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1. INTRODUCTION

The problem of system identification has been studied intensively

and has become one of the most active fields in engineering research.

Some investigators have obtained theoretical results on parameter fdentifi-
ability, convergence properties of parameter estimates [1,16,18,19], and
regions of parameter identifiability [7]. There are also investigators
working on developing computational algorithms for identifying certain
control system parameters, for example, the stability and control deriva-
tives of an aircraft from actual flight test data [17].

There are two main steps in solving the system identification
problem: (1) Determine if the system parameters are identifiable, and
(2) 1f the parameters are identifisble, work out an algorithm for esti-
mating the parameters. To answer (1), we have to establish the definition
of identifiability first. The most significant recent work on parameter
identifiability when there are stochastic disturbances present in the

system are Tse [18] and Tse and Anton [19]. There are a number of

algorithms that have been proposed for solving (2).

Generally, if the system parameters are identifiable, they are only
locally identifiable, i.e., we must have a sufficiently good initial
estimate of the parameters such that the iterative estimation sequence
will converge to the true parameters. Herget [7] provided a procedure
for computing explicit regions in the parameter space in which the Gauss-
Newton method will converge to a unique solution. The systems considered

by him were deterministic.




The definition of parameter i{dentifiability when there are stochastic
disturbances present has been given by Tse and Anton [19]. They said
the parameters are identifiable if there exists a sequence of estimates
which is consistent in probability. They also established the necessary
and sufficient conditions for the unknown parameters to be identifiable
under some uniformity assumptions on the conditional density parametrized -
by the unknown parameters. Tse [18] also gave the definition of local
parameter identifiability and proved that the positive definitemess of
the average information matrix implies local parameter identifiability.
The definition of local parameter identifiability is that there exists
an open region containing the vector of unknown parameters as an
interior point and there existe a local estimation sequence in the
closure of the region which is consistent in probability., Staley and
Yue [16] established a similar concept on stochastic parameter identi-
fiability. They stated that the parameters are identifiable if every
asymptotically efficient estimator converges to the true parameters in

mean square (Which is stronger than convergence in probability.)

Wald [20,21] considered the consistency and asymptotic properties of
the maximum likelihood estimation sequence. He showed that under certain
restrictions on the joint probability distribution of the observations,
the maximum likelihood equation has at least one set of roots which is
a consistent estimate of the unknown parameters. He also showed that
any root of the maximum likelihood equation which is a consistent

estimate of the parameters is asymptotically efficient.




Based mainly on Wald-Kendall-Astr¥m theory, Aoki and Yue [1]
examined the asymptotic properties of the maximum likelihood estimates
of unknown parsmeters of a class of linear, stable, constant, discrete-
time dynamic systems form where plant noise and observation noise are
present. The systems considered by them were restricted to have certain
cononical structure and were single-input and single-output.

For the identification of linear dynamical systems, Glover and
Willems [6] established the concept of parametrization and developed
sufficient conditions for local and global identifiability from the
transfer function. Bellman and Astr&m (2] also provided an algorithm-
oriented least-square identifiability. It can be shown that for single-
input, zero state systems, local least-square identifiability is
equivalent to local transfer-function identifiability under some
assumptions on the least square criterion. The remaining second step
of the system identification is to identify the system parameter exactly
from input-output sequences for deterministic systems or to comstruct a
consistent estimation sequence by using the constrained maximum likeli-
hood method for stochastic systems. In both cases, it becomes an
optimization problem, i.e., we first set a performance criterion which
is a function of the unknown parameters and then find best estimates
such that the cost function will reach its minimum.

In general, the cost function and its derivatives are nonlinear
and an iterative procedure must be used to find the estimate. The best
known method of solving a set of simultaneous nonlinear equations in

which the increment in each iteration is computed as a linear combination
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of the residuals is the Newton method. Kantorovich's Theorem [12)
states certain sufficient conditions for the convergence of the Newton
iteration sequence. However, these sufficient conditions are generally
highly restrictive and are not easily examined. Moreover, in each
iteration, we have to calculate the Hessian matrix of the cost function
which includes the calculation of a bilinear form. These are the two
main disadvantages of using the Newton method from the point of view of
practical computation.

Later researchers have developed some modified versions of the
Newton method. The most significant for the problem of interest here
are by Ben-Israel [3] and Pereyra [13]. The main features of both of
their algorithms are: first, we only need to compute the first order
approximation of the Hessian matrix of the cost function; second, the
sufficient conditions for the convergence of the iteration sequence are
much easier to examine. Although Ben-Israel's algorithm and Pereyra's
algorithm are the same if the first order approximation of the Hessian
matrix of the cost function has full rank, Pereyra's sufficient con-
ditions are preferable again from the point of view of practical cal-
culation [13].

In the deterministic system identification problem, the solution
for the cost function is the true parameter, i.e., the cost function
will reach its global minimum, zero, if the output sequence generated
by the estimate matches the measured output sequence., For a known system
structure, i.e., a given parametrization, there may be more than one

isolated point in the parameter space that will generate the same o.tput




sequence for a given input sequence, i.e., the solution to the identifi-
cation criterion is generally not unique globally. Herget [7] provided
a modified version of Pereyra's theorem and a computation procedure
employing interval arithmetic to find explicitly the regions centered at
each local solution in which the solution is unique and hence is locally
identifiable. The other feature of his work is the use of bilinear
operators to represent the linear system model. In doing so, the
identification problem of linear systems is equivalent to the initisl-
state observation problem of quadratic-in-the-state bilinear systems.

This dissertation considers the parameter identification problem of
general discrete-time, nonlinear, multiple-input/multiple-output dynamic
systems with Gaussian-white distributed measurement errors. The knowledge
of the system parametrization is assumed to be known. Concepts of local
parameter identifiebility and local constrained maximum likelihood
parameter identifiability are established. A set of sufficient conditions
for the existence of a region of parameter identifiability is proposed.

A computation procedure employing interval arithmetic is derived for:
finding the regions of parameter identifiability. It is shown that if

the vector of the true parameters is locally constrained maximum likeli-
hood identifiable, then with probability one, the vector of true parameters
is a unique maximal point of the maximum likelihood function in the

region of parameter identifiability and the constrained maximum likeli-
hood estimation sequence will converge to the true parameters.

Chapter 2 is a review of Wald's theory [20,21] on the consistency of

maximum likelihood estimates, the concepts of parameter identifiability
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and local parameter identifisbility established by Tee and Anton [19)] and
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by Tse [18] and the applicatinn of these concepts to the system identi-
fication problems [16].

e

Chapter 3 is a survey of Bellman and Astrim's [2] definition of
least-square parameter identifiability, and Glover and Willem's [6] con-

- ———

cepts of system parametrization and identifiability from the transfer- .

D T

function, The author's contributions in this chapter are as follows.

‘ Sufficient condition for local least-square paramster identifiability is
derived by employing the constant rank theorem [10]. The Theorem of
Glover and Willems is modified to provide a sufficient condition for local
parameter identifisbility of minimal dimensional linear dynamic systems
whose initial states are unknown, and a theorem io established to show
that for single-input, zero-state linear systems, local least-square

parameter identifiability is equivalent to local parameter identifisbility

from the transfer function if some constant rank assumptions on the impulse

response matrix and its derivatives are satisfied.

T R

Chapter 4 is a survey of the Newton-Kantorovich theory [12] on the
convergence of the Newton iteration method, Pereyra's theory [13] on
solving nonlinear least-square problems, L.-nom. interval arithmectic [11],
and Herget's results on regions of parameter identifiability [7] with
application to the parameter identification problem of deterministic

dynamic systems., A numerical example is provided by the author with the

3 computer program listed i{n the Appendix.




Chapter S contains the principal new results of this dissertation.

It considers the parameter identification problem of general discret.-

time multiple-input/multiple-output dynamic systems with Gaussiasn-white
distributed measurement errors. It is mainly a modification of Herget's
results [7] on the psrameter identificstion problem of deterministic
systems and a generalization of Aoki and Yue's result (1] on the parameter
identification problem of single-input/single-output canonical-form
linesr dynamic systems with measurement noise. A numerical example is
included to illustrate the computation procedure for finding the regions
of CML perameter identifiability.

Chapter 6 gives the conclusions of this dissertation agd suggestions

for further research.
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2. MAXIMUM LIXKELIROOD ESTIMATION, PARAMETER
IDENTIFIABILITY AND LOCAL PARAMETER IDENTIFIABILITY

Relevant past investigations of meximmm likelihood estimation
paramater identifiability, snd locsl psrameter identifiability are
discussed here. The first result is A. Wald's theory [20,21] on the
asymptotic properties and the consistency of tfu maximmm likelihood
estimate of an unknown parsmeter of a discrete process. Then w will
discuss Tse and Anton's [19] definition on stochastic identifiability,
the necessary and sufficient conditions for the uaknown parameter to be
identifiable under some uniformity assumptions on the conditional density
parsmetrized by the unknown parameter, and Tse': [18] definition of local
fidentifiability. An identification problem of a class of linear, stable,
constant, discrete-time, single-input/single-output dynsmical systems

discussed by Aoki snd Yue [1] will also be presented.

2.1 Preliminary Concepts

Definition 2.1
Let X denote an srbitrary nonempty set. A fasmily of subsets R of X
is called 2 sigme field if

(1) for every Ae¢R, then aslso Acca where AS is the complement of A

(11) 1t “1'“2"""‘“"" is 8 countable sequence of elements of R,
[}

then U-Ancll. and
nsl
(111) oeR where ¢ denotes the empty set.

(iv) Elements of R are called events.

i
i
)
i
g
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Definicion 2.2

A probability Pr. is s measurs over s measurable space (X,R); that is,
Pr. is & resl-valued fumction which sssigns to every ASR & number Pr.(A)
such that
(1) Pr.(A) 20 for every AcR
(11) Pr.(X)=1, and
(111) 1f [An}:.l is any countable union of disjoint events, then
® ®
Pr. (nglhn) - nEIPr. ()

Definition 2.3

‘et X be & set, R be & sigme field and Pr. a prodbability measure

defined on R, then the triplec (X,R,Pr.) is cslled a probability space.

Definition 2.4

A random variable x is a real-valued function whose domain is X and

which is R-measurable, that is, for every real number 1,
{we X|x(w) s)]eRr.

