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ABSTRACT

An iterative optical vector-matrix multiplier with a microprocessor-~controlled
feedback loop is capable of performing a wealth of diverse operations. In this paper,
we survey and describe many of these operations to demonstrate the versatility and
flexibility of this class of optical processor and its use in diverse applications.

1. INTRODUCTION

The optical vector-matrix multiplier [1] is a general purpose optical processor.
The addition of a microprocessor-controlled feedback loop results in an even more
general purpose and far more powerful optical processor [2-6]. In this paper, we sur-
vey and describe a selected set of the operations achievable on such a processor.

In Section 2, a general description of the system is advanced. This is followed
in Section 3 by a description of how bipolar and complex-valued data are handled on
the system and how the convergence of the iterative algorithm is insured. We then
address in Section 4 its use in the solution of linear difference and differential
equations and linear algebraic equations. In Section 5, we consider application of
this processor for the solution of the least-squares problem. In Section 6, we
address its use for deconvolution and for the computation of the eigenvalues and
eigenvectors of a matrix., In Section 7, our attention turns to the use of the system
for matrix-matrix multiplication, the solution of linear matrix-matrix equations and
matrix inversion., We then consider in Section 8 its use in the solution of nonlinear
matrix equations with specific application to the linear~quadratic-regulator problem
and algebraic Riccati equation of optimal control engineering,

2. TITERATIVE OPTICAL PROCESSOR SYSTEM

The general schematic of the iterative optical processor (IOP) is shown in Fig-
ure 1. This figure illustrates the use of the IOP both as a vector-matrix multiplier
and as an iterative processor for the solution of linear vector-matrix equations.
Since an understanding of this architecture is paramount to the remainder of this
paper, we review its operations. To multiply a vector by a matrix, the elements of
the vector are used to spatially modulate a linear array of light emitting diodes
(LEDs) or laser diodes (LDs) at Pj. We denote the light distribution leaving Pj by
the vector x. Plane Py is imaged vertically onto P9 and the output from each LED is
expanded to unlformlv illuminate the corresponding row of a 2-D mask at P9, The light
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distribution leaving each column of P2 is then summed onto a different photodetector
at P3. With the transmittance of P, specified by the matrix H, the vector output from

the linear photodetector array at P3 is the matrix-vector product Hx as described in
{1] and earlier by others [7,8].

In our system [2,3], we have included feedback of the photodetector outputs to
the LED inputs through an electronic feedback system. In our original description of
this system [2,3], the mask was [I - H], where I is the identity matrix. The P3 out-
put is then [I - H]x(j), where x(j) denotes the vector x at the j-th iteration. An
external vector y was added to this matrix-vector product in the electronic feedback
system to form the new iterative input x(j + 1). Our system thus implemented the
iterative algorithm

x(j +1) =[I-Hlx(G) +y=x()-Hx({) +y. (1)

In the steady-state when x(j + 1) = x(j), equation (1) reduces to Hx= y and the out-
put X is the solution

x=H1ly (2)

of the vector-matrix equation

Hx = y. (3)

In the newest [5,6] version of this IOP, we have: (1) used fiber optics to
realize the required projection from Py onto P, (this greatly improves the system's
accuracy as well as its mechanical and positional stability and reduces its size and
weight); (2) placed the photodetector at P3 in direct contact with the matrix mask at
Py (this is possible when the 4 mm height of each photodetector is matched to the
height of the matrix mask at Pp. This further reduces the size and weight of the sys-
tem and makes it even more stable for airborne applications)j; (3) included a micro-
processor system with an arithmetic logic unit (ALU), memory and hardwired multiplier
in the electronic feedback loop (Figure 2), (this increases the system's flexibility
and versatility); and (4) modified the feedback system and the iterative algorithm to
incorporate an acceleration parameter to insure convergence of the iterative algorithm
(Section 3).

When funding permits, we plan: (1) to increase the size of the P; input and the
Py mask from its present 10 X 10 level; (2) to incorporate a real-time and reuseable
spatial-light modulator electro-optical mask element (such as a CCD-addressed liquid
crystal light valve [9]) dinto the system; and (3) to increase the repertoire of opera-
tions and applications for the system. In Sections 4-8, we advance the first descrip~
tion of a selected number of general operations and problems as well as applications
for which this new optical processor can be used.

