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SUMMARY

An improved transverse shear deformation theory for laminated anisotropic
plates under bending is presented. The theory eliminates the need for an arbi-
trarily chosen shear correction factor. For a general laminate with coupled
bending and stretching, the constitutive equations connecting stress resultants
with average displacements and rotations are derived. Simplified forms of
these relations are also obtained for the special case of a gymmetric laminate
with uncoupled bending. The governing equation for this special case is
obtained as a sixth-order equation for the normal displacement requiring pre-
scription of the three physically natural boundary conditions along each edge.
For the limiting case of isotropy, the present theory reduces to an improved
version of Mindlin's theory.

Numerical results are obtained from the present theory for an example of a
laminated plate under cylindrical bending. Comparison with results from exact
three—dimensional analysis shows that the present theory is more accurate than
other theories of equivalent order.

INTRODUCTION

Classical bending theory produces errors when the ratio of the elastic
modulus to shear modulus becomes large. Advanced composites like graphite-
epoxy and boron-epoxy have ratiog of about 25 and 45, respectively, in contrast
to 2.6 which is typical of isotropic materials. These high ratios render clas-
sical plate theory inaccurate for analysis of composite plates. Structures
from advanced composites are constructed in layered form with each layer being
orthotropic. Consequently, for analysis of composite plates, a satisfactory
transverse shear deformation theory for laminated anisotropic plates is needed.

Current shear deformation theories for laminated anisotropic plates have
one drawback or another. The more rigorous theories (refs. 1 and 2) are cum—
bersome because of their high order and inconvenient boundary conditions. Most
of the simpler, sixth-order theories (refs. 3 to 5) require an arbitrary cor-
rection to the transverse shear stiffness matrix. Cohen's sixth-order theory
(ref. 6) does not require a correction factor but, like all other sixth~order
theories (refs. 3 to 5), his theory is no better than classical plate theory in
predicting stresses.

Herein, a sixth-order bending theory for laminated anisotropic plates is
developed that requires just the three natural boundary conditions in uncoupled
bending problems. These three conditions are the normal moment, the twisting
moment, and the transverse shear force. Alternatively, any one of these condi-
tions could be replaced by prescription of the corresponding displacement
degree of freedom, such as rotation or normal displacement. The theory does



not require an arbitrary shear correction factor. Unlike other theories of
equivalent order (refs. 3 to 6), the present theory gives an accurate predic-
tion of stresses.

The present theory uses a displacement approach like that in Mindlin's
theory (ref. 7) and its straightforward extensions to laminated anisotropic
plates (refs. 3 to 5). However, in contrast to earlier theories, a special
displacement field is used. The displacement field is chosen so that the
transverse shear stress vanishes on the plate surfaces. This important modifi-
cation eliminates the need for using an arbitrary shear correction factor,
characteristic of other theories (refs. 3 to 5).

The theory is first developed for a general unsymmetric laminate. Simpli-
fied relations are then derived for a symmetric laminate in which bending and
stretching are uncoupled. The results are further specialized for a symmetric
cross-ply laminate, which is a case of classical orthotropy. For the limiting
case of isotropy, the present theory reduces to an improved version of
Mindlin's theory (ref. 7).

Cylindrical bending of a three-layered laminate is considered, as a numer-
ical example, to compare results from the present theory with those from the
exact solution and other theories.

SYMBOLS
Aij "differential"™ bending and twisting rigidities for laminated
anisotropic plate (i,j =1, 2, 3)
Cij elements of stiffness matrix for individual lamina connecting
stresses and strains (i =1, 2, 3, . . ., 6)
Eij elements of reduced stiffness matrix for individual lamina
defining constitutive relations of plane stress type
(i =1, 2, 3)
h/2 _ n
ESQ) = C,.z dz
1] ij
-h/2
Eh3
D bending rigidity of isotropic plate, . o,
12(1 - v°)
Dij bending and twisting rigidities for laminated anisotropic plate
(i,3 =1, 2, 3)
E Young's modulus of isotropic plate
EX'Et elastic moduli of individual lamina in longitudinal and
transverse directions, respectively
G shear modulus of isotropic plate



Glt'Gtt shear moduli of individual lamina

h laminate thickness
k shear correction factor in Whitney and Pagano's theory
K1,K2 transverse shear stiffness coefficients for laminated anisotropic
plate
Mx,My,Mxy bending and twisting moments per unit length of laminate element
My
M = M
b4
Mxy
Nx'Ny'ny membrane forces per unit length of laminate element
Ny
N = N
b4
N
Xy
Qx’Qy transverse shear forces per unit length of laminate element
QX
Q =
QY
q distributed normal load per unit area of laminate surface,
positive in direction of increasing =z
s span length in numerical example
u,v,w displacements in x-, y—-, and z-directions, respectively
u,v,w average values of displacement components over thickness
X,Y,Z Cartesian coordinates with z—axis oriented in thicknesswise
direction and measured from middle plane of laminate (fig. 1)
Bx’By average values of rotations of line normal to middle surface over
thickness
A1,A2,...,A11 linear differential operators
€€ 7 E,
Y ' strain components in Cartesian coordinates
nyrsz'sz



