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MODAL ANALYSIS USING A FOURIER ANALYZER, CURVE-FITTING,

AND MODAL TUNING

Introduction

Since the early 1970's the dominant technique for modal testing of

structures has been the use of single-point-excitation. with digital Fourier

analysis techniques being employed for determination of frequency response

functions (FRF's). Mod11 parameters (e.g. natural frequencies, damping, mode

shapes) are derived from these FRF's by various curve-fitting techniques.

Multishaker sine dwell or sine sweep testing, which had predominated prior

to the 1970's, became less frequently employed. due to the longer test times

and higher equipment costs involved. A few attempts have been made to combine

the better features of single-point FFT type testing with multishaker testing.

Two notable examples are References (1) and (2).

In Reference (1) Gold and Hallauer employ a Fourier analyzer to acquire

single-point-excitation FRF's. Curve-fitting is applied to these in order to

determine preliminary modal parameters, from which analytical expressions for

the FRF's are obtained. These analytical expressions are then employed as the

FRF input to the standard Asher Method of modal tuning. (3,4) The important

characteristic of Asher's Method is its capability of tuning individual modes

in regions of high modal density. In Reference (1). the evaluation of the

modal tuning concept using numerically simulated FRF data was very successful.

However, evaluation in an actual modal test produced inconclusive results

because of the poor quality of the experimentally-acquired FRF's.

The objective of the modal tuning procedure described in Reference (1)

was to provide a procedure for determining accurate modal parameters (natural
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frequencies, damping, real normal Aodes) in situations where high modal density

limits the usefulness of single-point-excitation techniques. Reference (2)

also employs a tuning procedure for determining modal parameters from FRF's

obtained by curve-fitting experimental FRF's. Whereas the original Asher

Metnod (1• ° •4) requires output from each shaker (input) location and no other

locations, Reference (2) introduces a "minimum coincident response method"

which permits the number of response locations to exceed the number of input

locations.

In the present work a modal testing, or parameter identification, program

which performs the functions indicated in the flow chart of Figure 1 is proposed,

and portions of the proposed program are evaluated.

Description if the Program

The proposed modal test program differs from single-input methods widely

used at present in that preliminary data may be acquired using multiple inputs,

and modal tuning procedures may be employed to define closely-spaced-frequency

modes more accurately or to mal.e use of FRF's which are based on several input

locations. In some respects the proposed modal test program resembles earlier

sine-sweep and sine-dwell testing in that broad-band FRF's are acquired using

several input locations, and tuning is employed to refine the modal parameter

estimates.

The major tasks performed in the pro posed modal test program are outlined

in the flow chart in Figure 1. They are: (1) data acquisition and FFT pro-

cessing, (2) curve-fitting, (3) modal tuning, (4) mathematical modeling, and

(5) computer-controlled testing. Phases (1) through (3) are described below,

and examples are given to illustrate and evaluate them. Phases (4) and (5) are

the subject of further research and program development.
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Data	 Acquisition

FF T Processing

Curve	 Fitting

Modal	 Tuning

Model	 \ Test

Mathematical Modeling I	 I Computer-controlled Testing

Figure I. Major Tasks of Proposed Modal Test Program
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Data Acquisition and FFT Processing.- This phase of the modal test program,

which consists of acquiring FRF's based on several input locations, resembles

the broad-band sine sweeps commonly used in the past. However, it is based

on FFT processing of excitation and response records. Two forms of data

acquisition are available: single-input and multiple-input. Figure 2 snows

a dynamical system with m inputs, x i (t), and a outputs, y i (t) . The

single-input data acquisition method involves sequential application of a

single shaker at each of the desired m input locations, while the multiple-

input method involves operating two or more exciters simultaneously.

x (t )=input  , y (t ) =output

y,(t)	 yz(t )	 Y.(t )

e.o

DYNAMICAL SYS'T'EM

_f ____ I
x 1 0 ) x2(t )	 xit )

Figure 2. Multiple-Input, Multiple-Output Testing
of a Dynamical System
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Single-Input Data Acquisition and FFT Processing:

The modal tuning methods to be discussed later require FRF's which are

based on two or more inout locations. For example, standard Asher tuning using

two input locations requires that the FRF's 
H II I H 12 1 

H21 and H22 be

acquired. For minimum coincident response tuning with two inputs and n

outputs, the FRF's needed are H ij ;i -1,2, ..., n; J-1,2).

