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John P. Merutka 
NASA Lewis Research Center 
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ABSTRACT 

The status of several recent NASA sponsored coatings technology programs 

are reviewed. These efforts were focused on problems associated with advanced 

aircraft gas turbines. In one program, metallic coatings for preventing 

titanium fires in compressors were identified. The other four efforts were 

focusea on coatings for the turbine section. In one of the latter, ductile 

a1uminide coatings for protecting internal turbine-blade cooling passage 

surfaces were iaentified. In a sp.cond, composition-modified external overlay 

MCrA1Y coatings depOSited by low-pressure plasma sprayings were found to be 

better in surface protection capability than vapor d~posited MCrA1Y coatings. 

The remaining two efforts focused on thermal barrier coatings (TBC). In one, 

computer-aided manufacturing technology was applied to the T8C coating of 

turbine airfoils. In the other, the design of a turbine alrfoil was 

lntegrdted with a T8C. 

INTROOUCTION 

In the ,ast ten years, the NASA Lewis coatings programs stresse~ the 

improvement of a1uminiae and metal overlay coatings for aircraft gas turbines 

(References 1-14) and coated metallic and ceramic heat shield conc"ts 



(References 15-24) for the space shuttle. Recently, our efforts have focused 

exclusively on advanced coating systems for aircraft gas turbines. The need 

for improved oxidatior. ~'esistant coatings arises from the development of 

alloys with increased operating temperature/strength capability, but with poor 

environmental resistance. Very often these advanced alloys have mtchanical or 

chemical properties which limit the use of conventional coatings; therefore, 

the alloy, the coating, and the turbine bla~e design are being addressed as an 

integral system. 

With ever-increasing turbi~e temperature and pressures, protective 

coatings are not only required for external gas turbine airfoil surfaces but 

also for internal air-cooling passages. One recent NASA-sponsored program has 

addressed this internal coating need. In the ~ast internal passage protection 

was obtained by a vapor deposited coating from a pack process. Coating 

composition was limited to that of a simple aluminide with accompanying low 

ductility. 

The physical vapor deposited MCrA1Y coatings were de\'~~oped in the 

1970's. Today, MCrA1Y coatings needed to meet the protection requirements of 

aovanced engine alloys are limited by compositional flexibility problems. In 

addition, high capital-cost equipment is required~ These fact~rs and the 

recent development of thermal barrier coatin~s (T8C) have resulted in our 

focusing the bulk of our effort on plasma sprayed coatings. Advances in 

pldsma spray equipment and in computer-aided manufacturing are being 

exploited. The low-pressure plasma spray process has been used in one 

contract to expand the range of available metallic coating compositions and . 
properties. In another contract eftort, adaptive computerized plasma-spray 
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coating equipment has been developed for the application of thermal barrier 

coatings. Adhering to the systems approach for advanced coatings, thermal 

barrier coating thickness contour can be designed and successfully 

manufactured with this equipment. This substrate/coating system philosophy 

was applied in another contract aimed at tailoring of a thermal barrier 

coating/gas turbine blade design. 

In a departure from our past in-house and contractual dealing with the 

area of high-temperature surface protection efforts~ a contract addressed the 

problem of titanium combustion in aircraft engine compressors. This effort 

was directed at prevention of sustained titanium combustion by means of 

protective coatings. 

What follows are summaries of the results of five recently-completed 

~ontracts and a look at our future thrusts. The titanium combustion problem 

arld the process development for internal coatings will be covered first 

followea by the MCrA1Y and TBC coating studi~s and the automated plasma spray 

equipment developmenl. 

COATINGS fOR TITANIUM COMPRESSOR BLADES 

Based on strength-to-aensity ratio up to 4800C (9000F), titanium 

offers a substantial weight reduction in gas turbine engine compressor 

components. However, there is one significant probiem with 

ti tanium--combust ion. When sufficient energy is supplied to titanium, it will 

spo~taoeo~s1y ignite (exothermic reaction) ana continue to burn and. melt until 

consumed or the metal temperature is reduced below the 19nition temperature. 
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This problem has resulted in the removal of titanium alloys from selected 

regions in axial flow cumpressors--particularly to avoid potentia' of 

titanium-to-titanium rubs. 

