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SUMMARY 

In support of the Department of Energy's Stirling Engine Highway 
Vehicle Systems Program, this investigation demonstrated the benefits 
resulting from enhanced combustion-gas-side heat transfer using jet 
impingement in the GPU-3 Stirling engine. A computer model of the 
combustion-gas-side heat transfer was developed to predict the effects 
of a jet impingement system and the possible range of improvements 
available. A low temperature (315°C (600°F)) pretest was run on the 
GPU-3 heater head to verify the jet impingement model and to improve the 
correlation coefficients in the model. Utilizing the pretest data in an 
updated model, a high temperature silicon carbide jet impingement heat 
transfer system was designed and fabricated. 

The system model predicted that at the theoretical maximum limit, 
jet impingement enhanced heat transfer can: 1) reduce the flame 
temperature by 275°C (500°F), 2) reduce the exhaust temperature by 110°C 
(200°F), and 3) increase the overall heat into the working fluid by 10%, 
all for an increase in required pumping power of less than 0.5% of the 
engine power output. Initial tests on the GPU-3 Stirling engine at 
NASA-Lewis demonstrated that the jet impingement system increased the 
engine output power and efficiency by 5% - 8% with no measurable in
crease in pumping power. The overall heat transfer coefficient was 
increased by 65% for the maximum power point of the tests. 

Preliminary cost estimates indicate that addition of jet impinge
ment to the system will cost less than $50/unit on a production basis. 
On the basis of improved engine performance for minimal additional cost, 
jet impingement is an attractive addition to the design of advanced 
Stirling engines. 
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INTRODUCTION 

This work was performed in support of the U.S. Department of Energy's 
(DOE) Stirling Engine Highway Vehicle Systems Program. The NASA Lewis 
Resea rch Center, through Interagency Agreement DEAIOl-77CS5l040 with 
DOE, is responsible for management of the project under the programmatic 
direct ion of the DOE Office of Vehicle and Engine R&D, Conservation 
and Renewable Energy. 

The Stirling Engine Highway Vehicle Systems Program is directed 
toward the development of the Stirling engine as a possible alternative 
to the conventional spark-ignition engine. A part of this program is 
development of component technology that will improve engine efficiency 
and performance for advanced Stirling engine systems. 

Of the many factors influencing the performance of a Stirling 
engi ne, that of transferring the combustion gas heat into the working 
flu id is crucial. In a conventional Stirling engine, the heat transfer 
coefficient on the combustion-gas-side of the heat exchanger, coupled 
with the combustion gas temperature and heater-tube metal temperature, 
determines the amount of heater tube surface area requi red. An increase 
in the heat transfer coefficient allows either the flame temperature or 
t he heater tube surface area and engine nonswept volume to be reduced. 
Al though the Stirling engine has relatively low exhaus t emissions, 
fur ther reduction is possible if the combustion temperature is reduced. 

An illustration of the jet impingement concept is presented in 
Figure 1. Combustion gas inside a silicon carbide jet shell is forced 
through holes in the shell, impinging on the heater tubes. The purpose 
of the directed jets is to break up the boundary layer on the surface of 
the tubes and thereby reduce the resistance to heat tran sfer. The hot 
jet shell also provides some additional radiant heat transfer to the 
heater tubes. 

Rasor Associates has applied jet impingement heat transfer to 
other high temperature combustion systems (ref. 1, 2). Figure 2 shows a 
combustion-heated silicon carbide jet impingement shell used in thermionic 
converter testing and Figure 3 illustrates the effect of tailoring the 
heat flux. Based on this experience, a jet impingement heat transfer 
system was designed for the GPU-3 Stirling engine on test at NASA-Lewis. 
The purpose of this effort was to verify the possible application of a 
jet impingement system to a Stirling engine and to quantitatively demon
strate the system performance. 

The primary goal of this investigation was to enhance the combustion
gas-side heat transfer using the existing heater head, thereby improving 
the unmodified engine performance. Once the benefits of jet impingement 
were verified, a follow-on project would design a heater head to take 
full advantage of a jet impingement system. Because a smaller amount of 
heater tube area would be required, the redesign would reduce the non
swept volume in the engine. This would yield a greater performance 
improvement than retrofitting the existing engine system. 

--------' 
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DESIGN OF THE JET IMPINGEMENT SYSTEM 

A. Heat Transfer Design 

In order to predict the gas temperatures and heat transfer rates 
necessary for the design of the jet impingement system, a computer model 
(for a HP9825 desk-top computer) of the combustion gas flow path was 
developed. In comparing the model to available data, it was noted that 
the calculated temperatures are a strong function of the preheater 
effectiveness. Figures 4 and 5 show the heat balance calculated for the 
NASA reference run, at two different values of preheater effectiveness. 
Note the decrease in the flame temperature and corresponding increase in 
heat transfer coefficient for a decrease in preheater effectiveness. 
The performance of the preheater degrades during operation due to 
fouling, and there is a corresponding decrease in the effectiveness. 
Therefore, in order to make a comparison of heat transfer coefficients, 
tests must be made both with and without jet impingement for a constant 
preheater condition. 

