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SUMMARY 

Analytical design techniques for active and passive control of aero- 

elastic systems are presented. These techniques are based on a rational 

approximation of the unsteady aerodynamic loads in the entire Laplace 

domain, which yields matrix equations of motion with constant coeffi- 

cients. 

Some existing rational approximation schemes are reviewed, the matrix 

Pad& approximant is modified, and a new technique which yields a minimal 

number of augmented states for a desired accuracy is presented. 

The state-space aeroelastic model is used to design an active control 

system for simultaneous flutter suppression and gust alleviation. The 

design target is for a continuous controller which transfers some meas- 

urements taken on the vehicle to control command applied to a control 

surface. The control parameters are constant and they are optimized to 

minimize any desired combination of gust response parameters in a way 

that assures stability over the range of varying aerodynamic parameters 

in the entire flight envelope. 

Structural modifications are formulated in a way which enables the 

treatment of passive flutter suppression system with the same procedures 

by which active control systems are designed. 



INTRODUCTION 

Background 

In recent years, extensive research has been carried out to develop 

active control systems for controlling aeroelastic response. In these 

systems aerodynamic control surfaces are operated according to a control 

law which relates motion of the control surfaces to some measurements 

taken on the vehicle. The aerodynamic forces generated by the control 

surfaces modify the overall forces in some favorable way as defined by 

the performance requirements. 

The increasing emphasis on fuel efficiency and the advances in aero- 

dynamic and structural design techniques results in increasing payload to 

structural weight ratio. This increased structural efficiency results in 

lower elastic mode frequencies. Thus the elastic modes are more easily 

excited by atmospheric turbulence and pilot control inputs. Several 

development and flight test programs; such as the B-52 Load Alleviation 

and Mode Stabilization (LAMS) [l] and Drones for Aerodynamic and 

Structural Testing (DAST) [2], d emonstrated aeroelastic control concepts 

for augmented rigid body stability, maneuver load control, ride control, 

fatigue reduction, gust alleviation and flutter suppression. The DAST 

program is still in progress and will continue for several years. The 

benefits of the aeroelastic control systems are increased aircraft 

maneuverablity, rider comfort, service life and flight envelope for a 

given structural layout. 
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Flutter suppression is fundamentally different from the other active 

control applications mentioned because the structural stability of the 

vehicle is involved. Loss of a flutter suppression control system may 

result in almost immediate major structural failure and the loss of the 

aircraft. Consequently, the active control system hardware must be of 

high reliability, and structural stability should be assured for all 

possible structural configurations in the entire flight envelope, 

extended to include safety margins. Some recent analytical developments, 

wind-tunnel tests and flight-test demonstrations [2-61 show the potential 

and feasibility of active flutter suppression control systems. However, 

to apply modern control techniques efficiently for optimized systems, 

more refined aeroelastic modeling has to be carried out. 

The main difficulty in modeling an aeroelastic system for control 

analysis lies in the representation of the unsteady aerodynamic loads. 

The time lags in the development of these loads result in analytic ex- 

pressions which contain non-rational terms. Rational approximations are 

needed to obtain finite-order models which can be solved by the methods 

of linear algebra. 

Once a suitable approximation for the aerodynamic loads is chosen, a 

state-space matrix equation of motion can be constructed. Because 

aerodynamic loads are a function of flow conditions, each point in the 

flight envelope has a different equation of motion. A root-loci 

analysis yields the variation of the system frequencies of oscillation 

and damping ratios with the dynamic pressure for a given Mach number. 

After adding to the state-form equation, a control (input) term and a 

measurement (output) equation control, analysis is performed. 
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There is no all-purpose control technique. A suitable one is chosen 

in accordance with the performance requirements, available control 

meansI precision of the mathematical model, measurement accuracy and 

on-board computer capacity. The control analysis given in this study is 

for a constant parameter, partial-feedback, continuous control system. 

A combination of modal and control surface response to atmospheric tur- 

bulence at various flight conditions is used as a cost function in such 

a way that stability is assured and a desired gust response parameter is 

minimized. 

Structural modifications are more traditional aeroelastic control 

means. passive compensators such as mass balance or stiffness tuning, 

with the associated weight penalty, can be more practical than active 

means in many instances and should not be overlooked in the design 

process. Passive means are formulated in this work as input and output 

terms such that they can be included in the active control design. 

Survey of Literature 

The scope of this work goes across several major topics such as ae- 

roelasticity, structural dynamics, turbulence, control analysis and op- 

timization. The literature survey given in this section is a selective 

review. Many other relevant books and papers appear in the literature. 

The idea of using an active control system to move aerodynamic con- 

trol surfaces for flutter suppression was pursued in the last decade by 

several aircraft manufacturers and research institutions. The B-52 CCV 

program was the first to demonstrate such a system in flight. This and 



some other feasibility studies [7,8], wind tunnel tests [4,6] and flight 

tests [2,5,9] show the potential and feasibility of such systems. 

The structural analysis methods needed for earoelastic analysis are 

reasonably well developed. For example, the infinite dimensional spaces 

required to describe exact motion of aeroelastic systems can be reduced 

to finite dimensional spaces by the technique of truncated normal modes 

[lOI * Further, normal mode analysis of the structure can be done by the 

well-developed finite element method [ll]. 

The unsteady aerodynamic loads due to an oscillaning wind section in 

incompressible, two-dimensional flow were first developed by Theodorsen 

[=I - Extensions of Theodorsen's derivation are given by Timman and Van 

der Vooren [13] for subsonic flow and by Garrick and Rubinow [14] for 

supersonic flow. A thorough review of these and other derivations, in- 

cluding Possio's integral equation for the pressure distribution on a 

two-dimensional typical section due to small oscillations of assumed 

modes and the corresponding integral equation for three-dimensional 

wings, is given by Bisplinghoff, Ashley and Halfman [lo]. Among the nu- 

merical techniques for solving the integral equation for a three-dimen- 

sional wing in subsonic flow is the doublet-lattice method of Albano and 

Rodden [15]. 

The availability of analytical tools for calculating the aerodynamic 

influence coefficients for lifting surfaces in simple harmonic motion 

leads to the classical V-g method for predicting flutter boundaries 

[10,16,17]. The flight conditions at which the dumping g ceases to be 

negative defines the flutter condition. 

5 



Sears [18J developed convolution integrals for the unsteady 

aerodynamic loads due to arbitrary motion of a typical section in incom- 

pressible flow and generalized Theodorsen’s function for arbitrary mo- 

tion. Edwards [19,201 applied the Laplace transformation to Sears’ ex- 

pressions and generalized Possio’s integral equation for arbitrary mot- 

ion. He also presented the aeroelastic equations of motion in a way 

that manifests the benefits of rational approximations of the aerody- 

namic loads, especially when an active control system is used. 

R. T. Jones 1211 first introduced the use of rational Laplace trans- 

fer functions to approximate unsteady loads. The importance of such ap- 

proximations increased with the progress in active control of aero- 

elastic systems. Roger & al. 131 used Pad6 approximants 1221 separately 

for each term of the aerodynamic influence coefficient matrix. Roger [23] 

increased the approximation efficiency by using common denominator roots. 

Vepa [24] and Edwards [19,20] used matrix Pad@ approximants to deal with 

all the influence coefficients simultaneously. 

The analytical tools for calculating the response of flexible airplanes 

to atmospheric turbulence are summarized by Pratt [25]. The mechanism 

and theory of turbulence are given by Hinze [26]. Dryden [27] and von 

Karman [28] gave practical formulas for the statistical description of 

atmospheric gust velocity. 

Like any other component of a flight vehicle, an active control sys- 

tem must comply with the Federal Aviation Regulations 1291. An example 

of regulation considerations for an active flutter margin augmentation 

system is given by O'Connell and ‘riessina [9]. 



Aeroelastic active control design concepts are functions of the 

available aeroelastic modeling techniques. Nissim 1301 developed the 

aerodynamic energy concept, which is based on the classical assumption 

of simple harmonic motion. This concept was applied by Nissim and 

Abel [4] and Abel et al. [311. -- 

Rational approximations of the unsteady loads have been used 

to construct finite state-space mathematical models. Classical control 

techniques [31$321 and optimal control techniques 119,321 have been used to 

design flutter-suppression systems. The concepts and methodology of op- 

timal control theory are given by Bryson and Ho 1341. Ashkenazi [35 I 

applied some of these concepts to the constant parameter insensitive 

control of a system with variable dynamics. 

When control parameters are optimized with respect to a given cost 

function, and there is no direct algebraic optimal solution, a minimiza- 

tion procedure can be used. Fletcher and Reeves [36] introduce the 

conjugate gradients technique. Davidon [37] introduced a rapidly 

convergent descent method which has been modified by Fletcher and Powell 

[38] and by Steward [39] to include finite difference approximation of 

the gradient vector. 

The costs and benefits in using active control system to suppress 

flutter and alleviate gust response must demonstrate superiority over 

the more traditional passive flutter-suppression means. Structural op- 

timization procedures for satisfying flutter requirements are given by 

Markowitz 1401 and Haftka and Starnes [411. The decoupler pylon con- 

cept, which avoids violating the flutter requiremen.ts when an external 

store is added to the wing, was developed by Reed et al. 1421. 
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Report Outline 

In the Aeroelastic Equations of Motion Section the typical section in 

incompressible and subsonic flow is introduced first. Unsteady aerodynamic 

loads in three-dimensional flow are discussed, and the use of truncated normal 

modes is presented. 

In the Flutter and Gust Response Section the V-g method and the root-loci 

approach for calculating flutter boundaries are presented. The continuous 

gust loads and the associated structural dynamic response are defined in 

statistical terms, and the basic relations are given. 

In the Finite State-Space Modeling Section the initial theoretical develop- 

ments original to this work are presented. Some existing techniques for 

rational approximation of the aerodynamic loads are reviewed, the matrix Pad6 

approximant is modified, and a new minimum-state technique is developed. 

Numerical examples for approximating two-dimensional aerodynamics in incom- 

pressible and subsonic flow and three-dimensional aerodynamics in subsonic 

flow are given. 

In the Active Flutter Suppression and Gust Alleviation Section active 

control of aeroelastic systems is treated. Design targets are defined, 

some existing techniques are reviewed,and a new approach for simultaneous 

flutter suppression and gust alleviation is developed and illustrated. 

In the Passive Flutter Suppression Section a new approach to passive 

means for flutter suppression is presented, The passive means are formulated 

as input and output terms of the active control equations. Numerical 

examples of stabilizing the typical section using a concentrated mass and 

a dynamic vibration absorber are given. 

In the final two sections, Concluding Remarks and Recommendations, the 

material presented in this paper is summarized and recommendations for 
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future research presented. 

1. 

2. 

3. 

4. 

5. 

Summary of Contributions 

Rational approximations of the unsteady aerodynamic influence 

coefficients are investigated, the matrix Pad& technique is 

modified and a new "minimum-state" technique is developed. 

Numerical examples are used to demonstrate significant advan- 

tages of the minimum-state technique over other techniques. 

The minimum-state approximation is used to construct state- 

space aeroelastic control equations with flight-condition dependent 

coefficients. Statistical turbulence parameters are formulated 

as process noise. 

A control cost function is defined such that a desired gust 

response parameter is minimized and stability over the entire 

flight envelope is achieved, if at all possible with the 

available control means. 

A pole-assignment technique for a partial-feedback, zero-order 

compensator is modified to accommodate simultaneous pole as- 

signments at different flight conditions. 