For single-input data acquisition, a 2-channel Fourier Analyzer can be

used to acquire and process one FRF at a time. Preferably, all response accelera-

tions would be acquired and recorded in a single excitation run, with post-

processing to obtain the FRF's.

As with other curve-fitting methods, modal tuning requires a certain

frequency resolution in the FRF's if the tuning is to be successful. A data

acquisition frequency resolution on the order of one-fourth the half-power

bandwidth is desirable. That is,

Af < - 2c fn)(1)

where r, is a "representative (viscous) damping, factor" (e.g. 4 - 0.002)

and f n is a "representative natural frequency" (e.g. the center frequency

of the test frequency band). Frequency resolution will be discussed in more

detail later in conjunction with examples of Asher tuning and minimum coin-

cident response tuning.

Multiple-Input Data Acquisition and FFT Processing:

Although single-input FRF's can be used in modal tuning, it is desirable

to acquire the FRF's by using multiple-inputr.(596) . Consider a two-input,

w
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single-output test configuration as shown in Figure 3. (The generalization

to multiple-outputs y i (t) (i n1,2,...,n) is straightforward, but complicates

the notation.) Then,

X 1 0 	
H (f )YJ

0)

(t)

x4t^
L_ 	 (f) V4 

Figure 3. Two-Input, Single-Output System

	

Y(f) s Hyl (f)X l (f) + Hy2 (f)X2(f) + N(f)	 (2)

gives the (Fourier) transformed response, Y(f), due to the two transformed

inputs at input coordinates 1 and 2. N(f) is "noise" at the response coordinate

which is not linearly related to the inputs. It can be shown () that the least-

squares estimates for Hyl and Hy2 are obtained by forming
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YXl * n Hyl x i x i * + Hy2X2Xi*

(3)

YX2 * , HylX1X2* + Hy2x2X2*

where it is assumed that averaging is employed and that the noise N(f) is

not correlated with either input. Equations (3) can be written

yl	 yl Gl 1 +	 y21'21

(4)

Gy2 ` Hy1 G12 + Hy2G22

where the G's are the respective aver?ged auto- and cross-spectra defined

by Equations (3) and (4).

Assume that the ordinary coherence function between inputs x l (f) and

x2 (f) is not equal to unity.

	

Y12	
G11G22	

1

	

2
	

yG121
2

(5)

That is, assume that x 1 and x 2 are not fully correlated. Then Equation (4)

may be solved for Hyl and Hy2.
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H	 G 1 G22 G 2G21	 y1

yl	 G11 G22 - JG121	
Gil )

	

1	 G„^G,1

GY, 
G22

	

1	 Y12
no	 (6)

Hy2 ` G

11 Gy2 - GI 2G„1

G1 l G22 ----J-G112 1 2

1	 Gy 1 G1 2

Gy2	 - 4y-2G, I

G22	 1 - Al2

From equations (5) and (6) it may be seen that when G12 . 
G21 * ` 0,

A l2 2 ' 0, and Hyl and Hy2 are given by the singlo - input expressions

	

Hyl G	 Hy2 G

	

11	 22

In theory, Equations (6) may be employed to obtain FRF's when two

inputs are acting simultaneously, so long as the inputs are not fully

correlated. The above analysis can be extended to an arbitrary number

of inputs and arbitrary number of outputs (5 ' 8) . However, if the ordinary

coherence is unity, Equations (6) do not hold, and a different analysis

is required.