As illustrated in Figure 1, the impinging jets break up the boundary 
layer on the surface of the heater tubes and cause relatively high local 
heat transfer coefficients (ref. 3, 4). For an average jet impingement 
heat transfer coefficient of 880 W/m 2 °C and an average tube temperature 
of 773°C (1423°F), a finite element analysis of the local temperatures 
under the jet was performed. The results are shown in Figure 6. Although 
the local heat transfer coefficient varies widely under the jet, the 
temperature variation in this region is less than 55°C (100°F). 

B. Hardware Design 
To contain the hot combustion gases and form the jets which impinge 

on the heater tubes, a silicon carbide jet shell was designed. Figure 
7 shows the GPU-3 Stirling engine heater head/jet shell assembly. As 
shown in Figure 8, the jets impinge directly on the heater tubes. To 
compensate for differences in thermal expansion between the heater head 
and the silicon carbide jet shell, the shell expands to maintain proper 
alignment at all times. The alignment detail is shown in Figure 9, 
indicating both the assembled and operating conditions. 

Silicon carbide was selected for the jet shell material due to its 
ability to sustain continued high operating temperatures and its excellent 
thermal shock resistance. The holes in the jet shell were drilled with 
a laser because silicon carbide cannot be machined economically by 
conventional techniques. A photo taken during the laser drilling opera
tion is shown in Figure 10. 

-----

I 
I 

3 



4 

PRETEST 

Predictions of jet impingement heat transfer coefficients are based 
on correlations made in terms of Reynolds number, Nusselt number, Prandtl 
number, and geometric variables such as jet spacing and hole diameter 
(refs. 3-6). A pretest was performed on the GPU-3 heater head to verify 
and improve the correlation coefficients used to predict jet impingement 
heat transfer. 

A stainless steel mockup jet shell (Figure 11) with geometric 
variables within the range expected in the final design was fabricated. 
In order to simulate the heater head operation without risk of damage to 
the heater head, air heated to 315°C (600°F) from an electrically heated 
pipe was blown past the heater tubes as shown schematically in Figure 12. 
Since the heater head consists of four identical sections, only one 
quadrant (1/4 of heater head) was used for the flow tests. The effect 
of jet impingement as measured in this pretest is shown in Figure 13, 
clearly showing the improved heat transfer with jet impingement. 

Based on the pretest results, a new prediction of jet impingement 
heat transfer in the heater head was made for the NASA baseline case 
presented in Figure 14 for a preheater effectiveness of 80%. The engine 
conditions for this case were as follows: mean compression-space 
pressure, 6.9MPa (1000 psi); engine speed, 3000 rpm; air-fuel ratio, 
26 to 1; and working fluid, hydrogen. The potential for enhanced heat 
transfer at this operating point is shown in Figure 15 assuming the same 
air and fuel flow rates and heater tube temperature. For a small penalty 
in pumping power (less than 0.5% of engine output), the computer model 
indicates that at the theoretical maximum limit, jet impingement enhanced 
heat transfer should: 1) reduce the ·flame temperature by 275°C (500°F), 
2) reduce the exhaust temperature by 110°C (200°F), and 3) increase the 
overall heat into the working fluid by 10%. The theoretical maximum 
limit is defined as the point where the combustion gas temperature 
leaving the heater tubes equals the temperature of the tubes. 

Based on the pretest results, the final design of the jet impinge
ment system was completed. Figu~e 16 shows the components of the jet 
impingement system (upper retaining ring is not shown), and Figure 17 
shows the jet shell installed in the heater head. The final dimensions 
fo r the shell are given in Figures 8 and 9. There are 14 jet impingement 
holes per heater tube; the overall weight of the shell is 245 grams 
(0 . 54 1 b) . 

DEMONSTRATION 

To demonstrate the effects of the jet impingement heat transfer 
system, tests were performed at NASA-Lewis on the GPU-3 Stirling engine 
for similar operating points both with and without jet impingement. The 
operating points were 1500 rpm and 2500 rpm at 4.1 MPa (600 psi) mean 
compression-space pressure for helium work i ng fluid, and 2000 rpm and 
3000 rpm at 6.9 MPa (1000 psi) helium pressure. All points were con
trolled to give 677°C (1250°F) working fluid temperature in the 

---- -- --.---~ 



heater and the cooling-water inlet temperature was 21°C (70°F). The 
heater working fluid temperature was controlled to the maximum reading 
of thermocouple probes installed inside three of the heater-tubes and 
spaced circumferentially around the heater head. Data were obtained on 
the increase in pump power required and engine performance. 

The GPU-3 engine tests with the jet impingement system indicated a 
substantial improvement in overall performance. Representative heat 
balance computer runs based on the experimental data are shown in Figures 
18-19. Inputs for the heat balance are the air and fuel flow rates, 
the inlet air temperature, nozzle and preheater losses, preheater 
effectiveness, heat into the engine and the heater-tube metal tempera
ture. A preheater effectiveness of 71 % was chosen to give a reasonable 
match between the calculated and measured temperatures at positions 2, 
4, and 5 shown in Figures 18-19. Based on the calculated temperatures 
at positions 3 and 4, the average measured heater-tube metal temperature 
and the heat into the engine, the effective heat transfer coefficient 
was determined. Table 1 summarizes the test results. The run numbers 
with a "JS" or "J" indicate the tests with the jet impingement shell. 

