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ABSTRACT

A computational model of the processes involved in multispectral remote sensing
and data classification is being developed as a tool for designing smart sensors which
can process, edit and classify the data that they acquire. An evaluation of sensor
system performance and design tradeoffs can be expected to involve classification
rates and errors as a function of number and location of spectral channels, radiometric
sensitivity and calibration accuracy, target discrimination assignments, and accuracy
and frequency of compensation for imaging conditions. This model seeks to provide a
link between the radiometric and statistical properties of the signals to be classified
and the performance characteristics of electro-optical sensors and data processing
devices. Preliminary computational results are presented which illustrate the editing
performance of several remote sensing approaches.

INTRODUCTION

To overcome present inefficiencies in worldwide monitoring of resources and the
environment by remote multispectral sensing, it is necessary to develop multispectral
sensor systems which are ''smart'" enough so that they can be relied upon to perform
such tasks as identifying and locating features of interest, editing out areas of
extensive cloud cover and haze, and compensating for atmospheric variability. The
development of such smart-sensor systems must take into account the complex natural
variability of surface and cloud reflectance and atmospheric radiative transfer.

To do so, smart-sensor concepts should be developed and evaluated first as models
in the computer, and only thereafter, if promising, as actual devices and systems.

A comprehensive computational model of the deterministic and stochastic processes
involved in remote sensing is currently being developed as such a tool for studying
multispectral sensor systems and concepts.l This model accounts for remote multi-
spectral data acquisition and processing as a function of both deterministic and
stochastic elements of solar irradiance, atmospheric radiative transfer, surface and
cloud reflectance, and sensor response. The model differs from other related ef-
forts?™/ in two aspects: One, 1t treats all elements of the remote sensing process as
parts of a single system. Two, it specifically relates stochastic properties of the
sensor -signal to stochastic properties of the atmospheric radiative transfer and scene
spectral reflectance.
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In this paper we use the computational model of the remote sensing process to
study earth feature identification algorithms for onboard data editing. The objective
of the feature identification task is to distinguish between vegetation, bare land,
water, clouds and snow. If such discrimination between these categories could be made
with reasonable accuracy and computational simplicity, then onboard data processing
could be relied upon to reduce drastically the amount of data that needs to be trans-
mitted and processed for routine remote sensing operations.

The analysis in this paper is limited to two spectral channels which are centered
at wavelengths 0.65 and 0.85 um. These spectral channels are particularly well-suited
for distinguishing vegetation from other earth surface features. For that reason they
have been selected for the Feature Identification and Location Experiment (FILE) on
Shuttle-0STA 1. These two channels correspond closely to channels 3 and 4 of the
Thematic Mapper (TM) and Multispectral Linear Array (MLA)8 so that the results pre-
sented in this paper are relevant to data processing studies concerned with future
remote sensor systems for monitoring earth resources and the environment. Results
presented in this paper compare the relative accuracy and computational complexity of
three decision techniques for performing the feature identification task. The driving
variables are atmospheric conditions, solar incidence angle, and spectral reflectance
properties. No attempt is made here to distinguish between clouds and snow since
clouds are most efficiently identified, and discriminated from snow and ice, in the
reflected IR around 1.5 um and the emitted IR around 10to 12 um(atmosphericwindow)9—10

REMOTE SENSING MODEL

In this section we briefly review the computational remote sensing model developed
by Huck et al.l The model accounts, as depicted in Fig. 1, for data acquisition and
classification. Data acquisition must account for the solar irradiance, atmospheric
radiative transfer, surface reflectance, and sensor response. In mathematical terms,
data classification is that process that maps the very large sensor sample space into
a much smaller space of predefined categories or features. It is essentially the
feature identification algorithm that defines these categories.