Definition 2.5

Let xl.xz.--- % S be a sequence of random variables, if there

exists & random varisble x{(w) such that
lim xn(m) » x(w) for almost all @, we say tha:
n-w®

lm x ex with probability one

D=

g e

.
T
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Definition 2.6

Let Xy,Xy===,%;,===, be a sequence of random variables, we say the
[ ]

sequence [xn} converges to X in probability or converges stochastically
n=l
te x Lif

Um Pr.(|x, (w) - x(w)]| 2¢} =0

n~o
is satisfied for every ¢ >0

Definition 2.7

A sequence of random variables {xp} is said to coanverge to x in
n=1
the mean square sense if

2
(1) E[|xn| } <o for all n,
(ii) B[|x|2}<¢, and if
(ii1) lm E{|x-x_|?}=0.
n-o

This is written

loiomo x“=x .
n- e

Definition 2.8

If x 18 a random variable, its distribution function Fx is defined
by
Fx(g) =Pr.[x<E] for all € ¢ (~o,x)

Definition 2.9

A distribution function F is said to be absolutely continuous if

therc exists a Borel measurable function p over (-»,») such that
g
FE) =] p(t)at
-

for all €. The function p is called a density of F.

e g,



Definition 2.10

Let X)Xy be random variables, n21. The joint distribution

function of X y===yX,, Or the distribution function of the random vector l
x® (X),°==,X), is defined to be

n Do
?x(gl o= lgn) - Pr.(lgl[xi ‘g‘_]) { j

vhere -o <§t <w, 1sisn,
Definition 2.11

Let {x)‘ JAGA} be a family of random variables. They are said to be

e i . e i g A s me - -

independent if for every positive integer n and every 2 distinct elements

Al [ et ,kn inA s then

n
Px)\l » :x)‘n (gli--. :gn) - jzl m)‘j (4 j)

for all geR".

1f Fxxi(gi) -kaj(gj) for all Xi,)«jcl\, then {x)‘.)\c/\} are said to be
independently and identically distributed.

Let Xy,X;,===,X,,--~ be a sequence of random variables with joint
probability denstiy function p(xl,xz,---.x“; 8), n=],2,---, which is of
known functional form but P(xX),=== X 9) depends upon an unknown vector
of parameters @ that may have any value in a set (.. This set will be
called the parameter space. Thus we are confronted with a family of joint
probability density functions denoted by {p(xl.---.xn; 9): 0, n=1,2,---}
To each value of 0, 8¢}, there corresponds one member of the family de-
noted by (p(xl,---,xn; 8:ne= 1,2,~==} which is a sequence of joint prob-

ability density functiors parametrized by @. Let {p(xl.---.xn; _90):
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nel,2,-=~} be a member of the family and let §, be unknown, §.¢Q. An

estimate of Qo

is a measuradle function of {xl,xz.---.xn]. n=1,2,--=, and is denoted by

based on the observation sequence x) ,xz,---:“. n=l,2,---

ad ez mLi2peees

(én} ey 18 then called an estimation sequence.

Definition 2,12

Any estimation sequence {_8“}:.1 of 83¢QQ which converges stochastically
to 8o is called a consistent estimate for 8.
Lezma 2.1.a [The Strong Law of Large Numbers] [ 4]
Let X)1Xgs==" Xy 3=, be independent random variables such that
E x =0, E xkzsw. Let bnzo converges up to +x,
1f k§1 E xkzlbkz\w, then
Xy $omot X

Pr.{lim 2

= 0}=1,
n-o bn

Lewma 2.1.b

Let X} aXgs==" Xy p =" be independent and identically distributed
random variables.

1€ E"‘ll <, then

Xy +o==+ X
Pr.{lim

n-*wo

= Ex )=l

The concepts introduced abc - can be found in references [4], [5], and

(9.

b o B s )
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2.2 The Consistency of Maximum Likelihood Estimates
This section summarizes the theory given by Wald im [20,21]. Let
[zn}:_l be a sequence of independent, identicelly distributed random
variables with joint probability density function p(zl,---.zn; 9),
ns1,2,---, parametrized by the unknown parameter 9¢QCRP, where Q is the

parameter space. Let ||*|| be a norm on RP. Let p(z; @) denote the

i
:
|
E

probability density function and F(z,0) denote the corresponding cumu- !
lative distribution function of 2z, i.e., F(2;0) -Pr.{;isz}.

The following assumptions are made,

PPN TR P NP, T

Assumption 1

F(z; 8) is either discrete or is absolutely continvous for all 8eQ2.
For the next assumption, we introduce the following notation: for
9¢Ql and p >0 let p(z; 8,p) be

P(z; 8,0) = sup p(z; 8)
-8 <o

For any r >0, let §(x,r) be

¥(z,r) = sup p(2;9)
el >r
Furthermore, let
* p(z;9,0) 1if p(z;9,p) >1
P (2:9,p) =
1 otherwise
Similarly, let
* ¥(z,x) if y(z,r)> 1
¥y (2,r) =

1 otherwise

S o e o <
e . e o mewwuﬂ.du_ - NP CTER VY 8 N TR %,




Assumption 2
For sufficiently small p and for sufficiently large r,

I log p" (2;8,p) dF (z;9,) <=
and

J 108 4*(z,r) dP(2;8) <® for all Gen

where -90 is the true parameter point.

Assumption 3

1f :im _0_1 =0, then :i.m p(z ;'91) =p(2;0) for all z except perhaps on a
- o -
set whose probability measure is zero according to the probability dis-

tribution corresponding to & *

o
Assumption 4 4
1f 8, #go, then F(z;0,) #F(z ;_Qo) for at least one value of z. %
Assumption 5 1
1f :?"@1" =o, then ii;mwp(z ;_Qi) =0 for every z except perhaps on a ‘:
fixed set whose probability measure is zero according to _90. 5

Assumption 6

L|los P(z; 8g) | dF (z; 8 ) <=

Assumption 7

QQ is a closed subset of Rp. |

Assumption 8

p(z; 8, p) is a measurable function of z for 9el and p >0,
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Lemma 2,2
1f 049 , then
E log p(2; 8) <Elog p(z;go) (2.1)

Lemma 2.3

lim E log p(2; 8, p) =E log p(2; 9
p—0

o (2.2)

Lemma 2.4

lim E log ¥(2,r) = -» (2.3)

r o
By the above lemmas, we can prove the following theorems.
Theorem 2.5

Let wC(Q be & closed subset of (1, If 8, does not belong to W, then
sup (z ’Z )"")zn;g)
oew 1°72
Pr.{lim =0} =1, (2.4)
n— o p(21,22,-"’zn; 20)

Proof: By Lemma 2.4 we can choose r, >0 such that

0
E log Nz,ro) <E log p(z;8) (2.5)
Let Wl be the subset of W such that

w, = {0: |l Srg, OeW}

For each gcwl, we can choose a p0>0 such that

E log p(z; 9, po) <E log p(z;go) (2.6)
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The existence of Po is guaranteed by Lemmas 2,1 and 2.2. The set W, is

1
closed and bounded; hence it is compact. Thus there exists a finite number
of points _O_l,--- ,gk in W, such that the union of the spheres with center

k
Oi and radious pﬂi' 1'1""*’1918@1’“91) covers "1‘ .
We see that

k
0s o P(2),25,===,24; 8) ‘-‘1519(3139.9921) “’p(z,,;ﬂpp_g_i>

+ “zl’ro)‘ *+¥(2n,Tq)e

Thus we are going to show

P(2,: 84, Pg;)°**P(2q;: 95, 0qg¢)
Pr.{lim —— 21 A L

=0} =1, i=1-==,k (2.
n=e P(21389) *** (2,: 9 0b=1 2.

and

¥(zy,1,) ***¥(2,,rg)
Pr.{lim —pO n 9

n—a PUE1; 80)  P2gi B)) 0}=1 (2.8)

vwhich is equivalent to showing that

n
Pr-(limagl[los P(2,; 8, 0gy) - 108 p(z; §p) )= -=} = 1

n"
i=l,-=-,k (2.9)
and
n
Pr.{lim ;l[log v(zj,ro) - log p(zj;go)] = -} =1, (2.10)
nﬂ

But (2.9) and (2.10) follow immediately from (2.5), (2.6) and the strong
law of large numbers.

Theorem 2.6

Let _én(zl,---,zn) be a function of the observations such that
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P(zlo“'ozn; .Qn)
o 20) 2¢>0 for all n and for all 20702, (2.11)

9(31 """ 2

Then

Pr.{lim én-go} =1,

n-~wo
(- -]
Proof: Let@denote the set of limit points of L‘“]nnl’ then it suffices

to show that for any ¢ >0,
sup(|l8- 9||: & (@} se with probability one (2.12)
Suppose that there exists a ﬁe@such that ||§-go||>c, then

sup P(2y5===,2,; 8) 2 p(2,,-=~, ;Q)
"O -0 " 2¢ 1 n 1 zn 1]
0
for infinitely many n., But this implies
sup P(z),===»2;8)
llo - 8gll 2 ¢ °
P(z),-==,2,; 9g)

for infinitely many n by (2.1l1).

By Theorem 2.5, (2.13) is an event with probability zero, thus (2.12)
holds with probability one. We recall that the maximum likelihood esti-
mate 6n is obtained by

p(zl,---,zn;ﬁn) = l;:{:; p(zl,---,zn;_o_) for all n (2.14)

A
If On exists, then

p(zl R ,Z“; _au)
P(z),===12q; 8p)

21 for all n and for all x, ,---,x .
1 n

o gryre AP AN e
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By Theorem 2.6, the maximum likelihood estimate is consistent, 1 ,

2.3 Parsmeter Identifiability and
Local Parameter Identifiability

This section summarizes the work by Tse and Anton in {19] and by

Tse in [18].

«©
Let [zn}n_l be a sequence of observation statistics with joint

probability density function p(zl,---,zn;g), ns1,2,---, parametrized
by the unknown parameter geucxp, where (0 is the parameter space which is
a compact subset of RP, Let |*|| be a norm on RP. The true parameter 8,
is known to lie in the interior of ). The parameter identification

problem is to estimate the true parameter go based on the observation

sequence {z_ }n- X

Definition 2.13

The parameter 20 is said to be identifiable if there exists a sequence
@
of estimates @n}nnl which is consistent in probability, i.e., for any §,

¢ arbitrarily small, there exists an N(§,e) such that for n>N(§,¢)
pr. (|18 -9l >8}<e. (2.15)
For brevity, we let

P(Zn;_Q).s p(zl.---,zn;O) , (2.16)

Al

and

Pz iz, i) = P2 ;;9)/p(2, )39 for n=1,2,--- (2.17)

For 08¢ and p> 0, let
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P(2ysp12n.1: 9 = Pz, l2.1:8") (2.18)
P

wup
le-8°|l =
The following assumptions are made.
Assumption 1

p(2,,8) is measurable in Z, vith respect to P(2,; go) az " and contin-
uous in 8¢ for Z, almost everywhere, i.e., for ¢ >0 and G¢(}, there exists
a §(¢) >0 such that for all 9’cl with |9~ @‘|| <8 we have |p(z ; @) -

P(Z,; 8°)| <¢ for 2z, almost everywhere.

