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SUMMARY

This paper describes the optical implementation of the Fukunaga-Koontz transform
(FKT) and the Least-Squares Linear Mapping Technique (LSLMT). The FKT is a linear
transformation which performs image feature extraction for a two-class image class-
ification problem. It has the property that the most important basis functions for
representing one class of image data (in a least-squares sense) are also the least
important for representing a second image class. The LSIMT is useful for performing
a transform from large dimensional feature space to small dimensional decision space
for separating multiple image classes by maximizing the interclass differences while
minimizing the intraclass variations. The FKT and the LSLMT were optically imple-
mented by utilizing a coded phase optical processor. Good experimental results were
obtained, and they were compared with the performance of the matched filter and the
average filter.

I. INTRODUCTION

Optical matched filtering, which is invariant to the translation of input, has
been the main basis for optical pattern recognition for many years (refs. 1-3). Op-
tical Mellin transform was later introduced to obtain scale invariant correlation
(ref. 4). Currently, the subject of performing statistical pattern recognition and
classification optically is found to be of considerable interest (refs. 5-9). For
the two-class problem, we shall show in this paper that the Fukunaga-Koontz trans-
form (FKT) can be implemented optically (ref. 9). For the K-class problem where K
is greater than two, the optical implementation of the Least-Squares Linear Mapping
Technique (LSLMT) will be presented (ref. 10).

Figure 1 shows the hybrid system for optical implementation of FKT and LSLMT.
The key element in the hybrid system is the computer generated spatial filter. The
filter is synthesized from K training sets of images using the FKT or LSLMT algo-
rithm. When the LSIMT filter is inserted in the filter plane and a test image in the
input plane of a coherent optical processor (COP), the output from the COP will be a
bright spot of light in one of K predetermined locations, provided that the test im-
age belongs to one of the K image classes in the statistical sense and it is illumin-
ated with a random phase wavefront. As fast as one can input a new test image
through a real-time interface device to the COP, a new bright spot of light indica-
ting classification will appear among the K predetermined locations in the output.
The COP effectively performs a matrix-vector multiplication in real time, where the
matrix is (K XN), the vector is (NX1), N(= nxXn) is the space-bandwidth product or
the number of pixels in an image, and K is the number of image classes.

When the FKT filter (instead of the LSLMT filter) is used, the output from the
COP will contain a number of light spots whose intensities correspond to the squares
of FKT coefficients. The FKT coefficients are associated with basis functions
(features) which possess the interesting property that the most important basis
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function for one class is also the least important basis function of the other class.
Image classification can become as simple as comparing two FKT coefficients associ-
ated with the two basis functions of high separating power.

IT. THE FUKUNAGA-KOONTZ TRANSFORM

A. Procedures for Calculating the Basis Function

The procedures for calculating the basis functions of the F-K transform are sum-—
marized as follows. (Details can be found in ref. 9.)

(a) Given a training set of images ﬂg;l)} consisting of Ml image samples from
class 1 (i1 =1; =1, ..., Ml) and M2 samples from class 2 (i =2; j =1, ..., M2),

we first represent each sample image as a column vector of length N, and define
matrices W., W, and wt as follows:
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where Wl is an (N><Ml) matrix, WZ is (N><M2) and Wt is (N><(M1-FM2)) containing

sample images from both classes. The sample correlation matrix of the whole process
(computed with data from both classes) is then given by

wtw+ =W W, + ww+, (2)

since
My
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is the sample correlation matrix for the ith class. Finding the basis functions
normally involves diagonalizing the (NXN) matrix of (wtwt+), which is a very time

consuming task. But, when the intra-class variation in each class is small, this
time consuming task can be simplified to the following steps.

(b) We find the (M14-M2) eigenvectors E and eigenvalues A of (W;’Wt),

(wt+wt)E = EA. (3)

It can be seen from multiplying Eq. (3) from -the left on both sides by Wt and re-

grouping that diagonalizing (Wtwt+) gives (WtE) and A as the eigenvectors and
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eigenvalues
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Therefore, the time consuming task of diagonalizing (wtw;j has become the much
easier problem of diagonalizing the [(Ml*'M2)><(M14'M2)] matrix (W;_Wt) and calcula-
ting the product (WtE).