Radiative Transfer

Deterministic Processes - When atmospheric attenuation (absorption and scattering)
and Lambertian ground reflectance effects are taken into account, the radiance derived
from solar spectral irradiance incident on a downward-looking sensor is represented as:

1
== +
L=2E T u pT+L

de+Lp (1)
where E,=E,(A) is the solar spectral irradiance at the top of the atmosphere;
TOETO(A,T,UO) is the atmospheric transmittance along the incident path from the sun to
the surface (solar zenith angle = 65, Uo=cosOo); LdELd(EO,X,T,uO,p) is the diffuse sky
spectral radiance which results from all radiation scattered downward onto the surface
(i.e., integrated at the target over elevation and azimuth); pZp(A) is the spectral
reflectance of the surface (sometimes called "signature'); TZT(A,T,U) is the atmosphere
transmittance along the exitant path from the surface to the sensor (zenith angle = 8,
p=cosB); and LPELP(EO,X,T,uO,u,¢) is the path spectral radiance which results from all
radiation scattered upward along the path from the surface to the sensor. The other
parameters are wavelength, A, optical thickness of the atmosphere T=T(A), and azimuth
angle ¢ between the planes of incidence and exitance. The component of the total
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radiance L which arises from radiation reflected from the target is referred to as the
beam spectral radiance Ly, that is, Ly=L-L; and Lyp=Ly (Eg,A,T,UgsH5P) -

The optical thickness TZTt(A), which governs atmospheric transmittance, sky and
path radiance, is given by

N
L. O, X (2)

T =,
i=1 i

where 04=0; (A) is the attenuation coefficient of the ith atmospheric constituent and
X5 the associated attenuator amount (often denoted u4 in the radiative transfer liter-
ature). The atmospheric transmittance over the incident path is given by e—T/UO, and
that over the exitant path by e~T/U.  The rigorous treatment of multiple scattering
which leads to sky and path radiance is very difficult and computationally expensive.
To use documented atmospheric radiative transfer models and to keep computations with
the deterministic/stochastic model economical, we use the AFGL LOWTRAN 4 model to
account for attenuation in atmospheric absorption bands and the ERIM model (developed
and described by Turner3—4) to account for scattering. For the spectral region ex-
tending from 0.4 to 1.0 pm, the atmospheric radiative transfer 1s primarily affected
by Rayleigh scattering (by air molecules N2 and 0j), scattering by aerosols (haze drop-
lets and dust), and absorption by ozonme (0O3), water vapor (Hy0), and molecular oxygen

(05) .

The ERIM radiative transfer model is used to account for single and multiple
scattering in the atmosphere for a surface with a simple geometric pattern. We assume
a horizontally homogeneous atmosphere which is bounded by a surface that consists of
an infinitesimally small target and a large surrounding background, both of which have
uniform diffuse (Lambertian) reflectances. The model accounts for realistic aniso-
tropic phase functions and vertical changes in the atmosphere and for attenuation by
ozone absorption and aerosol and molecular scattering but not for attenuation by water
vapor and molecular oxygen. This limitation constrains the application of the ERIM
model to the evaluation of spectral responses that do not significantly overlap the
major HoO (0.86 to 0.99 pm) and 02 (0.75to 0.77 um) absorption bands. More comprehen-
sive computational models are available but their use as subroutines would be too
expensive.

The difference between the LOWIRAN 4 and ERIM models can be expressed in terms of
Equation 1. Both models calculate the first term in the same way. LOWIRAN 4 does not,
however, include either the second or the third terms which represent scattered solar
radiation.

Stochastic Processes - We regard the spectral radiance LZL(A) that reaches the
sensor as a stochastic process whose value at each wavelength depends upon a number of
random variables associated with both the atmosphere and surface. Letting the opera-
tion E{+} denote the expectation (average) taken over the ensemble of all possible
radiances associated with a particular surface, the mean <L(A)> and autocovariance
- C,(A,A") of the radiance can be expressed as

<L(A)> = E{LOV}
and
CL(A") = E{[L(A) - <L)>I[L(A") - <L(A")>]}

To simulate the effects of atmospheric variability, we assume that the attenuator
amounts X4 in Equation 2 are random variables with a known mean xi and covariance 0.
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It is particularly convenient, although not necessary for the purpose of simulation, to
assume that the vector of attenuator amounts is multivariate Gaussian. Therefore the
optical thickness will have a log-normal distribution.

