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SUMMARY 

An initial  application  of  multispectral LIDAR data  from  the  NASA 
Airborne  Oceanographic  Lidar  (AOL)  to  the  mapping of watermass  boundaries 
is  presented.  The  approach  uses  the  multispectral  lidar  data  from  the 
fluorosensing  mode in  a  cluster  analysis  to  define  water  types.  Individual 
data  points  are  classified as to  parent  water  type(s)  and  then  plotted 
in  plan  view  to  show  the  watermass  boundaries  and  mixing  regions.  The 
methodology  was  applied  to  the  AOL  data  from  the 23 and 25 June  SUPERFLUX 
overflights.  The  results  are  compared  to  salinity-mapping  radar  results 
from  the  same  region. 

INTRODUCTION 

The  regions  where  two  or  more  different  watermasses  meet  are  usually 
characterized  by  a  high  degree  of  spatial  and  temporal  variability. 
They  are  often  the  sites  of  locally  intense  mixing  and  interacting 
smaller-scale  phenomena  such  as  intrusions  and  interleavings.  Field 
studies  of  such  regions  are  difficult  because  of  the  multiplicity  of 
length  and  time  scales  present,and  conventional  shipborne  hydrographic 
techniques  often  cannot  provide  adequate  spatial  resolution or data  of  a 
sufficiently  synoptic  character.  Remote  sensing  systems  have  the  capability 
to  survey  large  areas on a  nearly  synoptic  basis  and  many  of  these 
systems  are  capable of providing  the  needed  spatial  resolution.  Since 
investigators  have  shown  that  watermasses  with  distinct  physical  origins 
and  histories  often  have  a  distinct  biochemical  makeup  as  well,  (refs. 
1,2,3,4),  remote  sensing  systems  which  measure  biochemical  parameters 
could  be  employed  to  characterize  water  types  present  in  a  survey 
region, and  to  map  their  horizontal  structure.  One  such  system  is  the 
Airborne  Oceanographic  Lidar  (AOL)  operated  by  NASA/  Wallops  Flight 
Center.  This  system  actively  irradiates  the  water  column with light  at 
a  fixed  wavelength,  and  measures  the  intensity  of  the  return  signal. 
Operated  in  the  fluorosensing  mode,  the  system  measures  a  wideband 
spectrum  of  laser-stimulated  fluorescence  from  the  biochemical  constituents 
of the  water,  such as chlorophyll  and  other  light-absorbing  pigments. 
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To use  the  fluorosensing AOL data  for  classifying  water  types,  one 
would  ideally  like  to  use  all  of  the  information  available  in  the  return 
spectra  simultaneously. A convenient  technique  for  dealing  with  data 
vectors  consisting  of  many  measured  parameters  is  cluster  analysis. 
Cluster  analysis  is  a  method  of  dividing  a  total  data  set  into  groups, 
or  clusters,  using  all  of  the  measured  parameters.  In  this  paper  we 
describe  an  initial  application  of  such  a  technique  to AOL fluorosensing 
data.  The  data  were  obtained on  23  and  25  June  as  part  of  an  examination 
of  the  application  of  aircraft  remote  sensing to the  study  of  the 
Chesapeake  Bay  outflow.  The  AOL  operation  and  data  set  are  described 
elsewhere  in  these  proceedings  (ref. 5). 

The  data  sets  used  in  the  analysis  consisted of discrete  spectral 
samples  in  twenty  bands,  plus  simultaneously  recorded  data  from  a  thermal 
infrared  scanner. A sample  AOL  spectrum  is  shown  in  Figure 1. The  23 
June  data  set  consisted  of  4053  sample  spectra  taken  along  the  flightlines 
shown  in  Figure  2a.  The  25  June  data  set  consisted  of  5410  sample 
spectra  along  the  flightlines  shown  in  Figure  2b.  The  data  were  smoothed 
along  each  flightline  and  rescaled to the  interval  [-1, +1] so that 
subsequent  processing  would  not  be  dominated  by  any  single  band. 

