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SUMMARY

A new explicit-implicit method for solving Navier-Stokes equations has been

studied. The method has second-order accuracy in space and time, preserves the con-

servation form, and is much less complex than other implicit methods since it

requires no block or scalar tridiagonal inversions. It is used to solve a complex,

two-dimensional, steady-state, supersonic-flow problem. A discussion is given of the

computational efficiency of the new method and of the quality of the solution

obtained from it at high Courant-Friedrich-Lewy (CFL) numbers. Modifications are

discussed and certain observations are made about the method which may be helpful in

using it successfully.

INTRODUCTION

Many numerical methods have been developed in the past several years to solve

compressible Navier-Stokes equations, but the emphasis recently has been to develop

implicit methods which are not subject to the conventional explicit stability condi-

tions. However, the implicit methods are still restricted in time-step size by accu-

racy and stability of the solution. Also, their programming complexity and computing

time per time-step are much greater than those of the explicit methods. Recently,

MacCormack (ref. I) has developed a new method which is an implicit analog of his

unsplit explicit method (ref. 2). This new method removes the explicit stability

conditions, thus allowing larger time-step size to advance the solution. It can be

added easily to existing codes which use the explicit method of reference 2.

Further, the new method has second-order accuracy in space and time, preserves the

conservation form, and requires no block or scalar tridiagonal inversions. Refer-

ence I describes the method in detail and discusses the computational efficiencies

obtained from it for a test problem.

The gain in computational efficiency from the new method and its simplicity to

be programmed make it very attractive over the other complex implicit methods. This

method has been incorporated into an existing code developed in reference 3 which

uses the unsplit explicit method of reference 2. The code is operational on the

Control Data CYBER 203 vector processing computer. The purpose of the present report

is to indicate modifications that were made and to make certain observations which

may be helpful in using the new method successfully. The method has been applied to

a two-dimensional supersonic-flow problem involving shock and expansion waves and

their interactions with each other and with the boundary layer. A discussion of the

computational efficiency and the quality of the solution with increasing time-step

size is also presented.

SYMBOLS

CFL Courant-Friedrich-Lewy limit

c velocity of sound

cv specific heat at constant volume



e total energy per unit volume

h static enthalpy

M Mach number

Npr Prandtl number

n number of time-steps

p pressure

R gas constant

T temperature

t time

At time-step size

u velocity in x-direction

v velocity in y-direction

x,y Cartesian coordinates

ax grid spacing in x-direction

Ay grid spacing in y-direction

y ratio of specific heats

effective viscosity, _ + _t

p density

Subscripts:

laminar

t turbulent

free stream

GOVERNING EQUATIONS

The two-dimensional Navier-Stokes equations in conservation form are used to
describe the flow field. These can be written as
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In order to complete the set of governing equations, the equation of state

p = pRT is used. In the aforementioned equations, # is the sum of laminar viscos-

ity and turbulent viscosity. The laminar viscosity for air is calculated from

Sutherland's formula. The turbulent viscosity is calculated from an algebraic, two-

layer, eddy-viscosity model due to Baldwin and Lomax (ref. 4).



METHOD OF SOLUTION

The governing equations are solved by a new method, developed by MacCormack

(ref. I), which is an implicit analog of his unsplit explicit method (ref. 2). The

method consists of a predictor step and a corrector step which can be written as
follows (nomenclature used is same as that in ref. I):

Predictor step:

[( 4 n)Iax<Gn+ i,j+1 - Gn)/Ay]I,jAU_ = -At n - Fi,j• ,j Fi+1,_

(At n ) * *I + _x IAli,j 6U. = AU_ + A__ttiAinl,j l,j Ax i+l,j 6Ui+1,j

<at n h_n+1 * At nI + _y IBii,j)6Ui, j = 6Ui, j + _y IBii,j+ 1 6U 3+ I

• . , ^Un+lun+l = U n + O . .
l,J ±,j l,]

Corrector step:

_ I( n-_ n+l >/A / n+1 n+--_ )/Ay 1un--_-i,j -At Fi, j Fi_l, jA - x + tGi,j - Gi,j_ I

( )At n+l ** n+l At n+l **

I + IAii,j 6U. = AU. + IA i 6U il,j 1,3 _x i-1,j -I, j

At n+1__ n+1 ** At n+--_ _un+1I + _y IBii,j/6Ui, j = 6U. + IBil,j _y i,j-1 _ i,j-1

I n + U n+1 + 0 . .
un+1 _ i,j 1,3 31,3 " " I,

Each step contains two stages. The first stage uses the explicit method which is

subject to restrictive explicit stability conditions. The second stage removes these

stability conditions by transforming numerically the equations of the first stage

into an implicit form. It is seen from the equations that the method requires the

solution of upper or lower block bidiagonal equations.