Two approaches to solve the problem of titanium fires in gas turbine 

compressors are abrasive blade tip treatments and coatings. The tip trea'e.nt 

approach is aimed at reducing the amount of energy transmitted to titanium 

blades during rubs with the case. With protective coatings, the surface 

melting and burn characteristics ;;.rc mod1fied so that ignition events do not 

result in sustained combustion. The abrasive blade tip treatme~t approach was 

sponsored by the Air Force, and the coating approach by NASA. In both cases 

the contractor was the Government Products Division of Pratt and Whitney 

Aircraft (PWA, Florida). 

The objective of the titanium coating program was to develop, starting 

with the thirteen coatings shown in Table I, a coating system which could 

protect titanium under energy input conditions that ignite bare titanium. In 

addition, the coating must have no adverse effect on the titanium physical and 

mechanical pr~~erties, especially high cycle fatigue life. Using a laboratory 

laser screening test under the conditicns shown in Table I, ~even coatings 

provided ignition resistance at normal engine operating conditions and also 

under a more severe condition of increased temperature. However, ignition 

occurrea in all seven of these coatings under temperature and pressure 

conditio .. s beyond engine operating conditions. Examples of the burn response 

of the most fire-resistant cQating, Pt/Cu/Ni, to a range of temperature/ 

pressure/velocity parameters, are shown in figure 1 • . 
Normally, coatings applied to titanium cause a loss in fatigue life. To 

further evaluate the seven best coatings, reverse bending fatigue tests were 
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carried out. The results are shown in figure 2. The ion vapor deposited 

(IVD) aluminum and Pt/Cu/Ni coatings gave hlgh-cycle fatigue lives equivalent 

* to bare Ti-8Al-lMo-lV. 

Concurrent with this program, an Air Force Wright Aeronautical Laboratoryl 

Aeronautical Propulsion laboratory (AFWAl/APL) contract with PWA, Florida . 
examined the cascade combustion (molten metal ignition) of the IVD aluminum 

and electroplated Pt/Cu/Ni coatings developed under the NASA contract with 

PWA, Florida. The NASA sponsored effort examined the mechanical and physical 

properties of the two coatings en Ti-8Al-lMo-lV and the AF alloy 

(Ti-3Al-6Cr-8V-4Mo-4Zr). 

In a cascade combustion test, a ~'~l"'2 titanium specimen is place!! I'!"!tream 

of a coated specimen. The bare srecimen is laser ignited, and the molten 

titanium flows over the coated specimen causing it to ignite. The cordwise 

burn velocity (combustion rate) and burn severity were determined over the 

following parameter ranges: 

Pressure 0.275-0.520 MPa (40-80 psia) 

Temperature (gas) 315-4400C (660-8750F) 

Air Velocity 183-305 m/sec. (600-1000 ft/sec.) 

Coatings IVD aluminum Pt/Cu/Ni 

Coating Thickness 0.005, O.OOP., 0.010 cm. (0.002, 0.003, and 0.004 in.) 

Analysis of the data showed that the type of coating has no significant effect 

on cordwise burn velocity while increased coating thickness decreases it. 

80th pressure and air velocity have the greatest effect on cordwise burn 

velocity. Cordwise burn velocity increases with increasing pressure and 

temperature. 

* A 11 compos it ion sin He i gh t percent. 
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In Table 11 is a summary of the tests used to determine what effect, if 

any, the Pt/Cu/Ni and IVD aluminum coatings had on several properties of 

Ti-8Al-lMo-lV. 

The conclusions from the program are that the Pt/Cu/Ni and IVO 

aluminum coatings provide potential systems to resist titanium ignition under 

certain high impact energy conditions. 

