NASA Technical Memorandum 83181

SPAR DATA SET CONTENTS

Sally W. Cunningham

National Aeronautics and Space Administration
Page
SUMMARY 1
INTRODUCTION 1
SPAR DATA SET CONTENTS 1
TAB Data Sets
JDF1 BTAB 18 2
JREF BTAB 26 2
ALTR BTAB 24 3
NDAL 0 3
TEXT BTAB 2 3
JLOC BTAB 25 3
MREF BTAB 27 4
MATC BTAB 2 4
BA BTAB 29 5
BC BTAB 211 5
SA BTAB 213 5
CON ncon 0 7
QJJT BTAB 29 8
ELD Data Sets
DEF Exx y z 8
GD Exx y z 9
GTIT Exx y z 9
DIR Exx y z 10
NS $\quad 0 \quad 0$ 10
ELTS NAME 0 10
ELTS NNOD 0 10
ELTS ISCT 0 11
TOPO Data Sets
KMAP 11
AMAP 11
E Data Sets
Exx EFIL y z 12
DEM DIAG 0 12
K Data Sets
K SPAR ncon 0 12
INV Data Sets
INV x ncon 0 13
M Data Sets
CEM SPAR ncon 0 13
Page
AUS Data Sets
13
CASE TITL iset
13
APPL FORC iset
14
APPL MOTI iset
NODA TEMP iset 14
NODA PRES iset 14
TEMP Exx iset icase 14
DISL Exx iset icase 15
PRES Exx iset icase 17
SSOL Data Sets
STAT DISP iset ncon 18
STAT REAC iset ncon 18
GSF Data Sets
STRS E21 iset icase 18
STRS E22 iset icase 19
STRS E23 iset icase 20
STRS E24 iset icase 20
STRS E25 iset icase 21
STRS E3l iset icase 21
STRS E32 iset icase 22
STRS E33 iset icase 22
STRS E41 iset icase 23
STRS E42 iset icase 24
STRS E43 iset icase 25
STRS E44 iset icase 27
EIG Data Sets
BUCK MODE iset ncon 27
BUCK EVAL iset ncon 27
VIBR MODE iset ncon 28
VIBR EVAL iset ncon 28
EXAMPLE PROBLEM 29
Structural Model 29
SPAR Input File 30
Table of Contents 33
CONCLUDING REMARKS 36
REF ERENCES 37

SUMMARY

The SPAR structural analysis system consists of a collection of processors for performing finite-element analysis. The data generated by each of these processors are stored in a data base library as two-dimensional tables or matrices called data sets. These data sets are identified by four-word names which are listed in the table of contents for the data base library.

This report documents the contents of the SPAR data sets. The creating SPAR processor, number of rows and columns, and definitions of each of the data items are documented for each data set. An example problem is included, with SPAR input and resulting table of contents. This information can be used to create new SPAR processors or to interface SPAR with another system.

INTRODUCTION

The SPAR computer software system is a collection of processors for performing finite-element structural analysis. The data generated by each processor is stored on a data base complex for use by subsequent processors. This data may be read by the user through SPAR data processors (ref. 1) or PORTRAN data handling utilities (ref. 2).

This report documents the contents of many of the SPAR data sets stored in the data base complex. An example problem for creating the data sets documented in this report is included, with the SPAR input and resulting table of contents listed. This data was collected in the course of writing an interface from SPAR to another data base complex, and represents the formalizing of a set of notes passed on by several users. This information can be used (1) to understand more clearly and to use more productively the existing processors in the SPAR system, (2) to develop new SPAR processors, or (3) to interface SPAR with another software system.

SPAR פATA SET CONTENTS

The SPAR software system, created by W. D. Whetstone, is composed of processors for performing finite-element structural analysis. The data from a SPAR run is saved in a data file organized as a "library." Each library file is composed of a number of datasets and a table of contents. These library files have names SPARLA through SPARLZ for Control Data; SPAR-A through SPAR-Z for Univac; or SPLA through SPLZ for PRIME or VAX; corresponding
to SPAR library numbers 1 through 26. The data is automatically put in library 1 by the processors. This file may be renamed to another library name and may still be read using DCU or the data handling utilities.

The data are stored in 2-dimensional tables or matrices dimensioned (NI, NJ) called blocks. Each data set contains one or more blocks with NI rows and NJ columns. Following are lists of the contents of many SPAR data sets. The creating SPAR processor, number of rows and columns, and the definition of each of the data items are listed for each data set.

JDF1 BTAB 18

Created from TAB processor START card.
$\mathrm{NJ}=1$
$\mathrm{NI}=18$

Contents:

1. Total number of joints.
2. Number of joint degrees of freedom, both translations and rotations, constrained by START card.
3. Number of joint translational degrees of freedom not constrained.
4.
5. A list of unconstrained joint degrees of freedom, filled in
6. consecutively from position 4; unused values are zero.
7. Example for d.o.f. 1, 2, and 6 unconstrained:
8. $1,2,6,0,0,0$
9.
10.
11. freedom; zero if not active.

A 11st specifying the order of each unconstrained degree of
13. Example for d.o.f. 1, 2, and 6 unconstrained: |
14.
15.
16.
17. $\}$ Not used.
18.
$1,2,0,0,0,3$

JREF BTAB 26

Created from JREF in processor TAB.
$\mathrm{NJ}=$ Total number of joints
$\mathrm{NI}=1$

Contents:

Contains the Joint Reference Frame number for each joint, corresponding to the row number of dataset ALTR BTAB 24 which contains the definition of each Joint Reference Frame.

ALTR BTAB 24

Created from ALTREF in processor. TAB.
$\mathrm{NJ}=$ Number of alternate reference frames
$\mathrm{NI}=12$

Contents of each entry:

1. a_{11}
2. a21
3. a31
4. a12
5. $\left.a_{22}\right\}$ Components of a
6. a32 coordinate transformation matrix
7. a_{13}
8. \mathbf{a}_{23}
9. a_{33}
10. $\left.X_{o}\right\}$ Location of origin of
11. $\left.Y_{o}\right\}$ alternate reference frame
12. $Z_{0} \int$ given in global coordinates

Formula:

coordinates in
global reference frame
coordinates in alternate reference frame

NDAL 00

Created from TITLE card in processor TAB.
Contains title in text.

TEXT BTAB 22

Created from TEXT card(s) in processor TAB.
Contains data in text.

