1046:
 U

:ACROCOPY RESOLUION TEST CHART

NMSA
 Technical Memorandum 79648


```
                                    L=CL 1+ち J!心ん|:
MAGSAT－
Vector Magnetometer
Absolute Sensor
Allgnment Determination
```


M．H．Acuna

SEPTEMBER 1981

Nationai Aeronautics and Space Administration

Goddard Spece Flight Conter
Greenbelt，Maryland 2077！

magisat vector mainetometer-absulute sensiok ALIGNMENT DETERMI:ATIWN

M. H. Acuña

NASA/Goddard Space Fiight Center
Laboratiry for Extrateriestrial Physics
Planetary Magnetospheres Granch
(ireenbelt. Maryland .olti

This paper discusses a procedure by which the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate systen, can be accurately determined.

The procedure does not require that the magnetic field vector orientation, as generated by a triaxial calioration coil system, be known to better than a few degrees from its true pisition, and minimizes the number of positions througin which a sensor assembly must be rotated to obtain a 3olution.

Computer simulations have shown that gocuracies of better than 0.4 seconds of arc can be achieved under typioal test conditions associated with existing magnetic test facilities.

Tne basic approach is similar in nature to that presented by MePherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Maynetometer are presented and tia problems encountered discussed.

INTRODUCTION

The provem of determining the absolute orientation of masnetic field vector has been solved traditionally by assuming that the field orientation can be accurately established by the geametry of a callbration coil. This method is generally sufficient to determine sensor orientations to within a few minutes of arc from its true direction out if higher accuracies are required not only must we take into account additional parameters in the coil geanetry and its construction, Dut also its lime and temperature stability.

A straightforward method of determining the absolute orientation of a magnetic field vector is by rotation of a fluxgate magnetometer sensor (or any other vector sensor) on a surface about an axis approximately parallel to the field direction, The surface orientation can then be adjusted to obtain a constant reading, Independent of rotation angle. It can easily de shown that

Under these conditions the surface nornal. as measured with rospect to a reference coodinate system, is parallel to the applied magnetic field vector. It i: sbvinus that fir maximum sebmitivity, the field must be applied approximately formal to the sensiry axis.

A major Jrawback of this approach ls the fact that accurate planar rotathas can only be obtained about the local vertival axis due to gravity offects on the supmit structures. In addition the method is extremely tine ㅇunsuming and requites somplex support instramentation surh as bon-magnetic. precisinn. i-deprees-at-freedom fixtures of peotormance cimparable to first order thendulites.
fine prowedure presented beinw obviates the need for maltiple rotations did special manting fixtures and allaws the simultaneras detemination of the sensor assembly and test \cdots all fallity aligment parduters by means of a simple lierative aliseritivn mad medsurements ohtained for three diserete and fixed sensur positions. Variatians with time mad temperature of test eail orientatsons d not afteet the determination of the sensar aligment if their characteristac dine is long compared with the test ine . fhus significant savings in test time are realized sane many surees of roor which otherwise
 eliminated.

d.GANMEN: DPTEGMINATIN METHON

 systemt.

 aciated by

$$
\begin{equation*}
\vec{H}_{R}=[B] \vec{H}_{c} \tag{1}
\end{equation*}
$$

where $[B]=[I]$ (unit matrix) if the systems are nearly aligned. Thus, in general, $\left|B_{i j}\right| \ll 1$ for $i \neq j$.

In analogous fashion we define a matrix [A] which relates the measurements in the sensor coordinate system to the reference coordinate system

$$
\begin{equation*}
\stackrel{\rightharpoonup}{M}_{S}=[A] \vec{M}_{K} \tag{2}
\end{equation*}
$$

where $\overrightarrow{\boldsymbol{H}}_{S}$ is the measured field vector. Again, if we assume near alignment, $\left|A_{i j}\right| \ll 1$ for $i \neq j$ and $\left|A_{i i}\right| \geqslant 1$.

The problem then reduces to determining the elements of [A] from a set of measurements sbtained by varying \vec{H}_{c} and [A] in a known way. This can be accomplished by energizing one axis of the coil system at a time and reorienting the sensor assembly to exchange rows or columns of $[A]$.
in general then we have

$$
\begin{equation*}
\vec{H}_{S}=[A] \vec{M}_{R}=[A][B] \vec{H}_{c} \tag{3}
\end{equation*}
$$

Since the coils are energized one axis at a time and restricting ourselves to unit magnitude vectors, we can write \vec{H}_{c} as a unit matrix

$$
\vec{H}_{c} \equiv\left[\vec{H}_{c}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \tag{4}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=[I]
$$

It then follows that the measurements can be organized in a 3×3 matrix such that

$$
\begin{equation*}
\left[\vec{M}_{S}\right]=[A][B] \tag{5}
\end{equation*}
$$

Under the assumption that the off-diagonal elements of [A] and [B] are sunall, we can rewrite (5) as
and neglecting second order terms.

$$
\begin{equation*}
\left[M_{S}\right] \times[I]+[\delta A]+[\delta B] \tag{1}
\end{equation*}
$$

It is worthwhile to express (7) in component form and we shall use the uppersuript (1) to indicate that these values oorrespond to the first sensor position (axes nearly parallel to test anils axes)

$$
\left[M_{S}\right](1)=\left[\begin{array}{ccc}
(1) & (1) & (1) \tag{3}\\
M_{x x} & M_{x y} & M_{x z} \\
(i) & (1) & (1) \\
M_{y x} & M_{y y} & M_{y z} \\
(1) & (1) & (1) \\
M_{z x} & M_{z y} & \left.M_{z z}+b_{x y}\right) \\
\left(a_{x z}+b_{x z}\right) \\
1 & \left(a_{y x}+b_{y x}\right) & 1 \\
\left(a_{z x}+b_{z x}\right) & \left(a_{z y}+b_{z y}\right) & 1
\end{array}\right]
$$

The first subscript of $M_{i j}$ denntes the sensor axis beind read whlle the second denntes the coil system axis (i.e.. x, y, z) which is energized. The same convention applies to the elements of the matrices $[A]$ and $[B]$.

