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A METHOD FOR RAPID DETERMINATION OF THE ICING LIMIT 

OF A BODY IN TERMS OF THE STREAM CONDITIONS 

By Edmund E,. Callaghan and John S. Serafini 

SUMMARY 

The effects of existing frictional heating were analyzed to deter-
mine the conditions under which ice formations on aircraft surfaces can 
be prevented. A method is presented for rapidly determining by means 
of charts the combination of-Mach number, altitude, and stream tempera-
ture which will maintain an ice-free surface in an icing cloud. The 
method can be applied to both subsonic and supersonic flow. The charts 
presented are for Mach numbers up to 1.8 and pressure altitudes from sea 
level to 45,000 feet.

INTRODUCTION 

As the operational speed of aircraft is increased through the trn -
sonic region, the frictional heating available to prevent the formation 
of ice on the aircraft becomes an important quantity. The operation of 
missiles and interceptor aircraft is therefore possible under pre-
determined values of altitude, stream temperature, and Mach number which 
will preclude icing. The set of flight conditions which provides a 
surface temperature of 320 F for a particular point on a body traveling 
in an icing cloud is termed the "icing limit" for that point. The 
analysis presented in reference 1 relates the frictional heating, evapor-
ation, and heat transfer for this particular condition. This analysis 
was applied to a symmetrical diamond profile airfoil at zero angle of 
attack and it was found that the most critical region of the airfoil in 
terms of icing limit was on the rear surface behind the midchord 
(shoulder). Although this region is not subject to direct impingement 
of waterdroplets, the water film caused by droplets impinging on the 
front surface runs back over the shoulder and extends the hazard of 
icing over a large percentage of the airfoil. Icing might therefore 
occur at any point on a body which is subject to droplet impingement or 
runback. 

Experimental verification of the calculations presented in ref er-
ence 1 was obtained at the NACA Lewis laboratory on a diamond airfoil of
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5.50 inch chord and 6.82 percent thickness for a Mach number of 1.36 and 
several pressure altitudes. The good agreement between experimental and 
analytical results provides credence for the analytical method presented 

therein. 

The procedure used for calculating the icing limit in reference 1 
can be applied generally to obtain the icing limit for any body provided 
the flow conditions about the body are known. The charts presented 
herein are based on the analysis of reference 1 for calculating the icing 
limit at any point on a body. These charts are similar to that shown in 
figure 1 of reference 1 but cover an altitude range from sea level to 
45,000 feet. Several auxiliary charts are also presented from which the 
pressure coefficient, velocity ratio, or local Mach nuber at a particu-
lar point on the body can be converted to the parameters utilized in the 

icing limit charts.

' "YMB0LS 

The following symbols are used in this report: 

pi-po 
pressure coefficient,

1/2 p01102 

c	 specific heat of air at constant pressure, Btu/(lb)(°F) 

e	 vapor pressure, lb/sq ft 

ke	 coefficient of evaporation 

kh	 coefficient of heat transfer 

L	 latent heat of vaporization, Btu/lb 

M	 Mach number 

ma molecular weight of air 

me molecular weight of water vapor

p	 static pressure, lb/sq ft 

r	 recovery factor 

T	 static temperature, °R 

T0	 minimum free-stream static temperature corresponding to ice-free 

'	 condition on surface as defined in eq. (2), °R 
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V	 velocity, ft/sec 

r	 ratio of specific heats of air, 1.400 

p	 density of air, slugs/cu ft 

Subscripts: 

0.	 free-stream static conditions 

1	 local conditions at edge of boundary layer 

s	 surface

ANALYSIS 

The generalized heat balance in an icing cloud for an insulated 
body heated only by frictional effects is given as follows: 

(1) Heat due to the frictional, or viscous, effects 

plus

(2) Heat due to the kinetic energy of the water droplets 

plus

(3) Heat of fusion 

equal

(4) Heat lost by convection 

plus 

(5) Heat for evaporation of water 

plus 

(6) Heat required to raise temperature of water droplets from stream

temperature to surface temperature. 

Hardy t s relation (ref. 2) is obtained by equating the frictional 
term (1) to the sum of the convective term (4) and the evaporative term 
(5). The heat of fusion term (3) is equal to zero if an ice-free 
surface is defined as being fully wet at 32° F with no ice particles in
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the surface water film. In addition, terms (2) and. (6) are of the same 
order of magnitude and tend to offset each other for calculations, of the 
icing limit. Both increase in value with increasing Mach number; large 
values of either term are found only at large values of liquid-water 
content and flight speed. Such a combination is highly unlikely in 
actual flight since high speeds usually occur at high altitudes, and 
high altitudes imply small liquid-water contents with the exception of 
flight in cumulus clouds of great vertical extent. 

