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MODAL ANALYSIS USING A FOURIER ANALYZER, CURVE-FITTING,
AND MODAL TUNING

Introduction

Since the early 1970's the dominant technique for modal testing of
structures has been the use of single-point-excitation, with digital Fourier
analysis techniques being employed for determination of frequency response
functions (FRF's). Modal parameters (e.g. natural frequencies, damping, mode
shapes) are derived from these FRF's by various curve-fitting techniques.
Multishaker sine dwell or sine sweep testing, which had predominated prior
to the 1970's, became less frequently employed, due to the longer test times
and higher equipment costs invoilved. A few attempts have been made to combine
the better features of single-point FFT type testing with multishaker testing.
Two notable examples are References (1) and (2).

In Reference (1) Gold and Hallauer employ a Fourier analyzer to acquire
single-point-excitation FRF's., Curve-fitting is applied to these in order to
determine preliminary modal parameters, from which analyt!cal expressions for
the FRF's are obtained. These analytical expressions are then employed as the
FRF input to the standard Asher Method of modal tuning.(3'4) The important
characteristic of Asher's Method is its capability of tuning individual modes
in regions of high modal density. In Reference (1), the evaluation of the
modal tuning concept using numerically simulated FRF data was very successful.
However, evaluation in an actual modal test produced inconclusive results
because of the poor quality of the experimentally-acquired FRF's.

The objective of the modal tuning procedure described in Reference (1)

was to provide a procedure for determining accurate modal parameters (natural



frequencies, damping, real normal 'iodes) in situations vhere high modal density
1imits the usefulrness of single-point-excitation techniques. Reference (2)
also employs a tuning procedure for determining modal parameters from FRF's
obtained by curve-fitting experimental FRF's. Whereas the original Asher
Method(]'s'a) requires output from each shaker (input) location and no other
locations, Reference (2) fntroduces a "minimum coincident response method"
which permits the number of response locations to exceed the number of input
locations,

In the present work a modal testing, or parameter identification, program
which performs the functions indicated in the flow chart of Figure 1 is proposed,

and portions of the proposed program are evaluated.

Description of the Program

The proposed modal test program differs from single-input methods widely
used at present in that preliminary data may be acquired using multiple inputs,
and modal tuning procedures may be employed to define closely-spaced-frequency
modes more accurately or to mal.e use of FRF's which are based on several input
locations. In some respects the proposed modal test program resembles earlier
sine-sweep and sine-dwell testing in that broad-band FRF's are acquired using
several input locations, and tuning is employed to refine the modal parameter
estimates.

The major tasks performed in the proposed modal test program are outlined
in the flow chart in Figure 1. They are: (1) data acquisition and FFT pro-
cessing, (2) curve-fitting, (3) modal tuning, (4) mathematical modeling, and
{5) computer-controlled testing. Phases (1) through (3) are described below,
and examples are given to illustrate and evaluate them. Phases (4) and (5) are

the subject of further research and program development.

o
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Data Acquicition and FFT Processing.- This phase of the moda! test program,

which consists of acquiring FRF's based on several input locations, resembles
the broad-band sine sweeps commonly used in the past. However, it {s based
on FFT processing of excitation and response records. Two forms of data
acquisition are available: single-1nput and multiple-input. Figure 2 snows

a dynamical system with m {inputs, xj(t). and n outputs, y‘(t) . The
single-input data acquisftion method involves sequential application of a
single shaker at each of the desired m 1input locations, while the multiple-

input method involves operating two or more exciters simultaneously.

x(t)=input , y(t)=output

y,(1) (1) y, (t)

OYNAMICAL SYSTEM

Lot |

x,(1)° x(t)

xét)

Figure 2. Multiple-Input, Multiple-Output Testing
of a Dynamical System



Single-Input Data Acquisition and FFT Prccessing:

The modal tuning methods to be discussed later require FRF's which are
based on two or more inout locations. For example, standard Asher tuning using
two input locations requires that the FRF's H]l’ Hl?' "21 and sz be
acquired. For minimum coincident response tuning with two inputs and n

outputs, the FRF's needed are H, 6 {1=1,2, ..., n; j=1,2).