Here, I is the unit matrix and 6U, 6U , and so forth, represent the change

in U with time-step; A = 5F/SU and B = _G/SU are the Jacobians of F and G.

The matrices IAi and IBi are the matrices with positive eigenvalues and are

related to the Jacobians A and B. Their definitions are given in reference 1 and

are not repeated here. This method is more efficient than existing methods for

solving the equations of compressible viscous flow because, for regions of the flow

in which At satisfies the explicit stability conditions, the method reduces to the

simple explicit method, and, for other regions, block bidiagonal equations need only

be solved rather than the block tridiagonal equations of the existing implicit
methods.
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BOUNDARY CONDITIONS

The flow variables at the inflow boundary are held fixed at given free-stream

values, whereas first-order extrapolation is used to obtain the flow variables at the

outflow boundary. Reference I uses reflection-type boundary conditions which are

not, in general, convenient to use. In the present calculations, no-slip boundary

conditions are used along the solid surfaces.

To start the implicit sweep in the i-direction (i varying from I to I),

IAI6U I j is required in the predictor step. and IAI6UI. ,_ is required in the
correc_or step. Both of these end fluxes in the 1-dlrec_lon are set equal to zero

for the present problem because, at the inflow boundary, the conditions are held

fixed and, at the outflow boundary, the mesh spacing is large enough so that matrix

IAI vanishes. The implicit sweep in the j-direction (j varying from I to J)

requires evaluation of either IBI6U. _ or IBI6U_ I- These are obtained by
l,O

calculating IBI and 6U at the boundary points._'Matrix IBI is calculated by

using the boundary values of the flow variables from the previous step, whereas

6U at the boundary mesh points is obtained based on the changes in U at the adja-

cent mesh points, again from the previous step. As an example, for no-slip and

adiabatic-wall boundary conditions with

ui I = vi I = 0

Pi, I = Pi,2

Ti, I = Ti, 2

the (6U)i, I can be written as

i,I i,I

where U I, U2, U3, and U4 are the components of U.

ARTIFICIAL DAMPING

To maintain a stable solution, it was found necessary to use artificial damping

in both the explicit and implicit stages of the method. The fourth-order damping,

already present in the explicit code of reference 3, is retained for the explicit

stage of the method. For the implicit stage, the damping term given in reference I
is used. This term is written as

16p/c 2 - 6pl

(At/by) [(y - 1)/y]p

The contribution from this term becomes small as the steady state is approached. The

method developed instabilities if either of the two damping terms was eliminated.
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DISCUSSION OF RESULTS

The modified code is applied to a two-dimensional test problem shown in fig-

ure 1, in which the turbulent supersonic flow is calculated between two walls for air

under perfect gas assumption. The upper wall is kept parallel to the free stream,

whereas at the lower wall, the flow undergoes a 10 ° compression at 2 cm and then a

10° expansion at 4 cm. The total length of the flow domain is 10 cm with an initial

height of 2 cm. This problem is chosen since it involves most of the features of a

complex supersonic flow, such as shockJexpansion-wave interaction and shock o

boundary-layer interaction which results in a separated region. Solutions are

obtained at CFL values of I, 15, and 22.5 for inflow conditions of M = 5,

p_ = 0.1013 MPa, and T = 293 K. The Reynolds number based on the free-stream
conditions and the length of the flow domain is 11 x 106. An assessment is made of

the efficiency of the new method on the Control Data CYBER 203 vector processing

computer and of the quality of the solution obtained from the method.

The physical domain, shown in figure I, is numerically transformed to a computa-

tional domain. Since, for the present problem, matrix IAi vanished at all the grid

points and the grid is not skewed in the x-direction, the numerical transformation

did not affect the implicit steps. In general, matrices IAi and IBi need to be

defined properly in the transformed coordinate system. A grid size of 51 x 51 is

used in the calculations. To resolve the turbulent boundary layer, a stretching

function is used in the transformation that allows concentration of grid points near

the walls in the physical domain. The grid in the computational domain still remains

equally spaced. The coefficient in the stretching function is chosen so that the

first grid point away from the walls is located at approximately 4.5 _m. The

computer code is written for the Control Data CYBER 203 vector processing computer.

The explicit steps of the code are fully vectorized, whereas only a portion of the

implicit steps could be vectorized.

To start the solution, free-stream conditions are assumed initially at all the

grid points except at the boundaries where appropriate boundary conditons are used.

