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ABSTRACT

Generalized Hankel transforms are useful in analyzing the effect of circularly
symmetric optical systems on arbitrary inputs. Some examples of such systems are
complex laser resonators and space telescopes. Three methods for performing Hankel
transforms with optical or digital processors are described. The first method is
applicable when the input data is available in Cartesian (x-y) format and uses the
close connection between generalized Hankel transform and the two-dimensional
Fourier transform in Cartesian coordinates. The second method is useful when the
input data is in polar (r - 6) format and uses change of variables to perform the
nth order Hankel transform as a correlation integral. The third method utilizes
the von Neumann addition theorem for Bessel functions to extract the Hankel
coefficients from a correlation between the radial part of the input and a Bessel
function. Initial experimental results obtained for optical implementation of the
first two methods are presented.

INTRODUCTION

The analysis of complex optical systems is greatly facilitated by two-
dimensional Fourier transform techniques. The effect of an optical system on
arbitrary inputs is easily described by a transfer function in the Fourier domain.
Generalized Hankel transforms are similarly useful when dealing with a circularly
symmetric (or axisymmetric) system for arbitrary inputs.l! This situation is
encountered in performing mode analysis on the output of a slightly misaligned
laser resonator as well as in aligning space telescopes. An optical method for
performing mode analysis via generalized Hankel transform will have the unique
advantage of preserving the phase of the wavefront to be analyzed.

It is well known that when a two-dimensional function has circular symmetry
(i.e. it depends only on the radial variable, r), its Fourier transform is also
circularly symmetric (i.e. it depends only on the radial variable, p). It can be

shown that in such a case the Fourier transform is equivalent to the Oth order
Hankel transform.?

If
£(x,y) = f \fx2+y2)

Then
ﬁ 9 £ qx2+y2 =,? Ju2+v2

where 52; { } indicates two-dimensional Fourier transformation.
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where F (p) dis the 0th order Hankel transform and Jo(pr) is the OfD order Bessel
function of the first kind. Thus in dealing with circularly symmetric systems, the
oth order Hankel transform (which is a one-dimensional operation) can be used
instead of the two-dimensional Fourier transform if the inputs also are circularly
symmetric. TFor arbitrary inputs, this technique can be extended by using the genera-
lized Hankel transform, which expands on the nth order transform (F,(p) with kernel
7, (o) in Eq. (1)).

The generalized Hankel transform, an(p), can be defined for an arbitrary
function, f(r,8), as follows:

(>8]

f(xr,8) = E fn(r) ejne

e (2)

(e8]

an(p) =f rdr fn(r) Jn(pr)

(¢}

The generalized Hankel transform thus involves a Fourier series expansion in 6,
followed by an nth order Hankel transform (with nth order Bessel function, Jn(pr),
as the transformation kernel) on the ntP coefficient of expansion, f,(r). This
generalized Hankel transform is useful in analyzing systems with circular symmetry
but when the input is not circularly symmetric.

In the following sections we will describe three techniques for easy
implementation of the generalized Hankel transform with optical or digital
processors. These three techniques are each applicable in different circum-
stances. Initial experimental results on the optical implementation of the
first two methods will be presented. In conclusion, we will detail the course
of future work in this area.

OPTICAL IMPLEMENTATION OF GENERALIZED HANKEL TRANSFORM

In optical processors a two-dimensional Fourier transform with respect to the
Cartesian coordinates (x,y) is performed very easily with the help of a simple
spherical lens.? The equivalence of two-dimensional Fourier transform and Oth
order Hankel transform for circularly symmetric functions was established in the
Introduction. A similar connection exists between two-dimensional Fourier trans-
form with respect to Cartesian coordinates (x,y) and th order Hankel transform
of the radial part if the function is of a’ form f£(r) eJ™0,
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where

-

3
= (u2+v2) , § = tan _l(v/u).

and by definition

0

Fn(p) = / rdr f(r) Jn(pr) .

o]

This connection arises out of the integral representation of Jn(pr).1 Using this
result in the definition of generalized Hankel transform given in Eq. (2) the
following relation is obtained between the two-dimensional Fourier transform and
the generalized Hankel transform:
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F (o) o~ Jn¢ (4)

n=-—e

Thus the generalized Hankel transform an(p) is equivalent to the nth

coefficient of Fourier series expansion of 57(p,¢) in variable ¢. Using

this result, an optical system shown in Fig. 1 is designed to perform
generalized Hankel transform on an arbitrary input that is available in
Cartesian format (f(x,y)). The spherical lens performs a two-dimensional
Fourier transform on f(x,y) generating &% (u,v). A suitably designed computer
generated hologram then performs the Cartesian-to-polar (u,vp,$) coordinate
transformation on % (u,v) generating & (p,$).° This is followed by a cylindri-
cal lens which takes a one-dimensional Fourier transform with respect to variable
¢ generating the desired output, an(p).

