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ABSTRACT

A sequence of solar models has been constructed in order to investigate
the sensitivity of the solar radius and luminosity to small changes in the
ratio a of the mixing length £ to the pressure-scale height H_ throughout the
solar convective envelope. The basic procedure for determining this sensi-
tivity was to impose a perturbation in a within the convective envelope and
then to follow the gesulting changes in the solar radius AR and luminosity
AL for the next 10° yrs. These calculations gave the following results.

1) A perturbation in a produces immediate changes in the solar radius and
luminosity. Initially AL and Aa are related by AL/L = 0.308a/a. 2) The value
of the ratio W = Alog R/Alog L 1is strongzy time dependent. Its value_iust
after the perturbation in a is 6.5 x 1077. 3) The ratio H = (Alog L)

d Alog R/dt is much less time dependent and is a more suitable means for
relating the changes in the solar radius and luminosity. 4) Both of these
ratios imply that for any reasonable change in the solar luminosity the cor-
responding change in the solar radius is negligible.

I. INTRODUCTION

During this workshop there has been much discussion about possible
changes in the solar radius and luminosity over timescales ranging from a year
or less to a few hundred years. Because of the keen interest in this topic
and because of its obvious relevance to climatic conditions here on earth it
is of considerable importance to determine the seunsitivity of the solar radius
and luminosity to changes in the interior structure of the Sun. Knowledge of
this sensitivity together with observational data on any radius and luminosity
changes would greatly help in understanding the characteristics of the
physical processes operating within the solar interior and, as a result, in
understanding the influence which these processes might have on the Sun’s
future behavior. In addition, it is of considerable importance to determine
theoretically the relationship between changes in the solar radius and lumin-
osity resulting from interior perturbations, since then observational data on
one of these changes could be used to estimate the size of the other (ref. 1),
provided, of course, that the physical process causing the perturbations has
been properly identified.

There are many ways in which the interior structure of the Sun might be

perturbed. In approximately the outer 2 per cent of the Sun’s mass the
outward energy flux 1s carried largely by convection. Since convection in
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these layers is a turbulent process, it 1s entirely plausible that there may
be random fluctuations in the efficiency of energy transport due, for example,
to statistical fluctuations in the number of convective cells or to changes in
the flow pattern. Tbe convective eavelope therefore represents one part of
the Sun where interior perturbations might be expected naturally to arise.

Interior perturbations might also occur within the radiative core. Such
perturbations would alter both the thermal and hydrostatic structure of the
Sun. The thermal readjuastment induced by such perturbations_would take place
over a Kelvin timescale which for the entire Sun is about 10’ yrs (ref. 2).
The hydrostatic readjustment, however, would take place on a dynamical time-
scale which 1s on the order of minutes (ref. 2) and would therefore manifest
itself almost instantaneously as a change in the solar radius.

Studies of other stars provide some evidence that observable changes in
the radius can result from perturbations within the core. The pulsation
period of a class of variable stars known as RR Lyrae stars, found both in
globular clusters and in the field, can be accurately determined by using
observations spanning several decades. It has been found that the pulsation
periods of the RR Lyrae stars typically vary at the rate of a few parts in 103
per century. Such changes in the pulsation period can be readily interpreted
as changes in the mean stellar radius from one pulsation period to the next.
The observed rates of period change considerably exceed the values expected
from the normal evolution of the RR Lyrae stars - a fact that has proved to be
a long-standing problem. Recent theoretical studies of RR Lyrae models (ref.
3) have shown that perturbations within the core of these stars can reproduce
the observed charactaristics of the period changes and can thus offer a
reasonable solution for this problem. This result suggests that the radiative
core of the Sun may also be a likely site for the perturbations responsible
for any changes in the solar radius and luminosity.