If we now rotate the senser assembly about the z-axis of the reference system, by exactly 90°, the matrix [A] will now take the form

$$
\left(A_{i}^{\prime \prime)}=\left[\begin{array}{ccc}
-a_{x y} & a_{x x} & a_{x z} \tag{4}\\
-a_{y y} & a_{y x} & a_{y z} \\
-a_{z y} & a_{z x} & a_{z z}
\end{array}\right]\right.
$$

where we nave jenoted oy $\{A]$
the resultant inatrix. Note that this rotation van be easily ascomplished by means of reference thendolites and optical subes anounted on the sensor assembly, as describej later on in this paper.

If we now energize the Nil system axes in the same order as before we have

$$
\left[M_{S}\right]^{(2)}=[A]^{(2)}[B
$$

or. in component form

where the upperscript (2) denotes sensor position number 2. Equations (9) ans (11) constitute a system of 12 equations in 12 unknowns out as show by Mc Pherron and Snare (1978) the characterisilc matrix of the system is singular. Thus an additional sensor rotation is required. We choose to retate the sensor exactly 90° about ine X-axis of the reference system. The sensor aligment matrix then secomes

$$
[A]^{(3)}=\left[\begin{array}{ccc}
-a_{x y} & -a_{x z} & a_{x x} \tag{12}\\
-a_{y y} & -a_{y z} & a_{y x} \\
-a_{z y} & -a_{z z} & a_{z x}
\end{array}\right]
$$

Energizing the coil system axes in sequence we obtain

$$
\left[\dot{M}_{y} j^{(3)}=\left[\begin{array}{ccc}
(3) & (3) & (3) \\
M_{x x} & M_{x y} & M_{x z} \\
(3) & (3) & (3) \\
M_{y x} & M_{y y} & M_{y z} \\
(3) & (3) & (3) \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
\left(-a_{x y}+b_{z x}\right) & \left(-a_{x z}+b_{z y}\right) & 1 \\
-1 & \left(-a_{y z}-b_{x y}\right) & \left(a_{y x}-b_{x z}\right) \\
\left(-a_{z y}-b_{y z}\right) & -1 & \left(a_{z x}-b_{y z}\right)
\end{array}\right]\right.
$$

where the upperscript (3) denotes sensor pisition number 3. It is clear that equations (8). (11) and (13) allow the twolve coefficients $a_{i j}, b_{i j}(i \neq j)$ to be estimated. The diagonal elements $a_{i f}$ and $b_{i i}$ nave to satisfy the direction cosine onnstraints.

$$
\begin{equation*}
a_{i j}=\left[i-\left(\sum_{\substack{j=1 \\ i \neq j}}^{3} a_{i j}{ }^{2}\right)\right]^{1 / 2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i i}=\left[1-\left(\sum_{\substack{j=1 \\ i+j}}^{3} b_{i j}^{2}\right)\right]^{1 / 2} \tag{15}
\end{equation*}
$$

and hence san be calculated from the solution of (3), (11), and (13).

Note that it is not necessary to simultaneously solve these equations, since ((3) and (11) allow $a_{z x}, a_{z y}, b_{z y}, a_{x z}, a_{y z}, b_{x z}$ and $b_{y z}$ to be deternined while the remaining soefficients ean be determined using (11) and (13).

It is then convenient to express the sclutions as a set of four systems ot linear equations, as follows

$$
\begin{aligned}
& {\left[c_{1 j}\right]=\left[\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & -1 \\
0 & -1 & 1 & 0
\end{array}\right]-1\left[\begin{array}{c}
(3) \\
M_{x x} \\
(2) \\
M_{x x} \\
(3) \\
M_{z x} \\
(2) \\
M_{z x}
\end{array}\right]} \\
& {\left[c_{2 j]}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]-1}
\end{aligned}
$$

き

$\pi \cdot l=!\cdot \square 7!$

$\stackrel{\square}{\square}$

$$
\left\lfloor\begin{array}{lll}
C_{23} & C_{24} & B_{33}
\end{array}\right\rfloor
$$

with

$$
\begin{align*}
& \mathrm{B}_{11}=\left[1-\left(c_{44}^{2}+c_{33}^{2}\right)\right] \\
& \mathrm{B}_{22}=\left[1-\left(c_{14}^{2}+c_{34}^{2}\right)\right] \tag{23}\\
& \mathrm{B}_{33}=\left[1-\left(c_{23}^{2}+c_{24}^{2}\right)\right]
\end{align*}
$$

These matrices $[A]_{\text {est }}$ and $[B]$ est represent our first attempt to determine the exact solution and hence, at this stage of the calculation we will have
(i)

$$
\begin{align*}
& {\left[M_{S}\right]^{(i)} \neq[A]_{\text {est }}[B]_{\text {est }}} \tag{24}\\
& i=1,2,3
\end{align*}
$$

To improve our estimates we can utilize (24) to implement an iterative scheme which will converge to the desired result $\left[M_{S}\right]^{(i)}=[A]_{\text {est }}^{(i)}{ }^{[B]}{ }_{\text {est }}$.

