
December 1981 

' .  . ,  . .  

. ,  

. ,  
. .  

ruEn 

Dual-Rotation . .  Propellers 
I .  , 

. . .  

Robert E. Davidson. 
, a  . ,  . ,  



TECH LIBRARY  KAFB, NM 

NASA 
Technical 
Paper 
1948 

1981 

Natlonal  Aeronautics 
and  Space  Admlnistratlon 

Scientific  and  Technical 
Information Branch 

ODtimization and Performance 

Dual-Rotation  Propellers 

Robert E. Davidson 
Langley  Research  Center 
Hampton,  Virginia 



SUMMARY 

INTRODUCTION 

The current  interest  in  fuel-efficient  air  transportation  has  given  rise  to  a 
number  of  studies  aimed at defining  the  capabilities of large  propeller-driven  air- 
craft  employing  advanced,  aerodynamic  and  engine/propeller  concepts.  An  opportunity 
for  designing  more  efficient  wings  and  propellers  is  provided  by  new  design  tools 
which  utilize  nonlinear  transonic-flow  codes  and  improved  materials  and  structural 
concepts.  The  development of techniques  for  achieving  more  efficient  wings  has 
received  much  attention,  particularly  in  the  NASA  Aircraft  Energy  Efficiency  (ACEE) 
Energy  Efficient  Transport  (EET)  Program  carried out over  the  past 4 or 5 years. 
Propeller  theory, on the  other  hand,  has  been  pretty  well  ignored  since  the  early 
fifties.  Much  more  research  needs  to  be  invested  in  propeller  aerodynamics  to  bring 
propeller  design  up  to  the  level of sophistication  achieved  by  current  wing-design 
methodology. 

There  are  many  papers  treating  both  single-  and  dual-rotation  propellers. 
Analyses  pertinent  to  the  present  investigation  that  treat  single-rotation  propellers 
can  be  found  in  references 1 to 6, and  in  the  references  therein.  Dual-propeller 
analyses  can  be  found  in  references 1, 3, 7, and 8. In references 1 and 7, the  prob- 
lem of minimum  induced  energy loss is  treated at length.  Provided  in  reference 8 is 
an  important  treatment  of  dual-rotation-propeller  aerodynamics.  A  treatment of the 
calculus of variations  that is well  suited  to  establishing  Betz'  condition  (eq. (1.3) 
in  ref. 9) for  the  optimization  of  both  single-  and  dual-rotation  propellers  is  given 
in reference 10. 

Overall, it would seem  that  the  theory of single-rotation  propellers  is  slightly 
more  advanced  than  that  for  dual-rotation  propellers.  The  theories of Lock  and 
Theodorsen,  when  applied  to  dual-rotation  propellers,  have  their  shortcomings. For a 
dual-rotation  propeller,  any  attempt to derive an optimization  formula  (Betz'  con- 
dition)  based on the  Lock  formulation of dual-rotation  aerodynamics  will  be  found,  in 
practice,  to  yield  a  planform which develops  infinite  chords. The reason is that  the 
tip loss factor  used  by  Lock is only  known  for  single-rotation  propellers  and is 
inadequate  for  dual-rotation  propellers.  Theodorsen's  analysis  does  not  permit  the 
optimization of a  dual-rotation  propeller  with  drag  considered and,  in making  off- 
design  calculations,  requires  the  use of the  mass  coefficient  which  is  averaged  over 



the  radius.  The  purpose of this  paper  is  to  combine  the  best  features of those  two 
methods  into  a  single,  modified  theory  which  eliminates  the  shortcomings  just 
described. 

A way  has  been  found  to  determine  Lock's  tip loss factor  for  dual-rotation  pro- 
pellers  from  Theodorsen's  measurements. In order  to  accomplish  this, it was  neces- 
sary  to show  that  the  Theodorsen  formulation  applies  to  the  setup  in  which one pro- 
peller  is  behind  the  other.  This  new  Lock/Theodorsen  tip loss factor  eliminates  the 
infinite  chords  and  permits an analysis  which  includes  drag  and  eliminates  the  need 
for an averaged  quantity.  Thus, a combination of Lock's  and  Theodorsen's  formula- 
tions  is  described  and  the  possibilities  are  explored.  Some  values  for  the  new  tip 
loss  factor  are  calculated  for one advance  ratio.  The  calculation is simple  and 
straightforward. 
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SYMBOLS 

abbreviation  variable  (eqs. ( 3 )  ) 

equation (B23) 

number of blades  in  propeller 

chord of airfoil 

drag  coefficient of blade 

lift  coefficient of blade 

power  coefficient , aQ/pn3d5 

diameter of propeller 

drag of blade  element 

advance  ratio, V/nd 

number  with  same  value at all  radii  to  blade  sections 

circulation  function  used by Theodorsen  (refs. 1 and 7) 

denotes  something  to  be  held  stationary,  in  sense of calculus of variations 

reciprocal  of  lift-drag  ratio 

lift  of  blade  element 

revolutions  per  second 

power loss of blade  elements 



~',q',r',s' elementary  functions of propeller  parameters  and  functions 
(see  eq.  (16) ) 

dQ  torque on blade  elements 

r  radial  coordinate 

R tip  radius 

S solidity of either  component, Bc/2Tr 

tl temporary  variable  (see  eq. ( 7 )  1 

ur v  components of interference  velocity of front  propeller on back  propeller, 
or vice  versa  (fig. 1) 

V forward  speed, or advance  velocity  (fig. 1) 

W trailing  helix  displacement  velocity 

W = w / v  
- 

W1  interference  velocity of either  airscrew on itself 

W resultant  velocity at blade  element  (fig.  1) 

wO w for  light  loading  limit  (fig.  1) 

X = r/R 

a angle of attack of two-dimensional  airfoil 

P total  induced  angle  (see  eq. ( B 9 )  and  fig. 1) 

Y self-induced  angle  (see  eqs. (B7) and  (B8)  and  fig. 1) 

50, equation  (B18) 

rl efficiency 

0 blade  angle  (no  load) 

P mass  density of  air 

0 product of solidity  and  lift  coefficient, s C L  

$0 see  equations (B9) and  (B10)  and  figure 1 
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I 

X0 

R angular   ve loc i ty  

t i p   l o s s   f a c t o r   ( s e e   e q .  (B1)  I X ( $ o )  

Subscripts  : 

B back p r o p e l l e r  

C mean v a l u e   f o r   d u a l - r o t a t i o n   p a i r  

F f r o n t   p r o p e l l e r  

S s i n g l e   p r o p e l l e r  

Y I  z e i t h e r   f r o n t   a i r s c r e w  and  back  a i rscrew,   respect ively,   or   vice   versa  i n  
equation ( B 1 7 )  

1 induced 

2 drag 

OPTIMIZATION FORMULA 

Betz '   condi t ion  concerns  the  effect  of making small  changes i n  the  chord  or   the 
blade  angle  of a p r o p e l l e r   a t   v a r i o u s   r a d i i .  I t  g ives  a mathematical   statement  that  
m u s t  hold a t  each  radius when the  changes  have  been made i n  such a way t h a t  the  pro- 
p e l l e r   e f f i c i e n c y  i s  h ighes t .   Fo r   s ing le - ro t a t ion   p rope l l e r s ,   Be tz '   cond i t ion   can   be  
d e r i v e d   i n t u i t i v e l y  as was equat ion   (1 .3)   in   re fe rence  9; however, t he  more a n a l y t i c a l  
approach of appendix A i s  p r e f e r a b l e ,   f o r   d u a l - r o t a t i o n   p r o p e l l e r s ,   e s p e c i a l l y  if the  
p rope l l e r s   a r e   no t  assumed t o   b e   a l i k e   f r o n t  and  back. I n  t h i s  paper,  only  changes i n  
the  chord  are   considered.  The l i f t   c o e f f i c i e n t  is presumed f ixed  by a i r f o i l  
considerat ions.  

The equation by 
developed from Betz '  

which  a dual-rotat ion  propel ler   can be optimized w i l l  now be 
condi t ion   for   dua l   ro ta t ion .   This   condi t ion  is 

which i s  equation (A3) i n  appendix A. 

Equation (1) has to   be   t rue  a t  any rad ius  r along  the  blade.  I n  p a r t i c u l a r ,  
the  constant  k i s  t o  be the  same a l l  along  the  blade.  The exact  choice  of k 
involves  matching  the power absorbed by t h e   p r o p e l l e r   t o   t h e  power output   of   the  
engine. 

The var ious items i n  equation (1) w i l l  now be s e l e c t e d  from  appendix B,  which 
g ives   t he   appropr i a t e   pa r t  of Lock's   theory.   Famil iar i ty   with  this   appendix and with 
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f i g u r e  1 (taken from r e f .  8)  i s  assumed. In   equat ion  ( l ) ,  dPF and dPB rep resen t  
both  induced dP1 and   a i r fo i l -d rag  dP2 power l o s s e s .  The induced power l o s s   f o r  
bo th   p rope l l e r s  is  determined by equation  (B33): 

where 

y = bo (see  eq.  (B23)) J 

Lock's t i p  loss f a c t o r  x, is  of  primary  importance  and more w i l l  be   said  about  it 
toward  the  end of t h i s   s e c t i o n .  The a i r f o i l - d r a g  power loss  for  the  combination  can 
be   s imi l a r ly   wr i t t en ,  from equat ion ( 5 2 5 ) ,  

( z)c = 2AOR 

where 

Adding equat ions ( 2 )  and ( 4 )  g ives   the   t e rm  to   be   d i f fe ren t ia ted   in   the   numera tor   o f  
equat ion (1) ; thus  I 

(2 + %) d r  = 2 A 0  (t10 + R )  

where 

tl = b (1 + x, cos 2$0) 

The power i n p u t   t o   e i t h e r   p r o p e l l e r  is given by equat ion (B26) a s  



where 

$qo = s i n  m0 + R cos m0 

Equations (6)  and (8) are s u b s t i t u t e d   i n t o   e q u a t i o n  (1) and are d i f f e r e n t i a t e d   w i t h  
r e spec t  to  0. The r e s u l t  is  

Equation (10) can  be  solved  for  0 t o   o b t a i n  

Subs t i tu t ion   o f   equa t ion  ( 7 )  in to   equat ion  (11) y ie lds   t he   op t imiza t ion   fo rmula   fo r  
t h e   d u a l - r o t a t i o n   p r o p e l l e r ,  

i n  which the   t h i rd   o f   equa t ions  ( 3 )  w a s  used. 