The objective of the present paper is to give the results of one way of
perturbing the solar interior, namely, by changing the efficiency of energy
trangport by convection throughout the convective envelope. In computing the
structure of the solar convective envelope it is necessary to know the value
of the convective-temperature gradient, i{.e., the actual temperature gradient,
at each point. The value of this gradient is determined by the requirement
that the total energy flux carried by both convection and radiation be equal
to the actual outward energy flux. The convective gradient can range between
two limiting values, namely, the adiabatic- and the radiative-temperature
gradients, depending on the degree of convective efficiency. When convection
is very efficient, the ccnvective gradlent approaches the adiabatlc gradient.
This 1is normally the situation at higher densities and temperatures when the
thermal energy content of the convective cells is relatively large. At lower
densities and temperatures, convection can become quite inefficient, and, as a
result, the convective gradient becomes significantly superadiabatic and can
in fact approach the radiative gradient, which 18 defined to be the tempera-
ture gradient that would exist 1f all of the outward energy flux were carried
by radiation.
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The calculation of the convective gradient as a function of the physical
conditions at each point in the convective envelope is generally done accord-
ing to the prescription of the mixing-length theory. In this theory the tur-
bulent convective motions which actually cover a wide range of scale lengths
are assumed to be represented by convective cells that travel a ch-~racteristic
length £ before dissolving into the surrounding medium. The mixing leng. : 2
is the main parameter governing the convective efficiency. An increase in £
enhances the convective efficlency, thereby lowering the convective gradient.
Conversely, a decrease in £ reduces the convective efficiency, since the con-
vective cells then cannot transport their excess thermal energy as far before
dissipation. Ordinarily the value of & at each point is expressed in terms of
some scale height such as the pressure-scale height H (= dr/dlaP). 1In this
paper we will study the consequences of changing the gatio a (= £/H ) and
hence the convective efficlency in the solar conmvective envelope. fwo points
gshould, however, be kept in mind when considering the following results.
First, there are other ways in which the properties of the solar convection
could be altered, and hence this paper examines only one type of convective
perturbation. Secondly, the perturbation results assume that the mixing-
length theory adequately determines the structure of the solar convective
envelope at least as far as small perturbations away from the equilibrium
structure are concerned.

In the next section we describe first the unperturbed structure of th.
solar convective envelope and then the effects which a perturbation in a has
on this structure at various times following the perturbation. The changes in
the solar radius and luminosity resulting from a perturbation in a and the
relationship between these changes are discussed in sections III and IV,
respectively. We emphasize in section IV the advantages of using the time
rate of change of the radius perturbation rather than the radius perturbation
itself when relating the radius and luminosity perturbations. Finally, a
summary of the main points 18 provided in section V.

II. SOLAR CONVECTIVE ENVELOPE

UNPERTURBED STRUCTURE

In order to examine the unperturbed structure of the solar convective
envelope, one must firat obtain a solar model with the proper luminosity and
radius at an age of 4.7 x 109 yrs following the zero-age main-sequence (ZAMS)
phase. The properties of a solar model are dependent on the assumed composi-
tion, i.e., the helium abundance Y and the heavy~element abundance Z, and on

a. For the present calculations Z was taken to be 0.02. The luminosity of a
solar model is particularly sensitive to Y, since changes in Y affect the mean
molecular weight and hence the hydrostatic structure, leading to a change in
the central temperature. This in turn alters the rate of hydrogen burning due
to the strong temperature dependence of the nuclear reaction rates. On the
other hand, o primarily affects the convective envelope and thus the radius.
Several trial sequences showed that the values
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Y = 0.2317, a = 1.70 (1)

reproduce the present solar luminosity and radius with an error of about 0.2

per cent. Accordingly thesz values were adopted for the model computations,

and a standard evolutionary sequence was then computed from the ZAMS phase to
the present Sun. The ZAMS luminosity and radius of this solar sequence were