To accomplish this we first form the estimated matrices

$$
\begin{aligned}
& \text { (2) } \\
& \text { [A] est }=\left[\begin{array}{lll}
-A_{12} & A_{11} & A_{13} \\
-A_{22} & A_{21} & A_{23} \\
-A_{32} & A_{31} & A_{33}
\end{array}\right] \\
&(3) \\
& {[A]_{\text {est }} }=\left[\begin{array}{lll}
-A_{12} & -A_{13} & A_{11} \\
-A_{22} & -A_{23} & A_{21} \\
-A_{32} & -A_{33} & A_{31}
\end{array}\right]
\end{aligned}
$$

where the $A_{i . j}$'s are elements of the matrix $[A]$ est. We then obtain the products

$$
\begin{align*}
& { }_{\left[\vec{M}_{S}\right]_{\text {est }}^{(1)}}^{(2)}{ }^{[A]}{ }_{\text {est }}^{(1)}{ }^{[B]}{ }_{\text {est }} \\
& {\left[\boldsymbol{A}_{S}\right]_{\text {est }}^{(2)}=[A]_{\text {est }}^{(2)}{ }^{[B]_{\text {est }}}} \tag{27}\\
& \text { (3) (3) } \\
& {\left[\vec{n}_{S}\right]_{\text {est }}=[A]_{\text {est }}[B]_{\text {est }}}
\end{align*}
$$

and the differences with the measured values

$$
\begin{align*}
& \Delta \dot{M}_{1}=\left[\vec{M}_{S}\right]^{(1)}-\left[\vec{M}_{S}\right]_{\text {est }}^{(1)} \\
& \Delta \vec{M}_{2}=\left[\vec{M}_{S}\right]^{(2)}-\left[\vec{M}_{S}\right]_{\text {est }}^{(2)} \tag{28}\\
& \Delta \vec{M}_{3}=\left[M_{S}\right]^{(3)}-\left[\vec{M}_{S}\right]_{\text {est }}^{(3)}
\end{align*}
$$

We then solve equations (14) through (17) utilizing the updated values of $\left[\vec{M}_{S}\right]\left(^{1)},\left[\vec{\mu}_{S}\right]^{(2)}\right.$ and $\left[\vec{M}_{S}\right]^{(3)}$ defined by

$$
\begin{align*}
{\left[\vec{M}_{S}\right]^{(1)}=} & {\left[\vec{M}_{S}\right]_{\text {est }}^{(1)}+\Delta \vec{M}_{1} } \\
{\left[\vec{M}_{S}\right]^{(2)}=} & {\left[\vec{M}_{S}\right]_{\text {est }}^{(2)}+\Delta M_{2} } \tag{29}\\
{\left[\overrightarrow{\mathbf{M}}_{S}\right]^{(3)}=} & {\left[M_{S}\right]_{\text {est }}^{(3)}+\Delta \vec{M}_{3} } \\
\text { Nth iteration } & (\mathrm{k}-1)_{\text {th }} \text { iteration }
\end{align*}
$$

until the smallest element of $\Delta \vec{M}_{1}, \Delta \vec{M}_{2}$ or $\Delta \vec{M}_{3}$ does not exceed a predetermined sal value typically chosen as 10^{-9}. When this condition is satisfied we consider $[A]$ est ${ }^{\text {and }[B]}$ est to be the desired solution.

Note that in equation (28) the value of $\left[\vec{M}_{S}\right]^{(1)},\left[\vec{H}_{S}\right]^{(2)}$ and $\left[M_{S}\right]^{(3)}$ remain constant during the iteration procedure since they represent the actual measurements.

It is instructive at this pint on compare the present method with that Given by MoPnerron and inare (1973). The basic difference is the method of solution of the approximate equation (7). In their paper they state that a minimun of four different orientations of the sensor are required which lead to a system ai 30 equations in 12 unknowns. The solution of this system is implemented using the singuiar value deonnposition metnod of Lanzocs. In the present thethod, the solution of equations (16) throligh (19) is trivial and oniy three seneor positinns are required, eonsiderably sinplifying the measurenerts task.

COMPUTEF SIMULATIJNS

The procedure prosented in the preceeding section was programmed on an IRM 5100 comfuter utilizing the APL language (: $B M, 1977$). This simulation progran is snown in lopendix A. The inputs to the program were two matrices [A] and [B] representing the coil and senzor misalignments. Representatives values for [A] and [B] were chosen and the theoretical measurement value conputed. These values were in turn used to recover the aligrment matrices [A] and [Bj with the methind presented.

Two examples are show in Tables I and II. The first represente typical vaiues expected in the case of the MAGSAT Vector Magnetoneter and a typical coil system. [Aj and [B] are the input matrices and [SVi and [BV] ine corresponding estimated matrices. is can de ooserved the input matrices were recovered exact th the iotn decimas place in only 3 icerations. The second example (Table II) represents an extrene cast where angular misaligments as Large as 10.7° were allowed ior the sensrr matrix. Agal:. the procedure recovered the input matrices with an acourday ni a $\quad 13^{-10}$ in aniy 6 iterations.

For these twi examples we have assumed that the measurements are error free. Below we fistuss severai miorces "t error and their effect upon the overall acourac: of the aligrunent feternination.

Two fundamental measurement limitations aust be taken into account to estimate the overal: accuracy of any aligrment method and they are: a) resolution and D) noise. We will discuss later additional sources of error which fortunately can be adequately accounted for by the aligment determination method.