To simulate the effects of surface reflectance variability, we model the reflect-
ance of a particular target surface by

p(}\) - po(}\) e —XOBO(}\>

where p,(A) and By(A) are deterministic functions which are characteristic of the sur-
face, and x_ is a standard normal random variable with mean = 0 and variance = 1. For
each surface the parameters py(A) and B,(A) are estimated from empirical reflectance
data.

Signal Vector and Reference Pattern

The sensor converts the radiance L into the signal vector s with components s.

which are represented by the simple model J
L0 s, () a
s, = .
N o ]

where Sj(l) is the deterministic spectral response of the jth channel. Effects due to
electronic noise and errors in radiometric calibration are not treated here, in order
to simplify the following formulations.

Because the radiance is stochastic, the signal vector s is a multivariate random
variable whose mean r and covariance C have components denoted by

r., = E{s,}
J J
and
c,, = E(s, —r)(s;y - 1)}
13 J ] J J
where both j and j' take on the values 1, 2, ..., J, and J is the total number of chan-

nels, It follows from the linearity of the signal conversion process that the refer-
ence patterns can be computed as

ro= [0 <L00> 8, ()
J 0 J
and

ij = é é CL(X,X') Sj(X) Sjv(A') dx 4!

RADIOMETRIC PROPERTIES AND SENSOR RESPONSES

In this section we present typical radiometric properties encountered in remote
sensing and the spectral responses of the FILE sensor system. Our characterizations
here are confined to a spectral region of 0.4 to 1.0 um.
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Model Inputs

Solar irradiance - The solar spectral irradiance E,(A) incident upon the top of
the atmosphere is relatively well known and is shown in Figure 2. Its variability is
small compared to other uncertainties and thus is ignored here.

Surface reflectance — Table 1 summarizes the categories and substances used as
examples in this investigation as well as the (assumed) standard deviations of their
reflectances. The spectral reflectance curves are shown in Figure 3. Typical vari-
ability of spectral reflectances realized in the simulation is shown in Figure 4.

Atmospheric properties - The mean whole-atmosphere (i.e., vertical path) attenu-
ator amounts for each of these atmospheric constituents, along with reasonable values
of their standard deviations based on estimates of climatological variability, are
listed in Table 2. All attenuator amounts are assumed to be uncorrelated, except for
water vapor and aerosol which are assumed to have a perfect positive correlation.
Figure 5 shows a plot of typical average radiance components. Figure 6 shows a typical
realization of simulated radiance variability using the LOWIRAN 4 model.

Sensor response - The FILE system consists of two sensors, one centered at .65 um
and one centered at .85 um. These are relatively narreow-band sensors spectrally (20
nm bandwidth), compared to the 100 to 300 nm bandwidth used in the LANDSAT sensor
system. The sensor bandwidths do not overlap any major atmospheric absorption bands.
The FILE system includes an onboard categorizer that assigns each pixel to bare land,
vegetation, water, or snow/clouds. The FILE sensor channels were originally chosen
because of the desirable properties of the ratio of the two channel outputs. Also,
channel ratios have some useful compensation effects for sun angle and atmospheric
variability.12

FEATURE IDENTIFICATION TECHNIQUES

In this section we describe three methods that could be used to identify (edit)
such categories as vegetation, bare land, water, and cloud/snow. Two of these methods
are closely related; they use either the maximum likelihood (MLH) or mean-square dis-
tance (MSD) classification algorithms to classify the signal vectors according to
reference patterns (or training sets) and then collect all classes into categories.
The third method, referred to as the boundary approximation method (BAM), avoids the
classification step and assigns the signal vectors directly into categories.