JLOC BTAB 25

Created from JLOC in processor TAB.
$\mathrm{NJ}=$ Number of joints
$\mathrm{NI}=3$

Contents:

$I=$| $\mathrm{J}=1,2, \ldots$ Number of joints. |
| :--- |
| Y |
| Z |

```
MREF BTAB 2 }
    Created from MREF in processor TAB.
    NJ = Number of beam orientation entries
    NI = 5
Contents of each entry:
(See reference 1 description of MREF input)
    Format 1 (Default)
        1. Beam axis NB
        2. Global axis NG
        3. 1 if cosine between NB and NG is positive, -1 if negative
        4. Cosine of angle between NB and NG
        5. 1. indicating format = 1
    Format 2
    1. }\mp@subsup{\textrm{X}}{1}{
    2. }\mp@subsup{\textrm{X}}{2}{
    3. }\mp@subsup{\textrm{X}}{3}{
    4. I1 axis orientation
    5. -1. indicating format =2
MATC BTAB 2 2
    Created from MATC in processor TAB.
    NJ = Number of material types
    NI = 10
Contents of each entry:
    1. E = Modulus of elasticity
    2. v = Poisson's Ratio
    3. G = E/(2(1+v))
    4. }\rho=\mathrm{ Weight per unit volume
    5. }\mp@subsup{\alpha}{1}{}=\mathrm{ Thermal expansion coefficient, direction }\overline{x
    6. }\mp@subsup{\alpha}{2}{\prime}=\mathrm{ Thermal expansion coefficient, direction }
    7. }\mp@subsup{\Theta}{}{2}=\mathrm{ Angle between element reference frame (x,y) and ( }\overline{x},\overline{y}
    8. )
    9.\ Not used
4
```

Created from E21 section properties in processor TAB.
$\mathrm{NJ}=$ Number of entries
NI $=31$

Contents of each entry:

(See reference 1 description of DSY input of E21 section properties)

BC BTAB 211
Created from E23 section properties in processor TAB. $\mathrm{NJ}=$ Number of entries $\mathrm{NI}=6$

Contents of each entry:

1. Cross-sectional area of axial element
2. Cross-sectional area of axial element
3.
4. $\}$ Not used.
5.
6. \int

SA BTAB 213

Created from shell section properties in processor TAB. $\mathrm{NJ}=$ Number of entries Contents vary according to section type:

For MEMBRANE, PLATE, ISOTROPIC or UNCOUPLED section types $\mathrm{NI}=43$

Contents of each entry:

For COUPLED section types:
NI $=43$

Contents of each entry:

1. Number indicating section type:

4 = COUPLED
2. Pointer to entry of NMAT containing material constants
3. Structural weight/area
4. d_{11}
5. d_{12}
7. d_{13}^{22}
$\begin{array}{ll}\text { 8. } & \mathrm{d}_{23} \\ \text { 9. } & \mathrm{d}_{33}\end{array}$
10. d_{14}^{33}
$\begin{array}{ll}\text { 11. } & \mathrm{d}_{24}^{14} \\ \text { 12. } & \mathrm{d}_{34}\end{array}$
13. d^{34}
14. d^{44}
15. d^{15}
16. d_{35}^{25}
17. d_{45}^{35}
19. d_{1}^{55}
20. d_{26}
22.
23.
24. d_{66}^{56}

For LAMINATE section types: $\mathrm{NI}=25+(18$ times number of layers $)$

Contents of each entry:

COn neon 0

```
ncon = Constraint case
Created from CON in processor TAB
NJ = Number of joints
NI = 1
```


Contents:

Each entry contains an integer representing the Joint Reference Frarie number and constrained components for that joint. The bit pattern of each integer contains a 1 for constrained components, zeso otherwise, stored in reverse order (6 to 1) with Joint Reference Frame number leading. For example:

A joint with components $1,2,3$, and 5 zeroed out and $J R E F=11$ would have the integer 45333 stored:
bit pattern $\rightarrow \frac{0.0 .01011}{\text { JREF number }}, \underbrace{\frac{00}{6} \frac{01}{5} \frac{00}{4} \frac{01}{3} \cdot \frac{01}{2} \frac{01}{1}}_{\text {joint motion components }}$:

| Component 1 (constrained) | $=1 \times r$ | $1=$ | 1 |
| :--- | :--- | :--- | ---: | ---: |
| Component 2 (constrained) | $=1 \times$ | $4=$ | 4 |
| Component 3 (constrained) | $=1 \times 16=$ | 16 | |
| Component 4 (unconstrained) | $=0 \times 64=$ | 0 | |
| Component 5 (constrained) | $=1 \times 256=$ | 256 | |
| Component 6 (unconstrained) | $=0 \times 1024=$ | 0 | |
| JREF number $=11$ | $=11 \times 4096=+45056$ | | |
| Integer stored for this joint | \rightarrow | 45333 | |

QJJT BTAB 29
Created in processor TAB.
$\mathrm{NJ}=$ Number of Joints
NI $=9$
Contents of each entry:

1. a_{11}
2. a_{21}
3. a_{31}
4. a_{12}
5. a_{22}
6. a 32
7. a_{13}
8. a ${ }^{23}$

Formula:
Each entry contains a 3×3 matrix to convert Alternate Reference Frame to Global Reference Frame for that joint.

$$
\left[\begin{array}{l}
\mathrm{Xg} \\
\mathrm{Yg} \\
\mathrm{Zg}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathrm{Xa} \\
\mathrm{Ya} \\
\mathrm{Za}
\end{array}\right]
$$

coordinates in
coordinates in
global reference frame
alternate reference frame

DEF Exx y z
Exx $=$ Element name
$\mathrm{y}=$ Type number (E21 = 1 through E44 = 12)
$z=$ Number of joints/element
Created from element definitions in processor ELD.
$\mathrm{NJ}=$ Number of elements of this type
NI For 2-node elements $=18$ columns
3 -node elements $=15$ columns
4 -node elements $=16$ columns

```
Contents of each entry:
    1. Element number
    2. Group number
    3. Element number within group
    4. Not used
    5. N3 of corresponding dataset xx BTAB N3 N4
    6. N4 where xx = BA,BB,SA...
    7. Index of MATC containing material constants
    8. Index section property dataset containing section properties.
    9. Index of non-structural weight dataset (NSW)
10. Index of rigid link offset dataset (BRL)
11. Index of beam orientation dataset (MREF)
12. Not used
13. Joint 非1
14. Joint #2
15. Joint #3
16. Joint ##
17. Not used
18. Not used
```