Higher than zero-order compensators are augmented to the aero- 

elastic control equations, and the output equation includes an 

input term to accommodate acceleration measurements. 
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6. Passive control means are formulated as input and output terms 

such that they can be treated as a special case of active con- 

trol means. 
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SYMBOLS 

a dimensionless elastic axis location (Fig. 11 

a0 speed of sound 

a9 .i cost function weights, Eq. (5.16) 

au Control command participation in Z& Eq. (5.14) 

b reference semichord 

bp viscous damping 

dimensionless control surface hinge location (Fig. 1) 

C(s’1 

Do(s) 

f(x,),g(x1) 

9 

h 

H,(2’(~) 

Im(*) 

Je 

Jo 

J,,(z) 

k 

kc 

kp 

lift coefficient derivative with respect to angle of at- 

tack, La/2bq 

generalized Theodorsen function (Eq. (2.12)) 

open-loop characteristic polynomial 

coefficients of spatial longitudinal and vertical. veloc- 

ity correlation, Eq. (3.11) 

structural damping 

plunge displacement (Fig. 11, altitude in Fig. 2 

Hankel function of order n 

imaginary part of l 

least-squares cost function, Eq. (4.2) 

global control cost function, Eq.(5.16) 

Bessel function of order n 

reduced frequency, wb/V 

integer defined in Eq. (5.51 

spring stiffness 
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Kn(s’) 

1, 

L 

La 

L9 

m 

mc 

mp 

ms 

M 

MarQ3 

n 

nc 

N 

P 

P II 

9 

4i 

r 

ra2,rp 2 

Re(*) 

S 

S’ 

t 

Ti 

modified Bessel function of order n 

compensator order 

lift per unit span 

lift per unit span due to unit pitch angle 

scale of turbulence, length units 

order of the denominator polynomial in a rational approx- 

imation 

number of output measurements 

concentrated mass 

wing mass per unit span 

Mach number 

pitching and hinge moments (Fig. 1) 

number of degrees of freedom 

order of control equation (5.1) 

order of Roger’s approximation, Eq. (4.51 

pressure difference across the wing 

amplitude of p 

dynamic pressure, ipV2 

polynomial coefficients of Do(s), Eq. (5.21) 

magnitude of s’ = r expCi8) 

radius of gyration of the typical section and the control 

surface, divided by b 

real part of l 

Lap1 ace transform vari abl e 

nondimensionalized Laplace variable, sb/V 

time 

constants defined in Eq. (A.21 
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uru(sl 

u’rv’rw’ 

U9pW9 

V 

W” 

X1rX1rZ.I 

xte 

XU~Xl3 

Y,(z) 

2 

a 

R,RC 

Y j 

r(n) 

E 

6 

Ip,g(w) 

*’ 

\y 

A 

CL 

P 

=w9 
2 

control command variable and its Laplace transform 

disturbance velocity components in xlryl and 21 direc- 

tions, respectively 

vertical and longitudinal gust velocity 

airspeed 

amplitude of w’ 

streamwise, spanwise and upwards’spacial coordinates 

x1 coordinate of the trailing edge 

dimensionless center of mass offsets (Fig. 11 

Bessel function of order n 

defined in Eq. (A.41 

z1 coordinate on the wing surface 

gust response design variable and its Laplace transform 

angle of attack 

control surface actual and command rotations 

aerodynamic roots (Eq. (4.51) 

gamma function 

error of least-squares approximation 

concentrated mass location, Fig. 18 

power spectral density of wg 

disturbance velocity potential 

modal deflection 

wave length of sinusoidal gust 

mass ratio, mS/npb2 

air density 

mean-square value of wg 

13 



plunge, pitch and flap uncoupled natural frequencies CdhrWa~W~ 

Wn natural frequency 

R aeroelastic eigenvalues def ined in Eq. (3.2 I 

5 modal damping 

Matrices 

adj[*l adjoint matrix of 1.1 

Iadl, Iaol,Iavl frequency response coefficients in Eq. (3.10) 

[A(s’)I aerodynamic influence coefficients 

[Aapl approximated value of IA( 

IA& [B,I compensator parameter matrices, Eq. (5.51 

M gust loads influence coefficients 

[Aj,lI,[Bj,lI as defined in Eq. (4.12) 

lAllrIB~l known data matrices in Eq. (4.1) 

IBI damping matrix 

[BI I defined in Eq. (4.15) 

lCl,[C,l control gains, Eq. (5.7) 

[C’l, ICC’1 defined in Eq. (5.8) 

[C(R’,kl)l as defined in Eq. (4.27) 

Ii221 defined in Eq. (5.12) 

lOl,[D’l defined in Eqs. (4.23) and (4.25) 

[D,lrtDpl defined in Eqs. (4.15) and (4.18) 

[El, WI defined in Eqs. (4.22) and (4.251 

defined in Eqs. (4.151 and (4.18) 

11, IG(k >I real and imaginary parts of IA( 

[EiI 

[F(k 

14 

mean-square value of zd at point i of the flight envelope 

argument of s’ 

vibration frequency, rad/sec 

ozd .i2 

e 

w 



IF11 dynamic matrix of aeroelastic control system, Eq. (5.11 

{9(s)) as defined in Eq. (5.19) 

M*bz~ control input distribution vectors, Eq. (5.11 

[HL( J) output matrices of Eq.(5.2) 

[H,J,tHd],[Hvl partitions of [HI, Eq. (5.2) 

[HOI acceleration output matrix, Eq. (5.31 

111 unit matrix 

tKlr [Ml stiffness and mass matrices 

[KII~[KzI defined in Eq. (4.15) and (4.22) 

( La(t ))r{L (~1) aerodynamic load vector and its Laplace transform 

[Nil matrix polynomial coefficients in Eq. (5.20) 

[Pi1 coefficients of matrix polynomial approximation 

[Qptl piston theory limit, page 110 of Ref. 1161 

[Rl approximation root matrix, Eqs. (4.9) and (4.25) 

[R’l defined in Eq. (4.241 

(R~)r[S~l,[S~l defined in Eq. (A.21 

ITI similarity transformation matrix, Eq. (4.16) 

(x),(x(s)) deflections in generalized coordinates and their Laplace 

transform 

(x,),(x., ),(x.p) aerodynamic augmented state vectors 

(Y)#(S)) measurement vector and its Laplace transform 

(2),(2(s)) state vector and its Laplace transform 

be) compensator state vector 

@PI modal deflection vector 

w noise distribution vector, Eq. (5.10) 

Subscripts 

a aerodynamic 
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e 

eq 

f,fl,f2 

i,j 

t* .ir I 

i'.jl 

' ,ij 

1 

mo 

nc 

P 

rl,r2 

S 

Sl 

design 

related to least-squares problem, Eq. (4.1) 

equivalent 

1 values at which approximated and tabulated terms match 

of i-th and j-th mode,respectively 

row i of [*I 

column j of t*l 

ij-th element of 1-l 

index of tabulated data 

maximum operation 

noncirculatory aerodynamic 

passive 

reference values of 1 in the least-squares equations 

structural 

sea level 

Superscripts 

t matrix transpose 

average value 

Abbreviations 

C.G. center of gravity 

DOF degrees of freedom 

ccv control configured vehicle 

E.A. elastic axis 

FAA Federal Aviation Administration 

kPa kilo-Pascal, lo3 Newton/m3 
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AEROELASTIC EQUATIONS OF MOTION 

Unsteady Aerodynamics 

The development of the partial differential equation for unsteady po- 

tential flow is presented in numerous textbooks and papers. An overall, 

thorough presentation is given by Bisplinghoff et al. IlOl. The linear- 

ized partial differential equation for unsteady, compressible flow reads 

1 d24+’ 

[ 

a=*‘ a=iP* 
VZQr’ - - -+2v- + v= - El-J 

I 
(2.1) 

ao2 at2 ax,at ax,= 

where +’ is the disturbance velocity potential. The disturbance velocity 

components are 

a*' a+' a+' 
U’ =- , v’ =- , w’ =- (2.21 

ax1 wl azl 

where xl, yl and zl are the streamwise, spanwise and vertical coordi- 

nates, respectively, when flow over a wing is studied. The associated 

disturbance velocities u’, v’ and w’ are assumed to be small compared to 

V. 

For the unsteady lifting part of the solution of (2.11, a thin wing 

is replaced by its “flat plate” projection on the xl-y? plane. The lin- 

earized condition of no flow across the wing provides the primary bound- 

ary condition of (2.11, 
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a2, a2, 
w’(xl,yq,o,tl = - + v- 

at ax3 

(2.3) 

where za is the local 21 coordinate of the #wing. 

The unsteady flow is antisymmetric with respect to the xl-y1 plane. 

The pressure difference across the wing is 

p(x,ry1,t) = (2.41 

Kutta’s hypothesis of smooth flow off a sharp subsonic trailing edge 

requires that p(xtePyl,t) = 0. Substituting xl = xte in Eq. (2.41 gives 

another boundary condition for Eq. (2.11, 

a rv; I + - *‘(Xte,Y,rO, t1 q 0 

at 
(2.5) 

In incompressible flow, Eq. (2.1) reduces to Laplace’s equation, 

v=*’ = 0 (2.6) 

The solution of Eq. (2.1) or (2.6) has traditionally been simplified 

by assuming that the wing is undergoing simple harmonic motion, thus re- 

moving the independent variable t. Further simplification can be made 

if two-dimensional flow is assumed, thus removing the independent 

variable y . 
1 

For oscillatory motion, w’(x,,yl,O,tI = w”(xl,Yl)exp(iot) and 

p(x1,Ylr-b) = pN(x,,y,)exp(iwt). For three-dimensional flow, Eqs. 

(2.11, (2.3) and (2.4) combine to the integral equation, 
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w”(x7 ,y, ;kI 1 p”(t,q;k,M) 
q - JJ K(xq-(,y,-q;k,M)dnd& 

V 8a 9 
S 

(2.7) 

where & and 71 are dummy variables corresponding to XI and ~1, respec- 

tively, and k = wb/V is the reduced frequency. 

Landahl 1431 gives an expression for the kernel function for nonpla- 

nar surfaces in subsonic flow. To simplify the formulation, the 

discussion here is limited to planar surfaces, for .which the expression 

for the kernel function is 

exp[-ik(xl-t)/bl MlY,-31 exp[-iklyl-fll/bl 
K = 

(Y1-912 (x,-&!I=+( l-M=) (y,-~))= dq 

Q) 

s 

exp[-ikulyq-pi/b1 
+ du 

(l+u=)o’= I 

Ul 

(2.81 

MJ(x,-E)=+(1-M2)(y,-9)=-(x,-~) 
where u, q 

(~-M=&-Y)( 

Knowing w”(xlryl;k), Eq. (2.71 is solved for p”(xl,yl;krM)/q. Al- 

though this equation contains singularities, a solution can be obtained 

by numerical methods such as the doublet-lattice method [15]. 

The Typical Section 

The typical section is a simplified aeroelastic system consisting of 

a rigid plate of unit span connected to the ground by springs. It has a 
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trailing-edge flap and is exposed to two-dimensional flow as shown in 

Fig. 1. Assuming no structural damping, the system equation of motion 

is 

hl{~} + [K,](x) = (L&t)) (2.9) 

where the displacement vector (x)~ = [h/b,a,Rl, the aerodynamic load 

vector (L,)t = ~-Lb~l’la~M~l and IM,l and IK,] are the structural mass and 

stiffness matrices 

1 Xa Xl3 

[M,] = m5b2 xa rq2 rg2+xg (c-a) 

XP ro2+xa(c-a) rn2 

Cdh= 0 0 

[KS] = m,b2 0 ra2Wa2 0 

0 0 r12Wm2 

The unsteady aerodynamic loads for incompressible, two-dimensional 

flow were formulated by Theodorsen 1121. The solution of Eq. (2.6) 

yields the pressure distribution due to oscillatory motion in plunge h 

pitching and control surface rotation B. Integration over the chord 

gives down-load -L, pitching moment, Mel and hinge moment MB per unit span. 

Fol 

general 

owing Sears [18 1, Edwards 1191 showed that these results may be 

ized for arbitrary motion. The Laplace transform of (L,(t)) is 

(L.(s)) = q[A(s’I 1(X(s)) (2.101 
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-b 
I 

b 

Figure 1: A typical section with aerodynamically unbalanced trailing- 
edge flap. 
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where s’ is the non-dimensionalized Laplace variable s’ = sb/V, and the 

aerodynamic influence coefficient matrix is 

IA I q 2b2 [HnC]s’2 + ~Bn,l+C(s’)(R,)[S21 s’ 
I 

+ ~K,,~+c(s~)(R,)~s,I 
3 

(2.111 

In this case, C(s’) is the generalized Theodorsen function 

K1 (s’) 
C(s’) = (2.12) 

Ko (s’)+K1 (~‘1 

where K is a modified Bessel function of order n. n The function C(s') 

is analytic throughout the s' plane except for a branch point at the 

origin, which requires a branch cut along the negative real axis. The 

matrices of Eq. (2.11) and the series expansion of the Bessel functions 

are given in Appendix A. Equations (2.11) and (2.12) are identical to 

those given by Theodorsen [12] when s' is replaced by ik. 

The two-dimensional oscillatory aerodynamic loads in subsonic flow 

were formulated by Timman and Van der Vooren [131 and are tabulated in 

the Manual of Aeroelasticity [431. Vepa [24] and Edwards [20] general- 

ized Possio’s integral equation (2.7) for arbitrary motion in two-dimen- 

sional subsonic flow. 

Finite Wings in Three-Dimensional Flow 

Because a flying vehicle is a continuous elastic structure, the exact 

solution of the equations of motion requires infinite dimensional spaces. 
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Finite element modeling techniques Ill1 assume that the structure can be 

described by a finite number of degrees of freedom (DOF). A finite-ele- 

ment model of a complex wing structure may result in hundreds of DOF, 

for which as many natural frequencies and their associated mode shapes 

and generalized masses can be calculated. However, for global-structure 

aeroelastic analyses such as flutter and gust response, only a litnited 

number of the lower frequency vibration modes is required [lo]. 