The advantages of multi-shaker testing have been discu:^sed in References

(5) and (6). In the present situation, where modal tuning is to be employed,

there is an added advantage to using simultaneous multi-input testing to

obtain the FRF's, since the shakers can later be employed for an actual

tuned-dwell test based on the results of the modal tuning.

(7)
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Curve-Fitting for Oreliminery Modal Param ptr,r Estimates. - As noted by

Gold and Hallauer (l) , useful results can be obtained by applying Asher

tuning to analytically - synthesized FRF's rather than to the original

experimentally-obtained FRF's. Preliminary studies^ 9) have indicated

that it is important to include residual ter,,,s in the curve-fitting to

obtain parameters for use in analytically synthesizing FRF's which are to

be used in modal tuning.

4.00E-05
^$KKKKKKKKK
IF• S.OSSE 01
1I . 8.364E-06

C
2i • 6.666E 01 C
2I • -1.212E-07 r

P
3F • 6.175E 01 1
3I • -1.368E-65 I

A
4F • 6.465E 01 H
4I • -8.045E-06 C

E
SF • 6.665E Al
5I • -3.612E-05 p

i
6F- 6.9SSE 01 F
6I . 2.436E-•05

7F- 7.226E 01
7I . 1.697E-05

8F- 7.4S0E 01
8I . 3 . 467E-68

9F- 7.780E 01
9I--3.34SE-0S
AS

-4.00E-0S

ESTIMATION
BANDWIDTH

13

REAL (DOTTED)

IMAGINARY (SOLID)

Vs
9

4.00E 01	 FREOUEMCV HZ
	

8.00E 01

Figure 4. Typical Freg II ency Response Measurement

Figure 4 shows a typical measured FRF and the frequency band of

interest, i.e. the frequency band over which it is desired to "match"

the measured FRF by a synthesized FRF. For general viscous damping a
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frequency response function for input x,(t) and output y i (t) can be

written (10)

n

	

Yi 
f	

E	 Air	 + _ Â i Jr	 ..His(f)	
X^ f	 r-1 J2arf - s r	J2nf	 )

where

Sr - -Or + Jwdr

'̀dr - damped natural frequency of the r th mode

a  
n decay rate of r th mode

Aijr n complex residue of the r th mode

- 
U
ijr + JVijr

n - order of the curve fit

Equation (8) can also be written

n

H (f) -

	
E	

i	 Ci-re3mi^r	 +	 C
i
 re-J^ijr
	

(9)
ij	 r-1	

wd^ r 2n + 
ar	 wdr + n
	 or
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where 
Cijr' m iJr' (0dr and yr are all real numbers.

Although for a real system the number of modes, n , is infinite,

only a limited number of modes can be employed in the analytically-synthe-

sized FRF. On the other hand, as shown in Figure 4, the frequency band of

interest may be from fa to fb , and in this range the number of modes

` 	 is finite. An expression like Equation (8) or Equation (9) can be used to

fit the measured FRF in the frequency band of interest, and residuals can

be employed to approximate the contributions of modes whose frequencies lie

below fa or above f  . Then, Equation (8) can be written

r 
,r

F,	 Ai r	 ! Ur

H ij	 Lij + rur
	

w-sr + j  - s r	 + Zii	
(10)

a

where

W	 n 2vrf

ra	 a lower mode index of frequency range of interest

r b	 n upper mode index of frequency range of interest

Lij n lower residual term

Zij - upper residual term (residual flexibility)

The lower residual term can also be written (10)

Y
L ij	 • —^-	 (11)

where

Yij - inertia restraint

a
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Thus, with the lower and upper residual terms approximated by use of the

real constantu 
Yii 

(inertia restraint) and Zij (residual flexibility),

the frequency response function 
Hii 

is approximated by

r 

+ E	 Air +i r*	 + Z	 (12)
H id	 w2	 ror a
	

A

w-sr	 W sr

Reference(10 gives additional forms for H ij which are equivalent to Equa-

tion (12). For each mode included in the summation there are four real con-

stants. Hence, if N modes correspond to the frequency range from r 

to rb , then 
Hij 

is defined analytically by 4N+2 real constants. These

constants may be obtaicied by application of a curve-fit algorithms such as

the MDOF curve-fit algorithm in the MODAL-PLUS program.