GD Exx y z

$$
\text { Exx }=\text { Element name }
$$

$y=$ Type number (E21 = 1 through E44 = 12)
$z=$ Number of joints/element
Created from element definitions in processor ELD.
NJ = Number of groups
$N I=2$

Contents of each entry:

1. Total number of elements within group.
2. Cumulative total of last element in each group for more than one group.

GTIT Exx y z

Exx = Element name
$y=$ Type number (E21 = 1 through E44 = 12)
$z=$ Number of joints/element
Created from element definitions in processor ELD.
$\mathrm{NJ}=$ Number of groups
$\mathrm{NI}=15$

Contents of each entry:
. 15 words of title for each group. Default is blanks.
Exx = Element name
$y=$ Type number (E21 = 1 through E44 = 12)
$z=$ Number of joints/element
Created in processor ELD.
$\mathrm{NJ}=1$
$\mathrm{NI}=20$

Contents:

1. Number of nodes
2. Type number
3. Number of elements of this type
4. N4 in "xx BTAB N3 N4" where $x x$ is BA, BC, SA...
5. Size of Erx EFIL for this element

6-20. Directory information for element data.

NS 00
Created in processor ELD.
$\mathrm{NJ}=$ Number of element types present
$\mathrm{NI}=15$

Contents:
Each entry contains directory information for corresponding element data.

ELTS NAME 00
Created in processor ELD.
$\mathrm{NJ}=1$
NI $=$ Number of element types
Contains alphanumeric element name of each element used in the structure.

ELTS NNOD 00

Created in processor ELD.
$\mathrm{NJ}=$ Number of element types
$\mathrm{NI}=1$

Contains the number of nodes in each element type.

```
ELTS ISCT 0 0
    Created in processor ELD.
    NJ = Number of element types
    NI = 1
Contains N4 of "xx BTAB N3 N4" where xx = BA,BC,SA...
KMAP y z
Created in processor TOPO.
This information is stored in blocks with the block length determined by a RESET control in the TOPO processor. Default block length is 896 words.
Contents:
Used by K, \(M\), and KG to guide assembly of stiffness and mass matrices in the SPAR standard sparse-matrix format.
AMAP y z
Created in processor TOPO.
This information is stored in blocks with the block length determined by a RESET control in the TOPO processor. Default block length is 1792 words.
Contents:
Used by INV in factoring system matrices, such as the reduction of the stiffness matrix.
```

Exx EFIL y z
Exx $=$ Element name
$y=$ Type number (E $21=1$ through $E 44=12$)
$z=$ Number of joints/element
Created in processor E.
$N J=N u m b e r$ of elements of this type

Contents:
Each entry contains alphanumeric information packet with the following categories:

1. Integer information, corrected joint numbers, tables
2. Material constants
3. Geometrical details
4. Section properties
5. Intrinsic stiffness matrix
6. Stress recovery influence matrix
7. Internal stress resultants

DEM DIAG 00
Created in processor E .
$\mathrm{NJ}=$ Number of joints
NI $=6$ minus number of joint motion components constrained on START card
Contains system mass matrix in diagonal form.

K SPAR ncon 0
ncon $=$ constraint case
Created in processor K.
This information is stored in blocks with the block length determined by a RESET control in the K processor. Default block length is 2240 words.

Contains stiffness matrix composed of submatrices, each submatrix corresponding to the connection of one joint to another.

INV x ncon 0
$x \quad=$ First word of the name of the input stiffness matrix ncon $=$ Constraint case
Created in processor INV.
This information is stored in blocks with the block length determined by a RESET control in the INV processor. Default block length is 3584 words.

Contains factored system matrix.

CEM SPAR ncon 0
ncon $=$ Constraint case
Created in processor M .
This information is stored in blocks with the block length determined by a RESET control in the M processor. Default block length is 2240 words.

Contains unconstrained system consistent mass matrices considering only the structural and nonstructural distributed mass associated with the elements.

CASE TITL iset
iset $=$ Load set
Created in processor AUS. Number of blocks $=$ Number of load cases in this load set.

Contents:
Each block contains the title for the corresponding load case in text.

APPL FORC iset

iset $=$ Load set
Created in processor AUS.
$\mathrm{NJ}=$ Number of joints
NI $=6$ minus number of joint motion components constrained on START card. Number of blocks $=$ Number of load cases in this load set.

Contents:
Each entry contains applied forces and moments on that joint in each active direction.

```
APPL MOTI iset
    iset = Load set
    Created in processor AUS.
    NJ = Number of joints
    NI = 6 minus number of joint motion components constrained on START card.
    Number of blocks = Number of load cases in this load set.
Contents:
Each entry contains applied motions on that joint in each active direction.
NODA TEMP iset
    iset = Load set
    Created in processor AUS part TABLE
    NJ = Number of joints
    NI = 1
    Number of blocks = Number of load cases in this load set.
Contents:
Each block of data contains nodal temperatures for every joint in the structure.
One block corresponds to one load case.
```

NODA PRES iset
iset $=$ Load set
Created in processor AUS part TABLE
$\mathrm{NJ}=$ Number of joints
$\mathrm{NI}=1$
Number of blocks $=$ Number of load cases in this load set.

Contents:

Each block of data contains nodal pressures for every joint in the structure. One block corresponds to one load case.

TEMP Exx iset icase

Exx = Element name
iset $=$ Load set
icase $=$ Load case within Load set
Created in processor AUS.
$\mathrm{NJ}=$ Number of elements of this type.