A angle of fiber orientation

v Poisson's ratio of isotropic plate

Vor Vet Poisson's ratios of individual lamina

O'x, O’y, O'Z

stress components in Cartesian coordinates

T +T T

Xy Yz Xz

X transverse shear function in Reissner's theory for isotropic plates
under bending

Subscripts:

2,t longitudinal and transverse directions of unidirectional lamina,
respectively

max maximum value

S,B stretching and bending components, respectively

SS,BB applied to matrices, refer to stretching and bending parts,
respectively

SB,BS applied to matrices, refer to stretching-bending coupling

Superscript:

T transpose of matrix

Matrix notation:

3] matrix

( ) column matrix
LJ row matrix
[o] null matrix

DEVELOPMENT OF THE THEORY

The present theory is developed by using a displacement approach. The
inplane displacements u and Vv are approximated by cubic polynomials in
z. The out-of-plane displacement w 1is assumed to be constant with respect

to z. By requiring that shear stresses vanish on the surface, coefficients of



the polynomials are related. By using these relations, the displacement field
is completely defined in terms of =z, "average" displacements U, V, and W,
and “"average" rotations of a line normal to the middle surface 8, and ﬁy.

Then the stress distribution through the thickness is determined from the
constitutive relations of individual layers. Next the laminate constitutive
equations, which relate the forces and moments to displacements U, V, and
W and rotations B, and By' are obtained from stresses by integration
through the thickness.

Finally, for the case of a symmetric laminate, the moments and transverse
shear forces from the plate constitutive equations are substituted into the
three plate equilibrium equations. By eliminating all quantities except W, a
single governing equation in terms of W is obtained.

Unsymmetric Laminate
The general case of an unsymmetric laminate with stretching-bending cou-

pling is considered first. The constitutive relations for any individual
lamina are

o I 1 ~
O €11 Ci2 C13 Craf (5
o C C C C €
< v > 12 22 23 24 v )
T " lc c o c <
xy 13 23 33 34 | | Yxy
c c c c £
=z | C1a 24 34 44 | \ 5y
Tz Css Cs6| | Yxz
= (2)
T Cse  Ces| |Y
Yz vz

where the coordinate system is shown in figure 1. The ¢ is assumed to be
small in comparison with other normal stresses and is neglected. Whitney and
Pagano (ref. 4) have shown that, with this assumption, equation (1) reduces to
the following contracted form:

%% Ciz  Ca3l |5

o = c c e

v 22 23 v (3)
T C c

xy 23 33| | Vxy



where

c..C.
C..=c, A --—234 (4)

The strains in equation (3) are determined from an assumed distribvtion of dis-
placements through the thickness. The displacements are approximated as

u = uyx,y) + zug(x,y) + z2uy(x,y) + zouz(x,y) (5)
v = vylx,y) + zvq(x,y) + z2v2(x,y) + z3V3(X,y) (6)
w = W(x,y) (7)

The polynomial representation of u and v as shown in equations (5)
and (6) is an important departure from Mindlin's theory (ref. 7) and its exten-
sions to laminated plates (refs. 3 to 5), which assume u and v as linear
functions of 2z. The assumption of a higher order polynomial in z for u
and v in plate bending theories is not new. Lo and others (ref. 2) have
previously used a cubic polynomial for u and v as in equations (5)
and (6). However, in contrast to their theory, u; ., vy (i =0, 1, 2, 3) in
equations (5) and (6) are not independent. Instead, they are chosen so that
the condition 1Ty, = T,, = 0 at =z = th/2 is satisfied. When these four
conditions are satisfied, the final number of independent unknowns is five.
Thus, the order of the theory is the same as that of earlier low—-order theories
(refs. 3 to 5). 1In addition, the physical conditions 1Ty, = Tyz = 0 at
z = th/2 are also satisfied. It was not possible to satisfy these conditions
in the earlier theories (refs. 3 to 5).

Because the shear stresses 7., and < z Aare zero on the two laminate
surfaces, equation (2) indicates that the shear strains also must vanish.
Consequently, the shear strains determined from equations (5) to (7) must equal

zero as

_du, dw _ 3.2, oW _
Yox "z Tax - W Fuph tgugh + =0 (8)
_ov, dw_ 3.2, oW _
sz s + oy V4 + v2h + 2 v3h + oy 0 (9)



Equations (8) and (9) lead to

Equations (8) to (10) indicate that there are in all only five independent
unknowns g, Uqs Vogr o Vqu and W; however, the first four lack direct phys-
ical interpretation and are inconvenient from the point of view of prescribing
boundary conditions. Therefore wug, w4, Vg, and v, are replaced by four
other gquantities with physical meaning; namely, "average" inplane displacements
U and V and "average" rotations of a line normal to the middle surface,
which are defined as

U 1 h/2 | u &

4 J. (11)
v -h/2 | v
P 12 (P2 )u

=_.3_f z az (12)
By h ~-h/2 | v

"Averaging" here means averaging through the thickness. Equations (11)
and (12) are obtained from a least square approximation. Details of derivation
of equations (11) and (12) are given in appendix A.