(c) By choosing the M, eigenvectors with the largest eigenvalues, we construct

1
matrices EC and Ac of dimensions [(M14-M2)><Ml] and [Ml><Ml], respectively.

(d) The eigenvectors ¥, 0 and eigenvalues I', M of the transformed single class
correlation matrices are given by

yr (5a)

~1 4+ + -1
[AC E, W WW, DWE A ]\y

oM (5b)

B + -1
[AC E, W (LW, W E A ]@

It is shown in reference 9 that the eigenvectors of equations (5a) and (5b) are
identical,

O =Y (6a)
and that the eigenvalues of equations (5a) and (5b) are related by
M=1-T (6b)

Thus, the eigenvectors with large eigenvalues applied to one class will have small
eigenvalues when applied to the other class.

~1_

(e) The basis functions for the F-K transform are (yi+A EC Wt ), wherejlgi

, . c
are the eigenvectors in VY.

B. Optical Implementation of the F-K Transform

Since the F-K transform is a linear transformation, the coefficient correspond-
ing to a specific basis function is found by calculating the inner product between
an input image function and the complex conjugate of the basis function. A coherent
optical processor can be designed to calculate these coefficients in parallel by
multiplying the input image by a coded phase function exp[i¢r(x,y)], and designing a

filter whose impulse response h*(-x,-y) consists of the complex conjugate of a sum-
mation of shifted products of the coded phase function and a particular basis func-
tion

M

h*(-x,-y) = Z qu"‘(X+pA, y+ad) exp [-1¢ (x+pA, y+qi)] (7
Pq

where qu(x,y) is the p,qth basis function generated from displaying the eigenvector
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QﬂiAc E_ Wt) in a two—-dimensional format, ¢r(x,y) is a random function uniformly
distributed from 0 to 2 , and A is a shift constant (see refs. 11-12 for more details
of the coded-phase optical processor). Since the coded-phase function has an auto-
correlation of a delta function, a coherent optical correlator produces an output
consisting of the transform coefficients space at intervals of A

M

gCx,y) exp [10,Gey)] Do £ *(x=x" +p8, y-y' +ab)
P»sq

c(x', y")

exp[—¢r(x-x'4-pA, v —-y'+qh) Jdxdy

i

M
Z //g(x,y)f *(x,y)dxdy |6 (x' - pA, y'-qd) (8)
P,q Pd

Both the coded-phase distribution which illuminates the input and the spatial filter
can be obtained by computer generated holograms.

Experimentally the optical Fukunaga-Koontz transformation was applied to the
problem of distinguishing birds from fish. Ten images of song birds were input to
the computer through a T.V. digitizer system. These images formed the training set
for class 1. Ten images of fish were also input to the computer to form the training
set for class 2. These two sets are shown in figure 2.

The F-K basis functions are shown in figure 3(a) along with the test images con-
sisting of five new birds and five new fish in figure 3(b). Since the basis func-
tions can contain negative values, the pictures have been scaled so that black equals
the most negative, and white the most positive. The grey level which corresponds to
a value of zero is shown in the small square below each basis function. The eigen-
values corresponding to the ten basis functions are given in table 1. We see that
the best basis function with bird-type features is number 8. The best basis function
with fish-type features is number 3.

It is interesting to compare the third and eighth basis functions with the arith-
metic average of each training set. Figure 4 shows that the most important F-K basis
function for a class is similar, but not identical to the average filter for that
class. This is expected since both means were retained in the training sets. How-
ever, the F-K basis functions are not all positive. The grey level corresponding to
zero 1s shown in the small square under each basis function.

A filter was generated which contained six of the basis functions shown in
figure 3(a) in phase-coded form. Basis functions numbers 3, 4, and 1 were chosen to
represent fish-like features, and 8, 9 and 10 to represent bird-like features. This
filter was placed in the filter plane of an optical correlator, and a computer holo-
gram of the coded-phase array was placed in front of the input plane so that its re-
construction illuminated the input. This is illustrated in figure 5. The output
was detected with a T.V. camera, digitized, and displayed on a T.V. monitor. The
digital computer can measure these six coefficients, and use them as input data to a
linear or non-linear classifier for best classification.