00723 L‘ and 00893 R.o

The unperturbed structure of the convective envelope in the present Sun
is perhaps best illustrated by the behavior of the adiabatic-, convective- and
radiative-temperature gradients (= dlogT/dlogP), denoted by V_, Vc and V_,
regspectively. These three gradients are plotted in Figure 1 as functions of
the logarithm of the amount of mass between the surface and the given point.
Here M, 1s the amount of mass within a distance r from the center of the
Sun. The convective envelope in this model contains 0.016 My, corresponding
to log (Mg - MI) = -1,796. For a fully ionized nondegenerate gas with
negligible radlation pressure V_ equals 0.40, and we note that V_ approaches
this value throughout the innerapart of the convective envelope.ai.e., for
log (Mg - M) > ~ —4. Between log (Mg - M) = -11 and -4, V_ 1is depressed due
to the ionization of hydrogen and the first and second ionizations of helium.
The difference between V_ and V_ is very small for log (Mg, - M) > ~ -7. This
“adiabatic" region contafns theabulk of the mass within the convective
envelope. In this region energy transport by convection is very efficient
with radiation making only a negligible contribution to the outward flux,
since V_ >> V , Because of this high convective efficiency V_ will not be very
sensitive to a., Just the opposite is true in the layers near the surface
(log (Mg - M) <~ -9), where the convection becomes strongly superadiabatic.
As one goes outward through this "superadiabatic" region, V_ begins to
exceed Va substantially with the maximum superadiabattcitycbeing reached at
log (Mg = M,) = =10.5. The convective efficiency in the superadiabatic region
i8s low due to the low density and thermal energy content of the convective
cells. 1In the layers nearest the surface V_approaches V_ and hence the
energy transport there is largely by radiatfon. The strufture of the super-
adiabatic region will be strongly dependent on a. The transition between the
adiabatic and superadiabatic reglons occurs around log (Mg - M,) = -8.

PERTURBED STRUCTURE

Before discussing the quantitative results from detailed solar model com-
putations it is worthwhile to mention first some further features of the solar
convective envelope and to consider the physical reasons for the way in which
the Sun responds to a change in a, The superadiabatic region contains little
mass and has only a small thermal energy content. As a result, the thermal
timescale of the region is quite short, on the order of 1 day (ref. 4), and
consequently the superadiabatic region rapidly readjusts to any change in a.
Within the adiabatic region V_ is nearly independent of a, and therefore
changes {n a that are confined to this region will not significantly affect

146

PRV




the structure of the convective envelope. However, a change in a throughout
the entire convective envelope will alter the boundary conditious at the top
of the adiabatic region, and this in turn will force the adiabatic region to
undergo both a dynamical and thermal readjustment. The dynamical response of
the adiabatic region will restore hydrostatic equilibrium on a timescale of
minutes and will thus be practically instantaneous. The contraction (or
expansion) associated with this dynamical read justment will release (or
absorb) gravitational potential energy, thereby perturbing the outward energy
flux L. and causing the adiabatic region to depart from thermal equiljbrium.
The timescale for restoring thermal equilibrium is on the order of 10 yrs
(ref. 5). The key point to remember is that the response of L. and hence the
solar luminosity is set, not by the thermal timescale of the aéiabatic region,
but by the much shorter thermal timescale of the superadiabatic region.
Therefore one would expect a change in a to show up almost immediately as a
perturbation in the solar luminosity.

Let us now outline the sequence of events to be expected if, for example,
a increases. After about 1 day the superadiabatic region will have re-
ad justed both thermally and hydrostatically. As is well-known from stellar
model computations, an increase in a leads to a contraction of the adiabatic
region and hence to the concomitant release of gravitational potential energy,
resulting in an increase in the outward flux L. and thus in the solar
luminosity. The superadiabatic region will then expand in order to carry the
additional outward flux, since this is the normal reaction of a region in
which energy transport by radiation is important (ref. 4). Thus one has a
situation in_which the bulk of the convective envelope contracts on a time-~
scale of ~10" yrs while the outermost layers initially expand on a timescale
of days. Observationally this would appear as a sudden increase in the solar
radius followed by a gradual decrease. A similar sequence of events would
also occur if a decreases except that all of the perturbations would have
opposite signs.