Equation ( 1 2 )  is used to   determine  the  blade-chord  dis t r ibut ion  once  the CL 
d i s t r i b u t i o n   o v e r  r i s  known. A s  no ted   for   equa t ion  (l), equation ( 1 2 )  has   to   be  
t r u e   f o r  a l l  va lues   o f  r < R ,  and i n   p a r t i c u l a r ,  k i s  t h e  same f o r   a l l  r with a 
value  that   has   to   be  found by t r i a l  and e r r o r   t o  make t h e  power absorbed by the  pro- 
p e l l e r   e q u a l   t o   t h e   e n g i n e  power output .  The power absorbed i s  found  by g raph ica l ly  
or   numer ica l ly   in tegra t ing   equat ion  (8) o v e r   t h e   r a d i u s   f o r   b o t h   p r o p e l l e r s   ( i . e . ,  
t he  power loss f o r   b o t h   p r o p e l l e r s  i s  found  by  multiplying  equation (8) by 2 ) .  I t  is 
he lp fu l  t o  n o t e   t h a t   t h e  power absorbed  should  increase  with  k .   Further   note   that  
i n s t e a d   o f   r e g a r d i n g   l i f t   c o e f f i c i e n t  as given,   the   chord  dis t r ibut ion  could  have  been 
p resc r ibed  and  then  the optimum l i f t  coe f f i c i en t s   de t e rmined ;   t he   a i r fo i l s   migh t   t hen  
be o p t i m i z e d   f o r   t h e s e   l i f t   c o e f f i c i e n t s .   C o n s i d e r  now the   func t ion  X0 - 

LOCK'S T I P  LOSS FACTOR X, 

A t  a given  advance  ra t io  J ,  the   func t ion  X, i s  a func t ion   of  x only.  I t  is 
the   r a t io   o f   t he   i nduced   ang le   o f   a t t ack   w i th   an   i n f in i t e  number of   b lades   to   the  
induced  angle   of   a t tack  for   whatever  number of   blades  happens  to   be  used.   Stated 
another  way, it is  the  average ra te  o f   f a l l   o f   p o t e n t i a l ,   t a k e n   a r o u n d   t h e   c i r c l e   o f  
the   b lade   e lement ,   d iv ided   by   the   normal   der iva t ive   o f   the   po ten t ia l  a t  the   vor tex  
s h e e t .   I n  view  of  these  physical  meanings, it seems obvious   tha t  X, must  be a 
s ignif icant   l ink  between  s ingle-   and  dual-rotat ion  aerodynamics.  
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I t  might   be   thought   tha t   the  x, f o r   d u a l - r o t a t i o n   p r o p e l l e r s   o u g h t   t o   b e   g i v e n  
a new symbol s i n c e   t h e   s i g n i f i c a n c e  seems so d i f f e r e n t  from t h a t   i n   s i n g l e - r o t a t i o n  
propel lers .   Strangely,   however ,   the  new X, i s  still a s ing le - ro t a t ion   func t ion  
because it is  merely  the X, assoc ia ted   wi th  a s ing le - ro t a t ion   p rope l l e r .   Th i s  
s ingle-rotat ion  propel ler ,   however ,   does   not   have  the optimum s ingle- ro ta t ion   p ro-  
pe l l e r   l oad ing ;  it has   i n s t ead   t he  optimum dual-rotat ion  loading  which  could  be 
obtained  f rom  Theodorsen 's   c i rculat ion  funct ion  K(x) .   This   radical   change i n  load- 
ing makes a cons ide rab le   d i f f e rence   i n   t he   func t ion  X,. 

A p p l i c a b i l i t y  of Theodorsen's  Theory to   Dual -Rota t ion   Propel le rs  

A s  p o i n t e d   o u t   i n   t h e   I n t r o d u c t i o n  of r e fe rence  1, Theodorsen's work w a s  based 
on t h e   h y p o t h e t i c a l   s i t u a t i o n   i n   w h i c h   t h e   d u a l - r o t a t i n g   p r o p e l l e r s   a r e   o p e r a t i n g   i n  
t h e  same plane.  I t  w a s  no ted   tha t   the   appl icabi l i ty   o f   Theodorsen ' s   theory   to   o ther  
s i t ua t ions   r equ i r e s   fu r the r   con f i rma t ion .   Th i s   ma t t e r  w i l l  now be considered  because 
it is  p e r t i n e n t   t o   t h e   d e t e r m i n a t i o n   o f  X, f o r   d u a l - r o t a t i o n   p r o p e l l e r s   o p e r a t i n g  
one  behind  the  other  on a s i n g l e   a x i s .  

Observe t h a t ,  when t h e   p r o p e l l e r s  are i n  t he   hypo the t i ca l   s i t ua t ion   o f   be ing   i n  
the  same plane,   equat ions (B32)  would be  symmetric;  thus, 

But, for the  combination  obtained by adding  these two e q u a t i o n s ,   t h e   r e s u l t  would 
again  be  equation (B33) in   appendix B,  wi th  no change i n   e q u a t i o n  ( 2 ) .  Therefore,  
the   p rev ious   der iva t ion   for   the   op t imiz ing   equat ion  would  proceed  with no change; 
equation ( 1 2 )  f o r  0 would be   the  same whether  the two propel le rs   were   in   the  same 
p lane   o r   no t .  S o  t h e  optimum planform  defined  by  Theodorsen's t h e ~ r y   a p p l i e s   w i t h o u t  
r e se rva t ion  when t h e  two p r o p e l l e r s  are mounted  one  behind  the  other. 

Determination  of X, for   Dual-Rotat ion  Propel lers  

The o n l y   q u a n t i t y   i n   e q u a t i o n  ( 1 2 )  that   cannot   be  considered known i s  xo, which 
first appea r s   i n   equa t ion  ( 2 ) .  The s i n g l e - r o t a t i o n   v a l u e s   f o r  X, cannot  be  used, 
as a l r eady   no ted ,   bu t  X, for   dua l - ro ta t ion   p ropel le rs   can   be   de te rmined  from a com- 
par i son   of   the  Lock and  Theodorsen  theories.  

I f   the   physics   and  mathematics   leading  to   equat ion ( 1 2 )  are c o r r e c t ,   t h i s  equa- 
t i o n  must  produce,  with  drag  neglected,   the same r e s u l t s  as are obtained  from 
Theodorsen. On page 87 of   re fe rence  1 ( the   equa t ion   j u s t   be fo re  eq. (12)), C r i g l e r  
g ives   t he   fo l lowing   equa t ion   fo r   l i gh t   l oad ings :  

- 
SCLW0 = ow, = - V 

nndx WV K(x) 



o r  

- J  
0 = w "(sin @,) K(x) = s'w - - 

TX 

On the   o ther   hand ,   equa t ion  ( 1 2 )  with  drag  neglected i s  

Equating  equations (13)  and  (14)  gives 

k P '  = w s '  
- 

where 

2 
4 s i n  Qo 

q '  = 

In   t he  l a s t  of   equat ions  (16) ,  K(x) comes from t h e   e l e c t r i c a l  measurements of 
Theodorsen ( f i g .  2 )  . Equation (15)   can  be  solved  for  X,: 

x. = 
q'  s' 

(k/w)p' - q ' s ' r '  

An independent  derivation  has  been made of   the   impor tan t   equa t ion   (17)   for  
determining X, from  Theodorsen's e lec t r ica l  measurements.   This  derivation  deals 
d i r ec t ly   w i th   t he   i nduced   ve loc i t i e s  and it i s  in te res t ing   tha t   Betz '   condi t ion   does  
not   play  any  par t ,   a l though it d i d   i n   t h e  ea r l i e r  d e r i v a t i o n .   F o r   d e t a i l s ,   r e f e r   t o  
appendix C . 

8 



Everything  can be regarded as known in   equat ion   (17)   except   the  r a t i o  k/G, 
which w i l l  now be found  from somewhat t a n g e n t i a l   c o n s i d e r a t i o n s .   F i r s t   n o t e   t h a t ,  
wi th   d rag   neglec ted ,   the   e f f ic iency   decrement   can  be determined  by  using  equat ions  (2)  
and (81, 

If equat ion  (ll), wi th  2 = 0, i s  s u b s t i t u t e d   i n t o   e q u a t i o n  (18) for  O r  t h e r e  
r e s u l t s  

l - = q k  
1 

I n   a d d i t i o n  to  equa t ion   (19 ) ,   ano the r   r e l a t ion   can  now be found  between r) 

and w.  I n   f i g u r e  3 (which is taken  f rom  ref .  l ) ,  r) i s  seen to  be p r a c t i c a l l y  
l i n e a r   w i t h  w f o r   l i g h t   l o a d i n g s .  The s lope  dr)/dG i s  taken  t o  be 

- 
- 

- =  dr) - 0 . 5  
dw 

which means t h a t  

1 - r) = - y w  = 0.5w dr) - 
d w  

- 

Therefore,   from  equations  (19)  and (21), it  f o l l o w s   t h a t  

o r  

" 
k - - 2.0 
W 

With t h i s   r e s u l t ,   e v e r y t h i n g  is  known i n   e q u a t i o n   ( 1 7 ) .  

The t i p  loss f a c t o r  X, defined  by Lock can now be ca lcu la ted   f rom  the  e lectr i -  
c a l  measurements of Theodorsen  ( refs .  1 and  7) by us ing   equat ion   (17) .  Some numerical 
values   have  been  calculated  and are discussed  in   "Resul ts"   and  in   appendix D. 
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Limiting Forms of X, 

The behavior  of x, near  x = 0 and 1 w i l l  now be i n v e s t i g a t e d .  

x = 0.- I t  can be seen t h a t   p '  = 0 and r '  = -1, since 4, = T/2; and q '  = 1 / 2 ,  
while s' -+ 03 (see eq. (16 ) ) .  Therefore,   equation  (17) shows X.  = 1 a t  x = 0. 
This is as it should  be,   s ince X.  = 1 would  be t r u e   i n   t h e   v i c i n i t y  of a vortex  on 
t h e  axis; t h i s   v o r t e x  is a f ea tu re   o f  the optimum dua l - ro t a t ion   p rope l l e r .  

x = 1.- The f u n c t i o n s   p ' ,  q ' ,  and r '  are a l l  f i n i t e  (see eq. ( 1 6 ) ) ;  b u t  
s' = 0 a t  x = 1 because K ( x )  is  zero  there .   Equat ion  (17)  now shows c l e a r l y  
t h a t  x. = 0 a t  x = 1. This is as it should  be  f rom  the  def ini t ion  of  X o .  

A l l  the   equat ions   necessary   for   the   op t imiza t ion   of  a dua l - ro t a t ion   p rope l l e r ,  
with  drag  considered,  have now been  obtained.   But   for   complete   def ini t ion  of   the 
p r o p e l l e r   ( i . e . ,   t o   s p e c i f y   t h e   b l a d e - a n g l e   d i s t r i b u t i o n s ,   f r o n t   a n d   b a c k ,   i n   a d d i t i o n  
to   t he   chord   d i s t r ibu t ion ) ,   t he   equa t ions   fo r   t he   i nduced   ang le   o f   a t t ack  By a r e  
needed.  These  equations are picked  out  of  appendix B a n d   g i v e n   e x p l i c i t l y   i n   t h e  
sect ion  "Dual-Rotat ion  Propel ler   Calculat ions,"   where  they are  a l s o  needed f o r   o t h e r  
purposes ,   l ike   performance  calculat ions.  

Recapi tulat ion 

In  the  opt imizat ion  equat ion  (eq.  (12)), everything  on  the r 
as something  given,  except X n r  which i s  found  from  equation (17 )  

i g h t  may 
. I n   u s  

t i o n  (17), equation ( 2 2 )  has   to   be  used.  I t  w a s  e n c o u r a g i n g   t o   f i n d   t h a t  
" 

be  regarded 
ing equa- 

- Theodorsen's 
work could   be   appl icable   to   the   se tup  where  one p r o p e l l e r  i s  behind   the   o ther .  I t  
would be   poss ib le   to   de te rmine  X, f o r  a l l  poss ib le   dua l - ro ta t ion   p ropel le rs ,   before-  
hand,  using  equation ( 1 7 ) ;  t hen ,   i n   t h i s   s ense ,   eve ry th ing  on t h e   r i g h t   i n  equa- 
t i o n  ( 1 2 )  would  be known. 