The formulation of the preceding section is now generalized for finite 

wings in three-dimensional flow. The Laplace transform of the n DOF, 

open-loop, aeroelastic system equations of motion (for stability analysis) 

is 

[bi]S’ + tB,ls + [K,] 
3 

(X(s)) = q[A(s’)](X(s)) (2.13) 

Modal coordinates are used, which means that a discrete displacement 

is assumed to be a linear combination of a set of assumed modes, 

Xd(Xl ,Yl ,t) Xd,i(t)%‘i(xl#Yl) (2.14) 
i=l 

When the assumed modes are dimensionless normal modes with natural 

frequencies Wn,ir and when modal-damping coupling is negligibly small, 

the structural matrices of Eq. (2.131 are diagonal and their elements 

are 

M 5 ,i i = JYJms(xq ,yl)rYi2(x.r rYq )dxqdYl ; 
S 

B 5 .ii = 2giM s .i i@n .i i 

(2.151 

and 

K s.ii = Ms,iiun,i 2 
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AS stated previously, there are well-established numerical me- 

thods for solving Possio’s integral equation (2.7) for oscillatory mot- 

ion (s’ = ik1. Substituting w’ = wj”exp(i&) and zp = bYjexp(iwt) into 

Eq. (2.31 yields the non-dimensionalized oscillatory downwash due to 

motion (of amplitude b1 in the j-th mode 

W j “Cxlryl;k) bYj 
= ikVj + b- 

V 3x1 
(2.161 

Solving Eq. (2.7) with the do-wash Eq. (2.16) yields the j-th 

non-dimensionalized pressure mode pj”(x~ry~;k,M)/q. The aerodynamic in- 

fluence coefficient matrix for a given M is calculated by 

1 Pj 

II 

“(xl,yl;ktM) 
A ,ij(ikI = ; Yi(xlrYl)dXldY1 

9 
S 

(2.171 

Extrapolation of the aerodynamic influence coefficients to the entire 

s’ plane will be discussed later in this paper. 

24 



FLUTTER AND GUST RESPONSE ANALYSES 

V-g Method for Flutter Analysis 

The flutter boundary is the group of points of the flight envelope 

(in terms of airspeed and air density or altitude) at which the aero- 

elastic system is neutrally stable or? in other words, a disturbance re- 

sults in simple harmonic oscillations. Thus, even though the computa- 

tional tools were (and to a large extent still are) limited to oscilla- 

tory air loads, the flutter condition can still be found. The most 

popular technique for calculating the flutter conditions is the V-g me- 

thod, originated by Smilg and Nasserman 1171. 

Because the effect of the structural damping terms in Eq. (2.13) is 

usuallysmall,because it is difficult to calculate damping accurately, and 

because omitting damping is usually conservative, structural damping is 

neglected. For a simple harmonic motion of frequence U, Eq. (2.13) can be 

written as 
1 2 

INSI - --[KS] + pbfACikI 1 (X(ik)) 
1 

= 101 (3.1) 
cd2 2k2 

A non-trivial solution of Eq. (3.1) with non-zero velocity and real 61 

is possible on the flutter boundary only. To find these conditions, an 

artificial structural damping g is introduced by replacing l/o2 in Eq. 

(3.1) by 

R = ( l+ig)/w2 (3.21 
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Equation (3.1) becomes 

-1 

I 

pb2 
[K,l tns1 * -[A( 

2k2 I 
(X(ikI) = n(X(ik)) (3.3) 

which is an eigenvalue problem to be solved for n eigenvalues Ri. Fre- 

quency of oscillations, air velocity and damping parameter are determined 

from each eigenvalue by 

(3.4) 

Given p and M, Eq. (3.31 is solved for several values of k. Curve 

fittings of the variations of g and u with V yiel d the flutter velocity 

Vf and frequency @f at the point of g = 0, or when g equals some es- 

timate of the damping present in the actual structure. The equivalent 

flutter speed Vfeq is calculated by 

Vfeq = JGZZ Vf (3.51 

The resulting Vfeq (M,p) does not necessarily match the actual equiva- 

lent velocity, V,q = Jp/pi Mao. To determine the actual flutter point 

for a given M, the flutter calculations are repeated iteratively with 

varying p until Vfeq(M,pI matches V,q(M,pl. The group of actual flutter 

points, for various values of M, combine to form the flutter boundary. 

An example of a flutter boundary and a practical flight envelope is 

given in Fig. 2. Three envelopes are plotted: the operating flight en- 

velope which the airplane should not exceed in normal operation, (veloc- 

ities up to Vmo and Mach numbers up to Mmo), the design envelope the air- 

plane is designed for (maxium velocity Vd and maximum Mach numbers &I), 
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-- 

and the safety margin envelope which is defined by aviation regulations 

(1.2 Vd and 1.2 Md). On the Figure the hmo and hd refers to the maxi- 

mum operational and design altitudes. Federal Aviation Administration 

(FAA) certification of a commercial transport airplane, for example, 

paragraph 25.629 of Ref. [29], requires that the unfailed airplane be 

designed to be flutter free to 1.2 times the design speed (Vd/Md) and 

demonstrated by flight test to be flutter free up to Vd/Md. 

The graph of Vf should be out of the safety margin envelope for any 

weight loading and external store configuration. If not, as in the 

example of Fig. 2, the airplane should be placarded for lower Vmo/Mmo 

or modified structurally. Another alternative is to operate an active 

flutter suppression system which will drive the flutter boundary out of 

the safety margin envelope. 
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SAFETY MARGIN 
ENVELOPF 4 

DESIGN FLIGHT 
ENVELOPE 

OPERATION 
FLIGHT ENVELOPE 

I I I 
M 

mo Md 
1.2 Md 

MACH NUMBER, M 

Figure 2: Example of flight envelopes and flutter boundary. 
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Root-Loci of the Aeroelastic Modes 

The progress in developing analytical expressions and rational ap- 

proximations for the aerodynamic influence coefficients for arbitrary 

motion now enable the use of root-loci analysis to determine the flutter 

boundary. The problem is to find the roots si which yield a non-trivial 

solution for Eq. (2.131, namely 

1 INSIS i2 + [BsISi + [KS] - q[A(S’i)]l = 0 (3.6) 

The main difficulty in solving Eq. (3.6) is in calculating [A(s 

The solutions for [A( usually contain non-rational 

terms I191 and require lengthy calculations. Iterative procedures 

119,201 are needed to solve Eq. (3.6) for si. Given M, Eq. (3.6) is 

solved for various q, and the root loci are plotted in the Laplace s 

plane. For stability, all r-oots should satisfy Re(si) < 0. The flutter 

dynamic pressure qf is the q for which one of the roots is purely imagi- 

nary. The flutter frequency is 

Uf = IIn when Re(si) = 0 (3.7) 

In order to solve Eq. (3.6) by the methods of linear algebra, [A(s’)I 

has to be approximated by rational functions of s’. Rational approxima- 

tions will be discussed later in this paper. 

The root-loci method provides "correct" vibration frequencies and damp- 

ing ratios at any flight condition, while the V-g method is correct on 

the flutter boundary only. Moreover, because p is not predetermined, the 
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root-loci flutter dynamic pressure represents an actual flight condi- 

tion. 

In design for active control of an aeroelastic system, the root-loci 

method is more advantageous because it fits modern control techniques, es- 

pecially when rational approximations of the aerodynamic loads are used 

to construct finite order and constant coefficient system equations of 

motion, as will be discussed later. 

Continuous Gust Response 

An airplane traveling through the atmosphere encounters turbulence, 

which imposes gust loads on the structure. The turbulence and the asso- 

ciated gust response are defined in statistical terms, usually with the 

assumption that the process is stationary in time. A rigorous descrip- 

tion of gust response analysis of a flexible airplane is given by Pratt 

[25 1. A summary of the work on mathematical modeling of turbulence is 

given by Hinze [26]. 

The atmospheric gust waves can be described as a superposition of 

waves of all wavelengths. The basic assumptions regarding airplane-gust 

interaction are that the turbulence pattern does not change appreciably 

during the time the airplane passes through (known as Taylor’s hypothe- 

sis) and that the gust field is uniform spanwise. The latter assumption 

is correct for most airplanes, except very large ones. 

Consider an airplane flying horizontally with velocity V into a sinu- 

soidal vertical gust of velocity amplitude ws” and wavelength h. The 

gust downwash at a longitudinal station xl is 
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where 

w g = w g” exp(-ikxq/b) exp(iwt) 

w = 2aV/X and k q wb/V 

(3.8) 

Substituting ws” exp(-ikxl/b) for wN of Eq. (2.7) gives an integral 

equation for the nondimensionalized gust pressure difference P s/‘/q * 

Substituting pg”/q for Pj”/q in Eq. (2:17) gives the gust influence coeffi- 

cients Ag .i- Adding the loads due to a sinusoidal vertical gust veloc- 

ity of unit amplitude to Eq. (2.13) gives 

-w21~sl+iwIBsl+IK,l-q~A~ik~l 
3 

(X(ic~)) = (q/V)(As( ik)) (3.9) 

which is solved for the frequency response in generalized coordinates 

X(iw). Any gust-induced structural frequency response Zd(iw) can be de- 

scribed as a linear combination of the displacement, velocity and accel- 

eration frequency response in generalized coordinates. 

zd(iW) = Iadl+iw[a,l-02[a,l (Xtio)) 
3 

(3.10) 

Before calculating the statistics of the gust response9 the statis- 

tics of the atmospheric turbulence need to be known. The turbulence 

equations are very complicated, and closed-form solutions are available 

only in some specific cases. Isotropy and large Reynolds numbers are 

usually assumed for atmospheric turbulence. However, even with these 

assumptions the theoretical solutions are limited, and the mathematical 

models are based mainly on empirical and interpolation formulas. 
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The largest turbulence eddies (low wave numbers) are of permanent 

character. They contain relatively low energy per unit mass, but the 

energy dissipation by viscous effects is also very small. The larger 

eddies produce smaller ones through inertial interaction, thereby trans- 

ferring energy to them such that the energy containment is increased 

with decreasing eddy sizes. At the same time, the viscosity effects be- 

come more and more important and, starting at some wave number, the en- 

ergy decreases through dissipation. 

The probability distribution of the gust velocity is assumed to be 

Gaussian, which implies that its statistical properties are defined by 

its power spectral density (PSD) *,,,s(w). The PSD is a function of the 

coefficients of spatial longitudinal and vertical velocity correlation, 

f(xl) and g(xlI, which are defined as 

u,(0)u,(x, 1 w,(O)w,(x, 1 
f(xq) = , g(x1) = 

Qlg2 =w9 
2 

(3.11) 

Isotropy implies uug2 = cwg2 which defines the relations between the 

statistical properties of the longitudinal and vertical gust velocities. 

Based on experimental results, Dryden 1271 suggested that f(xlI can be 

approximated, for xl ;! 0, by 

f(xqI = exp(-xl/L,) (3.12) 

where L, is a turbulence scale and depends on atmospheric conditions. 

As derived on page 174 of Ref. 1261, the resulting PSD of the vertical 

gust velocity is 
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uwg2 Lg 1+3(wL,/V)2 
*w,(w) =-- 

a v [ l+(wL,/Wl2 
(3.131 

For high values of w, +wg(w) of Eq. (3.13) becomes proportional to 

(WL,/V)‘2. Von Karman (281 indicated that it should be proportional to 

(wL,/V) -5/3 (known as the Kalmogoroff spectrum law) and gave an interpo- 

lation formula for the energy spectrum function which reads 

Qwg2 L, 1+(8/31 (w/we12 
*w,(w) =-- 

ll v [1+(w/w,I21”‘6 
(3.14) 

where We q J;; 

r(5/61 V V 
- - = 0 747 - 
rc1/31 L, * Ls 

The PSD of the gust response is related to that of the gust velocity 

by 

+&(W) = JZd(iW)J2~,,tw) (3.15) 

The mean-square of the gust response is 

czd2 = ;‘&dtW)dW = TIzd(iW) 1 2+w,(w)dw (3.161 
0 0 

A numerical example of gust response of the typical section of Fig. 1 

in incompressible flow with V=275 b/set was performed. (This is the 

first place in this work where new material appears.) The semichord b 

is use here and in later numerical examples as a length unit. The 

33 



frequency response was calculated using Eq. (3.9) with the structural 

parameters of Table 1, the gust loads of Eq. iA.ll), and Dryden's PSD 

of Eq. (3.13), with crwg = l.(b/!~ec)~ and Lg = 50b. -The resulting 

pitch angle frequency response and the pitch angle PSD are shown in 

Fig. 3. 