Assumption 2

IR“ log p(zn,plz -1 9 p(zn;go) dZ, <= for some p >0

and 8¢ (2.19)
and
In“ log p(z, |2, 80) P2, 9 42 <w (2.20)
for all n=1,2,=«-
Assumption 3

For all ¢} and some po>0,
n 2
Var.{ I, log p(z.02) ;i 9} = 0@") (2.21)

for all 0sp Spo, where O(nz) is such that

2
14 20 . o
n=» n
Assumption 4

Let the set nn(g) be

B (@) = {Z,: p(Z,; ) =0}

N e L e e oo
—— s
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then for all @ ,020(). we have

. B,(9) = B“Qz) for n=1,2,--- (2.22) |

}

f :
! Since the only information about §, is the observation sequence statistics v
\ [z ] wt:h their joint density function p(Z,;9), nel,2,~-=, if there
| are two points 9,,9,¢0, 8, #9,, such that

P(Z,: &) = p(Z,; 9)) (2.23)
or i
P(znlZ, 15 81) = P(2q]2,.1: 8,) for allm (2.24)
we are not able to distinguish @, and 8, in Q.
Definition 2.14
Two parameters _ol._gzcn, S ¢ 92 are said to be unresolvable if the
equality
P(2o12,.15 8)) = P(2,12,015 8)) (2.25)
holds with probability one for all except a finite number of integers %
3
n>0, i.e., 1f (2.25) holds with respect to the measure p(zn;gl) dzu as
well as p(zn;gz) dzn.
Definition 2.15
The set () is said to be identifiable if no two elements in () are
unresolvable,
F By using the constrained maximum likelihood method, the identification

problem is: find anﬂ as an estimate of -90 such that

P(2ni §0) = Hax p(2: ©), n=1,2,-- (2.26)
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Since {) {s compact and hence is closed and bounded, and p(zn; 9 1is
continuous in @ by assumption 1, s solution to (2.26) exists and the

(- J
estimate sequence @ﬂ}n-l is a consistent estimate for _Qo it !0 is unique.
This follows from Theorem 2.6. However, if there are two points gl.gz ’
91 *22’ such that

lim p(Z,; 9,) = lim p(Z,; §,) (2.27)

n-e n- e

®
then it is obvious that "!n}n-l will fail to converge.

finition 2,16

Two pa::meters 8,,9,¢60, 8, $0., are said to be CML unresolvadble if

9
:?Op(:nlzn_l; 9. :‘::"a'zn-l;gz) (2.28)
with probadbility one.
Definition 2.17

The set ) is said to be CML identifiable if no two alements in () sre
CML unresolvable.

The following theorem was given by Tse and Anton in [19),

Theorem 2.7

If for all 01.0200, gl ¢ gz, there exists an countably infinite set

rert (1% = the set of positive integers) such that

Plzyl2a.1: 9 4 p(z, 02, 13 8)

with nonzero probability with respect to 9, and & uniformly in nel, then

1 2

) is CML identifiable.




The sbove concepts on parameter identifiability cen be applied to
the systea identification prodlem.

Consider & linesr discrete-time system described bdy:

x(k+ 1) = Px(k) + Gu(k)
£(k) = Hx(k) +y(k) (2.29)

wvhere F is the (nXxn) state transition matrix
G is the (nxq) input matrix
H 1is the (r xn) output matrix
x(k) is the n-state vector
2(k) is the r-output vector
u(k) is the q-input vector
¥(k) is & GCaussian white noise vith zero mean and convarisnce matrix Q.
Let the initisl state x(0) 23, The parameter go- &0' o.co.no.Qo} is to
be identified. We assume _roo cRP where 0 s a compact subset of g’.
Furthermore, we assume that
(1) the system is stable for all e},
(2) the system is completely controllable, i.s.,
renk[G,#G,--- ,F" 'Gl=n for all 00, snd
(3) che srstem 's completely observable, i.e,
nnk[a‘.(ll!‘)r.---.(ll?"'l)r]-t. for all 0e.
The assumption ~£ controllability and observadbility implies that the system
is of minimal dimension and equivalent systems for (2.29) exist, The
joint probability density function of the observation sequence [3(0).---

e==,z (M)}, M= 0,1,2,-=-, is given by
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where x(k) is the solution to (2.2%) for a given @e0. The CML estimation

method is then to find £n as an estimate of O

_omch that

P((0) ,-=-,200; &) = Hex p(8(0) =-=,500; 9
- Me0,1,2,--- (2.31)

1f there are gl.gz , _1 ¢ 22. that will both generate the ssme Hx(k)

sequence vhen applied with a given input sequence, then

(s(k) - Bx(k); @ )- n ? m(g(k) ux(k);:9,)
M=0,1,2,- (2.32)

" p
k=0 v(k)

for the same measurement noise distribution. Thus by definitions 2.14 and

2.16, 9, and @, are both unresolvable and CML unresolvable. Since system

2
(2.29) is minimal, the following theorem, which provides the sufficient
condition for unresolvability, follows immediately.
Theorem 2.8
Let 9, = {x,,,71,G,,H;,Q;} and
9, = (25,:7,:6,18,:Q,), 8).8,60, §;49,.
9, and 8, are both unrasolvable and CML unresolvable if there exists o

nonsingular, nonidentity matrix P such that




B

-1
lll-llzP

Py mRRE

G, = PG,

210" PX20

Ql = Q2
Proof: Let the state vectors generated by _Ql and _0_2 be gl(k) and _:_:z(k)
respectively. Then x (k) =PX, (k) “151 (k) -llzp'lplgz(k) '“252 (k) for any

input, and the two systems parametrized by _0_1 and 9§, respectively are

2
equivalent.

There fore
M
M -

= Const.cexp{-§ Z[2(0) - B,z (0 10, T2l - Hyx, (0]
c N 1 ] T, -1

= Const. exp{- 3 k§0[ z(k) - 321_52 x] Q, (z(x) - “2£2(k)]}
M

'kT-'OPV(k) (i(k) - “2!2 (k); 22) y M=0,1,2,---

Hence gl and 22 are both unresolvable and CML unresolvable. The above

theorem is a modification of the one given by Tse and Anton in [19].

To illustrate Theorem 2.8, we have the following example. Consider

the system

X(k+1) = 0 1.0

x(k) + u(k)

0 ) OS (2.34)

4

¥
|

2z =1 0]xk + vk




oA

o
x(O) ) [ 1]
9,

25

with 9= [0, 6, 0, 6, 6517 to be 1dentified.

By Theorem 2.8, the following equations are obtained

- ' - -1
0 1.0 By Pof e, 10 n, B,
'

Lo 0, B B |0 e I
P T

0 FPu %, 0

'
L°s f1 P2| |9

(1 0] = [1 E N

11 B
a1 P2 (2.35)

2 i Pl |4

9, P P2l |92

and the solutions are

P, =1.0

Pa=0

P)1=9;-8,

Py, = 1.0

I ')

03+°6'°3+96

'

;=9

,-

9, =9,

?

9,=0,+P, 9

L B ._.l A . PO T AP




Specifically, if we let
gl-[o.s. 0.1, 0.3, 0.7, 1,0], them
i 8,=[0:5, -0.1, 0.7, 0.3, 1.0]
and
' 1.0 0
Pe
'0.4 1.0 .

I.c., the following two systems

x(k+1l) = x(k) + u(k)
0 0.7 1.0 (2.36)

z(k) = [ 1 0] x(k) + v(k)
. x(0) = [0.5, 0,1

} and .

EEIIPN SR T

X(k+1l) = x(k) + u(k)

0 0.3 1.0 (2.37)

P

z(k) = [ 1 0] x(k) + v(k)

x(0) = [0.5 , -0.1]"

are unresolved in any compact subset of RS containing 21 and 92.
If there is more than one vector of parameters in () that will generate
the same observation sequence joint density function, the parameters are

not globally identifiable. However, if there exist regions around each

point and if there exists a local estimation sequence in each region, we
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are still able to identify those parameters by some identification algor-
ithms of local variation type. The following concept is established by
Tse in [18],
Definition 2.18

The parameter gocﬂ is said to be locally identifiable if

(1) there exists an open set S_ such that @ is an interior point of

0 0
So, and
(i1) there exists a consistent estimate

Lén}n-l in S, where So s the closure of So*

We will call so the region of parameter identifiability. By imposing
the same assumptions as the above on the joint density function of the
observation sequence, Tse [18] has the following theorem.

Theorem 2,9

If for all n=1,2,-=~, there exists a A2>0 such that

2 108 pz,20.1: 89 2 log p(z, |2 15 8.
Jn’n(_o)zEeo 390 ae ] }

>A1 (2.38)

where EQO represents the expectation with respect to the density function

p(zn;_oo), then O is locally identifiable.

0
Another weaker sufficient condition for local identifiability was

also established. Define

T
3 log py (@) 3 log py 4(8)
agﬁl_] } (2.39)

Jk’j(g).!ﬁg{.[ 28

» }
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where
pk,j@) 2p(2y %y 0" 'zj""k-].; 9 (2.40)
Noting that ‘
2 T
3" log p, (@) 3 log py 4(@) 3 log py ()]
e s RLRL Syl @
and
2 2
?“ log py 4(@ 3§ 9 log p, ,(8)
EO zksj }'Ee[jzk 5 i,i }
- 28 = X
2
) 3" log pyg 1(®)
3
We have
J
Jk,j@) = 1§kJi,i@) (2.43)
and
n
11,0 @0 = 151,19 (2.44)

Theorem 2.10

2

1f there exists a A“ >0 such that

n
2
= 2
Un 3,3 16y :i_?mjl,n@o) A1 (2.45)

n=o

then go is locally identifiable.

I
|
1
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Definition 2,19

A subset ScRP 1s said to be locally identifiable if all the elements
in § are locally identifiable.
Theorem 2.11

A sufficient condition for a subset SCRP to be locally identifiable
is that

lim Jl,n@) 2A2@)1pxp; x2@) >0 for all @eS (2.46)
n—-wo

In the next section we will present a system identification example

given by Aoki and Yue [1].

2.4 An Example of Siystem Identification

Aoki and Yue [1] examined the asymptotic properties of the constrained
maximum likelihood estimate of the unknown parameters of a class of linear,
stable, constant, discrete-time systems with observation and plant noise,
The system considered by them is in the completely observable companion
form and is single-input and single-output, hence the system representa-
tion is unique. Therefore local identifiability will imply global identi-
fiability for the class of systems considered by them, It is
obvious that global identifiability implies local identifiability.