Classification

A very common classification procedure which makes use of covariance information
is based upon maximizing the (assumed) Gaussian PDF. Specifically, a particular signal
vector, s, representing J spectral channels, is classified as spectral type n, provided
the Gaussian PDF of s conditioned on spectral type n is largest, i.e., provided

t C;l (s—rn)] (3)

1
1 - (s-r.)
PDF(s[n) = exp [ 2 o
(2“>J/2|Cn|1/2

is greater than PDF (sln') for all other spectral types n' =1, 2, ... N. To avoid
the computational expense of evaluating the exponential, an equivalent classification
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procedure can be used which minimizes -loge [PDF (s[n')]. This, in turn, is equivalent
to determining the n which minimizes

(s-rn)t C;l (s~rn) + lOge’Cnl (4)

where [’l denotes determinant. If the a priori probability of each spectral type is
known (and all types are not equally likely), it is often desirable to weight the
classification procedure by this prior information. However, no weighting is used for
the results presented in this paper. For this classifier, the mean and covariance
matrix uniquely determine a class. This is the maximum likelihood classifier (MLH).

Several simplifying assumptions concerning the nature of the covariance matrix,
given imperfect knowledge, can be made. In the special case of

where I is the identity matrix, minimizing Equation 4 becomes equivalant to minimizing
t
sS-T S-r
(s=r )" (s-1)

This is commonly called the mean-square distance (MSD) or Euclidean-distance classifier.
From a computational standpoint, we eliminate the evaluation of one vector-matrix

(1xn * nxn) multiplication and the addition of the logarithm term. For this special
case the mean uniquely determines the class.

Editing

Aggregation method - The MLH and MSD classification algorithms work with classes
but can be used to distinguish between categories such as vegetation, bare land, water,
and clouds/snow by collecting a set of classes to define each of the four categories.
For example, if one can pick some small number of vegetation classes that approxi-
mate (span) the vegetation category then one has a method of categorizing vegetation.
In other words one can blanket the area, in spectral space, occupied by the vegetation
category with a set of classes. Computationally, what can be done is to actually
assign a signal to a class (according to the chosen decision rule) but to only retain
the category within which that class falls. For example, a signal from a corn target
might be classified as wheat but the editor retains only the fact that it has been
categorized as vegetation. The overall accuracy of categorizing will be higher than
the overall classification accuracy because intra-category class confusion is not
counted as wrong. We call this method categorization by aggregation.

Boundary approximation method - In discussing this editing technique frequent ref-
erence will be made to covariance ellipse plots. These ellipses are defined by the
following equation:

(X—rn)t C;l (X—rn) =1

where x is the channel vector. If the nth class was truly multivariate-Gaussian then
this ellipse would enclose 667% of the data. The ellipses are centered about the class
mean. These plots provide a very useful approximation to the scatter of the data due
to such things as the variability in radiance shown in Figure 6. Figure 7 shows el-
lipse plots for simulated data for a total of twenty classes. This data represents a
simulation for 23 km visual range and a solar zenith angle of 30°, using the FILE channels.
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As stated previously this particular set of FILE spectral bands was chosen because
of the properties that the channel ratio possessed. Figure 7 shows 3 lines superimposed.
The lines are chosen so as to delineate the four categories. These lines represent
simple approximations to the boundaries of the categories in spectral space. Hence the
name Boundary Approximation Method (BAM). The lines drawn are not strictly defined by
the channel ratios. It was decided that, by adding an offset to the two diagonal equ-
ations, much better performance could be achieved. This causes only a slight increase
in computational costs. The third line represents an "'absolute' radiance threshold
which forms the boundary between the bare land and snow/cloud, categories which have
similar channel ratios. However, this threshold has a sensitivity to solar zenith
angle.12 The three boundaries are defined by the following equations. If x; is the
value of channel i then the three lines are defined as:

Xy = 1.45 Xq - 4.1
3.0 x17 - 2.1
= 16.5

b
W)
|

As one can see this method is very simple in terms of the calculations necessary to
categorize a signal and is similiar to the standard parallelepiped classifiers. This
method represents the opposite end of the spectrum, in terms of computational complex-
ity, from the aggregation method.