DUAL-ROTATION PROPELLER CALCULATIONS 

Optimum Prope l l e r  

I n   o r d e r   t o   c a l c u l a t e   t h e  optimum c h o r d   d i s t r i b u t i o n ,  it i s  only   necessary   to   be  
g iven   the   va lues   o f  J and Cp and   t he   " a i r fo i l   da t a . "  The " a i r f o i l   d a t a "   a r e  
a c t u a l l y   p r e s e l e c t e d   i n   t h e   s e n s e   t h a t   t h e   a i r f o i l   a n d   t h e   v a l u e   o f  CL,  CD,  o r  a 
have  been prese lec ted   to   p roduce  a d e s i r a b l e   c o n d i t i o n ,   l i k e  (CL/CD)max, a t  each 
r a d i a l   s t a t i o n   a l o n g   t h e  wing.  Then, 0 can  be  calculated  f rom  equat ion ( 1 2 )  using 
X, obtained by the   p rocedure   g iven   in   appendix  D .  

If t h e   a i r f o i l   d a t a   a r e   l i m i t e d   a n d   t h e r e f o r e   e r r a t i c ,   t h i s  w i l l  b e   r e f l e c t e d   i n  
the  shape  of  the  blade  planform.  This  could  cause  the  blade  to  be  unacceptably 
erratic,   requiring  smoothing  and  implying a quest ionable   smoothing  of   a i r foi l   data .  
The s e n s i t i v i t y   o f   t h e   a i r f o i l   s e c t i o n s   t o  Mach number and  Reynolds number may 
res t r ic t  the   ope ra t ing   r ange   o f   a l t i t ude   and   f l i gh t   ve loc i ty  a t  which t h e   p r o p e l l e r  
w i l l  be optimum. For   i n s t ance ,   an   ope ra t ing   cond i t ion   cou ld   be   env i s ioned   i n  which 
t h e   a i r f o i l s  are supposed t o   b e   s u p e r c r i t i c a l   o v e r  much or a l l  of   the   b lade  so t h a t  
the  planform  might  take a very   spec ia l   shape .  
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The no-load  blade  angle is given  by 

8 + (Tor s iona l   de f l ec t ion )  Y = @ , + B y + "  (23) 

i n  which t h e   t o t a l   i n d u c e d   a n g l e  By i s  given  by  equation (B27) ( taking  account  of 
eq. (B31)) so t h a t  

and fur ther ,   f rom  equat ion  (B23) ,  

= b o ( l  
Y + Coy) 

The Coy are defined  by  the  equations  immediately  following  equation  (B28);  
t hus ,  

Then equation  (25)  can be w r i t t e n   o u t ,   f o r   u s e   i n   e q u a t i o n   ( 2 3 ) ,  as 

Note tha t   equa t ions   (27)   do   no t   depend  on   any   averaged   quant i t ies   l ike   the  "mass 
c o e f f i c i e n t "  (compare  with  p.  86 i n   r e f .  1, r e l a t i v e   t o   i n t e r f e r e n c e   v e l o c i t i e s ) .  

The de ta i l ed   p rocedure   fo r   op t imiza t ion  is given  in   appendix E.  

Nonoptimum Propeller,   Given  Propeller,   Off-Design  Conditions 

Mathematical ly ,   these  problems  involve  replacing  equat ion ( 1 2 )  by  equat ion  (23) .  
The resul t ing  system,  compris ing  equat ion  (23) ,  two new induced  angle-of-attack 
formulas i n  place of   equat ions  (27) ,   and  the  two-dimensional   a i r foi l   data   (which may 
come from e i ther   wind- tunnel  t e s t  or  from a i r f o i l   t h e o r y )  are t o  be solved  by i tera- 
t i o n , ' p e r h a p s   s t a r t i n g   w i t h   t h e   a s s u m p t i o n   t h a t   t h e  By a r e   z e r o .  Then, a n   i n i t i a l  
(Xy can be calculated  from  equation  (23)  and a s t a r t i n g  C is t aken   f rom  a i r fo i l  
data. N e x t ,   a n   i n i t i a l  By can be found  which y i e l d s  new va lues   o f  (X and CLy 

a n d   e s t a b l i s h e s   a n   i t e r a t i o n  loop. 

LY 
Y 
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A new formula  for  By is needed  because  the C a r e  no longer   the  same f r o n t  
Ly and  back  (although s i s ) .  From equat ion (B27) it 1s seen   tha t   the   formulas  ( 2 7 )  

f o r  6, now become 

o r  

A new form  of  equation  (23)  should  be  added  to  these  equations  because now ay a r e  
not   the  same f r o n t  and  back: 

8, + (Tor s iona l   de f l ec t ion )  = (bo + By + ay 

This   equat ion i s  usua l ly   very   sens i t ive   because  OY and (bo a r e   o f t e n   n e a r l y   t h e  
same. I n  p a r t i c u l a r ,   t h e   t o r s i o n a l   d e f l e c t i o n  may be  considerable .  

The nonoptimum p r o p e l l e r   c a l c u l a t i o n  i s  not  simple  because it i s  i t e r a t i v e  and 
r equ i r e s   t he   s to rage   o f   a i r fo i l   da t a .   The re  i s  a l s o  a more fundamental   d i f f icul ty:  
the  circulation  function  has  only  been  determined  for  the  Theodorsen optimum pro- 
p e l l e r .  The more the   p rope l le r   and/or   opera t ing   condi t ion   depar t s  from  Theodorsen's 
optimum, the  more q u e s t i o n a b l e   t h i s   c a l c u l a t i o n  is. However, exper ience   wi th   s ing le-  
r o t a t i o n   p r o p e l l e r s   i n d i c a t e s   t h a t   t h e   r e s u l t s   o f   t h i s   c a l c u l a t i o n  w i l l  hold sur -  
p r i s ing ly   we l l .  

A more r igo rous ,   bu t   c l ea r ly  more d i f f i c u l t ,  method  would i n c l u d e   a r b i t r a r y  
p rope l l e r   t heo ry  i n  t h e   l o o p   ( a s   g i v e n   i n   r e f s .  2 and 4 ) .  Then,  each  time a c i r cu la -  
t i o n   d i s t r i b u t i o n  i s  obta ined ,  a r igorous  induced  veloci ty  and By would be  found. 
This   s impler   p rocedure   should   be   o f   g rea t   va lue   in   ge t t ing   s ta r ted   and   of ten  may be 
s u f f i c i e n t   w i t h o u t   t h e   i n t r o d u c t i o n   o f   a r b i t r a r y   p r o p e l l e r   t h e o r y .  

Lock's  methodology ( r e f .  8) appears   to  make ca l cu la t ions   fo r   dua l - ro t a t ion   p ro -  
p e l l e r s   e s s e n t i a l l y   l i k e   t h o s e   f o r   s i n g l e - r o t a t i o n   p r o p e l l e r s .  

See  appendix F for   de ta i led   p rocedure   o f  nonoptimum p r o p e l l e r   c a l c u l a t i o n s .  

RESULTS 

The func t ion  X, has   been   ca lcu la ted   for   dua l - ro ta t ion   p ropel le rs ,   wi th  
J = 5.1693 a t   s e v e r a l   v a l u e s   o f   x ,  by us ing   the   p rocedure   ou t l ined   in   appendix  D. 
There  were  four  blades  front  and  four  back. 
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The ca l cu la t ed   va lues   o f  X, a r e  shown i n   f i g u r e  4 p l o t t e d   a g a i n s t  x. Also 
shown i s  the   co r re spond ing   cu rve   fo r   s ing le - ro t a t ion   p rope l l e r s .  The curves  are   seen 
t o   d i f f e r   c o n s i d e r a b l y .  Note t h a t   s i n c e   s i n  $, is  a function  only  of x a t  a 
given J, X, can   a l so   be   p lo t t ed   aga ins t   s in  $, as i n   f i g u r e  5. 

Shown i n   f i g u r e  5 ( f i g .  5 o f   r e f .  6 )  are   the  convent ional   contours   of  X, f o r  
s ing le - ro t a t ion   p rope l l e r s .  The arrows show how the   base   po in t s   ( s ing le   ro t a t ion )  
a r e   s h i f t e d   f o r   d u a l   r o t a t i o n .  The arrow  points   and  the  base  points   are   calculated 
f o r   t h e  same value  of J; hence ,   t he   sh i f t  is v e r t i c a l .  Observe t h a t  by performing 
the   ca l cu la t ion   o f  X, a t  a s u f f i c i e n t  number of values  of J ,  a new s e t   o f   c u r v e s  
can  be mapped l i k e   t h e   o n e s   f o r   s i n g l e - r o t a t i o n   p r o p e l l e r s .  

DISCUSSION 

The paper i s  now largely  complete .  Some i s o l a t e d   t o p i c s  w i l l  now be taken up i n  
t h e   l i g h t  of  what  has  been  said  in  previous  sections.  

Question  of  Infinite  Chords 

I f   equa t ions  (16) and .(17) a r e   s u b s t i t u t e d   i n   e q u a t i o n  ( 1 2 )  w i t h  2 = 0 ,  t h e r e  
r e s u l t s  

bu t ,   s ince  

and 

it f o l l o w s   t h a t  

S i n c e   a l l   q u a n t i t i e s  on t h e   r i g h t   o f   e q u a t i o n   ( 3 1 )   a r e   f i n i t e ,  it is c l e a r   t h a t   c / d  
i s  f ini te .   There  can  be no i n f i n i t e   c h o r d s  when X, i s  determined i n  t he  way given 
i n  t h i s   p a p e r .  

Competition Between Single  and Dual Rotat ion 

The equa t ions   g iven   he re in   degene ra t e   ea s i ly   i n to   s ing le  ro t a t ion   w i thou t  change 
i n  form. I t  i s  on ly   necessa ry   t o   s ee   t ha t  any  term  involving <,, is  to   be  removed. 
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The op t imiza t ion   o f   s ing le -   o r   dua l - ro t a t ion   p rope l l e r s  is  a s imple   ca l cu la t ion ;  
t h e r e f o r e ,   t h e   s a f e s t  and b e s t  method o f   eva lua t ing   s ing le -  and dual-rotat ion  pro-  
p e l l e r s  would  seem t o   b e  a simple  comparison  of  various  complete  propeller  optimiza- 
t i o n s  as to   e f f ic iency ,   weight ,   and   cos t ,   ra ther   than   an   a t tempt   to   d i scern   t rends   in  
the  equat ions.   Cost   might   be set  p r o p o r t i o n a l   t o   t h e   t o t a l  number of   b lades .  Weight 
might   be  s t rongly  inf luenced by J, b u t  it i s  no t   t oo   c l ea r   because   t he   p rope l l e r s  
tu rn   s lower   wi th   increased  J and c e n t r i f u g a l   s t r e s s e s   a r e   r e l i e v e d .  

I n   p a r t i c u l a r ,   t h e  two c u r v e s   i n   f i g u r e  4 l abe led   " s ing le"  and  "dual" t e l l  
no th ing   of   the   re la t ive   mer i t   o f   s ing le   and   dua l   ro ta t ion ,   because   they   a re   bo th   for  
t he  same advance r a t i o  and t h e   t o t a l  number of b l ades   fo r   t he   s ing le - ro t a t ion   p ro -  
p e l l e r  i s  o n l y   h a l f   t h a t   f o r   t h e   d u a l - r o t a t i o n   p r o p e l l e r .  The s ingle- ro ta t ion   p ro-  
p e l l e r  i s  l i k e l y   t o  have  twice  the number of  blades as e i t h e r   o f   t h e   d u a l - r o t a t i o n  
p a i r  and the   va lues   o f  J might   d i f fe r   cons iderably .  