Initial optical experiments established the connection between two-
dimensional Fourier transform and ntP order Hankel transform for a function
of the form f(r)eJ™. The schematic diagram of the optical system is shown
in Fig. 2. A computer generated hologram was used to encode eJnd dependence
of the input. The output was detected by a TV camera, which measures the light
intensity in the Fourier plane of the input. The input used in these experi-
ments had an r dependence given by §(r-a), thus corresponding to a thin ring
of radius "a'" in the Cartesian (x,y) plane. The nt? order Hankel transform of
§(r-a) is aJ,(ap), making the output easily understandable. Figure 3 shows the
results correspondlng to Oth order Hankel transform (i.e. eJP® = 1), 1In Fig. 3(b)
the function ‘J (ap)l is plotted, which is then compared to a line scan through

135



the origin (Fig. 3(c)) of the output shown in Fig. 3(a). Very good qualitative
agreement between the theoretical and experimental results is obtained. Figures
4(a-c) present the results for 1°% order Hankel transform for the same f(r),

but here the 0 dependence is elV, Again good qualitative agreement is

seen between theory and experiment. A line scan through the origin of the output
corresponding to ond order Hankel transform of 8(r-a) (with 6 dependence el20) is
shown in Fig. 5. The zero at the origin was broader and the side lobes were seen
to fall slower indicating that we indeed have IJz(ap)I2 as expected,

OPTICAL IMPLEMENTATION OF NTH ORDER HANKEL TRANSFORM

The previous method is applicable when the input is available in Cartesian
(x,y) format, since it involves performing two-dimensional Fourier transforms
with respect to the Cartesian variables. If the input is polar (r,0) formatted,
a more direct approach outlined in Eq. (3) has to be followed in obtaining
generalized Hankel transform. The first part of the operation, which involves a
Fourier series expansion in variable 6, is easily performed optically using a
cylindrical lens. The calculation of nth order Hankel transform of the nt
coefficient of expansion is less straightforward since it corresponds to a
space—-variant operation. So the main aim of the next two methods is to perform
the space-variant operation of nth order Hankel transform optically.

a. Method Using Change of Variables

One standard procedure used in converting a space-variant operation into a
shift-invariant operation is to employ appropriate change of variables. 1In the
case of nth order Hankel transforms the following procedure was described by
Siegman for implementing the space-variant operation as a correlation integral
on a digital proc:essor.L+ From the definition

Fn(p) =/ rdr £(1) Jn(pr) ,
o

using

o =pe¥ (5)

’r:n(y) =/ %(X) 3n(x+y) dx

00

where F (y) = oF,(p), f(x) = rf(x), and ﬁn(x+y) = qrp Jﬁ(rp). The algorithm,
therefore, consists of first linearly weighting the input f(r) and perform-
ing r»x (logarithmic related) coordinate transform. This distorted input

is then correlated with a similarly weighted and coordinate-transformed nth
order Bessel function to give the desired Hankel transform as well as linearly
weighted and coordinate distorted forms. In any physical system the correla-
tion integral will be performed over a finite interval, giving rise to
truncation errors. Also if the input is sampled in the x-domain, the sampling
rate should be adequate to represent the function accurately in x—-domain.
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These factors and others are discussed at length, especially for digital
implementation, in Refs. 4 and 5.

Since the operations of coordinate transformation and correlation can be
performed by an optical processor, the optical system outlined in Fig. 6 can
calculate nth order Hankel transforms, Computer generated holograms are used
to perform r»>x coordinate trapsformation as well as to encode the Fourier plane
filter with impulse response J,(x). The second dimension of the optical processor
can be used to perform different order Hankel transforms on different inputs, thus
achieving multichannel operation.