The results of reference 1 indicate that the relation of Hardy 
(ref. 2) applies in particular to a surface barely wetted by a very thin 
film, but is probably nearly correct for the whole range of speeds and 
liquid-water contents of practical interest for high-speed flight. 

The relation of Hardy is given in reference 1 as 

kerneL /e 5	 -	 e1 •\	 (i) T5 = T1	
+ r(y-l) Ml2] - 

kh cP p1 - e	 p1 - e1J 

Because interest in this problem is fixed on a definition 0of flight, cir-
cumstances that provides local surface temperatures of 32 F, the terms 

T5 , L, and e 5 are constants. Hardy observed that for the range of 

temperatures near 320 F the ratio of the evaporation coefficient ke to 

the heat-transfer coefficient kh is very nearly unity. In addition, 

the air in a cloud is fully saturated at the static or free-stream condi-
tions and the free-stream vapor pressure e 0 is therefore equal to the 

saturated vapor pressure at the free-stream static temperature. If it 
is assumed that the flow about the body, outside the boundary layer, is 
accomplished with no change in phase, that is, no condensation or evap-
oration, then Dalton t s law of partial pressures applies and 

e1 p1 

- p0 

Equation (1) can therefore be rewritten in the form 

492 = T
1 (i +	 r Ml2) 

T0 c
1-	 12.75	 e0 

To, - 2776.5 L
P1/Po p0 - 12.75 - p0

 - e] 

(2). 

for purposes of calculation because 

and p1/p0 can be readily calculated. at any 

which is quite convenient 

(T1/To,) (i +	
r Ml2)
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point on a body for shock-free flow from the pressure or velocity dis-
tribution, the stream Mach number, and the recovery factor r. When the 
flow about the body contains a shock, then the parameters 

(Ti/T0,c) (i + r	 M12) and P1/p0 can be obtained from the local 

Mach number, the stream Mach number, the pressure coefficient, and the 
recovery factor r. 

PREPARATION OF ICING LIMIT AND AUXILIARY CHARTS 

Because e0 is a function of TO,c the solution of equation (2) 

must be accomplished by trial and error. In an effort to reduce the 
laboriousness of such calculations a number of charts have been made and 
are presented in figure 1. For each pressure altitude considered, the 
free-stream static temperature corresponding to an ice-free condition 

TO,c is plotted as a function of the parameter ( Tl/To) (i +	 r	 M12) 

by means of equation (2) for constant values of p/p0. For each set of 

values of P1/P0 and (T1/T0,c) (i +	 r M2), a free-stream static 

teurperature exists which corresponds to a surface temperature of 320 F 
and therefore represents the minimum free-stream static temperature for 
an ice-free surface	 The lower limit of the free-stream static 

temperature was considered to be -40° F, since it has been shown (ref s. 3 
and 4) that supercooled water droplets are not likely to exist below this 
temperature. 

The ten icing limit charts presented (figs. 1(a) to 1(j)) were cal-
culated for pressure altitudes from sea level (fig. 1(a)) to 45,000 feet 
(fig. 1(j)) in 5000 foot increments. The use of the icing limit charts 

requires the knowledge of the parameters (T1/T0 ) (i +
	

r M2) and 

p1/p0 . For shock-free flow both these parameters can be readily calcu-

lated from the pressure coefficient C or the ratio of local to free-

stream velocity v1/v0 and. the stream Mach number. For most subsonic 

airfoils either the experimental pressure coefficient or the calculated 
velocity ratio is •known. A variety of methods is available in the lit-
erature for determining local values of C or 	 for almost any 

body in shock-free flow (ref s. 5 to 9). 

In the transonic-supersonic regime, wherein a shock normally exists 
in the flow field, the flow field about a body is. not defined by the 
pressure coefficient and. stream Mach number alone and an additional 
parameter such as shock wave angle or local Mach number is required.
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Most of the results in the literature are presented. in terms of local 
pressure coefficient and local Mach number for constant values of free-
stream Mach number (ref. 10). 