The resolution with which we san cotaln the measurements establishes a minimum value of signal that can be reliably detected, For the MAGSAT case this was not a limitation because the measurements were obtained with 6 digit resolution. Thus in the absence of noise, we theoretically resolved 0.1 uV of signal which corresponds to 1 part in 4000 (the calibration constant for the instrunent was $4 \mathrm{mv} / \mathrm{nT}$ or $2.5 \times 10^{-4} \mathrm{nT}$ in a field of $50,000 \mathrm{nT}$, which corresponds to an angular error of 1×10^{-3} seconds of arc. However, noise. in both the coil systom and magnetometer, constitutes a more fundamental limitation. Typical values of noise were 0.1 nT RMS for the coil system "zero" fi ?ld and 0.01 nT RMS for the magnetometer. Thus, it became extremely important to mininize the calioration facility noise.

For purposes of discussion let's assume that the "noise" (including all contributions) can be reducec to 0.05 nT by suitable procedures with a worst case value of 0.1 nT . If the test field is $50,000 \mathrm{nT}$, this implies that angular deviations smaller than 0.2 seconds of arc, with a worst case value of 0.4 seconds of arc, cannot ne reliably detected.

These effects were simulated in the somputer program where artificial random "noise" in multiples of 0.4 arc second peak amplitude wos added to the thenretical measurements. The results of these simulations are presented in Tables III and IV for the same cases previcusly presented in Tables I and II. The number of iteratiors in this case was fixed at six since obviously the 10^{-Y} bound for $\Delta \vec{M}_{i}$ could not be achieved. As expected, the aligment matrices obtained show deviations of the same order of magnitude as the random noise amplitude.

An additional source of error is the accuracy with which the test field can be established. Frrtunately a proton precession magnetnmeter used to determine the absoiate value of the field to better than 1 nT which, for the Small misalignment angles involved, does not affect the values obtained to any significant extent. However, to iliustrate its contribution, let us assume that the sensor and coil system are misaligned by 0.3° and the field is in error by 2 nT . For small angles

$$
\begin{equation*}
\Delta \alpha=\frac{\Delta H_{\mathrm{a}}}{\mathrm{H}_{0}} \alpha \tag{30}
\end{equation*}
$$

where $\quad \alpha=$ misaligment angle
$\Delta a=$ deviation of a from true value
$H_{c}=$ applied fieid
$\Delta H_{c}=$ deviation of appilei fielij from true value.

The wective anewar error iriroduced is then 0.04 aro seconds for a 50.000 nT test field. As indisated by (j) this error is proportional io the misaligment angle and nence they sould be made initially as small as fossible. Tnis diso implies that the axis if tine reference coorjinate system should be aligned with tat coil system axis as acourately as prosible.

An addicinnal source of error whish must be minimized is that due to fieid gradients associated witt the coil system. Since the sensor assembly generally cannct rocave abniat the sensor axes, each rotatinn results in a siight translation for at ieast wh r the tire sensors onnstituting the triad. This iranslatinn as unimportant ualess ine ifela gradients are relatively large in whin case the sensors are axposed to different fields depending on their positinn within the ovil system. It is clear Eron the preceeding aiscussion that the field gradient smuld be less shan 0.1 nT donss the iargest dinensto! $\therefore f$ we sen \because assembiy to maintain an overall
 onil syster.

Finally, we must consider the effects introduced by tre presence of magnetic materials in the immediate vicinity of the coil system which, by Induction effects, alter the direction of the "free space" field produced by the coil system. Examples of this problem were the thedolites themselves which incorporate in their construction soft masnetic materials with hish effective permeability. Normally, these instruments are mounted remote from the center of the coll system but unforturately close enough to introduce deviations in the orientation of the generated field oi the order of a few are secouds.

The magnitude of tive induction field can easily be determined whil: a protion precesion magnetometer. Since the aligment determination method does not require precise knowledge of the coil system alignment, the theodolites can be considered as integral parts of the system since their genetry and orientation remain fixed during all the magnetic tests. This obviously can be accomplished with great accuracy since first order instruments are generally used for calibration.

APPLILATION TO THE MAGSAT VECTOR MAGNETOMETER

The sensor assembly for the MAGSAT Vector Magnetometer is shown in Figure 1. Three ring core fluxgate sensors are mounted orthogonally on a glassceramic base. Twn optical cubes were bonded to the sensor assembly as illustrated in the figure and the relative alignment of the cube faces measured with a set of first order thendolites. A description of the magnetometer overall design and electronics has been given by Acuna et al.. 1470 and Acuna, 1980 so it will not be repeated here.

The calioration and alignment tests were conducted at the Goddard Space Fight Center 6 meter Magnetic Test Facility. Two concrete plers separated by approximately 400 meters established an optical azimuch reference, as shown in Figure 2. This dase'ine was used to verify the absolute azimuthal orientation of twh first order theodolites mounted inside the coil building which established the primary, orthogonal. reference coordinate system. The system was verified periodically by manas of auxiliary mirrors and found to yield
repeatable results witn a typical uncertainty of less than 2 aro-seconds. The facility was equipped with a state-nf-the-art servo control system to monitor and correct earth's field varlations in the range of 0 to 25 Hz . The typical noise level of the system was 0.1 nT RMS. All salibration activities took place during selected "quiet" evenings to minimize errors due to refraction eftects by hot atr currents and other significant jisturbances such as nearby electric railroad traffic and wind induced distortions of the coil building. The conputer programs descrided in Appendix ' A ' were modified and expanded as shown in Appendix ' B ' for these tests.

