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ABSTRACT 

This report describes a multi phase self-adaptive predictor 

corrector type algorithm. This type of algorithm enables the solu­

tion of highly nonlinear structural responses including kinematic, 

kinetic and material effects as well as potential pre/postbuckling 

behavior. The hierarchy of the strategy is such that three main 

phases are involved. The first features the use of a warpable 

hyperelliptic constraint surface which serves to upperbound depen­

dent iterate excursions during successive Incremental Newton 

Raphson type iterations. The second corrector phase uses an energy 

constraint to scale the generation of successive iterates so as to 

maintain the appropriate form of local convergence behavior. The 

third involves the use of quality of convergence checks which 

enable various self-adaptive modifications of the algorithmic 

structure when necessary. Such restructuring is achieved by tight­

ening various conditioning parameters as well as switch to different 

algorithmic levels so as to improve the convergence process. 

Several, numerical experiments illustrate the capabilities of the 

proc~dure to handle varying types of nonlinear structural behavior. 
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1. INTRODUCTION 

One of the central features in the development of finite 

element computer programs for nonlinear analysis is the proper 

selection of solution algorithms. The nature of structural 

nonlinearities is generally quite diverse when both kinematic and 

material effects are included. Specifically, for static problems, 

such effects give rise to nonlinear algebraic equations which may 

possess path dependent multiple solutions. In this context, 

the quest for reliable as well ~s comp~tationally efficient sol-

utions to such problems is a very demanding task. 

Solution procedures for nonlinear problems have been discussed 

by a multitude of authors [1-12]. In this direction, the mature 

works of Bergan et al .[9~ Rikl-10]and Crisfield[ll, 12] give a good 

overview of much of the progress made to date. As can be seen from 

these papers [9-12] unlike linear problems, it is extremely 

diffi~ult to develop a single methodology of general validity 

which can be used to handle the diversity of potential structural 

probl~ms. Since the formulation of the problem and hence the 

associated computer coding architecture is ~rong~ dependent on 

the algorithmic approach taken, generally most general purpose 

(GP) nonlinear finite element (FE) codes have adopted one part­

icular methodology through which the nonlinear problem is 

solved[13-14]. In this context, generally some variant of the 

Incremental Newton Raphson (INR) approach has been chosen[13-1S]. 

While the INRprocedure is perhaps the most powerful of the 

iterative solution techniques, it is subject to several short~ 
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comings. The more important of these can be categorized as follows: 

1) Inefficiencies associated with update requirements; and 

2) Sensitivities/anomalous convergence characteristics in 

the neighborhood of turning points (zones of changinq 
, 

curvature definiteness), bifurcations, "shallow" curvature,· 

snap through behavior, etc. 

t. While the recently advocated pseudo update procedures [16-18J 

provide a partial answer to the computational inefficiencies 

associated with updating, no real improvement is achieved in 

category 2) problems nor is it clear what happens in path depend~nt 

and/or multiple solution situations. 

To overcome the sensitivities associated with the use of the 

INR algorithm in the vicinity of turning points several approaches 

have been advocated, in particular: 

a) Use of deflection control[19J; 

b) Rotation of solution space via introduction of auxiliary 

stiffness[20J; 

c) Switch from step-iterative to pure Euler-Cauchy type 

incrementations initiated via curvature monitoring[9]; and 

d) Use of constraints to control successive dependent iterate 

excursions[10-12]. 

Since the main sensitivities/anomalous behavior of the INR tyoe 

algorithms appears tobe the generation of excessive iterate 

excursi~ns in neighborhoods of turning point, shallow curvature 

etc., the constrained approach advocated by d) [10-12] appears to 

be the best choice for use in general purpose (GP) codes. 
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The diffi.culty of the foregoing approaches lies in fue fact 

that there is no automatic corr~ction features associated with the 

algorithms wherei~ as the solution proceeds, its quality[14J is 

monitored so as to enable the appropriate automatic corrective 

action to·be taken. In this context, this report develops a self­

adaptive type predictor-corrector algorithmic strategy. The hier­

archy of the strategy is such that the predictor phase consists 

of a constrained type INR algorithm (CINR) which is employed 

to tunnel into the solution space. It features the use of a 

warpable hyperelliptic constraint surface ~EC~, which serves to 

upperbound dependent iterate excursions during successive iterations. 

The second corrector phase of the solution strategy lies in the 

use of an energy constraint to scale the generation of successive 

iterates so as to maintain the appropriate form of convergence 

behavior (monotone, oscillating, etc.) associated with the type 

of curvature of the zone of solution space wherein the algorithmic 

runneling is taking plac(. The third phase of the solution hierarchy 

involves the use of quality/convergence checks [14J which enable 

various self-adaptive modifications of the algorithmic structure. 