3. CONVERGENCE AND HANDLING BIPOLAR AND COMPLEX-VALUED DATA

In this section, we first detail how this non-coherent optical system can be
used to operate on bipolar and complex-valued data [5,6]. Since the LED outputs at
Py, the transmittance of the mask elements at Py and the photodetector outputs at Pg3
are all real and positive, and since the dynamic range of the mask at Py is finite,
various scaling, biasing and data encoding techniques are required to process vectors
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and matrices with bipolar and complex~valued data on the system., To handle complex-
valued data, we partition the matrix H into its real and imaginary parts H, and Hy,

respectively, as —_ ._

H= (4)

b N—

where Er and H, are bipolar. This requires a P mask with four times the space-band-
width product of H, an input LED array with twice the number of elements in x and a
linear detector array with twice the number of elements present in y.

To handle bipolar data, we decompose the input vector x into its positive and
negative components. Let gf and 3™ denote the positive and negative components of
the input vector a used in the actual system. The M elements aj, and ap, of éf and
a~ are generated according to

a

1p = 045 (xm + [xm[)

(5)
a, = 0.5 (Xm - ‘Xml) s

where the xp are the elements of the bipolar physical vector x.

The system is then operated twice, first with aj as the input and then with as
as the input (with the same physical mask B used for all cycles). The outputs from

the system on successive cycles are Ba, and Ba,. These outputs are: (1) subtracted;
(2) scaled by (h - h), where h and h are the maximum and minimum values of the ele-
ments of the matrix H; and (3) biased by h % < ° The system's output y after two
successive cycles is thus —m=1m

. M T
y=Hx = (h—_)[@gl —ggg +<hm§1x9[ll...l} . (6)

To insure that the transmittance of the physical mask B has a transmittance for each
element satisfying 0 < b, < 1, we scale and bias B such that

b =R (7)
h-h

where hm denotes the values of the elements of H and by, denotes the transmittances
of the pﬁysical mask B placed at P,.

The second issue to be detailed in this section is how rapid convergence of the

iterative algorithm is insured. This is achieved by modifying our original iterative
algorithm to include an acceleration parameter w (as shown in Figure 1). The new
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system thus implements the iterative algorithm [4-6]
x(3+ 1D =x) +oly -HEx @], (8)

We select w by one of the following criteria to insure rapid convergence of the algo-
rithm, We can select

w = _l/}\max’ (9)

where Xmax is the maximum eigenvalue, in absolute value, of the matrix H, or we can
obtain an approximation to (9) by [10]

ﬁ N 9 1/2
A< HE =] £ n , (10)

max — mn
m=1 n=1

where f[g}[ is the Euclidean norm of the (N X N) matrix H. The w criterion resulting
from the upper-bound in (10) can be modified by selecting w = —K/Xmax, where K > 1 is
a constant selected empirically from analysis of a specific problem. (In several spe-
cific case studies that we have considered, K = 2-3 was found to be adequate.) The
microprocessor feedback system (Figure 2) performs the necessary scaling, biasing and
preprocessing described by (5) and (7), the detector post-processing in (6), and the
acceleration parameter selection noted in (10). In Section 6, we describe how the
IOP itself can be used to calculate the acceleration parameter w in (9).

4, SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

As our first general I0P application, we consider the use of the system of Fig-
ure 1 for the solution of simultaneous linear (difference, differential or algebraic)
equations. The general iterative algorithm for the solution of linear difference
equations is

x(3+1) =0x(@) + £, (11)

where j is the discrete-time index, f is the forcing function equal to a constant vec-
tor (or, more generally, a vector of time-functions), x(j) is the state of the system,
and ® is the open-loop system matrix.

The first application of the TOP of Figure 1 to the problem in (11) is as a dy-

namic system simulator. In this case, we model the physical system by the state-space
differential equation model

— =Ax + b, (12)

where A is the open-loop system matrix and the vector b is a constant or function of
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time. We then utilize a numerical analysis algorithm to discretize this system model.
We illustrate the approach by the forward-Euler approximation [11]

dx(t) x(3 + 1) - x(3)

~ 3

dt T

(13)

t=3T

where T is the constant time-increment (or step-size) between discrete samples de-
scribed by the index j. Substituting (13) into (12), we can simulate the physical
system mcdeled by (12) on the IOP of Figure 1 by the linear iterative algorithm

x(J +1) = [I+TAlx(3) + Th. (14)

By analogy with (11), [I + TA] = ® and Tb = f. Other numerical analysis algorithms,
such as the trapezoidal rule, are possible. The most preferable ones appear to be
the Runge-Kutta and predictor-corrector algorithms [12].

