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PLANETARY RADIO ASTRONOMY OBSERVATIONS FROM VOYAGER 2 NEAR SATURN
 

ABSTRACT
 

Voyager-2 Planetary Radio Astronomy measurements obtained near Saturn 

have added further evidence that Saturnian kilometric radiation (SKR) is
 
emitted by a strong, dayside source at auroral latitudes in the northern 

hemisphere and by a weaker (by more than an order of magnitude) source at
 
complementary latitudes in the southern hemisphere. These emissions are
 

variable both due to Saturn's rotation and, on longer time scales, probably
 
due to influences of the solar wind and the satellite Dione. 
 The Saturn
 

electrostatic discharge bursts (SED) first discovered by Voyager-1 and 
attributed to emissions from the B-ring were again observed with the same
 

broadband spectral properties and a 10h1 1mi5m episodic recurrence period but
 
with an occurrence frequency of only about 30% of that detected with
 

Voyager-1. During the crossing of the ring plane at a distance of 2.88 R., an 
intense noise event extending up to above 1 MHz was observed for about 150 

sec.' This event is interpreted to be a consequence of the impact/ 
vaporization/ionization of charged micron-size G-ring particles distributed
 

over a total vertical thickness of about 1500 km.
 

The Voyager-2 (V2) Planetary Radio Astronomy (PRA) instrument (1)made 
observations of several different radio-wave phenomena during the period 

immediately surrounding the August 26, 1981 Saturn encounter. We describe
 
here three of those phenomena - Saturnian kilometric radiation (SKR),
 

Saturnian electrostatic discharges (SED), and a remarkable noise event that
 
was observed at the time of ring plane crossing. The Voyager-1 (VI) PRA
 

instrument had discovered SED during the November 1980 Saturn encounter 
(2,3),
 
and SKR has been observed by both Voyagers since January 1980 (2,4-7). We
 

will discuss the SKR and SED observations made by V2 in terms of the new
 
information they add to our current level of understanding of these two
 

phenomena. For the unique ring plane event, we will simply describe our 
observations and will only briefly mention our current interpretation.
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SATURNIAN KILOMETRIC RADIATION 

Intense SKR dominated the radio spectrum at frequencies below 1 MHz as V2 

approached the planet. After the time of closest approach when the spacecraft
 

had crossed the ring plane and moved into the southern hemisphere the
 

properties of the SKR changed dramatically.
 

These changes are illustrated in Fig. I which shows dynamic spectra of 

SKR measured between 1.2 kHz and 1. 3 MHz for five consecutive rotations of 

Saturn spanning the 53-hr period near closest approach. The left-hand panels
 

(Fig. la) are gray-shaded to display received signal intensity as a function 

of frequency and time; the right-hand panels (Fig. ib) display the predominant 

sense of circular polarization, with light gray shading denoting right-hand
 

polarized (RH) emission and black denoting left-hand polarized (LH) emisssion.
 

The plots are aligned with respect to sub-solar Saturn longitude in the SLS
 

(5) convention.
 

Prior to closest approach (top two panels in Fig. 1), the SKR fills the
 

frequency range between 60 and 900 kHz and occasionally extends to frequencies
 

as low as 20 kHz and as high as 1100 kHz. Although the SKR exhibits large
 

fluctuations in intensity as a function of time, some activity is always
 

evident in the two pre-encounter spectrograms. We find that the SKR
 

polarization is almost exclusively RH before closest approach, although
 

LH-polarized narrow-band SKR appears near 40 kHz from about 1800 to 3600 SLS 

in the second panel. This same morphology, including the observation of
 

narrow-band emission, was observed by VI as it approached Saturn along a
 

similar northern-latitude, dayside trajectory (2).
 

The narrow-band component of SKR resembles the Jovian narrow-band 

kilometric radiation (nKOM) (8) in a number of ways. Both are confined to
 
frequencies around or below 100 kHz; both have bandwidths of only a few tens
 

of kilohertz and both exhibit polarization-vs-time patterns that are
 

apparently independent of the polarization of the higher frequency bursts.
 