1
For single-input data acquigition, a 2-channel Fourier Analyzer can be
used to acquire and process one FRF at a time. Preferably, all response accelera-
tions would be acquired and recorded in a single excitation run, with post-
processing to obtain the FRF's.
As with other curve-fitting metheds, modal tuning requires a certain
frequency resolution in the FRF's {if the tuning is to be successful. A data

acquisition frequency resolution on the order of one-fourth the half-power

bandwidth is desirable. That fis,

Af < (2tF,) (1)

where ¢ 1is a "representative (viscous) damping factor" (e.g. ¢ = 0.002)
and fn fs a "representative natural frequency" (e.g. the center frequency
of the test frequency band). Frequency resolution will be discussed in more
detail later in conjunction with examples of Asher tuning and minimum coin-
cident response tuning.
Multiple-Input Data Acquisition and FFT Processing:

Although single-input FRF's can be used in modal tuning, it is desirable

(5,6)

to acquire *the FRF's by using multiple-inpute Consider a two-input,

R = I



single-output test configuration as shown in Figure 3. (The generalization

to multiple-outputs yi(t) (4=1,2,...,n) is straightforward, but complicates
the notation.) Then,

X,(1) | H, (f) |-

x{t)

H,, (f)

Figure 3. Two-Input, Single-Output System

Y(F) = Ky (X (F) + H H(F)Xp(F) + N(F) (2)

gives the (Fourier) transformed response, Y(f), due to the two transformed
fnputs at input coordinates 1 and 2. N(f) is "noise" at the response coordinate
which is not linearly related to the inputs. It can be shown(7) that the least-

squares estimates for H and Hyz are obtained by forming

yl
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(3)
VXt = Ha XKt b HopkaXo®
where it is assumed that averaging is employed and that the noise N(f) s

not correlated with either input. Equations (3) can be written

Gyy = HpGyy + Hyolia

(4)
Gyo = HpGjz + Hip6s
where the G's are the respective averaged auto- and cross-spectra defined
by Equations (3) and (4).
Assume that the ordinary coherence function between inputs x1(f) and

xz(f) fs not equal to unfty.

2
2 12 £ (5)
'Y = o ————

That ¥s, assume that Xy and X, are not fully correlated. Then Equation (4)

may be solved for Hy1 and H

y2
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From equations (5) and (6) it may be seen that when 612 = 62‘* =0,
Mg’ = 0, and H

¥l and Hy2 are given by the single-input expressions
G 8
-1 . Y2
" Gf? ' "v2 " B, )

In theory, Equations {6) may be employed to obtain FRF's when two
inputs are acting simultaneously, so long as the inputs are not fully
correlated. The above anaiysis can be extended to an arbitrary number

of inputs and arbitrary number of outputs(s's).

However, if the ordinary
coherence 1s unity, Equations (6) do not hold, and a different analysis
is required.

The advantages of multi-shaker testing have been discussed in References
(5) and (6). 1In the present situation, where modal tuning is to be employed,
there is an added advantage to using simultaneous multi-input testing to
obtain the FRF's, since the shakers can later be employed for an actual

tuned-dwell test based on the results of the modal tuning.




Curve-Fitting for Preliminary Modal Parametcor Estimates. - As noted by

Gold and Hallauer(]). useful results can be obtained by applying Asher
tuning to analytically-synthesized FRF's rather than to the original
experimentally-obtained FRF's. Preliminary studies(g) have indirated
that it {s important to include residual ter.s in the curve-fitting to
obtain parameters for use in analytically synthesizing FRF's which are to

be used fn modal tuning.
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Figure 4. Typical Freq'ency Response Measurement
Figure 4 shows a typical measured FRF and the frequency band of

interest, f.e. the frequency band over which it is desired to "match"

the measured FRF by a synthesized FRF. For general viscous damping a
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frequency response function for {nput xJ(t) and output yi(t) can be

written“o)