In the sections which follow, detailed discussions are given 

on the classical INR algorithm and its limitations, the develop-

ment of the various levels of the self adaptive 'predictor­

corrector approach as well as the results of several numerical 

examples which demonstrate the capabilities of the new procedure. 
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2. GOVERNING CLASSICAL INR OPERATOR 

Before overviewing the development of the CINR algorithm, 

it is worthwhile to review the salient features of the INR as well 

as outline several of its more important shortcomings. 

2.1 INR Algorithm 

A~suming that large deformation processes are in effect, 

the virtual work principle takes the following form in Lagrangian 

coordinates namely[21J 

f ( C; L. . S .. + <5 u. Q • ) dv = 0 
R lJ lJ 1 1 

(2 . 1 ) 

where C;( ), Sij' L;j' Ui , Qi and R respectively denote the varia-

tional operator, 2nd Piola-Kirchhoff stress tensor [21J 

the Lagrangian (Green's) strain tensor [21J, displacement, body 

force and lastly the region occupied by the structure. Introducing 

the shape function description of displacements[15J., 

U = [N]Y - -
the following assembled finite element (FE) formulation is 

obtained, that is 

f[B*(Y)J T Sdv = F(Y). 
R -

where ( )T is matrix transposition, and 

( 2 .2) 

( 2 .3) 

such that [8J, [BnJ, [GJ are nonlinear partitions of the strain 

and [N], ~ and ~ respectively represent the shape function, vector 

form of stress tensor and the nodal displacements. 
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Since (2.3) is inherently nonlinear, assuming that the 

material properties can be cast in a tangent stiffness formulation, 

namely 

( 2 .5) 

then (2.3) can be expanded into a truncated Taylor series to 

yield the following operator: 

{ 2 .6) 

Now, expressing (2.6) and (2.3) in algorithmic form yields the 

following INR operator, that is 

(2.7) 

where ~, i, j, [J- l , ~~~, ~~ and!~ respectively denote the ~th 
loadstep, ith iteration, jth intermittent update of the stiff-

ness, matrix inverse, ith displacement increment of the ~th loadstep 

and lastly the total nodal displacement and force associated with lth loadstep. 

The convergence criteria typically associated with (2.7) 

involve normed checks of successive displacem~nt increments and 

nodal force imbalances, that is [9, 22J 

II~yi ~yi-lll 
----,.-_-__ 1 < to 1 

I ~! i I 
(2.8) 

( 2 .9) 

where here II-Ill designates the norm 

(2.10) 



Most typically, satisfaction of such criteria from increment to 

increment is said to be sufficient to guarantee a convergent 

solution. 
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To streamline the use of (2.8), the consensus opinion seems 

to advocate that [KT] be updated and inverted only at the beginning 

of a loadstep[9, 22] This approach yields the so-called modified 

INR (MINR) operator. As noted earlier, to improve the accuracy/ 

convergence characteristics of such an approach, numerous pseudo 

updates have recently been advocated. Here the BFGS family of 

updates has figured prominently[l6-l8]. 

2.2 Shortcomings 

W h il e the mod i fie d, i n t e r mit t a nt 1 y / con s tan t 1 y / p s e u do (B F G S ) [l 6 - 1 8 ] 

updated versions of the INR algorithm converge quadratically if 

the load increments are sufficiently II small II, several shortcomings 

can occur when such is not the case. Additional difficulties are 

also encountered in zones of shallow or changing curvature 

definiteness. This situation can be summarized by the following 

comments: 

i) There is no direct way of preselecting increment size 

as nodal force - deflection space changes curvature; 

ii) There is no direct way of establishing an upper bound 

on the magnitude of the iterated displacement, strain, 

stress.and energy excursions for a given load increment; 

iii) Excessive iterate excursions inherently occur in the 

neighborhood of IIshallow li slope zones of the force -

displacement space, and; 
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iv) Without intermittent or constant updating, the iterated 

version of the MINR can exhibit nonmonotone potentially divergent 

convergence characteristics for monotone increasing/decreasing, 

positive/negative definite solution curvatures.[14] 

The excessive iterated dependent variable excursions noted 

above tend to cause drifting from the solution curve. When such 

drift is sufficiently large, depending on the topology of the solu­

tion space, rather strong no~monotone type divergence may be ini­

tiated as the iteration process continues [14]. 

3. CONSTRAINED INR (CINR): PREDICTOR PHASE 

In the context of the remarks made in the previous section, 

it follows that one way to limit the excessive excursions of 

successive -iterates is to establish some form of upper bound 

constraint. Riks[lO] first considered this approach by developing 

a methodology which features the INR and a special parameter 

controlling the progress of the computation in nodal force-deflection 

space .In geometrical terms, the control parameter selected 

corre~ponds approximately to the arc length -of the equilibrium 

path to be computed. It is introduced into the governing field 

equations. Hence, for a problem with N displacement variables, the 

addition of the contraint equation yields an N + 1 dimensional 

space the solution to which is obtained by the NR method. 