In the section on Examples it will be shown that obtaining analytical

FRF's L„/ curve-fitting exper'- Qntal FRF's prior to modal tuning serves three

important functions--it provides initial estimates of natural frequencies,

it permits interpolation between experimental data points to establish more

accurate natural frequencies, and it permits residuals to be employed so that

"resonant modes” can be tuned. If desired, curve-fitting can also be used to

generate columns of the FRF matrix corresponding to response locations where

no physical input was applied„ This was done in Reference (2) , where a full

FRF matrix was generated from single-point experimental FRF's.

Mod al Tuning for Refined Modal Parameter Estimates. - As indicated in the

Introduction, modal tuning is to be employed to refine the modal parameter

estimates, especially where there are closely-spaced natural frequencies.
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Figure 5 shows I(H 11 ) and 10 21) for a simple analytical 21)OF system

with f l n 5.00 Hz. 1` 2 - 5.01 Hz. r, 1 - 0.01, and r, 2 - 0.01. The I(Hil)

curve would seem to inoic:ate a single mode at 5.00 Hz. while the I(H 21)

curve indicates modes at 4.98 Hz and at 5.04 Hz. Allemang (5 ' 6) and other

authors have proposed various means for reconciling such apparent "incon-

sistencies" in modal parameters based on FRF's from two or more response

coordinates. The approach employed here is to use modal tuning to isolate

the closely-spaced-frequency modes, which are frequently the source of such

apparent inconsistencies.

TRANS	 H 11	
R#o 501	 NAs	 1	 EXPAND

5.0000	 /,	 ^^
1►i

IMAC

-50.000 -A..____.^__.

4.2000
TRANS	 H 21	 RNs 501

1.5000 ^--- ---
m

HZ
	

U. ionaco

NA@	 1	 EXPAND

IMAC

-1.5000
ON

4.2000	 Hz	 cc. aaau

Figure 5. Imaginary Parts of H11 
and H 21 for System with Modes

at 5.00 Hz and 5.01 Hz.
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Standard Asher Method of Modal Tuning:

As indicated in the Introduction, both the standard Asher Method

introduced in Reference 3 and a "minimum coincident response o;ethod"

discussed in Reference 2 will be employed in the present study. (Note:

Reference 1 applies the term "standard Asher Method" only to the use of

directly-measured FRF's for Asher tuning. Here we will apply the term

more generally to tuning using the method described in Reference 3, whether

cn directly-measured FRF's or on analytically-synthesized FRF's.)

Application of the standard Asher Method of modal tuning begins with

either measurement of a pxp FRF matrix, [H], over the frequency band of

interest, or the synthes'> of the [H] matrix from modal parameters obtained

by curve-fitting the measured data. The linear relationship between the

p output transforms and the p input transforms is

r
,Yl	 [H]	 {X1	 (13)
pxl	 pxp pxl

The caret indicates vectors and matrices restricted to the p input/output

locations. Next, [H] is separated into its real (coincident) and imaginary

(quadrature) parts, represented by [C] and [Q] respectively, giving

[H] a [C] + j [Q]

	
(14)

Equations (13) and (14) may be combined to give

n	 A	 A

{Y}	 m [ C] {X}	 + J[Q]{X)

	
(15)

If the input is assumed to be monophase, i.e. all components of {X)

are either in-phase or 1800 cut-of-phase, then {X} can be assumed to
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be a real vector at each frequency. Then, the response has real and

imaginary parts

A	 A	 A

R(Y)	 [C] {X}

(16)
A	 ,.	 A

IfY)	 _	 [Q] {X}

It has been shown 
(2.4) 

that if p n n = the total number of degrees of

freedom of a system, and if f c and (X(fc )} are chosen to satisfy

	