Y, (f) " A A, *
i . I ijr ijr N
HiJ(f) * XJ!f, rsl [;ZRf - s, MK} T s:él ")

where

S s ‘Gr + der

th

Wep * damped natural frequency of the r- mode

h

o,. = decay rate of rt mode

th

Aijr = complex residue of the r- mode

Uggr * Wgyp

n = order of the curve fit

Equation (8) can also be written

o -J¢
Coene ijr Ciipe Vg
o ijr ijr
Higlf) = H [(“’dr - 70 ¥ 3o, " Tag, * 209 - J"r] 9



n

where ciJr' °1Jr' Wp and o_ are all real numbers.

r
Although for a real system the number of modes, n , is infinite,
only a limited number of modes can be employed in the analytically-synthe-
sized FRF. On the other hand, as shown in Figure 4, the frequency band of
interest nay be from fo to fb » and in this range the number of modes
is fintte. An expression 1ike Equation (8) or Equation {9) can be used to
fit the measured FRF in the frequency band of interest, and residuals can

be employed to approximate the contributions of modes whose frequencies lie

below f, or above f, . Then, Equation (8) can be written

"b
A A, .*
. ) iir ijr
H1J Lij + . (;w-sr + To s;‘) + Z,J (10)
a
vhere
@ = 2nf

r = Jower mode index of frequency range of interest
ry = upper mode index of frequency range of interest
Lij = Jower residual term

213 = upper residual term (residual flexibility)

The lower residual term can also be written(jo)
Y
Lyy = -4 (m
W

where

VU = {nertia restraint
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Thus, with the lower and upper residual terms approximated by use of the
real constants YiJ (tnertia restraint) and zij (resfdual flexibility),

the frequency response function H1J is approximated by

b
\ A A ..*
.o L iir ijr
H1J - + e (Jw-sr + jm-s;*) + zij (12)
a

Reference(10) gives additional forms for Hyy which are equivalent to Equa-
tion (12). For each mode fncluded in the summation there are four real con-
stants. Hence, if N modes correspond to the frequency range from ra
to Ty o then HU is defined analytically by 4N+2 real constants. These
constants may be obtained by application of a curve-fit algoritim such as
the MDOF curve-fit algorithm in the MODAL-PLUS program.

In the section on Examples it will be showr that obtaining analytical
FRF's L/ curve-fitting exper'-ental FRF's prior to modal tuning serves three
important functions--it provides initial estimates of natural frequencies,
it permits interpolation between experimental data points to establish more
accurate natural frequencies, and it permits residuals to be employed so that
“resonant modes" can be tuned. If desired, curve-fitting can also be used to
generate columns of the FRF matrix corrasponding to response locations where

no physical input was applied. This was done in Reference (2) , where a full

FRF matrix was generated from single-point experimental FRF's.

Modal Tuning for Refined Modal Parameter Estimates. - As indicated in the

Introduction, modal tuning is to be employed to refine the modal parameter

estimates, especfally where there are closely-spaced natural frequencies.
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Figure 5 shows I(H1]) and I(H2y) for a simple analytical 2DOF system
with £, = 5,00 Hz, f, = 5.01 Hz, ty = 0.01, and &, = 0.01. The I(H,,)
curve would seem to inafcate a single mode at 5.00 Hz, while the I(Hpy)

(5,6) and other

curve indicates modes at 4.98 Hz and at 5.04 Hz, Allemang
authors have preposed various means for reconciling such apparent "incon-
sistencies" in modal parameters based on FRF's from two or more response
coordinates. The approach employed here is to use modal tuning to isolate
the closely-spaced-frequency modes, which are frequently the source of such

apparent inconsistencies.
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Figure 5. Imaginary Parts of Hn and H21 for System with Modes
at 5.00 Hz and 5.01 Hz.
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Standard Asher Method of Modal Tuning:

As indicated in the Introduction, both the standard Asher Method
introduced in Reference 3 and a "minimum coincident response wethod"
discussed in Reference 2 will be employed in the present study. (Note:
Reference 1 applies the term "standard Asher Method" only to the use of
directly-measured FRF's for Asher tuning. Here we will apply the term
more generally to tuning using the method described in Reference 3, whether
cn direrctly-measured FRF's or on analytically-synthesized FRF's.)