Comparison  of x, fo r   S ing le  and  Dual Rotat ion 

The most cha rac t e r i s t i c   d i f f e rence   be tween   t he  two kinds  of X, is t h a t   t h e  
va lues   fo r   s ing le   ro t a t ion   g rea t ly   exceed   un i ty   fo r   i nboa rd   r ad i i   wh i l e   t he   va lues   fo r  
d u a l   r o t a t i o n   s t a y  below uni ty   o r   exceed  it o n l y   s l i g h t l y .  The r eason   fo r  t h i s  d i f -  
fe rence  i s  t h a t  X. = 1 marks the   rad ius   where ,   for  a h igh-J   p rope l le r ,   the   benef i t  
from dual   ro ta t ion   comple te ly   cance ls   se l f - induced   losses .  

This   cancel la t ion  can  be  seen  in   the  equat ions  for   the  induced power loss and the  
induced  angle   of   a t tack.  The a x i a l   l o s s e s  d o   n o t   p a r t i c i p a t e   i n   t h e   d u a l - r o t a t i o n  
a c t i o n  and t e n d   t o  make t h e   c a n c e l l a t i o n   l e s s   c l e a r  so t h a t ,   f o r   s i m p l i c i t y ,   t h e  
p r o p e l l e r  of  very  high J w i l l  be  considered. Now, @o + T/2 and  cos 2@, -+ -1; 
therefore ,   equa t ion  ( 2 )  for   the  induced power loss becomes 

(2) = A2bO 2 (1 - X,) 
C 

which shows tha t   the   induced  power loss becomes negat ive  when X, exceeds  unity.  
Clear ly ,   the   opt imized  chords w i l l  become l a r g e  where X, = 1. Any opt imiza t ion  
process must have b u i l t - i n   c o n t r o l s   f o r   p r e v e n t i n g   t h e   c a t a s t r o p h e   o f   i n f i n i t e   c h o r d s  
a t  X, = 1. Theodorsen 's   e lectr ical-analogy  approach  br idged  a l l  t h i s  mathematical 
d i f f i c u l t y  and  went d i r e c t l y   t o   t h e   u l t i m a t e   s o l u t i o n .  

These  matters  can  be  seen  again i n  equat ions ( 2 6 )  and ( 2 7 )  for   the  induced  angle  
of   a t tack.   There it is  s e e n   t h a t   t h e   p l a c e  on the   b lade  where X, = 1 is  where the  
sum of the  induced  angles   of   a t tack  of   f ront   and  back  propel lers  i s  zero.  Again, 
t hese  remarks  apply  to  the  very-high-J  propeller  where  the  beclouding  effect   of  the 
a x i a l   l o s s e s  i s  absent .  

Compromised Optimum Prope l l e r  

I t  seems i n e v i t a b l e   t h a t   t h e  optimum dua l - ro t a t ion   p rope l l e r  w i l l  be  compromised 
because  of  the awkwardly large  inboard  chords.   In   other   words,   the   chords  inboard 
may be   a rb i t r a r i l y   r educed   fo r  a p r a c t i c a l   r e a s o n ,   l i k e  a p roh ib i t i ve ly   g rea t   l eng th  
of   p rope l le r   shaf t   needed   to  accommodate the  large  inboard  chords.  
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Furthermore, it is  t r u e  t h a t  t h e  e f f i c i e n c y  is n o t   v e r y   s e n s i t i v e   t o   v a r i a t i o n s  
of  the  planform  from  the optimum, a s  i n  wings  where the  s t ra ight- tapered  planform is 
almost  as good as t h e   e l l i p t i c a l   p l a n f o r m .  So, why is the optimum given so much 
a t t e n t i o n  i n  the  l i terature?  Perhaps  the  answer is t h a t  the  optimum serves  as a r e f -  
erence by which  compromises  can  be  kept  under  control.  Thus,  most  of t h e  work of 
aerodynamic  optimization may be  done  from the   s tandpoin t   o f   the   g iven   propel le r  
(app. F) w i t h  r e l a t i v e l y   l i t t l e   a t t e n t i o n   g i v e n   t o   t h e  optimum propel ler   (app.  E ) .  

The funct ion X, is  indispensable  i n  calculating  the  performance  of  the  given 
propel ler   (app.  F), y e t  it is determined  from  measurements f o r   t h e  optimum p r o p e l l e r .  
I t  is somewhat paradoxica l   to   use   o f f -des ign   ca lcu la t ions   to   op t imize  a p r o p e l l e r  
when these   o f f -des ign   ca lcu la t ions  make use  of a X, determined  from optimum pro- 
p e l l e r   r e s u l t s .  The p o i n t  is  s ing le - ro t a t ion   expe r i ence   i nd ica t e s  X, can  be 
"s t re tched"   to   p rovide   answers   tha t   a re   usefu l  i n  off-design  conditions,   al though 
t h i s  may not   ex tend   as   wel l   to   dua l - ro ta t ion   p ropel le rs .  

CONCLUSIONS 

The Theodorsen  and Lock t rea tments   o f   dua l - ro ta t ion   p ropel le rs  were  combined, 
and i t  i s  poss ib l e   t o  draw the  following  conclusions: 

1. The funct ion X,, t i p  loss f ac to r ,   u sed  i n  the  Lock treatment  can  be  deter-  
mined f o r   d u a l - r o t a t i o n   p r o p e l l e r s  from  Theodorsen's  electrical   analogy.  Formerly,  
these   func t ions   on ly   ex is ted   for   s ing le   ro ta t ion  and  were  inadequate  for  dual 
ro t a t ion .  

2 .  The e f f e c t  of a i r f o i l   d r a g  can  be  included i n  the  opt imizat ion  of   dual-  
r o t a t i o n   p r o p e l l e r s .  

3. Combination  of t he  Lock and  Theodorsen  treatments  enables  the  off-design  per- 
formance  of dua l - ro t a t ion   p rope l l e r s   t o  be  es t imated  without   re l iance on an  averaged 
quant i ty ,   such  as   the mass coeff ic ient   advanced by Theodorsen. The mass c o e f f i c i e n t  
has  only  one  value  for  the  whole  propeller  disc.  

4 .  Conclusion 3 a l s o   a p p l i e s   t o   t h e   c a l c u l a t i o n  of the  blade  angles of optimum 
dua l - ro t a t ion   p rope l l e r s .  

5. From the  Lock t rea tment   o f   dua l - ro ta t ion   p ropel le rs ,  it can  be shown t h a t   t h e  
optimum planform is  the  same whether  the two p r o p e l l e r s   a r e  i n  the  same plane  or  one 
behind  the  other.  

6. The combination  of  the Lock and  Theodorsen  theories  appears  to  enhance  both 
of  those  works. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
November 23 ,  1981 
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APPENDIX A 

CALCULUS  OF  VARIATIONS  APPROACH TO MAXIMUM EFFICIENCY 

The q u a n t i t y   t h a t  is t o  be minimized is t h e   t o t a l  power l o s s   f o r   b o t h   p r o p e l l e r s  

s," (2 + d r  
dP 

d r  

The q u a n t i t i e s   t h a t  are h e l d   c o n s t a n t   i n   t h e   p r o c e s s  are t h e  power absorbed  for   both 
p r o p e l l e r s  

d r  and d r  

The l a t t e r  two are n o t  summed. They are he ld   cons tan t   ind iv idua l ly ,   bu t  it i s  not  
s t a t e d   a t   t h i s   p o i n t   w h a t   t h e s e   c o n s t a n t s   a r e .  The chords,  and  hence 0, a r e   n o t   y e t  
assumed t o  be  the same f r o n t  and  back. 

Chapter 6 of   re fe rence   10  w i l l  be   fol lowed  with  par t icular   emphasis  on 
sec t ions   6 .2   and   6 .5 .   In   these   sec t ions ,   there  is unfortunate ,   but   probably  neces-  
sary,   rotat ion  of   the  meanings  of   symbols .  The independent   var iable  0 becomes y 
and the  dependent   var iable  r becomes x, in   paragraph  6 .5 .   But   in   paragraph  6 .2 ,  
x and y represent   dependent   var iab les   l ike  0,  and t represents   the  independent  
va r i ab le .  

For K '  ( i n   r e f .  10 K i s  not  primed) 

K ' = ( Z f 2 ) + k F R -  dP dQF  dQB 
+ k B R -  

d r  d r   d r  

i n  which the  dP and dQ depend  on 0. 

Then f o r  E u l e r ' s  equation  (eq.  (6-15)) i n  t h e   r e f e r e n c e ,  

There is  no Or i n   t h i s  problem, so the  second  term i s  zero.  The Euler  equation 
becomes 
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S ince   t he re  are t w o  0 ' s  (OF and O B ) ,  t h e r e  are t w o  Euler  equations.   Thus,  

a K '  
" 

30, 
- 0  

and 

a K '  
" 

30, 
" 0 

Now t h e  sum o f   t h e  power losses 
by t h e   f r o n t   p r o p e l l e r   d o e s   n o t  
t i o n s   t h e n  become 

and 

depends  on  both OF and OB, b u t   t h e  power absorbed 
depend  on OB and vice versa. The t w o  Euler  equa- 

In   t hese   equa t ions ,   t he  dP and dQ are  taken  from  appendix B, then  equa- 
t i o n s  ( A 2 )  are t w o  r e l a t i o n s   d e f i n i n g  OF and OB as func t ions   o f  r .  When O i s  
t h e  same front  and  back as i n   t h e   t e x t ,   t h e  two equat ions  become one (QF and QB are  
t h e  s a m e  when OF = OB in   t he   app rox ima t ion   accep ted ) .  Then equat ions  ( A 2 )  become 

which,  except f o r  t he   nonessen t i a l   s ign   o f   k ,  i s  the  same as equat ion (1) i n   t h e   t e x t  
and i s  the   des i r ed   Be tz   cond i t ion .  
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APPENDIX B 

INTERFERENCE  VELOCITY  FOR A CLOSE PAIR 

OF CONTRA-ROTATING AIRSCREWS 

by 

C.  N. H. Lock 

The B r i t i s h   C r o w n  holds the copyright fo r  t h e  report, R & M No. 2084, w h i c h  i s  
reproduced i n  t h i s  appendix w i t h   p e r m i s s i o n  of t h e  C o n t r o l l e r  of H e r   B r i t a n n i c  
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Interference  Velocity  for a Close Pair of Contra-rotating 
Airscrews 

BY 
C. N. H. LOCK, M.A., F.R.Ae.S., 
of the  Aerodynamics  Division, N.P.L. 

Summary.-A method is developed of calculating  the performance of a  pair of contra-rotating airscrews,  closely 
analogous to  that described in R. Sr M. 20353 for  a single  airscrew.  The  assumptions  made are considered to be 
theoretically justifiable if the  interference velocities aee so small that  their  squares  and  products  may be neglected. 
It is  .hoped to compare  calculations by the  present  method  with  experimental  results. 

The  equations  have been applied  by  an  approximate single  radius  method to give the difference in blade setting 
between the  front  and  back airscrews  for equal power input ; a  comparison is also made between the efficiencies of 
single- and  contra-rotating  airscrews. 

1. Introduction.-The present note  contains  equations for a close contra-rotating  pair of air- 
screws based  on the same  assumptions as those of R. & M. 1674l and 184g2, together  with  the 
following special assumptions.  These  assumptiocs  appear  to  be  justifiable when the interference 
velocities are considered as  small  quantities of 'the first order of which  squares  and  products 
may be neglected. 

(i) The interference  velocities at  any blade  element may be  calculated  by considering the 
velocity fields of the  two airscrews  independently  and  adding the effects. 

(ii) Either airscrew  produces its own interference  velocity field which so far  as  it affects the 
airscrew itself is exactly  the  same  as if the  other airscrew were absent  and includes the usual 
tip loss correction. 