The second application of (11) on the IOP is the iterative solution of linear
algebraic equations. In this case, the iterative system algorithm of (8) is used.
When rearranged in the form in (1), we can identify the ® matrix and the f vector in
(11) as [I - wH] = ® and wy = £. The algorithms in (8) and (1) have been used [2,13]
to calculate the set of adaptive weights necessary in adaptive phased-array radar sig-
nal processing. While space does not allow us to elaborate on this application, we
note that, in this case, the matrix H in (3) is the covariance matrix M of the far field
input to the antenna, y is the steering vector s for the antenna and the unknown vec-
tor X to be determined is the set of adaptive weights w to be applied to the received
signals to steer the antenna in the desired direction (defined by s) and to null the
noise field (defined in frequency, velocity, angle and range by M).

Four iterative algorithms to solve (3) for x given by (2) can directly be iden-
tified. The first is the Richardson algorithm [14] of (1) implemented with the accel-
eration parameter w as in (8). The remaining three algorithms can be described in a
new and quite useful formulation by decomposing the matrix H into the sum of a diago-
nal matrix D and lower and upper triangular matrices L and U as

B=D-L-U. (15)

In terms of the D, L and U, we can write the remaining three algorithms as [15]:

Jacobi: x(j + 1) = E;J(;.+ _ﬂ x(§) + Dy (16a)

Gauss—Seidel: x(j + 1) = Ep_ - _Ii)—l_[g] x(j) + (D - L)_lz (16b)
Overrelaxation: x(j + 1) = (D - a@)‘l[(l - w)D + U]l x(3) + w(@ - mL)_ly,

(16c)

The choice of one of the four algorithms in (8) or (16) depends on many factors that
are highly application and problem dependent (e.g., convergence of the algorithm, dy-
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dynamic range of the mask, number of iterations required and the need for an adaptive
mask) .

5. LEAST-SQUARES PROBLEMS

The solution to many physical and statistical problems can be formulated in the
general context of a least mean-squares problem, A model is postulated to approximate
measured data and the parameters of the model are selected to minimize the mean-square
error between the measured data and the model. Curve-fitting and linear and poly-
nomial regression are classical examples of least mean-squares problems. We formulate
and address below the solution on our IOP of this class of important problems.

We begin by reformulating our simultaneous linear algebraic equation problem
solution in Section 4 as a least-squares problem. In the context of Figure 3, the
input to the operator H is x and noise or an error source € is present at the output such

that the observable outputji differs from Hx . The proﬁiem is thus to find the x
that minimizes the square of the difference

7=y - mx||? an

between y and Hx.

Noise or
Error Source g

v
«— H ——»( )y
Hx

FIGURE 3 Schematic diagram of a Teast-mean squares problem formulation.

Upon expanding (17), we obtain

J=1ly - EzslT ly - Bx] = ZT_X - zT_Ii§ - §T,11Ty + _%TETE& (18)

To minimize (18), we set the partial derivative or gradient of the scalar per-
formance index in (17) with respect to the unknown vector x equal to zero. The re-
sultant column vector is then the solution of



or (19)

In least-squares data processing, y is an M-vector, H is an (M X N) matrix and x is
an N-vector, where M > N, We consider first the case when the number of unknowns N
equals the number of equations M. In this case, H is a square matrix and the solution
to (19) becomes

-1
x = l}fﬂ} By =8 0wy = By, (20)

where H is assumed by implication to be a non-singular matrix and therefore to be in-

vertible. This occurs when the y = HxX problem being solved is well-formulated as

occurs in all practical engineering problems. Thus, in this case, the solution x =
1y minimizes the quadratic performance index in (17). For this case, we solve the

least mean-square problem by our Richardson algorithm of (8).
A more interesting problem (corresponding to the practical case of curve-fitting

occurs when there are more equations M than unknowns N (i.e., when M > N). 1In this
case, H is non-square and therefore non-invertible. We thus solve (19) by the new

iterative algorithm
x(3+ 1D =x(G) to Eiy] (:HH] x(3) . (21)

This is equivalent to pre-multiplying (3) by H and applying our iterative Richardson
algorithm in (8) to the solution of [ﬂiﬁl§ = H'y rather than Hx = y.

A

The least-squares fitting of experimental observations leads to a more general
iterative vector-matrix solution. Suppose that we have L data points p = {pg} and
wish to approximate the set of observations z(p), in the least-squares sense, by the
finite linear combination