Application of the standard Asher Method of modal tuning begins with
either measurement of a pxp FRF matrix, [g]. over the frequency band of
interest, or the synthes’s of the [ﬁ] matrix from modal parameters obtained
by curve-fitting the measured data. The linear relationship between the
p output transforms and the p input transforms is

V) = M) (X (13)
px1 pxp px}
The caret indicates vectors and matrices restricted to the p input/output
locations. Next, [ﬁ] is separated into its real (coincident) and imaginary

(quadrature) parts, represented by [C] and [a] respectively, giving
(W] = [c] + § [qa] (14)
Equations (13) and (14) may be combined to give

) = XY+ Q1N (15)

If the input is assumed to be monophase, i.e. all components of {X}

are efther in-phase or 180° cut-of-phase, then (X} can be assumed to
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be a real vector at each frequency. Then, the response has real and

imaginary parts

R(Y}) = [C] (X
(16)
1Yy = [Q] (X

(2,4)

It has been shown that if p = n = the total number of degrees of

freedom of a system, and if f, and {X(fc)} are chosen to satisfy

RIV(F)Y = [C(f)] (X(f.)} = (0} (17)
nxn nx1 nx1

then each fc satisfying Equation (17) corresponds to an undamped natural
fre uency of the system, and each corresponding {Y(fc)} is an undamped

free vibration mode shape. However, when p<n , Equation (17) becomes

[C(F)] (X(F)} = (0) p<n (18)
pXp px1 px1
For a nontrivial solution of this eigenproblem, it is necessary for tie

determinant of [E] to vanish, 1.e.

det [C(F)] = 0 (19)

~

Some of the roots, f. , will be excellent approximations to the true
undamped natural frequencies of the system, but some will be "spurious

frequencies." "Spurious frequencies" can be 1istinguished from true
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frequencies either by employing several different sets of input/response

(4)

statfons' '/, or by examining the phase of the response at points other
than the p i{nput points. It has also been observed(‘) that when

det [E(f)] is plotted versus f , steep crossings of the frequency axis
are generally excellent approximations of true system frequencies.
Newton's iteration method may be employed in solving for the roots in

Equation (19).

fn = fna

foeg = fp = D p—rt
h h Dh - Dh-]

h+1 (20)

where D, = det[E(fh)].

Having identified the approximate natural frequency ;c of a mode
and having calculated [E(;c)] from the FRF synthesizing equation, e.g.
Equation (12), we next determine the amplitude of the shaker forces necessary
to tune this mode. This distribution is calculated from Equation (18). A
narrow-band sweep about ;c with fixed i(f) = i(;c) can be performed

analytically, and refined modal parameters can then be determined.

Minimum Coincident Response Method of Modal Tuning:

Invariably the number of response points exceeds the number of
excitation points, even in a multi-shaker sine-sweep or sine-dwell test,
and the modal amplitudes at many of these points may be of the same order
of magnitude as the modal amplitudes at the excitation points. The
minimum coincident respanse method introduced in Reference (2) permits
information from non-input points to be accounted for in the process of

tuning for undamped free vibration modes.
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Let Fquation (13) be expanded to irclude ¢ response points, while
the number of input points is p < q , and let the resulting equation be

written

(¥} = [R)(X} = [CHRY + 3[Q)(X) (21)
qx1 qxp px! qxp px1 qxp pxl

As before, we assume that {X} is real. Then

RO = () =[O0 (22)

However, since [C] {s not a square matrix, ft is not possible to determine
unique frequencies and force appropriations in the same manner as was done
in Equations (18) and (19). In Reference (11) Ibanez discussed this
problem and suggested the use of a pseudo-inverse. Here, however , we will
employ the least-squares error procedure introduced by Ensminger and
Turner in Reference (2).

Let the error function be the sum of the squares of the coincident

(real) responses, i.e.
e = My = e’ @ M (23)

be minimized subject to the condition
Y

R " L511 X =1 (24)

where

th

lEJ1 = 1" row of [C] .