The engine power is increased by 5.9 to 7.7 percent for the runs 
with jet impingement. The engine pressure, speed, cooling-water inlet 
temperature, and maximum heater-tube gas temperature were held constant 
for a given point with and without jet impingement. The increased power 
output and efficiency therefore were due to the jet shell smoothing the 
temperature profiles by providing a more uniform heat flux to the heater 
tubes and thereby raising the average gas temperature. F~gures 20 and 21 
indicate that both the circumferential temperature profiles around the 
heater head and the tube vertical temperature profiles were more uniform. 
The increase in engine efficiency was about the same as the increase in 
engine output. 

Figure 22 shows the increase in overall heat transfer coefficient 
with jet impingement for the demonstration tests. Both the demonstration 
test and the pretest (Figure 13) indicate a 65 - 70% increase in the 
effective heat transfer coefficient. The decrease in exhaust temperature 
and flame temperature for the jet impingement runs shown in Table 1 
are due to this increase in the effective heat transfer coefficient. 
The absolute values determined from the test are significant only for 
comparison of the similar cases due to uncertainties in the measured 
system temperatures. At the maximum power point tested, the relative 
increase in the heat transfer coefficient was 65 percent and the increase 
in engine power was 7.4 percent. 

Since the overall pumping power in the engine combustion system 
increases with jet impingement, cold flow tests of the required air 
pressure, both with and without the jet shell, were performed. In
spection of the data presented in Figure 23 shows that the increase 
in pressure for the jet impingement system was not discernible. Also, 
the data taken during the demonstration tests showed the increase in 
pump power to be insignificant. 

5 
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CONCLUSIONS 

Jet impingement heat transfer has been successfully demonstrated as 
a technique for enhancing the combustion-gas-side heat transfer in the 
GPU-3 Stirling engine. The combustion-gas-side heat transfer coefficient 
was increased by about 65%, along with an increase of the engine power 
and efficiency by 5 to 8% due to jet impingement. Both the circumferential 
temperatures around the heater head and the vertical tube temperatu res 
were made more uniform with the jet impingement system. The additional 
pumping power required with the jet impingement system was ins ignificant 
over that required for the baseline case. Preliminary cost esti mates 
indicate that a Stirling engine jet impingement system will cost less 
than $50 per unit on a mass production basis. 

On the basis of improved engine performance for minimal additional 
cost, the jet impingement system is an attractive addition to the design 
of advanced Stirling engines. Further work should be undertaken to 
design a heater head to take full advantage of the jet impingemen t system. 
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TABLE 1. GPU -3 TEST RESULTS 

PREHEATER EFFECTIVENESS = 71 % 

HELlII~1 ENGINE TFMPERATURE (OC) HEAT INTO ENGINE EFFECTIVE % INCREASE DU E TO 
RUN PRESSURE SPEE D MEASURED CALLU LATED CALCULATED ENGINE pm4ER ENGINE HT . TRANS J ET IMPINGEMENT 

NIJM[lU ~ (MPa) (RPM) EXHAUST EXHAU ST FLMIE TUBE (W ) (kW) EFFICIENCY COEF (W/m'OC) POWE R EFFICIE NCY HT . . TRANS 

HE25-65 4.1 1500 244 234 1765 698 7791 1.871 1R.81 218 

HE25-65JS 4.1 1500 239 230 1699 711 7852 2.015 19. 86 272 7. 7 5.6 24 .1 

HE25-63 4.1 2500 251 239 1719 705 12301 2.306 14.86 417 

HE25-63JS 4.1 2500 242 230 1722 719 12350 2.488 15.98 603 7.2 7.5 44 .5 

HE25-104 6.9 2000 264 250 1726 717 15109 3.803 19.88 474 

HE25-104J 6.9 2000 252 239 1704 729 15450 4.028 20.85 808 5.9 4. 9 70 .3 

HE25-102 6.9 3000 291 273 1766 742 21214 4.025 14 .82 577 

HE2S-102J 6.9 3000 270 254 1712 759 21462 4. 324 15 .84 954 7. 4 6. 9 65.3 

-.....J 

~ 
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Fig. 1 Schematic of jet impingement concept. 
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Figure 6. GPU-3 Stirling Engine heater tubes. Local temperature 
distribution with jet impingement. 
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Figure 11. Stainless steel mockup jet shell. 
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Figure 18. Heat balance based on experimental data. Baseline run without jet impingement. 
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Figure 20. Circumferential heater-tube metal temperatures . Thermo
couples are located around the heater head at 90° intervals . 
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Figure 21. Vertical heater-tube metal temperatures. 
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Fig. 22 Heat transfer enhancement due to jet 
impingement in the GPU 3 Stirling engine. 
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