ANALYSIS METHODOLOGY 

Analysis of the AOL data  proceeded  in  three  stages, (1) empirical 
orthogonal  function (EOF) decomposition  to  reduce  the  dimensionality  of . 
the  sample  spectra,  (2)  cluster  analysis  to  define  basic  water  types  and 
(3) projection of each  data  point  on  the  characteristic  vectors  of  the 
water  types  to  determine  the  spatial  distribution  of  each  water  type.  Each 
of  these  processing  stages  is  discussed  below. 

EOF  Analysis 

Because  many of the  spectral  peaks  seen  in  Figure 1 cover  several 
adjacent  spectral  bands,  the  AOL  data  were  subjected  to  an  EOF  decomposi- 
tion  to  define  a  new  orthogonal  basis  for  the  spectrum.  This'new  basis  is 
computed  from  the  covariance  matrix  formed  by  using  the  entire  set of 
spectral  samples  to  compute  the  covariance  between  bands.  The  eigen- 
vectors  of  this  matrix  form  the  new  basis,  and  the  eigenvalues  represent 
the  amount  of  the  total  variance  in  the  data  accounted for by  the 
associated  eigenvector  (ref. 6). In  practice,  the  first  several  eigen- 
values  accounted  for  almost  all  of  the  variance  in  the  data.  This  fact 
allowed  the  dimensionality  of  the  problem  to  be  reduced  in  subsequent. 
analysis  by  retaining  only  major  contributions  to  the  variance  in  the 
transfqrmed  spectra.  The  reduced,  transformed  spectra  were  then  used  in 
the  cluster  analysis  (in  what  follows,  sample  spectrum  means  the  trans- 
formed,  reduced  spectrum). 
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Cluster  Analysis 

The  cluster  analysis  provides  a  means  for  dividing  the  total  set  of 
sample  spectra  into  subsets,  called  clusters,  where  the  sample  spectra  in 
each  cluster  are  somehow  similar.  These  clusters  are  then  assumed  to 
represent  characteristic  water  types  present  in  the  surveyed  region.  There 
exists  a  variety  of  similarity  (and  dis-similarity)  measures  which  could 
be used  to  subdivide  the  data  (refs. 7 , 8 ) .  The  similarity  criterion 
used in the  examples  presented in this  paper  is  essentially  a  distance 
measure  in  a  space  whose  axes  are the  spectral  bands  of  the  sample  spectra. 
A distance  measure  was  selected  to  facilitate  the  assignment  of  percentages 
in  the  final  stage  of  processing. 

The  distance  measure  used  here  is  the Lm norm  where  the  distance, 
between  any  two  points x and xkis defined  as diky 

2 2 

i 

ik = MaxIxij-Xkj [ (1) 
j 

where j denotes  a  spectral  band.  The  data  are  then  arbitrsrily  divided 
into  a  given  number  of  clusters,  say L, and  the  centroid  Yk  of  the kth 
cluster  is  computed  as 

"k 
y = -  1 c  x ij kj i=l 

where % is  the  number  of  sample  spectral  in  the kth cluster  and j is the 

ipectral.  bands. The  sum  of  the  distances,  Ek,  of  each  element  of  the kth 

cluster  from  the  cluster  centroid  is  then  computed  as 

ij-'kj 

The  sum, D, of the E forms  the  objective  function  tested  by  the  clustering 
algorithm to determine  the  locally  optimal  subdivision  of  the  data  into 
the  prespecified  number  of  clusters. 

k 

In application,  each  data  point  is  experimentally  transferred  from  its 
parent  cluster  to  every  other  cluster  until  D  reaches  a  minimum  for  that 
cluster  level.  Note  that  Dmin is monotonically  decreasing  for  increasing 

numbers  of  clusters,  until  Dmin=O  when  every  point  defines  a  separate 
cluster.  The  number  of  clusters,  and  hence  water  types,  selected  must 
depend in part  upon  the  shape  of  the D versus  cluster  number  curve,  and  the 
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physical  significance  of  the  number  of  clusters. 