During engineering model tests the efrects of eross-field non-1 nearities in ring-core fluxgate sensors were evaluated and found to be significant for fields greater than 15.000 nT . This problem is shom in figure 3. Ring sore Iluxgate magnetmeters with large effective (ℓ / d) ratios exhibit deviations from linearity of the order of 1 part in 10^{5} for fields applied parallel to the sensitive axis. This figure degrates significantly when a large field is simult. leously applied in a direction transverse to the sensing axis, as shown in Figure 3. This is due to the sppearance of large amplitude second harmonic signals at the sensor ierminals which are in phase quasrature with the signal produced by the an-axis field. These large signals affect the linear operation of the electronics and leat to the observed insirument response. Note that the response function depends apnon the applied on-ax is and ercss-axis fielus.

The stratedy followed for MAGSAT was to mathematically model out these non-linearities rather than iorrect them in the instrmentation. To determine the jependence of the aligiment angles wath the amplitude of the test field caused by the non-linear response, the metmod desericed in the previous section was used with tests fields at by, 0ion 115 . 30.000 nT and $13,000 \mathrm{nT}$. As expected, the results obtained fir the sensor aligment matrix did vary with the amplitude of the test iteld, but not those for the test coil system aligment matrix. This, of course, is what would be anticipated since the sal system aligment inatrix is Eest-ifeld amplitude independent.

Une important fact derived from the measurements was that anly those matrix elements associated with directuns in the plane of d given sensor ring
core were field amplitude dependent. This is not surprising since in the direction perpendicul ar to the plane of the core there exists a large demagnetizing factor due to the narrow ring-core-sensor geometry and resulting small (ℓ / d) ratio (Bozorth, 1y51; Acuna. 1969).

Thus we can write

$$
[A]=\left[\begin{array}{lll}
A_{x x} & A_{x y}\left(B_{x}, B_{y}\right) & A_{x z} \tag{31}\\
A_{y x}\left(B_{x}, B_{y}\right) & A_{y y} & A_{y z} \\
A_{z x} & A_{z y}\left(B_{z}, B_{y}\right) & A_{z z}
\end{array}\right]
$$

The functions $A_{i j}\left(B_{i}, B_{j}\right)$ constitute second order corrections to the basic measurements and hence are not strong functions of B. Thus for all practical purpores choosing $B_{1}=B_{\text {measured } 1}(r a w)$ in (31) above does not introduce any significant errors in the determination of the $\Lambda_{1 j}$ terms. Typical results obtalned for $\mathrm{A}_{1 \mathrm{j}}$'s as a function of the test field amplitude are given in Table 5.

The measurements were least squares fitted to functions of the form

$$
\begin{equation*}
A_{i j}\left(B_{i}, B_{j}\right)=\frac{A_{i j}}{B_{j}} \sin \frac{a_{i j} B_{j}}{A_{i j}} \tag{32}
\end{equation*}
$$

for $A_{12} A^{A_{21}}$ and A_{31} with excellent results. Now (32) only models the response to cross-axis fields without regard for the magnitude of the on axis field. Hence (32) must be expanded to include this dependence

$$
\begin{equation*}
A_{i j}\left(B_{i}, B_{j}\right)=\frac{A_{i j}\left(B_{i}\right)}{B_{j}} \sin \frac{a_{i j} B_{j}}{A_{i j}\left(B_{i}\right)} \tag{33}
\end{equation*}
$$

The functional form of $A_{i j}\left(B_{i}\right)$ was determined experimentally by full 4 . steradian mapping of the instrument response function. The following functional relation was found to fit the measurements with the required accuracy

$$
\begin{equation*}
A_{ \pm j}\left(B_{i}\right)=C_{0}+c_{1} A_{i} \frac{B_{j}}{\left|B_{j}\right|}+C_{2} \exp \left(C_{3} B_{i} \frac{B_{j}}{\left|B_{j}\right|}\right) \tag{34}
\end{equation*}
$$

The final values derived for the MAGSAT flight sensor coeffi ents are given in Table 6. The final absolute alignment accuracy achieved through the measurement and modeling activity was estimated at ± 3 arc seconds.

SUMMARY

A relatively simple procedure to accurately determine the absoliate alignment of vector magnetameter sensors nas been presented. The method minimizes the number of sensor orientations necessary to obtain a solution and requires simpie mathematical operations. Computer simulatiors have demonstrated the rapid convergerce of the solutions to exceedingly small values of error, even for initial deviations from orthogonality as large as 16 degrees. Several error sources limiting the obtainable accuracy in practical applications were presented and it was shown that angular determiration accuracies of the order of 0.4 arc seconds are technically achievable. Finally, the application of the method to the MAGSAT Vector Magnetometer alignment was presented including second order effects associated with large (i, (j) ring core fluxgate sensors.

REFERENCES

Acuna, M. H., "A Miniature Two-axis Fluxgate Magnetometer". IEEE Trans. on Geoscience Electronics, GE-7. Nunber 4, October 1969.

Acuna, M. H., C. S. Scearce, J. B. Seek and J. Scheifele, "The MAGSAT Vector Magner,ometer - A Precision Fluxgate Masnetometer for the Measurement of the Geomagnetic Field", NASA Tecnnical Memorandum 79050 (1978).

Acuna, M. H. "The MAGSAT Precision Vector Masnetometer", APL Technical Digest, Vol. 1, Number 3. 198).