Due to the manner in which Riks[lO] casts his constraint 

equation, its direct use with the equilibrium equations tends to 

be somewhat-awkward for direct use with the standard FE methodology. 
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To circumvent this difficulty, Crisfield [11,12J employed the 

technique advocated by Batoz and Dhatt [19J for standard displace­

ment control. Using such an approach, Crisfield [11,12J recast 

the out of balance force vector as a parametized function of the 

external load vector. Due to the use of an inner product type 

constraint on the allowable displacement iterate excursions, this 

approach enabled the development of an expression which sizes the 

allowable iterative changes in external loading. 

In the subsections to follow, the constrained approach is 

generalized to a more comprehensive and self-adaptive form. This 

will be partly achieved by introducing a more general constraint 

namely the hyper-elliptic constraint surface (HECS). Because of 

the greater adaptability of the HECS, this will enable the CINR to 

act as a refined self-adaptive predictor algorithm. In this context, 

the resulting algorithmic structure will be left flexible enough so 

that in the next section, an energy constraint can be introduced to 

serve in the capacity of the associated corrector algorithm. 

3.1 Hyper-Ellipsoidal Constraint 

Surface HECS 

As noted earlier, to extend the versatility and adaptability 

of the CINR approach, this paper introduces a more general con­

straint condition namely the hyper-elliptic constraint surface 

HECS as defined by the expression 

where 11·11 designates the Eucl idean norm and 
2 

( 3 . 1 ) 



1/2 
, ,~~ I '2 = (~ .Y ~i ) 

1 

9 

( 3 . 2 ) 

such that referring to Fig. (1), ll~ is a warping parameter which 

together with the load increment 6~~ defines the curvature/geometry 

·of the HECS, while ~~ and !~ are respectively the displacement and 

load excursions relative to the starting point of the given load 

increment. Figure 2 schematically illustrates the successive use 

of (3.1) in conjunction with theMINR algorithm. By tying the 

selection of ll~ to the local curvature of the solution curve, the 

geometry of the HECS can be adaptively updated to improve the 

solution flow. As can be seen from Fig. (2), the HECS itself 

establishes a greatest upper bound possible by the iterative excur­

sions of the dependent field variables. In particular, for the 

nodal displacements, the maximum allowable excursion for a given 

load increment is defined by the expression 

( 3 . 3 ) 

By adjusting 6~~ and/or ll~, varying bounds can be developed for 

the incremental nodal displacement excursions ~~. 

To establish the requisite algorithmic hardware arising from 

the use of the HECS, it follows that outside of turning points and 

bifurcations, there are basically four types of curvature behavior 

associated with the solution curve namely: 

i ) Monotone decreasing and positive definite (MDPD) ; 

i1) Monotone increasing and positive definite (MIPD); 

iii ) Monotone decreasing and indefinite ( r1D I D) ; and 

i v ) Monotone increasing and indefinite (MIID) 
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Since each places varying demands on the algorithmic apparatus, 

the CINR involving the HECS will be structured to admit all such 

situations. 

A structure qenerally exhibits MDPD behavior at the outset. 

This case will be used as the starting point of the development. 

Referring to Fig. (2), it follows that using the multidimensional 

starting point of the ~th increment as a local origin of the HECS, 

we have that 

f . th .th"t t" where or e, 1 era 10n 

Similarly, fi is given by 
-~ 

( 3 .4) 

(3 .5) 

( 3 . 6 ) 

i where A~ denotes the incremental loading parameter which is iter-

atively adjusted until the intersection point of the HECS and the 

solution curve is achieved for the given load increment. 

To start the process, either the MINR, INR, or pseudo INR 

algorithms are used to project the solution curve so as to deter­

mine its intersection with the HECS. In terms of the modified 

NR strategy defined in Fig. (2), the driving force potential 

enabling this calculation is given by 

l1force ... [B*(~~)JT~(~~)}dV 

(3.7) 
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Hence, considering the MINR for the moment, 

. 0 -1 i 
6~~ = [KT(~t)J (At 6f t 

!{[B*(yi-l)]TS(yi-l) _ [B*{~~)JTS_(~~)}dV) (3.8) 
R -t - -t ~ ~ 

where [KT] is updated only at the beginning of the load increment. 

Employing (3.8), (3.4) can be reduced to the form 

where here 

;-1 i-1 yO _an = Y -
~ _t -t 

[B*(~~)JT~(~~)}dV 

-1 
~t = [KT(!~)] 6ft 

( 3 . 9) 

(3.10) 

(3.11) 

To obtain the intersection point, substituting (3.6) and 

(3.9) into the relation defining the HECS namely (3.1), the follow-

ing expression is obtained 

l1t(II~~-l + A~~tI12)2 + «A~)2 - 1)(\\6f\\2)2 = 0 (3.12) 

Solving (3.12) for the tth incremental loading parameter Ai 
t 

yields 

(3.13) 

where here 

(3.14) 
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(3.15) 

(3.16) 