Projection of the  Sample  Spectra on the  Cluster  Centroids 

The  ultimate  goal  of  the  analysis is to  classify  each  sample  spectrum 
as to  the 
theref  ore 

parent  water type(s) which  makes  up  its  spectral  shape.  We 
wish to  compute  the  scalar  coefficients, %, such  that 

L 
maxl x - c ij %'kj I 
j k=l 

is  a  minimum  subject  to  the  constraints  that 
L 
1 % = 1  
k=l  

This  can  be  cast  as  a  straightforward  linear  programming  problem  (ref. 9) 
which  yields  the  desired $. Note  that  the % represent  the  proportion 
of  each  basic  water  type  making  up  a  particular 2 and  that  the  criteria 

for  best  fitting  the % has  the  same  distance  measure  as  the  clustering 
algorithm. 

j' 

To this  point  in  the  processing,  no  spatial  information  has  been 
employed  (except  to  assist  in  selecting an  appropriate  cluster  level). 
The  method  classifies  each  data  point  based  entirely  upon  its  spectral 
characteristics.  The  results  of  the  classification  are  then  plotted  in 
physical  space  to show  the  distributions  of  the  different  water  types. 

APPLICATIONS  TO AOL FIELD  DATA 

The  analysis  technique  described  above  was  applied  only to those 
flightlines  outside  the  Bay  mouth  to  attempt  to  define  the  boundaries  of 
the  Chesapeake  Bay  outflow  plume. An L-band  salinity  mapping  radar  was 
flown  simultaneously  with  the  AOL  and  provides  a  basis  for  comparison  with 
the AOL results  reported  here  (ref. 10). 

June 23 ,  1980 Data  Set 

The  first  data  set  considered  was  obtained  during  early  ebb on 23 
June 1980. The  subset  of  flightlines  used  contained 1994 sample  spectra. 
The EOF analysis  was  performed on the  rescaled  data  and  the  sample 
spectra  were  transformed  using  the new basis.  Since  the  first  four 
eigenvectors  accounted  for 97 percent  of  the  variance  (Table I) only 
the  spectral  bands  corresponding  to  the  first  four  eigenvectors  were 
retained  in  the  transformed  spectra. 
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The  transformed  sample  spectra  were  then  subdivided  into  one,  two, 
three,  four,and  five  clusters.  Figure 3 shows  a  plot  of D versus  cluster 
number. is  monotonically  decreasing  and  each  increase in cluster 
number  results  in  a  decreasing  reduction  the  value  of D Figure 4 shows 
the  results  of  the  clustering  at  the  two  and  three  cluster  level.  Note 
that  the  plume  structure  remains  essentially  unchanged  but  that  the  off- 
shore  region  contains  more  structure at the  higher  cluster  level.  We  thus 
have  a  well-defined  baywater  plume  and an  offshore  region  which  can  be 
further  subdivided  into at least  two  different  water  types;  therefore  the 
percentage  distribution  of  the  three  water  types,  plume  and  two  offshore 
water  types,  was  computed  for  this  data  set. 

min 

Dmin 

min 

Figure  5  shows  the  percentage  distributions  of  the  three  water  types. 
For  comparison,  the  L-Band  salinity  map  is  shown  in  Figure 6 .  Our  results 
show  the  Bay  plume,  Figure 5a, extending  southward  along  the  coast  with 
two  distinct  bulges.  The  northward  bulge is  clearly  the  emerging  plume  for 
the  current  tidal  cycle  (the  tide  stage  is  early ebb), while  the  second 
bulge  may well  represent  a  remnant  plume  from  the  previous  tidal  cycle. 
The  other  two  water  types  are  shelf  waters  which  have  been  subdivided  into 
two sets, shelf  water  from  north  of  the  Bay  mouth,  Figure  5b,  and  shelf 
water  from  southeast of the  Bay  entrance,  Figure  5c.  Evidence  that  the 
second  bulge  of  the  plume is  from  a  previous  tidal  cycle  is  seen  in 
Figure  5b  where an isolated  pocket  of  northern  shelf  water  lies  between  the 
southeast  shelf  water  and  the  Bay  water. A new  infldx  of  northern  shelf 
water  is  apparent  at  the  top  of  Figure  5b. 

A comparison  of  the  structure  mapped  by  the  analysis  techniques  used 
here  and  the  L-band  salinity  map  shows  good  agreement  between  the  two 
within  the  license  taken  in  contouring  provided  by  the  wide  flightline 
spacing.  Notice,  however,  that  the  clustering  approach  has  been  able  to 
distinguish  between  two  types of  shelf  water,  especially  east  of  the  Bay 
entrance,  thus  providing  potentially  useful  information  about  the  complex 
circulation  in  this  region. 