Bozorth, R. M.. "Ferromagnetism", D. Van Nostrand Co. Pub., Princeton. N.J.. 1951.

IBM. "IBM 5100-APL Reference Manual". Pub. Nc. SA21-9213-3. June 1977.
R. L. McPherron and R. C. Snare, "A Procedure for Accurate Calibration of the Orientation of the three Sensors in a Vector Magnetometer". IEEE Trans. Geoscience Electronics. Vol. GE0-16 2. 134-137. April 1978.

```
Figure 1 - Schematic representation of the MAGSAT Vector magnetometer triaxial
    sensor assembly. Three ring-core fluxgate sensor: re mounted orthogonal
    to each other. Two optical cubes bonded to the assembly define the
    reference coordinate system.
Figure 2 - The MAGSAT optical reference system as implemented at the NASA-GSFC
    6-meter Magnetic Test Facility. The 400-meter baseline stability was
    checked perindically against steliar references.
Figure 3 - Response of large (\ell/d)-ratio ring-core fluxgate sensors to cross
    and on~axis fields simultaneously, applied in the plane of the core. The
    deviations from linearity are produced by large quadrature signals
    generated by the sensor under these conditions (large external fields).
    For external field < }5000\mathrm{ nT the effect is negiigible.
```

TABLE 1
magsatsim 0
ENTER SIMULATEI SENSOR ALIGNMENT MATRIX D:

A
ENTER SIMULATEII COIL ALIGNMENT MATRIX ■:

E
AZY, GZX, AYZ, EXZ : 0.0085995-0.00036744-0.0070028-0.00012528 AZY, BZX, AYZ, EXZ $: 0.0089984-0.00036861$-0.007004-0.00012403 AZY, GZX, AYZ, EXZ $: 0.0089984$ - 0.00036861 -0.007004-0.00012403

A

0.99999	0.002	-0.003
0.0056	$0.999 \% t$	-0.007
0.0001	0.009	0.99996

MAGSATSIM O

ENTER SIMULATEI SENSOR ALIGNMENT MATRIX [:

A
ENTEP SIMULATEI COIL ALIGNMENT MATRIX [:

E

$A Z Y, E Z X, A Y Z, E X Z$ AZY, $E Z X, A Y Z, B X Z$ AZY, EZX, AYZ, EXZ $A Z Y, E Z X, A Y Z, I X Z$ $A Z Y, E Z X, A Y Z, E X Z:-0.109974 .0278 E=5-0.30005-8.7113 E-6$ $A Z Y, E Z X, A Y Z, E X Z:-0.109974 .028 E-5-0.30005-8.712 E-6$ A
$0.97468 \quad 0.1$
-0.2
0.05
0.95263
-0. 3
0.005
$-0.11 \quad 0.99392$
$1.0000 E 0 \quad 5.0000 E^{-4} \quad 4.0000 E^{-5}$
3.0000E-6
1.し.OOEO
$2.0000 E^{-4}$
$1.0000 E^{-5}$
4.5000E-5

1. 000000

SV
0.97468
0.1
-0.2
0.05
0.95263
-0.3
0.005
-0.11 0.99392
$1.0000 E 0 \quad 5.0000 E^{-4} \quad 4.0000 E^{-5}$
$2.9993 E^{-6}$
1.0000EO
2.0000E-4
1.0000E-5
$4.5000 E^{-5}$

1. 000000

MAGSATSIM 1

ENTER SIMULATEI SENSOR ALIGNMENT MATRIX D:

A
ENTER SIMULATEII COIL ALIGNMENT MATRIX D:

B

| $A Z Y, E Z X, A Y Z, E X Z$ | $: 0.0089995$ | $-0.00036744-0.0070028-0.00012528$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $A Z Y, E Z X, A Y Z, B X Z$ | $: 0.0089982$ | $-0.00036875-0.007004$ | -0.00012416 |
| $A Z Y, E Z X, A Y Z, E X Z$ | $\vdots 0.008998$ | $-0.00036899-0.0070039$ | -0.00012412 |
| $A Z Y, E Z X, A Y Z, B X Z$ | $: 0.0089977$ | $-0.00036924-0.0070039$ | -0.00012407 |
| $A Z Y, E Z X, A Y Z, E X Z$ | $: 0.0089975$ | $-0.00036949-0.0070038$ | -0.00012403 |
| $A Z Y, B Z X, A Y Z, B X Z$ | $: 0.0089972$ | $-0.00036974-0.0070038$ | -0.00012398 |

0.99999	0.002	-0.003
0.0056	0.99996	-0.007
0.0001	0.009	0.99996

B
$1.0000 E 0 \quad 2.0000 E^{-4} \quad-1.2000 E^{-4}$
$5.3000 E^{-5} \quad 1.0000 E^{-5} \quad 4.5000 E^{-4}$
$-3.6700 E^{-4} \quad 3.8900 E^{-4} \quad 1.0000 E 0$
5V
$0.99999 \quad 0.0019997 \quad-0.0029998$
0.0055999
$0.99996-0.007$
0.0001
0.00900010 .99996

EV
1.0000 EO 1.9978E-4 -1.2017E-4
$5.2955 E^{-5} \quad 1.0000 \mathrm{EO}$ 4.5002E-4
-3.6688E-4
$3.8909 E^{-4}$

1. OOOOEO

TABL IV
MAGSATSIM 1
ENTER SIMULATEI SENSOR ALIGNMENT MATRIX [:

A

ENTER SIMULATEI COIL ALIGNMENT MATRIX G:

E
AZY, EZX, AYZ, EXZ: $-0.111 .1154 E-5-0.30003-4.7675 E^{-6}$ $A Z Y, G Z X, A Y Z, H X Z:-0.109973 .999+E^{-5}-0.30005-8.2689 E^{-6}$ AZY, EZX, AYZ, EXZ : $-0.109974 .0117 E-5-0.30005-9.0327 E-6$ $A Z Y, E Z X, A Y Z, E X Z:-0.109974 .0295 E^{-5}-0.30005-9.2 n 34 E-6$ AZY, EZX, AYZ, EXZ : $-0.109974 .0284 E-5-0.30005-9.376 E^{-6}$ AZY, GZX, AYZ, EXZ : ${ }^{-0} 4.109774 .027 E^{-5}{ }^{-1} 0.30005-9.5215 E-6$ A

0.97468	0.1	-0.2
0.05	0.95263	-0.3
0.005	-0.11	0.99392
E		
1.0000ES	$5.0300 E^{-4}$	$4.0000 E^{-5}$
$3.0000 \mathrm{E}^{6}$	1.000000	$2.0000{ }^{-4}$
1.0000E 5	$4.5000{ }^{\text {4 }} 5$	1.0000EO
SV		
0.97468	0.1	-0.2
0.05	0.95263	-0.3
0.005	-0.11	0.99392
1.0000E0	$4.9978 E^{-4}$	$3.9951 E^{-5}$
$3.1344 E^{-6}$	1.0000E0	2.0003E-4
1.0051E-5	4.5191E-5	1.0000EO

Coefricient	15,000	35.000	55.000

$A_{x y}\left(B_{x}=0\right)$	-1.0604×10^{-3}	-9.26198×10^{-4}	-7.10277×100^{4}
$A_{x z}\left(B_{x}=0\right)$	7.92×10^{-4}	7.92×10^{-4}	7.92×10^{-4}
$A_{y x}\left(B_{x}=0\right)$	-2.868×10^{-3}	-2.61318×10^{-3}	-2.18877×10^{-3}
$A_{y z}\left(B_{y}=0\right)$	2.208×10^{-3}	2.208×10^{-3}	2.208×10^{-3}
$A_{z x}\left(B_{z}=0\right)$	2.3325×10^{-3}	2.3325×10^{-3}	2.3325×10^{-3}
$A_{z y}\left(B_{z}=0\right)$	-2.84214×10^{-3}	-2.65283×10^{-3}	-2.33114×10^{-3}

$$
\begin{aligned}
& 00 \text { 2 } 2+C d d
\end{aligned}
$$

$[1](D \rightarrow 2 d d E \& \rightarrow 2 d) d \Sigma 2$

> Id!. IH'SOd yOA XIHL甘W 3JNByBIIII.
> [8]
> $[: I](\square \rightarrow I d d \quad \& \quad<1 d) d \varepsilon<-1 d \geqslant I d$
> [9.)
> [ric.]
> 「的"!
> [とこ]
> 「ごる
> $[\mathrm{C}]$
> $10,3]$
> [6T।
> |8!
> [121]
> [91.
> [5, 1]
> $[11[7]$
> 1811
> [1! $]$
> [01]
> [6]
> [8]
> $\begin{aligned} & {[8]} \\ & {[9]}\end{aligned}$
> [t]
> [E]

$$
\begin{aligned}
& \Delta[0] 5 \forall 3 \mathrm{~W} \Delta
\end{aligned}
$$


```
[3E] PFOR,1]-PFXF,1]\times(1=PF3{Z,1]: 1=PFS[3,!]
```



```
137] PF3[,3]+PF3[,3]* 1=PFS[2,3], 1=PF3[2,3]
[30] SIGN NORMALJZED MATMIX FON POS.#S'; RFY:
[39] EJ4AP4WPF1
1401 1R24FOGOROPFS
[41] FS*APD(1P+*PF3
[4%) ( MAGSAISIM 0
%
```

$[\varepsilon \varepsilon]$
$[2 \varepsilon]$
$[1 \varepsilon]$
$[0 \varepsilon]$


```
        VMEFASC[ITV
7 A MEAG F;P1;P2;P3
I.1.
[3]
[3] COZ: 'ENTER MEASUREI VALUES FOR POSITION #1 (X OMU),0,U\cdotsU,W\cdotsEN-S,X,Y,Z, ORUER
[4] PI&P1-7 3 f(P1+7 3 PP1+1])[1; ]
[G] 'IIFFFERENCE MATRIX FOR POS.##';'1
[6]
1. ?]
[8] - NORMALITEII MATRIX F
|9] COH: ENTER MEASURED VALUES FOR POSITION WO (XG[I~U,Y->N-S)'
[10] P2+P\\cdots 7 3 p(P2t 7 3 \rhoP2&[])[1;]
[11] 'IIFFERENCE MATRIX FOR POSITION #2';PE
[12] 'ARE VALUES OK'? ENTER YES OR NOP'
[13]}->((+/[]='NOP')=3)/C,O
[14] 'NORMALIZEL MATRIX FOR POS,#2';(PZ&GMAG PZ)
[15] COS 'ENTER MEASURE[I VALUES FOR POS,* ( X XN-S,Y->U-I)'
[16] P3+P3-7 3 p(P3+7 3 PP3+[])[1;]
[17] 'IIFFERENCE MATRIX FOR POS. %';'F3
[18] ARE VALUES OK? ENTER YES OR NOP'
[1.9] - ( (+/[]='NOP')=3)/COE
[20] 'NORMAI.IZEII MATRIX FOR POS.H3';(P3+QMAG P.3)
[21] E1+AP+P1.
[22] E2+AP90+P2
[23] E3+APQOP+PB
[24] 1 MAGSATSIM 0
[2S] SENSOR ALIGNMENT MATRIX';SV
[26] COIL ALIGNMENT MATRIX',EV
\nabla
```