The proper sign appearing in (3.13) is chosen by noting that 
_i-l for MDPD curvature, the bilinear forms =tk ; k = 1,2,3 have the 

following types of definiteness namely 

(3.17) 

Here since A~ must itself be positive definite for MDPD solution 

geometries, (3.13) is chosen to take the form 

(3.18) 

In this context, the CMINR is structured as follows 

O · 1 ~F . 1 . 1 
[K (Y )] - ( - { 1- + [(-=~-2 )2 

T -- t 2::: i - 1 - =: t 2 N 

- t 1 

(3.19) 

Note for MDPD solution curves, the sequence of successive 

~yi iterates are themselves positive definite. Contingent on the 
-t 

successful satisfaction of the convergence criteria, the global 

external load takes the form 

(3.20) 

where I denotes the last iteration count. 
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Because of the foregoing properties, successive iterates 

associated with MDPD portions of the solution curve remain con­

fined inside the HECS. Such is not the case for MIPD situations. 

As seen in Fig. 3, nonmonotone oscillatory convergence is achieved 

wherein successive iterates alternate between increasingly closer 

inside and outside positions relative to the multidimensional 

intersection of the HECS and the solution curve. 

While the CMINR algorithm defined by (3.19) also applies here, 

since the convergence/quality checks [14] used to monitor the state 

of solution development may be keyed in on monotonicity proper-

ties, it is important to determine the "in/outsideness" of succes-

sive iterates. This enables the determination of a consistent 

convergence process. To check for such properties, the functional 

characteristics of the HECS can be used to establish the in/out­

sideness of the ith iterate by evaluations of the following condi­

tion flag namely 

4>i .. i 2 
(lIf!1I 2 

) 2 (I I ~ E R, II 2 
) 2 . - lJR,(II~R,112) + -R, (3.21) 

where 

4>i { > 0 outside point 
R, < 0 inside point (3.22) 

Note for such situations, the definiteness characteristics of 

=!k; k = 1,2,3 are altered. In particular, since the successive 

solution curvatures are steeper than the initial state, it follows 

that 
_i-l 

> 0; 
_i.:..l 

} .:. R, 1 ':'R,2 < 0 
; = 1,2,3 ... (3.23) 

_i-l 
indefinite ':'R,3 
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INSIDE 

HECS 

FIG.3 . Nonmonotone but convergent i terat i ve process associ ated wi th 
HECS constrained MINR algorithm in zone of MIPD curvature 
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In the case of MDID local solution behavior, the bilinear 
_i-l forms ~ k ; k = 1,2,3 have the following definiteness character-

istics for Vi Damely 

_i-l 
> 0; =i-l < 0 } .: .U -~2 

i = 1,2,3 ... (3.24 ) 
_i-l indefinite ':~3 

• < 

Note, in the context of Fig. (4), the force potential driving the 

INR projection of the solution curve into its intersection with the 

HECS is given by the same expression as positive definite situa­

tions, namely (3.8). Here though, due to the nature of the inter­

section, the load parameter takes the form 

" 1 _,"-1 1/2 
4='- ]} - ~ 1 .:. ~3 (3.25) 

Note as with MIPD situations, successive iterates form an oscil-

1atory nonmonotone sequence whose members are alternating inside 

or outside of the HECS. Such properties can be ascertained by 

employing the criterion function defined by (3.21). 

Lastly for MIlD situations described in Fig. (5), all the 

modified algorithms established for the preceeding indefinite 

case also apply here; the only exception being that successive 

iterates display a MOlD type behavior and hence remain inside the 

HECS. In this context, 

(3.26) 



CURVE 

FIG.4 Nonmonotone but convergent iterative process associated 
with HECS constrained MIN~ algorithm in zone of MOlD 
curvature 
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SOLUTION 

FIG.5 . Monotone iterative process associated with HECS constrained 
MINR algorithm in zone of MIPD curvature 
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The preceeding algorithms were all developed for some 

1 0th °t to genera 1 1 era 10n. For the first, several simplifications can 

obviously be made, in particular the load" parameter takes the form 

+ (11~f9.112) 

1/2 

2] (3.27) 

In terms of (3.27), the algorithm defining the successive dis­

placement iterates for PD and ID situations reduce to the follow­

ing "form namely 

(3.28) 

= -
2 l/Z 

_[ K (Yo)] -1 [_( _"_A~~.:::....9. _11..:;.2_) ________ ] 
T - R, lJ R, ( 1 1 ~ R,I 1 2 ) 2 + (I 1 ~ f R, 1 1 2 ) 2 

(3.29) 

In the preceeding algorithmic d~ve10pments, it was tacitly 

assumed that the types of definiteness of the solution curve 

remained unchanged during the successive iterations associated 

with a given load increment. For situations which straddle turn-

ing points, such is not the case. Since the algorithmic structure 

is different for positive and negative definite situations, some 

provisions must be developed to identify such changes in definite­

ness so that the proper modifications can be made. To initiate 

adaptive updates of the stiffness as triggered by definiteness 

changes, it is assumed that load incrementing as enforced by the 

HECS is tight enough so that either MDPD or MIlD behavior is 
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encountered to the left of turning points. For such situations, 

comparison checks between successive iterates can be used to 

monitor definiteness changes. In this context, accounting for 

the initial curvature of a given load increment, the following 

condition flag can be introduced and ~onitored namely 

(3.30) 

where plus to minus sign change can be used to signal updates. 