Consider the dynamic system represented by

x(k+1) =Fx(k) + Gu(k)
y (k) = Hx(k) (2.47)
z(k) =Hx(k) + v(k)
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where F 18 an (nxn) matrix, G {s an n-component vector, H=[10---0] is
a (1xn) matrix, and v(k) is a sequence of independent and identically
distributed random variables with zero mean and finite variance az, i.e.,
v(k) ~ N(o,cz), k=0,1,2,-==, F has the following completely controllable

companion form:

--al 1 0 e o o 0 ]
-a 010.. 0
Fs= .2 . . .« e o .
. . . « o o 1
L-a o . e o o 0
n >
T

and G'[bl’bz""’bn]
The initial state x(0) is an unknown n-vector. Our purpose is to

identify
T
_9_"[81”“a8n, bp"",bn] » @ 2n-vector,

and the unknown initial state x(0) = X,
The input sequence u(k), k=0,1,2,--- ig known and is assumed to be
uniformly bounded.

Suppose we take M observations. Define

Uy =[u(0), u(l),-=-, u(M-1) 7
Y= [vO), v(1),=-m, vi- 1]
4, = [y(®), y(1),==-, yat- 1]
z,=[2(0), 2(),---, z0t- DT 2.48)

P T SN S
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Then
A"xu = BMQM + E":_:(O) (2.49)

where

nooi
A I + as
w = Do Fi51%

n
BM .1§1b18

Laxn X
EM.(----) (2.50
OM-n,n

and S is the MxM shift matrix with element S, .= 3§ . Another way to
1) "1,5+1

i

express the input-output relation of (2.47) is as follows:

3y = B2+ EEO 2.51
where
2 2 n
B = (-8Y,, -S'Yy,=--,-8"Y,,, SU .5 Gy,-=-,5 ) (2.52)

which is an M x 2n matrix.

We assume that the true parameter @ 1is an interior point of (} where

0
n

Q is a compact subset of R2 . Furthermore, we assume that the system

(2.47) is stable for every ©e¢Qd. By (2.47) and (2.49), the output sequence

zM can be expressed as:

Zy = Byt = Yyt Ay B+ B 2.59

and the joint probability density function of 1“ is
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p(z“; 9,50) = Const. -exp(—;% “_Z_H- %.I(BMQH'O' Engo)"z) (2.54)
c
The constrained likelihood estimate of @ and 2o denoted by QM and im
respectively, are obtained by

og GH —“’;m) i n 8 pLM =120 (
’_"O‘QR

T @ = [EMT(AMT)'I%'IEM]'IEMT(A,,T)-IE%- AT RU] @.56)

Then 'éM is obtained by

’1 ~ 2
ol - Ay Byl * B, @)1

- ||£M'AM.1(B“!“+ E“i_},“(_@")llz (2.57)
and

A ~

Eom " A (2.58)

The following theorems were given by Aoki and Yue in [1].
Theorem 2.12

1f the system (2.47) is completely controllable, and G is not a zero
vector, then the constrained maximum likelihood estimate 9 converges to

the true parameter 20 with probability one if and only if

=T =
U >0

1
lm s ‘LJM,Zn —M,Zn

M=o
where

- 2 2n
Uy, o0 = oS JyomonS 1y (2.59)

e e e plrron et e



Theorem 2,13
If the system (2.47) is completely controllable, and G is not a zero

vector, then the constrained maximum likelihood estimate ﬁn converges to

the true parameter 20 if and only if

1.7T
1im -}-{5“54>0 for all Gefd.

M~
We note that the positive definiteness of the two matrices in Theorem 12

and 13 are sensitive to the input sequence gM; therefore, input synthesis

is an important factor for the identifiability of the system parameters.
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! 3. LOCAL LEAST-SQUARE PARAMETER IDENTIFIABILITY
AND LOCAL PARAMETER IDENTIFIABILITY FROM THE
TRANSFER FUNCTION OF LINEAR DYNAMIC SYSTEMS

In this chapter we will discuss specifically the paramaster

r\ o identifiability of linear dynamic systems. We will establish the concept

% of perameter identifiability without considering the identification

: algorithm, the algorithm-oriented least-square identifisbility [2], and
the transfer-function identifiability for linear dynamic systems (6].
Furthermore we will discuss the relation between the local least-square

identifiability and the local transfer-function idencifisbilitcy.

3.1 Notation
We will present specifically the manipulation of the bilinear
} ’ operators in this section which is necessary for the approach later on.
For y(8) s resl-valued function of gcoca", t.le., ¥:Q-R, 1f y(@)

is differentiable with respect to 8¢}, we define

‘cay o (VO (O

where

1f 3(9) is an m-component vector-valued function of 8¢, we define




A ot uo sshen . SRR SRS B i

3
ERC) @
_a;;- o o —"a‘P
2@ a| -
@ . . . WO
KLY RLY
[ 34 (9)]
Laki
and az ®
” '1 1-1."'.I
1o [“s“u] dzhe

which 1s an (mx p x p) bilinear operator ([14].

A@) = [Au ©)], we define

For A(Q) an (mxp) metrix,

A ) fe],cee,
A'@ a [_é&:(g_ ] j'lo"'o:

ke 1...-.,

e aan etk e rete e ek &

which is an (mxp xp) bilinesr operator. 1f B is an (mxp xp) dilinesr i

operator, then the product of B with a p-vectnr @ is an (mxp) metrix i

vwhose 1, element is

(30)1.1 o1 ijk k

Moreover, BO@ i{s a m-vector defined by

99, E(En 000,
We denote the permutation of B as B*. vhere

(B, 5 = By g

e e i
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B is said to be symmtric if

Bep*

The transpose of B is denoted by Br. vhere
T
RRITRRLYY
The product of a bilinear operator B with a (pxq) matrix is an (mxpxgq)
bilinesr whose 1,),k element is

(BA) ¢ 4 ® .(,gl'i.ﬂ-ALk

The product of a8 (qxm) matrix with an (mx p xp) bilinear operator is ss

(axp xp) dbilinear operator whose {,j,k element is

M
(AB) g g1 = L5 A0y g

Given two matrices

A=[a i,)=1,e~=,n , and

11] ’

'-[bij] » Lyjel,ecem ,

ve form a new matrix C with elements éij'k& obtained by multiplying each

element of A by each element of B in the following way:
c=legyued = [agydy]

Here, the pair of integers (k,j) act as the first index, and the

psir of integers (k,{) act as the second index, vhere

‘nk - lozo"' Dy

Jil=1,2,ee=,m,




»

T".e matrix C is called the Rronecker product [15) of the matrices A snd
B and is denoted by

C=AlB

For example, let A snd B be second order matrices. Then their Kronecker

product is a fourth order matrix, which can be written as

: 1
0. bz M2n Mi2be
coftut fPzz a1z
0,0 %2 2% %22Pp;

|*at21 fab2 ‘2P f2Pa

a1 Sip1z G2 S22
©2:11 S12;12 S1321 12522
©n:11  S21512 Sa;21 Sa1;22

L°22;11 22,12 22,21 22522

For an (n xm) matrix A'[‘ij]' A is defined by
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3;2 Local Least-Square Parameter Identifiability

A general continuous-time deterministic dynamic system is described

by

X(t) = ¥ x(t), u(t), t; O
y(t) =§(x(t), u(t), t; ) @a3.1)

wi.e-e x(t) is the n-state vector, u(t) is the q-input vector, y(t) is the

+
r-output vector, tc[O,o):R+. v:Ranqu+xO*Rn, and ;:Rnxkqu xQ-RY,
8eQ2 cRp is the unknown parameter to be identified. If the system is dis-

crete-time, then it is described by

x(k+1) =y(x(k), u(k), k; 8)
y(k) =§ (x(k), u(k), k; 8) 3.2
k=0,1,2,-==

We assume that () is a compact subset of Rp and the system is stable
for all Qe}. We must note here that @ may stand for the system model
coefficients only, e.g., the F, G, H matrices of the linear systems, or
it may include the unknown initial state. To distinguish the above two
cases, we have the following definitions. Let A denote the set of all
admissible inputs, let h(t;9) or h(k;8) denotes the output generated by
8 when applied with a ue A
Definition 3.1l.a

Let © stand for the system model coefficients only, then for the
continuous-time systems, Ql,gzcﬂ, 8 #22 are said to be unresolvable in

Q if




h(t;9,) =h(c;8,)
for all x eRn, ueA, and l:cR+.

-o
For the discrete-time systems, §, and 8, are said to be unresolvable

inQQ if
h(k;8,) = h(k;8,)

for all :_cOGRn, ueA, and ke1+.

Definition 3.1.b

If @ includes the unknown initial state Xy then for the continuous-

time systems, 9, ,9260, 8¢ 8, are said to be unresolvable in () if
h(t;9)) =h(t;8,)

for all ueA and ter'.

For the discrete-time systéms, 8. and 22 are said to be unresolvable

1
if

h(k;8,) =l_1(k;22)

for all yeA and ke1+.
Definition 3,2

A parameter 0.¢() is said to be locally identifiable if there exists

go
an open sphere S(_O_o,p) with radius p >0 centered at 90 such that there is
no other 8¢5(8,,p) NQ, 948, vhich is unresolvable from .
The above definition is made independent of the method for recovering

go. However, Bellman and Astrom [2] established an algorithm-oriented

definition which is called the least-square identifiability. Specifically,

e e rerer————— —
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they first set a least-square type criterion parametrized by the unknown
parameters and sought the unique local (or global) minimum of the criterion.
Parameter identifiability was then implied by the uniqueness of the

minimum of the criterion,

Consider the criterion given by

T 2
3, © = [ |Ih(e;) - y(0) de, T>0 (3.3)
0
for the continuous-time system, or

M - 2 = L X3
3® = § In0ki®) - 30|, u=0,1, (3.4)

for the discrete-time system. ||*

denotes the norm, y(t) and y(k) are
the measured outputs of the continuous-time systems and the discrete-
time systems, respectively. The following definiiion was given by
Bellman and Astrom in (2]. A
Definition 3.3 E

Let go be the true parameter of a control system parametrized by the ]
unknown parameter 6. Then 20 is said to be locally least-square identi- ‘ i
fiable if the criteriom JT(Q) or J,(8) has a local minimum at g-_go. If 1‘
the minimum is global, _90 is said to be globally identifiable. |
To establish the sufficient conditions for go to be (locally) identifiable,

we proceed as follows. We consider the discrete-time system. To find

the local minimum of JM(G), we take the derivative of JM(_Q) with respect

to 0 if

. &,

JM@) is a continuously differentiable function of €. Since JM(O) :

is a scalar, Jﬁ@) is a p-component vector function and J;I(Q) is a (pxp) A

matrix function. If @

o is the true parameter, then l\(k;go) = y(k),

|
L T e————— L S S S - —— i
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ka0,1,=<, and JMQO) =0, M=0,1,2,--=-, Since J"(g) is nonnegative, 90
is a minioal point of J\(6,) and hence J"'(Qo) =0. However, if §, is to
be locally identifiable, _0_0 must be the unique minimal point for J“(Q) in
some neighborhood of go. i.e., there must exist an open sphere S@o.p) cn
with radius p >0 centered at Oo such that if Ocs(Oo,p). O#Oo. then

J;‘(Q) $0 and hence @ is not a minimal point of J,(8). If we can establish
a sufficient condition such that Jé(g) is an injective function (a one-to-
one mapping) in some neighborhood of -90’ then this condition will imply
that _0_0 is locally identifiable. We first state a result given by

Narasimhan in [10].