This starting solution works well for CFL values of I and 15, but for CFL = 22.5,

negative temperature developed near the expansion shoulder in the first few time-

steps. For this case, the solution is advanced with CFL = 15 for the first

100 time-steps to establish a reasonable initial solution, and then the CFL value

is increased to 22.5 over the next 200 time-steps. The solution is advanced in time

until it reaches the time required by the free-stream to traverse the flow domain

three times. As mentioned in reference I, _ At/p(Ay) 2 must be less than 0.5 to

avoid any possible dependence of the steady-state solution on At. In the present

calculations, this quantity exceeded 0.5 for CFL values of 15 and 22.5. For these

cases, the time-step was successively reduced near the end of the calculations.

It is found that the present problem at high CFL required the reversal of the

order of differencing for the predictor and corrector steps from one time-step to the

next time-step; that is, if forward and backward differences are used in time-step

n, then backward and forward differences should be used in time-step n + I. Without

this symmetric operation of the differencing, the solution at a CFL value of 10

failed in the 27th time-step. Even at a low CFL value of 2, the quality of the

solution is much better with the symmetric operation.

In order to assess the quality of the solution with increasing CFL, pressure

distributions on the upper and lower walls are compared at CFL values of I, 15, and

22.5. Also compared are the velocity and pressure profiles at three locations on the

upper and lower walls. These locations lie ahead of, aft of, and in the separation

6



region. Figure 2 shows the pressure distributions on the upper and lower walls. It

is seen that the lower wall pressures are almost identical at the three CFL values,

whereas on the upper wall there are small differences near the 0.07-m location. This

is the region where the shock from the lower wall separates the boundary layer on the

upper wall.

Figures 3 and 4 show the velocity and pressure profiles, respectively, at

x = 0.05 m, which lies ahead of the separation region. It is seen that there are

negligible differences in the profiles at various CFL values. Figures 5 and 6 show

the velocity and pressure profiles, respectively, at x = 0.074 m, which lies in the

separated region. The velocity and the pressure profiles at the lower wall again

compare very well, whereas the velocity profile on the upper wall shows significant
differences close to the wall at various CFL values. It is seen that the extent of

the separation region is reduced at higher CFL values. The differences are also

present in the pressure profiles on the upper wall. The separation region may have

been affected by the artificial damping in the explicit and the implicit steps which

is required to keep the solution stable.

Figures 7 and 8 show the velocity and pressure profiles, respectively, at

x = 0.088 m, which lies downstream of the separation region. Here again, the

profiles compare well at various CFL values.

The increase in computing time due to the addition of implicit steps is approxi-

mately 50 percent On The Control Data CYBER 203 vector processing computer. It takes
approximately 2 x 10- sec per grid point per time-step for the explicit method.

This time increases to about 3.0 x 10-5 sec with the addition of the implicit steps

which could be vectorized only partially. Even with the increased computing time per

time-step, there is a significant savings in overall computing time. As an example,

the total computing time required is approximately 10 times less at CFL = 15 than
at CFL = I.

As with the other implicit methods, the gain in the computing efficiency is

expected to be higher with a highly stretched grid in one coordinate direction.

Although reference I describes the method as unconditionally stable, it is not found

to be so in the present calculations. For the present problem, solutions could not
be obtained for a CFL value of 30 or above.

CONCLUDING REMARKS

A new explicit-implicit method has been applied to a complex, two-dimensional,

steady-state, supersonic-flow problem by using Navier-Stokes equations. The method

originally used reflection-type boundary conditions, but in the present calculations,

no-slip boundary conditions are used. It is found for the present problem that the

method requires the reversal of the order of differencing in the predictor and

corrector steps from one time-step to the next time-step. It is also necessary to

use artificial damping in both the explicit and implicit stages of the method to

maintain a stable solution. A detailed comparison of the results at Courant-

Friedrich-Lewy (CFL) values of I, 15, and 22.5 shows that the flow field is predicted

very well at high CFL values except in the immediate neighborhood of separation.

For the present problem, solutions could not be obtained for a CFL value of 30 or
above.

The code is operational on the Control Data CYBER 203 computer. There is

approximately a 50 percent increase in computing time per time-step due to the
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addition of implicit steps in the explicit method, but the overall saving in the

computing time is very significant. As an example, for a CFL value of 15, the

computing time is reduced by a factor of 10 over a CFL value of I. It can be con-

cluded from this study that the method has great potential in computing complicated

fluid-dynamics problems since it is computationally efficient and is relatively much

simpler than other implicit methods. Existing explicit codes using the unsplit
MacCormack method can easily be modified for the new method.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

September 23, 1981
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Figure 1.- Sketch of the test problem.
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