
WEAK DEPENDENCE

NORMALIZED 121

OBJECTIVE
FUNCTION
L1
o
10 i
y I
9L ! {
A A] [! |
0 +1£15 30 45150 1.6 +.75 £85+9

5 MOVE LiIMIT

Fig. l4.- Normalized objective function (mass) vs.
relative move limit.

NORMALIZED
OBJECTIVE
FUNCTION

0.0]] I L J
0 2 4 6 8 10
ITERATIONS

Fig. 15.- Objective function vs. the iteration number
for a leading variable technique.

1.0

0.5 LEADING VARIABLE CONSTRAINT

CONSTRAINTS
0.0 -

-05 | .
THREE STRESS CONSTRAINTS
ACTIVE AT OPTIMUM

1 | l J

0 2 4 6 8 -10
ITERATIONS

-1.0

Fig. 16.~ Constraints vs. the iteration number for
a leading variable technique.

12 A .

an

PRIME MINICOMPUTER

CDC MAINFRAME

PRINT
OUTPUT

INITYALIZATION

" NON-REPEATABLE

ANALYSIS
j|

NO
0-A PROCESSOR

OPTIMIZATION
LOOP

. IA—O PROCESSOR

REPEATABLE

ANALYSIS

Fig. 17.- Flow chart of a distributed structural
optimization software system.

13

120

100

80

%

60

40

20

CPU

r COST TIME

- 108 108

100 100 %

[%

L / 68 .19

i / m

: % / 8 2

r mn

. |) A
% % / 7 r%
11 1.2 13 2.2 2.3

OPTION NUMBER

Fig. 18.- Option cost and time comparison.

1. Report No. 2. Government Accession No. . 3. Recipient’s Catalog No.

NASA TM-83191

4. Title and Subtitle ') 5. Report Date

A Programing System for Research and Applications August 1981

in Structural Optimization 6. Performing Organization Code
505-33-63-02

7. Author(s)

8. Performing Organization Report No.
Jaroslaw Sobieszczanski-Sobieski and James L. Rogers, Jr.

10. Work Unit No,

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, Virginia 23665

11. Contract or Grant No.

13. Type of Report and Period Covered

2. S i A N d Add .
12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration s —
Washington, DC 20546 & Sponsoring Agency Code

15. Supplementary Notes

Presented at International Symposium on Optimum Structural Design,
The 11th Naval Structural Mechanics Symposium, Tucson, Arizona,
October 1981.

16. Abstract

The paper describes a computer programing system designed to be used for methodology
research as well as applications in structural optimization. The flexibility
necessary for such diverse utilizations is achieved by combining, in a modular manner,
a state-of-the-art optimization program, a production level structural analysis
program, and user supplied and problem dependent interface programs. Standard
utility capabilities existing in modern computer operating systems are used to
integrate these programs. This approach results in flexibility of the optimization
procedure organization and versatility in the formulation of constraints and design
variables. Features shown in numerical examples include: (1) variability of
structural layout and overall shape geometry, (2) static strength and stiffness
constraints, (3) local buckling failure, and (4) vibration constraints. The paper
concludes with a review of the further development trends of this programing system.

17. Key Words {Suggested by Author(s))} 18. Distribution Statement
Computer programing Unclassified - Unlimited
Methodology research
Applications in structural optimization Subject Category 05
Constraints and design variabtes

19. Security C|.assi.f. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified 14 AO?

N-305 For sale by the National Technicat Information Service, Springfield, Virginia 22161