Lemma 3,1

Let S be an open set in RP and t:s-‘n" be a Ck mapping (a k-times

continuously differentiable function) with k21, Then if y'(8) has
constant rank j in a neighborhood of Oocs, ¥ is locally injective at 00
if and only if j=p.

Theorem 3,2

A sufficient condition for go to be locally identifiable is that
there exists an open sphere S(go,p) € with radius p >0 centered at 90
such that the (p xp) matrix J;l(g) is nonsingular for all 8eS(84,p).
Proof: Since 3;1@) is nonsingular for all 8¢5(8,,0), it has constant
rank p for all 8S(8,,p). By Lemma 3.1 J;‘@) is locally injective on
$(8,s0). Let 865(9,,0), 8¥8,, then Jy (@) # 0 hence J (8) £0, M=0,1,2,.
Thus go is the unique minimal point for JM(Q), M=0,1,2,-==, in S@o,p).

The above theorem is an immediate result of Lemma 3.1. The least-

square identifiability and the identification algorithm for finding the

C iata . a v e 1




region of parameter identifiability will be studied extensively in

Chapter 4.

3.3 Local Parameter Identifiability from the Transfer Function

In this section the systems considered are discrete-time. We will
first briefly introduce the realization theory established by Ho and
Kalman in [ 8] and explain the distinction between the realization and
identification. Specifically, the parameter identification from the
transfer function can be viewed as the realization from the transfer
function restricted to the given parametrization.

The quadruplet {F, G, H, D} defines the internal description of a

system, which we shall denote by I, via the equations:

x(k+1) = Fx(k) + Cu(k)

y (k) = Hx(k) + Du(k) (3.6)

where F is the nxn state transition matrix
G is the nxq input matrix
H is the r xn output matrix
D is the r x q direct-coupling matrix
x(k) is the n-state vector
y(k) is the r-output vector
u(k) is the q-input vector
The external description of the system L is the zero-state impulsive
response description, namely the description in terms of an impulse input

and the corresponding output. There are two ways to represent the external

.
P N D T I S - £ 1 o S ";...l N a L LY, TR TP 4
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description of L. One of them i{s the time domain description. From

equation (3.6), it can be easily seen that the impulse response of I is

given by

wo-b
WI-HG+D

("% wrte)
W = HF G} + D
M i=1

3 , 3.7

and the impulse response matrix is given by

- - o D -
Wo HG™ + D
"l HFG + HG + D
Va . = M-1 .
Wy { THF'G}+D
i=]
. [ . (308)
. o L p

By the frequency domain description, the input is related to the output by

the transfer function T(z) such that

Y(2) = T(2)U(2) 3.9

where
-1
T(z) = {H(zI-F) G+D} (3.10)

z2¢C (the field of complex numbers).

g s
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Through the concept of realization, the external description of a
system can be related to the internal description of a system. The probd-
lem of realization can thus be stated as follows [8): comstruct {F,G,H,D}
such that the idemtity (3.7) holds, i.e., given & sequence of constant

(r x q) matrices {M ]Q , find a quadruplet {F,G,H,D]} of constant matrices
{1‘1i=0
such that

The sequence [Mif:_o is called the Markov parameters of the system I.

:
The dimension of T is defined by

dim(Y) = dim(F)

We say that the realization {F,G,H,D} is minimal if the dimension of
F is less than or equal to the dimension of any other realization of I.
From the linear system theory, we know that a realization is minimal if

and only 1f T is both completely controllable and completely observable,

i.e., 1f and only {f

rank[c,FG,---, Fn.lc] = n (completely controllable)

T -1 T
and rank(H ,(HF)T,---, (HFn ) J=n (completely observable)
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Furthermore, given an external description, two minimal realizatioms
g - {Fl’cl’ul’nl} and T, = {FZ,GZ.HZ.DZ} are equivalent if and only if

there exists a nonsingular nxn matrix P such that

*sj
]
o
e
-]

-1
D, = D, (3.9
These two equivalent internal descriptions differ omnly in the co-

ordination of their state spaces.

Even though we have the knowledge of the external description and
the minimal dimension of T, generally we are not able to determine the
quadruplet {F,G,H,D} uniquely unless the structure of {F,G,H,D} is con-
strained in some specified form. We can illustrate the above statement

by the following example [2].

Consider
.-(9 +0,) e ) [ 1 ‘
1 2 3
x(k+1) = x(k) + u(k)
e -(6,+90,) 0 (3.10)
i 2 3774 ]
yk) = [ 1 0] x(k)

The transfer function of (3.10) is

Z 4 04 + 6
3 4
T(z) = 2 (3.11)
z + z(01+92+03+0b) + (014-02) (03*‘06) - 9203




Thus we have only three equations to solve the four unknowns
{01.02.03’°a}:
03"’ 0(‘ - .1
°1+°2+°3+°“ = 8
@, +6,) (93*‘06) ~ 0,0, = a, (3.12)

vhere a;, a,, and a, are known constants. For this under determined set

3

of equations, one of the four unknowns has to be dependent on the other

three, hence the representation of (3.10) is not unique. However, if the

system representation is constrained to have the canonical form:

x(k+1) = x(k) + u(k)

o o, 0, (3.13)

y@ = [ 1 01 xm

then
0,2+8, - 0,0 8,z+a
4 3
T(z) = "1{ 23_ . , - . (3.14)
z -022-01 z ‘o-azz-l'a1
and
91 = a,
02 =a,
93 = 83
OA =8, -a5, (3.19)

is the unique representation for system (3.13). The identification

e o cane s
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(realization) of system (3.13) is an example of the canonical parsmeter
identification problem which has been thoroughly studied. By canonical
parameter identification, we mean finding a certain set of parameter in
a given canonical parsmetrization which when applied with the input
sequence from a given set of input-output sequence will generate a sat of
output data which will match the given output sequence within some well
defined degree of accuracy. The primary reason for finding canonical
parameters is to obtain a model which gives a good match to the measured
input-output data. However, it may not be desirable to use a canonical
form for a given physical system. That is, it may be desirable to identify
specified parameters in a given parametrization. Hence the parameters
identified in a specified canonical form may have little or ho recogniz-
able relationship to desired physical parameters. To expound the above
statement, we give the following example.

Given the frequency domain external description of a second order

zero-state system I:

T(z) = =—— (3.16)
z +az+bd
The canonical parametrization:
. 3 9
0 1 1 0
x(k+ 1) = x(k) + u(k)
L°1 e, . L°3 (3.17)

y@ = [ 1 01 x@m

L
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O S S S



}" ; “
can be uniquely determined by
; Ol = =b
3 ﬁ °2 . -a
F‘. H
- o, = c (3.18)
- 3
3 |
:;- ; hence the canonical psrametrization is globally identifiable. However,
i _
- if ve are given the physical psrametrization which i{s the same as the
example in section 2.3:
h 9
L 1.0 0
g(k+1l) = _:_:(k) + ju(k)
0.0 Oz ) 03‘ (3.19)
] .
| yk) =( 1 0] x(k)
then we get the following set of equations:
01 +°2 = -8
J
9,8, = ®
?l 03 = c (3.20)
}l,
rr It is obvious that 01 and 02 can be interchanged without affecting the
b
) ' transfer function. Hence this physical parametrization is not globally

P , identifiable but only locally {dentifiable since the two parameters:

21 = (01.92'93) and 22 b (02’01003) 1

will both generate the same transfer function even though they are isolated

in the parameter space if 9, £9,.
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i 4
A parametrization of the system matrices {F,G,k,D} is & continuously
differentiable function which maps {}, the parameter space, to the

N+ q+r)er
Rn( q+r)+rq space; i.e., a parametrization is a ¢’ funceion

(P,G,1,D) (@) :0cRP~gP (BT At EITL

For brevity, we let n(n+q+r)+rq={. The above definition was given by

Glover and Willems in [6].

Definition 3.5

Given a parsmetrization of a system I, two parsmeters 9, ._chﬂ. 9 ¢ 22

are said to be unresolvable from the transfer function if

H(9y) (21 - F@l))'lc(gl) +D(8,) = n(gz) (21 - r(gz))'lc(gz) +p@2)
(3.21)
for all ze¢C and z¢ (A (F@l)), A(F(@,))) where A () denotes the eigenvalues

of the corresponding matrix, or equivalently,

D@ = D@,)
HEF @)0@) - u@z)r‘@z)c(gz) 1=0,1,2,--= (3.22)

The following definition is similar to the one given by Glover and
Willems in [6].
Definttion 3.6

A parametrization is said to be locally identifiable from the transfer
function at _roo if there is an open sphere 8@0,9) cQ with radius o >0

such that there is no g\s@_o.o). _0_#_0,0. vhich is unresolvable from _Qo i.e.,

if there is & 8¢S(9,,0) such that
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D@ = D)

RO @C@ = HEYY (€60, 1=1,2,-- (3.23)
then 9= 9.

By Lemma 3.1, an immediate result follows.
Jheoren 3.3

Let (F,G,H,D)(Q): O-xt be a parametrization of ¥, then the
psramatrization is locally identifiable from the transfer function at
8¢l 1f the gradient of the Markov parsmeter matrix !_4(9) wvith respect to
9 has constant rank p in an open sphere S(Qo.p) with radius p >0 centered

at 9, vhere

D(®)

H(®)G(®)

M@ = | HE@F@C®)
M

HE@F (9)G(®)

. )

1f & psrametrized system is of minimal dimension, then it is related

to its zero-state and zero-input equivalent systems by similarity tranes-
formations. For the physical parameter identification problem, we are
interested in the equivalent systems which have the same parametrization,
f.e., we wish to investigate {f -here is any transformation matrix which
will cransform a parsmetrized system to an equivalent system with

different pavrameter values but with same parametrization. Specifically,




s1

ve shall investigate the solution (P,8), PeGL(n), the space of nonsingular
(n xn) matrices, 9¢}, of the following set of equations:

rr@r ! - 7@,

PC(@) = C(9,)

n(g)r'l - H(Qy

D@ = D(9,) (3.26)

vhere _Qo is the true paramster. It is obvious that if there is an open

sphere SQo.p) €0 such that (Inm.go) is the unique solution of (3.24) in
GL(n) x8@o.p). then the parametrization is locally identifiable from the

transfer function at go The following theorem provides the sufficient

condition for (3.24) to have unique solution locally which was given by
Glover and Willems in [6].