In order to verify the above predictions quantitatively, a sequence of
solar models was constructed in which the time step between models, which 1is
normally set by the nuclear timescale of the core, was gradually reduced to 1
yr. This choice for the minimum time step was made in order *to follow the
rapid changes expected in the solar radius and luminosity while avoiding the
numerical difficulties sometimes encountered when even shorter time steps are
used. At this point in the calculations the value of a was increased by Aa =
0.01 throughout the convective envelope, and the subsequent evolution of the
perturbed solar models was followed for about the next 10° yrs. After the
change in a the time step was slowly increased but was always small compared
with the timescale on which the perturbations were changing. The size of the
perturbations resulting from this change in a are very small compared with the
numerical accuracy of typical solar models. For this reason it was essential
to maintain a high degree of numerical accuracy and especially to minimize the
importance of numerical noise during the computations.
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When constructing a stellar model one usually treats the outermost layers
differently from the interior. In the outermost layers the stellar structure
equations are integrated inward from the surface to some interior fitting
point under the assumption of constant L.. This is equivalent to ignoring any
changea in the gravitational potential energv, i.e., to assuming thermal
equilibrium. Given several of these integrations, one can then define the
outer boundary conditions needed for the interior solution. Inside the
fitting point the stellar structure equations are replaced by difference
equations which are then solved by an iterative procedure. 1In the present
solar models the fitting point was located at log (M. - M) = -6. Since
accgrding to the previous discussion the thermal timescale of the outermost

of the Sun is very short, our implicit assumption of thermxl
equiligrium in these layers should be justified. About '75 integration steps
based on a high-order predictor-corrector procedure were used in computing the
layers above the fitting point. Interior to the fitting point there were 247
mesh points of which 88 were in the convective envelope.

There are many sources of numerical noise which can enter into solar
model computations. For example, stellar structure programs frequently
contain iterative procedures for determining the density from the equation of
state, the degree of ionization from the Saha equations and the superadiaba-
ticity within convective regions. Tight convergence of these iterative pro-
cedures as well as the iterative procedure involved in the overall convergence
of the models was required at all times. In addit.on, no changes were per-
mitted in either the number or distribution of the mesh points. Such changes
in the mesh points could introduce spurious perturbations by altering the
truncation error with which the difference equations represent the basic
differential equations of stellar structure. Special attention must therefore
be paid to these as well as a number of other sources of numerical noise if
reliable results are to be obtained. To ingsure that numerical noise was not
important in the present calculations, we constructed an additional solar
sequence in which the perturbation in o was a factor of 10 greater, {i.e.,

Aa = 0.10. The only difference was the expected scaling in the size of the
perturbations by a factor of 10. In particular, the ratio of the pertur-
bations in the solar radius and luminosity changed by less than 2 per cent.

Let us now consider some of the quantitative results for the readjustment
of the solar convective envelope after the perturbation &a = 0,01. Figure 2
1llustrates the difference in the radius Alog r between a perturbed model and
the basic unperturbed model as a function of M - My within the convective
envelope. The four curves labelled a, b, ¢ ana d correspond to four perturbed
models having ages of 1, 4900, 49,000 and 310,000 yrs, respectively, following
the perturbation in a. The contraction is not yet noticeable in model a,
because the time elapsed since the perturbation has been too short. Moreover,
the increase in the surface radius Alog R in model_a due to the expansion of
the superadiabatic region amounted to only 5 x 10'7. By model d the rate of
contraction has slowed substantially so that this model is approaching the
equilibrium structure for the new value of a. The amount of the contraction
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18 considerably greater nearer the surface, and thus the convective envelope
does not contract uniformly. This contraction increases the weight of the
convective envelope on the radiative core, thereby causing the core also to
contract, as indicated in Figure 2 for My — M. > 0.016 M,.