By using equation (10), definitions (11) and (12) yield

U = ug (13)
2
_ 3h

By =9y ¥ 30 U3 (15)
2
_ 3h

BY =v, * 30 V3 (16)



Solving equations (8), (9), (15), and (16) leads to

-3 law
U =3 Bx + 2 3x (17)
5 ( aw)
u, = - —\(B. + (18)
3 3h2 X ox
-] 1w
Vi T3 B YTy (19)
5 ( aw)
v, = -——(g +2= (20)
3 3h2 y oy

From equations (3), (5), (6), and (10), the strain-displacement relations,
and the definitions of force and moment stress resultants, there follows

N = [f N N _JT = 1 o (21)
(3x1) R A 4 (3x9)  (9x1)

M = l_h-d M M__IT= J o (22)
(3x1) * ¥ X (3x9)  (9x1)
where

f- g | Loy (23)
(3x3) (3x6)

- I
J E?S | LBJ (24)
(3x3) (3x6)
Leg = I (25)



I
= (26)
sg = (M1 Laj

|

= 28

Lpp [Lz i L4] (28)
(3x%3) (3x3)

__( ) (n) (—;
={n =-=n =-{n
Ci1 €12 C43
_ | =(m) -(n) =(n)
L, T 1% €22 Ca3 (29a)
(3x3)
=(n) =(n) =(n)
Ci3 Cas Ca3
L —
h/
ES?) = Jﬂ E..zn dz for n=20, 1, 3 (29D)
+J -h/2
&
$ = -2 (30)
¢
= 31
cl’s <¢0} (31)
¢4
o, =\ 3~ (32)
B b5
du /3x
n
= 33
b, avn/ay (33)

bun/ay + 6vn/bx



The matrix constitutive equations (21) and (22) are arranged so that
matrices corresponding to stretching, bending, and stretching~bending coupling
appear separately in the total matrix. These matrices are denoted by the sub-
scripts SS, BB, and SB or BS, respectively. Also, elements of the column
matrix ¢ are arranged so that the variables signifying stretching and bending
are grouped separately. These groups are denoted by the subscripts S and B,
respectively. Although the present formulation is for a general laminate with
coupled stretching and bending, the arrangement of matrices allows easy extrac-
tion of matrices for symmetric laminate relations. The symmetric laminate case
is discussed in a subsequent section.

By combining equations (13), (14), (17), (18), (19), and (20), the column
matrix ¢ is expressed as a function of the derivatives of U, V, W, Bx’

and as
BY

¢ = H ¢ (34)
(9%1) (9%11) (11x1)
where
¢
¢ = {ﬁ? (35)
B
T _ |30 ou v ov
Ys Tlex By ox agJ (36)
W7 - °B, %, OB, %, %y A% azw—J (37)
B | 0% oy [5)'4 ox bxz ayz 0x dy
|
Hoo : 0
- 13341 % 13572 (38)
i BB
(6x4) 1 (6X%7)
|
1 0 0 0
Hgg = |0 0 0 1 (39)
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BB

where O

Equations (21),

By using the strain—-displacement relations and equations (5),
(17),

(10),

(3x1)

-5/4 0 0
0 5/4 0
_| o 0 5/4
-5/3n% 0 0
0 -5/302 0
0 0 -5/3h2

is a null matrix.

(18),

the thickness

N = I ¢
(3x1) (3x9) (9%11) (11x1)
M = J ¢

(3x9) (9%x11) (11x1)

-
Bx
Qx < By
Q= = [R]
Qy (2x4) | dW/dx
kaw/ay
where
5/4 0 1/4
2 2
R = [a] =5/3h 0 -5/3h
(2x4) § 5/4 0
L_O —5/3h2 0

-5/3h2

(22), and (34) yield

1/4

-5/3h2

1/4

o

o

1/4

0

-5/3h2

0

1/2

0

-10/3h2

(2x2)

63,
(19), and (20), equation (2) yields on integration through

(40)

(41)

(42)

(7),

(43)

(44)

1



- 2 3
ns2 |Css5  3Css?  Csg  3Cs67
« =.]. az (45)
-h/2 2 2
Cog 3Cgez  Cpp  3Cgem
ns2 |Css  Cse
e -
-h/2
Cs6  Ces

Equations (41) to (43) are the constitutive equations for a general,
unsymmetric laminate with stretching-bending coupling. These equations define
the force and moment stress resultants in terms of average inplane displace-
ments U and V, normal deflection W, and average rotations of a line normal
to the middle surface g4 and By‘ The governing equations can be derived by
substituting from these constitutive equations into the equilibrium equations.
Because they are lengthy and cumbersome, they are not shown herein. Derivation
of the governing equation is carried out here only for the symmetric laminate
case, in which there is no coupling between stretching and bending.