In the context of (3.30), the algorithm defining Ai takes the form 

o 1 _,0-1 1/2 
4;:'- J} 

-R..2 =R..3 (3.31) 

An alternative test can be used to trigger the updating of the 

stiffness in the neighborhood of turning points. As seen from Fig. 

(6), successive Ai form a monotone decreasing sequence namely 

(3.32) 

While such behavior may initially occur as seen from 

Fig. (7), passed a certain point, successive A,i values can become 

negative definite namely 

(3.33) 

Such a change in d'efiniteness can be used to. trigger the update 

~rocess. At such a pOint, the choice of the proper A! algorithm 

is keyed in on the definiteness encountered. As an exampl~, fo~ 

turning points. which involve transitions from negative to positive 

definite curvature, the monotonicity noted above is reversed. 
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FIC3.6 Iterative process associated with turning point without updating 
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Similar results can also be ascertained by monitoring the 

lIabove/be1owness ll relative to the Ilyll axis of the HECS, namely 
- 2 

. { > I I.E C!,~ -1 ) I I 2; be low 

II~(~~) "2 . 1 
. < IIF(y~- )11 ; above 

.... "IN 2 

(3.34) 

. 
Adjusting for the initial curvature of the given load increment, 

the following condition flag can be used to establish the requi­

site restructuring of the A! algorithm, that is 

i -1 
ct>£ = sgn ( IIL(~~-1)1I2 - 1I~(~~)1I2 ) 

where sign changes signal the need 

= { 

-1; below origin 
i -1 

ct>£ 
+1; above origin 

i>l (3.25) 
fo~ stiffness updating such that 

(3.36) 

In terms of (3.35), the CMINR algorithm takes the following form: 

Note, to keep the above noted algorithmic flow consistent,the ~ signs appearing 

in (3.27) must be replaced by sgn(C~).ThiS will yield the proper sucession of I . 

3.2 Adaptive Warp of HECS 

To establish ll£, the local curvature of the force displace­

ment space is required. In this context, the curvature parameter 

of Bergan et a1. [9J is particularly useful as it represents a 

measure of the local definiteness (positive or indefinite). For 

the present purposes, to establish such a relation, assuming that 
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1l~R- is a cons tant, then ~R.. is defi ned by the· s i ngl e, pa rameter 

relation 

~R- = /l.R..ll~ (3.38 ) 

where 
R-

AI /l.R- = r 
k=l k (3.39) 

In terms of (3.39), the curvature parameter is obtained by taking 

the ratio· of the inner products of llF and the derivative of the 

nodal displacement via /l. k evaluated at k = 1 and R..- 1 respectively. 

This yields the expansion 

(3.40) 

where employing backward finite differences [23], the foregoing 

derivatives can be approximated by 

(3.41) 

In terms of (3.41), (3.40) reduces to 

(3.42) 

such that ll!l and ll!R.._l represent the total variati6ns in nodal 

displacements associated with the first and (R-_l)th load increments. 

The curvature parameter can be further modified by noting 

that for small enough excursions, it follows that 

(3.43) 

hence 
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(3.44) 

where here, the denominator is a direct measure of the incremental 

energy stored during the first load step while the numerator 

denotes the second variation of energy associated with the (l_l)th 

load increment. 

The parameter C~ can be used to scale ~1. To start this 

development, it follows that during the initial stages of any 

loading process, only· modest changes typically occur in [KT] hence 

few iterations occur during say the first increment. Thus 

or in a normed sense 

(3.46) 

Recalling the HECS, it follows that the upper bound value of ~~l 

is given by 

(3.47) 

and hence, 

(3.48) 

Comparing (3.46) and (3.47), it follows that·a good initial 

value of ~1 can be taken as 
N 

~l (initial) = c/ (3.49) 
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where 

(3.50) 

such that a is a user selected parameter which enables an expansion 

or contraction capability for the HECS. Now as we proceed to suc­

cessive load steps, ~~ must be scaled to reflect potential curva­

ture changes in the force-deflection space. Since C~ = 1, this can 

be achieved by letting 

Ns 
(3.51) 

where B enables the user to vary the influence of the curvature 

parameter in defining the warping of the HECS. 