TABLE 1 

Three DOF typical section structural parameters 

Wh = SD rad/sec a = -0.4 Xa = 0.2 

Wa = 100 rad/sec b= 1. XB = -0.025 

W3 = 300 rad/sec c = 0.6 rat = 0.25 

p= 40 b2 = 0.00625 
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b) Pitch Angle Frequency Response. 
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Figure 3: Dryden’s gust PSD and gust response of a typical section in 
incompressible flou. 
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FINITE STATE-SPACE AEROELASTIC MODELING 

As discussed previously, in order to solve aeroelastic equations 

by the methods of linear algebra, the aerodynamic influence coefficients 

have to be approximated by rational functions of s’. Such approxima- 

tions enable finite, constant-coefficient, state-space modeling which 

best fits the formulation of modern control methods. 

The form of an approximating function depends on the ranges of inter- 

est, required accuracy, exact data availability and approxima- 

tion efficiency in later applications. Flutter reduced frequencies are 

usually within k q 0.1 to 0.5 (intermediate range). In stability and 

gust response analyses, however, lower reduced frequencies (k-4) are 

also important for the following reasons: (al static instability (div- 

ergence 1 might occur, (b) the power spectral density of atmospheric 

gust velocities is much higher in the low frequency range, as shown in 

Fig. 3, and (c) rigid body modes may be included. When transient re- 

sponse is of concern, higher values of k (or s’) are required, This 

range is beyond the scope of this study. 

As discussed in the preceding section, three-dimensional aerodynamic 

routines are well developed for oscillatory motion only (along the 

imaginary axis of the s plane). Rational approximations are designed 
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to fit these data and are then extrapolated to the entire s plane by 

replacing ik by s'. The adequacy of this extrapolation will be 

demonstrated later in this section. The higher the order of the 

approximation (the number of denominator roots), the more accurate is 

the approximation, but the resulting state-space model is also of 

higher order (less efficiency). The numerical examples in this and 

following sections consist of the aeroelastic systems given in Table 2, 
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TABLE 2 

Aeroelastic systems for numerical examples 

Typical section Typical section Research wing 

Figure 1 1 4 

Mach number 0. 0.7 0.9 

OOF 3: h,a,R 3: h,a,R 4: three wing modes 
and one control 
surface 
deflection mode 

Structural Table 1, a=-0.5 , b=l. 
properties Eq. (2.9) c=O.6 

Abel 161 

~ Aerodynamic ' Eq. (2.111, Manual of aero- 
data sources Appendix A elasticity 1441 

Doublet lattice 
method [15 I, 
supplied by Irving 
Abel of NASA-Langley 
and normalized for 
unit generalized 
mass 

Tabulated k 
values 

0 ., 0.1, 0.15, 0.9 0.06, 0.1, 
0.25, 0.3, 0.16, 0.22 
0.5, 1.0, 2.0 0.26, 0.3, 0.4, 

0.5, 0.64, 0.8, 
1.0 

0 ., 0.1, 0.3, 0.5, 
0.7, 0.9, 1.3 
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p-343 m-q 

Figure 4: Research wing geometry (taken from Ref. 161). 
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Linear Least-Squares Solution 

A basic tool in rational approximations is the least-squares techni- 

que [45]. Given le data points, the problem is to find IX,1 which ap- 

proximates the solution of the linear system 

[All [X,1 e [Bll 
nexme mexPe nexPe 

l=l,l, (4.1) 

where [AlI and IB11 are functions of the tabulated data at each point. 

A “best fit” is obtained by minimizing the cost function 

Je 

where &I ,ij = IAl ,iI(Xe,j) - Bl ,ij 

(4.21 

The least-squares criterion is satisfied by the solution of the normal 

equations of the least-squares problem: 

(4.3) 

When applied to approximating aerodynamic data, an index 1 refers to 

a known reduced frequency kl. The desired accuracy in different fre- 

quency regions can be controlled by (a) spacing the data points, (b) 

weighting the data by multiplying IAll and [Bll by different parameters 

for different 1 indices, and Cc) requiring the approximation to match 

the data at some points. Matching can be done by either constraining 

some of the free parameters (as will be shown later) or applying large 

weights to the data of these points. 
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The matrix Pad& method and the minimum-state method lead to 

least-squares problems which involve different terms of the data 

matrices simultaneously. The modal coordinates on which the aero- 

dynamic data are based should be normalized such that the different 

terms are of comparable order of magnitude. 

0.0075 0.10055 
C(s’1 = 0.5 + + (4.4) 

s’+O. 0455 s’+O . 3 

Term-by-Term Pad& Approximants 

R. T. Jones I211 first introduced the use of rational Laplace trans- 

fer functions to approximate incompressible unsteady loads. Based on an 

exponential approximation of Wagner’s indicial loading function (loading 

due to a step change in angle of attack), Jones’ approximation of the 

generalized Theodorsen function reads 

The branch cut along the negative rea 

function, Eq. (2.121, is replaced by two 

1 axis required for the exact 

poles there. Edwards 1181 used 

Jones’ approximation to model the typical section with a state,-space 

model of order 8 (six structural and two augmented states). 

In a more general aeroelastic system, unlike the incompressible, two- 

dimensional aerodynamics (Eq. (2.11)) case, there is no longer a single 

non-rational function which can be factored out of the influence 

coefficient matrices. This complication led to a Pad6 approximant 

technique [3,24], in which each term of the influence coefficient matrix 

is approximated by a different ration of polynomials in s'. 
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In a Pad6 approximant of order m, a least-squares technique is used 

to find the numerator and denominator polynomials which best fit tabu- 

lated influence coefficients for oscillatory motion. Since each approx- 

imation root adds one state to the equation of motion, the dimension of 

an n DOF model becomes 2n+mn2. In a realistic problem, the contrib- 

utions of some of these roots are negligible and are omitted. In the 

design problem of Ref. [3l, for instance, a system of 27 structural 

modes was analyed with a mathematical model of the order of 200. 

Roger's Approximation 

Roger 1231 realized that the aerodynamic influence coefficients may 

be approximated more efficiently by using common denominator roots. His 

approximation is 

N [Pjls’ 
IA33pl = IPol+IP,ls'+[p21s'2 + c (4.5) 

nxn j=3 (S’+7j-2) 

where the values of Yj-2 are selected to be in the reduced frequency 

range of interest. The real coefficient matrices [PjI are found by set- 

ting s’ = ik and using a least-squares technique for a term-by-term fit- 

ting of tabulated oscillatory influence coefficient matrices [A(iklIl = 

[F(klIl + iIG(kl)l for various 1 indices. The parameters of the normal 

least-squares equations (4.3) for the ij-th terms are 

k12 k12 
1 0 -kit . . 

k12+7.r2 k12+7,,-22 
[All q 

k IYI klyt,-2 

0 kl 0 . . 
k I~+-Y, 2 k12+rN-+ 
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[Bll = {l :~~~~~:) and [X,] = (4.6) 

An augmented state vector is defined by 

S 

(Xai(Sl) = (X(s)) (4.7) 
nxl S+(V/b)Yi-2 

Equation (2.13) can now be re-transformed to a state-space matrix equa- 

tion of motion for stability analysis 

. 

X 

. . 
X 

X.2 
. 

. 

.* 

Xar 

0 (11 0 . . l 0 

4”i’~Kl -bli’ra1 IMi’[Pol . . . &P,l 

0 111 -(V/b)r,[Il 0 
. . . 
. . . 
. . . 
0 [II 0 -(V/b)‘yN-2[I I 

J 

X 
. 
X 

Xa: 
. 
. 
. 

Xat 

where 

and 

(Ml = [M,l-fpbztPtl 

161 = [B,l-ipbVIP, I 

[Kl = [KS]-fpV2tPol 

The state-space model is of the order of Nn. Most applications (such 

as Refs. 161 and 1461) used N = 6. Roger’s method was applied to ap- 

proximate the aerodynamic data of the research wing of Table 2. A best 

fit with N = 3, 4, 5 and 6 was obtained with ~1 = 0.2, ~2 = 0.4, ~3 = 
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0.6 and 74 = 0.8. The results for uniform weighting are typified by the 

curve fittings of A1 l(ik) and A2,2(ik>, which are shown in Fig. 5. Two 
s 

other cases were analyzed, one in which the approximation is required to 

match the data at k = 0.3 and one in which the matching requirement is 

for both k = 0 and k = 0.3. The matching requirement is imposed by as- 

signing large weights to the relevant data points. The total squared 

errors for the different cases is given in Table 3. 

TABLE 3 

Roger’s approximation errors and aerodynamic roots 

. 3406 

. 1128 

. 0270 

. 0065 

.4463 

. 1485 

.0437 

. 0079 

2.5664 -. 2 

. 1650 -. 2, -.4 

. 0483 -.2, -.4, -.6 

. 0087 -. 2, -.4, -.6, -.8 
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Figure 5: Roger’s approximation of A1 1 and A2 2 of the research wing 
, , 

at M = 0.9. 
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Matrix Pad& Approximations 

The matrix Pad; approximant technique was introduced by Vepa 1241, 

was modified by Edwards 1201 and is further modified here. The approxi- 

mant is 

(4.9) 

The data used to determine the approximant consist of tabulated 

steady-state influence coefficients [F(O)1 and oscillatory influence 

coefficients IA(ikl)l = [F(kl)l + i[G(kl)l for various 1 indices. A re- 

quirement of matching the steady-state aerodynamics yields 

lP31 = -[RltF(O)I (4.10) 

[PII and IP21 are related to [RI by 

IPI I = IRI(IF(kf,)l-[F(0)I)/kf,2+[G(kf,)l/kf, (4.llaI 

and lP21 q [F(kf2)1-[RlIG(kf2) l/kf2 (4.llbI 

where kfl and kf2 are selected from the tabulated k values. Equations 

(4.11a) and (4.11b) are only approximations at other kl values, for 

which 

IAl ,llfIRlf = [B, ,# (4.12a) 

and IA2 ,llf[Rlf N- [B2 ,llf (4.12b) 

where [AI .I] = ([F(klIl-[FtO>l>/k12 - ([F(k,,)]-[F(O)])/k,,2 
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iA2 ,ll = [G(kl)l/kl - tG(kr2)l/kr2 

[Bl .I1 = [G(k,,Il/k,, - [G’CklIl/kl 

and tB2 ,ll = [F(klIl - [F(k,zII 

where k.1 and kr2 are selected from the tabulated kl values. 

Edwards 120 I used kfl q kf2 = kf, which causes the approximant to be 

exact at kf. He chose krl + 00 which yields (IF(k,~)l-IF(0)l)/k,~2 -, 0 

and 1GCk.l) l/k., + [QPtl. He also used Eq. (4.12aI only to construct a 

matrix least-squares problem to be solved for [Rlf. 

The matrix Pad6 approximation is improved when both Eqs. (4.12a) and 

(4.12b) are used for least-squares fitting, which yields Eq. (4.3) with 

IAll = 
[Bl, 11 t 

, [Bll q L 1 9 IX,] q [RI’ (4.13) 
1821 llf 

The matrix Pad6 technique was applied to the research wing of Table 

2 (with the wing modes only) for different kf and kr values. The sum of 

the squared errors and the aerodynamic roots (eigenvalues of [RI) for 

the different cases are given in Table 4. 

Best overall accuracy is obtained by taking kfl = k.1 q max(klI and 

krz = kr2 = kl at which accuracy is most important (case 1 of Table 4). 

The comparison with other methods is shown in Fig. 8. To yield the ap- 

proximation to match the data at k = 0.3, one can set kfl = kf2 = 0.3 

(rather than = krl), but there is a penalty in deteriorating accuracy at 
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TABLE 4 

Matrix Pad6 approximation errors and aerodynamic roots 

Case kfl kf2 j*i, /*n 1 :::o~:,":""~~ Aerodynamic- roots ~ 

1.8 0.3 1.8 0.3 . 183 -.136, -.946, -1.928 

0.3 0.3 1.8 1.8 .703 -.138,-1.584, -2.474 

0.3 0.3 1.8 0.3 .701 -.136, -.946, -1.928 

0.3 0.3 0.3 0.3 ,974 -.141, -.961, -1.632 

higher reduced frequencies (case 3 of Table 4). The matrix Pad; 

technique yields a state-space model of order 3n (Ref. [191>, which 

0 [II 0 

q -IMs;l[Ksl -~Tl,?[8,1 qrll,i' 

(V/b)tPsl-[P,' I[K,l [P,l-IP,‘lIBsl (V/b)[Rl+q[P,‘l 

reads 

where [P,'l = (b/V)tP,I[M,l-’ 

X 

. 

x 

1 

(4.14) 

Ka 

Minimum-State Method 

Roger's method and the matrix Pad; method provide 

straightforward linear least-squares solutions. Inspection 
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of the associated state-space equations (4.8) and (4.141, however, 

suggests that their efficiency, in terms of number of augmented states 

per given accuracy in approximating the aerodynamic influence coeffi- 

cients, can be improved. 