Symmetric Laminate Under Bending

For a symmetric laminate, the matrices Lgg and Lgg which couple
stretching and bending become null matrices. Consequently, the constitutive
equation (42) for moments simplifies to

(3x6) (6x7)(7x1)

where the various matrices appearing on the right-hand side of equation (47)
are defined by equations (28), (29), (37), and (40). The constitutive equa-
tion (43) for transverse shear forces is not simplified. Further treatment of
symmetric laminates herein is confined to derivation of relations pertaining to
bending. The stretching relations become identical with those from classical
lamination theory and need no separate treatment.

The moment and force equilibrium equations for the laminate under bending
are

aMx/bx + bey/by =Q (48)

12



M + = (49)
) xy/ax aMy/ay Qy
an/ax + aQy/ay = -q (50)

On substitution from the constitutive equations (43) and (47), equations
(48) to (50) yield three governing equations for three unknowns; namely, W,
Bxsr and B.. These can be reduced to a single equation in terms of W by
eliminating B, and BY, as follows:

Equation (43) can be rewritten as

SR

dW/dx
B dW/dy
x\ = ey ( > (51)
B (2x4) |
Yy

Q
. Y

where
-1 ! -
[P] = |- 7 :g (52)

The [E] and [n] in equation (52) are 2 x 2 submatrices obtained by
partitioning the 2 x 4 matrix [R] of equation (44) as

R=[ ¢ ! q (53)
(2x2) | (2x2)

A column matrix @ is now defined as

v | a%w 32w 32w 0, %9, oo, %
@ =1 2  ?x @ % > % > (54)
ax 5y Y y Y

From equation (51), a relationship between the column matrices ¢g and
Q is found as

T Q (55)

¢,
B (7x7) (7x1)

(7%1)

13



where

(;11 0 P1o Pi3 0 Pig 0

0 Py2 Py 0 Pa3 0 Poa

0 P12 Py 0 Pq3 0 P1g
T'=|Py, 0 P,y Py3 0 Poa 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

The elements P;.: in the foregoing equation are the elements of the [P]

1]
matrix obtained from equation (52). By using equation (55), equation (47) is

reduced to

M = 6 Q (56)
(3x1) (3x7) (7x1)

where

= LBB I-IBB r (57)

(3x6) (6%7) (7x7)

By using equation (56), the moment equilibrium equations (48) and (49)
become

A1Qx - AZQy = AW (58)

-A4Qx + ASQY = AW (59)

Here, A4 to Ag are linear differential operators, the coefficients of which
are defined in terms of elements of the matrix 6. Equations (58) and (59)
yield

14



A7Qx = (A3A5 + A2A6)W (60)

A7Qy = (A1A6 + A3A4)W (61)
where

A7 = (A1A5 - A2A4) (62)

Elimination of Qx and Qy from equations (50), (60), and (61) results

in
4 4 6 6
2 2(4-1)i a1 2 2(6-1)i T
i=0,1,2,... L ax'* eyt i=0,1,2,... L ax T eyt
°q _o°q_ 8°q
= et by Tt by ax oy T Po2 2
dx oy
_da
+ b oy : : (63)
i=0,1,2,... 47D 5, (471051

where the coefficients a and b are derived in appendix B in terms of ele-
ments of the matrix 6. The convention followed for the subscripts on a
and b in equation (63) is that the two subscripts (the first one being in
parentheses) are not to be multiplied with each other but written adjacent to
each other. For example, a(6-i)i for i =1 |is agqe.

Equation (63) is a sixth-order governing equation for the normal displace-
ment. It permits the three natural physical boundary conditions to be pre-~
scribed over each boundary as in Reissner's (ref. 8) or Mindlin's (ref. 7)
theory for isotropic plates. Once W 1is determined from equation (63) and the
prescribed boundary conditions, all the other physical quantities can be deter-
mined in terms of W. To this end, the transverse shear forces are found
through equations (58) and (59), moments through the matrix equation (56), and
rotations through equation (51).

15



Symmetric Cross—-Ply Laminate Under Bending

The constitutive equations for an unsymmetric laminate and a general sym-
metric laminate were derived in matrix form so that the coefficients appearing
in them could be calculated routinely with matrix algebra. The special case of
a symmetric cross ply is now considered. A symmetric cross-ply laminate is
defined as one which is comprised of only 0° and 90° layers stacked symmetri-
cally with respect to the middle surface. In this case, there is no coupling
between bending and twisting, and the matrix relations derived previously for a
general symmetric laminate reduce to simple formulas. These formulas are now
derived.