4. ENERGY CONSTRAINT: CORRECTOR PHASE 

As noted earlier, for the present purposes the CMINR is 

employed in the manner of a predictor algorithm. To correct 

the results arising from this stage of calculation, a strain energy 

constraint will be employed to enforce the proper type of mono-

tonicity of successive solution iterates. This is achieved by 

upper bounding the admissible strain energy excursion by scaling 

the variation of load and deflection during the iteration process. 

Such scaling can either be based on worst case individual ~lement 

constraint tests or on an overall global check. If the check is 

failed, to provide for the foregoing scaling, the HECS is shrunken 

so as to maintain the requisite convergence characteristics. 

To initiate the development, a workable expression must be 

obtained for successive strain energy excursions generated during 

the iterative process. In this context, a trapezoidal approximation 
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is employed to evaluate the incremental area lIunder ll the solution 

curve. Specifically the energy accumulated during the ith iter­

ation of the lth load increment "takes the following form namely 

(4. 1 ) 

where 

F(yi-l) = f [B*(yi-l)]TS(yi-l) dv 
- -1 R -1 - -1 

(4.2) 

(4.3) 

To achieve the requisite scaling of the governing field var;­
i ables, ~1 ;s recast as follows 

(4.4) 

; 
where the scaling parameter Xl must be chosen to enforce the follow-

ing energy constraint namely 

(4.5) 

such thate R is a user selected parameter which can either loosen 

or tighten the monotonicity requirements. Hence, once eR is 

selected, (4.1)"and (4.5) lead to the requisite value of X!. in 
i terms of Xl' the HECS can be warped in the abscissa dimension by let-

ting ~l~~l/xi . This effectively reduces its size thereby pr.oviding 

a tighter bound on successive ~~!. 
; 

To obtain the foregoing scaling, Xl must be extracted from 

(4.1) and (4.5). In this context, since !(!!) is dependent on the 

disposition of the energy constraint/scaling parameter X!, in terms 

of (4.4), (4.3) can be recast as follows namely 
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~ [KT(~i-l)] dv ~~i + 

. 2 T . T . 1 
(X~) ~ ([G] [Bn(~~~)] [DT][B*(~~- )j + 

(4.6) 

or in approximate "form by 

Employing (4.6), the energy stored during the ith iteration can 

be written in the form 

(Xi)2 J([G]T[B (~yi)]T[D ][B*(yi-l)] + 
£ R n -£ T -£ 

[B*(~:-l)]T[DT][Bn(~~!)][G]dV~~! + 

(x!)3~[G]T[Bn{~~~)]T[DT][Bn(~~I)][G]dV~Y~ (4.8) 

Rearranging (4.8), we have that 

xiri + "("x i )2 i + (X i )3 i + (xi)4 i £ £ 1 £ r £2 £ r £3 £ r £4 (4.9) 
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where the various bilinear coefficients take the form 

i (6yi)T Fi - l (4.10) r R.l = _R. -R. 

i 1(6yi)T[K (yi-l)]6yi (4.11) 
rR.2 .- 2 -R. T -R. -R. 

. r i = 1(6yi)TJ([GJ T[B (6yi)T[O ][B*(yi~l)] + (4.12) 
R.3 2 _R. R n _R. T _R. 

[B*(~!-1)JT[OT][Bn(6!!)][G])dV6!! 

·i ~6¥i I[G]T[B (6y!)]T[OT][B (6Y!)][G]dV6Y! (4.13) rR.4 = 
- R n - n - -

Truncating (4.8) to 0«~!)2) or less yields the following more 
i tractable algorithmic expression for 6ER.' that is 

(4.14) 

Now, enforcing the energy constraint defined by (4.5), the 

following general and reduced polynomial expressions are obtained 

for xi, that is 

(X
i )4 r i + (i)3 r i t (xl) 2r12 + (xl)ril - eR El- 1 

< 0 (4.15) 
R. 14 XR. R.3 

or more simply 

For simplicity, solving (4.16) for Xi yields R. 

1 

(4.16) 

(4.17) 



31 

i i where for PD situations r£2 > O. As noted earlier, x£ defined 

by (4.17) can be used to resize the HECS thereby providin~ for a 

tighter bound on successive iterations. Having now obtained the 

proper scaling, the energy stored during the ~th load increment is 

given by 
I . 

E - r ~El 
£tot - i=l £ 

(4.18) 

i ' 
where here ~E£ is defined by (4.9) such that local MDPD solution 

curvature is assumed. In such situations, it follows that 

~E! > 0 for ¥ i (4.19) 

Similar monotone behavior of the energy increments is also noted 

for MITD solution curvature. 

In the case of MIPD and MDlD curvatures, since successive 

iterates form an oscillatory nonmonotone sequence, the energy 

increments themselves give rise to an alternating sequence of 

positive and negative definite terms. For such a situation, the 

specific definiteness of successive energy increments is defined 

as follows: 

o if 4>!-1 < 0, 4>~ > 0 
(4.20) 

5. SUMMARY AND DISCUSSION OF NUMERICAL EXPERIMENTS 

The overall algorithmic flow associated with the predictor­

corrector p~ocedure is performed in several main steps. These 

include: 

i) The monitoring of the various condition flags; 
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ii) The application of the various predi~tor-corrector 

constraint algorithms; and lastly, 

iii) The assessment of convergence. 