Another approach taken here involves analyzing the state-space equa- 

tions first. A general state-space representation of an n DOF aeroelas- 

tic system with m aerodynamic augmented states for stability analysis 

reads : 

(4.15) 

The target now is to define the matrices of Eq. (4.15) in a way that 

is most convenient for the aerodynamic approximation, and without reduc- 

ing the generality of Eq. (4.15). The structural states (x) and (x) 

represent the physical and measurable motion of the structure, in terms 

of which thestructuralproperties and the tabulated aerodynamic data are 

given. The aerodynamic augmented states will now be redefined to reduce 

the number of free parameters in Eq. (4.151, without changing the struc- 

tural states. 

The eigenvalues of tR11 represent the aerodynamic time lags. When 

these eigenvalues are constrained to be real and negative with linearly 

independent eigenvectors, there exists a similarity transformation ma- 

trix [Tl (Ref. 1471) such that 
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[Rl = [TI-'[RI ltTl (4.16) 

where [RI is diagonal with the same eigenvalues as [RI]. By definieg a 

new augmented state vector, 

(~42) = [Tl"{xa,), (4.17) 

equation (4.15) becomes 

where 

and 

. 

X 

.* 

#I 

x = 

. 

X82 

0 [I1 0 

[KII [Bll [D21 

[Es1 [Eul [RI 

X 

. 

:I 1 X 

x.2 

(4.18) 

021 = [Oll[T1 , [E31 = [TI-~IE,I 

Er I = [Tl-'[E21. 

A new augmented state vector is now defined as 

(xa) = (x,2) + [RI-'[Ed(x). (4.19) 

Differentiating Eq. (4.19) and using the last row of Eq. (4.18) gives 

&a) = [E31{x) + [hl+IRl-'iEd]{; + [R](xa2). (4.201 

Substituting Eq. (4.19) for (x,2) gives 

{ia) = {A} + [Rl(xa). (4.21) 

Using Eqs. (4.19) and (4.21) to eliminate (~~2) from Eq. (4.18) gives 
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. 

X 

. . 
X 

. 

X. 

= 

0 [I1 0 

[K21 tBl1 [D21 

0 [El [RI 

where [KtJ = [Kl I - [D21-‘tE31 

and [El = 1~~1 + tRI”[E31 

I 
X 

. 

X 

Xa 

The matrices of the second row of Eq. (4.22) are now defined such 

(4.221 

that the structural properties are separated from the aerodynamic ones. 

This yields 

. 

X 

. . 
X 

. 

XC4 

r 

= 

0 111 0 

-IMS+M.i’I~.+~.I -IM.+M.~‘[B.+B.I IM,+M,;~IDI 

0 [El IRI 

(4.23) 

Comparing Eq. (4.23) with Eq. (2.13) shows that the aerodynamic in- 

fluence coefficient matrix is approximated by 

(AaP(s’)l = [P, Is ‘2 + IP2lS + IPol 
nxn 

where the aerodynamic parameters of Eq. (4.23) are related to those of 

Eq. (4.241 by 

[MaI = -fpb2tPl 1 , tB,l = -ipbV[Pt I 9 

fK.1 = -IpV2[P31 , to1 = ipV2ID’l 9 (4.25) 

[El = [E’l , [RI = (V/bI[R’l , s = s’V/b 
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The approximation of Eq. (4.24) is constrained to match the influence 

coefficients for k = 0 and k = kf. Thus, 

rP,l = ~tF~O~l-~F~kf~l~/kf2+ID’l~kf2~Il+~R’12~-’~E’l (4.26a) 

and 
[P21 = ~G~k~~l~k~+~O’~~k~2tII+~R’lZ)“~R’l[E’] (4.26b3 

r P3 1 = [F(O)1 (4.26~) 

For the other tabulated reduced frequencies, Eqs. (4.26a) and (4.26b) 

become approximations. Thus one obtains 

[D’l[C(R’,kI) I[El”((F(kI) I-[F(O) l)/k12-(IF(kf)l-IF(0)l)/kf2 (4.27a) 

and iD’l[CCR’,kl,l[R’l[E’l = [G(kf)]/kf - [G(kl)l/kl (4.27b) 

where [C(R’,k~)l=(k~2[II+[R’12~-‘-(kft[Il+tR’12~-’ 

Equations (4.27a) and (4.27b) constitute a non-linear least-squares 

problem to be solved for [D’l, [R’l and IE’I. The real part of the ta- 

bulated data is weighted in Eq. (4.27a) by l/k12 and the imaginary part 

is weighted in Eq. (4.27b) by l/kI. These are only examples which il- 

lustrate weighting the data for higher accuracy at low reduced frequen- 

cies. With uniform weighting Eq. (4.27) becomes 

and kI[D’l[CtR’,kI)l[R’I[E’l”[G(kf)lkI/kf-[G(kI)l (4.28b) 

The minimum-state procedure goes as follows: 
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1. Set an initial number of augmented states m. 

2. Set an initial diagonal [R’l with distinct negative elements. 

3. Set an initial [D'l with rank ID’] = min(m,n). 

4. Form a linear least-squares problem to be solved for [E'l. 

For the uniform weighting of Eq. (4.281, the parameters of the 

normal equations (4.3) are 

k12[D’lIC(R’,kll 1 
[X,1 = [E'l , [All = 

kl[D’ltC(R’rklIltR’l 3 

tF(kl) I-[F(O) I-(F(kf) l-[F(OIl)(kl/kf)2 
and [Bll = 

I 
(4.291 

[G(kf)lkl/kf-[G(kl)l 

The summation is done over all the data points except those 

corresponding to k = 0 and k = kf. 

5. Form a linear least-squares problem to be solved for ID']. 

The parameters of Eq. (4.3) are: 

kl’[E+[C(R’,kl,l 
IX,1 = [ORIt , [Al] = 

kl[E’ltIR’ItC(R’,kll, I 

[F~k~>lf-[FtO>lt-~[F~kf)l-[F(0)l)t(k~/kf~2 
and 1811 = I (4.30) 

[G(kf)lfkl/kf-IG(kl)It 

6. Calculate the least-squares performance index Jc by Eq. 

(4.2). 
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7. 

8. 

9. 

Repeat steps 4 to 6 to convergence. 

Use a minimization procedure to modify [R’l. The procedure 

used in this work is based on a modification of Davidon’s me- 

thod (371 as given by Stewart 1391. 

Repeat steps 4 through 8 until the performance index converges 

to a global minimum. 

10. Calculate the approximant of Eq. (4.24) for the tabulated re- 

duced frequencies and compare with the tabulated data. 

11. If the accuracy of the approximant is insufficient in a lim- 

ited frequency range only, try changing the wei ghting of the 

data. If the insufficient accuracy is related to a specific 

mode, try changing the modal normalization to ncrease the 

weight of the associated terms. Repeat steps 4 through 10. 

12. If the accuracy of the approximant is still not satisfactory, 

increase m and repeat steps 2 through 11. 

Numerical Examples Employing the Minimum-State Method 

The minimum-state procedure is first applied to the typical section 

of Table 2 in incompressible flow. The tabulated aerodynamic influence 

coefficients were calculated for pure imaginary s’ values, using Theo- 

dorsen’s formulation as given in Appendix A. The matching reduced fre- 

quency is kf = 0.25 and the least-squares weighting is that of Eq. 

(4.27). The results are typified by Al,2 which is, divided by -2b2, 
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the unsteady lift-curve slope C$ A comparison between Cg obtained 
a a 

from Theodorsen, Jones’ approximation (Eq. (4.411, and the minimum-state 

method of order 2 (Eq. (4.2411, is given in Fig. 6 for various values of 

s’ = r exp(i8). 

The optimized aerodynamic 

are -0.04746 and -0.2285, wh 

-0.3. While both approximat 

order (81, the minimum-state 

roots obtained by the minimum-state method 

le those of R. T. Jones are -0.0455 and 

ons yield state-space equations of the same 

procedure is seen to yield a better approx- 

imation in the entire range of interest It-1 < 1. and 60” < 8 < 120° 

Both approximations deteriorate as the branch cut along the negative 

real axis is approached. 

Although good accuracy is shown in this example for a wide range off 

the imaginary axis, one should not conclude that a rational approxima- 

tion, based only on oscillatory aerodynamic data, will always have sim- 

ilar accuracy in the entire s plane. As indicated by H. Ashley and W.N. 

Boyd, in a paper presented at Colloquium Honoring Hans Georg Kussner (1980), 

serious inadequacies might occur when the approximations are applied to 

three-dimensional wings in compressible flow. 

The minimum-state procedure, withthe least-squares weighting of Eq. 

(4.27) and kf = 0.26, was also applied to the typical section of Table 2 

in subsonic flow of M = 0.7. The tabulated aerodynamic matrices were 

taken from Ref. [44]. The sum of the squared errors and the aerodynamic 

roots for various approximation orders are given in Table 5. The ap- 

proximants of order 1, 2, 4,and 6 are compared to the tabulated oscilla- 

tory CL, in Fig. 7. The first-order approximation is quite poor. 

Starting with m = 2, it is up to the designer to make the trade-off be- 

tween the approximation accuracy and the order of the resulting model. 



THEODORSEN ’ -\ e 

0 
-- - R.T. JONES 
-m--m MINIbXJM STATE 

Note: The values of r at the +‘s along the curves for 8 = 60° 

and 120° are the saare as for 0 q 90°. 

figure 6: Rational approximations of ck, of a typical section at fl=O as 
a function of s’ = r exp(iO). 
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TABLE 5 

Minimum-state approximation errors, typical section at Mz0.7 

Approxi- Aerodynamic roots (diagonal of IR’I) 
mation 
order Cm) 

Sum of 
squared 
errors, bb 

1 -.0600 

2 -.0301,-. 1248 

3 -.0286,-.1214,-.9389 

4 -.0281,-.1214,-.9389,-3.4279 

5 -.0260,-.0594,-.1501,-.7913,-l-969 

6 -.0099,-.0483,-.1424,-.2727,-1.0241,-1.5107 

1791 .o 

73.3 

36.0 

27.3 

9.7 

5.6 

The last example chosen was the research wing of Table 2. The mini- 

mum-state procedure, with uniform data weighting (Eq. (4.28)) and kf = 

0.3, gave satisfactory results with four aerodynamic roots Cm = 4). The 

optimized aerodynamic roots are -0.181, -0.384, -1.496 and -2.033. The 

sum of the square errors is 9.0332. This error is comparable to the er- 

rors obtained with Roger’s approximation with N=5 (Table 3). However, 

while the minimum-state approximation with m=4 requires four augmented 

states in the aeroelastic model, Roger’s approximation with N=5 requires 

12 augmented states. 
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Figure i: Minimum-state approximation of CR, of a typical section at 
fl=O. 7. 
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The minimum-state error is much smaller than the matrix Pads errors 

of Table 4. Curve fittings for selected aerodynamic terms using Roger’s 

approximation with N=6, the modified matrix Pad; approximant (case 1 of 

Table 41 and the minimum-state approximation are shown in Fig. 8. The 

minimum-state approximations are within 3% of the data in the low fre- 

quency range (k < 0.51 and 5% in the higher range. 

The minimum-state approximations will be used in the numerical exam- 

ples discussed in the following section. 

59 



P ’ ’ ’ ’ 1 ’ 
I- -- 

0.0 I- 
k=O. 

t 
F 3 

0 DATA 
- --ROGER (N=6) 

-. 
-.- hIATRIX PADI? 

MiNIMUM STATE 

-1.0 
-0.2 -0.1 0 0.1 

DATA 
ROGER (N-6) 
MATRIX PAt& 
MINIMUM STATE (m=4) 

0.0 

I,,, I,,@ 
0 0.2 0.4 0.6 0.8 1 

WA,,) m 

Figure 8: Rational approximations of aerodynamic coefficients, research 
wing at Mz0.9. 
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Figure 8 (Concluded) 
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ACTIVE FLUTTER SUPPRESSION AND GUST ALLEVIATION 

Problem Definition and Design Strategy 

The open-loop state-space aeroelastic equations of motion developed 

previously form the basis for control analysis. The purpose of this 

section is to demonstrate the use of some modern control techniques for 

flutter suppression and gust alleviation. 