(iii)  Added to  this is the velocity field of the  other airscrew. Since the  two  are  rotating in 
opposite  directions, the effect will be  periodic and  its  time  average  value  may be taken  to be 
equal to  the average  value  round a circle having a radius of the  blade  element. 

(iv) In considering the  interference of either airscrew on the  other,  it is  necessary to resolve 
the mean  interference  velocity into  axial  and  rotational components.- 

The  average  value  round a circle of the  axial component  interference  velocity  varies slowly 
through  the airscrew disc. It is  therefore  reasonable to assume  for the  axial component for a 
close contra-rotating  pair  that  the effect of either  airscrew (y )  on the  other (2) is  equal to  the mean 
axial  component  in the plane of the airscrew disc of (y).* 

The  average  value  round a circle of the  rotational  component is  zero3 at  any distance in front 
of the airscrew  disc and  has a constant  value at  any distance  behind,  this  value being twice 
the mean effective value for the airscrew  blade  sections. I t  is  therefore  assumed  as  regards  the 
rotational  component that  the effect of the  rear airscrew on the forward  airscrew is zero ; the 
effect of the forward  airscrew  on the  rear airscrew  is  equal to twice the  mean  value of the  rotational 
component  in the plane of the disc of the forward  airscrew  with its  direction reversed. 

* Varying  degrees of closeness might be allowed  for  empirically by multiplying zcF by (1 - ,u) and us by (1 + p ) ,  where 
p is a parameter  -varying  from a small  value  for a close pair  to  a  value  near  unity  for  a  distant  pair. 

(iE111+) A 
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. 2. Equations of motion will now be  written  down on the Iines of the above  assumptions using 

as far  as possible the  ordinary  notation (see Fig. 1) .  In order to  maintain  the  greatest possible 
degree of genexality the equations will be  developed to as  late  a  stage  as possible on the basis 
of assumptions (i) and (ii)  only. Thus  either airscrew  is  subject to its own interference.  velocity 
w,, which is  normal to  W (Fig. 1) and is given by  the usual  equation 

w1 = sc,w/4xsin 4 ; .. .. .. .. .. .. .. - - (1) 

in  addition it is subject to  the interference  velocity of the  other airscrew whose axial  and  rotational 
components will be  denoted by u and u. 

The values of u and v according to  assumptions (iii) and  (iv)  nlay be obtained  as follows. The 
mean  value el of wl taken  round  the circle of the blade  element is given by  the  equation 

el = sCLW/4 sin 4 
= xw, , . . .. .. ..  .. .. ..  .. .. * * (2) 

and is  in the same  direction (normal  to W )  as wl.* Then according to  assumptions (iii) and  (iv), 
denoting  the  front  and  back airscrews by suffices F and B (Fig. 1,  b and c), 

u, = 4, cos 42 
= X B W l ,  cos 45, .. .. .. .. ..  .. .. - - (3) 

zcB  = XFW,, cos 42, .. .. ..  .. .. .. .. - * (4) 

v , = O ,  .. ..  .. .. .. .. .. .. .. - - (5) 

v, = - 2xFwlF sin 4,. .. .. .. .. . .  .. .. * (6) 

In what follows the general notation (u, v) will be retained  as long as possible. 
The general  equations will first of all be obtained in a form  convenient  for ultimate  reduction 

to a  first  order  theory  analogous to  that  of R. & M. 20353 using the following notation.  Write 
for either  airscrew 

w, = W tan y , .. .. .. .. .. .. .. . .  * - (7) 
(Fig.  1) which by  equation (1)  implies  also 

sC, = 4% sin 4 tan y . . . ..  .. .. ..  .. .. - (8) 

Write also (as in R. & 81. 184g2) 
4 = 40 + B', .. .. . .  .. ..  .. .. .. - - (9) 

where 
V = 7S tan +o. .. . .  .. .. ..  .. . .  .. . . (10) 

Resolving  parallel and perpendicular to  the direction of W (Fig. 1) for either  airscrew*, 
W = YQ sec do cos B + u sin 4 - v cos 4 , . . .. ..  .. . . (11)  

wl = W tan y = 7 9  sec do sin B - u cos 4 - v sin 4 , .. .. . . (12) 

where, if assumptions  (iii) and {iv) are  made, u and v are given by  equations (3-6). 
.~ 

* Strictly  speaking the value of 4 corresponding to u, v will differ  from that  appropriate  to w, but  the difference is of 

t Varying  degrees of closeness  might be allowed for  empirically by multiplying up by (1 - p )  and uB by (1 + p) 

the second  order in w,/W and will be ignored. 

where p is  a parameter  varying from  a  small  value  for  a close pair to a value  near  unity for a distant  pair. 
For  a single  airscrew, = 7, and  the symbol 7 is not used. 

8 W is the projection of the broken  line C D E A on A B ; wl is  the projection of the reversed line A E D C on B C .  
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For  the  thrust  and  torque  acting on a blade  element we have  the  usual  equations 

d T  = N(dL cos 4 - d D  sin e ) ,  
(l/r)dQ = N(dL sin 4 + d D  COS rj), 

where 
dL = +pcW2CLdr, 
d D  = +pcw2cDdr, 

so that 
(dT/dr) = nprsW2 (C, cos 4 - C, sin e ) ,  . . .. .. .. .. . . (13) 

(l/r) (dQ/dr) = nprsW2 (CL sin rj + C, COS 4). . .  .. .. .. . .  . . (14) 
For  the  total power loss (power input  minus  thrust power) we have 

QdQ - VdT = N d L  (rQ sin 4 - V cos 4)  + N d D  (rQ cos 4 + V sin rj) . 
By the geometry of Fig. 1 it follows that for the  induced loss (defined here as the  part of the 
power loss depending  on the lift of the  blade  elements), 

dPl = NdL (rQ sin 4 - - V cos e ) ,  
(dPl/dr) = nprsW2rQ sec eo C, sin B ,  .. .. .. . .  .. . . (15) 

and for the  drag loss 
d P 2   N d D  (rQ cos I$ + V sin e ) ,  

(dP2/dr) = nprsWVQ sec eo C D  COS p.  ..  .. .. .. . .  . . (16) 
Equations (13-16) are  all  identical in form with those for a single airscrew. 

Equations (10-16) with ( 3 - 6 )  will be developed into forms  analogous to those of R. & M. 184g2 
and R. & M. 1674l in tj7 and 98 respectively. The most  practical  and  useful  form is obtained  by 
considering and y as  small  quantities  and neglecting squares  and  products of p a d  y for both 
airscrews. The  resulting  equations analogous to those of R. & 31. 203s3 are developed in 393-5. 

3. First Order Theory.-Consider B ,  y as  small  quantities of the first order  and wrire 

uy = POywl ,J  1 * .  
.. .. .. . .  ..  .. .. . . (17) 

vy = %,%r 

and 
Poy sin c o y  - yoy cos c o y  = t o y  , 
Poy cos c o y  + yoy sin c o y  = c o y  2 

} . . . .  . .  .. .. . . (18) 

where either y = F ,  z = B or y. = B ,  z = F.  
Thus  equation (1  1) gives for  either  airscrew, 

Wy = rQ, sec + b y  + tOYWZYZ + O ( Y 2 )  3 - . .  ..  .. .. . . (19) 

( B  - Y ) , Y Q Y  sec c o y  = 5oyrQz sec 9ozrz + O(Y2) , .. .. . . (20) 
and  substitution  in  equation (12) gives 

for  either y = F ,  z = B or y = B ,  z = F.  On the basis of equations (3-6) we have, 

POF = %OB cos COB f O(7) * i 
.. .. .. .. .. . . (21) 

A 2  
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Since 

r a y  tan +oy =V = r 9 ,  tan +or , 
equation (20) may be written  in  the  form 

( B  - Y I y  = soy~yIIJ,  + O b 2 )  t * - . .  . .  . ._ .. ..  .. . . (22) 
where 1, = (sin +o,/sin 

Also from (8) for  either  airscrew, 
Y = bsC, + O(Y? 9 

where 
l/b = 4x0 sin eo*, 

. .  .. .. . .  . . (23) 

so that sC, is of the same  order  as y .  

determine 8 for both airscrews. Then  equations (15) and (16) in  the form 
If C, is given for both airscrews,  equations (23) determine y and  equations (20, 18 and 21) 

(dPJdr) = nprs. CLr3Q3 sec3 eo. ,B + O(y3)  , . . . .  . .  .. .. * .  (24 )  
(dPz/dr) = np?'S. C D Y 3 Q 3  SeC3 eo + o ( y 3 )  . .  .. .. .. .. * *  ( 2 5 )  

give the power losses of either airscrew. In general it is convenient to consider sC, as a small 
quantity of  order ~2 so. that  both  dPl/dr  and  dP,/dr  are of order 7 2 .  To  the first order  the power 
input  to  either airscrew is 

sZ(dQ/dr) = nprsr3B3 sec2 eo (C, sin eo + CD COS eo) + O(y2) . . .  . .  . . (26) 
The  further development  analogous to  that of R. & M. 20353 required to determine C, for 

either airscrew for given blade  angle setting is given in $5, but  it is convenient first to consider 
the application of equations (24-26) to determine  explicitly the  power input  and power wastage 
to  the first order, for given C L ,  for the  particular case of equal  rotational speed and power input 
for  the  two airscrews. 

4. Special Case. Equal Rotational Speed and Power Input.-Equal Rotational Speed.-It 
follows from  equations (10) and (23) that equal  rotational speed of the  two airscrews implies 
equal  values of eo, x. and b so that A,, is unity.  Equation (22) then gives 

By = Y y  + tOYYI + Oh2)  3 . .  . .  . .  .. .. .. . . (27) 

(~PM), = npl .4~3  sec3 eo (sc,), (7, + to, Y,) + o ( Y 3 1 ,  .. . .  . .  . . (28) 
so that from (24) 

and using equations (21) 
s o F  = x0 cos2 $0 + O ( y ) ,  t o B  = x0 (COS' +o - 2 sinZ do) + O(r) 

(dPJdr). = zpr ( 7 9  sec +0)3  (sC,),{y, + xoyF (cos2 +o - 2 sin2 +o)} + O(?) . * *  ( 3 0 )  

Equal Rotational Speed and Power Input.-Equation (26) shows that  equal power input  to 
the  blade element at  radius r combined  with  equal rotational speed  implies that  

and 1 . . . .  . .  . .  .. .. . . (31) 

equations (29) and (30) then become 

(SCL)F - ( scL)B = O(y2) 

YF - Y B  = O(Y2) ; 

(dP1/dr)F = npr ( 7 9  SeC SCLY (1  + X 0  COS* 40) f o(Y3), 
(dPJd7). = npr (rQ sec sC,y ( 1  + x. cos2 eo - 2xo sin* eo) + O(y3)  . . .  . . (32) 

"~ ~~ 

* R. & M. 203S3, equation (IO). 
- .  ~. 
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For  the  combination of two airscrews 

(dP,/d7),  = npr (7Q sec 40)3 2sC,y (1 + x. cos 240) + Oly3) . ..  .. * *  (33) 
Equations (31-33) and (25) transformed  into  equations for the coefficient pel, pC2 of induced 
drag power loss, analogous to equations  (31)  and (33) of R. & M. 20353, may be used to calculate 
the .power  loss grading for all radii for a given distribution of sC, (equal for the  two airscrews) ; 
the corresponding  blade  angle distribution  may be obtained  from $5. The power input  grading 
(torque grading) may  be  obtained from  equation  (26)  or more accurately (as in R. & 31. !20353) 
from  equation  (14) using the more accurate value of W obtained below in $6. In  the  latter 
case the power input will not  be  exactly  equal for the  two airscrews if the values of sC, are  equal. 
The second order difference in sC, required to make the power inputs  equal  to  the second order 
is determined  in $6. Or, the performance for a given  blade  angle distribution  may be deduced 
from  the  equations of $5 ; the blade  angles at  standard  radius  (0.7)  might be adjusted  to give 
equal power input  at  that radius. 