For 2-node elements:
Note: Not defined for E25 elements NI = 3

```
Contents of each entry:
    1. Average temperature of the element
    2. Transverse gradient in direction 1
    3. Transverse gradient in direction 2
For 3-node elements:
    Note: Not defined for E32 elements
        NI = 3
Contents of each entry:
    1. Temperature at joint 1 of element
    2. Temperature at joint 2 of element
    3. Temperature at joint 3 of element
For 4-node elements:
        Note: Not defined for E42 elements
        NI = 4
Contents of each entry:
    1. Temperature at joint 1 of element
    2. Temperature at joint 2 of element
    3. Temperature at joint 3 of element
    4. Temperature at joint 4 of element
```

Formula:
Total effective $=$ Element temperature + Nodal temperature from block icase
temperature at node n at node n of dataset "NODA TEMP iset"

DISL Exx iset icase
Exx = E1ement name
iset $=$ Load set
icase $=$ Load case within load set
Created in processor AUS
$\mathrm{NJ}=$ Number of elements of this type
For 2-node elements:

$$
N I=6
$$

Contents of each entry:

1. Displacement in direction 1
2. Displacement in direction 2
3. Displacement in direction 3
4. Rotation about axis 1
5. Rotation about axis 2
6. Rotation about axis 3

These displacements and rotations are relative to a reference frame, parallel to the element's reference frame, and embedded in the terminus.

```
For E3l elements:
```

$$
N I=3
$$

Contents of each entry:

1. Displacement of joint 2 in direction 1
2. Displacement of joint 3 in direction 1
3. Displacement of joint 3 in direction 2

For E32 elements:

$$
\mathrm{NI}=6
$$

Contents of each entry:

1. Displacement of joint 2 in direction 3
2. Rotation of joint 2 about axis 1
3. Rotation of joint 2 about axis 2
4. Displacement of joint 3 in direction 3
5. Rotation of joint 3 about axis 1
6. Rotation of joint 3 about axis 2

For E33 elements:

$$
\text { NI }=9
$$

Contents of each entry:

1. Displacement of joint 2 in direction 1
2. Displacement of joint 3 in direction 1
3. Displacement of joint 3 in direction 2
4. Displacement of joint 2 in direction 3
5. Rotation of joint 2 about axis 1
6. Rotation of joint 2 about axis 2
7. Displacement of joint 3 in direction 3
8. Rotation of joint 3 about axis 1
9. Rotation of joint 3 about axis 2

For E 41 elements:

$$
\mathrm{NI}=6
$$

Contents of each entry:

1. Displacement of joint 2 in direction 1
2. Displacement of joint 3 in direction 1
3. Displacement of joint 3 in direction 2
4. Displacement of joint 4 in direction 1
5. Displacement of joint 4 in direction 2
6. Displacement of joint 4 in direction 3

For E42 elements:

$$
\mathrm{NI}=6
$$

Contents of each entry:

1. Displacement of joint 2 in direction 3
2. Rotation of joint 2 about axis 1
3. Rotation of joint 2 about axis 2
4. Displacement of joint 3 in direction 3
```
    5. Rotation of joint 3 about axis 1
    6. Rotation of joint 3 about axis 2
    7. Displacement of joint 4 in direction 3
    8. Rotation of joint 4 about axis 1
    9. Rotation of joint 4 about axis 2
For E43 elements:
                        NI = 14
Contents of each entry:
    1. Displacement of joint 2 in direction 1
    2. Displacement of joint 3 in direction 1
    3. Displacement of joint 3 in direction 2
    4. Displacement of joint 4 in direction l
    5. Displacement of joint 4 in direction 2
    6. Displacement of joint 2 in direction 3
    7. Rotation of joint 2 about axis 1
    8. Rotation of joint 2 about axis 2
    9. Displacement of joint 3 in direction 3
    10. Rotation of joint 3 about axis 1
    11. Rotation of joint 3 about axis 2
    12. Displacement of joint 4 in direction 3
    13. Rotation of joint 4 about axis 1
    14. Rotation of joint 4 about axis 2
For E44 elements:
    NI = 6
Contents of each entry:
    1. Displacement of joint 2 in direction 1
    2. Displacement of joint 3 in direction 1
    3. Displacement of joint 3 in direction 2
    4. Displacement of joint 4 in direction 1
    5. Displacement of joint 4 in direction 2
    6. Displacement of joint 4 in direction 3
```

PRES Exx iset icase

Exx $=$ Element name
iset $=$ Load set
icase $=$ Load case within Load set
Created in processor AUS
$\mathrm{NJ}=$ Number of elements of this type
For 3-node elements:
Note: Not defined for 2 -node elements. $\mathrm{NI}=3$

```
Contents of each entry:
    1. Pressure at joint 1.
    2. Pressure at joint 2
    3. Pressure at joint 3
For 4-node elements:
    NI = 4
Contents of each entry:
    1. Pressure at joint 1
    2. Pressure at joint 2
    3. Pressure at joint 3
    4. Pressure at joint 4
```

STAT DTSP iset ncon
iset $=$ Load set
ncon $=$ Constraint case
Created in processor SSOL
$N J=$ Number of joints
$N I=6$ minus number of joint motion components constrained on START card
Contents:
Each entry contains static displacements for that joint in each active direction.

STAT REAC iset ncon
iset $=$ Load set
ncon $=$ Constraint case
Created in processor SSOL
NJ = Number of joints
$N I=6$ minus numbex of joint motion components constrained on START card
Contents:
Each entry contains static reactions for that joint in each active direction.

STRS E21 iset icase
iset $=$ Load set
icase $=$ Load case within set
Created in processor GSF.
$\mathrm{NJ}=$ Number of E 21 elements
$\mathrm{NI}=52$

Contents of each entry:

STRS E22 iset icase

```
iset = Load set
icase = Load case within set
Created in processor GSF
NJ = Number of E22 elements
NI = 16
```

Contents of each entry:

1. Group number
2. Element number within group
3. Joint \#1
4. Joint 非
5. Force in direction 1 at joint 1
6. Force in direction 2 at joint 114.
7. Force in direction 3 at joint 1.15.
8. Moment about axis 1 at joint 1 16. Moment about axis 3 at joint 2
```
STRS E23 iset icase
    iset = Load set
    icase = Load case within set
    Gxeated in processor GSF.
    NJ = Number of E23 elements
    NI = 6
Contents of each entry:
    1. Group number
    2. Element number within group
    3. Joint #1
    4. Joint #2
    5. Force in element
    6. Stress in element
STRS E24 iset icase
    iset = Load set
    icase = Load case within set
    Cxeated in processor GSF
    NJ = Number of E24 elements
    NT = 18
Contents of each entry:
    1. Group number
    2. Element number within group
    3. Joimt 非
    4. Joint 非2
    5. Axial force at joint l
    6. Transverse shear at joint l
    7. Moment at joint 1.
    8. Axjal force at joint 2
    9. Transverse shear at joint 2
10. Moment at joint 2
11. Axial stress at joint l
12. Shear stress at joint 1
13. Bending stress on upper surface at joint 1
14. Bending stress on lower surface at joint 1
15. Axial stress at joint 2
16. Shear stress at joint 2
17. Bending stress on upper surface at joint 2
18. Beading stress on lower surface at joint 2
```

```
STRS E25 iset icase
```

$$
\begin{aligned}
& \text { iset }=\text { Load set } \\
& \text { icase }=\text { Load case within set } \\
& \text { Created in processor GSF. } \\
& N J=\text { Number of E } 25 \text { elements } \\
& N I=16
\end{aligned}
$$