As with all laboratory coating development programs, including three of 

the other programs described here, acceptance of a coating innovation or 

improvement requires engine verification. However, in this case, the risk in 

a ground-based engine test is high since titanium fires can destroy the 

engine. Therefore, engine verification of the potential of the abrasive blade 

tip treatments and the coatings to eliminate the titanium combustion problem 

can not be as readily confirmed as are other coating innovations. The report 

from this contract should be published during the second quarter of 1981, as 

NASA CR-165360. 

INTERNAL COATING OF AIR-COOLED GAS TURBINE BLADES 

Aircraft gas turbine engin~ performance has been improved by operating at 

higher temperatures and pressures. Air-cooling of first- and second-stage 

turbine blades and vanes were required to aChieve the improve1 efficiency 

while keeping metal temperatures down to acceptable levels. With thes~; higher 

operating temperatures and less resistant alloys, the external as well as the 

intern~l surfaces of blades and vanes need to be protected. Without internal 

coatings, internal passages with as much as ten percent of the cross-section 

consumed by hot corro~ion have been seen in the field (Reference 25). The use 

6 



of air-cooling in advanced airfoils also requires that both internal and 

external coatings be relatively ductile at low operating temperltures. 

The objective of the inte.nll cOltings program with Solar WIS to develop 

coating compositions having a balance of environmental resistance and low 

temperature ductility. Coatings were applied to 1N-792 + Hf USing the dry 

powder pa~k method. The coating systems investigated were: Ni-19Al-1Cb. 

Ni-19Al-3Cb. Ni-12Al-20Cr and Ni-17Al-2OCr based on the results of a previous 

contract (Reference 25). These coatings were evaluated in a hot corrosion 

burner rig test at 900°C. with a 4 ppm salt level in air. After 300 hours 

of hot corrosion exposure, the depth of hot corrosion ~enetration was least 

(19-32 ~m) for the Ni-Cr-Cb systems while the Ni-Al-Cr systems showed deeper 

penetration (32-50 ~m). 

The results of a furnace oxidation test are shown in figure 3. The 

oxidation resistance of the coated specimens is significantly better than that 

for O~re IN-792, with the 3Cb coating being the least oxidation-resistant 

coating_ The data presented in Table III indicate that the Ni-Al-Cr and 

Ni-AI-Cb coatings have ductilities significantly better than aluminides. 

However, the high-cycle fatigue life of IN-792 with these coatings was only 

equivalenl to that of the commercial RT-22 coating on IN-792. 

lh~ Ni-l~Al-lCbt Ni-19Al-3Cb and the Ni-12Al-20Cr coatings were applied to 

the internal surfaces of first-stage Mars Engine turbi~e blades. 

Metallgrapnic examination after a 500 hour cyclic endurance test showed that 

the Ni-19Al-lCb coating provided the best protection. The Ni-12Al-20Cr 

coating was the least protective witn total coating consumption evident in 

areas of the blade where pack coating volume was insufficient to form a 

coating of the desired thickness. 
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In conclusion, a dry powder pack method for Ni-Al-Cb and Ni-Al-Cr alloyed 

aluminide coating systems has been demonstrated through laboratory tests and a 

ground-based engine test. Compared to the externally applied coating 

thicknesses, internally appl~ed coating thicknesses were less by 10 to 20 

percent because of the restricted pack volume that can be placed in the blade 

core. The Ni-19Al-lCb system had superior oxidation and hot corrosion 

resistance compared to the other 3 systems examined. While the coating 

ductil~ty was superior to that of simple aluminides, their effects on IN-792 

prJperties (tensile, HCF. and stress rupture) were similar to that of 

aluminide coatlngs. The report from this contract should be published in the 

second quarter of 1981. as NASA CR-165337. 