Example.-For the  purpose of illustration  equa.tions  (33), (25) ar?d (26) have been used' to 
calculate the  partial efficiency for a section at  standard  radius  (0.7) for equal  .rotational speed 
and power input.  The  formulae (deducible  from  equations (31-33), (25) acd (26))  are 

yC,  (1 + x. cos2 C0 - 2 x o  sin2 40)  + CD 
COS 4;- (c, sin $o + C, COS 40)  l - q T J B =  ~ ".___ . .  

Y C L  (1 + x O  cos ' 4 0 )  + c D  

COS 4o (C, sin do + CD COS 40) ' . .  . .  . .  

.. . . (34) 

. .  . .  . .  
with 

y = sC,/(4x0 sin +o) = bsC, . . .  .. . .  . .  .. . .  . . (37) 
In Fig. 2 values of (1 - qc) are  plotted far a range of values of J for (1) a pair of contra-rotating 
two bladers and (2) a pair of contra-rotating  three-bladers ar.d for the following values of s ,  C ,  
and CD :- 

The values of s and C, are  those at  radius 0 . 7  for airscrew B in R. & 31. 20214, while the value 
of C, is adjusted to give  a partial efficiency for  this radius equal  to  the calculated efficiency 
(0.878) for the whole airscrew. The calculations  correspond  therefore, to a power input  to each 
airscrew of 2,000 h.p. at  450 m.p.h.  equal  to  that assumed  in R. & 31. 20214 (a total of 4,000 11.p. 
for the  two airscrews)  for the same  diameter,  rotational speed and  height.  They were made 
for a range of values of J from 1 27 to 4.54.* They  are  compared  with  the corresponding 
efficimcy figures for a single airscrew of double (the  same  total)  number of blades and solidity 
and also with airscrews having  the  same  number of blades as one of the  contra-rotating  pairs 
and  the same  total  solidity.  The  equation corresponding to (36) for a single airscrew  is 

s = 0.090, C, = 0.56, C, = 0.017. 

.. .. .. 
with (37) in which it  must be remembered that values of x. and s must  be  used,  appropriate to 
the total number of blades  ar,d  solidity. Thus  the value of s for the single propeller has twice 
the value for the  correspondirg  contra-rotating  pair,  and so the  value of y in (38) would be  double 
that in (36) apart from thc  change in x. due  to doubling the  number of blades. 

The  results of Fig. 2 show that for the present case the increase of efficiency as  between the 
2-bladers (contra-rotating)  and  the 4-bladers  (single-rotating)  varies  from 1 . O  per cent. t o   4 -6  
per  cent.,  and  the increase as between the 3-bladers (contra-rotating)  and  the  6-bladers (single- 
rotating) varies  from 1 -.7 per cent.  to  4.8 per cent. for the  particular values of s ,  C, and C, chosen. 

* The  actual efficiency figures for the highest  values of J would in  practice be reduced  by  the  increase of C, due to 
increased  compressibility effect. 

" " " " " 
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5. The  Relation  beheen sC, and Blade  Angle 8 to  the First Order,  for  the  General Case.- -This 

Write 

may be obtained  by a similar  method to  that of R. & M. 20353, s3, as follows :- 

e - + , + & = @ ,  .. ..  .. .. ..  ..  .. .. .. . . (39) 
and 

asC, = a + E 

= O " B ,  .. .. .. .. .. .. .. .. . . (40) 

where a and E define the  (straight line)  lift curve a s  in R. & M. 20353, equation (1  l ) ,  and  are, 
in  general,  functions of the Mach number. 

Comparison of (40) and (23) gives 
bO = bp + ay + O ( y 2 )  , . . - . .  .. .. .. .. .. . . (41) 

which with (22) determines OF,  0, as  functions of y F ,  y e  and so of (sC,), and (sC,), in the  form 

' 7  = ( b >, Y y  + COyIy*Y1 + O W )  , * . .  .. ..  .. . . (42) 

withy = F ,  z = B or y = B,  z = F. Using the relation I,, I ,  = 1,  the  pair of equations 
represented by (42) may  then be solved  for y;, y1 in the  form 

( scL)y  = ( y / b ) y  = {(a + b ) x  @ y  - bsCOy'y~ @x}/{(' + b ) F  (a  + t ) B  - b$BcOFcOB) + O ( y 2 )  # (43) 

which reduces to  equation (13) of R. & M. 2 0 S 3  on putting CoF = COB = 0. In  this  pair of 
equations,  using (18) and (21) we have 

50, = XOB cos #OB cos #OF f O ( r )  > .. .. .. .. .. - -  (44) 
COB = %OF (cos #OB cos +OF - sin #OB sin #OK) f O ( y )  9 .. .. * * (451 

and 
AFB = l / I B F  = sin +oF/sin . . .  .. .. .. .. .. . . (46) 

Special  Case.  For  Equal  Rotational  Speed, using the results of $4 equafion (43) becomes 

( S C L ) F  = Y F / b  

= { (a  + b) 0 ,  - x 0 6  cos2 #oOB}/((a + b)2 - xo2b2 cos2 C0 
(cos2 4 0  - 2 sin2 # o ) }  + O(r2) , 

( s C L ) B  = Y B / ~  

= { (a  + b) 0, - x,b (cos2 do - 2 sin2 40) @,}/((a + t)2 - xo2b2 cos2 +o 

(cos2 bo - 2 sin2 +o)} + a(y2) . . . (47) 
For  equal  rotational  speed and equal  power input  to  the blade  element at radius r equation (42) 
becomes  (using 31) 

and so 
@ - @  - 

F B " y ( ( O F  - COB) + '(7') 
= 2 y x o  sin2 #o + O ( y 2 )  

= +sC, sin C0 + O(y2) . .. . .  . .  . .  .. . .  . . (48) 

This  value  is  plotted  against J in  Fig. 3 for the values of sC, used in $4 and varies  from 0-7  deg. 
to 1 -3 deg. over the  range of J considered. 
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sin 4 = sin do (1 + B cot do) + 0 ( y 2 )  , . . .. .. .. .. 
cos 4 = cos #o (1 - p tan do) + O ( y 2 )  , . . .. .. . .  .. 

with 
b y  = yy + toyy;lyR,yR, f O(Y2) D .. .. .. .. .. .. 

from (22). Equation (49) then gives 

w,ll sin 4y = r2Q2y” tan d o y  sec d o ,  (1 + [%o, + 50 ,  cot do,] l,Yl 

+ Yy cot do, }  + O(r2) , .. 
w; cos d y  = raQy2 sec doy (1 + [%oy - coy tan do,] l , , ~ ,  - yY tan do,> + 0 ( y 2 )  ; 

W,Z sin dY = r*Q,2 sec2 {sin do, + &,J, [poy (3 - cos 2dOy) - vOy sin 2dOy] 
or 

+ Y y  cos h y }  + O(y2) J .. 
W; cos +y = r2Q; sec2 dOy {cos do, + +ly,yR,  boy sin Zdoy - yo, (3 + cos 2dOy)] 

- Y y  sin do,> + O(r2) - .. 

.. 

. .  

. .  

.. 

. .  

.. 

. .  

In  evaluating Q(dQ/dr)  and V(dT/dr)  it is  reasonable to consider CD/C,, as before, as a small 
quantity of the same  order as y ,  and  to write 

Q(dQ/dr) = nprzQW2 sin 4 sCL {I + ( C D / C L )  cot do}  + O(y3) , .. . . (57) 

V ( d T / d r )  = npriQ tan do W2 cos 6, sC, (1 - (C,/C,) tan do} + O(y3)  . .. . . (58) 

In these  expressions I V  sin 4, W2 cos 4, are given by  equations (53-56) in which y is given by 
y = bsC,, 

so that  the  torque  and  thrust power loss grading  may  be  evaluated  as far as  terms of order y2 
if the  value of sC, is  known to  this order for each  airscrew. Equations (43-46) give the values 
of sC, for  each  airscrew  in terms of the blade  angle  settings. 

Strictly  speaking,  equations (23) and (40) are  only correct to  the first  order in y and u, but 
it was suggested in R. & M. 203S3 that in practice the curves o f  C, against u in the unstalled 
range and of sC, against y over a considerable  range of large  values of J ,  are  straight lines to a 
higher  order of approximation.  The  additional  order of accuracy would then  apply to  equations 
(43) since they  are  deducible from (23) and (40) by linear transformations ; the values of sC, 
deduced  from (43) for  given  blade  angles would then be sufficiently accurate when substituted 
in (57) and (58) to give  values of thrust  and  torque power correct as far as terms in y2. In  any 
case the value of power loss given by  taking  the difference between power input deduced  from 
(57) and useful power deduced  from (58),  mill be consistent  with (24) and (25) and correct to  the 
same  order as the  latter equations. 
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W,Z cos +, =; r z ~ 2  sec do { 1 - Y, tan +o + xoys sin bo COS +o} + O(y') , .. . . (61) 
W,z cos +, = rZQ2 sec bo (1 - 7, tan +o + x 0 y ,  (2 tan +o + 3 sin bo COS + o ) }  + O ( y z )  . (62) 

Equal Power Input to Second  Order.--It is  evident that  the difference C,, - C,, will be of order 
~2 and  it is theref0r.e reasonable to assume that C,, - C,, is of order y 3 .  The  condition of equal 
power input will therefore  be  taken as . 

(sC,Wz sin +), = (sC,Wz sin+), + 0 ( y 3 )  . . .  .. .. .. . .  .. . . (63) 
Condition (63) may be  satisfied by writing y F  = y e  = y in (59-62), since this is true  to  the first 
order,  and  putting 

(sc,), = SC, (1 + xoy sin +o cos +o) , .. .. .. .. .. . . (64) 
(sC,), = sC, (1 - xoy sin +o cos 40) .. . *  . .  .. .. . . (65) 

in (63), where sC, is a mean  value  between  the  two airscrews. The  final expressions  for the 
thrust  and  torque  grading will be for either airscrew, 

Q(dQ/dr) = npr'Q3 tan +o sec +o{sCL{l + y [cot do 
+ x. (cot +o + 2 sin 4" COS CO)]} i- sC,  cot +,} ; . . (66) 

and for the front  and  back airscrews separately, 
V'(dT/dr), = npr'Q3 tan do sec +o(sCL{l + y [- tan +o 

V(dT/dr), = npr4Q3 tan +o sec +,(sC,{l + y [- tan +o 

+ 2 x O  sin +o cos +0]}- SC, tan +o) , . .  . . (67) 

+ 2 x 0  (tan +o + sin +o cos +o);> - S C ,  tan + o )  . (68) 

The difference between  these  expressions for torque  and  thrust power agrees  with the first order 
value of power loss given in (31-33). Expressiocs for the blade  angle to  the second order could 
be  deduced  from 97, equation (76) below, but would be rather  complicated. 

7. Exact Transformation of Equations (1   1 )  and (12) into a Form Analogous to  the Equations 
of R. Sr M .  18492.--\IVrite 

UY = r y  W I I  ? -  . .  . .  .. . .  . .  .. .. . .  . . (69) 
u, = v y  w, , I 

where  either y = F, z = B ,  or y = B ,  z = F ,  and p,,, v,, are  functions of +,,, +I (according to 
equations (3-6), of +, only). 