For convenience, the x- and y-axes (fig. 1) are chosen to be oriented
along the principal axes of the laminate. Thus

Cq3 =0 (64)

Cgg = 0 {65)

and consequently some elements of the reduced stiffness matrix also vanish;
thus

Cqqa = Coq = 0 (66)

By using equations (65) and (66), equations (47) and (43) reduce to

o8 28 2 2
= X ¥ s w o w
M " P113x T P23y TR 2t R (67)
ox oy
ap Y 2 2
_ X Y W O W
M =D — + D + A ~—— + A —_— (68)
2
vy - P12 ax 22 By 12 2" P2
OB op 2
= X, _y d W
My D33(ay T ox ) * 2233 3x oy (69)
- ow
Qx B K1(Bx * ax> (70)
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0 = K2<Fy + %%) (71)

where
p,, ==>¢a{¥ - 25 (72)
1] 13 3h J
-(2 5 =(4
Ai. = % CS.) Y CS.) (73)
3 i) 3h 1]
5 (B2 3
K, = Zf CSSE - (2z/h):| dz (74)
-h/2
5 h/2 2
K2 = Zf CGGE - (ZZ/h):] dz (75)
-h/2
Here D;. can be interpreted as anisotropic plate bending rigidities. As
shown subsequently, they become equal to the isotropic values for the limiting

case of isotropy. The coefficients ;+ vanish for the isotropic case and
might therefore be referred to as anlsogropic "differential" plate bending
rigidities.

Substituting from equations (70) and (71) into equations (67) to (69) and
using equation (50) yields

3 D
_g(2) 27w _ =(2) 27w ( 11 12> % 12
M_ = — -cC + - - q (76)
x - C11 52 12,2 T\K K, Jox K,
- _5(2) 2w =(2) 2%w (P22 P12\, Py
M= Ci2 " 27%2 2%\%x "% Jow ! 77)
y dx dy 2 1/% 1
_ 2 Q oQ
M = -2c(2) M—.’. D _1___X_+ 1_ _Z (78)
Xy 33 ax dy 33 K1 dy K2 ox

17



Equations (67) to (69) and (76) to (78) are two alternate forms of con-

stitutive equations for moments for a symmetric cross-ply laminate.

Equations

(70) and (71) are the constitutive equations for transverse shear forces.

By using equations (50), (76), (77), and (78), the moment equilibrium

equations (48) and (49) can be written as

= - - Jols |
AR, = A" 7 4 3%
- - - 3q
AR, = AW T C5 By

where Ag to Ay4 are linear differential operators defined by

() +d d2( )/%% + d, 32 )/boy>

>
I

8 1 2
_ 2 2 2 2
A9 = () + d3 d ( )/dx + 64 3 ( )/dy
~ 3 3 3 2
A10 = e, 3 ( )/dx + e, o ( )/3x dy
_ 3 2 3 3
A11 = e, 3 ( )/dx dy + ey o ( )/dy
D
1 1
a, =——(p,, +D,.) - —
1 K2 12 33 K1

18
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(83)

(84)
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-D33/K1 (86)
“D337%, (87)
D

1 22
x. (Pya * DP33) g (88)

1 2
=(2)

89

Sh (89)
=(2) =(2)
c12 + 2c33 (90)
=(2)
C22 (91)
l—(D + D_.) (92)
K 12 33

2
1o, +D,.) (93)
K1 12 33

Elimination of Qx and Q from equations (50), (79), and (80) results

in the governing equation for % as
( + - - 2/ox’) - (3°q/dy)  (94)
A9A10 OW/dx) A8A11(6W/6y) = A8A9q C1A9(6 q/dx c2A8 d q/dy

By substituting for the differential operators, equation (94) becomes



4 4 6 6
3 W D W W dW D W
e, — + 2e, —— + e, — + e—+|:e(d+ )+de:|—
1 6x4 2 6x26y2 3 ay4 dyey axe 251 4, 471 5 oy
6
d W
+ [é e_ + e (d + 4 ﬂ-—————— + d.e, ——
1°3 ax 6y4 253 ay6
939 Qfg
=q + (d1 + d3 - c1) >+ (d2 +4, - c2) >
ox dy
+dg(d, - c) ——9 d (4, = c,) + ad, - ﬂ
ax ax 6y
Qfg
+d,d, - )" (95)
dy

Equation (25) has no derivative involving odd number of differentiations
with respect to x or y. In contrast, these derivatives appear in the
governing equation (63) for a general symmetric laminate.

Reduction to Isotropic Plate Relations

For the special case of isotropy

- - 2
Cqq = Cyy = E/(1 = V%) (96)
S = vE/(1 - v2) (97)
12 \Y v
_=(2) _ =(2) Eh>
D =D C =C = Plate bending rigidity, D = ————/—— (98)
11 22 11 22 2
12(1 - v°)
_ =(2) _
Dy, = Cqp = VD (99)
_=(2) _
D33 = C35 = (1 = vID/2 (100)

20



b
1
>
|
>
Il
o

11 22 = 242 (101)

Gh (102)

tel
il
lal
il
o

By using equations (96) to (102), the constitutive equations (67) to (71)
and (76) to (78) reduce to a form similar to Reissner's (ref. 8). The only
discrepancy involves terms of g. For the homogeneous case q = 0, the two
theories are identical. The discrepancy for g # 0 vanishes if the contribu-
tion from o to strain energy is neglected in Reissner's energy formulation
(ref. 8). Ag this contribution is relatively small, the discrepancy between
the two theories can be considered to be a higher order effect and negligible.