(24 A

L) Let {F,G,H,D}: Q-'.R{' be a given parametrization of the system matrices

{F,G,H,D} snd suppose {F,G,H,D} is minimal.

Let

pr(@r !

PG(@
u@r!
P@®

- L

E(p,0) =

If there exists an open sphere SQo.p) with radius p >0 centered at

2
Oo such that v(r.g) &(P,0) has constant rsnk n

8¢5(9,,0), then the parametrization is locally identifiable from the

+P st Psl and for all

transfer func~ion at §,. The matrix v ®.9) €(P,0) evaluated at the point
(24




(1,0) is given by

v e(P s_o_) =

52

(Inxn® Fr @ -F@) @ Inxn) nzxn

(1. (6T

nxn - nqxnz
1@ Q@1 )
nxa mxn2
t:qxn2

which is an (n2+nq+rn+rq) by (n2+ p) matrix.

We give an example to illustrate the above theorem.

system parametrized by

o 1
F =
'01 OZ
[ 0
G =
93 ,

then

- !/
F(9)
2 nxp
- !
G(9)
ngxp

[}
1@ rnxp
- !
D(®) qXp

(.25)

Consider the

(3.26)




,p"“
53
P > . p <
06, 00]l0 01 0} 000
10200 0 0 01 100
.: 00 00 )]s, 0 6 0] 000
1 1 2
00 16./]10 6,0 6] 010
. L o)c‘.:(p,e) - | 2j 1 2] -
’\ = (1,2)
g 06,00 000
, 00 00, 001
<10 00 000
0-100 000
| i 00 00 000
- -
0 6 -1 0000
) -
1 6, 0 1100
; _ -6, 0 -9, 6, 0 0 0
0 -6 1 0 010
0 6, 0 0 000
r 0 0 0 6 00 1
<1 0 0 0 0 0 O
0 -1 0 0 0 0 0
Lo 0 0 0 00 0| (3.27

which is of rank 22+3-7 for all 9.R3 hence the parametrization is
globally identifiable from the transfer function.

We will extend the above theorem for the case that @ includes the
X

unknowa initial state, i.e., @ = 0 » where n is the unknown system

bo]
parameter vector contained in {F,G,H,D} with a specified parametrization.
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Then the augmented parametrization is s mapping from the parameter space

(ntq+r)+rq+n

Q to the " space. Let L'/=n(n+q+r)+rq+n. We note

that

2" oyn’ Onx(p-m) 12
0d 1000 un L (pmyx(p-m) 2 3.26)

Let go- =00 denote the true parameter. The solution (2,8) of the

following set of equations is sought

Pxo = X0

PFP - = F(ng)

PG(n) = G(ny)

H@EP ' - H(ny

D(D) = D(ny) (3.29)

The following theorem is established immediately.

Theorem 3.5

!
Let (:_(o,r,c,a,n}(g) :Q-R"' be a given parametrization of a system

T and suppose {F,G,H,D} is minimal. Let

(s, ]
PF ()P "
e @9 = | ren

HP

D(n)
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o i i

If there exists an open sphere s@o.p) CQ with radius p >0 centered
*
at go such that v(P'g)E (P,8) has constant rank nz-o-p at P'Inxn and for

Y all gcs@o.p). then go is locally identifiable (by definition 3.2).

v(l,’_g)c*(r,g) evaluated at (I_  ,0) is given by

nxn
- T -
TonPxg ) axn? (v.Qg") nxp
~ T
T ya X F @ -FQ@ ® Laxn’ n2yn2 (V.QP @ )nzxp 2
* - T ?
Y »89) ¢ @9 (Inxn® ¢ @) aqxn? (V.Qa @) nqxp
(1,9 )
CHO 1, ) o @) o
Qrqxn2 7gh @) oo
L -
- (3.30)

which is an ¢’ by (n2+p) matrix. We note here that X5 50 since X, is

a column vector and hence v_oz_co = [Inxn: onx (p-n)l by (3.28).
Comparing Definition 3.2 and 3.6, and Theorem 3.4 and 3.5, we see
that identifiability from the transfer function is equivalent to the

zero-state parameter identifiability according to Definition 3.2 which is

a more general definitiom.
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3.4 Region of Least-Square Identifiability and
Transfer-Function Identifiability

In this section we will discuss the relation between the least-square

identifiability and the transfer-function identifiability. We consider

\ a parametrized single-input, zero-state linear system L with system
- matrices {F,G,H,D}. Let the true parameter be 20‘ Its measured impulse
response matrix is given by
o !(0) 1 o D@o) -
x(1) H(83)G(8,) +D(8,)
¥(2) u@o)r(go)c@o) +H(Q)) (@) +D(8,)
WU :
. ° " 1
L PAL)) J | { ZHEYF @o)c«_ao)}w@o) (3.31)
| [P h o

which is an r(M+ l)-component vector where r(M+ 1) 2p.

The output sequence generated by the unknown parameter § when applied

' with the impulse input is given by

| (h0;0] |p@

i

. h(1; ) H(8)G(8) +D(8)

. h@ 2|02 9 | = | HOF@CE +HEOGCE@ +D©

. .

[ ; ] .

. M
1 h(M; 0) (ZH@F ©6@ ] +D@ (3.31)

L L o -

o i

Let the identification criterion be
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3@ 2 Zolh06 © - y00 I 80 8 - y(0)
[y (@ - %1 [0y (® - 1,]

Then

,(© = 1/2 33O = [h,;(g)]T[gM(Q) -y,

which is a p-component vector function, and

2,® = (8! @1 hy @] + (@1 Ty @ - ¥,)

which is a (pxp) matrix function of 0.

We note that

JMQO) =0,
' 2y@y =0
L and ¢/ @) = (b @)1 Thy@ )] (3.35)

Recalling that the Markov parameter matrix is defined by

p D@)
H(9)G(O) z
M@ = | H(@)F(9)G(O) ‘

e

HEF @6

Y T

[ By performing row reduction on -t-h@)’ its easily seen that

rank[M(Q)] = rank[l;ln@)] for all @el
and rank[H'(8)]= rank{hé(g)] for all @eQ. (3.36)
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Moreover, from the matrix theory we know that
uuk[g};(g)] = p if and only 1f runk[(!h;(g))r(hé(!))] =p,

For brevity, let

£,© =28, @ -1 (3.37)
and N,(®) 2 [hy(® ]T[gl;(g)]. (3.38)

Our purpose is to find a region S(Qo.p) such that 90 is both least-
square identifiable and identifiable from the transfer function in s@o,p).

We first state the following Lemma.

Lemma 3.6

Let B and C be two (nxn) matrices. Let "" be a norm on the space
of (nxn) matrices.
If (1) B is nonsingular,
o s
(i11) |lc-B| s§, and

| £a,

(iv) ab <1,

(4

then C is nonsingular and IIC-IH ‘—1—_;5_

Theorem 3.7

Let L be a zero-state, single-input linear system parametrized by
the unknown parameter @. Let the tiue parameter be 8,. Let f|-]| be a
norm on the respective spaces. If

(1) NMQO) is nonsingular,

(2) there exists an open sphere S@o,p) with a radius p >0 centered

at go and a set of positive numbers (A,y,u) such that
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@ Iy @l <A,
1) (£ @1L @5y for all ges@0),
(111) “Nr;@)" Sy for all gcs@o.p),
(1v) M(up +y) <1,
then go is both least-square identifiable and identifiable from the
transfer function in S(go,p).

Proof: By 2(iii) we have
Ny @ =N, @) Spu for all 9es(8.p)

Moreover, ||NM'1(_0_0) || s\ by 2(i). Applying Lemma 3.6 to this situatiom,

we have o=\, § =pu, and App<1 by 2(iv). Thus NM@) is nonsingular and

-1
My @l T2 for all &s(@,p

Since N (8) -[_l%'l@) ]T[%;(g)] and Ny(8) has constant rank p in $(8,,p),
therefore Qé@) has constant rank p in S(go,p) and ﬁ@) has constant rank
p in S(_O_o,p), hence _oo is locally identifiable from the transfer fumction
by Theorem 3.3. We now show that J;'i(g) is nonsingular for all 8¢S (Qo,p)
and Jl;(g) is locally injective on S@o.p).

By (3.34),

’ a T
2,©@ =N @+[5@T L @,
therefore
Iy @ - 2@ = L& @ 5, @1 <v

for all _ch(go,p) by 2(i1). Applying Lemma 3.6 again, we have a = IJ)‘—,
-~ Aup
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= ' 4
6=y, and ab -ll-yk_p,; <1l, Thus g“@) is nonsingular, i.e., ,QM(Q) has

constant rank p for all _O_cs@o,p). This implies that @ 1is locally

| 0 '
& least-square identifiable by Theorem 3.2. !
; ;
3 . A computation procedure for finding explicitly s@o.p) will be ;
:{ presented in the next chapter. g
. i

T e S P
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4. REGIONS OF PARAMETER IDENTIFIABILITY FOR
DETERMINISTIC LINEAR DYNAMIC SYSTEMS
In this chapter we will study the identification algorithm exten-
. sively. We will first study Pereyra's [13] theory on the modified Newton
method, which we shall call the Gauss-Newton method, for solving nonlinear i

least square problems. Then we will present the identification algorithm

proposed by Herget [7] for finding the regions of parameter identifi-
ability.
4.1 Nonlinear Least-Square Problems and
the Gauss-Newton Method
In this section we will study the sufficient conditions for the con-

vergence of the Newton iteration sequence and the Gauss-Newton iteration

} o sequence. .
Definition 4.1 ':
A real-valued function ||*|| defined on the R" space is called a )
norm if ij
(1) Ix|20 for all xeR",
(11) |lx/|=0 1f and only if x=0,
(111) |lx+y s|xll +llyl for all x,yer", and

(Av) Jlox|l = Jalllxll  for all aeR end all xer".
Definition 4.2

A mapping ¥:Q cRP~R® is said to be Frechet-differentiable at c,
vhere @ is an interior point of (}, if there is an (mx p) linear operator

A such that

Lm (1/|k]d 4@+ k) - ¥(@) - akf| =0
Ll = 0

ks, = o oAy AR
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for all k such that @+ keQ. A is denoted by y'(@) and is called the F-
derivative of ¥ at @.