Write 
, u s i n + - v c o ~ + = ~  , 
p c o s + + v s i n + = ~ .  J 

1 . .  .. .. .. .. . .  . . (70) 
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These  definitions are analogous to  the first order  definitions  of (17) and (18). Write also 

r 0  sec 4o cos p = C , 
7 0  sec do sin p = D ; i . *  

.. .. .. .. .. .. .. . . (71) 

also by (10) 
( 7 0  tan + O ) F  = ( r 0  tan +o), . 

Then  equations (1 1) and (12) become 

wy = cy + E y W l ,  Y * .. .. .. .. .. .. .. . . (72) 
wly = W ,  tan y,, = D, - Cywl, . .. .. .. .. .. . * (73) 

The  pair of equations, 

w,y + C y w ,  = Dy 
5,%y -t W l ,  =D, , 1 - .  

. .   . .  .. .. .. .. .. . . (74) 

may be  solved  giving 

~ 1 ,  == ( D ,  - CyD,)/( 1 - CJ,) . . .  . .  .. .. . .  .. . . (75) 

Then (72) gives 

WY = {Cy (1 - Cy<,) + EyD, - ~ , W Y ) / (  1 - CJ,) , .. . .  . .  . . (76) 

and  substitution in (73), using  (71), gives 

The two equations  (77)  determine y F ,  y B  and so in virtue of (S) (sC,). and (sC,), as functions of 
4 F ,  4 ,  only, +OF, being  known. Since equations (3)-(6) are  only claimed to be  correct to  the 
first order,  the  advantage of the present  equations over first order  equations  is  doubtful. 

I t  would be possible to  plot (SC,), against C F ,  giving for each J a series of curves  for  various 
values of + B  and  similarly for (sC,),, (Fig. 4).  It would then be  necessary to determine  inter- 
sections with (sC,). against aF and (SC,), against a, curves  giving  consistent  values of +, and +, 
and  this could be  done  by a very  rapid successive approximation  between  the  two figures. This 
represents the analogue of the use of Chart I in R. & M. 184g2. 

8. Equations of the type of R. & M .  1674l.-From Fig. 1.  
AC = wl cosec y . 

Resolving  parallel to A F ,  we have 

giving 
AC cos ( 4  - y )  = 7 9  - v , 

wl = (79 - v )  sin y sec (4  - y )  

= (7Q - v )  tan y sec +/(1 + tan y tan 4 )  , .. . .  .. . . (78) 
with tan y = sCJ4x sin 4 . 
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For  the  front airscrew v = 0 and  the  equation becomes identical  with  equation (8) of R. & M. 
1674'. For  the  back airscrew v/rQ is of order y and  might  be  calculated  by  writing a, = aB. 

V is then given by (Fig. 1) 

V = r S t a n + - G C - C C D - H K  

= rS tan 4 - w, sec 4 - u - v tan 4 . . .  ..  .. .. . . (79) 

The most  convenient  form  for W is (Fig. 1) 

W = H A  - G B  - HG 
= (rS - v )  sec 4 - w, tan 4 , .. .. ..  .. .. S f  (so) 

which is identical  with  equation (2) of R. & M. 16741 for v 7- 0. 
The  equations (78-80) may be  transformed so as  to involve  non-dimensional coefficients only, 

by dividing  by convenient  multiples of RQ,,  RQ,. 
The solution of the equations by  the methods of R. & M. 16741 is straightforward  apart from 

the occurrence of the  term  involving v in  equation (78) for the  back airscrew. A suitable series 
of values (of the blade  incidence a is first chosen for both airscrews  for a series of standard values 
of the radius. Values of CL, C, for  either screw are supposed  known as function of a, and 4 is 
deduced  from the  equation 

. ,  

+ = e - a .  , 
Equations (78),  (79), (SO), (14), (15) and (16) then  determine  in succession values of wl, W ,  V ,  
Q(dQ/dr) ,   dPl /dr ,   dP, /dr  (or of suitable coefficients of them) for both airscrews. In evaluating 
the  term v in equation (78) it should be sufficiently accurate to write a, = aB. It is finally 
necessary to plot  values of V or of its coefficients J F  and . JB  and of Q(dQ/dr) ,   dPl /dr ,   dP, /dr  or 
their coefficients against a, so as to deduce  values of the  thrust  and power coefficients for the  same 
values of V at all radii before plotting  against  the  radius r* and  integrating  to  obtain  the power 
input  and power loss on the whole airscrew. 

9. Recapitulation.-$1. Of the four basic assumptions as set  out in $1, the first two  are con- 
sidered to be of general  application to  an airscrew,  subject to  any  type of external interference. 
The development of the  equations is carried as far as possible without reference to  the  third 
and  fourth  assumptions  and  these  may  require  further  empirical modification and would in  fact 
be modified as a result of increasing the  distance between the  two airscrews or  varying  their 
diameters, etc. 

$2. Equations  are given of the most  general form consistent with  assumptions  (i)  and  (ii)  and 
determine the  total velocity W and  the interference  velocity w, of either screw on itself,  in terms of 
rR, 4, and (u, v )  the components of the interference  velocity of the second screw ; also for the 
thrust,  torque  and power loss grading in terms of W ,  'CL, C, and 4. 

$3: In  this section  squares and higher powers of the interference  velocity ratio  are neglected. 
This is probably  not a serious  limitation  since it is very  doubtful  whether  the original  assumptions 
hold beyond  the first order in the interference velocities. Explicit  equations  are given for 
(dP, /dr) ,   (dQ/dr) ,   (dP, /dr)  to  the first order. 

$4. The  equations of $3 are applied to  the  particular case of equal  rotational speed and  equal 
power input.  Explicit  equations  are given for  the  partial efficiency at  a given radius  and for 
the induced loss for front  and back airscrews separately. 

. -  ~~ . .  

* Coefficients of the  type tc, p,,, Pet are  plotted  against r,2 = (r/R),. 

28 

I 



APPENDIX B 

11 
$5. This section  gives  first  order  results  for  given  blade  angles and also the first  order differerxe 

of blade  angle  between front  and  back airscrews  for the case of equal  angular  velocity  and  power 
input.  This completes the formulae  necessary to obtain the numerical  results  given  in the 
present  note. 

96. Values of W ,  (dQ/dr) and ( d T / d r )  are given to  the second  order  for  known  values of C,. 
Difference of C, between the  two airscrews  is  determined to  the second  order for equal  revolutions 
and power input.  The  resulting  value of the difference between the  thrust power and  torque 
power  checks with  the first  order  estimation of power loss in $3. 

$7. In this section  equations  are  obtained analogous to those on which the  charts of R. & M. 
184g2 are based. 

$8. In  this section equations analogous to those of R. & M. 16741 are developed which could 
be used in the absence of charts  to  calculate  the  exact  performance of an airscrew on the basis 
of assumption  (i)-(iv). 

a 
b 

B suffix 
C 

c suffix 
c, D 

c,, C D  

d D  
F suffix 

LIST  OF SYMBOLS 

Reciprocal of slope of lift  curve. Equation (40). 
Equation (23). 
For “ back  airscrew ”. 
Blade  chord. 
Mean value for contra-rotating  pair of airscrews. 
Equation (7 1).  
Lift and  drag coefficients of blade  element. 
Drag of blade  element. 
For  “front airscrew ”. 

Lift of blade  element. 
Number of blades of either  component. 
Induced power loss for  blade  elements. 
Drag power loss for blade  elements. 
Torque  on  blade elements. 
Radius of blade  element, tip radius. 
Solidity (= Nc/Zzr) of either  component. 
For single  airscrew. 
Thrust on  blade elements. 
Components of interference  velocity of front  airscrew on back  airscrew  or 

vice versa  (Fig. 1).  
Forward speed (Fig. 1). 
Resultant velocitv at blade element  (Fig. 1) .  
Fig. 1. 
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List of Symbols-continued. 

Interference  velocity of either  airscrew on itself (equation (1)).  
Equation (2). 
Denoting  either  front  airscrew  and  back  airscrew  respectively,  or vice versa 

Indicating  limiting  value for zero lift. 
Blade  incidence. 
Fig. 1 ; equation (9). 
Fig. 1 ; equations (7) and (8). 
Zero lift  angle ; equation (39). 
Equations (70),  (18). 
Efficiency. 
Blade  angle ; equation (39). 
Equation (39). 
Tip loss factor ; equation (1). x. is written for i(+o). 
Equation (22). 

(equation (17)). 

Wl 

7% 
y, z suffices 

0 suffices 
a 
B 
Y 
E 

5 ,  50 

e 
7 

0 
x 

2 Yr 

" ''}Equations (69), (17). 
v ,  yo 

E ,  Eo Equations (70), (18). 
4, +o Fig. 1.  Equations (9),  (10). 

.Q Angular  velocity  in  radi,ans  per  second. 
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FIG. 1 (a). Either Airscrew. 

FIG. 1 (a). Front  Airscrcw. 

FIG. 1 (c ) .  Back Airscrew. 

FIG. 1. Interference Velocity Components  for a Contra-rotating Pair of Airscrews. 
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FIG. 2. Ideal Loss of Efficiency at  Standard  Radius 0-7, Plotted  against J .  All curves  calculated for same values of 
s (0.09), CL (0.56), C ,  (0.017) (total solidity 0.18). 
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J 3 4 

FIG. 3. Values of (0, - 0,) (independent of number of blades)  Calculated  for Same  Conditions as Fig. 2 (for 
Equal  Rotational  Speed).  The Curve  also  Represents the  Diff~rer~ce of Blade  Angles (e, - 0,) provided that 

the Zero  Lift  Angles are  the Same for Both Airscrews. 

Front airscrew 

FIG. 4. Charts .4nalogous to  Chart I of R. & M. 1%9*. 

(76164) Wt. 10/7116 q 4 7  Hw. G.377/1. 
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INDEPENDENT DERIVATION OF LOCK'S TIP LOSS  FACTOR FORMULA 

I n   t h e   t e x t ,  x, w a s  found  by  making 0 ,  or  optimum planforms,  the same between 
Lock and  Theodorsen. Now, however, the  induced  angles  B w i l l  be made t h e  same 
between t h e  t w o  formulat ions.  

The f irst  t h i n g  w i l l  be t o  spec ia l ize   Lock ' s   theory  t o  apply  where  the pro- 
pel lers  are  i n  t h e  same plane.  (The determinat ion of X. is  t h e  same whether  they 
are o r  are n o t   i n   t h e  same p lane ,  as w a s  s e e n   i n   t h e  t e x t . )  Th i s   spec ia l i za t ion  
makes t h e  two e q u a t i o n s   f o r  <,,, between  equations  (28)  and  (29)  in  appendix B,  
become symmetric so  t h a t   t h e y  are one 

<, = X, (cos 2 $, - s i n 2  $,) = r lx ,  

Then the   induced   angle   o f   a t tack ,   equa t ion   (B27) ,  becomes 

= b ( l  + <,)o = b ( l  + r'X,)o 

fo r   e i t he r   p rope l l e r ,   where  

(C2 

from  equation  (B23). 

N o w  B is the  induced  angle  of a t t a c k  a t  t he   p rope l l e r   p l ane ,   no t   t he  f a r  wake. 
The induced  angle of attack  from  Theodorsen,  therefore,   must be mul t ip l i ed  by  1/2. 
A l s o ,  the   d i sp lacement   ve loc i ty  w mult ipl ied  by  cos  $, g i v e s   t h e   v e l o c i t y   o f   t h e  
vo r t ex   shee t  normal t o   i t s e l f .   I f   t h i s  i s  divided  by WO it is conver ted   to   an  
induced  angle.  Thus,  the  equating of the  induced  angle,   between Lock and  Theodorsen, 
y i e l d s  

" 
1 w  

wo 
cos $, = B 

with   the   r igh t   s ide   g iven   by   equat ion   (C2) .  