The discrepancy in terms involving q 1is a consequence of the assumption
of constant w through thickness in the present theory. Reissner's isotropic
plate theory is based on exact satisfaction of the equilibrium equation in the
z=direction for all =z which implies variation of w with =z.

DISCUSSION

A sixth-order governing equation for W is obtained here for a symmetric
laminate. This is in contrast to the Reissner (ref. 8) and Mindlin {(ref. 7)
theories for an isotropic plate which give a fourth-order equation for W
together with an auxiliary equation of second order for a transverse shear
function y. However, the total order is the same in both cases, thereby
requiring prescription of the same number of boundary conditions.

A close inspection reveals that, for the limiting case of isotropy, the
present theory also leads to lower order equations for W and yx 1like the
Reissner (ref. 8) and Mindlin (ref. 7) theories. This happens because, for
isotropy, the differential operators Ag and Ag in equations (79) and (80)
become identical. Thus, fewer differentiations would be required to elimi-~
nate Q. and QY from equations (50), (79), and (80). (See derivation of
eq. (94).)

The Q, and Q for a laminated plate are determined completely in terms
of W as particular” integrals of equations (79) and (80). Complementary solu-
tions of these equations are not admissible as they violate the equilibrium
equation (50). Recall that, in contrast, complementary solutions are used in
isotropic plates (refs. 7 and 8) because complementary solutions in the iso-
tropic case can be chosen to satisfy the equilibrium equation (50).

Shear Correction Factor

The term "shear correction factor" in transverse shear deformation
theories is usually meant to refer to an arbitrary correction applied to the
shear stiffness previously determined. 1In the present theory, there is no
shear correction factor in this sense of the term because the transverse shear
stiffness is explicitly determined and no correction is necessary. This

21



becomes clear by examining the limiting case of isotropy in detail. From equa-
tions (70), (71), and (102), transverse shear forces for an isotropic plate are

given by

-3 ol {
% T 6 Gh<6x + bx) (103)
5 oW
= — Gh + — 104
Qy 6 <3y 6y> ( )

where G is the isotropic shear modulus. Equations (103) and (104) agree with
the results from Reissner's theory for isotropic plates (ref. 8).

The quantities BX + %% and BY + %g represent average shear strains
through the thickness. Thus, the factor 5/6 (0.833) in equations (103)
and (104) can be looked upon as a correction to be applied to the transverse
shear stiffness to account for variation of shear stress through the thickness.
In Mindlin's theory (ref. 7), the assumption of constant shear strain led to a
factor of unity instead of 5/6 (0.833) in equations (103) and (104). However,
Mindlin replaced this factor of unity by an arbitrary factor, the value of
which was adjusted so that results from the theory agreed with the exact solu-
tion for a chosen example. He arrived at a value of n2/12 (0.822) for this
factor by considering one example. By considering a second example, he
obtained another value which depends on Poisson's ratio v and varies from
0.76 to 0.91 as v varies from 0 to 0.5, The first value n2/12 (0.822) is
close to 5/6 (0.833) obtained from Reissner's theory. However, the manner in
which the shear correction factor is derived in Mindlin's approach is arbitrary
because the value arrived at depends on the example chosen. The present theory
is also based on a displacement formulation similar to Mindlin's but the shear
correction is derived in a logical way. Thus, the present theory can be looked
upon as an improvement of Mindlin's theory for isotropic plates.

Straightforward extensions of Mindlin's theory to laminated composite
plates (refs. 3 to 5) have the same degree of arbitrariness as Mindlin's theory
itself. For instance, Whitney and Pagano (ref. 4) arrived at different shear
correction factors for two—layered and three-layered plates. The suggested
procedure in their method appears to be to derive the shear correction factor
for each set of lamination parameters by considering the known exact solution
for a certain problem. But with the present theory, no shear correction factor
is necessary and the transverse shear stiffness is obtained as a function of
elastic constants and the stacking sequence without considering the exact solu-
tion for a specific problem. The required expressions are given by equa=-
tions (74) and (75).
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Interlaminar Shear Stresses

Interlaminar shear is one of the sources of failure in laminated plates.
Therefore, calculation of interlaminar shear stresses is important in any bend-
ing problem. With the use of the present theory, these stresses can be calcu-
lated as follows: A problem is considered solved if Bx, B.,, and W are
determined as functions of x and y. The displacements canh be determined as
functions of x, y, and z by the use of equations (10), (17) to (20), and
(5) to (7). Thus, o0y , O,, and = are also determined as functions of
X, ¥y, and z from the constitutive relations of individual laminae. The
interlaminar shear stresses are then determined from the following equilibrium
equations:

z acx ot
e [l Y e
~-h/2 ¥

z 0T oo
yz -h/2 X y

This method gives single-valued interlaminar shear stresses at the inter-
faces. An alternate method would be to calculate Txw and =T z directly from
the displacements given by equations (5) to (7). However, this method gives
two values for the interlaminar shear stress at each interface depending upon

the lamina chosen.