The results of using three of the ten test images in the coded-phase processor
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are shown in figures 6(a)-(c¢). The lower right-hand corner of the T.V. monitor con-
tains a sampled version of the actual light field detected by the T.V. camera at the
output of the coded-phase processor. It consists of six points of light, where the
square root of the intensity of each point corresponds to the absolute value of the
coefficient for a specific basis function. The computer has added the lines around
these points and the corresponding basis function numbers to help the display to be
more meaningful. The measured values of the coefficients are plotted by the computer
in the lower left-hand part of the screen. The input image has been reproduced in
the upper left.

A simple linear classifier based on the coefficients from basis functions 3 and
8 was performed by the digital computer. This is drawn by the computer in the upper
right-hand corner of the screen. The magnitudes of the two coefficients define a
point in the two-dimensional space which is located by the mark "x". Points which
are located below and to the right of the dotted diagonal line are classified as
birds, whereas points above and to the left of the line are classified as fish. It
is clear from the figures that in each case, the combination of an F-K transform and
a simple linear classifier leads to a correct classification of the input image.
Figure 7 shows the combined result of 30 classifications, based on the magnitude of
coefficients from basis functions 3 and 8. Twenty of the points are from the train-
ing set of figure 2 and ten are from the test set of figure 3(b). A linear decision
surface is able to separate the class "birds" from the class 'fish" with no errors.

III. THE LEAST-SQUARES LINEAR MAPPING TECHNIQUE

The LSLMT is useful for performing a transform A, which maps an image vector
2%(1) from the ith class in the large N-dimensional feature space as close to one
specific unity_i as possible in the K-dimensional decision space such that the over-
all mean-square error incurred in the mapping is minimized (see figure 8)

Y cvove W=1,2, o K5 G201, 2, e, M) (9)
_"j 24 ___ij s ’ > s ’ s
. .th o L .th
wheref,_ij is the error vector for the i classifier and j image sample. The algo-

rithm of LSIMT involves maximizing the interclass differences and minimizing the in-
traclass variations.

A. Procedures for Calculating the Basis Functions

The procedures for calculating the matrix A and the basis functions of the LSLMT
are summarized as follows: (Details can be found in ref. 10.)

(a) Given a training set of images {gﬁl)} which consists of K image classes

and M sample images in each class (i =1, .v., K; j =1, ..., M), we define a (NXKM)
matrix W as

W o= [)_(l(l), 3(_2(1), ces ch(l) égl(z), X, 7 s Xy ggl(K),gz(K), §M(K)] (10)

(b) We choose the unit vectors V; in the K-dimensional decision space to be or-
thonormal, e.g., when K = 3,
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=10 vV, =10 (11)

(1)

(c) Know1ng the vectors X and V from parts (a) and (b) respectively, we can

calculate Z Z ——1—-;](1)+

i=1 j=1

(d) Knowing the matrix W from part (a), we can find the eigenvectors ¥ and
eigenvalues A of W'W

+

+
= YAY (12)
It is noted that W'W is a (KM X KM) matrix.

(e) It can be shown that the inverse of the correlation matrix is given by

1

Z z (1)+ eyt (13)

i=1 j=

(f) Using the results of parts (c¢) and (e), we can calculate the matrix A for
LSTMT.

A= szx(l) ZZX (l) - (14)

i=1 j=1 i=1 j=1 —] —j

The basis functions are given by the row vectors of matrix A.

B. Optical Implementation of LSLMT

To employ the coded-phase processor for performing the matrix-vector multiplica-

(1)

tion of equation (9), we first need to convert the column vector X corresponding

to the input image g(x,y) back to its two-dimensional image format of (nxn) pixels
and the row vectors of the matrix A to the pattern functions qu(x,y). The total

number of pattern functions is K, i.e., p+q = 1, 2, ..., K, because there are only
K row vectors in the matrix A. The output from the coded-phase processor will then
be in a two-dimensional form with a spacing A between different light spots whose
magnitudes of brightness are Vi’ i=1, 2, ..., K. The brightest spot indicates

which class the input im;ge belongs to.