The rate of releasc of gravitational potential energy € 1in ergs/gm/sec
within the convective envelope is shown in Figure 3 for each®of the four per-
turbed models plotted in Figure 2. The maximum rate of contraction of the
convective envelope occurs immediately after the perturbation in a, and thus
the largest values of € are produced at this time. However, the radiative
core does not begin to Bontract until after there has been a decrease in the
radius of the convective envelope and hence a ctange in the boundary con-
ditions at the edge of the core. This explains why the release of gravita-
tional energy in the core is negligible in model a while it becomes important
in the later mod-~ls. We note that ¢ 1s negative for Mj - M. € 6 x 107 M, in
model a due to the expansion of the Buter layers of the convective envelope.
In the present calculations this expansion disappears 1 year after the pertur-
bation in a; it might actually disappear sooner if shorter time steps are
used. The slowing-down of the contraction with time, as indicated by the
decrease in eg, is apparent in going from models a to d.

The release of gravitational potential energy perturbs the outward flux
L, at each point within the convective envelope. This flux perturbation AL
1s illustrated in Figure 4, where the difference in L. between each of the
four perturbed models in Figure 2 and the unperturbed model is shown over the
same interval in My - M, as in Figure 3. The behavior of the flux rerturba-
tion in time is somewhat complicated in the inner helf of the convective
envelope due to two competing effects. Between models a and ¢ the c~u:iribu-
tion to the flux pz2rturbation from the contraction of the core 1incre.:es,
while at the same time the contributizn of the convective envelope decceases.
The drop in AL_ for M, - M. € 6 x 107" M, in model a is again associated with
the initial expansion of tﬁe outermost layers.

The above discussion has focused on the structural readjustment that
takes place within the solar convective envelope following a perturbation
{n a. We now turn our attention to the question of what potentially observable
changes a perturbation in a might produce in the solar radius and luminosity.

III. CHANGES IN THE SOLAR RADIUS AND LUMINOSITY

The changes in the solar radivs Alog R and luminosity Alug L during the
first 8 x 10° yrs after the perturbation i~ a are presented in Figure 5. The
zero-point of the time scale in Figure 5 as well as in all subsequent figures
corresponds to the time t when the perturbation Aa = 0.0l was imposed within
the convective envelope. The response of the solar luminosity to this pertur-
bation appears to be nearly instantaneous for the time resolution of this
figure. Fol.owing the large initia% response Alog L decays with an e-folding
time on the order of a few times 10’ yr3s. By the latest times shown in Figure
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5 the perturbed solar models are approaching their new equilibriuz etructure
which is characterized by a decrease in log R and an increase in log L. The
present results demd>nstrate that the initial response of the solar luminosity
considerably exceeds the difference in loy L between the unperturbed und new
equilibrium states. Also plotted in Figure 5 is the change in the rate of
hydrogen burning Alog L, The contraction of the core, as indi~ated pre-
viously, raises the temperature in the layers near the center, thus increasing
the rate of the nuclear reactions.

It is of some interest to examine the behavior of Alog L and Alog R
immediately following the perturbation in a. Figure 6 shows this behavior for
Alog L. The time scale in this figure has been expanded by approximate.iy a
factor of 2000 compaced with Figure 5 and consequently covers only the first
400 yrs after the perturbation in a. Even on thLis expanded timesccle there is
a sudden response of the solar luminosity at t = 0. This response would
actually have been more abrupt if time steps less than 1 year had been used in
the computatfions. This result confirms our previous conjecture that changes
in convective efficiency of the type considered here will almost immediately
affect the surface lumincsity. We note from Figure 6 that Alog L is nearly
constant over a timescale of several hundred years. From these results it
follows that the change in the solar luminosity produced by a perturbation Az
is given by

AL Aa

T" 0.30 Y (2)
for short times after the perturbation. A similar expression has been derived
by Dearborn and Blake (ref. 4), who found a coefficlent of 0.4 on the right-
hand side of equation (2).