Next,   Theodorsen's  circulation  function w i l l  be   introduced,  as i n   t h e   t e x t   j u s t  
before   equat ion  (13)  , 

SCLW0 = ow, = - WV K ( x )  
nndx 
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Now equat ion (C4) can  be  wri t ten,   by  using  equat ion (C2), 

By using  equat ion (C3) I equat ion (C8) becomes 

Solving  €or X, g ives  

Now, the  corresponding  formula  in   the  text  i s  equation ( 1 7 ) ,  which is  

Compare equat ions (C10)  and (Cll), which  should be i d e n t i c a l .  They w i l l  be i d e n t i c a l  
i f  
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Substitute  the  following  from  equations  (16)  in  the  text,  into  equation (C12): 

p' = - Cp cos Cpo = - sin Cpo cos Cpo I I 
2 qo 2 

2 
4 sin Cpo 

q' = 

s '  = - J 
TrX 

K(x) sin Cpo 

Then  the  right  side of equation  (C12)  is 

ITX sin ($, sin 2Cp0 = 7 sin Cpo sin 2Cp0 
1 

JK(x)  sin 0, S 

and  the  left  side is 

1 
k 2  - sin Cpo cos @o 
w " s '  4 sin ($o 

- . - k 1  1 - 2  sin Cpo 7 sin ($o cos @, w s '  

k 1 sin ($0 - _ - -  sin 2Cp0 w 2 s '  

Equating  equations  (C14)  and  (C15)  gives 

l k  "- 
2, 

- 1  

( R  = 0 )  1 

which  must  be  true  in  order  €or  equations  (C10)  and  (C11) to be the  same.  But  equa- 
tion  (C16)  is  in  fact  true,  as  may  be  seen  from  equations (22)  in  the  text. 

Hence it is  concluded  that  the  two  formulas,  (C10)  and  (C11) , are  indeed 
equivalent,  and  it  appears  to  be  verified  that  the  method  given  in  the  present  paper 
for  determining X,, appendix D, is  correct  and  consistent  with  Theodorsen  and  Lock. 
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CALCULATION OF X, FOR DUAL-ROTATION PROPELLER AT A 

G I V E N  VALUE FOR J 

1. Choose  a s e t   o f   v a l u e s   o f  x c o r r e s p o n d i n g   t o   s t a t i o n s   o r   s e c t i o n s  on t h e  
p rope l l e r s  a t  var ious   rad i i .   These   va lues   o f  x might  well   be  those  found  in  f ig- 
ure 2. The e n t i r e   c a l c u l a t i o n  is performed for   each  value  of  x. 

2.  Calculate   the  advance  angle  $o from 

3 .  For  the  values   of  x chosen i n   s t e p  1, read a s e t  of K ( x )  from t h e   c i r c u l a -  
t i on   func t ion   cu rves   ( e .g . ,   f i g .  2 )  f o r   t h e  number of   blades  being  considered  ( four  
f r o n t  and  four   back  for   the  purposes   of   this   paper . )  

4 .  Ca lcu la t e  p ' ,  q ' ,  r ' ,  and s '  from equat ions ( 1 6 ) .  Note t h a t ,   s i n c e  k 
i s  t a k e n   t o   b e   z e r o   i n   t h i s   c a l c u l a t i o n ,  = s i n  $o. 

5. Ca lcu la t e  x, from equat ion ( 1 7 ) .  (The value  of  k/G was determined  to 
be 2 .0  i n   t he   d i scuss ion   fo l lowing   equa t ion  (17). (See  eqs. ( 2 2 ) . )  

37 



APPENDIX E 

OPTIMIZATION OF DUAL-ROTATION  PROPELLER  WITH DRAG CONSIDERED 

1. A va lue  for  J and a v a l u e   f o r  Cp must be given t o  start .  

2. Tabulate  x, from step 5 i n  appendix D.  

3 .  Tabula te   the   p rese lec ted  CL, 2 ,  and a for   each   x .   For   ins tance ,   these  
might be f o r  maximum l i f t - d r a g  r a t io  a l l  a long   t he   b l ade .  

4.  Ca lcu la t e  Gq0 from equat ion  (9) . 
5. Ca lcu la t e  0 from  equation ( 1 2 ) .  I n   t h i s  step,  a tr ial  v a l u e   f o r  k i s  

needed.  Equation (19) i s  a n   a i d   i n   g u e s s i n g   t h i s .  

6.  I n t e g r a t e  dCp/dx over   the  range  of   x ,   f rom body to  t i p ,   a n d  compare t h e  
r e s u l t i n g  Cp t o  the   g iven  C p ,  which  must  match. 

dCP Tr4 2 - = -(sec 
dx 2 @,)x4, $qo ( f o r   b o t h   p r o p e l l e r s )  

This   equat ion  can be derived  from  equation (8) . S e t  W2 = r 2 G 2  sec $o. Change r 
to  xR and  use Cp 5 RQ/(pn3d5). 

2 

7. Ca lcu la t e  

"" 
C - T r X G  
d B CL 

8. Find 6, and 6, from  equations ( 2 7 )  . 

9 .  Ca lcu la t e   t he   b l ade -ang le   d i s t r ibu t ion  8 from  equation ( 2 3 ) .  

8F + (Tor s iona l   de f l ec t ion )  = 4, + 6, + a 

8, + (Tor s iona l   de f l ec t ion )  = G o  + 6, + a 

Items 7 and 9 d e f i n e   t h e   p r o p e l l e r .  
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CALCULATING PERFORMANCE OF GIVEN DUAL-ROTATION PROPELLER 

AT OFF-DESIGN CONDITIONS 

The problem may b e   s t a t e d   a s :   g i v e n   t h e   p r o p e l l e r   a t  some b lade -ang le   s e t t i ng  
and the  value  of J ,  determine  the  torque and th rus t ,   o r   de t e rmine   t he  power 
absorpt ion  and  eff ic iency.  

The e x i s t e n c e   o f   i n i t i a l   d i s t r i b u t i o n s   o f  (CL)F  and (CL)B and  hence of OF 

and GB can  be  assumed.  This may be a guess ,   o r   e l se   they   can  be c a l c u l a t e d  immedi- 
a t e l y  by assuming the  induced  angle   of   a t tack i s  zero.  

1. Fol low  the  s teps   in   appendix D t o   ob ta in   t he   func t ion  X, a p p l i c a b l e   t o   t h e  
given J. 

2.  Ca lcu la te  from equat ion ( 9 )  ( t h e  same as s t e p  4 i n  app. E ) .  

3. T a b u l a t e   o r   s t o r e   a i r f o i l   d a t a  so t h a t  CL and  can be found f o r  any value 
of a .  (Note t h a t   t h i s  is not   the  same k ind   o f   a i r fo i l   da t a   a s  i n  s t e p  3 of  app. E ,  
which is p r e s e l e c t e d   a i r f o i l   d a t a . )  

4 .  Tabulate O F ,  O B ,  and s from propeller-geometry  information and the  given 
blade-angle   set t ing.  

5. Calcu la te  BF and 6, from e q u a t i o n s   ( 2 8 ) .   I n i t i a l l y ,   t h e s e   m i g h t   b e   s e t  
equal   to   zero.  

6.  Solve  equation ( 2 9 )  f o r  aF and a g .  

7.  Find new (CL)F and ( C L ) B  from a i r f o i l   d a t a   u s i n g  aF and aB from 
s t e p  6.  Also  f ind new OF and OB. 

After   complet ing  s tep 7 ,  i t  is p o s s i b l e   t o   r e t u r n   t o   s t e p  5 and loop through  to 
s t e p  7 repea ted ly  u n t i l  ( C L ) F  and ( C L ) B  converge on f i n a l   v a l u e s .  A t  s t e p  7 on 
t h e   l a s t   l o o p ,   f i n d  QF and QB i n  a d d i t i o n   t o   t h e   l i f t   c o e f f i c i e n t s .  Then s t e p  6 
i n  appendix E shows how t o   g e t   t h e  power inpu t .  The e f f i c i e n c y  is  found a s  i n  equa- 
t i on   (18 ) ,   bu t  by using  equat ion (6)  i n s t ead  of  equation ( 2 ) .  Note t h a t  i n  p l ace  
of CI t h e r e   a r e  OF and GB. Therefore ,   the  power  formula i n  s t e p  6 ,  appendix E ,  
has   to   be   appropr ia te ly   modi f ied .  The same a p p l i e s   t o   e q u a t i o n  (6)  i n   t h e   e f f i c i e n c y  
ca lcu la t ion .   This  would c o n c l u d e   t h e   c a l c u l a t i o n   i f   a r b i t r a r y   p r o p e l l e r   t h e o r y  were 
n o t   t o  be  added. 

I f   a r b i t r a r y   t h e o r y  i s  t o  be i n t r o d u c e d ,   t h e   r e t u r n   t o   s t e p  5 #  a f te r   comple t ing  
s t e p  7 on t h e   l a s t   l o o p ,  would c a l l   f o r   a r b i t r a r y   p r o p e l l e r   t h e o r y   r a t h e r   t h a n  equa- 
t i o n s   ( 2 8 ) .  More s p e c i f i c a l l y ,   t h e   c i r c u l a t i o n   c a n  be e a s i l y  found  from ( C L ) F  and 
( C L ) ~ ,  which a r e  found i n   s t e p  7. From t h e   c i r c u l a t i o n ,   t h e   s i n g l e - r o t a t i o n   p a r t   o f  
the  induced  angle   of   a t tack yy can  be  found, by a r b i t r a r y   p r o p e l l e r   t h e o r y ,  so 
t h a t  By now con ta ins   a rb i t r a ry   p rope l l e r   t heo ry .  The t i p   l o s s   f a c t o r  X0 is  no 
longer  used. The loop   cont inues  on t o   s t e p  7 .  This  should  produce a r igorous  
l i f t i ng - l ine   pe r fo rmance   ca l cu la t ion ,   bu t   t he   i n t roduc t ion   o f   a rb i t r a ry   p rope l l e r  
theory   has   to  be regarded   as  a cons ide rab le   e sca l a t ion   o f   computa t iona l   e f fo r t .  
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(a) Either airscrew. 

(b) Front airscrew. 

(c) Back airscrew. 

Figure 1.- Interference velocity components for  pair of 
dual-rotation propellers. 
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Figure 2.- Circulation  function K(x) €or  dual-rotation 
propellers;  four  blades  front  and  four  blades  back 
(ref.  1). 
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Figure 3.- Propeller  induced  efficiency plotted - 
against w (ref. 1). 
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Figure 4.-  T i p  loss f a c t o r s  for s ingle-   and   dua l - ro ta t ion   p ropel le rs  
p l o t t e d   a g a i n s t  x; J = 5.1693, fou r   b l ades   s ing le ,   e igh t   b l ades  
dua l .  
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Figure 5.- Typica l   p resenta t ion   of  x, for s i n g l e   r o t a t i o n   f o r  
four   b lades .  Arrows show how typ ica l   po in t s   on   cu rves   sh i f t  
for dua l   ro t a t ion   o f   e igh t   b l ades   ( fou r   f ron t  and fohr   back) .  
S h i f t e d   p o i n t s  shown a r e   f o r  J = 5.1693.  (See r e f .  6 . )  
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