The key element required in optically implementing LSLMT is a computer genera-
ted hologram filter whose impulse response contains the pattern functions qu de~

rived from the row vectors of matrix A. The advantages of optical classification of
statistical patterns are parallel processing and real-time data rates. As an ex-
ample, to recognize any unknown image of (nXn) pixels which has the same statistical
properties as those images used in the training sets of K-classes, the amount of
parallel computations involved is (KXnXn) multiplications and (KXnXn) additions
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in real-time. When the real-time rate is 1/30 sec, K is 100, n is 500 and each pixel

has 64 gray levels (or 6 bits), the computational rate is greater than 9><lO9 bits/
sec.

Experimentally, the LSIMT was applied to design a classifier for hand-written
letters in a variety of styles. Ten images of each of the hand-written characters m,
t and a (as shown in figure 9) were input to the computer through a TV camera/digi-
tizer system forming the training sets of three classes (detail description about our
micro-computer based video-image analysis system are given in refs. 11-12). Using
the thirty image samples for the three classes and following the procedures outlined
in Section IITA, we calculated the matrix A for LSLMT. The three row vectors in A
yield the three pattern functions qu as shown in figure 10. Using these pattern

functions we next generate a computer hologram filter whose impulse response is given
by equation (7). The computer generated filter is shown in figure 11 and applied to
the eight test images shown in figure 12.

Three of the eight results from optical implementation of LSIMT are illustrated
in figure 13. On the right the outputs from the coded-phase processor are displayed,
given the test patterns on the left. Each output contains three spots of light in
pre~determined locations. The square roots of the spot intensities correspond to the

absolute values of Vl’ V2 and V3. The location of the brightest spot in the output

plane clearly indicates classification. The measured values of Vi for all eight test

patterns are summarily listed in table 2 and plotted in figure 14. Based on table 2
and figure 14, we can conclude that we have successfully demonstrated the optical
implementation of LSLMT.

IV. COMPARISONS AMONG VARIOUS OPTICAL PATTERN RECOGNITION METHODS

We now turn to compare the LSLMT with other methods of optical pattern recogni-
tion and classification. The comparisons cover the matched filter, the average fil-
ter and the Fukunaga-Koontz transform. The first two comparisons were carried out
digitally. The third comparison was optical.

A. Comparison with the Matched Filter

Two digital filters were generated with the impulse responses of the first let-
ters m or t in the training sets shown in figure 9(a),(b). All the letters of m and
t in the training sets (fig. 9(a),(b)) and the test set (fig. 15(a)) were used as the
inputs g(x,y). Figure 15(b) shows the normalized correlations between the inputs and
the matched filters, which are defined by

vV, = < *>/< *>
1 CEmTemTy
V2 = <gt1>/<tltl> (15)

where <> gignifies an inner product. Using the dotted line as the classification
boundary will obviously yield zero error of classification. However, a more restric-

tive classifier defined as the ratio between Vl and v, is often preferred because it

is insensitive to scalar multiplication of g(x,y) which may result from changes in
input illumination. This more restrictive classification boundary passes through
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the origin, as shown by the solid line in figure 15, and yields 307 error in recog-
nition.

This digital matched filtering result is compared with LSIMT using the same set
of letters in figures 9(a),(b), and 15(a). Figure 16 shows that the LSIMT can pro-
vide error free classification.

B. Comparison with an Average Filter

Digital average filters were calculated by averaging the characters of the
training sets in figure 9. The digital filters are shown in figure 17, which can be
compared with the pattern functions qu for LSIMT (fig. 10). While the average fil-

ters are formed by superposing only the images of the same class, to form pattern
functions qu for LSIMT, it appears that one may superpose not only the images of one

class but also subtract the superposed images from other classes.

Using the digital average filters, we obtain the correlations Vl and V2.between

the averaged characters and the input g(x,y), which can be any image in the training
(fig. 9(a), (b)) or test (fig. 15(b)) sets.