The more complicated behavior of Alog R is Illustrated in Figure 7 for
the same time interval as in Figure 6. The ordinate in Figure 7 has been
expanded by roughly a factor of 1000 in comparison with Figure 5. The suddezn
increase of the solar radius due to the expanaion of the superadiabatic region
ir readilr apparent at t = 0. This initial expansion is followed by an
overall contraction of the convective envelope and hence in the solar radius
as the adiabatic region reacts to the change in a. At t » 250 yrs the radius
again equals {ts unperturbed value. The maximum value of Alog R just after
the perturbation in a was quite small, only 5 x 10°', which explains why the
initial expansion was not evident in Figure 5. This maximum value of
Alog R s related to the perturbation Aa by the equation

AR -4 Aa
—‘i ZQC X 10 '-; . (3)

Two features of Figure 7 should be emphasized. First, the value of Alog R is
strongly time dependent even over the short time interval covered by this
figure. Second, the rate of change of Alog R, d Aleg R/dt, is, in coatrast,
nearly constant,
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In this section we have discussed each of the changes Alog L and
Alog R separately. We now wish to consider how thece changes are related to
each other.

IV. RELATIONSHIP BETWEEN CHANGES IN THE SOLAR RADIUS AND LUMINOSITY

One of the objectives of previous studies (refs. 1, 4, 6, 7, 8) on the
effects of perturbations in a was to determine the ratio

o Alog R
Alog L °

This ratio can be straightforwavdly obtained from the present calculacions to
give the results shown in Figure 8, where the time interval 18 the same as ia
Figures 6 and 7. The strong time dependence of W is immediately evident. In
fact, the value of W changes sign at t = 250 yrs. Since Alog L is nearly
rongtant over the time iaterval in Figure 8, this time dependence is actually
a reflection of the strong time variation of Alog R. The values of W in Figure
8 can be approximated by the equation

W (4)

W(t) = 6.5 x 1074 -25%10° t, (5)

where t 18 in years. The original estimates of V(t = 0) ranged from 0.075 to
5 x 1073 (refs. 1, 4). More recent determinations have averaged from 5 x 107
to 10 x 107" (refs. 6, 7, 8) and are therefore in agreement with the present
value.

Mme would like to use W to determine, for example, the change in the
solar luminosity associated with observational estimates for changes in the
solar radius. However, there are two major disadvantages with using W for
this purpose. First, it is only appropriate to use W if the perturbation in
a has occurred during the time interval spanned by the radius observations.
Otherwie . any observed change in log R would actually be the change between
two pertu.bed states rather than between the unperturbed and perturbed states.
From the last section we know that a perturbation in_a gives rise to changes
Alog R and Alog L that persist for several times 10° yrs, Thus, if an
observed change in the solar radius 1is 2scribed to a perturbation in a, the
probability that this perturbation occurred during the interval of the obser-
vations s very small, Second, there is the problem caused by the stroung time
dependence of We Even {f the first disadvantage i1s ignored, one must still
know how much time has elapsed since the perturbation in a in order to compute
the proper value of W from equation (5).

The above difficulties can be overcome by using an alternative expression
relating Alog R and Alog L, namely, the ratio

1 d Alog R _ 1 d log R

H= Alog L dt Alog L e ° (6)
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This ratio is plotted in Figure 9, where the time interval 1s again the same
as In Figures 6 and 7. The average value of H in Figure 9 is