R{Y(fc )} s [C(fc)] M fc)} = {0}	 (17)

	

nxn	 nxl	 nxl

then each fc satisfying Equation (17) corresponds to an undamped natural

frc ,jency of the system, and each corresponding {Y(fc )} is an undamped

free vibration mode shape. However, when p<n	 Equation (17) becomes

A A	 A A

	[C(fc )] M fc )} = {0}	 p < n	 (18)

pxp	 pxl	 pxl

For a nontrivial solution of this eigenproblem, it is necessary for the
A

determinant of	 to vanish, i.e.

A A

det [C(fc )] = 0	 (19)

A

Some of the roots, fc , will be excellent approximations to the true

undamped natural frequencies of the system, but some will be "spurious

frequencies." "Spurious frequencies" can be .iistinguished from true
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frequencies either by employing several different sets of input/response

stations (4) , or by examining Oe phase of the response at points other

than the p input points. It has also been observed ( ' ) that when

det [CM) is plotted versus f , steep crossings of the frequency axis

are generally excellent approximations of true system frequencies.

Newton's iteration method may be employed in solving for the roots in

Equation (19).

fh - fh-1

fh+l	 fh - Dh Dh - Dh-1

where Oh 
s det[C(fh)].

Having identified the approximate natural frequency f c of a mode

and having calculated [C(fc )] from the FRF synthesizing equation, e.g.

Equation (12), we next determine the amplitude of the shaker forces necessary

to tune this mode. This distribution is calculated from Equation (18). A

	

n	 H	 1 A

	narrow-band sweep about f 	 with fixed X(f) - X(fc ) can be performed

analytically, and refined modal parameters can then be determined.

Minimum Coincident Response Method of Modal Tuning:

Invariably the number of response points exceeds the number of

excitation points, even in a multi-shaker sine-sweep or sine-dwell test,

and the modal amplitudes at many of these points may be of the same order

of magnitude as the modal amplitudes at the excitation points. The

minimum coincident response method introduced in Reference (2) permits

information from non-input points to be accounted for in the process of

tuning for undamped free vibration modes.

(20)
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Let Fquation (13) be expanded to include q response points, while

the number of input points is p < q , and let the resulting equation be

written

{Y}	 _ [H]fk)	 _	 [C]{X} + J[o] {X) 	 (21)
qxl	 qxp px 1 	qxp pxl	 qxp pxl

As before, we assume that fX) is real. Then

R{Y}	 _ (Y) R 	= [C]{X}	 (22)

However, since [C] is not a square matrix, it is not possible to determine

unique frequencies and force appropriations in the same manner as was done

in Equations (18) and (19). In Reference (11) Ibdnez discussed this

problem and suggested the use of a pseudo-inverse. Here, however, we will

employ the least-squares error procedure introduced by Ensminger and

Turner in Reference (2).

Let the error function be the sum of the squares of the coincident

(real) responses, i.e.

t	 _ {y } TR {Y } R a { X } T [C] T [^] {X}
	

(23)

be minimized subject to the condition

	

Y iR	 L CJ i X	 1
	 (24)

where

LCJi = i th row of [C] .
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The procedure employed by Reference (2) is to minimize the error with respect

to the components of the input {X} at each frequency f ; then to deter-

mine the corresponding values of c(f) and to select those frequencies

f  which correspond to minima of c(f) as the natural frequency estimates.
The expression for (X(f)) which minimizes c((X), f) for a specified f

is (2)

LCJi(C 0 LCJi

Equation (25) is used to compute (X(f)) , and then Equation (23) is

employed to compute the resulting least-squares error.