Contents of each entry:
1. Group number
2. Element number within group
3。 Joint \#1
4。 Jojint \#2
5. Force in direction 1 at joint 1
6. Force in direction 2 at joint 1
7. Force in direction 3 at joint 1
8. Moment about axis 1 at joint 1
9. Moment about axis 2 at joint 1
10. Moment about axis 3 at joint 1
11. Force in direction 1 at joint 2
12. Force in direction 2 at joint 2
13. Force in dixection 3 at joint 2
14. Moment about axis 1 at joint 2
15. Moment about axis 2 at joint 2
16. Moment about axis 3 at joint 2

STRS E31 iset icase

```
iset = Load set
icase = Load case within set
Created in processor GSF.
NJ = Number of E3l elements
NI = 11
```

Contents of each entry:
1. Group number
2. Element number within group
3。 Joint 非
4。 Joint 非2
5. Joint 非3
6. T11
7. T_{22}
8. T12
9. Tractive force in x-direction $N x$
10. Tractive force in y-direction Ny
11. Shearing force Nxy

Formulae：

$\mathrm{S}_{\mathrm{x}}=\mathrm{Nx} /$ thickness
$\mathrm{S}_{\mathrm{y}}=\mathrm{Ny} /$ thickness
$\mathrm{T}_{\mathrm{xy}}=\mathrm{Nxy} /$ thickness

```
iset = Load set
jcase = Load case within set
Created in processor GST.
NO = Number of E32 elements
NI = 23
```

Contents of each entry:
1. Group number
2. Element number within group
3. Joint 非1
4. Jaint \#2
5. Joint 非3
6. ?
7. ?
8.?
9. Mx Bending moment about x-axis, at joint 1
10. My Bending moment about ymaxis at joint 1
11. Mxy Twisting moment at joint 1
12. Ox Transverse shear in x-direction at joint 1
13. Qy Transverse shear in y-direction at joint 1
14. Mx Bending moment about x-axis at joint 2
15. My Bending moment about y-axis at joint 2
16. Mxy Twisting moment about joint 2
17. Ox Transverse shear in x-direction at joint 2
18. Oy Transverse shear in y-direction at joint 2
19. Mx Bending moment about x-axis at joint 3
20. My Bending moment about ymaxis at joint 3
21. Mxy Twisting moment at joint 3
22. Qx Transverse shear in x-direction at joint 3
23. Qy Transverse shear in y-dixection at joint 3
24. Mx Bending moment about x-axis at the center
25. My Bending moment about y-axis at the center
26. Mxy Twisting moment at the center
27. $O x$ Transverse shear in x-direction at the center
28. Qy Transverse shear in y-direction at the center
Formulae:

$S x=f_{4} M_{x}$	$f_{41}=? f_{51}=? f_{61}=?$
$S y=f_{5} M_{y}$	$f_{42}=f_{52}=-f_{62}=6 /(\text { thickness })^{2}$
Txy $=f_{6 j} M_{x y}$	$f_{43}=f_{53}=-f_{63}=-6 /(\text { thickness })^{2}$

STRS E33 iset icase i

```
iset = Load set
icase = Load case within set
Created in processor GSE.
NJ = Number of E33 elements
NI = 3I
```

Contents of each entry:

1. Group number
2. Element number within group
3. Joint \#1
4. Joint \#2
5. Joint 游 3
6. ?
7. ?
8. ?
9. Nx Tractive force in x-direction
10. Ny Tractive force in y-direction
11. Nxy Shearing force
12. Mx Bending moment about x-axis at joint 1
13. My Bending moment about y-axis at joint 1
14. Mxy Twisting moment at joint 1 .
15. Ox Transverse shear in x -direction at joint 1
1.6. Qy Transverse shear in y-direction at joint 1
16. Mx Bending moment about x-axis at joint 2
17. My Bending moment about y-axis at joint 2
18. Mxy Twisting moment at joint 2
19. Qx Transverse shear in x-direction at joint 2
20. Qy Transverse shear in y-direction at joint 2
21. Mx Bending moment about x-axis at joint 3
22. My Bending moment about y-axis at joint 3
23. Mxy Twisting moment at joint 3
24. Qx Transverse sheax in x-dixection at joint 3
25. Qy Transverse shear in y-direction at joint 3
26. Mx Bending moment about x-axis at the center
27. My Bending moment about y-axis at the center
28. Mxy Twisting moment at the center
29. Qx Transverse shear in x-direction at the center
30. Qy Transverse shear in y-direction at the center

Formulae:

$S \mathrm{x}=\mathrm{f}_{1 . j} \mathrm{Nx}+\mathrm{f}_{4} \mathrm{M} M \mathrm{x}$	$\mathrm{f}_{\mathrm{ij}}=1 /$ thickness for i and $\mathrm{j}=1,2,3$
$\mathrm{Sy}=\mathrm{f}_{2 j} \mathrm{Ny}+\mathrm{f}_{5}{ }^{\text {My }}$	$\mathrm{f}_{42}=\mathrm{f}_{52}=-\mathrm{f}_{62}=6 /$ (thickness) $^{2}{ }^{2}$
$\mathrm{Txy}=\mathrm{f}_{3 j}^{2 j} \mathrm{Nxy}+\mathrm{f}_{6 j} \mathrm{Mxy}$	$\mathrm{f}_{43}=\mathrm{f}_{53}=-\mathrm{f}_{63}=-6 /($ thickness $)$

STRS E4. iset icase

```
iset = Load set
icase = Load case within set
Created in processor GSF.
NJ = Number of E41 elements
NI = 23
```

```
Contents of each entxy:
    l. Group number
    2. Element mumber within group
    3. Joint #1
    4. Toint 非2
    5. Joint 非3
    6. Joint 栍4
    7. ?
    8. ?
    9. Nx Tractive force in xodirection at joint 1
10. Ny Tractive force in ymdirection at joint l
11. Nxy Shearing force at joint l
12. Nx Tractive force in x-direction at joint 2
13. Ny Tractive force in y-direction at joint 2
14. Nry Shearing force at joint 2
15. Nx Tractive force in x-direction at joint 3
16. Ny Tractive force in vodirection at joint 3
17. Nxy Shearing force at joint 3
18. Nx Tractive force in x-direction at joint 4
19. Ny Tractive force in y-direction at joint 4
20. Nxy Shearing force at joint 4
21. Nx Tractive force in x-direction at the center
2.2. Ny Tractive force in y-direction at the center
23. Nxy Shearing force at the centex
```