The nKOM is thought to originate from a region near the outer periphery of the 
Io plasma torus (8), and the Voyager Plasma Science team (9) now reports a 

plasma torus at Saturn that may provide plasma densities and density gradients
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in parts of Saturn's magnetosphere that are similar to those encountered in
 

the outer part of the Io torus. Thus, given the apparent similarities between
 

the narrow-band components of radio emission from Saturn and Jupiter and the
 

similarities in certain aspects of their respective plasma environments, we
 

suspect that the two emission components may both originate via similar
 

mechanisms from similar magnetospheric regions. This view has also been
 

advanced in connection with lower frequency, banded emission observed by the
 

VI Plasma Wave Science instrument at Saturn (10). The Saturnian narrow-band
 

emission seen in Fig. I tends to occur at somewhat Tdwer-frequencies than does
 

Jupiter's, and this is consistent with the relatively lower electron densities
 

observed in the Saturnian plasma torus/sheet than in the case of the Io torus.
 

Nearly an hour before closest approach (central pair of panels in Fig. 1)
 

the SKR vanished entirely and did not reappear until about two hours after
 

closest approach. During that interval the only activity we can detect is
 

associated 1) with BED, 2) with the brief, broadbanded ring-plane-crossing
 

event at 0418 SCET and 3) with electrostatic plasma waves at low-order, odd, 

half-harmonics of the electron gyrofrequency. Thus the SKR source was 

apparently either occulted or beamed away from the spacecraft when V2 was 

within about 1 RS of Saturn's equatorial plane and between 20 and 01 hr iocal 

solar time. This 'occultation' is consistent with a northern hemisphere 

source region (for the RH SKR) near the noon meridian at high latitudes as 

proposed by Kaiser et al. (6). 

When the SK reappeared at about 0535 SCET on August 26, 1981 the
 

polarization was reversed in sense compared to the pre-encounter interval, and
 

it has remained exclusively LH thereafter. This pattern of RH polarization
 

for 3KB observed from above northern latitudes and LH polarization observed
 

from above southern latitudes is exactly what VI observed (2). LH polarized
 

SK was detected only during the 23-hr period when VI was in the southern
 

hemisphere. As before, we associate LH polarized emission with a source in
 

the southern hemisphere. With regard to the intensity of the emission,
 

however, the V2 measurements are distinctly different from what was observed
 

on VI in that the SKR rapidly drops in intensity and bandwidth soon after its
 

post-encounter reappearance. For example, notice in the lower two sets of
 

dynamic spectra in Fig. 1 that on the first full Saturn rotation after closest 
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approach the low frequency limit of SKR has drifted up to o200 kHz, and by the
 

end of the last .rotation in the figure the few bursts that can be detected are
 

only seen at frequencies between about 500 and 800 kHz. Based on qualitative
 

examination of the LH emission observed by VI and V2, we conclude that the
 

southern hemisphere source, like the northern hemisphere source, is on the
 

dayside and at high latitudes.
 

The change in Saturn's kilometer wavelength spectrum is illustrated 

quantitatively in Fig. 2 which displays the normalized median power flux
 

density for the two Saturn rotations before (labeled V2 INBOUND) and after (V2
 

OUTBOUND) closest approach. The maximum flux density inbound occurred near
 

175 kHz, much like the VI inbound observations (6). The maximum flux density
 

outbound occurs near 500 kHz and is approximately three orders of magnitude
 

weaker than the inbound emission. Also shown in Fig. 2 is the outbound
 

spectrum from VI (6) that was observed from the conjugate latitude in the
 

northern hemisphere relative to the V2 outbound observations (3.5 hr solar
 

local time, + 260 latitude for VI; P4.O hr local time, -270 latitude for V2). 

Here also we see that the LH, southern hemisphere emission is approximately
 

two orders of magnitude weaker than the RH, northern hemisphere emission.
 

Three different factors may each contribute to the apparent north-south 

difference in SKR activity. First, the southern hemisphere SKR may be beamed
 

toward a quite different local time than the northern SKR. This would mean
 

that spectra such as Fig. 2 are from different points on the respective
 

northern and southern SKR emission beam patterns and, thus, make direct
 

comparisons impossible. One of the goals for the V2 encounter, especially 

during the outbound portion of the trajectory, was to determine the occurrence 

rate of southern hemisphere (LH) SKR as a function of longitude. Since Vi 

spent only a brief period south of the Saturnian equatorial plane, it was not 

possible to determine the longitude profile unambiguously. From the last two 

panels of Fig. 1 and from more recent data, it appears that the southern 

hemisphere SKR maximizes approximately 1000 in longitude eastward of the 

northern hemisphere emission. However, although the data appear to be
 

consistent with a dayside source, it is not possible to deduce the exact local 

time of the source region until a longer span of data is analyzed.
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The second possible explanation for the observed north-south radio
 