NUMERICAL EXAMPLE

A numerical example is used to compare the present theory with the exist-
ing theories. The example chosen is that of cylindrical bending of a three-
layered, symmetric cross-ply laminate (0°/90°/0°) of high modulus graphite-
epoxy. The layers are all taken to be of equal thickness with fibers in the
outer layers oriented in the direction of bending (fig. 2). The layer proper-
ties used are
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The plate is considered to be semi-infinite with a finite span s in the
x-direction (fig. 2) and subjected to a sinusoidal, distributed normal load of

intensity q = qp,, sin gé. The boundary conditions considered are

At x =0 and s,

For the case of cylindrical bending, all derivatives with respect to vy
are zero. Thus equation (95) yields

W=w sin = (106)

where

2 4
1+ (¢, -4, - d))(n/s) + 4. (4, - c.)(n/s)
_ 1 1 3 3499 1 " (107)

Wmax max 4 2
e1(n/s) E - d3(n/s)]

The transverse shear force Q, is obtained from equation (79) as

Qx B Qx,max €8 5 (108)
where
(n/s)°eW = (n/s)
_ T 1 max /8% Tnax
Qx max 2 (109)
! 1 - (n/s) 4
Equation (70) yields the rotation Bx as
= nx
Bx = Px,max °°% 5 (110)
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where

1 _
Bx,max h K1 Qx,max (n/S)Wmax (1

From equations (80) and (71) and the boundary condition on By

=0 =0 112
QY By ( )

Stresses in the different laminae are now determined as follows. In pure
bending, the terms u; and v, in equations (5) and (6) vanish. Conse-
quently, the inplane displacements u and v are defined, in view of equa-
tion (10), by

(113)

=

Il
=}
N
+
=
N

v=v,z +v z3 (114)

The uy and uy are determined from equations (17) and (18). It follows
from equations (19), (20), (106), (107), and (112) that vy and V4 are zero.
The inplane displacements are thus determined. Bending stress distribution
through the thickness is now determined from the constitutive relations of
different laminae.

Exact solution for this problem based on three-dimensional elasticity
analysis was given by Pagano (ref. 9). Figures 3 and 4 compare results from
the present theory with those from the exact solution and the theory of Whitney
and Pagano (ref. 4). The theories presented in references 3 to 5 are all a
simplified set requiring an arbitrary shear correction factor. In the results
presented in these references, the value of the shear correction factor is
adjusted so that the results come close to the exact solution. Therefore a
comparison of results from all these theories could be misleading. For this
purpose, only Whitney and Pagano's theory (ref. 4) is chosen for comparison and
is treated as being representative of the simplified theories (refs. 3 to 5).

Figqure 3 shows a plot of the maximum deflection Woax at the center of
the span as a function of the span-to—-thickness ratio. The present theory is
closer to the exact solution than Whitney and Pagano's theory (ref. 4) with a
shear correction factor k of unity. On the other hand, Whitney and Pagano's
theory shows better correlation if k 4is shown as 2/3. However, the factor
2/3 was arrived at by Whitney and Pagano by a trial~and-error procedure. There
are two disadvantages in Whitney and Pagano's method. First, the trial-and-

error procedure is to be repeated if the lamination parameters are different.
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There is no single value of k which holds good for all lamination parameters.
(For example, Whitney and Pagano arrived at another value for k, namely, 5/6,
for a two-layered plate.) Secondly, the shear correction factor arrived at by
this procedure is problem—~dependent and it is not sure whether the value for

k so derived is valid for a problem other than cylindrical bending. Recall
that Mindlin (ref. 7) arrived at different values for k by considering dif-
ferent problems.

Figure 4 presents the bending stress o, distribution through the thick-
ness for a laminate with a span-to-thickness ratio s/h of 4. The exact solu-
tion of Pagano (ref. 9) and results from Whitney and Pagano's theory and the
present theory are presented in this figure. Results from the classical lami=-
nated plate theory are also included for comparison. The exact solution and
the present theory show considerable deviation from the classical theory.
Furthermore, the exact solution and the present theory are in good agreement
for most of the thickness. Note that in the middle layer, the 90° lamina, the
stresses o, are extremely small and all theories predict near zero values.

FPigure 4 shows that Whitney and Pagano's theory (ref. 4) yields the same
stress distribution as the classical laminated plate theory irrespective of the
value of the shear correction factor used. This is true of all current sixth-
order theories for laminated anisotropic plates (refs. 3 to 6). The fact that
these theories predict stresses no different from the classical theory is a
severe limitation. Even Cohen's theory (ref. 6), which predicts W with good
accuracy without a shear correction factor, has this drawback. A careful
inspection reveals that this drawback in current sixth~order bending theories
is a consequence of the assumption of linearity of &y, €ys and Yxy with
respect to z. The present theory allows for a more general variation of these
strains with respect to 2z and does not have this drawback.