Formulae：
$S x=N x / t h i c k n e s s$
Sy $=$ Ny／thickness
Txy＝Nxy／thickness

STRS E42 iset icase
iset $=$ Load set
icase $=$ Load case within set
Created in processor GSF．
NT＝Numbex of E42 elements
$N T=33$

Contents of each entry：
1．Group number
2．Element number within group
3．Joint 非1
4．Joint \＃2
5．Joint 非3
6．Joint 非
7．？
8．？

9．Mx Bending moment about x－axis at joint 1
10．My Bending moment about y－axis at joint 1
11．Mxy Twisting moment at joint 1 ．
12．Qx Transverse shear in x－direction at joint 1
13．Qy Transverse shear in y－direction at joint 1
14．Mx Bending moment about x－axis at joint 2
15．My Bending moment about y－axis at joint 2
16．Mxy Twisting moment about joint 2
17．Qx Transverse shear in x－direction at joint 2
18．Qy Transverse shear in y－direction at joint 2
19．Mx Bending moment about x－axis at joint 3
20．My Bending moment about y－axis at joint 3
21．Mxy Twisting moment at joint 3
22．Qx Transverse shear in x－direction at joint 3
23．Qy Transverse shear in y－direction at joint 3
24．Mx Bending moment about x－axis at joint 4
25．My Bending moment about y－axis at joint 4
26．Nxy Twisting moment at joint 4
27．Qx Transverse shear in x－direction at joint 4
28．Qy Transverse shear in y－direction at joint 4
29．Mx Bending moment about x－axis at the center
30．My Bending moment about y－axis at the center
31．Mxy Twisting moment at the center
32．Qx Transverse shear in x－direction at the center
33．Qy Transverse shear in y－direction at the center
Formulae：

$$
\begin{array}{ll}
S x=f_{4} M \mathrm{Mx} & f^{42}=f_{52}=-f_{62}=6 /(\text { thickness })^{2} \\
S y=f_{M y} & f_{43}=f_{53}=-f_{63}=-6 /(\text { thickness })^{2} \\
T x y=j_{\text {Mxy }} &
\end{array}
$$

STRS E43 iset icase
iset $=$ Load set
icase $=$ Load case within set
Created in processor GSF
NJ $=$ Number of E 43 elements
$\mathrm{NI}=48$
Contents of each entry：
1．Group number
2．Element number within group
3．Joint \＃1
4．Joint 非2
5．Joint 非 3
6．Joint 非
7．？
8．？
9. Nx Tractive force in x-direction at joint 1
10. Ny Tractive force in y-dixection at joint 1
11. Nxy Shearing force at joint 1
12. Nx Tractive force in x -direction at joint 2
13. Ny Tractive force in y-direction at joint 2
14. Nxy Shearing force at joint 2
15. Nx Tractive force in x -direction at joint 3
16. Ny Tractive force in y-direction at joint 3
17. Nxy Shearing force at joint 3
18. Nx Tractive force in x -direction at joint 4
19. Ny Tractive force in y-direction at joint 4
20. Nxy Shearing force at joint 4
21. Nx Tractive force in x-direction at the center
22. Ny Tractive force in y-direction at the center
23. Nxy Shearing force at the center
24. Mx Bending moment about x-axis at joint 1
25. My Bending moment about y-axis at joint 1
26. Mxy Twisting moment at joint 1 .
27. Qx Transverse shear in x-direction at joint 1
28. Qy Transverse shear in y-direction at joint 1
29. Mx Bending moment about x-axis at joint 2
30. My Bending moment about y-axis at joint 2
31. Mxy Twisting moment at joint 2
32. Qx Transverse shear in x-direction at joint 2
33. Qy Transverse shear in y-direction at joint 2
34. Mx Bending moment about x-axis at joint 3
35. My Bending moment about y-axis at joint 3
36. Mxy Twisting moment at joint 3
37. Qx Transverse shear in x-direction at joint 3
38. Qy Transverse shear in y-direction at joint 3
39. Mx Bending moment about x -axis at joint 4
40. My Bending moment about y-axis at joint 4
41. Mxy Twisting moment at joint 4
42. Qx Transverse shear in x-direction at joint 4
43. Qy Transverse shear in y-direction at joint 4
44. Mx Bending moment about x-axis at the center
45. My Bending moment about y-axis at the center
46. Mxy Twisting moment at the center
47. Qx Transverse shear in x-direction at the center
48. Qy Transverse shear in y-direction at the center

Formulae:

$$
\begin{aligned}
& S x=f_{1} j^{N x}+f_{4} j^{M x} \\
& S y=f_{2 j}^{N y}+f_{5 j}^{M y} \\
& T x y=f_{3 j} N x y+f_{6 j}{ }^{M x y}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{ij}}=1 / \text { thickness for } \mathrm{i} \text { and } \mathrm{j}=1,2,3 \\
& \mathrm{f}_{42}=\mathrm{f}_{52}=-\mathrm{f} 62=6 / \text { (thickness) } 2 \\
& \mathrm{f}_{43}=\mathrm{f}_{53}=-\mathrm{f}_{63}=6 /(\text { thickness })
\end{aligned}
$$

```
STRS E44 iset icase
    iset = Load set
    icase = Load case within set
    Created in processor GSE.
    NJ = Number of E44 elements
    NI = 8
Contents of each entry:
    1. Group number
    2. Element number within group
    3. Joint 非
    4. Joint 非2
    5. Joint #3
    6. Joint 非
    7. Element thickness
    8. Shear stress
```

BUCK MODE iset ncon
iset $=$ Load set
ncon $=$ Constraint case
Created in processor EIG．
$\mathrm{NJ}=$ Number of joints
NI $=6$ minus number of joint motion components constrained on START card
Number of blocks $=$ Number of eigenvectors

Contents：

Each block of data contains an eigenvector corresponding to an eigenvalue stored in＂BUCK EVAT．＂Data is stored for each joint in each active direction．

BUCK EVAL iset ncon

```
iset = Load set
ncon = Constraint case
Created in processor EIG
NJ = 1
NI = Number of eigenvalues
```

Contains frequency eigenvalues corresponding to each eigenvector in＂BUCK MODE．＂

VIBR MODE iset ncon

1set $=$ Load set
ncon $=$ Constraint case
Created in processor EIG。
$N J=$ Number of joints
$N I=6$ minus number of joint motion components constrained on START card Number of blocks $=$ Number of eigenvectors

Contents:

Each block of data contains one eigenvector corresponding to an eigenvalue stored in "VIBR EVAL." Data is stored for each joint in each active direction.