intensity difference is that the SKR diminished just after closest approach as
 

a consequence of temporal variations in the energy source. In fact, there is
 

some indirect evidence to support this hypothesis. Immediately after the last
 

rotation shown in Fig. 1, SKR was essentially undetectable for two to three 

days, after which the -emission returned and seemed normal. Such an extended 

period of inactivity is very unusual and may be the result of solar wind 

pressure variations, as we discuss in greater detail below. However, since a 

similar north-south radio asymmetry was noted during the V1 encounter (2), it 

seems unlikely that all of the differences can be attributed solely to 

coincidental external causes.
 

Finally, there is the possibility that an intrinsic difference exists
 

between the Saturnian northern and southern radio sources. Intrinsic
 

north-south differences may be associated with differences between the
 

external current systems or between particle entry into the northern and
 

southern SKR source regions. Or, if the radio emission originates in the
 

dayside cusp regions, a long-term periodic difference between northern and
 

southern radio emission properties might exist due to the Saturn-Sun geometry.
 

During the Voyager observations, the flux of solar wind particles into the 

northern cusp might well be expected to exceed the flux into the southern cusp 

because the Saturnian northern cusp was tilted toward the sun, by 40 during 

the V1 flyby and by 7 degrees for V2. At the present time, we conclude that
 

1) the southern source is intrinsically weaker than the northern source, 2)
 

both sources are located in the sunward hemisphere and 3) substantial
 

long-term (several-day) temporal variations in the activity of the sources
 

occurred shortly after V2 closest approach.
 

For several months before and for several days after V2 encounter with 

Saturn, the SKR exhibited temporal variations of a kind never before seen.
 

These fluctuations took the form of well-defined, dramatic decreases in
 

emission activity level, lasting anywhere from about 4 to 8 Saturn rotations
 

(2-3 days) depending on the interval examined. Of those we have studied thus
 

far, the emission intensity dropped below receiver threshold over the entire 

SKR bandwidth (I1 MHz) for the duration of the dropout. An example of the 

beginning of such an event (mentioned earlier) is shown in the last panel of 
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Fig. 1. Here it is apparent that the SKR has begun to diminish in intensity
 

at a far faster rate than that due to inverse-distance-squared falloff. This
 

diminution continues beyond the last panel in Fig. 1 (not shown) with the
 

result that the SKR falls below receiver threshold at all frequencies for
 

about two days, until reappearing at about 0800 SCET on 29 August. Normalized
 

to an observer-Saturn distance of 1 AU, this threshold represents an emission
 

-
flux upper limit for the southern hemisphere source of about 10 2 4 W/m 2/Hz
 

(c.f. Fig. 2 for nominal flux levels).
 

We have identified six similar dropout intervals in the July to August,
 

1981 V2 data that occurred earlier than the one described here. Since the
 

northern and, to some extent, southern hemisphere sources can be observed
 

before encounter and neither source appears during a cutoff interval, both
 

sources must be affected by the mechanism responsible. Additionally, we have
 

found no comparable dropout periods in the VI data during the three month 

period surrounding its encounter in November, 1980. Thus, because this 

phenomenon appears unique to the Voyager 2 encounter, and in particular since 

the August 26/27 episode occurred when Saturn's magnetosphere was apparently
 

inflated (11) due to extremely low solar wind flux, we are examining the
 

possibility that the episodes are related to occasions when Saturn is immersed
 

in Jupiter's magnetic tail (12). This interpretation is particularly
 

appealing because, if the SKR emanates from the vicinity of the dayside polar
 

cusps as deduced by Kaiser et al. (6). a strong reduction in solar wind 

pressure might be expected to diminish the particle population in the cusp
 

region and yield the observed result. If this interpretation is correct, then 

the time scale of the radio emission turnoff would appear to be approximately 

two days, since Ness et al. (11) identify the onset of the ram pressure 

decrease at about 10 hr SCET on 25 August 1981.
 