R S
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The procedure employed by Reference (2) is to minimize the error with respect
to the components of the input (X} at each frequency f ; then to deter-
mine the corresponding values of ¢(f) and to select those freguencies

;c which correspond to minima of e(f) as the natural frequency estimates.
The expression for (X(f)} which minimizes e({X}, f) for a specified f
i5(2)

{i} = -.,———:.T]r—_T‘H—T (ETE)-] I_E,‘I (25)
lcli(c C) lCJ1
Equation (25) {is used to compute {X(f)} , and then Equation (23) is

employed to compute the resulting least-squares error.

Program Verification
In Figure 1 the major tasks performed in the proposed modal test
program were outlined: (1) data acquisition and FFT processing, (2) curve-
fitting, (3) modal tuning, (4) mathematical modeling, and (5) computer-
controlled testing. An analytical model has been formulated and an experi-
mental model has been fabricated for use in checking out the first three of

these tasks.

Experimental Model. - Since most experimental modal testing is done on

structures whose modal properties are unknown at the outset and for which
there is no validated mathematical model, it was decided to construct a
relatively simple physical model to be used in evaluating the various phases

of the proposed modal testing program prior to application of the techniques
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to “"real hardware." Figure 6 shows the basic elements of the 1ightly-
coupled 2-beam structure constructed. The structure consists of two aluminum
box beams 1.52m long, to which damping material (one constrained layer and
one non-constrained layer) has been applied, and which are coupled by two tor-
sion rods, which may be various lengths and various materfals. To increase
the modal density, tuned "outrigger beams" are attached to the main beams.
Both coupling torsion bars and outrigger beams are attached to the main

beams near the node points of the fundamental free-free bending mode of the
main beams. Figure 7 shows a single main beam with outriggers and with

two shakers attached to the beam by long "push rods." Figure 8 shows a
closeup of the force cell and accelerometer attachments at the end of the

box beam. Also shown is an outrigger beam, which is cantilevered from the
bottom of the main beam. After several unsuccessful attempts to obtain FRF's
with two shakers operating simultaneously, the setup was modified by insert-
ing a block at each end of the main beams to prevent local deformation of

the end cross-sections. The long push rods were replaced by shorter shaker
attachment fittings. Figure 9 shows a test configuration with two main
beams, but with the outrigger beams removed and the shaker attachments made

more directly.

Sda a
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Figure 6. 2-Beam Test Structure with Qutrigger Beams
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Figure 7. Single Beam with Major Fiqure £. Original Force Cell and
Instrumentation Accelerometer Attachments

Fioure 9. Dual-Beam with Modified Ends and Modi-
fied Shaker Attachment
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Instrumentation. - The instrumentatfon listed in Table 1 has been employed

for excitation of the structure, recording analcg signals, performing data
acquisition and FFT processing, and performing the computations associatec

with curve-fitting, modal tuning, etc.

Item Model

Accelerometers Endevco, 2265-20

Accelerometers PCB, 3088

Force cells PC8, 208-A02

Signal conditioners Vishay, 2120

Analog tape recorder Hewlett-Packard (Sanborn), 3900

Electrodynamic shakers (50 1b.) MB, MB1500

Fourier analyzer Hewlett-Packard, 5420A
Desktop computer Hewlett-Packard, 9825A

Pen plotter Hewlett-Packard, 7225
Digital computer Digital Equipment, PDP11/60

Table 1. Equipment List

For single-shaker testing, the Hewlett-Packard 5420A was used both
to provide a random voltage signal to the shaker amplifier and to acquire
analog force and acceleration signals and produce FRF's. For 2-shaker
testing, the tape recorder was used to supply two pre-recorded uncorrelated
random voltage signals to the shaker amplifiers and to record the resulting

analog force and acceleration signals. A trigger signal was also recorded

R————,
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on the tape so that proper phase relationships could be maintained when
the 5420A was subsequently used to produce auto-spectra and cross-spectra
for use in computing FRF's using Equations (6). The 9825A desktop com-
puter was used for these FRF calculations and for the modal tuning cal-
culations, while the PDP11/60 was used for curve-fitting the experimental
FRF's .