CONCLUDING REMARKS

A shear deformation theory for laminated anisotropic plates is devel-
oped. In the case of uncoupled bending, the present theory is one of sixth
order and requires just three natural boundary conditions. Most of the current
sixth~order theories require an arbitrary shear correction factor and all of
them have the drawback that their stress prediction is highly inaccurate. The
present theory does not have either of these drawbacks.

The present theory is not presented as an improvement over the current
higher order theories. Surely, they should be more accurate but they require
prescription of inconvenient boundary conditions. From the engineering point
of view, it is difficult to prescribe anything other than the three natural
boundary conditiong involving moments and forces or the corresponding rotations
and displacements. Consequently, a sixth-order bending theory which requires
the three boundary conditions is desirable. This paper was aimed at developing
the best possible theory restricting the order of the theory to six.

The theory is developed for three cases. First, the formulation is
carried out for an unsymmetric laminate. Here, the constitutive equations con-

necting moments and forces to average displacements and rotations are derived.

26



Second, simplified forms of these constitutive equations are derived for a
symmetric laminate. In both these cases, the various relations are derived in
matrix form to avoid tedious algebra and also to facilitate routine computation
on a computer. Last, further simplified relations are derived for a symmetric
cross ply which is a case of classical orthotropy. In this case, it was found
that matrix formulation could be dispensed with and the various relations are
obtained in the form of simple formulas.

For the limiting case of isotropy, the present theory reduces to an
improved version of Mindlin's theory. The shear correction factor of 5/6 in
this case is obtained from the theory rather than with a specific example as in
Mindlin's approach.

Of particular interest should be the method of computing the interlaminar
shear stress suggested in this paper. The use of equilibrium equations leads
to single-valued shear stresses unlike straightforward computation from
displacements.

The accuracy of the present theory is demonstrated by considering a
numerical example of cylindrical bending of a three-layered plate.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

June 30, 1981
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APPENDIX A

DEFINITION OF "AVERAGE" VALUES OF DISPLACEMENTS AND ROTATIONS

Let the displacements u and v be arbitrary functions of z. Let U
and V represent average values of displacements and f#, and By represent
average values of rotations. "Averaging" here means averaging through the
thickness. Essentially, the deformed shape of a line normal to the middle
surface is sought to be approximated by a straight line so that its deviation
from the true deformed shape is minimum. To this end, the displacements u
and v are expressed as U + B,z and V + B.,z, respectively. Then, the devi-
ation from the true deformed shape is represented by the following integrals of
squares of errors in determining u and v:

h/2 5
E = Jﬂ (u-0U - sz) dz
~h/2

h/2 )
E =f (v-V-82° az
-h/2 ¥

The best least square approximation is that which satisfies the conditions

dE_  PE_ dE_ OQE
u _ u _ v - v _ 0 (A1)
U 8B, 8V @B
X y

Equations (A1) yield the definitions given by equations (11) and (12). The
definitions given by equations (11) and (12) are identical with those obtained
by Timoshenko and Woinowsky—-Krieger (ref. 10) from considerations of work done
by the forces and moments. However, the derivation in reference 10 is valid
only if the stress varies linearly through the thickness. The stress variation
for a laminated plate can, at the best, be only piecewise linear. In such a
case, it would be necessary to resort to a mathematical definition as given
herein.
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APPENDIX B

DERIVATION OF COEFFICIENTS IN THE GOVERNING EQUATION
FOR A SYMMETRIC LAMINATE
Elimination of Qx and Qy from equations (50), (60), and (61) results
i

o 2 =
[éx(A3A5 A+ (A F A3A4E]W +Aq=0

By substituting for the differential operators Ay to Ag in terms of ele-
ments of the matrix [6], the following expressions for coefficients in the
governing equation (63) are obtained:

a =0,.0 - 0,,0

60 16731 11936

Agq = 049034 049034 F 0, (6,0 F 033) = 0,363, = 07,054 = 0,(8, + 635)

B T 039037 + 0,4(8, + 0835) + 0,,(0,5 + 83,) + 05,(0,5 + 63,)
(05 F 0350 (8,0 + 0330 = 0,,0,5 = 0,,(0, F 033) = 83,(8,5 + 63,)
= 0360005 * 8330 = (B3 F63,0(0,0 + 63,)

333 T 099035 F 045055 F 03,(64, + 833) + 65,(8,, + 633)
(83 + 0390(8,, + 6350 + (6,5 F B3)(0,5 + 05,) = 63,035 = 65,65,
= 044(0p3 ¥ 0350 = 0,55(0,53 F 054) = (0, + 635)(0,0 + 635)
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Figure 1.- System of coordinates and stress resultants.
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