For the purposes of algorithmic efficiency, the various condi­

tionf1ags can themselves be applied in three main levels which 

have the following purposes namely: 

i) To define the geometry of the HECS contingent upon local 

'solution curvature; calculate C~, u1 ; 

ii) Locate solution positioning relative to HECS so as to 

enable proper structuring of algorithms; calculate 

=i-l ~i-l K1i and' 
-1 '~1 'u ' 

iii) Define conditioning of iterated solution curve via 

several flags noting need for updating and constraint 

tightening; calculate x! etc. 

As noted earlier, depending on the various condition flags, itera­

tion count and user options, the stiffness may be updated and in-. 
verted in the following manner: 

i) Preferential local updates of highly nonlinear elements [14]; 

ii) Standard full global update; 

iii)' Pseudo updates (BFGS [18], Broyden [24], DFP [25] 

Huang [26], etc.); 

iv) Update only at start of given load increment loop. 

Such actions are preparatory to the application of the various 

predictor/corrector algorithms. The predictor phase consists of 
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projecting the solution curve via the MINR, INR or pseudo INR 

algorithms to determine its intersection with the HECS. The 

corrector phase employs an energy constraint to enforce the proper 

type of convergence. This is achieved by upper bounding the admis­

sible energy excursion by scaling the variation of load and deflec­

tion during the iteration process. Such scaling can either be 

based on worst case individual element constraint tests or an over-

all global check. For the present purposes, the three phases of 

convergence te~ting discussed by Pad~van [14] are advocated here. 

There consist of: 

i) Displacement/force norm checks; 

ii) Quality of convergence tests; and, 

iii) Nonlinearity chetks. 

As .a demonstration of the approach developed herein, we con-

sider the following highly nonlinear numerical experiments, namely: 

i) Stretching of a rubber sheet; 

ii) Large deformation loading of a spherical cap; and, 

iii) Pre- and postbuckling of a centrally loaded arch. 

These problems were chosen to illustrate the predictor-correctors 

capability and efficiency to handle varying types of kinetic, 
I 

kinematic and material induced nonlinearity~ To enable the calcula-

tions, special predictor-corrector "plug ins" were developed for 

the ADINA code of Bathe [27]. 

To start, the stretching of a rubber sheet is treated first. 

This problem involves both large deformation kinematics and kinetics 

as well as significant material nonlinearity of the Mooney-Rivlin 
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type [28]. Figure (8) illustrates the geometry, material prop­

erties as well as the FE mesh used to simulate the problem. Based 

on the use of 2-D plane stress 8 node isoparametric elements, Fig­

ures (9 and 10) show various aspects of the response behavior of 

the rubber sheet to wide ranging loads. In addition, Figure (9) 

also lists a comparison of the required number of iterations for 

the MINR and predictor-corrector algorithms over the same load range. 

As can be seen, for the given problems, the current approach is more 

efficient. In particular as seen from Figure 9 a 40% improvement is 

achieved for the given problem. This follows from the fact that the 

HECS tends to generate a larger driving foice potential over the 

classic INR for the same size load step. Because of this, fewer 

iterations are required. More importantly is the fact that the en­

tire iteration process is automatic. The only data. needed is the 

final" load step. Once specified, the load stepping becomes self-

,adaptive. Note, while a, Sand eR are user selectable, for all 

the problems considered herein, unity values proved to yield satis­

factory results. 

Note while the rate of convergence can be modified by changing 

the various conditioning parameters, due to the constraining nature 

of the predictor-corrector algorithm, lIunbounded ll iterate excursions 

are precluded from occurring. Because of this, unlike the INR algor­

ithm which yield~ strongly divergent and unstable successive iterates 

when excessive load steps are employed, the current approath tends to 

yield a stable sdlution even when a relatively large HECS ahd loose 

ene~gy constraint are employed. Whatever solution drift that might 

occur is entirely removed by only moderate tightening of the con­

straints. This strongly stable characteristic makes the predictor­

corrector algorithm more forgiving as to conditioning choices. 
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In terms of the spherical cap problem defined in Fig~ 11', 

Fig. 12 clearly demonstrates the foregoing beh~vioral character­

istics. In particular, as the HECS is tightened, the correct 

limiting behavior is obtained. Note the other results [27] juxta­

posed on this Figure were obtained through the use of the INR 

wherein iteration ,was suspended and hence represents essentially 

a straight Euler-Cauchy type incrementation without regard to un­

balance loads. When iteration is readmitted into the calculations, 

the INR yields highly unstable and divergent solution behavior. 