June  25, 1980 AOL Data  Set 

The  25  June  data  set  analyzed  consisted  of 3109 sample  spectra.  The 
results  of  the  EOF  analysis  are  given in Table I, where 97 percent 
of  the  variance  is  accounted  for  by  the  first  four  eigenvectors.  The 
transformed  spectra  were  clustered in the  same  way  as  the 23 June  set, 
and  the Dmin values  versus  cluster  number  are  plotted  in  Figure 3 .  

The  variance  is  more  distributed  over  the  eigenvectors  than  for  the 
23 June  case,  and  there  is  a  more  evident  difference  between  clustering 
at  the two-and  three-cluster  level,  Figure 7. For  comparison  with  the 
23 June  results  the  analysis of this  data  set  continued  at  the  three- 
cluster  level. 
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The r e s u l t s   o f  mapping water type   pe rcen tages  are shown i n   F i g u r e  8. 
These p l o t s  are cons ide rab ly   d i f f e ren t   f rom  the  results p r e s e n t e d   i n  
F igure  6. Here we see that desp i t e   be ing   ve ry   nea r  slack water a f t e r  
f l o o d   i n   t h e   t i d a l   c y c l e ,   t h e  Bay water type   covers   the   whole   nor thern  
and   wes te rn   por t ion   o f   the   reg ion   near   the  Bay en t r ance ,   w i th  a band  of 
roughly  uniform  width  extending  southward  along  the  coast .   Notice  that  
t he   bu lges   s een   on  23 June  are n o t   i n   e v i d e n c e   h e r e .  The o t h e r  two 
water types   de f ined  by the   t echn ique  are n o t  as c l e a r l y   d i s t i n g u i s h a b l e  
as in   t he   p rev ious   example .  Type 2 ,  F igu re   8b ,   cou ld   be   i n t e rp re t ed  
e i t h e r  as n o r t h e r n   s h e l f  water t rapped  f rom  the  previous  ebb  cycle  as i n  
t h e  23 June case, o r  as a n   i n t e r m e d i a t e   t y p e   c o n s i s t i n g   o f  a mixture  of 
s h e l f ,   F i g u r e  8c, and  plume water. 

The L-Band s a l i n i t y  map a l s o  shows a h i g h   d e g r e e   o f   v a r i a b i l i t y  
(Figure 9 ) .  N o t i c e   t h a t   t h e  plume  boundary  of   Figure  8a  c losely  paral le ls  
t he   do t t ed   boundary   ove r l a id   i n   F igu re  9. The c l u s t e r   a n a l y s i s   d o e s   n o t  
show t h e   h i g h e r   s a l i n i t y   t o n g u e   j u s t   s o u t h   o f  Cape C h a r l e s   i n   F i g u r e  9. 
Also i n   F i g u r e  9 ,  t h e   h i g h   s a l i n i t y  band (30-31 p p t )   s o u t h e a s t  of  Cape 
Henry corresponds w e l l  w i t h   t h e   t y p e  2 water def ined  by t h e   c l u s t e r  
a n a l y s i s .  The complex s t r u c t u r e   s e e n   i n   F i g u r e  9, e s p e c i a l l y   t h e   h i g h  
s a l i n i t y   b a n d ,   a n d   t h e   e a s t e r n   e x t e n t   o f   t h e  plume i n   t h e   n o r t h e a s t  as 
def ined  by t h e   c l u s t e r   a n a l y s i s   c o u l d  well b e   t h e   r e s u l t  of o f f shore  
wind d r i v i n g   t h e   s u r f a c e  waters eastward.  Such a s i t u a t i o n  would 
spread   the  Bay water eastward of t h e  Bay en t r ance ,   and   cou ld   a l so  
r e s u l t   i n   l o c a l   u p w e l l i h g  a t  t h e   l o c a t i o n   o f   t h e   h i g h   s a l i n i t y  band  of 
F igure  9.  