Program Verification

In Figure 1 the major tasks performed in the proposed modal test

program were outlined: (1) data acquisition and FFT processing, (2) curve-

fitting, (3) modal tuning, (4) mathematical modeling, and (5) computer-

controlled testing. An analytical model has been formulated and an experi-

mental model has been fabricated for use in checking out the first three of

these tasks.

Experimental Model. - Since most experimental modal testing is done on

structures whose modal properties are unknown at the outset and for which

there is no validated mathematical model, it was decided to construct a

relatively simple physical model to be used in evaluating the various phases

of the proposed modal testing program prior to application of the techniques
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to "real hardware." Figure 6 shows the basic elements of the lightly -

coupled 2-beam structure constructed. The structure consists of two aluminum

box beams 1.52m long, to which damping material (one constrained layer and

one non-constrained layer) has been applied, and which are coupled by two tor-

sion rods, which may be various lengths and various materials. To increase

the modal density, tuned "outrigger beams" are attached to the main beams.

Both coupling torsion bars and outrigger beams are attached to the main

beams near the node points of the fundamental free-free bending mode of the

main beams. Figure 7 shows a single main beam with outriggers and with

two shakers attached to the beam by long "push rods." Figure 8 shows a

closeup of the force cell and accelerometer attachments at the end of the

box beam. Also shown is an outrigger beam, which is cantilevered from the

bottom of the main beam. After several unsuccessful attempts to obtain FRF's

with two shakers operating simultaneously, the setup was modified by insert-

ing a block at each end of the main beams to prevent local deformation of

the end cross-sections. The long push rods were replaced by shorter shaker

attachment fittings. Figure 9 shows a test configuration with two main

beams, but with the outrigger beams removed and the shaker attachments made

more directly.
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Figure 6. 2-Beam Test Structure with Outrigger Beams



I

21

Figure 1.	 Single Beam with Mijor
	

Figure P. original Force Cell and
Instrumentation
	

Accelerometer Attachments

Fi g ure 9. Dual-Beam with Modified Ends and Modi-
fied Shaker Attachment
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Instrumentation. - The instrumentation listed in Table 1 has been employed

for excitation of the structure, recording analog signals, performing data

acquisition and FFT processing, and performing the computations associates

with curve-fitting, modal tuning, etc.

Item
	

Model

Accelerometers
	

Endevco, 2265-20

Accelerometers
	

PCB, 308B

Force cells
	

PCB, 208-A02

Signal conditioners
	

Vishay, 2120

Analog tape recorder	 Hewlett-Packard (Sanborn), 3900

Electrodynamic shakers (50 lb.) MB, MB1500

Fourier analyzer
	

Hewlett-Packard, 5420A

Desktop computer	 Hewlett-Packard, 9825A

Pen plotter	 Hewlett-Packard, 7225

Digital computer	 Digital Equipment, PDP11/60

Table 1. Equipment List

For single-shaker testing, the Hewlett-Packard 5420A was used both

to provide a random voltage signal to the shaker amplifier and to acquire

analog force and acceleration signals and produce FRF's. For 2-shaker

testing, the tape recorder was used to supply two pre-recorded uncorrelated

random voltage signals to the shaker amplifiers and to record the resulting
	 ;,

analog force and acceleration signals. A trigger signal was also recorded



on the tape so that proper phase relationships could be maintained

the 5420A was subsequently used to produce auto-spectra and cross

for use in computing FRF's using Equations (6). The 9825A desktop com-

puter was used for these FRF calculations and for the modal tuning cal-

culations, while the PDP11/60 was used for curve-fitting the experimental

FRF's.

Examples. - Examples will be presented to illustrate the following: calculation

of FRF's based on dual-shaker excitation, curve-fitting of experimental FRF's,

standard Asher tuning, and minimum phase error tuning.