PLASMA SPRAYED COATINGS 

The next two contracts were initiated as the result of NASA Lewis in-house 

coating efforts in the area of metal overlay and thenmal barrier coatings 

(References 26-47). In the case of the overlay coatings (alloyed-aluminides 

generally called MCrA1Y's}. the electron beam-physical vapor deposition 

(EB-PVO) technique was used to apply MCrA1Y overtay coatings on commercial 

aircraft gas turbine engine blades and vanes. Because EB-PVD is a 

vaporization process and the vapor pressures of the various elements (Ni. Co. 

Fe. Cr. Al. Y. Cb. Ta. Si, and others) are significantly different, it is 

difficult to add Si or one of the refractory elements to the MCrA1Y metal pool 

stock and reproducibly obtain the coating composition desired and yet maintain 
. 

an economic process. 
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Recent advances in air- (Reference 48) and low-pressure plasma spray 

equipment with the help of computerized control have made plasma spraying an 

attractive alternative to EB-PVD systems. Plasma spray equipment involves 

significantly lower capital investment. and it is easier to operate and to 

control the coating composltion than with EB-PVD equipment. This becomes more 

pronounced as the coating compositions become more complex. In addition. the 

range of available coating compositions is virtually unlimited with the plasma 

spray process. However, up until recent contractual efforts. E8-PVD coatings 

have consistently outperformed plasma spray coatings of equivalent composition • 

TAILORED PLASMA SPRAY MCrA1Y COATINGS FOR GAS TURBINE APPLICATIONS 

The purpose of the investigation, under a contract with the Commercial 

Products Division of Pratt and Whitney Aircraft (PWA, East Hartford). was to 

obtain equivalent or better plasma sprayed coating performance than current 

electron-beam physical vapor deposited MCrA1Y coatings in both the high 

temperature oxidation and hot corrosion environments found in advanced 

aircraft gas turbines. Fifteen compositional/process variations of plasma 

sprayed MCrA1Y ~oatings (NiCoCrA1Y and CoCrA1Y) were investigated. Table IV 

shows the processes and coating compositions used for the single crystal alloy 

454 (Ni-lOCr-5Co-4W-12Ta-l 5Ti-5Al) in oxidatiorl applications. With the same 

processes, 6 CoCrA1Y ,-oating (Co-22/29 Cr-10/12.5 Al-O.6 Y) plus 2.0 Si on 

81900 + Hf was investigated for hot corrosion applicotions • 

. Th~ microstructures of NiCoCrA1Y coatings produced by different,plasma 

spray methods (i.e.-air plasma sprayed, one-dtmosphere argon chamber plasma 
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spr~ (ACS) and low-pressure chamber plasma spr.,ed (LPC5» are shown in 

figure 4. The LPC5 NiCoCrA1Y's are more dense and have less oxide present in 

the coating than the AC5 and air-plasma sprayed N1CoCrA1Y's. The effect of 

t~ese differences on 11480C (2100oF) burner rig oxidation 11fe of Mar-M200 

+ Hf specimens 1s shown in figure 5. 

The oxidat10n results of the best low-pressure chamber plasma spray (LPCS) 

MCrA1Y + 5i coating for each alloy are compared to electron-beam physical 

vapor deposited (EB-PVD) and LPCS MCrA1Y coatings (w1thout 51) 1~ figures 6 

Ind 7. The performance of both MCrA1Y + 51 coatings 1n these ~ach 0.3 burner 

rig tests was superior to those of the EB-PYD and LCPS MCrA1Y coatings without 

Si. In the case of NiCoCrA1Y coatings, th! silicon addition doubled th~ life 

of the coating; the CoCrA1Y + Si coating in the oxidation test (11200C) 

proved to be about fifty percent better than the coatings without Si. 

In cyclic burner rig hot corrosion test1ng at 900°C (30 ppm sea salt; 

equivalent of 1.30 wt. percent sulfur in the fuel add~d via 502), all the 

MCrA1Y coatings wi~h and without additives (Si, Ta, end Hf) on both alloys 

provideo satisfactory protection beyond 500 hours of exposure. 