. * 2
v, <g§; mj>/<)zj:mjj >

<
il

* 2
9 <g§: tj>/<lztj] > (16)
J

Figure 18 shows the results of using digital average filters. The error rate is 207%,
which is a little better than the 307% rate associated with digital matched filters.
But, both digital average and matched filters yield results inferior to the LSIMT,
which has a zero error rate.

C. Comparison with Fukunaga-Koontz Transform

This comparison was performed optically using the coded-phase optical processor
and computer generated hologram filters. Two computer hologram filters were gener-
ated using the same training setsof images of song birds and fish, one based
on the principles of the FKT described in reference 9 and the other based on the
LSIMT (ref. 10). The results of optically implementing the LSLMT are shown in
figure 19. Two of the six test images used as input are shown in the left column.
The corresponding outputs each containing two spots of light for this two-class
classification problem are shown in the middle column. The linear classification
results are shown in the right column. These linear clagsification results together
with those for four other test images are shown in figure 20(a), which are to be com-
pared with the linear classification results based on the FKT as shown in figure
20(b). It is obvious that both FKT and LSLMT are good classifiers. The FKT has the
advantage that it can provide many features for each image. These features can be
used as the basis for a nonlinear classification routine. However, it is useful only
for two-class problems. The LSLMT provides only K features (one feature for each
class), but it can be applied to multiclass problems (K > 2).

152



V. SUMMARY

We have shown that the Fukunaga-Koontz transform can be used as a feature ex-
tractor in a two-class classification application. It was used for classifying birds
and fish. After the F~K basis functions were calculated, those most useful for
classification were incorporated into a computer generated hologram. A coherent op-
tical processor was designed using this computer generated hologram to perform the
F-K transform in real time. The output of the optical processor, consisting of the
squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized,
and fed into a micro-computer for classification. A simple linear classifier based
on only two F-K coefficients was able to separate the images into two classes, indi-
cating that the F-K transform had chosen good features.

The Least-Squares Linear Mapping Technique has been optically implemented to
classify large images also by utilizing the phase-coded optical processor and com-
puter generated hologram filters. The principles of LSILMT are incorporated into the
computer hologram filters. Although we have demonstrated here only two- and three-
class problems, the LSLMT is useful for optical classification problems of many
classes.

A method was developed which simplified the computation of the FKT or LSLMT
basis functions for large dimensional imagery, and was found to work well when the
intraclass variation in each class was small, and the correlation matrix could be
approximated by a sample correlation matrix of low rank.

The advantages of optically implementing the FKT and LSLMT are parallel and
real-time processing. In comparisons with the matched filter and the average filter,
the LSLMT is clearly superior for classifying statistical patterns because it maxi-
mizes the interclass differences and minimizes the intraclass variations.
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Table 1. Eigenvalues Corresponding to Ten Basis Functions of FKT

Basis Best for
Function Eigenvalue () |>‘i - 0.5] which class?

1 0.1354 0.3646 fish
2 0.4846 0.0154 fish
3 0.0008 0.4992 fish
4 0.0034 0.4966 fish
5 0.9416 0.4416 birds
6 0.9883 0.4883 birds
7 0.9966 0.4966 birds
8 0.9998 0.4998 birds
9 0.9992 0.4992 birds

10 0.9985 0.4985 birds

Table 2. The measured values of Vl, V2 and V3 for the eight test patterns shown
in Figure 12.

v v v Largest for
L 2 3 which class?

m 1.58 0.02 0.12 m
0.93 0 0.12 m
t 0.02 1.1 0.07 t
t ¢.07 1.52 0.01 t
0.05 0.95 0.02 t
0.02 0.01 0.88 a
0.03 0.01 1.43 a

0.02 0.01 1.22 a
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Digital Digital
Buffer Computer > Slc_::::'er
Monitor Memory PDP 11/03
Floppy Disks
T.V. Vide
m Camera Diglitiz‘:r (FKT or
LSLMT)
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Hologram of Patterns) Hologram for Brightnesses
Random LSLMT) Indicate
Phase) Classification)

Figure 1.- The hybrid system for optical recognition of statistical patterns.