The structural properties and the variation of the aerodynamic influ- 

ence coefficents over the flight envelope are assumed to be accurately 

known, and the aeroelastic system is assumed to be accurately repre- 

sented by a finite-order state-space equation of motion. The system is 

subjected to random excitation by a vertical gust, which is defined in 

statistical terms by its mean-square velocity and power spectral density 

(PSD). The frequency dependent aerodynamic loads caused by the sinusoi- 

dal gust are known over the flight envelope. 

The control means are aerodynamic control surfaces whose commanded 

rotations serve as input parameters. An arbitrary number of sensors 

measure discrete displacements, velocities or accelerations on the lift- 

ing surface. The measurements are assumed to be perfect. Compensator 

transfer functions close the loop by relating the control commands to 

the measurement signals. This is a constant parameter control system 

with no flight condition measurements. 
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A scalar design cost function is defined as a weighted sum of 

mean-square gust response parameters at selected points of the flight 

envelope. The compensator parameters are optimized to yield a minimal 

cost function. Careful choice of the cost function parameters leads to 

a control law, if there is anyI which stabilizes the system throughout 

the entire flight envelope. The considerations in designing the cost - 

function will be discussed subsequently. 

Optimal control theory [34,45] supplies a straightforward optimal 

solution for a controllable and observable linear control system with 

fixed dynamics and quadratic cost function. The controller and observer 

dynamics are uncoupled (the separation theorem), and their separate so- 

lutions combine to a compensator of the order of the system. In our 

caset the dynamics vary over a wide range, and the separation theorem 

does not hold. Furthermore, a compensator of the order of the system is 

not of particular significance. The analysis is expected to yield a 

lower cost function as the compensator order is increased. On the other 

hand, increasing order means higher analysis, hardware and debugging 

costs and lower reliability. A practical approach is to design for the 

lowest order compensator which stabilizes the system over the entire 

flight envelope, meets the control system hardware limitations and 

yields satisfactory gust response. 

The Control Equations 

A block diagram of the closed-loop aeroelastic control system is 

given in Fig. 9. The open-loop equation of motion (4.23) is now 
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supplemented with a control input term. The formulation and later nu- 

merical examples are for a single-input control system. The extension 

to,a multi-input system is straightforward, except for the pole assign- 

ment technique which is described later in this section. The plant 

{i} = IFI] + (G,)u , n, = 2n+m (5.1) 

equations with no process noise are 

ncxl 

where bf = J {G,) = 

[Fll q 

IMg+MaI-‘( 62) 

0 

, 

[El 

The state vector (z} and the dynamic matrix IF41 were discussed 

previously. The control input u is the commanded value of the con- 

trol surface rotation (DC in Fig. 1). The actual control surface motion 

states are part of {z). It is assumed that the actuator is a linear 

spring uith no damping or delay, such that (G2) is a function of the ac- 

tuator stiffness only. More complicated dynamics of the actuator system 

can be modeled by additional states or compensated for in the final con- 

trol law IGI. GIhile IF,] may vary considerably with Mach number M and 

dynamic pressure q the only term in (G,) which is a function of M and 

q is [Malr which is usually small with respect to 1~~1. 
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Figure 9: f3Iock diagram of a closed-loop aeroelastic control system. 

65 



Sensors located at various points of the structure take measurements 

which combine to form the output (measurement) equation 

(Y) = [HI(z) + (J)u #rn, I nc 
mcxl ncxl 

(5.2) 

where [HI can be partitioned as 

[HI = [Hdlr [HVI, [HaI 1 
The vector (Y) consists of discrete structural motion measurements, 

which are linear combinations of the modes which serve as structural 

generalized coordinates. When the measurements are displacement or ve- 

locity related, IHI is independent of M and q, IHal q 0 and (J) = 0. 

The most pract’ical measurement devices, however, are accelerometers for 

which the measurement vector becomes 

(Y) = [Ho]{;‘} (5.3) 

where IHo1 is defined by the modal displacements at the measurement 

points. Equation (5.1) is used to describe (y) of Eq. (5.3) in the form 

of Eq. (5.2) with 

[HI = IH~I[M,+M,;’ -[K,+KaI,-[B,+BaI,[DI 1 
and {J) = [HoIIM.+M,i’(Gt} 

(5.4) 

Now both IHI and (J) are functions of M and q. 
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A compensator of the order of 1 C adds lC states to the system. Fol- 

lowing the formulation of Ref. 1351, the c ompensator states are de- 

scribed in a compensator canonical form as 

&c, = kl(zc) + IBcI(Y) 
i,Xi 1 dmc 

where [AC] = 

[Acl I 0 .*. 0 

IAcz I 0 
. 

. 
. 

0 [Ackc: I 

(5.5) 

0 1 
with [A,iI = 

azi-i ati 

[A,kcl = al,= for odd lC 

and 
l&2 for even lC 

kc = 
Cl.+1112 for odd lc 

Equations (5.11, (5.2) and (5.51 are combined to form the equations for 

the augmented system. 

(5.6) 

When the loop is open (u=OI, the plant and the compensator are obvi- 

ously uncoupled. The loop is closed by a control law of the form 

u = ICI(Y) + tc,l(z,) (5.7) 

where ICC1 = [[C,ll,tC,,l,“~~,[C,kc]l 

with [C,il = [O 11 and [cckc] = 1 for odd lC 
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An extension of [C,l to a multi-input system is given in Ref. 1341. 

Substituting Eq. (5.2) into Eq. (5.7) gives 

U = tC’I[Hl(z) + [~~~l(z~), (5.81 

1 1 
where IC’I = ICI and [Cc’1 = [Ccl 

l-k]{ J) I-tCl(J) 

Substituting Eq. (5.8) into Eq. (5.6) gives 

IF, I+( G1)WIItiI {G,)~Cctl 
(5.9) 

IB~l+IBcl(J)t~‘I~H1 tA,1+[~,1(~)1~,~1 

This is the closed-loop system equation of motion with no process 

noise. For no flutter in the flight envelope, all the eigenvalues of 

Eq. (5.9) should have negative real parts over the entire range of M and 

q- For a given system with mc measurements, the free design parameters 

are the m, gains in [Cl, compensator order 1 q, dynamics parame- 

ters al through ale and the lcxmc parameters in IB,l. 

The cost function and the parameter optimization are discussed next, 

followed by discussion of the cases of zero-order and second-order 

compensators. 

Cost Function and the Optimization Procedure 

The cost function for which the free control parameters are optimized 

is based on the airplane response to atmospheric turbulence, which was 
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discussed earlier. In modern control terminology, the vertical 

component of the turbulence-induced gust velocity can be described as a 

process noi se, as shown in the block diagram of Fig. 9. The plant Eq. 

(5.1) becomes 

{;} = [F,](z) + (G,)u + (r}ws 

where 

(5.10) 

AS discussed previously, Wg is defined in statistical terms by 

its mean-square (bus=, its power spectral density (PSDI +p,,, and zero 

mean val ue. As shown in Fig. 3, the PSD is far from that of white 

noise. The distribution matrix (r), in addition to being a function of 

M and q, is a function of the frequency w. The closed-loop gust re- 

sponse is calculated by the continuous gust response equations, modified 

to include the rational approximation of the aerodynamic influence 

coefficients and the control terms. 

The process noise term of Eq. (5.10) can be added to Eq. (5.91, which 

can be then solved for the gust frequency response of the whole system. 

Advantage is taken, however, of the special characteristics of the sys- 

tem, such that a much lower-order system of equations is solved. Since 

the measurements are of structural motion only, vector (Y) of Eq. (5.2) 

can be defined as 

b’f q [Hd](x) + tH,](;) + [Do](;) (5.11) 
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To relate the frequency response of u to that of (x), the variables 

of Eqs. (5.51, (5.71 and (5.111 are replaced by their frequency re- 

sponser which yields 

U(iw1 = ICtl(X(iwI) 

where 

(5.12) 

From the second partition of Eq. (5.101, with the matrix definitions 

of Eq. (5.11, we obtain the equivalent of Eq. (3.9) for the closed-loop 

gust frequency response of the structural degrees of freedom. This 

equation is 

[ 
-w2 1 rlS+rla I+[K~+K~ 

-( G2)[C21 (X(iw)) 
I 

= (q/V)(A,(ik)) (5.13) 

Equation (5.13) consists of n equations to be simultaneously solved 

for (X(iw)). Calculating the frequency response from Eq. (5.10) would 

require solving 2n+m+mq equations simultaneously. The design frequency 

response of Eq. (3.10) is now modified to include a control term, 

Zd(iWI = 
[ 

[adl+iwtavl-w21aol 
1 

(X(iw)) + a,U(iw) (5.14) 

where U(iw)is calculated from (X(iw1) using Eq. (5.121. 
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The design mean-square frequency response crzd2 is calculated by Eq. 

(3.16). Referring uxd2 and Zd(iw) to a point i in the flight envelope, 

defined by M and qr Eq. (3.16) becomes 

ozd .i2 = $zd ,i(iwI12+,s(w)dw (5.15) 

The integration is done numerically, using the trapezoid rule 1481, from 

zero to a frequency 50% higher than the highest imaginary part of the 

eigenvalues of Eq. (5.9). 

The mean-square response of Eq. (5.15) serves as a local cost func- 

tion. A global cost function is defined as weighted sum of local cost 

functions at selected points of the flight envelope 

Jo = c ag .iuzd .i 2 (5.16) 
i 

The free control parameters, which were discussed in Section 5.2, are 

optimized for a minimal global cost function Jo by using Davidon’s mini- 

mization method 1371, as modified by Stewart I391 to accept different 

approximations of derivatives. 

The number of flight envelope points participating in Jo is limited 

by computer cost, as a gust response function evaluation is required in 

each step of the numerical integration of Eq. (5.15). The flight enve- 

lope points should include: 

1. Normal operation points (see Fig. 2) to minimize turbulence- 

induced vibrations and control activity during cruising 

flight. 
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2. Points within the safety margin envelope at which structural 

or control hardware limitations are exceeded. 

3. Points which might become unstable during the optimization 

process. 

It is clear that the points of the second and third categories above may 

not be anticipated in advance. After an optimization is performed for 

some cost function, root loci and critical response parameters are cal- 

culated for more points in the flight envelope. If the results are not 

satisfactory, the cost function is modified, and the optimization is re- 

peated, starting with the previous optimized control parameters. 

Gust response is infinitely large for points with pure imaginary 

roots. At each optimization cycle the initial control parameters should 

stabilize the system at all the cost function points. If the control 

means are sufficient, the optimization procedure tends to move roots of 

cost-function points, which are very close to the s-plane imaginary 

axis, away to the left. Thus, whenever a root-loci branch crosses to 

the right-hand plane within the flight envelope, a point close to the 

crossing point (but still stable) is added to the cost function. The 

weights a, ,i assigned to the stability-related points, are relatively 

small to avoid unnecessary performance deterioration at normal operation 

points. 

When the control system is unable to provide satisfactory results, 

the design can be repeated with a higher order compensator. If the im- 

provement is not significant, a change in the number of sensors or their 
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locations, or in the size and location of the control surfaces, is 

needed. Sensor and control surface design, however, is beyond the scope 

of this study. 

Pole Assignment 

When a single-input, multi-output aeroelastic system is controlled by 

a direct, partial-feedback control law (zero-order compensator), the 

only free parameters are the gains ICI of Eq. (5.7). The optimization 

procedure can now be applied to find the "best" control gains. Better 

insight and more efficient use of the optimization routine may be 

achieved, however, when assigned poles replace the control gains as 

free parameters in the optimization. 

The Laplace transform of Eqs. (5.1) and (5.2) yields the input-output 

transfer function 

(Y(s)) 
u(s) = IHl[dIl-IF1l]-‘{G,} + (J) (5.17) 

Substituting Eq. (5.71 with IC,l q 0 into Eq. (5.171 and premul tiplying 

both sides by [Cl gives 

I~~(~H~[s~II-IF,~]~‘{G~~+(J}] = 1 

or 

(5.18) 

(5.19) 

where 

[Hl(g(s))+Do(s)(J) 
I 

= Do(s) 

[II-tFl1 
II 

(G,) , Do(s) q IslIl-IF, II 

In polynomial form 
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(g(s)) = icINiISnCwi (Gq) 
i=O I 

(5.201 

and 

Do(S) =i!IQiSnc- i (5.21) 

An efficient algorithm for calculating the polynomial coefficients of 

(g(s)) and D,(s) is given by Kailath 1491. The algorithm reads 

[N, I = [II 

Qi q -(l/i)trace([Ni][F,]) 

[Nil = [Ni-lI[Fql + Qi-,[I] 

for i = l,nc 

for i = 2,nc 

(5.22) 

Once the polynomial coefficients are calculated for a point in the 

flight envelope, one equation (5.19) is constructed for each assigned 

closed-loop pole at this point. A complex pole assignment gives two 

equations, one for the real and one for the imaginary part of Eq. 