By a least square problem, we mean given a nonlinear transformation
h:Q cRP < R® between the set N CRP and the A" space (pSm in general),
and the sequence of observations xmm, find e persmeter _O_ocn such that
the Euclidesn norm of h(8) - Y is minimized st go. f.e., wve want to find
the stationary points of the criterion ||h(@) -!_“2.

For brevity, let £(8) =h(@) - Y, If £(@) is at least twice Frechet-

differentiable on (}, then we can differentiate the criterion to £ind the

wninimal point of the criterion. Llet
1@ = (1@ -11Tp@ - Y] - £ @£©®

which is the square of the Euclidean norm of h(@) - Y. Then
MOFREREORIEOINIO @)

where £'(8) 1s an (mx p) matrix function of @ and ¢(8) is a p-component
vector function of 8.

To find the stationary points of J(@), we let

2@ =0 4.2)

Many questions arise. (1) Does there exist some gocﬂ such that 9(9,) = 0?

(2) 1f 8, exists, is go unique locally or globally? (3) 1f 20 is unique

locally in some region, can we find cxplici.tly the region? (4) 1f go

exists, how do we construct an iterstion sequence which will converge

to goz

e e A ——————
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To snsver these questions, we proceed as follows. The standard

Nevton iteration sequence for solving the equation 9(0) =0 is defined by

§m1.§n'[!'@n)]-1!(§n)o as0,l,--, 6.3)
where
2@ =@ @+ @@, (%.4)

and _f"(g) is an mx p x p bilinear operator defined bdy

. [azf’_(O) : iel,0ee,m )
-f ‘ Ld j- 1..-..P (a.s
@ aoj“k kel,0ce,p

The manipulation of the bilinear operator follows that given in Sec. 3.1.

The Newton-Kantorovich Theorem provides sufficient condi:toni for the i
convergence of the iteration sequence (4.3) snd the uniqueness of the

solution for (4.2) in a region,

Theorem 4.1 [ Newton-Kantorovich] [12]

Assume that @:0 cRP~RP {s P-differentiable on a convex sat Ry

and that

lle' @) -2'@ I svlle, -9 ]l for u1l 8,,8 ¢qy.

Suppose that there exists an @

where ({2’ @)1 9@l 5n.
Let

%o such that 2’ @)l <8 and a=pyns1/2

pr= (7M1= - 2%, pye By L1 - ¥,

and assume that E(Qo.pl) cno where E@o.pl) is the closure of the sphere
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8@0.9!) with radius Py centered at §°. Then the iterstion sequance

~ ~

!MI '!n' t!'@n)].l!(;ﬁ) » N=0,1,0ee,

is vell-defined, remains in 3@0.91) and converges to a solution go of

2(9) =0 vhich is unique in S@O.pz) noo. Moreover, the error estimste

~ -1
"20'2,."‘(9\!2“) (zﬂ)znp ne0,l,-c-,

holds.

By (4.4), we see that by using Newton's method, we must calculate
£°(9) which is & bilinear operator in each iteration. This is a compu-
tational inconvenience. Pereyra [13] developed a modified Newton mathod
vwhich we shall call the Gauss-Newton method. The modification is that
©'(8) 1s replaced by its first order spproximatioca Lf'(g)]r_t'(g) and the

modified iteration sequence is defined by
§“+1 -§u°[(.f'@ﬂ)].1!@n)l neQ,l,--- %.6)

Due to the approximstion on @’(), another set of sufficient conditions
for the convergence of (4.6) and the uniqueness of the soliviion of (4.2)
vas established by Pereyra [13].

Theorem 4.2
Assume 9:0~RP {s -differentiable. For brevity, let N(8) =

~

A ;

) (£'(®) £(@. Let _ocQ. 1f

1 (1) N@o) is nonsinguler,

(2) there exists a sphere s@o.p) <0} of redius p centered st 9_ such

)
that
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) ||n"(§'°>||s1/n.

40 i @12 - ' @I 1@ 5y for a11 9e8 @,
i) |0 @I @Il v

(1v) |IN‘' (@] su for all 9¢8(8,,0)

(v) Aup+y) <1/2,

Ala @)
(vi) n€p, vhere n -% .

Then the iteration sequence defined by (4.6) converges to the unique

solution _O_O of 9(0) =0 in the sphere S(Qo.n). Moreover, the error
estimate is given by

8 - 8.l £¥%,

vhere k= 2A(up +vy).

The above theorem provides a convergence region centered at the
inictial iteration point such that the solution of (4.2) is unique in that
region. If we have the knowledge of the solution of (4.2), then we are
able to find a region centered at the solution go such that go is the
unique soluticx of (4.2) in thst region by mndifying the above theorenm.

This will be scudied in the next section.

4.2 Regions of Parameter ldentifiabilicy
After introducing the theory and slgorithm for solving the nonlinesr
least-squarc problems, we are now going to apply it for the control system
parameter identification problem. We shall first introduce the {.o-nom

which will be employed by the identification algorithm developed in this

section,

Lanh

P S

el sl o .
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The well-known class of norms on R space is the Lp-norm defined by
n 1/
. Py1/p
I, = 5, 1, P 1<p<e

When p =2, the Lz-norm is usually called the Euclidean norm.
The limiting case of the Lp-norm is the {_-norm defined by
Xj} = Max |x |
el = e lxg
We can thus now induce a norm on the space of linear operators from
n m n
R to-R . We denote this space by L(R",R™). Given any two norms ||*|| and
||’ on R" and R" respectively, and any AcL(R",R™), the norm of A with

|’ is defined by

respect to ||*}| and |
llall = sup |lax]]’
x|l =1

Such a matrix norm satisfies the properties:

(1) ||all20 for all AcL@r",R™),

(11) )JA}} =0 only if A=0,

(111) |loa]| = || Jjal| for all asLR".RD),

(4v) ||a+ 8| s }la]| +||8l] for all A,BeL®",R™.

The 4,-, LZ-, and {_-norms are the most useful in numerical analysis
work. For the system identification problem concerned in this section,
we will employ the { -norm. We denote the { -norm of a matrix A by ljall_-
The following theorem provides the explicit expression of "AIL {12].
Theorem 4.3

Let AeL(Rn ,R®) where both R and R® are normed by the La-norm.

Denote A= [aij]'




Then

lall, = Max J131|'31 y! .7

Proof: For any _:geR“,

llaxi] = |<Ax> .|

= a, X
1515,,‘ ng 133

C Blayli|

l,Si

n
S Max a ( Max |x )
1s1Sm3§1I “l 1sj<n ﬂ

- ( Max :1Ia AL (4.8)
*
It sufficies to show that there exists an X ¢R"™ such that the equality
is attained in (4.8). Let k be the index such that

Max a
151isa Iiﬂ

A

Define 5* by

a /la,.| ,a,  #0
* _ [ kj 'Tkj kj j=1,-==,n

1 ’akj=0

Then
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* *,
Ax || = Max Ax
sl = mex foh, |

= Max E x*
14 sm'j-l.ii jl

I1f 1 #k, then
n Y n *
|j§1°uxj| < Elagyllxl

s Bla |l Max x%|
=1 1) '1<y<q 4

]

n
= ¥ |a
=1

n
s jEI'akjl

If i =k, then

*, N
Ijglaijjl 'j§1|°k5|

* n n
Thus ||ax "eo'jgllakjl .1sM:xsm j§1|‘1,1|' and the equality in (4.8) is

attained.

PR R o 1 S T W S S - PP

We can also induce an Lc-nom on an (mxp xp) bilinear operator B

defined by

B = sup ||Bx
L

We now consider the problem of identifying the vector of unknown

parameters 71, and the unknown initial state w(0) of a parametrized

deterministic system whose state at time k
w(k)

» 1s the vector, w(k), where
k=0,1,2--~, Let x(k) .[D » Which we shall call the augmented state o
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vector, and let x(k) be a p-component vector. Then = x(0) = !ﬁ» is

to be identified. We assume that the true parameter QO is an interior
point of a known compact subset OCR". and the system is stable for all
admissible inputs and @e¢Q}. We note here that after the augmentationm,

the identification problem of the original system is equivalent to the

initial-state observation problem of the saugmented system. We assume

that the function g(x,k) i1s known as a function of x and k and that
x(k+1) = g(x (k) ,k) (4.9)

We also assume that the inputs to the system are known implicitly
in g(x,k).
Furthermore, we assume that observations of the state can be written

in the form

Y (k) = cx(k) (4.10)

where C is a known (r x p) constant matrix,

Let

[ y(0)

y(1)
X, = . (4.11)

L IZM) J

be the m-component vector of observations, where m=r(M+1) p. Let
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[ cx(0)

cx(1)
h(® = . (4.12)

| C.:_tZM)

where x(k) is the solution to (4.9) when x(0) =8. Moreover, let iy l
.§M(§) = _hM(Q) -XM (4.13) !

We assume that we have obtained a solution, say go, such that

£,85) =0 (6.14)

i.e., _oo

from a given set of input-output sequence will generate a set of output

is the parameter value which when applied with the input sequence

data which will match the given output sequence. In order that 90 is

identifiable, go must be an interior point of an open sphere S@o,p) cn

with radius p >0 centered at go such that _0_0 is the unique solution to

the equation
;M@) =0 (4.15)

in S(Qo,p). We are now going to establish the sufficient conditions for

the existence of S(8,,p). Let the identification criterion be

3@ = [£,@175,® .16)

We see immediately that JM(Q) =0 if and only if £, (8) =0. Since Jy(@) is

nonnegative for all O, therefore its minimal value is zero. 1f we have
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the knowledge of go. then Ju(go) = _t;“(go) =0 and _O_o is the minimal point of
JM(Q). Let

2,© = 1/2 3@ =[5 @17°5,©. (4.17)
then

EMORIEMC) Te@+ [£,@ ]Tjn(g) | (4.18)
Let

¢ Teo

N@® = 5 @T L@ (4.19)
Note that

2,©,) =9, (4.20)
and

2@ ) =L£, @17 E, @) =N, @) (4.21)

Thus if there exists an open sphere S(Qo,p) such that g}’(@) is non-
singular for all ch@o,p), then QM@) is locally injective on S(_O_o,p)
and thus go is locally identifiable by Theorem 3.2. The following theorem,
established by Herget [7], provides sufficient conditions for the existence

of such S@o,p) .