Space qualified data processing hardware is still rather expensive and bulky. Any
implementation of onboard processing of multispectral data will encounter very conser-
vative limits in terms of available processing and storage capacity. This, in turn,
limits the computational "costs' that can be incurred in identifying features. Esti-
mates of the computational complexity of the two methods of aggregation were made after
the formulas were simplified and modified as much as possible. No provision was made
for special processing architecture (i.e., parallelism) in the estimates. For the
boundary approximation technique we have two equations to evaluate with 1 add and 1
multiply each for a total of 4 add/multiplies. The number of add/multiplies per pixel
necessary to do the MSD classification, and thus editing, can be approximated by 2LJ
where L is the number of classes and J is the _number of channels. Similarly, the
number for PDF can be approximated by (L/2)(J2+3J). Those interested in more details
might start with Ref. 13 and 14.

COMPUTATIONAL EXPERIMENTS AND RESULTS
Experiments

In this section we present results of computational experiments which illustrate
the performance of the MLH and MSD aggregation and the boundary approximation methods
in distinguishing between such spectral features as vegetation, bare land, water, and
cloud/snow from data obtained with the two FILE spectral channels. These two chan-
nels are centered at 0.65 and 0.85 um and thus approximately coincide with TM/MLA
gsensor channels 3 and 4, The results provide insight into the susceptibility of
feature identification accuracy on the natural variability of atmospheric radiative
transfer and target and background spectral reflectance.

The computer program (previously described) simulating the performance of an
orbiting multispectral sensor generates pseudo-random observations (i.e., signal
vectors) which are assembled into training sets for computing a reference pattern
library. Subsequently, observations are generated for input to the editor/classifier
which utilizes the reference pattern library or other criteria to make its decision.
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Editing accuracy (i.e., the ratio of correct categorizations to the total number of
observations) is used as a figure of merit to determine sensor performance. Training
sets and editing accuracies are based upon a total of 100 observations per target.

In practice, classification using the elements of a reference library will always
be compromised since these elements must be based upon values for the means and covar-
iances obtained at one specific set of conditions. For example, the reference library
may have been compiled when the atmosphere was relatively clear, while the observations
were made when the atmosphere was hazier. This error source has been included by com-
puting the reference vector r and covariance matrix C for each target at a visual range
of about 23 km (representing a moderately clear atmosphere), and the signal vectors s
either at the same visual range or at reduced visual ranges of about 10 km and 5 km.
Similarily, to assess the effect of changes in solar incidence angle, reference data
were obtained for a solar incidence angle of 30°, whereas feature identification deci-

sions were made either at the same or at 40° solar incidence angle. The sensor viewing
geometry remained vertical.

Results

Figure 8 summarizes the predicted feature identification accuracy, and Table 3
presents the amount of computations required for the three decision processes. The
feature identification accuracies are complex functions of changes in task assignment,
visual range, and solar incidence angle. Nevertheless, it can be concluded that the
MLH and MSD aggregation methods provide consistently higher feature identification
accuracies than the BAM and also tend to be less susceptible to changes in both visual
range and solar incidence angle. However, this improvement is gained at a substantial
increase in computational and storage requirements. These requirements would increase
rapidly for the MLH and MSD aggregation methods with increases in the number of sub-
stances to be accounted for and in the number of spectral cltannels to be used. One
can also see that for a 3-fold increase in computational cost little or nothing is
gained in terms of increased accuracy or sensitivity to sun angle by using the MLH as
opposed to the MSD. The results in figure 8 serve to show that small changes in the
mix of classes, observed by the sensor, can have as important an effect as the other
sources of error, such as atmospheric degradation. Specifically, ripening barely
lacks the strong chlorophyll absorption band that the .65 um channel is designed to
detect in vegetation. Therefore, barley is likely to be confused with bare land.

These results suggest that BAM could become a useful algorithm for spectral feature
identification if it is expanded to use more than 2 spectral channels and if changes in
solar incidence angle could be accounted for. It would, of course, alsoc be desirable
to account for changes in visual range; however, this would be more difficult.

In practice the exact formulation of an algorithm depends on the particular task.
For example, in editing out clouds, errors of omission, whereby we retain some cloud
data, are less troublesome than errors of commission, whereby we edit out data from
other categories. 1In general, if one particular category is of interest the boundaries
for that category can be '"relaxed" somewhat in order to pick up marginal outliers. In
more complete analysis the a priori probabilities of each of the categories are needed
in order to optimize the omission-commission trade-offs. This is also true for the
aggregation method.