This is a direct outgrowth of the fact that for the given cap geom­

etry, while the global load deflection characteristics show posi­

tive definite behavior, significant unloading occurs locally. As 

seen in Fig. (13), the slopes of the local element energy-load para­

meter space undergo fluctuations in definiteness. Because of this, 

the overall stiffness can exhibit local "shallowness" hence leading 

to anomalous excursions of the nodal displacements of a given element. 

For the classic INR type operator, such local overshoot tends to grow 

in magnitude as well as spread to neighboring elements ultimately 

leading to a globally divergent solution. For the current approach 

such behavior is completely eliminated by the use of the HECS and 

energy constraint. Because of this, successive iterations can be 

used to eliminate any load imbalances and hence drift. 

Note, for the results depicted in Figure 12, the CINR gener­

ated results were between 70-80% faster than the standard INR with 

iteration suspended, If small amounts of drift were allowed in the 

CINR, 5% max, the speed of calculation improved to the range 140-100% 
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times faster. If the same was attempted for the INR, as noted 

above, divergent solution behavior was immediately encountered. 

The foregoing speed enhancements are associated with the form of 

nonlinearity treated. Had other types been considered, the speed 

enhancements would have varied depending on the generic curvature 

changes encountered. 

Figure (14) illustrates the geometry and finite element model 

of a centrally loaded shallow arch. The model employs plane stress 

eight node isoparametric elements. As seen from Figure (15), good 

correlation is obtained with previous analytical [29] and experi­

mental [30] results. The local load/unload characteristics of the 

pre- to postbuckling transitions are clearly seen in Figure (16). 

As with the cap problem, local changes in definiteness occur in the 

energy-load parameter space. For the given arch though, such defin­

iteness fluctuations are significant enough to lead to unloading/ 

reloading in the postbuckling zone. 

6. CONCLUSIONS 

In terms of' the foregoing:numerical experiments, it follows 

that the predictor-corrector algorithm can handle essentially all 

the types of nonlinearities prevalent to the nonlinear responses 

of structures in a highl~ efficient and self-adaptive fashion. 

This includes situations which undergo definiteness changes as in 

turning points and bifurcations. Because of the manner of the 

formulation, the procedure is applicable to history dependent sit­

uations involving creep and plastiCity. Lastly, due to the form 
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of its algorithmic "har.dware", it can be easily implanted into 

currently available GP nonlinear codes without any need for major 

architectural modification. 
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Abbreviation 

BFGS 

DFP 

CINR 

CMINR 

FE 

HECS 

GP 

ID 

INR 

MDID 

MDPD 

MIlD 

MIPD 

MINR 

PD 

Nomenclature 

Meanin 

Broyden-Fletcher-Goldfarb-Shanno update 

Davidon, Fletcher, Powell method 

Constrained Incremental Newton Raphson Method 

Constrained modified Incremental Newton Raphson 
Method 

Finite Element 

Hyper ellipsoidal constraint surface 

General Purpose 

Indefinite 

Incremental Newton Raphson 

Monotone decreasing indefinite 

Monotone decreasing positive definite 

Monotone increasing indefinite 

Monotone increasing positive definite 

Modified Incremental Newton Raphson 

Positive definite 
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S mbol 

aR, 
i-l 

[B] 

[B n(!)] [G] 

[B*(V)] 

bR, 

R, 
CR 

[OT] 

eR 

~ER, 

FR, 
tV 

~~R, 
i 

fR"fR, 
rJ ;-.I 

[ KT C!') ] , [ KT] 

KR.i 
u 

L . j' L 1 ,..., 

[N] 

Ns 

O( 

Q., Q 
1 '" 

R 

Si j ,~ 

Nomenclature 

Meanin 
Intercept of MINR extrapolation 
solution curve in II~II 'AII~£II 

Linearmatrix coefficient of ~ defining strain 

Nonlinear matrix coefficient of V defining 
strain -

Matrix coefficient of V defining variation 
in strain -

Slope of MINR extrapolation of solution curve 
in II ~II 'AII~f R,II space 

Curvature parameter 

Material stiffness 

Allowable energy ratio 

Energy Increment 

Noda 1 force 

Increment in nodal force 

Load excursions relative to starting point 
of given increment 

Tangent stiffness 

Update parameter 

.Lagrangian strain tensor 

Shape function 

Normed quantity use to define ~R, 

On the order of ( ) 

Body force 

Initial region occupied by structure 

2nd Piola Kirchoff 

stress tensor 
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S mbol 

dS 

v 

[ 

) 

I I 

II 111 

II 112 
[ ]T,( )T 

o ( ) 

A~'A5/,i 
X i 
~ 

Meanin 

Increment in S 

Cartesian type Lagrangian 

displacement 

Volume 

Nodal displacement 

Increment in y 
Displacement excursion relative to starting 
point of given increment 

Matrix 

Vector 

Absolute value 

Absolute value norm 

Euclidean norm 

transposition 

Variational operator 

Scaling parameter for load increment 

Scaling parameter for energy increment 
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