VIBR EVAL iset ncon
iset $=$ Load set
ncon $=$ Constraint case
Created in processor EIG.
$\mathrm{NJ}=1$
$\mathrm{NI}=$ Number of eigenvalues
Contains eigenvalues corresponding to each eigenvector in "VIBR MODE."

The sample problem contained in this section includes the necessary SPAR commands to create all the data sets documented in this report. The SPAR commands are listed so that the user may reproduce these data sets and examine their contents. The resulting table of contents is included to illustrate the $S^{P P A R}$'s use of data sets.

STRUCTURAL MODEL

SPAR INPUT FILE

(xGT TAB
ETAKI $1 \mathrm{C} 3.4,5 \mathrm{~s}$
TEXT
" Example 10 ilgustmate data get conterts
" PKEPAKEL GY GAHY L GILES $\quad G=13-B L$.
MATC

NSWS
$1 d 3.05$
ALTKEF $\$$
$210.020 .03-45.020 .010 .00 .05$
$J 6 O C$
180.010 .00 .04 .010 .00 .0528
$200.0-10.0$ 0. $0.0-10.00 .052$
$110.0 \quad 10_{0} 00_{0} 0 \$$
$120.6 \quad 10.00 .0 \$$
JREF S
NHEF\&285
MREF 5
Fommalles
1 \& 3 \& $100 \$$
FUNMAVE s
$21 \quad 1000.00 .00 .08$
BRLS
BA $\$$
$00 x$ \& $1.00 .10 .5 \quad 0.05 \$$
$48 \$$
$811.0+35$
6s.0 22.0+8
$31.0 \quad 320 \quad 33.0+8 \quad 3$
$41.0 \quad 42.0 \quad 43.0 \quad 4 \mu .0+8 \quad$ I
$51.0 \quad 52.0 \quad 53.0 \quad 54.0 \quad 55.044 \quad 5$
$01.0 \quad 62.0 \quad 63.0 \quad 04.0 \quad 65.0 \quad 66.048 \mathrm{~s}$
θC
3
$80 \$$
0.55
$10.5 \quad 100.0 \quad 0.0 \quad 1.0 \quad 1.0 \quad 0.03$
SA $\$$
NMAT: 3
FUKMAI ISGTKOPIC.
10.015

S8
10.01

CONA1
2EHU 1.2:11.12
JSEQ
1/10.12.11
RMASS

```
        11001.0 .200 .3 .0 .1
©XQTELO 3
    E21
        318
        423
        NHEFAC
        1 く
    E31
    \(\begin{array}{llll}1 & 3 & 2 & 1 \\ 4 & 2 & 3 & 3\end{array}\)
    E41 5
    \(1342 \$\)
    t2a
        535
        04 4
        NHEFEZ
        3 3
    E32
        \(3 \quad 5 \quad 49\)
    EA2
    \(3 \quad 5 \quad 0 \quad 48\)
    E23
        \(75 \$\)
        0 O
        50
    E33:
        \(\begin{array}{llll}5 & 7 & 0 & 5 \\ 8 & 0 & 7 & \$\end{array}\)
    E43.
    5180
    6245
        \(\begin{array}{lll}9 & 7 & 3 \\ 80 & 0 & 5\end{array}\)
        NHEFEA
        7 \$
        910
    E44s
    7 9 10 8
    625
        1195
        12103
IXQTES
lXOT EKS S
IXOT TUHO
©XQTK
ixat Invs
[XOT AUS
    alhmaicase titt 1 s
1" Sarple tille for case 1 s
    SYSVELIAPPLIEC FURCES 1 :
```

```
    CASt & 
    \E21J"2;-1000.0% 
    SYSVELIAPPLDEO NGJSCNO &
    I#2|J=1%=2.0)
    TABLEANCGAL IEMEGKATUKES Z S
    J=8,41100.0 3
    TAGLEBNUCAL PHESSGHES EO*
    Ja&,1U!1.5 $
    ELUATAITEMPEA& C 1 *
```



```
    ELDAIABLISGESI & & *
```



```
    EgDAIAgFAES EHz e & *
    G8dFE=100.8.0.C,0,gov.a $
IXGY EGNFS
    RESET SEI=2$
IXGT SBUL *
\XGT GSF $
    RESET EMBELEIS
|xgT &GF
|x@I nGs
\XG\ EdGS
    RESEI FKGUEEULK,IN】VISONUYNET,NKEG#2S
\XO\ S
OXOT ELG
    RESEI PHOHEVIEN,IN&TE15,NUYNG7,NKEG#S S
|XGT OGU %
            TCG1
GXOT EAII
```

table ut contents．bighaty s

SEO	Hit	UATE	T 1 ME
1	7	－10世20	151848
2	－8	810 20	151843
3	－9	810020	851043
4	10	810020	851843
5	11	610420	15184
6	12	810420	151843
7	13	－10820	151843
0	14	O10820	151＊43
9	15	010020	158043
10	10	－108E）	151043
11	17	810820	131843
12	18	＊） 0 － 2	151843
13	19	8）	151043
84	20	810020	131043
15	21	010020	15843
16	22	O10820	151843
87	23	810820	158443
80	24	－1vazo	251043
89	25	010820	158843
20	20	880620	151043
21	27	480020	158843
22	29	010020	151950
d 3	43	010820	151950
24	44	810820	151950
25	45	880日2！	151950
20	40	810020	858950
27	00	080020	158950
28	01	010820	151950
29	02	610020	158950
30	03	¢ 80820	85195
31	77	410820	151950
32	78	080020	158950
33	65	810820	151950
34	80	010820	151950
35	100	010820	151950
30	101	810420	151958
37	102	810820	151950
38	103	c10020	151950
30	117	810820	151950
40	118	Q10820	151958
41	119	810820	151950
42	120	¢1082u	151958
43	134	c1082u	151950
44	135	810820	151458
45	136	910820	151958