Multi-shaker Excitation:

Tests were conducted using dual-shaker vKcitation of the following

experimental models: (1) single-beam configuration as shown in Figure 7,

(2) dual-beam configuration with outriggers, with teflon torsion bars

connecting the two main beams, and with long shaker push rods, and (3) dual-

beam configuration shown in Figure 9. As noted before, the analog tape

recorder was used to record the two force channels and the two accelerometer

channels. '1hese records were played back as input to the HP 5420A, which

was used to compute the auto-spectra and cross-spectra required to compute

Y12 , H 11' H 12' H21 and H
V2 using Equations (5) and (6). Data are presented

below for the two dual-beam configurations, (2^ and (3). described above.

A dual-shaker test of configuration (2) produced the data shown in

Figures 10(a) through 10(g). Figures 10(a) and 10(b) are the two force

auto-spectra, Figure 10(c) shows the ordinary coherence between the twc ►

force channels, and Figures 10(d) through 10(g) show the real and imaginary

parts of H ll and H 61 , where coordinates 1 and 6 are the opposite-corner
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shaker locations (e.g. see Figure 9). Although 
H11 

is quite similar to

the H11 producer by a single-shaker test. it is apparent that H 61 is too

"noisy" to be an acceptable FRF. Since the force coherence is not equal

to unity. Equations (6) are valid over the entire frequency range. The

two force autospectra plots. Figures 10(a) and 10(b), indicate that in

the vicinity of structural resonances, the excitation levels were very low.

Howevero these autospectra are quite similar to those obtained in single-

shaker tests of the same structure.

Several further attempts to compute FRF's based on data taken for

configuration (2) did not produce any more acceptable FRF's than those in

Figures 10(d) through 10(g). Several changes were then made to the experi-

mental model, resulting in the structure shown in Figure 9. End blocks

were installed in the main beams to provide stiffer attachment locations

for the force cells and accelerometers, and the aluminum shaker "push rods"

were removed, permitting the more direct shaker attachment shown in Figure 9.

Some results obtained for this test configuration are shown in Figures 11(a)

through 11(g). Figures 11(a) through 11(c) show the two force auto-spectra

and the ordinary force coherence, while Figures 11(d) through 11(g) give

H11 and H61 . For comparison. Figure 12(a) is tf: ,e force auto-spectrum for

a single-shaker test of this structure with the shaker at coordinate 1. while

Figures 12(b) through 12(e) are the real and imaginary plots for the single-

shaker FRF's H11 and H61 . A cursory comparison o O Figures 11 and 12 would

seem to indicate that the single-shaker FRF's are more accurate. Since

significant improvement in the dual-shaker FRF's was achieved by making

w
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chenges in the shaker attachment fixturing, it seems likely that further

improvements in the dual-shaker FRF's could be achieved by improvements

of technique.

A •IC i	 M •	 IA. n

Iii	 Na	 ME

Figure 10a. Force Autospectrum for Shaker No. 1

Figure 10b. Force Autospectrum for Shaker No. 2

.,
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Figure 10d. Real Part of H 11 . Configuration (2).
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Figure 10e. Imaginary Part of 
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Configuration (2).
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Configuration (2).
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Figure 10g. Imaginary Part of H 61 . Configuration (2).
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Curve-Fitting:

The MOOF curve-fit algorithm of the MODAL-PLUS program of Structural

Dynamics Research Corporation has been used to curve-fit experimental

FRF's. Figures 13(a) And 13(b) show the MDOF curve-fits of the dual-shaker

FRF's of Figures 11(d) through 11(g). Table 2 lists the roots determined

by the curve-fit algorithm.

to
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Figure 13a. MDOF Curve-fit of H 11 . Configuration (2).

ti.
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Figure 13b. MDOF Curve-fit of H 61 . Configuration (2).