H=-2.6x 100 yr 1, (N

The variation in the value of H is substantially less than was the case for W.
This result is not surprising in view of our previous comments that Alog L and
d Alog R/dt in Figures 6 and 7 are nearly constant. The fact that H is not
strongly time dependeat can also be given a straightforward physical explana-
tion. The rate of coatraction of the convective envelicpe d Alog R/dt deter-
mines the rate of release of gravitational potential energy which in turn
determines the luminosity change Alog L. Thus d Alog R/dt and Alog L actually
represent different ways of measuring the same quantity, namely, the mean
value of € 1in the convective envelope, and consequently we would expect this
ratio to bE approximately constant at least for shiort times following the
perturbation in a. Over much longer time intervals, however, the value of H
will change significantly, ac is illustrated by Figure 10, but even here the
relative change is much less than that shown by W in Figure 8. For example,
after 10° yrs the value of H differs by only a factor of 2 from its value at

t = 0. When using H to relate Alog L to an observed radius change, one is
implicitly assuming that the perturbation in a occurred prior to the time of
the observations, but, as mentioned before, this is very likely to be the
case. We conclude therefore that the inherent disadvantages of the ratio W
can be circumvented to a large extent by using the ratio H.

Dunham et al. (ref. 9) have reported a decrease in the solar radius of
0.70 £ 0.12 between 1925 and 1980 from measurements of the size of the path of
totality during a number of solar eclipses. The corresponding change in log R
is thus -3 x 10™%, Let us now see what this observational result implies for
the change in the solar luminosity under the assumption that a perturbation in
a is responsible for the radius change. There are two cases to consider.
First, let us assume that the perturbation in a occurred sometime after 1925
so that W {s the appropriate ratio to use. From equation (5) it follows that
5.1 x 107* < W< 6.5 x 107%. The change in log L determined from these values
of W lies in the range -0.62 < Alog L € -0.49, implying that the solar
luminosity in 1925 differed from the present luminoeity by a factor of 3 or
4, As the second case, let us assume that the perturbation in a occurred
before 1925 sg that we must apply the ratio H. The radius measurements then
give -6 x 107 yr'l for the average value of d Alog R/dt since 1925. By
combining this observational result with the value of H from equation (7), we
find that Alog L = 2.2, again implying an impossibly large change in tiie .olar
luminosity. The change in log L would have been even greater if a sial. v
value of |H| had been used, as would be appropriate for later times
according to Figure 10, We conclude therefore that the change in the wolar
radius since 1925 either has not been as large as reported by Dunham et al. or
has been produced by some process other than the one studied in this paper.
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V. SUMMARY

From the present results it is possible to draw the following
conclusions:

1) Changes in the efficiency of convection throughout the solar convec-
tive envelope lead to sudden changes in both the solar radius and iuminosity.

The relationship between the change in the luminosity and the change in a is
given by equation (2).

2) The value of the ratio W = Alog R/Alog L is strongly time dependent.
For this and other reasons W does not seem to be a very suitable means for
relating changes in the solar radius and luminosity. Immediately after a
perturbation in a the value of W 18 6.5 x 1074,

3) A more satisfactory way to rel?te the radius and luminosity changes is
represented by the ratio H = (Alog L) "4 Alog R/dt. This ratio if much less
time dependent, varying from =2.6 x 107° to -1.3 x 10” yr"1 during the first
107 yrs following a perturbation in a.

4) According to the present values of W and H, any observationally detect-
able change in the solar radius would imply an impossibly large change in the
solar luminosity. Consequently changes in convective efficiency of the type

considered here cannot be responsible for any observed radius changes in the
Sun.
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within the solar convective envelope at four times following the
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Figure 3. Rate of release of gravitational potential energy € as a

function of Mgy - M, within the solar coanvectiwe envglope at four
times following the perturbation Aa = 0.01
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Figure 5. Time dependence of the change in the luminosity Alog L, the
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Figure 6. Time dependence of the change in the luminosity Alog L shortly

after the perturbation Aa = 0.01 within the solar convective
envelope
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Time dependence of the change in the surface radius Alog R
shortly after the perturbation Aa = 0.0} within the solar con-
vective envelope
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Time dependence of the ratio W = Alog R/Alog L shortly after the
perturbation Aa = (.01 within the solar convective envelope
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after the perturbation Aa = 0.01 within the solar convective
envelope
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following the perturbation Aa = 0.0l within the solar convective
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