SUMMARY AND CONCLUSIONS 

The r e s u l t s   p r e s e n t e d   a b o v e  are only  preliminary;  however,   the 
methodology  described  here i s  shown t o   e f f e c t i v e l y   d e f i n e  water types 
based   so le ly   on   the  AOL spectrum  and  the  thermal   infrared  scanner   data .  
It is  no tewor thy   t ha t   desp i t e   t he  fac t  t h a t  no s p a t i a l   i n f o r m a t i o n  was 
employed i n   t h e   a n a l y s i s ,   t h e  method d i v i d e s   t h e   d a t a   i n t o   s p a t i a l l y  
c o n t i g u o u s ,   p h y s i c a l l y   p l a u s i b l e   c l u s t e r s .  A compar i son   o f   t he   r e su l t s  
o f   t h e   c l u s t e r   a n a l y s i s   w i t h  a v e r y   l i m i t e d   a l t e r n a t e   d a t a  set shows  good 
agreement i n   g e n e r a l ,   a l t h o u g h   d i f f e r e n c e s  are a p p a r e n t   i n   d e t a i l .  The 
c o m p l e x i t y   o f   t h e   s p a t i a l   s t r u c t u r e   d e v e l o p e d   f o r  25 J u n e   ( b o t h   s a l i n i t y  
and water type   mapping)   p rec ludes   de ta i led   in te rpre ta t ion   wi thout   addi t iona l  
suppor t ing   in format ion   such  as wind condi t ions   and  exact t i d e   s t a g e .  

The 25 June water type  mapping r e s u l t s ,   i n   c o n t r a s t ,  show a smooth, 
real is t ic  s t r u c t u r e .  The c lear  d e l i n e a t i o n   o f   t h r e e   b a s i c  water types  and 
t h e   s p a t i a l   p l o t s   o f   t h e i r   d i s t r i b u t i o n  are s u g g e s t i v e   o f   t h e   c i r c u l a t i o n  
p a t t e r n   i n   t h e   r e g i o n .  On ebb ,   the  Bay water emerges  and  flows  south  along 
the   coas t   wh i l e   she l f  water from  along  the Delaware Peninsula  i s  t rans-  
ported  southward  and l i es  between  the  plume water and   she l f  water from 
sou theas t   o f   t he  Bay entrance.   South  of  Cape  Henry, t h e   t h r e e  water types 
i n t e r a c t   a n d  mix .   Dur ing   f l ood ,   t he   t i da l   cu r ren t s   o f f   V i rg in i a  Beach are 
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directed  roughly  northwest  which  results  in  the  trapping  during  flood of 
plume  water  and  northern  shelf  water  in  the  inshore  region  south  of  Cape 
Henry.  Early  in  each  ebb  cycle  these  trapped  remnants  are  still  in 
evidence.  For  the  plume,  this  results  in  the  double  bulge  seen  in  Figure 6a, 
and  the  scalloping of the  plume  seen  in  SEASAT-SAR  imagery of the  coast 
south of Cape  Henry.  Thus,  to  the  extent  that  the  analysis  defines  realis- 
tic  water  types,  the  results  provide  useful  information  about  the  distri- 
bution of those  water  types  and  the  circulation  patterns  which  can  produce 
such  distributions. 

With  respect  to  the  analysis  methodology  a  number of areas  bear  further 
investigation.  In  the  results  presented  here  three  analysis  steps  were 
performed,  the EOF analysis,  the  clustering,and  the  assignment of water 
type  percentages.  For  the  EOF  analysis  the  data  were  rescaled  to [-1, +1] 
so that  no  single  spectral  band  would  dominate  the  results.  One  would 
certainly  like  to  investigate  other  scalings  such  as  unit  variance 
scaling,  no  scaling, or some  weighted  rescaling.  Further,  one  should  in- 
vestigate  including  the  L-band  results  in  the  analysis  as  an  additional 
dimension  of  the  data  vectors  since  these  data  were  obtained  simultaneously 
with  the AOL data.  In  clustering  the  data  the la norm  was  used  since  that 
distance  measure  was  easily  employed  in  the  later  assignment  of  water  type 
percentages.  However,  other  norms do exist  such  as  the  euclidean or 1 
norm  and  the  norm, 2 