Examples. - Examples will be presented to {llustrate the following: calculation
of FRF's based on dual-shaker excitation, curve-fitting of experimental FRF's,

standard Asher tuning, and minimum phase error tuning.

Multi-shaker Excitation:

Tests were conducted using dual-shaker cacitation of the following
experimental models: (1) single-beam configuration as shown in Figure 7,
(2) dual-beam configuration with outriggers, with teflon torsion bars
connecting the two main beams, and with long shaker push rods, and (3) dual-
beam configuration shown in Figure 9. As noted before, the analog tape
recorder was used to record the two force channels and the two accelerometer
channels. 1hese records were played back as input to the HP 5420A, which
was used to compute the auto-spectra and cross-spectra required to compute
yfz. Hyps Hyps Hpy and Hoy using Equations (5) and (6). Data are presented
below for the two dual-beam configurations, (2; and (3). described above.

A dual-shaker test of configuration (2) produced the data shown irn
Figures 10(a) through 10(g). Figures 10{(a) and 10(b) are the two force
auto-spectra, Figure 10(c) shows the ordinary coherence between the two

force channels, and Figures 10(d) through 10(g) show the real and imaginary

parts of Hy, and H61' where coordinates 1 and 6 are the opposite-corner
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shaker locations (e.g. see Figure 9). Although "ll is quite similar to
the M1, produces by a single-shaker test, it {s apparent that "61 is too
"noisy" to be an acceptable FRF, Since the force coherence is not equal

to unity, Equations (6) are valid over the entire frequency range. The

two force autospectra plots, Figures 10(a) and 10(b), indicate that in

the vicinity of structural resonances, the excitation levels were very low.
However, these autospectra are quite similar to those obtained in single-
shaker tests of the same structure.

Several further attempts to compute FRF's based on data taken for
configuration (2) did not produce any more acceptable FRF's than those in
Figures 10(d) through 10(g). Several changes were then made to the experi-
mental model, resulting in the structure shown in Figure 9. End blocks
were installed in the main beams to provide stiffer attachment locations
for the force cells and accelerometers, and the aluminum shaker "push rods"
were removed , permitting the more direct shaker attachment shown in Figure 9.
Some results obtained for this test configuration are shown in Figures 11(a)
through 11(g). Figures 11(a) through 11(c) show the two force auto-spectra
and the ordinary force coherence, while Figures 11(d) through 11(g) give
Hi and Hsl' For comparison, Figure 12(a) is tire force auto-spectrum for
a single-shaker test of this structure with the shaker at coordinate 1, while
Figures 12(b) through 12(e) are the real and imaginary plots for the single-
shaker FRF's H]1 and Hsl' A cursory comparison o€ Figures 11 and 12 would
seem to indicate that the single-shaker FRF's are more accurate. Since

significant improvement in the dual-shaker FRF's was achieved by making
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chenges in the shaker attachment fixturing, it seems 1ikely that further

improvements in the dual-shaker FRF's could be achieved by improvements

of technique.
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Figure 10f. Real Part of Hgy. Configuration (2).
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Figure 10g. Imaginary Part of Hg, . Configuration (2).
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Figures 11a,b. Force Autospectra. Configuration (3).

F COHERENCE
2.n0%e 22

!
1

150. 29

-2, 080e B0
FREQUENCY (H2)
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Figure 11d. Real Part of Hyqp- Configuration (3).
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Curve-Fitting:

The MDOF curve-fit algorithm of the MODAL-PLUS program of Structura)
Dynamics Research Corpcration has been used to curve-fit experimental
FRF's. Figures 13{(a) and 13(b) show the MDOF curve-fits of the dual-shaker

FRF's of Figures 11(d) through 11(g). Table 2 1ists the reots determined
by the curve-fit algorithm.
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Figure 13a. MDOF Curve-fit of H,;. Configuration (2).
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Figure 13b. MDOF Curve-fit of Hgy- Configuration (2).