(5.19). A set of m, assigned poles gives m C equations to be solved for 

ICI. Different poles can be assigned for different flight conditions. 

Once the control gains are found, the closed-loop poles at any flight 

condition can be found by solving the eigenvalue problem 

1 
IF11 + 

1-+21(J) 
(G,)[c][H] 

I 
(Z(S)) = s(z(s)) (5.23) 
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Typical Section with Zero-Order Compensator 

A zero-order compensator is designed for the typical section of Fig.1 

in incompressible flow. The structural and aerodynamic data sources are 

summarized in Table 2. The minimum-state approximated aerodynamic coef- 

ficients, described in the first minimtim state numerical example are used 

to model the system with six structural states and two augmented states. 

The variables of Eq. (5.1) are (z)~ = [hrarR,~,~,~,xa,,xa~l and u = 

I3 C’ The independent variable of the root loci, which defines the flow 

conditions, is the non-dimensionalized velocity V/bwa. The open-loop 

CRC q 0) root loci (Fig. 10) show a violent plunge-torsion flutter at 

V/boa = 3.02. The control system is required to ensure no flutter be- 

tween v/bwa = 1. and 3.5, and to minimize the cost function of Eq. 

(5.16) as defined in Table 6 for five different design cases. In all 

cases, the process noise is vertical gust velocity wg, defined by Dry- 

den’s PSD of Eq. (3.13) with u,s* = 1.0 bz/sec2 and L, = 50 b. The gust 

forcing vector, (Ag) of Eq. (5.131, is derived in Appendix A following 

Bispl inghoff et al. 1101. 

The closed-loop root loci of cases 3 and 4 of Table 6 are given in 

Fig. 11. The mean-square response of B for all the cases is given in 

Fig. 12. The mean-square responses of b and dr for cases 3, 4 and 5 are 

compared to the open-loop response in Fig. 13. 

Assigned complex poles at V/bug = 3.5 were used as optimization driv- 

ing parameters, one complex pair in the two-measurement cases and two 

pairs in the four-measurement cases. Early analysis, with only one cost 

75 



TABLE 6 

Typical section control design cases 

Case Measurements Design Cost function 
response 
parameter, zd points, V/baa 

I 

weights, a, ,i 

1 h.h i 2.5, 3.2 1 . , 1. 
. . . 

2 h,h,a,a 13 2.5, 3.2 1 .t 1. 

3 h,h li 2.5, 2.85, 3.2 l., 4.r 1. 
. . 

4 h,h,a,a i 2.5, 2.85, 3.2 l., 4.~ 1. 
. . 

5 h,h ;1+3a 2.5, 2.85, 3.2 1.t 4., 1. 

function point at V/bwa = 2.5, resulted in instability between V/bwa = 

3.25 and 3.4. This problem was solved by adding V/boa = 3.2 to the cost 

function points (cases 1 and 21. As shown in the upper part of Fig. 12, 

the mean-square response of the design parameter 13 at the cost function 

points is reduced by increasing the number of measurements (as ex- 

petted). In between the design points, however, there are response 

peaks, with the four-measurement case being more sensitive to changes in 

flow conditions. 

Adding the response at V/boa = 2.85 to the cost function (cases 3 and 

4) moves the peaks and the sensitive region to higher velocities 

(lower part of Fig. 12). The root loci of cases 3 and 4 (Fig. 11) show 
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Figure 10: Open-loop root loci of a typical section in incompressible 

flow. 
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that the two modes which participate in the open-loop flutter mechanism 

(Fig. 101 still interact with each other. But instead of the violent 

flutter, a more complicated interaction, which keeps the system stable, 

is observed. The only instabilities occur -at very low velocities as a 

result of the wing-control-surface inertial coupling. This problem is 

easily solved by switching the control system on only after takeoff. 

Figure 13 shows for cases 3 and 4 the mean-square gust responses for 

the translation and pitching velocities, when they are not included in 

the cost function. The closed-loop plunge velocity responses uk2 are 

higher than the open-loop response at subflutter velocities and have 

sharp peaks at higher velocities. The closed-loop pitch rate responses 

u&2 are generally lower than the open-loop responses, with the two-meas- 

urement case giving much lower responses than the four-measurement case. 

The main point is that one should keep careful track of response parame- 

ters which are not included in the cost function. 

A change in the design parameter of the two-measurement case to zd q 

h + 3& (case 5) lowers the plunge velocity response uG2 at the high 

airspeed range without changing the subflutter response significantly. 

The improvement in crk2 is accompanied (as expected) by deteriorating 

overal 1 ub2 (Fig. 12). 

Research Wing with Zero and Second-Order Compensators 

A compensator is designed to increase the flutter dynamic pressure of 

the research wing of Fig. 4, using a single accelerometer signal and 

minimal control surface mean-square rotation rate. 
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The structural and aerodynamic data sources are summarized in Table 

2. The structural modal properties, as defined in Eq. (2.151, are given 

in Table 7. The control surface is assumed to be structurally uncoupled 

from the wing. Its natural frequency was arbitrarily chosen to be well 

above the highest w-ing frequency in this analysis, and the mode shape 

consists of one radian control surface rotation. Open-loop calculations 

by Abel 161 indicate that higher vibration modes do not affect the low- 

est speed flutter mechanism. 

TABLE 7 

Structural modal properties of the research wing 

Node Natural General ized Modal Modal 
frequency, massI Damping, deflection 
on .i M s ,ii Si at sensor 
(rad/sec) location, V?i 

(see Fig. 4) 

first bending 32.88 1. kg . 005 0.4812 

torsion 120.19 1. kg .005 -0.2282 

second bending 161.91 1. kg .005 0.2002 

control sur- 400.0 .0004 kg-m2 .005 0.0 
face rotation 

The flight envelope for this design consists of one Mach number, M = 

0.9, and constant air velocity, V = 450 ft/sec (137.16 m/set), such that 
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the independent variable is the dynamic pressure q. This representation 

fits a wind tunnel test 161. For a given Mach number in atmospheric 

flight, the flight velocity varies somewhat with q because of the change 

in the speed of sound with altitude. 

The fourth-order minimum-state approximation of the aerodynamic in- 

fluence coefficients described in the last minimum state numerical example 

is used to construct the plant equation (5.1). The gust coefficients 

(A,(ik)) of Eq. (5.131 are interpolated by Roger’s approximation (Eq. 

(4.5)) with N=6 and Yi values of 0.2, 0.4, 0.6 and 0.8. Von Karman’s 

power spectral density (Eq. (3.1411 represents the vertical gust veloc- 

ity, with owg2 = 1.0 m2&ec2 and Ls = 100 ft (30.48 m>. The measurement 

equation (5.2) parameters are defined by Eq. (5.41, where the row vector 

[HoI takes the ‘Pi values of Table 7. 

The open-loop root loci of the wing modes (Fig. 14) show an open-loop 

first-bending-torsion flutter at dynamic pressure qf = 5.37 kPa. Previous 

control designs for this model [6,32] resulted in closed-loop flutter 

dynamic pressures between 9.3 and 9.8 kPa, with compensators of the order 

of 4 or more. The design target here is to achieve similar results with 

a lower order compensator, optimized for minimal cost function Jo = ~~~ 

at q = 7 kPa. 

The first trial involved the use of a zero-order compensator. Since 

the system is single-input single-output, the only free parameter is a 

single gain C of Eq. (5.7). Closed-loop calculations for various C val- 

ues indicate very limited performance. Two typical closed-loop root 

loci are shown in Fig. 14. A positive control gain reduces both first 
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bending and torsion frequencies with a very small effect on the flutter 

dynamic pressure. A negative control gain decouples the modes of the 

open-loop flutter mechanism but causes torsion-second-bending flutter. 

The variation of flutter dynamic pressure with control gain is shown in 

Fig. 15. Only 10% increase in flutter dynamic pressure is achieved in 

the very gain-sensitive region of the intersection of the two flutter 

mechanisms, thus this compensator is of little value. 

In the second-order compensator design, the direct control gain is 

set to C q 0. Since lc = 2 and m, = 1, the only free compensator param- 

eters are al, a2 and IB,I (1x21 of Eq. (5.5). The optimal parameters 

are al = -351.14, a2 = -28.51 and [f3,1t = I-O. 1819,-0.076531. The open- 

and closed-loop root loci of the wing modes are shown in Fig. 16. The 

control system has a considerable effect on the aeroelastic behavior, 

and the flutter dynamic pressure is increased to 9.93 kPa. The compen- 

sator mode interacts with the first bending mode, which gains substan- 

tial damping before fluttering. The torsion and second bending modes 

start to develop a flutter mechanism, as indicated by the turn of the 

second bending mode root locus, but they produce no flutter up to 10 

kPa. 

The variation of uo2 and tri2 of the closed-loop system with dynamic 

pressure is shown in Fig. 17. The response increases monotonically with 

dynamic pressure, and it does not show the sensitivity of the typical 

section discussed as the preceding example. 
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PASSIVE FLUTTER SUPPRESSION 

While active flutter suppression systems are still in the theoretical 

and experimental stages, passive flutter suppression means (namely 

structural modification techniques) are well established and widely 

used in the aerospace industry. Optimization procedures to meet flutter 

requirements with minimal weight penalty are given by Markowitz and 

Isakson [40] and by Haftka and Starnes [41]. These procedures are based 

on repetitive flutter analysis for varying structural parameters. 

An active control system is a method for providing satisfactory 

flutter characteristics with no major structural changes, and thus with 

only a small weight penalty. The designer, however, should not over- 

look local structural modifications as flutter suppression means. Well 

placed concentrated masses or properly tuned springs can suppress 

flutter, as demonstrated inRef. [42] for wing-store configurations. 

Local passive control means are formulated in the following discussion 

as subcases of active control means, such that a unified active-passive 

analysis can be performed using the methods of the preceding section. 
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Adding a Concentrated Mass 

Although termed as “passive,” a concentrated mass m,,, added to a 

given structure, is actually a perfect zero-order compensator. It meas- 

ures acceleration and responds with a proportional force. 

The basic assumption of modal analysis is that the motion of the 

structure, before and after the structural changes, is a linear combina- 

tion of the modes which serve as generalized coordinates. This assump- 

tion is never exact for a continuous structure represented by a finite 

number of modes. The analyst should evaluate the assumption’s accuracy 

by engineering judgment or by repeating the analysis with a higher num- 

ber of modes. 

In terms of the control terminology used in this paper, the 

measurement is the acceleration at the point where the concentrated mass 

is added. Equation (5.3) becomes 

.* 
Y = IHo1 04 where [HOI = (‘l’# (6.11 

and where ( gp)f is the modal deflection row vector at this point. The 

measurement equation (5.2) is constructed using Eq. (5.4). The control 

variable is the reaction force applied by the mass. Equation (5.7) be- 

comes 

U q cy where C = -m P (6.2) 

The plant equations (5.1) are constructed by leaving the system 

open-loop dynamic matrix IF11 untouched and using 
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With the additional mass defined as input and output terms of the 

control equations, it can be superimposed on the active control equa- 

tions. The cost function may be supplemented with a weighted mass pen- 

al ty term, and the control gain (added mass) can be determined by the 

cost function minimization routine. The additional mass is 1 imited, of 

course, to positive values unless a parasite mass already exists at this 

point. 

The typical section in incompressible flow (see Fig. 1 and Table 21 

was used to illustrate the effect of adding a concentrated mass. The 

changes in flutter velocity with additional mass at distance 6b rear- 

wards of the elastic axis (E.A.1 are shown in Fig. 18. Since the el as- 

tic axis is located at a = -0.4, the leading edge is at 6 = -0.6 and a 

reasonable most forward mass location is around 6 = -0.5. The flutter 

velocity can be increased by approximately 20% with 20% total mass in- 

crease. 
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Other Passive Control Means 

Other passive means that can be formulated as zero-order compensators 

are springs or dampers connecting two points with modal deflections 

{YP,) and {ypz). 

For a linear spring with stiffness constant k,, the coefficients of 

the control Eqs. (5.1),(5.21 and (5.7) are 

(6.4) 
[HaI = 0 , (J) = 0 , ICI = -k, and [c,] = 0 

A viscous damper with damping constant b, is represented by 

{Gt) q (yp) r [Hdl q 0 , tHv1 q (e# , 

[HaI = 0 t (J) = 0 , [Cl = -b, and [c,] = 0 
(6.5) 

Unlike the concentrated mass, the spring and the damper have to con- 

nect points with significant relative motion in order to be effective. 