Estimated oots 1 Z+	 I Z+)
oo t re uenc Dameing Amplitude Phase
T 115.6 0.1349E-01 1.819 -0.9352E-06
2 117.2 0.1128E-01 0.2153E-01 1.563
3 119.0 0.3489E-02 104.2 1.490
4 119.7 0.6401E-01 36.21 -1.223
5 123.5 0.4142E-02 0.5937 1.963
6 129.1 0.1641E-02 0.1337 -3.142

Estimated Roots +	 1Z+) --
Root Frequency Dampi Am	 itu e

_
Phase

2 112.5 0.3128E-03 0.3629E-01 1.174
3 118.8 0.1139E-02 18.20 -0.3084E-01
4 119.5 0.5012E-02 17.13 -2.867
5 121.7 0.9861E-02 1.115 -2.053
6 129.1 0.1089E-01 0.2363 -3.142

Table 2. Estimated Roots for H 11 and H61'
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Modal Tuning:

As noted earlier, both the standard Asher Method of modal tuning,

which is based on Equations (18) and (19), and a minimum coincident

response method based on Equations (23) and (25) have been employed. They

have been applied to the following data: (1) analytical 2DOF FRF's,

(2) single-shaker FRF's (no curve-fitting), and (3) dual-shaker FRF's

(no curve-fitting). Work is currently in progress on using curve-fit

FRF's for modal tuning.

Figure 14 shows the simple 2DOF analytical model used to test the

frequency separation capabilities of the standard Asher Method and the

minimum coincident response method. Table 3 illu%trates the fact that

the minimum coincident response method was able to separate the modes for

the (5.00, 5.05) Hz case but not for the (5.00, 5.01) Hz case. The standard

Asher Method, on the other hand, was able to separate the modes for the

(5.00, 5.01)Hz case. Table 4 shows the frequencies obtained by applying

standard Asher tuning and minimum coincident response tuning to single-

shaker and dual-shaker FRF's obtained for the experimental model shown in

Figure 9. It has not yet been possible to complete the modal tuning cal-

culations based on curve-fits of the single-shaker and dual-shaker experi-

mental data.

4-4- Y, ( t
	

-+_ Y 1 0t

Figure 14. 2DOF Analytical Model



de Mode 1 Mode 2 Mode 1 Mode 2
Method 5,00Hz 5.01Hz 5.00HZ 5.05NZ

Standard Asher
Method 5.0039 5.0156

Minimum Coincident
Response Method 5.0039 - 5.0039 5.0508

*Not computed

Table 3. Modal Tuning Based on 2DOF Analytical FRF's

Method Tast Type Mode 1 Mode 2

Standard Single-Shaker 119.727 119.922
Asher
Method

Dual-Shaker 119.727 120.117

Minimum Single-Shaker 119.922 -	 •
CoincidenL

Dual-Shaker 119.727 120.117
Response
Method

Table 4. Modal Tuning Based on Experimental FRF's
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Summary and Conclusions

A modal testing program consisting of d4ta acquisition and FF1

processing, curve-fitting, modal tuning, mathematical modeling, and

computer-controlled testing has been outlined. Both single-shaker and

dual-shaker methods of data-acquisition are permitted. An experimental

model and several analytical models have been developed for use in

verifying steps in the modal testing program. Frequency response func-

tions of the experimental model have been acquired using both single-shaker

and dual-shaker methods. The particular lightly-coupled structure which

was tested led to considerable difficulty in obtaining good FRF's using

two shakers. Further work is needed in order to develop multishaker

test procedures to the state of usefulness currently enjoyed by single-

shaker testing.

Computer programs have been written to implement both standard

Asher tuning and minimum coincident response tuning as means of refining

modal parameter estimates through the use of actual or simulated multi-

shaker FRF's. Based on the application of both tuning procedures to

analytically-formulated FRF's and to experimentally-acquired FRF's, it

appears that the standard Asher Method may be able to separate modes in

situations where the minimum coincident response method "breaks down."

Further research is needed to determine the limitations of both of these

tuning procedures.

Ywo phases of the proposed modal test program have not yet been

addressed. These are mathematical modeling and computer-controlled

testing. These phases will be addressed in future research.
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