2(p) = ¢ ¢(p) (22)

of basis functions ¢ = {¢ } with the associated weighting coefficients ¢ = {c }. In
(22), each of the N basis functlons ¢ are evaluated at the L data points - {p,} and the
relationship in (22) is approximate if there are more data points L than basis func~
tions N. The errors or residuals [z(p) - clé(p)] of the curve-fit are the differences
between the observed data z(p) and the approximation CT¢(p) According to the princi-
ple of least-squares, we select the weighting coefficients in (22) to minimize the
sum-of-squares of the residuals., To find the coefficients c, therefore, we minimize

the mean-square difference
2
J= I E(pg)—gg( ﬂ . (23)
?at .
Py




We proceed as before, Upon setting 3J/d9c = 0, we find

T
> (p,)o ( c = )X z
Data 9 pQ 9‘ pg - Data'g(pz) (pz)
{py! {pyt (24)
\/\/—\JM\/——\/\J
LS X = y
which is again of the general form Hx = y, with the summation over the {p,} data

points incorporated into the matrix and vectors in the algorithm in (21). "When the
basis functions ¢ = {¢n} are specified, the matrix H can be precomputed and the prob-
lem solved by the iterative algorithm in (8) or (21). A simple discrete example of
{¢n} arises in the calculation of the best straight-line fit through a set of data
points. In this case, ¢; = 1 and ¢, = p and z(p) = ¢y + cop. A simple continuous
example case is the Fourier series expansion of z(p), in which case the {¢n}'are the
complex exponentials exp(jjnwop).

In this section we have illustrated and formulated the least mean-squares prob-
lem as the iterative solution of the system of linear algebraic equations Hx = y on
the IOP. We recognize that the range of applications of our formulation includes
curve-~-fitting, linear and nonlinear regression, state and parameter estimation, orbit
determiniation and signal processing in control and communication engineering. We
will address these applications in our future work.

6. DECONVOLUTION AND EIGENVALUE PROBLEMS

The need to implement a deconvolution frequently arises. In such applica-
tions (Figure 4), the measured output data y = {ym} from a system characterized by
the impulse response {hm} will be a modified version of the original input vector x =
{x_}; i.e

n-?* +T+*5o

m

v . (25)

m nEO h(m—n)xn

In (25), we assume that the system is causal, otherwise we appropriately shift the im-
pulse response so that h, =0 for m < 0. The solution of (25) for the unknown input
x is directly described by the vector-matrix equation y = Hx, where (for the case of
M =N = 3) the matrix H is shown below:

h 0 0[]
Yo o %0
v, |= by By O x; (26)
Yo by by Byl %
b — il RN [ WU .
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X = U H Y = iy

FIGURE 4 Simplified schematic diagram of a deconvolution processing problem.

In the general case of M > N = 3, the size of H grows, but H still has only
three non-zero diagonals (with equal values hO hy and h,, respectlvely,along each
diagonal), and there are an additional (M -~ N) elements with zero value added to x.
The solution of the deconvolution problem in (25) is thus directly realizable on the
IOP by the iterative algorithm in (8) with the matrix mask in the form shown in (26).
Once again, we see how different problems can be solved on the same IOP by different
choices of the matrix mask and the iterative algorithm used.

Another quite general and useful matrix operation is the calculation of the
eigenvalues A, and corresponding eigenvectors ¢  of the (N X N) matrix H. This opera-
ation can be performed by the iterative algorithm [16]

x(3+1 =Hx () , (27)

which is equivalent to (8) with the exogenous vector y set equal to zero. To see how
(27) allows calculation of the K and ¢,, we assume that !kll is the largest eigen-
value and that the eigenvalues are ordered, in absolute value, according to ]AIT

IXZI > eese By singular value decomposition, we write H and the original
1n1t1allzat10n vector x (0) as
N T
i= iEl LI N
and (28)
N
x50 =k agd,

After j iterations, x(j + 1) = E;g (0) is obtained. Substituting (28) into this ex-
pression, we find (for large j)

x(j +1) = x (O) Lgigé'j alkigl . (29)

We form the component-wise ratio xi(j + 1)/x%4{(3) and from it find A1 (the largest
eigenvalue of H). We divide the denominator of the output vector x by the sum of the
squares of its elements and thus obtain the principal eigenvector ¢;. We then use the
new initial vector 52(0) = §1(O) - 8191' Repeating the same iterative procedure in
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(27), we then find A, and $5. By continuing this process, all of the eigenvalues and
eigenvectors of H can be determined in decreasing order. Modifications to this pro-
cedure allow us to find the eigenvector whose eigenvalue lies closest to a prescribed
value [16]. Many other extensions of these techniques and applications of the above
results are possible and will be the subject of future work.