Estimated Roots T Y7+

Root  Frequency Dampin Amplitude Phase

T 110.0 0.1349E-01 1.819 -0,9352E-06
2 117.2 0.1128E-01 0.2153E-01 1.563

3 119.0 0.3489E-02 104.2 1.490

4 119.7 0.6401E-01 36.21 -1.223

5 123.5 0.4142E-02 0.5937 1.963

6 129.1 0.1641E-02 0.1337 -3.142

[ Estimated Roots 67+ 17+4) ;2_

Root  Frequency Damping Amplitude Fhase

T 110.2 0.7227E-01 2.689 0.7931t-07
2 112.5 0.3728E-03 0.3629€-01 1.474

3 118.8 0.1139-02 13.20 -0.3084E-01
4 119.5 0.5012€-02 17.73 -2.867

5 121.7 0.9861E-02 1.115 -2.053

6 129.1 0.1089E-01 0.2363 -3.142

Table 2. Estimated Roots for H]] and HG]'
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Modal Tuning:

As noted earlier, both the standard Asher Method of modal tuning,
which is based on Equations (18) and (19), and a minimum coincident
response method based on Equations (23) and (25) have been employed. They
have been applied to the follewing data: (1) analytical 2DOF FRF's,

(2) single-shaker FRF's (no curve-fitting), and (3) dual-shaker FRF's
(no curve-fitting). Work is currently in progress on using curve-fit
FRF's for modal tuning.

Figure 14 shows the simple 2DOF analytical model used to test the
frequency separation capabilities of the standard Asher Method and the
minimum coincident response method. Table 3 illustrates the fact that
the minimum coincident response method was ahle to separate the modes for
the (5.00, 5.05) Hz case but not for the (5.00, 5.01) Hz case. The standard
Asher Method, on the other hand, was able to separate the modes for the
(5.00, 5.01)Hz case. Table 4 shows the frequencies obtained by applying
standard Asher tuning and minimum coincident response tuning to single-
shaker and dual-shaker FRF's obtained for the experimental model shown in
Figure 9. It has not yet been possible to complete the modal tuning cal-
culations based on curve-fits of the single-shaker and dual-shaker experi-

mental data.

—+=y, (1) —+=y,(1)
k k' k

et k(1) [Tl ot [T

77777

Figure 14, 2DOF Analytical Model
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[ ———tiode Mode | | Mode 2 || Mode 1] Mode 2
Method — 5.00H2 5.01H2 5.00H2 5.05H2
Standari Asher

Method 5.0039 5.0156 * *
Minimum Coincident
Response Method 5.0039 5.0039 5.0508
*Not computed

Table 3. Modal Tuning Based on 2DOF Analytical FRF's
Method Test Type Mode 1 Mode 2
Standard Single-Shaker 119.727 119,922

Asher
Method

Dual-Shaker 119.727 120.117
Minimum Single-Shaker 119,922 - .
Coincident
Response
Method Dual-Shaker 119.727 120.117

Table 4. Modal Tuning Based on Experimental FRF's
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Summary and Conclusions

A modal testing program consisting of data acquisition and FFT
processing, curve-fitting, modal tuning, mathematical modeling, and
computer-controlled testing has been outlined. Both single-shaker and
dual-shaker methods of data-acquisition are permitted. An experimental
model and several analytical models have been developed for use in
verifysing steps in the modal testing program. Frequency response func-
tions of the experimental model have been acquired using both single-shaker
and dual-shaker methods. The particular lightly-coupled structure which
was tested led to considerable difficulty in obtaining good FRF's using
two shakers. Further work is needed in order to develop multishaker
test procedures to the state of usefulness currently enjoyed by single-
shaker testing.

Computer programs have been written to implement both standard
Asher tuning and minimum coincident response tuning as means of refining
modal parameter estimates through the use of actual or simulated multi-
shaker FRF's. Based on the application of both tuning procedures to
analytically-formulated FRF's and to experimentally-acquired FRF's, it
appears that the standard Asher Method may be able to separate modes in
situations where the minimum coincident response method "breaks down."
Further research is needed to determine the 1imitations of both of these
tuning procedures.

Two phases of the proposed modal test program have not yet been
addressed, These are mathematical modeling and computer-controlled

testing. These phases will be addressed in future research.
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