The pressure coefficient may be related to the pressure ratio and 
the stream Mach number by the compressible flow relations for a perfect 
gas without the assumption of isentropic flow as follows: 

P =	 p0V02 =	 0	
=	

- 1 
p1 - p0	 2(p1 - PO)	 2 ,Pl	

) - 

= 1 + I 2 c = 1 + 0.7 
p0	 2 

Hence this result applies to both shocked and shock-free flows. 

The velocity ratio may be related to the pressure ratio and the 
stream Mach number in the following manner for shock-free flow: 

1-1 
V1 \2	 p11112 P0	 o P1 M12	 Pi\T /M1\2 

=	 = p1 p0 MO2 = 

The static pressure - Mach number relation for isentropic flow is given 
by

(3) 

I 
I l 

Solving for M12 gives 

=	 \ M12 [( - 
0)

1 + 

1 + I: M1
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Therefore

i-i 

fv1\ 2 (P1	 i	
r 

)=	 [(

y-1 

________	 y-1 2 1 

= (i-i) 2 [1 + 2 Mo - 	 ) j 
0.286 

- 2.236	 + 0.2 Mo2 - (P1 
VM0 

The parameter 1T /T " ( +	 r M12) is related to p1/p0, the 1 0.c) ' 
stream Mach number, and the recovery factor in the following way for 
shock-free flow; 

T1 I	
r Ml2) 

T	 =)	
(1+1rM12) 

0,c 

but

1+11Ml2 (P1 
-	 =)	

(i+2) 

Multiplying both sides by r, adding unity to each side, and rearranging 
terms yield

l+rM12 = ()	 (l+Mo2)r+(l_r) 

Therefore, by substitution, 

To (l+rMl2)= (l+ Mo2) r+ (l-r) (P 

0.286 
(Pl\ 

= (1 + 0.2 Mo2) r + (1 - r)	 (5)
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For shocked flows the pressure ratio can be obtained by equation (3), 

but the parameter (Tl/TQ,c) (i + 	 r M12) can no longer be related to 

the pressure ratio and stream Mach number as for shock-free flows 
(eq. (5)). 

The parameter (TjJTQc) (i + )j. r M12) can, however, be related 
quite simply to the local and free-stream Mach numbers. The temperature 

ratio T1/T0 is given in terms of Mach number by the energy relations 

which apply to both shocked and shock-free flows as follows: 

T1 l+Ij:MO2 

= + 

therefore

T	
( y-1	

2\ l+XMO2 
1 + 2 r M1) = +
	 M12	 +	

r Ml2)	 (6) 

O,c 

The pressure ratio p1/p0 can be readily obtained by use of equa-

tion (3) if M0 and C are imown. The term MO2 C can be calculated 

from experimental pressure distributions which are usually presented for 
each value of M0 in terms of C. 

Theoretical velocity distributions for many bodies are given in terms 
of the velocity ratio or the square of the velocity ratio. The conversion 
from velocity ratio to pressure ratio (eq. (4)) is shown in figure 2, 
where the pressure ratio is plotted as a function of velocity ratio for 
constant values of the stream Mach number. 

Figure 3 shows the conversion from pressure ratio to the parameter 

(Tl/TO,c) (i +	 r 2) as given by equation (5) for shock-free flows. 

The parameter (Tl/T0,c) (1 +	 r 2) is plotted as a function of the

stream Mach number M0 for constant values of the pressure ratio p1/p0. 

Figures 3(a), 3(b), and 3(c) are given for values of the recovery factor 
r of 0.80, 0.85, and 0.90, respectively. 

The relation given by equation (6) is shown plotted in figure 4 where 

the parameter (Ti/T0,c) (i +	 r M12) is plotted as a function of the
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stream Mach number for constant values of the local to free-stream Mach 
number ratio M1/M0 . FIgures 4(a), 4(b), and 4(c) are given for values 

of the recovery factor of 0.80, 0.85, and 0.90, respectively. 

Discussion and Illustrative Examples 

Most aircraft components which are exposed to icing are of airfoil 
or streamlined shape. For this general class of bodies most of the 
cloud water droplets impinge near the leading edge or nose region. The 
icing hazard, however, is not limited to the region of direct impinge-
ment, since if the impinged cloud droplets do not freeze (because of 
frictional heating) they create a surface water film which flows back 
from the impingement area. The whole region wetted by the film must 
therefore be considered as a region of possible icing hazard. 