VMAGSATSIML[I]D

AA IS A CONTROL. 1 FOR USE WITH MEAS, O FOR STANI ALONE
[2] K14 $\begin{array}{rllllllllllll}1 & 3 & \rho & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$

[4]
[5]
[6]
[7]
[8]
[9]
$\begin{array}{llllllllllll}K 34 & 3 & 3 & \rho & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array} 1$
AK IS RANIOM NOISE IN MULTIPLES OF 0. t^{\prime}
$\rightarrow(A=1) / \mathrm{CO} 2$

- ENTER GIMLLATEII SENGOR ALIGNMENT MATRIX
$A+[]$
$A[1 ; 1]+(1-(A[1 ; 2] * 2)+A[1 ; 3] * 2) * 0.5$
$A[2 ; 2] 4(1-(A[2 ; 1] * 2)+A[2 ; 3] * 2) * 0, E$
[11] $A[3 ; 3]+(1-(A[3 ; 1] * 2)+A[3 ; 2] * 2) * 0.5$
[12] 'ENTER SIMULATEII COIL ALIGNMENT MATRIX•
[.1.3. $\mathrm{B} \mathrm{E}+[\mathrm{C}$
$[14] E[1 ; 1]+(1-(E[1 ; 2] * 2)+\mathrm{E}[1 ; 3] * 2) * 0.5$
$[15] \quad \mathrm{B}[2 ; 2]+(1-(\mathrm{E}[2 ; 1] * 2)+\mathrm{E}[2 ; 3] * 2) * 0, \mathrm{G}$
$[16][H[3 ; 3]+(1-(E[3 ; 1] * 2)+[[3 ; 2] * 2) * 0.5$
[17] E1+AP+A+, XE
[. 1.8$] \quad A 90[; 3]+\cdots(A 90+\Phi(1 \oplus A))[; 3]$
[19] E24AP904A90+.XE

[21] $\mathrm{E} 3+A P 90 P+A 90 P+. X \mathrm{~F}$
[22] $\mathrm{EL}+3 \mathrm{3} \mathrm{O}(, \mathrm{Fi})+\mathrm{K} \times 1 \mathrm{E}-8 \times 9$?25
[23] E?t $3 \quad 3 p(, \mathrm{EZ})+K \times 1 \mathrm{E}^{\prime \prime} 8 \times 9 ? 2 \mathrm{E}$
$[24] \quad[3433 \rho(, B 3)+K \times 1 E-8 \times 9 ? 25$

[26] M2t-सM2+ 4 4 p 1.

[29] I +1
$[30][01: V A 1+A P[1 ; 2], A P[1 ; 3], A P 90[1 ; 21, A P 90[1 ; 3]$
$[31] \quad V A 2+A P[2 ; 1], A P[3 ; 1], A P Q 0[2 ; 1], A P 90[3 ; 1]$

1. 32] VA3-APQO[3;3], APGOP[3;1], APGOP[3;3], APQO[3;1]

```
[34] A1:M1+.XVA1
[35] A2+M24: xVA2
[.36] AB+MS+.XVAZ
[37] AL.MSt,XVAS
```



```
[40] SV[1,1]+(1-(SV[1,2]*2)+SV[1;3]*2)*0.5
[41] SVf2;2]+(1-(SV[2;1]*2)+5V[2;3]*2)*0.5
[42] SV[3;3]+(1-(SV[3;1]*2)+5V[3;2]*2)*0.5
[43] EV[1;1]*(1-(EV[1;2]*2)+EV[1,3]*2)*0.5
[44] EV[2;2]*(1-(E\vee[2;1]*2)+B\cup[2;3]*2)*0.5
[45] EV[3;3]*(1-(EV[3;1]*2)+EV[3;2]*2)*0.5
[46] A13,H12,A31,E21 : ;A5C1 3];A3[1 4]
[|7] AP&AP+(L,1+K1\timesE1\cdotsSV+,XEV)
[4B] [1+(30L1)\times360\times3600\div02
[47] A90[;3]+-(A90+Ф(1ФSV); [,3]
[50] AP90.AP90+(L2+K2XE2-A90+.XEV)
[51] [l4(-30L2) < 3600\times360\div02
[52] A90P[; 1 3]+\cdots(A90P+105V)[; 1 3]
[53] AP9OF+APQOP+(L.34KBXEZ-A90P+,XEV)
[54] []+(-30L3)\times3600\times360%02
[55] 'SV';SV;[]AV[157];'EV',EV
[56] I+1+1
[57] +(I=7)/0
```



```
\nabla
```

```
        Vmagcoljo
    V Z-MAG K
1.]
「3]
[3]
141 \(\mathrm{CS}]\)
v
VERRORTIITV
7 A FRROR K; SV: SV3.T1,T2, 13

```

[8] SVBK, 1 3]+\cdots(SVB+1ФSV)[, 1 3]
RO] POSJTION \#S RECOHST. MEAS'
[10] [14.T3+6E +, x(SVO+,xEV)
\nabla

```


VECTOR MAGNETOMETER SENSOR
MAGSAT

Fig. 1


MAGSAT OPTICAL REFERENCE SYSTEM
fig. 2


\title{
-
}

\section*{च}

1
```