In the initial experiment, both the input and the Fourier plane filter were
encoded by computer generated holograms. The linear weighting and the coordinate
transformation of the input was performed by the digital computer before doing the
holographic encoding. The computer generated holograms used the Lee-Burckhardt
technique® and contained 128 pixels. The optical system is depicted in Fig. 7.
This system was then used to perform Oth order Hankel transform on_ two different
inputs, £1(r) = p1Jo(p1r) and £2(r) = p2Jo(por). The result of Dth order Hankel
transform on f1(r) and f7(r) should be 6(p—pl) and §(p-py) respectively. The
results of the computer simulation of this algorithm are depicted in Fig. 8. The
finite width of the peak and the sidelobes are due to the finite limits of intergra-
tion. To facilitate easy comparison with the experimental results, the ch order
Hankel transform with linear weighting and coordinate distortion (i.e. ]FO(Y)IZ)

was plotted versus y instead of F_(p) versus p. Figure 9 shows the experimental
results obtained. The optical ou%put was detected by a 1024-element Reticon

linear photodiode array. The shift in the peak position and the difference in the
peak heights (due to the linear weight) are evident, indicating good qualitative
agreement with the computer simulation results.

b. Method Using Neumann Addition Theorem
This method investigates an approach based on the special properties of Bessel

functions.’ If the input f(r) is correlated with J,(pr) then the mth order Hankel
coefficient Fm(p) is obtained at the origin of the correlation plane for the

particular value of p encoded in the Bessel function kernel.

«©

F_(p) =f rdr £(r) J_(o(r+r')) (6)

¢]

The Neumann addition theorem for Bessel functions states that

©

J (o(rtr")) = E I, (pr') I (pr) 7

n=—o

Substituting for Jm(p(r+r')) from Eq. (7) into Eq. (6) we get
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frdr f(r) Jm(p(r-i-r')) f rdr £(r) E Jm—n (pr") Jn(pr) (8)
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Thus it is seen that the correlation plane contains an infinite sum of Bessel
functions of different order weighted by Hankel transform coefficients of
different order. So in principle it is possible to extract Hankel transform
coefficients of different order out of a single one-dimensional correlation
operation.

The other dimension of optical system can be used to perform correlations
with Jm(pr) with different values of p to obtain complete Hankel transform. This
approach is currently being evaluated further to determine the situations in which
this method will be suitable.

FUTURE WORK

In this paper we have presented brief outlines of three different approaches
for performing generalized Hankel transforms by optical or digital processors.
We also presented initial experimental results on two of the three approaches.
The future work will concentrate on carrying out the coordinate transformation
required by the first two methods optically via computer generated holograms. A
more quantitative analysis of the performance of the optical processor will be
carried out. These three methods will be compared with each other with respect
to space-bandwidth requirements as well as pre- and post—-processing requirements.
Finally, generalized Hankel transforms will be applied to specific problems, such
as analysis of complex laser resonators, and optical systems will be developed for
those problems.
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Figure 1. - Schematic diagram of optical processor for performing generalized
Hankel transform via a two-dimensional Fourier transform with respect to
Cartesian coordinates (x,y).

1
P |
e {
/"/ ! X
r” I P
I |
flr) ———— :
|
| ] / o
- Fnlp) eI
| -’
I L~
1 P
A i . f -
CGH D o "
eJnG
F, {f(r) eJ""} = Fplp) eI
Figure 2. - Schematic diagram of experimental setup for establishing the
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Fourier transform of f(r) eI with respect to Cartesian coordinates (X,¥).
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(a) Photograph of the output.

2 ; ; (c) Line scan through the origin of the
hich -
(b) Plot of ‘Jo(ap)l VEISHS By WEALER 48 pattern in figure 3 (a), giving

the theoretically expected result. ]F (p)lz versus o
o .

h
Figure 3. - Experimental results for 0" order Hankel transform
Fo(p) of 8(r-a).
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(a) Photograph of the output.
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(c¢) Line scan through origin of the

2
b) Plot of |J (a versus P, which is
(b) | o( D)I 8 bottom in figure 4 (a), giving

the theoretically expected result. 2
!Fl(p)l versus (.

Figure 4. - Experimental results for ISt order Hankel transform
Fl(p) of 6(r-a).
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Figure 5. - Line scan through the origin of the two-dimensional
Fourier transform of 6{(r - a) ejze, giving ,Fz(p)lz for
§(xr - a).
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Figure 6. ~ Schematic diagram of an optical processor for performing nrh

order Hankel transform on f(r) employing change of variables.
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Figure 7. ~ Schematic diagram of the experimental setup for performing the
one-dimensional correlation between linearly weighted and coordinate

transformed input, f(X), and similarly weighted and transformed Bessel
function JO(X).
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Figure 8. - Results of computer simulation of Oth order Hankel transform
of leo(p,r) and Py Jo(pzr). The linearly weighted and coordinate

transformed Hankel coefficients, ]%O(y)|2, are plotted versus y.
Py = 20;-
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(b) Input f2(r) = p2 Jo(pzr).

Figure 9. — Oscilloscope traces of output of the optical processor
performing the Oth order Hankel transform. Traces correspond

to ]%O(y)|2 versus y for the two inputs.
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