If Jupiter's tail or large-scale changes in solar wind pressure should
 

prove effective in extinguishing SKR, it would be the second modulator of 

Saturn's radio emission. The satellite Dione was first suggested (7,13) as 

the cause for the disappearance of SKR at times when the radiation should 

normally be observed. We have made some effort at separating these two 

effects by taking advantage of the strong frequency dependence of the Dione 

modulation (7) compared with the very broadband quenching characteristic of
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the 2-3 day long dropouts. Thus, we were able to examine the 24day period (1
 

Aug - 24 Aug) before encounter for evidence of any Dione modulation by
 

eliminating the interval 9/10 Aug, which was clearly a broadbanded, long-term
 

dropout. The result is shown in Fig. 3. Here activity at 59 kHz is organized
 

at Dione's period of revolution (65.7 hr), and heliocentric orbital phase runs
 

from 1800 through 36eo to 180P for clarity. This histogram is evidence for a
 

strong modulation of the SKR by Dione, and it represents yet another way in
 

which modulation at Dione's period has appeared. Previous reports showed
 

quenching of SKR near 2700 Dione phase (7,13) and 4O phase (7). The present
 

analysis, however, reveals not only a shift in the phase of effective
 

quenching to around 180 but also what might be interpreted as a stimulation
 

of activity levels rather than a quenching. This is so because the peak in
 

Fig. 3 is sharper than the 'absorption' minimum by at least a factor of two.
 

The nature of the Dione modulation may become clearer upon examination of the
 

outbound V2 data when the aspect angle of the observations was very different.
 

SATURNIAN ELECTROSTATIC DISCHARGES
 

A new phenomenon, Saturn electrostatic discharges or SED, was discovered
 

by the Vi PRA instrument (2,3). An example of SED as they appear on dynamic
 

spectrograms is shown in Fig. 4. SED were also observed during the V2
 

encounter with Saturn, and many features appear to be the same as before.
 

However, there are also some striking differences.
 

The SED are again impulsive, lasting for times that vary from 30 ms or
 

less to upwards of 250 ms. and they again appear to be randomly distributed
 

over a frequency range which extends from 100 kHz or less to at least 40 MHz,
 

the highest frequency attainable by the PRA instrument. As before, the SED
 

occurred in episodes lasting several hours. These episodes can be seen in
 
Fig. 5. As before, SED were detected only during the six or seven days
 

surrounding closest approach. This fact, together with the similarities in
 

event duration and frequency distribution suggests that the intensity of SED
 

did not change by any signficant amount between encounters. Although not
 

shown in Fig.-5, SED were detected with V2 more than 48 hr before the first
 

inbound bow shock crossing, and so they are clearly not due to in-situ
 

phenomena occurring at the spacecraft inside the Saturn magnetosphere.
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In contrast to these similarities, the rate of occurrence of SED impulses
 

at the second encounter was only about 1/3 of that at the first. Comparison
 

of panels in Fig. 4 illustrates this difference. In addition, the episodes
 

themselves were distributed much more symmetrically about the time of Saturn
 

closest approach than was the case for Vi, when they occurred mostly after
 

encounter.
 

During V1 pre-encounter and closest approach fewer than 1% of the SED 

events were polarized whereas during post-encounter 90 to 95% of the events 

above 15 MHz were polarized in the LH sense (3). Furthermore, the proportion
 

of polarized events diminished with decreasing frequency. During the V2
 

encounter, however, most of the polarization occurred in channels below 5 MHz.
 

Approximately, 5 to 10% of the events in these channels displayed
 

polarization, with roughly as many in the RH sense as in the LH sense. This
 

pattern remained more or less invariant throughout the entire encounter.
 

Thus, V2 data confirm recognizably the same SED phenomenon, but the striking 

differences in polarization, episode distribution and number of events 

strongly suggest a source that changes with time.
 