CONCLUDING REMARKS

Two fundamentally different approaches to feature identification, aggregation and
boundary approximation for onboard data editing have been examined. Relatively small
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differences in accuracies between the simplest boundary approximation and the com-
paratively complex aggregation method were found, whereas the difference in compu-
tational requirements is very large. Further investigation should be performed to
determine improvements in feature identification accuracy that may be achieved by
careful selection of both the number and location of spectral channels.

The results obtained using the computational model were generally consistent with
practical experience with Landsat data in terms of sensitivity to changes in haze, sun
angle, and to the set of targets defined. The use of this model as a tool in the pre-
liminary design and evaluation phase of remote sensing systems should prove valuable,
To improve computational accuracy it will be necessary to account for the probability
of occurence of various targets and the probability of encountering specific atmo-
spheric conditions.
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Table 1. Targets and the Assumed Standard Deviation of Their Reflectance

Category Substance Standard deviation
of reflectance, Op

I. Vegetation Barley .1
Wheat .1
Oats .1
Corn .1
Aspen .1
Red pine .1
White pine .1
II. Bare land Chernozem-type soil, Nebraska .125
Pedialier—-type silt, Arkansas .105
Pedocal-type soil, Ohio .105
Pedocal-type soil, Nebraska .02
Quartz sand, Oregomn .140
Clay, Missouri .055
Red quartz and calcite sand, Utah .105
Pedocal-type soil, Oklahoma .09
Concrete road .1
Asphalt road .1
ITI. Water Sea water .06
IV. Cloud/Snow Optically thick cloud .1

Sugar consistency snow .08




Table 2. Attenuator Amounts in Vertical Column of Atmosphere
Average value, X Standard deviation, ©
Attenuator ) _2
LOWTRAN atm.cm # m LOWTRAN atm-cm # m
Afr (N, 0p) 8.0 km 8.0 x 10° 2.2x10%  0.26 km 2.4 x 10* 6.5 x 107
. 5 28 4 28
Aerosol: 23 km visual range 1.5 km 1.5 x 10 4.0 x 10 0.5 km 0.5 x 10 1.4 x 10
10 km visual range 3.0 km 3.0 x lO5 8.1 x lO28 1.0 km 1.0 x lO5 2.7 x 1028
5 km visual range 5.0 km 5.0 x 105 1.4 x 1029 1.7 km 1.7 x 105 4.6 x lO28
0Ozone (03) 0.34 atm:-cm 3.4 x lO‘1 9.2 x 1022 0.10 atm:cm 1.0 x 10_l 2.7 x 1022
Water vapor (H20) 1.14 g/cm2 1.14 3.1 x lO23 0.36 g/cm2 3.6 x lO-1 9.7 x lO22
Molecular oxygen (02) 1.7 km 1.7 x 105 4.7 x 1028 0.12 km 1.2 x 104 3.2 x 1027
Table 3. Computational Requirements for 2 Spectral Channels
Decision Add/Multiplies with
Process number of targets:
17 20
MLH 187 220
MSD 68 80
BAM 4 4
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Figure 5.~ Average beam, path, and total radiance for corn as target
and average soil as background using ERIM radiative transfer model.
Exitance is vertical and solar incident angle is 30°.
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Figure 6.— Typical realization of simulated variability of spectral radiances
incident on the multispectral sensor for three visual ranges using LOWTRAN 4,
Target is quartz sand and solar incident angle is 30°.
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(a) Number ofo’girgets is 17 or 20, and data is acquired at a solar incidence angle
(SIA) of 30°.
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{b) Number of targets is 17, and data is acquired at a SIA of 30° or 4c°.
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{c) Number of targets is 20, and data is acquired at a SI1A of 30° or 4c°.

Figure 8.- Feature identification accuracies attained with three
decision processes: maximum likelihood (MLH) and mean-square
distance (MSD) aggregation method and boundary approximation
method (BAM).