Superior fracture strain capability was shown by the LPCS MCrA~Y coatings 

over sinlilar EB-PVD compositions, figure 8. Howev~r, the addition of Si to 

the lPCS MCrA1Y significantly lowered the fracture strain value. The percent 

fracture strain with 5i is less than for EB-PVD coated alloys, but is more 

tha~ sufficient for the intended application. 
o In summary, based on laboratory oxidation tests at 1120 C. the LPC5 

MCrAlY-plus-Si coatings on the sinyle crystal alloy 454 and 81900 + Hf alloys . 
are superior in performance to Similar EB-PVD and LPCS MCrA1Y coatings without 
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S1 or with other elemental additions. Hot corrosion test results at 9OO0C, 

showed no significant difference in life between coating compositions or 
o processes used. In the 315 C ductility test, the LPCS MCrA1Y-plus-Si 

d1spleyed greater ductility than aluminide coatings. Test1ni of these coated 

alloys in ground-based test engines will be used to confirm the laboratory 

results. T~e report (NASA CR-163234) from this contract was published in 

January 1981. 

JHERMAl BARRIER COATED TURBINE BLADE SrUDY 

Thenmal barrier coatings on air-cooled blades can be used to extend the 

life or increase eng1ne operating efflciency. The actual trade-offs are many 

and need to be identified with the total engir.e operation as well as the 

component involved. The most readily apparent trade-offs are lower component 

metal operating temperature with extended life. or reduced cooling air with 

increased engine eff1c1ency wh~le maintaining the same component operating 

temperature. 

The approach taken in this program was to perform a parametric design 

study to identify the benefits and trade-off factors for a thermal barrier • 

coatlng on CF6-50 second-stage turbine blades. This blade was selected 

because it is convection cooled whereas the first-stage blade is film-cuoled 

and thus cannot be readily ~oated without extensive fixturing. Table Y 

illustrates the data obtained from one such trade-off study where the rupture 

life and low cycle fatigue (LCF) life factors are ~on~ared for a number of 

cooling-,ir flow conditions when the mil;mum blade temperature is restricted 
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to 9800C (1800oF). Using 100 percent cooHng-air flow through I ban 

bllde IS the basei1ne flctor of one, 0.025 em of cOlting would incre.se the 

rupture ltfe by a factor of 35 Ind the LCF life by I flctor of 1.25. If there 

is I locll .pallation (down to the bond coating) with 100 percent lir flow, 

there still would De a 24-fold increase h~ rupture 11fe, while the LCF 11f,. 

would fall to 0.1 of the bare-blade baseline. 

Of greatest signlf1carce is the clse where cooling air flow is reduced by 

50 percent whiie maintaining the baseline LCF lite. 

However, in this fully coated design the bond coat temperature is expected 

to limit coating life. Without the trailing edge of the blade coated, 

somewhat more than 65 percent of the cooling 11r would be needed to maintlin a 

rupture and LCF life factor of one. This design hiS the lerodynamic advantage 

of no increase in blade trailing edge thickness. In another study, where a 

complete redeSign of the bhde fClr optilQU\] benefits with a TSC coating WIS 

considered (integral de'ign), the cooling-air could he reduced to around 55 

percent of the baseline while maintaining the rupture and lCF lif2 of a bare 

blade and not exceeding 9S00C (1800oF) bond coat temperature. The above 

trade-off studies illustrate the need to examine all of the ramifications 

involved in applying therral barrier coatings since their presence (or loss) 

can change the meChanical and/or physical characteristics of I component far 

more than any previously used coating system. 