An analysis of the V2 data yields a repetition period of SED episodes of
 

10h115&, which is consistent with the 10h10m±5m period found with the Vi 

data (3) and clearly different from the 10 39.4m±.1 m Saturnian rotation period 

(5). The phase of the repetition period is fixed relative to the 

observer-planet line implying that the source of SED rotates (or revolves) 

like a searchlight and is not fixed relative to the sun as is the case for 

SKR. We had previously concluded (2,3) that the repetition rate of SED 

episodes and the searchlight behavior implied that the source of SED is not 

similar to the SKR source. Also, the observation of SED bursts at fr&quencies 
well below the Saturnian ionosphere plasma frequencj virtually eliminates any 

sort of atmospheric phenomenon as the cause of SED. This information, 
mcombined with the l10 period, led us to conclude (2,3) that the source of
 

SED was in the ring system at a radial distance of about 1.81 RS from the
 

center of the planet. The V2 observations reported here in no way change our
 

original thesis.
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RING PLANE EVENT
 

The PRA instrument on V2 also detected an intense event at or near the 

time of ring-plane crossing (Figs. 4 and 6). Power in the PRA channels peaked
 

at spacecraft event time of 0418:17 on day 238 (August 26, 1981). The
 

spacecraft distance from Saturn at ring-plane crossing was approximately 2.88
 

R., near to the nominal 2.82 RS location of the G-ring.
 

The time profile of the PRA event was generally symmetric about the peak.
 

The central peak displays a half-power rise time of 6 sec or less and the 

overall pattern exhibits a 30-dB rise time of approximately 1 minute. These 

times correspond to distances of about 70 km and 700 km, respectively, normal 

to the ring plane. At its peak, the ring plane event extended from 

frequencies of 10 Hz or less to approximately 1 MHz, and the spectrum peaked
 

in the 56 Hz channel of the Plasma Wave Science instrument (14). The spectral
 

density over five decades in frequency is shown in the Fig.. 6 inset. The
 

emission showed no evidence of polarization in any of the PRA channels.
 

A similar event may have occurred at the time of the outbound ring plane
 

crossing of VI (15); however, the essential features of that event are
 

difficult to extract because of the presence of strong plasma wave phenomena
 

and SKR emissions.
 

The ring plane event is entirely distinct from both SKR and SED in onset,
 

duration, spectral character, and polarization (2-4). The associated
 

mechanism, we presume, must also be distinct. In particular, the plasma
 

instrument on V2 measured a nominal plasma concentration of approximately 100
 

-particles/cm3 during the ring plane crossing (9); thus, the ambient plasma 

frequency was at least 100 kHz, which is well above the frequency at which the 

event spectrum peaked. Therefore, the observed emissions evidently are not 

propagating electromagnetic disturbances that have an origin either at Saturn 

or in any of its rings including, in particular, the G-ring. On the contrary, 

the phenomenon appears to have an origin local to the spacecraft. 

Warwick et al. (2) suggested that charged dielectric particles striking
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the PEA antenna booms could generate electrical events. Micron-size ice
 

particles striking the spacecraft at relative velocities of 10 km/sec or more 

will most likely vaporize and ionize. The typical particle sizes in the 

G-ring are believed to be on the order of 1 to 5 i (16) and Clark (17) deduced 

that the composition of ring material in general is approximately 95% water 

ice and 5% ferric oxide. The spacecraft velocity relative to G-ring material
 

was about 14 Ion/sec at the time of ring plane crossing. 

We propose the following simple model of the ring-plane event. At or
 

about the time of ring plane crossing, V2 strikes charged micron-size ice
 

particles in the outer regions of the G-ring. The 56 Hz spectral peak is
 

taken to be an approximate measure of the impact frequency. Each impact
 

produces a tenuous charged plasma enveloping a part or all of the spacecraft. 

The plasma dissipates due to thermal motion and to relative motion between the
 

spacecraft and Saturn's corotating magnetic field in which the plasma becomes
 

embedded. Typical dissipation times are on the order of 0.5 ms. Since this
 

is short compared to the assumed impact frequency, the phenomenon is dominated 

by single events. The step-function increases in voltage associated with the
 

production of charged plasma exhibit an f-2 flux density spectrum; however,
 

such a spectrum is modified at low frequencies by the impact rate itself and
 

at high frequencies by dissipation effects and plasma physical phenomena.
 

Additional modifications could result from spacecraft interactions with the
 

plasma. Therefore, an impact discharge phenomenon could produce a spectrum
 

like that shown in Fig. 6.
 