CLASS 1

(a) (b)

Figure 2.- (a) Class 1l training set consisting of ten song birds. (b) Class 2
training set consisting of ten fish.
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BRSIE
FUNCTIONS

(a) | (b)

Figure 3.- (a) F-K basis functions. Basis function 3 is best for class 2 (fish),
and basis function 8 is best for class 1 (birds). Small square to the left of
image number indicates grey level corresponding to zero. (b) Test images

consisting of five new birds and five new fish.

AVERAGE
FILTER

BASIS
FUNCTION

Figure 4.- Comparisons of basis functions 3 (fish) and 8 (birds) with filters
formed by the arithmetic average of the training sets.
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Figure 5.- Hybrid implementation of the coded-phase optical processor.

hologram of a coded-phase array is shown as CGH{#1.

Y

Monitor

A computer

A second computer hologram

containing the F-K basis functions in coded-phase form is shown as CGH{#2.
is a liquid crystal light valve for converting an incoherent (test) image into

a coherent image. The resultant F-K coefficients are detected by the vidicon
and analyzed by a digital computer. With the same CGH#2 but new test images,

new F-K coefficients are obtained and new classifications are achieved in

real time.

LCLV
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OPTICAL | 5 1  gPTICAL
outpyr . ' QUTPUT
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Figure 6.- Optical implementation of the F-K transform using the coded-phase
optical processor. The six basis functions with greatest separation power
were used. Basis functions 3, 4 and 1 are best for fish, and 8, 9 and 10
are best for birds. Three of the ten images are used as inputs in (a), (b)é&
(¢), where the input is reproduced in the upper left-hand corner of the
T.V. screen. The output of the optical processor is detected by a T.V.
camera, displayed in the lower right-hand corner of the screen, measured
by the video digitizer, and graphed in the lower left. A linear classifier
using basis functions 3 and 8 is shown in the upper right-hand corner of
the screen, with the dotted line separating birds (below and to the right
of the line) from fish (above and to the left of the line).

158



[an]

|

A ‘A:

—

o 8y,

s b

=5

=4 25 o ® Birds (training)
o & O Birds (test)
(.>;: A Fish (training)
& & & Fish {(test)
-

=

=

']

= o

jen)

=

= o op e
S ° o ® ©°

[==]

m

=

AN

COEFFICIENT OF BASIS FUNCTION NUMBER &

Figure 7.- Classification of birds and fish using coefficients of basis
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members of the test set were classified.
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Figure 8.~ The schematic diagrams of LSIMT for 3 classes.

(a) N-dimensional
feature space.

(b) Three-dimensional decision space.
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Figure 9.- (a) Class 1 training set consisting of ten characters of m. (b) Class
2 training set consisting of ten characters of t. (c) Class 3 training set
consisting of ten characters of a.

Figure 10.- Three pattern functions qu for LSIMT. Since the pattern functions
qu contain both positive and negative values in general, bias levels (indi-
cated by the small grey squares below qu) are added to qu to display them.
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Figure 11.- A computer-generated spatial filter for LSLMT made with a laser
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Figure 13.~ The result of optical implementation -of the LSLMT for 3 classes.
Three of the eight test images used are shown on the left. The outputs of
the optical processor are displayed on the right.
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Figure 14.- Classification result with LSLMT for three classes (m,t,a). The

solid symbols of triangle, circle and square are for the training sets.
The hollow symbols of triangle, circle and square are for the test images.
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Figure 15.- (a) A test class of m and t characters. (b) Classification using

the matched filter for 2 classes (m,t). The solid line represents a re-

strictive linear classification boundary. The error rate is 9 out of 30,
or 307%.
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Figure 16.- Classification result with LSIMT of 2 classes (m and t characters).

Figure 17.- 3 average filters of the training sets (m,t,a).
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Figure 18.- Classification using average filters for 2 classes (m,t).
error rate is 6 out of 30, or 20%.

¥

Lo

Figure 19.- The optical implementation of the LSLMT for two classes (Song Bird

and Fish). The left column shows two- of the six test images as input,
middle column shows the outputs, the linear classifier is shown in the
right column.
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Figure 20.- (a) Results of optically implementing the LSLMT for two classes
(Song Bird and Fish). (b) Results of optically implementing the Fukunage-
Koontz transform using coefficients of basis functions 3 and 8.
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