A useful application of pylon stiffness and damping tuning for wing- 

store flutter suppression is given in Ref. 1421. 

In some flutter cases, especially when the stability margin changes 

moderately with dynamic pressure, a reasonably-sized dynamic vibration 

absorber can be effective in suppressing flutter. A sketch of a dynamic 

vibration absorber, attached to the wing at a point with displacement xp 

= ~~PPbL is shown in Fig. 19. The equation of motion of mp is 
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rnpgp + bpip 
b. 

+ kpzp = -mpxp 

where zp = xp’ - xp 

(6.61 

//////////////////// 
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Figure 19: A sketch of a dynamic vibration absorber 

In state-space form with z1 = zp and ~2 = ip, Eq. (6.6) becomes 

(6.7) 

This is a second-order compensator as defined in Eq. (5.5). The dy- 

namic vibration absorber can be thought of as a mechanical implementa- 

tion of the control compensator and be treated as an active control sys- 

tem. As in the concentrated mass case, the open-loop state vector {z) and 
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dynamic matrix [Fl] remain untouched. The control variable is the 

force applied by the vibration absorber on the structure. and the 

measurement is the acceleration at the mounting point. The coef- 

ficient matrices in Eqs. (5.1), (5.3), (5.5) and (5.7) are 

bz) = (8,) e [HoI = (Yp)t , 

0 1 
(A,] = [ 1 -k,lm, -b,/m, 

(6.8) 

[Cl = 0 and [C,l = Ik, b,l 

The closed-loop equations (5.9) can now be constructed using the matrix 

relations of Eqs. (5.1), (5.4) and (5.8). The design parameters are the 

mounting location, which defines CJlpI, and the absorber parameters m b 
P' P 

and k . 
P 

The cost-function definition and the optimization procedure can 

be carried out by the methods presented previously for active control, with 

a weighted mass-penalty term added to the cost function. To avoid exces- 

sive relative displacement z m 
P 

between the wing and 
P' 

the mean-square 

gust response of z 
P 

can be included in the cost function by adding its 

weighted frequency response to zd(iti) in Eq. (5.14). The frequency re- 

sponse of z 
P 

is related to the model frequency response of Eq. (5.13) by 

w2 
Z,(iw) = (Y,)t(X(iwI) 

-w2+i2~,wpw+wp2 
(6.9) 

where wp q ,/k,/mp and SP = b~‘2mpoP 
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The typical section in incompressible flow (see Fig. 1 and Table 2) 

was used to illustrate the effect of a dynamic vibration absorber. The 

changes in flutter velocity with the absorber uncoupled frequency wp, 

for various mounting locations 6 (see Fig. 181, with mp/mS = 0.2 and 3,, 

= 0.2, are shown in Fig. 20. 

When wp = 0, mp is not connected to the structure and the system is 

unaffected (Fig. 101. When wp -D 00, the flutter velocities approach 

those of the concentrated-mass case (Fig. 18). It is clear from Fig. 20 

that a properly tuned vibration absorber is much more effective than a 

lumped mass. With mp/mS = 0.2, sp = 0.2 and 6 = -0.5, for example, the 

flutter velocity can be increased by 65%, compared with 20% in the con- 

centrated-mass case. These results, however, are very sensitive to the 

absorber frequency tuning. 
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CONCLUDING REMARKS 

A review of the basic unsteady aerodynamic derivations and aeroelas- 

tic equations of motion which lead to the widely-used V-g method for 

flutter analysis has been presented. Based on the assumption that the 

wing undergoes simple harmonic motion, the V-g method gives correct re- 

sults only for the flutter boundary flow conditions. Matched point 

solutions must be determined by iteration with density as a parameter. 

Direct stability margin calculations at pre- and post-flutter condi- 

tions need aerodynamic influence coefficients for arbitrary motion. 

In order to solve the stability equations by the methods of linear 

algebra, the influence coefficients are approximated by rational func- 

tions of the nondimensionalized Laplace variable s'. Such approxima- 

tions lead to constant coefficient, linear, finite state-space aeroelas- 

tic models. 

Several rational approximation techniques are discussed, and a new 

"minimum-state" approximation method, which yields a minimal-.order aero- 

elastic model for a given accuracy, is presented. All the methods con- 

sist of aerodynamic data calculated for oscillatory motion. The mini- 

mum-state method is first applied to a three-DOF typical section in in- 

compressible flow. With two aerodynamic augmented states, the 
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approximated influence coefficients are within 5% of the "exact" 

Theodorsen coefficients in a range of k30° of the imaginary axis of the 

s' plane. Root loci of important structural modes usually fall within 

this range. 

Application of the minimum-state method to the typical section at M = 

0.7 and to the four-mode research wing model shows that, when the number 

of aerodynamic augmented states is similar to the number of degrees of 

freedom, all the approximated coefficients are within 5% of the exact 

ones along the imaginary axis. Off the imaginary axis there were no 

available data with which to compare the results, The minimum- 

state approximation is demonstrated to be significantly superior to 

Roger's and the matrix Pad; approximants in terms of accuracy per model 

order. One disadvantage of the minimum-state method is that it is more 

complicated and computer time-consuming, because it involves solving 

nonlinear least-squares problems. This investment, however, pays off in 

repetitive flutter and control calculations. 

It is shown that the minimum-state aeroelastic model can be used to 

design constant-parameter active control systems which by minimizing a 

cost function, defined as mean-square gust response over several flight 

conditions, assure stability over the entire flight envelope. Numerical 

examples for a typical section with a zero-order compensator and a 

research wing with a second-order compensator demonstrated the design 

procedure and showed a significant favorable change in the aeroelastic 

behavior with a single trailing edge control surface. 
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Finally, more traditional passive control means--such as concentrated 

massesI springs, dampers and dynamic vibration absorbers--are formulated 

as control input and output terms. They are shown to be analogous to ac- 

tive control means, making it possible to carry out simultaneously 

active and passive control analyses. 

RECOMMENDATIONS 

1. The minimum-state approximation should be applied to more 

aeroelastic systems in order to explore further its merits as 

compared with other rational approximation methods. The com- 

putation time might be reduced by finding more efficient solu- 

tions to the nonlinear least-squares problem stated in Eq. 

(4.27). Other improvements may be obtained by allowing the 

aerodynamic “open-1 oop” roots (the eigenvalues of [R’l) to be 

complex. 

2. Unsteady aerodynamic theory and computational algorithms 

should be further developed to provide aerodynamic influence 

coefficients in the entire s’ plane for three-dimensional 

wings in compressible flow. This will enable checking the ac- 

curacy of the rational approximations off the imaginary axis 

of the Laplace domain. The minimum-state procedure should be 

modified to accommodate data for arbitrary s’ values. 

3. Rational approximations of the frequency-dependent gust loads 

and “co1 or i ng” of the gust velocity power spectral density 

should be attempted. This will add augmented states to the 
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aeroelastio model but will also enable replacement of the 

heavily time-consuming numerical integrations for the mean- 

square gust response by algebraic solution of Lyapunov equa- 

tions 1491. 

4. The suggested active control design procedure should be com- 

pared with other flutter-suppression control techniques by ap- 

plying them to the same mathematical models, wind-tunnel tests 

and flight test demonstrations. 

5. The applicability of the control models developed in this study 

are not limited to the design of constant parameter, low-order 

continuous control systems. These models can be used in the 

design of other control systems, such as scheduled parameter 

systems, and in controllability, observability and sensitivity 

studies for choosing the control devices. The relatively 

low-order model has special potential for developing real- 

time, adaptive, digital control systems in which computation 

time is a critical parameter. 

6. The merits of formulating passive flutter-suppression means as 

input and output control terms should be further explored by 

combining them with active control design and by applying them 

to the design of special flutter-related devices, such as de- 

coup1 er pylons, control-surface mass balance and control-sys- 

tem actuators. 
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UNSTEADY AERODYNAMICS OF A TYPICAL SECTION IN INCOMPRESSIBLE FLOW 

This appendix summarizes the unsteady aerodynamic loads on a typical 

section in incompressible f low due to arbitrary section motion and due 

to a disturbing gust with s inusoidal vertical velocity. 

The unsteady aerodynamic loads on the typical section of Fig. 1 in 

two-dimension1 incompressible flow due to oscillatory section motion 

were derived by Theodorsen 1121 and generalized to arbitrary motion by 

Edwards 1191, following Sears 1131. The Laplace transform of the loads 

reads 

APPENDIX A 

(La(s)) = q[A(s’) l( X(s)) (A. 1) 

where (x(t))f = [h/b,a,Rl P (La(tl)t q [-Lb,Mo,MnJ, 

q is the dynamic pressure, s’ is the nondimensional Laplace variable 

sb/V, and [A(~‘11 is the generalized aerodynamic influence coefficient 

matrix 

[AIs’) 1 = 2b2 [Mnc]s’2 + ~B,,I+C~~‘)(R,)~S~~ s’ 1 
+ [Knel+C(~~)( R, )ts, 1 1 (A.21 

where the coefficient matrices are 
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Cl 

[B,cl = 0 

0 
L 

0 0 0 

IK,,I = 0 0 -Tls 

0 0 -Tqg/~ 

(R# = [-2a 

IS1 1 = t 0 

IS21 = 1 1 

and the constants are 

va Tl 

-r(a2+l/81 -T13 

-T13 T3/a 

-u T4 

r(a-+ I -TI 6 

-T17 -Tlg/u 

2n(a+il -T121 

1 TIO/TI 1 

f-a Tq1/21r 1 

I 

11 = -(1/3)(2+c2)J1-c2 + c cos-'c 

T3 = -(l/8)(1-c2)(5c2+4) + W41c(7+2c21~1-c~ cos-'c 

-(c2+l/8)tcos"c)2 

Tr = cdl-c2 = cos-'c 

T5 = -(I-c2) - (cos-'cl2 + 2&G cos-'c 
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T7 = W8)c(7+2c21~% - (c2+1/8) cos-'c 

f 8 = -W3)(1+2c2)dl-c2 + c cos-'c 

T9 = 1[(1/3)11-~~1~'~ + aTg] 

Tli~ = I)% + cos-'c 

TII = (P-CIJiz + Cl-2c) cos-'c 

T12 = di?(2+c) - (2c+l)cos-'c 

J-13 = -iIT, + (c-aIT 

Tls = TI, + Tlo 

T16 = Tl - Te - (c-a)Tb + %TI, 

T17 q -2Tg - Tl + (a -#ITI, 

TICI = T5 - TrTlo 
b 

T19 = -~T+T,, 

The generalized Theodorsen function is 

K,(s') 
C(s') = (A.31 

Ko(s'I+Kl(s') 

where K,, is a modified Bessel function of order n. Using Eq. (9.6.4) of 

Ref. I501 for 0 S arg(.s') < By Eq. (A.31 becomes 

H,'2)(~I 
C(s') = where - I 2 = -1s 

H,(2)(z)+iHo(2)(z) 
(A.41 
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where Hnf2) is the Hankel function which is related to Bessel functions 

by 

Hnf2)tzl = J,(z) - iYn(z) (A. 5) 

As indicated by Edwards 1191, as Is’1 + 0, C(s’1 + 1 independent of 

approach direction. To calculate C(s’1, ascending power series of Bes- 

sel functions are derived from Eqs. (9.1.101 to (9.1.13) of Ref. 1501. 

j 
00 t-22/4) 

Jo(z) =1+x 
j=l (j!12 

(A. 6) 

where Y = 0.577215665.... 

2 
Jl(2) = - 1 

2 

2 
Yl(2) = - - 

ll [ 

1 
- + IRn(z/Pl+r 
2 

1J, (2) 
I 

2 
-- 

2ll [ + ;I :r::::::1 
(A.91 1 + g 

[ 
2(; l/m1 

j=l m=l 

j 03 (-z2/4) +c 
j=lj!(j+lI! I 

(A.81 

The ascending series are converging very fast for the study range of in- 

terest 0 < 1~~1 5 2. 
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The unsteady aerodynamic loads due to a disturbing gust with 

sinusoidal vertical velocity of amplitude us” and frequency w read 

(L,(ik,t)) = (q/V)(A,(ik))ws”exp(iwt) (A. 10) 

where k= wb/V. The hinge and pitch components of the gust loads are 

given by Eq. (5-375) of Ref. 1101. In our notations, the related compo- 

nents of (As) read 

Ag.1 = -4nb2(C(ik)[Jc(k)-iJ~(k)l + iJ,(k)) 
(A.111 

Ag.2 = -($+a)Ag ,q 

For a relatively stiff actuator, and when the open-loop gust-induced 

hinge moments are not of particular interest, their effect is negligible 

and it is assumed that A,,3 = 0. 
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