Concurrent with the parametric design study, a coating aevelopment effort 

was performed to evaluate two plasma spray processes and the effects of 

coating thickness, bond and ceramic coating campusitions, and substrate . 
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Composition variables. Specimens were exposed to a series of one-hour furnace 

cycles from 1400C to 11000C. The results for each of the variables 

investigated are illustrated in Figure 9. The study showed that 

magnesia-stabilized zirconia destabilized while yttria-stabilized materials 

exhibited no phase changes during the exposure. The ceramic thickness had no 

significant effect « 5 percent) on life, while the bond coat deposition 

process di,'. The low-pressure/high-velocit·, (LP/HV) processed bond coating 

gave about 2) percent longer life than the conventional air-processed bond 

coating. Bond coat and substrate composition were also significant 

• variables. An increase in bond coat chromium content from 16 to 22 percent 

increased life about 20 percent. There was a 17 percent difference in coating 

life between the two substrate alloys (Rene 80 > Hastelloy-X). 

The Ni-22Cr-IOA1-IY bond coating with the 8 Y203 - Zr02 cer~mic 

system deposited by air and LP/HV processes were used to coat specimens for 

burner rig oxidation and hot corrosion tests, and based on the rig test 

results, the LP/HV process was used to coat second-stage blades for a CF6-50 

engine test. The full-scale land-based CF6-50 engine test showed that thermal 

barrier coatings developed in thi~ progt'am can operate for at least 625 

endurance cycles on the second stage blade. Furt~er testing is in process. 

The contractor report should be published in the third quarter of 1981, as 

NASA Ck-165351. 
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AUTOMATED PLASMA SPRAY PROCESS FEASIBILITY STUDY 

The purpose of this contract with the Equipment Division of TRW was to 

conduct an automated plasma spray (APS) process feasibility ttudy for the 

application of coating materials to turtine blades. specifically thermal 

barrier coatings a~ this time. The APS equipment developed integrates a 

multi-axis blade handling fixture, a non-coherent optical instrument for 

coating thickness measurement,. plasma spray equipment operating in the ambient 

environment, and a microprocessor-based system controller. A schematic of the 

APS process is shown in Figure 10, and the actual equipment is shown in Figure 

11. Figure 12 is a clo~e-up showing the plasma gun and optical probe which 

move up and down along the vertical screw axes. The blade surface is always 

oriented perpendicular to both the optical probe during measurement and the 

plasma spray gun during spraying. Through deposition of a series of 

overlapping strips of spray, any coating contour thickness can be built up on 

the blade. Coating thickness is measured by manueverirg the blade in front of 

the optical probe by means of the multi-axis blade handling fixture via the 

appropriate software program. With feedback from the optical probe 

measurement, the blade is repositioned if necessarY, to complete the desired 

amount of coating buildup. Further Jetails are given in reference 46. 

In Figure 13, a comparison of APS optical probe and metallographic coating 

thickness measurements at various locations around a turbine blade airfoil is 

presented to illustrate the accuracy of the optical probe measurements. Table 
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VI shows a comparison of the coat1ng un1fcrmity and repeatab11ity obtained on 

manual and APS sprayed blades. Production coated blades w111 require the 

unif~rmity and repeatability of an automated system. 

The APS equipment developed is not a production prototype, but was built 

to prove the feasib'lity of an automated plasma spray process with feedback 

control to apply two-layer thermal barrier coatings and as a research and 

development apparatus to study plasma spray processing. Further improvements 

in APS durability are required for a production system. 

CONCLUOING REMARKS 

Our contractual coatings program efforts follow the directions pointed out 

by our in-house research and the future technology needs of the aerospace 

industry. Currently. there is a contract to improve the strain tolerance of 

thermal barrier coatings. NASA Lewis in-house efforts are continuing to 

better understand and improve thermal barrier coatings. We ar~ presently 

studying the metallic coating instability problems associated with oxide 

dlipersion strengthened alloys. In addition. we are addressing methods for 

overcoming the chemical/mechanical compatability problems antiCipated for 

advanced superalloys and strategic materials conservation alloys. Finally, we 

are developing an improved coating-life prediction methodology. 
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