woros			1		A SET	NAME	
	AJ	$N \mathrm{I} * \mathrm{~N}$	Y	N1	N 2	N3	N4
18	1	16	0	JDF！	ETAE	1	8
12	82	12	0	JREF	etag	2	6
12	1	12	1	ALTR	BTAB	2	4
30	2	30	4	TEXT	HTAB	2	1
10	1	10	1	MATC	GTAB	2	2
1	1	1	1	A ${ }^{\text {W }}$	H1AB	2	3
24	2	24	1	ALIR	ETAB	2	4
30	12	36	1	JLOC	eTag	2	5
12	12	12	0	JREF	BTAG	2	6
10	2	10	1	MHEF	BTAB	2	7
8	1	8	1	BRL	BTAB	2	8
31	1	31	1	BA	日TA日	2	9
21	1	21	1	B8	BTAB	2	10
0	1	0	1	HC	BTAB	2	11
0	8	0	1	80	日TAB	2	12
43	8	43	1	SA	QtAB	2	13
4	1	4	1	S 8	日TAB	2	14
12	12	12	0	CON		1	0
12	12	12	0	JSEC	BTAE	2	17
30	12	36	1	KMAS	BTAE	2	18
108	12	108	1	OJJT	Q1AB	2	19
54	49	882	0	OEF	E21	1	2
2	1	2	0	GO	E21	1	2
15	1	15	4	GTIT	E21	1	2
20	1	20	0	OIR	E21	1	2
30	59	845	0	DEF	EI 1	6	3
2	1	2	0	60	E31	6	3
15	1	15	4	GTIT	E31	6	3
20	1	20	0	DIN	E 11	6	3
10	56	890	0	OEF	E41	9	4
2	1	2	0	G0	E41	9	4
15	1	15	4	GTIT	E41	9	4
20	1	20	0	DIR	E41	9	4
54	49	882	0	OEF	E22	2	2
2	1	2	0	60	E22	2	2
15	1	15	4	GTIT	E22	2	2
20	1	20	0	DIR	E22	2	2
30	59	885	0	DEF	E 32	7	3
2	1	2	0	60	E 32	7	3
15	1	15	4	6TIT	E 32	7	3
20	1	20	0	OIR	E32	7	3
16	56	890	0	CEF	E42	10	4
2	1	2	0	GD	E42	10	4
15	1	15	4	GTIT	E42	10	4
20	1	20	0	UIR	E42	10	4

97	408	010420	852030	0	6	ε	0	- 1 USSL	E31	2	1
98	40 C	680820	152030	0	u	1	4	- 1 PRES	E43	2	1
99	403	8,0ede	152438	0	18	3	88	-1 is	E21	a	1
800	404	810820	158033	0	\bigcirc	\%	\bigcirc	-1 is	E31	$\frac{2}{2}$	1
808	405	010020	152038	0	0	1	0	-1 15	641	2	1
102	400		152033	0	88	3	18	-1 15	E2a	2	1
103	408	880020	152033	9	16	2	82	-1 15	532	2	1
104	468	810820	152038	0	9	,	9	-1 IS	E42	2	1
105	409	810820	852033	0	18	3	18	-1 15	E 33	2	1
106	470	88080	852033	0	14	2	14	-1 is	E33	a	1
107	478	Q10820	152033	0	14		14	-1 15	E43	2	1
800	472	\&1u*a	152037	1	24	4	24	-1 IS	E24	2	1
109	473	ciotec	15c933	0	-	8	0	-1 13	E44	2	1
180	474	810820	152035	0	12	2	12	-1 18	E25	2	1
188	479	8108cu	15603g	0	30	12	30	-1 EGNF	FORC	e	1
182	470	810820	152045	0	30	82	30	- STAT	0850	1	i
183	477	Q10020	152045	0	30	12	30	- 1 Stai	FEAC	1	1
884	478	810820	152048	0	150	3	150	- 1 STAS	E21	1	1
185	408	810820	152048	0	2 C	2	2?	- 1 STRS	E3\%	1	1
880	482	880820	85.044	0	23	,	23	- 1 Stas	E41	1	1
187	483	010820	852048	0	48	3	48	-1 STHS	EZ	i	1
880	44_{4}	010020	15204日	0	50	2	50	- 8 STHS	632	1	8
180	485	C10020	152040	0	33	1	33	- 8 STHS	E42	1	1
120	400	010820	152048	0	18	3	88	- 1 STRS	E23	1	1
828	408	880020	156048	0	$0 ¢$	2	02	- - STRS	E33	8	1
122	408	0800co	152008.	0	40	1	48	- 88 THS	E43	8	1
8]	489	810820	152040	0	7 C	4	72	- STAS	E24	1	1
124	481	810020	152048	0	8	1	8	- 1 STHS	E48	1	1
125	49 c	010020	8521488	0	32	2	32	- 1 STRS	E25	1	1
120	49^{3}	810ean	152113	0	2240	12	2240	\& KG	8PAR	9	0
8 Cl	Sts	810826	856887	0	85	15	15	- - Buck	Eval	1	1
828	569	Q10200	152117	0	540	12	50	-l BUCK	MODE	1	1
829	550	010820	152834	0	2240	12	2240	1 CEM	SPAR	9	0
130	585	8808 0	152138	0	85	15	85	- 1 VB8R	EVAL	1	1
438	500	Q10020	152830	0	540	12	36	- 1 VIBR	MODE	i	1

The SPAR structural analysis system consists of a collection of processors for performing finite element analysis. The data generated by each of these processors is stored in a data file organized as a "library." Each data set, containing a two-dimensional table or matrix, is identified by a four-word name listed in the table of contents.

This report documents the contents of many of the SPAR data sets stored in the data base complex. The creating SPAR processor, number of rows and columns, and definitions of each of the data items, are listed for each data set. An example SPAR problem using these data sets is also presented. The SPAR input for the problem and resulting table of contents are included, so that the user may reproduce these data sets. This information can be used (1) to understand more clearly and to use more productively the existing processors in the SPAR system, (2) to develop new SPAR processors, or (3) to interface SPAR with another software system.

REFERENCES

1. Whetstone, W. D。: SPAR Structural Analysis System Reference Manual System Level II. Volume I - Program Execution. NASA CR-145096-1, 1977.
2. Giles, Gaxy Loj and Haftka, Raphael T.: SPAR Data Handling Utilities. NASA TM-78701, September 1978.

[^0]
[^0]: "For sale by the National Technical Information Service, Springfield, Virginia 22161