In this model the V2 PEA and Plasma Wave Science instruments acted in
 

tandem to yield in situ measurements of G-ring material. The fall-off in
 

intensity and change in spectrum away from the ring plane is attributed to
 

variations in particle size and number density along the path of the
 

spacecraft. The total vertical thickness of o 1500 km inferred from the
 

duration of the ring-plane noise event is much greater than the optical
 

thickness reported for any of Saturn's major rings. Hence, these data seem to
 

indicate that the G-ring possesses a tenuous halo that extends well beyond the
 

nominal ring particle layer - much like the E-ring with its 1800 km inferred
 

thickness (18).
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FIGURE. CAPTIONS
 

Fig. 1. Dynamic spectra of kilometer wavelength radio emissions observed
 

during the five consecutive 10.66-hr rotations of Saturn centered on
 

the time of Voyager-2 closest approach. The panels are aligned with
 

respect to sub-solar Saturn longitude, and each panel is formed from
 

averages over I increments of longitude (1.8 min.) at each of 70
 

frequency channels spaced at 19.2 kHz intervals between 1.2 and 1326 

kHz. (a) Total intensity encoded so that increasing darkness denotes
 

increasing intensity; (b) dominant sense of circular polarization
 

encoded so that gray denotes right-hand polarization and black
 

denotes left-hand polarization. Notice near the time of closest
 

approach (C.A.) and ring-plane crossing (middle panels) that the
 

Saturnian kilometric radiation disappears, and only very low
 

frequency in-situ plasma waves and the ring-plane burst are detected.
 

Brief polarization reversals occur during spacecraft rolls when
 

Saturn moved to the opposite hemisphere relative to the plane of the
 

PRA antennas, and a major right-to-left-hand reversal occurred after 

closest approach when Voyager-2 moved from northern to southern
 

latitudes. Also noted in the plots are the times when a 15 dB
 

attenuator was inserted in the receiver pre-amp and when some
 

non-Saturnian signals (solar type III bursts and spacecraft radio
 

frequency interference) were observed.
 

Fig. 2. Spectra formed from the median values of power flux density observed
 

over the period before Voyager-2 closest approach (V2 inbound)
 

covered by the top two panels in Fig. 1(a) and the period after
 

Voyager-2 closest approach (V2 outbound) covered by the bottom two
 

panels in Fig. 1(a) and for the month after Voyager-1 closest
 

approach (dashed curve). The V2 inbound and VI outbound data are
 

both dominated by the right-hand (RH) polarized emission observed
 

from northern latitudes, and the V2 outbound spectrum is due to
 

left-hand (LH) polarized emission observed from southern latitudes.
 

All flux densities are normalized to an equivalent observer-Saturn
 

distance of 1 AU.
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Fig. 3. Histogram showing the control of the SKR by satellite Dione during
 

the interval from August 1 through 24. Data are organized in
 

heliocentric Dione phase, running from 1800 to 1800 for clarity. The
 

histogram is comprised of events recorded at 59 kHz and includes only
 
-
events with flux density exceeding 2x10 2 1 W/m2/Hz for an observer
 

situated 1 AU from Saturn in order to eliminate
 

inverse-distance-squared bias.
 

Fig. 4. 	 Dynamic spectra of observations obtained between 1.2 kHz and 40.5 MHz 

with 6-sec time resolution over 1-hr intervals spanning the outbound 

ring-plane crossing by Voyager-1 at a distance of 6.3 HS (upper
 

panel) and the ring-plane crossing by Voyager-2 at a distance of 2.9 

RS (lower 	panel). SED appear as bursts lasting less than 1 sec that 

occur at whatever frequency the receiver was tuned to at the instant 

they occur. Notice that 1) the SIR is evident below I MHz during the 

Vi ring plane crossing segment but not for V2, 2) tfe brief ring 

plane burst extends up to above 1 MHz for V2 but is not conspicuous 

for Vi, and 3) the SED bursts are much less frequent for V2 than for 

Vi. 

Fig. 5. 	Figure shows the organization of SED into distinct episodes separated
 

by about 10 hour. Note that the SED were observed several days prior
 

to V2 entry into the Saturnian magnetosphere. The number of SED
 

clearly maximize near closest approach.
 

Fig. 6. 	Plots of relative intensity measured at 13 selected frequency
 

channels 	 between 1.2 and 1000 kHz during the time of the Voyager-2 

crossing 	of the ring plane. The inset shows the field intensity
 

spectrum 	measured at the peak of the ring plane event (0418 SCET) by
 

the PRA instrument and by two channels of the Plasma Wave Science 

instrument (14).
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