The critical point on an airfoil or similar body (i.e., the point 
where the largest value of To, is required for a particular value of 

stream Mach number) occurs at the minimum pressure point because the 
decreased pressure enhances the evaporation and results in a reduced 
surface temperature. If impingement occurs only near the leading edge 
or nose region, the evaporation in the region ahead of the point of 
minimum pressure may be sufficient to remove all the water film and, 
in such a case, the results obtained from charts 1(a) to 1(j) would not 
apply. The actual critical point might therefore occur forward of the 
minimum pressure point therefore, values of To, based on minimum pres-

sure at a particular Mach number would be greater than actually required. 

The use of charts 1(a) to 1(j) can be shown most readily by means of 
several examples. The following example illustrates typical results in 
the subsonic speed range. 

Example I. - Calculation is made of the free-stream static temper-
ature required for an ice-free surface as a function of Mach number for 
an NACA 65-206 airfoil at 15,000 feet pressure altitude and. 1° angle of 
attack. 

The velocity ratio	 can be found for this airfoil by the 

methods and results presented in reference 5. The maximum ve1ocity'°iio 
(minimum pressure ratio) for this airfoil was determined to be 	 °

= 1.139 and occurs at the 45-percent chord station on the upper 

surface. Assuming a value of the recovery factor of 0.85 and that the 
surface is wet at this point determines To, in the following way:
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Free-stream Static-pressure Parameter Minimum free-stream 

Mach number, ratio, p1/p0 T1	
1-1 r Ml2) (1 + -

static temperature, 

(fig. 2(b) and. To,, 

v1/v0) [fig. 3(b),	 i, M]
°R 

[rIg. i(d) p0 

0.400 0.970 1.026 486.8 

.500 .950 1.041 483.8 

.600 .929 1.059 480.0 

.700 .902 1.079 475.6 

The values of To, obviously decrease with increasing Mach number as 

would. be expected. The results of example 1 show, however, that even 
at a Mach number of 0.7, protection is provided at stream temperatures 
greater than 16° F. 

Example 2. - This example is presented. to show typical calculations 
and. results in the transonic speed. range. Determination is made of the 
relation between stream Mach number and stream static temperature which 
will provide an ice-free surface at the midchord. of an 8.8 percent thick 
circular arc airfoil at zero angle of attack for altitudes of 10,000, 
25,000, and 40,000 feet. The recovery factor r is 0.90. 

The values of pressure coefficient C and local Mach number M1 

can be obtained. from reference 10 for stream Mach numbers of 0.848 to 
1.500 and are listed. as follows: 

M0 M1 C 0.7 
2

p1 M, T1	
(A)1

T0,c, 0R 

Altitude, ft (ref. (ref. (ref. C 
10) 10) 10) (cal .. (eq. . (cal- (rig. 4(c) 

at at cu- (3)) Cu- 10,000 25,000 40,000 
mid- mid- lated) lated.)

Mi) 
M13, (fig. (fig. (fig. 

chord chord 1(c)) 1(f)) i(i)) 

0.848 1.023 -0.355 -0.179 0.820 1.206 1.123 460.0 472.5 484.0 
.935 1.140 - .330 -.202 .798 1.219 1.150 452.0 466.5 481.5 

1.110 1.160 - .045 - .039 .961 1.045 1.220 423.5 440.0 464.0 
1.160 1.183 - .028 -.026 .976 1.020 1.241 432.5 459.0 
1.200 1.195 .010 .010 .990 .996 1.260 425.5 454.0 
1.250 1.225 .025 .027 1.027 .980 1.282 447.5 

1.350 1.306 .028 .036 1.036 .967 1.331
-
-435.0

1-1	 9 
= 1 +	 r M1'. 
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The results of example 2 are shown plotted in figure 5, where the 
stream static temperature corresponding to an ice-free condition is 
plotted as a function of the flight Mach number for the three altitudes 
considered. The effect of altitude is clearly illustrated. The free-
stream static temperatures required for protection are higher at the 
higher pressure altitudes, as would be expected since, if other condi-
tions are equal, the decreased pressure enhances the evaporation rate. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics

Cleveland, Ohio, December 4, 1952 
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Figure 1. - Variation of minimum free-stream static temperature T0	 corresponding 

to the ice-free condition with parameter (T 1/10 ) (i +	 r M12) for various 

pressure ratios (eq. (2)). 
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(eq. (2)).
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the ice-free condition with parameter (T1/T0 ) (i + 	 r 1412 ) for various pressure ratios 

(eq. (2)).
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Figure 5. - Variation of minimum free-stream static temperature for ice-free surface 
as function of free-stream Mach number for station at 50 percent chord of 8.8 percent 
thick circular arc airfoil. 
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