1 

The  second  measure  can  easily  be  accommodated  by  the  linear  programming 
approach  used  in  the  third  stage of the  processing.  The  euclidean  norm 
could  also  be  accommodated by casting  the  assignment  problem  as  a  quadratic 
programming  problem  (ref. 11). Finally,  the  selection  of  final  cluster 
level  is  presently  subjective  in  that  no  absolute  objective  criterion  exists 
for  choosing  an  optimal  cluster  level.  In  practice  it  may  not be possible 
to develop  such  a  criterion  in  view of the  monoticity of Dmin with  cluster 
level,  however  it  may  be  possible  to  refine  the  selection  process  by  also 
considering  the  distributions of number of spectra  in  each  cluster  and  the 
mean  and  variance of the  distance  of  sample  spectra  from  their  cluster 
centroids. 

Despite  the  fact  that  none  of  the  above  variations  was  included  in 
the  preliminary  analysis  reported  here,  the  results  are  physically  realis- 
tic  and  compare  favorably  with  a  limited  comparative  data  set.  Furthe5 
refinements  in  the  approach  may  well  improve  the  overall  quality  and 
confidence  of  the  final  results. 
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TABLE I 

PERCENT VARIANCE ACCOUNTED FOR BY 
FIRST FOUR EMPIRICAL ORTHOGONAL FUNCTIONS. 

EOF 

1 

2 
3 
4 

TOTAL 

23 June 

89.5 
3.6 

2.5 
1.4 

97 .O 

25 June 

73.8 
12.4 

8.6 
1.7 

96.5 
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AMPLITUDE 

" 
no t  used used 

AOL SPECTRAL BANDS 

F i g u r e  1.- AOL r e t u r n   s p e c t r u m .  Only t h e   l e f t m o s t  20 c h a n n e l s  were 
used  i n  t h e   a n a l y s i s .   M a j o r   p e a k s  a re  a n n o t a t e d .   ( P r o v i d e d  by 
F .  Hoge  and R .  S w i f t ,  NASA/Wallops F l i g h t   C e n t e r . )  

L 76"OO' W 

(a) June  23. 

3 0' 

37'00' N 

3 0' 

Figure   2 . -   June  23 and 

0' 76'00' W 30' 

(b) June  25. 

25 AOL f l i g h t   l i n e s .  

I 0' 

37'0d N 

I 
3 0' 

* 
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NU-LBER OF CLUSTERS 

(a) Two c l u s t e r s .  (b) Three c lusters .  
F igure  4.- S p a t i a l   d i s t r i b u t i o n  of c l u s t e r   a s s i g n m e n t s   f o r  

June 23 f o r  two and t h r e e   c l u s t e r s .  
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"."..... ..-..-.-...._.__.._"_.____ 
~ - " 

(a) Shaded areas i n d i c a t e   m o r e  than 50% water t y p e  1. 

(b)  Shaded areas i n d i c a t e  more than 50% water t y p e  2 .  

F i g u r e  5.- S p a t i a l   d i s t r i b u t i o n   o f  water t y p e s  1, 2 ,  and 3 
f o r  June 23. 
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(c) Shaded areas i n d i c a t e  more than 50% water type 3 .  

Figure  5.- Concluded. 

Figure 6.- L-band microwave  radiometer  salinity  map 
(from ref. IO). 
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(a )  Two c l u s t e r s .  (b)  Three   c lus t e r s .  

F igure  7.-  S p a t i a l   d i s t r i b u t i o n  of c l u s t e r   a s s i g n m e n t s   f o r  
June 25 f o r  two and t h r e e   c l u s t e r s .  

( a )  Shaded areas i n d i c a t e  more than  50% water type  1- 

Figure  8.- S p a t i a l   d i s t r i b u t i o n  of  water  types 1, 2 ,  and 3 
f o r   J u n e  25. 
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(b) Shaded areas i n d i c a t e  more than 50% water type  2. 

(c )  Shaded areas i n d i c a t e  more than  50% water type  3 .  

Figure  8.- Concluded. 
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Figure 9.- L-band microwave radiometer sa l in i ty  map (from re f .  10).  

1 5 7  