7. SOLUTION OF MATRIX EQUATIONS

Many problems involve matrix-matrix multiplication. There are two ways to real-
ize a matrix-matrix multiplication on our vector-matrix multiplier. In the case of
large matrices, the preferable technique is to form the product Y = M * N of the
matrices M and N by feeding sequentially the columns n, of N as successive input vec-
tors. We thus realize the matrix-matrix product by performlng N vector-matrix multi-
plications; i.e.,

X:Moﬁ:ﬁ[&lgz. . -E_N] , (30)

where the matrix output X.appears sequentially as N column vectors; i.e., Y = [1122 .
SN ]. A second technique is to vectorize the matrix N into an N2 element vector
whose first N elements are the elements of nj and the next N elements are the elements
of Doseee o The matrix M is formatted as an (N2 X N¢) matrix whose diagonal blocks
are replications of the matrix M; i,e.,

- 1 M — T
M ) >£]
M i} Y.
M ° -}l = ® 02 = 02 (31)

L 1

With a matrix-matrix multiplier realized by (30) or (31), we can thus use the
I0P to solve matrix-matrix equations such as

HX =X (32)

by vectorizing the matrix Y or by operating the system on sequential cycles with the
column vectors of Y as successive inputs. A particularly useful operation that is
now possible is matrix inversion. In this case, we solve (32) using (8), but with
Y = I (the identity matrix). A final useful matrix equation that frequently arises
is the solution for the embedded matrix X in an equation of the form

AXB =Y . (33)

In this case, we write the matrices Y and X as the column vectors C[Y] and C[X], whose

elements are the lex1graph1cally—ordered elements of the matrices Y and X, respective-
ly. We solve (33) for X by writing (33) in the form

a () M1erx = eyl , (34)
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where (:) denotes the outer or Kronecker product. For the case of the (2 X 2) matrix
A,

T T
a B al2 B

NOESE (35)

Solution of the Lyapunov matrix equation XA + §T§,= Y is now possible on the vector-
matrix IOP,

8. SOLUTION OF NONLINEAR MATRIX EQUATIONS

In Section 7, we described how we have broadened the repertoire of operations
achievable on the IOP to include the full-class of linear and embedded matrix equa-
tions. As our final general iterative vector matrix operation, we consider its use
in the solution of nonlinear matrix equations. The need for the solution of such
equations arose in our original use of the system for adaptive phased-array radar

processing [2] and in our present optimal control linear-—quadratic-regulator applica—
tion [4].

The general problem of two quadratic equations in the two unknowns p and q can
be written as

2 2
= =
fn(p,q) anp +bpg+tcqg +dpt+teq+r 0 (36)

for n = 1 and 2. We rewrite this pair of two nonlinear equations in vector form as

£[x] = 0 (37)

™
il
—
g’
fial
et

where f[x] = [f1(x) fz(g)]T and x
iterative algorithm

We then solve (37) by the Newton-Raphson

af [
x(3 + 1 =x() - |— flx(H1. (38)
9x
x(3)
The solution of (38) requires two iterative loops. The Jacobian matrix J = [8£/3§J

is stored algebraically. At each iteration, J is evaluated numerically with dedicated
electronics at the last iterate x(j). The inverse matrix [l[ﬁ(j)]]'l is evaluated on
the optical vector-matrix system in an inner iterative loop. The new x(j + 1) iterate
is then evaluated optically in an outer iterative loop.

Three immediate applications for such a nested two-loop iterative algorithm
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arise. The first occurs in the implementation of the overrelaxation linear algebraic
equation solution of (16c) with [D - wL] on the left-hand side of the equation. 1In
this case, a matrix-vector multiplication is required to obtain the external vector

to be added. The second case arises in the use of (8) to solve for the adaptive
weights w for a phased-array radar whose noise field is described by the covariance
matrix M and the direction of its main lobe is defined by the steering vector s. In
this case, we solve the vector-matrix equation M * w = s. When the noise distribution
varies, the matrix mask M must be updated.

The IOP application we are presently considering under support from the NASA~-
Lewis Research Center is the use of the IOP in the solution of the linear-quadratic-
regulator (LQR) problem of optimal control. In this application, the TOP is used to
calculate the optimal controls to be applied to an F100 aircraft engine. To determine
these control signals, we must solve the algebraic Riccati equation and calculate the
LQR feedback gains. In this application, we use: (1) the vectorization of a matrix;
(2) the Kronecker product technique; and (3) the nested inner and outer loop system
to solve the nonlinear algebraic Riccati equation [4].

9. SUMMARY

In this paper, the general-purpose nature of an iterative vector-matrix pro-
cessor has been emphasized. This system is capable of solving a wealth of general
purpose applications. General operations described included: linear difference and
differential equations, linear algebraic equations, matrix equations, matrix inver-—
sion, nonlinear matrix equations, deconvolution and eigenvalue and eigenvector compu-
tations. FEngineering applications being addressed for these different operations and
for the IOP are: adaptive phased-array radar, time—-dependent system modeling, decon-
volution and optimal control.
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