Theorem 4.4

Let Rp and R" be the vector spaces of p and m-tuples respectively
over R. Let ||°|| denotes any norm on the respective spaces. Let £, be

an m-vector function of _Ockp which is twice F-differentiable on QcRP,
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If (1) there is ger such that jn@o) =0,
(2) NH@O) is nonsingular,
(3) there is a sphere S(Qo,p) with radius p >0 centered at go and a
set of positive numbers (A,y,u,n) such that
@ v, @l 32,
11) |l @ I, @flsv  for all %es(@,,0), :
(111) @[ s for all 8¢S (9;,0),
(iv) "QH(Q)HST'], for all ch(go,p),
(v) Anspl/4,
(vi) A (2up +vy) s1/2,

0
the iteration sequence

then 9 1is locally identifiable in S(8,,0). Moreover, for any goc_s(go.p/Z),

e L4

_1 ~ ~
2‘*1 : gn-NM @n’%@l‘)’ n‘o’ 1’2’-.-

converges to the unique solution §, of _fu(_g) =0 in s@o,p/Z) .
Proof: We shall first prove that N (8) is nonsingular and "NM.I(Q) | =a

for all 38@0,;,). By 3(iii), we have
[N, © =N, @)l Sup  for all Ges(@ .p)

Applying Lemma 3.6 to this situation, we have a=A/2, § =up and od =

-1 A/2
Mip/2€1/8. Therefore N (8) is nonsingular and "NM ®| s - .]/ =
A 2

m< A for all QcSQo,p).

A result due to Bartle in Herget [7] is: If "A};Q) -Qh;@o)" g for
a1l 95 (8.0, then [18,(8)) - ,©,) - 91(@) @, - 8[| s8l9, - 8,|| for a1
gl,gzcs@o,p). In our case, gé(go) -NMQO) by (4.21). Thus by 3(iil) and
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(111)

ey @ - 2/ @l = I, @ - ¥, @) + L@ T'g, @
€ up for all _ch(go,p)

Therefore we have

llg,, @, - 24 (@,) - 2,48y @ - 8| = (wo+v)lg, - 8,
for all 9),855(@.0) -
Also, look at

N, @ -2, @) =N, © - N, 6
Thus

My ® - 2@ sup for all 8s(@,p)

Let _QoeS (8y50/2), and

~ A

-]l ~ ~
8 .,1°8,-Y, ©)8,@), n=0,1,2,---

We want to show that ans @o,p/Z) for all n. We prove it by induction,

~ Lo d

- - -1~ ~
8, =8,-N, GOy

Thus ILO_I-EOHSMSp/&. Hence 9 €S(8,0/2) and _QlcS(_O_o,p). Now assume

gvcs@o,p/Z) for v=]1,---,n. Then we have

Ny @,.y) @, -8,.7 aQM@v-l)




4

7%

Thus QM@\,) 'QM@\,) ‘Qu@\,- Y +!u@v- v

~ ~

8@ -2,@ ) -NC NE,-8 )

" 8,0 -8,@, ) -2,0)@,-8 )

-

* [2};(90) ) “H@v-l)]@\) -5\"1)

ARG ialle b Sl L

Therefore |lg,, (0 )[| £ (uo+v) |[9v -8, 1|| + up |le -9, = kllﬂ\, -8, 1"
where k= 2,p +vy.

Now |6 -8 Il sAlg, @ )
which implies

"-Q\a -2\;-1" s)‘k“gv-l -2\!— Z'i
-1 ~ ~
s a8, - 8l

Look at

~ ~

-1~ ~
gn-l-l .-o-n - NM @n) ¢M&OI'I)

B, -3l <xls, &)1

$ (k) l@n -§n_1|l

Therefore
~ ~ n ~ ~
le,,, -8 [l = Ao, -8l

Note that

~ n ~ ~
-8 =t8 -0]
v

1 0 v=( ‘vl

iol
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Thus
18ys - Sl = 18, - &

n v, ~
< Jow'l, -

s z a0 Y|§, -8yl 1

Toale, -8,

< o 8

1.,
*qn 40

which i{mplies O 8,188 (_o,pIZ) » thus the induction proof is completed.

Next, we shall show that ] is a Cauchy sequence. Let m>n and
n =0

m=n+ j, then

I R T e @ "8l

Jo?

Thus

~ ~ !N'j“l ~ ~ ¥
8,,,-8ls £ I8, -5
Nj’l v,~ ~
< Ak) )i, - ©
I G lle, -8 f
. (xk)“[Jilak)“]l@ -8
v=( 1 =0

n. ® Vap~
k k 9 -0
s (Ak) [\Eo(" ) ]n_1 -o"

k n ~
= Toak 19 -8l
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n
‘Lk!
* 1Ak (2)
ot
v )
. (m“cg)

n ~
< -
Since \k£1/2, therefore :?“(Ak) (.g) 0 and hence [_g“]n_o is a Cauchy
sequence.

~ ®
Since Rp is a complete normed space, Lgn}n_o converges to gome point

8,¢5 (Qo.p). We must show that _90 s _Ql. On the contrary suppose _0_1 $9,

v T T e

then we can write

-1
8,78, =N, (€%, @) @,-9)

-1
"Ny Q@) -2, @) -2, 8) €, -9

e T

+ (@) -9,0)) @ -8))]

since QM(QO) -¢M(_0_1) =0 and NM(QO) -QM@O).
Thus
18, - 8,11 <2 tuo +v +upd]l8, - &,
12 o -9

|
which is a contradiction. Thus go- gl and the proof is completed. |
|

Remarks:

(1) s@o,p) is the region of parameter identifiability, i.e., go is

the unique solution for 5“ @) =0 in SQO.p), but the convergence
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of the Gauss-Newton iteration sequence is assured in 8(90.9/2).
This is an added feature. However, our primary interest is the
uniqueness of the solution of gn(g) =0 in come region in ). We
have assumed we already know go.

(2) 1f we are concerned about the uniqueness of the solution only,
then conditions 3({), (i1), (ii1) of Theorem 4.4 and A(up +y) <2
suffice for the existence of 8(_0_0.p). To prove this, we suppose
that there is a glcs(go.p) such that fH(Ql) =0, then 'QHQ1) =0,

Thus we can write
9.-9, =N, @IN, @) @ -8
-1
=Ny @) @,E) -2 62,0 @ -8
+ Q) - 2,©) @ -9))
Thus

le, - .1l 120 +v)lleg - &,
< lg,- 9,

which is a contradiction, The region implied by these set of sufficient
conditions will generally be of larger radius since A(up+vy) £1/2 is more
conservative than A (up +vy) <2.
(3) Theorem 3.2 {s implied by Theorem 4.4, To pvove this, we first
recall that N (@) is nonsingular and "NM.I@')” <\ for all
%5(9,,0), and §(@ -NH(Q)-b[_f;@)]T_fM (@). Therefore

Iy (® - gy @1l = L @778, @ s




for all gcs(go.p). Apply Lemma 3.6 again, we have =), b=y
and \y$1/2<1. Thus Q‘;@) is nonsingular for all gcs(go,p)
and gﬂ(g) is locally injective on 8@0.9).
We now derive a set of recursive formulas for computationally veri-
fying condition 3(1) to 3(vi) of Theorem 4.4 for the case of dynamic
systems.

Recalling that

£,@ B® ¥,
[ cx(0)] [ ¥(0) ]
cx(1) x(1)
LC:L:(M)“ 100 |
[ cx(0) W 2(0)
Cg(x(0),0) x(1)
C3E01-1),4- 1) | 200 (4.22)
Thus
o 1
cg’ (x(0),0)
5@ = -
Cg'(xM=1),M-1) «=- g’ (x(0),0) ]




1)

. 1
cro@
r, @

6.23
f:l‘u(g) ] (6.23)

vhore T, (@) =g/ M- M-D T, . @, kel (4.24)
and 1‘0(9) - IPXP = (pxp) identity matrix, bL.29)

i@
CT{Q)
| , 3;’@) - .

|
|
I

—

- L T (@ (6.26)

*
' a u - -
whers T/ (@) (g" (x(k-1),k=1) rk_l(g)J T, @

+ ' (x(k=1),k=-1) r‘: 1@), kel,--e,M .27
snd
r(;@) =0 (4.28)

To compute the bounds on the norms given in the hypothesis of Theorem 4.4,
ve choose the L.-nom since the procedure is relatively straightforward
if we employ the interval arithmetic [11].
Let
,\9. {set of sll finite closed intervals [a,b):a,bsR,ssb}

The interval 1e[a,s] is celled a degenerate interval. The intervsl

F
) ) A - .
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arithmetic operations are defined by
I+J = {x*y:xel,yel} for all T,Jend (4.29)

where the symbol "*" indicates one of the arithmetic operations +,-,°,
and /, except that I/J is not defined if OeJ.

For example,

(a,b]+[c,d]=[a+c,b+d]
(a,b]*[c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

(a,b]}/(c,d)=[a,b]*[1/d,1/c]), provided Oé[c,d].

If the real number £ is to belong to the closed interval [gL,gR] on the

real numbers, §L$§R, we denote this interval by

(€] = [g,,8;] for brevity.

If §(x) is a continuous, real-valued function of x¢R, then the interval

function [y ([x])] is defined by

LyxD] = {y:y=v(x),xe[x]}

An interval function will be called a raticnal function if it is
defined and can be expressed as a rational interval arithmetic expression
in the interval variable and a finite set of constant coefficient intervals.
For simplicity, we shall assume that all of our functions of gcRp are
rational functions so that interval arithmetic suffices to evaluate their
norms. It is always true that the true interval function is a proper

subset of the computed interval, i.e.,

:
.
4
.
;
;
4
E
<
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U v((x,x])) = [y([xD)] flt([x])

xe[x

where Iy([x]) is the computed interval obtained by replacing x by [x] and
evaluating y by interval arithmetic instead of ordinary arithmetic. The
following Theorem in [11] proves the above statement.

Theorem 4,5

Let 1=[a,ble ,\9 and
,\91 (3, 9:9c1}

Let = (¥:y 8«91 -',,9, ¥ is continuous on ,\91}, and d be a metric on y such
that (y,d) is a complete metric space. For any rational function j§e(y,d)
and arbitrary Je¢ ,\91,
U _¥([x,x]) < 1y (I)
xe [x] ¢

Proof: From (4.29), it follows that if I,J,k,l.c,.y, ICk and JCL, then
I*Jck*L

provided in the case of division that 0¢L. This property of interval

arithmetic is called "monotonic inclusion'". Hence the result is obvious

from the monotonic inclusion property and the definition of the ratiomnal

interval function. Since a finite number of these operations is involved

and since for every x¢J [x,x]cJ, [x,x]c,\gl, then y([x,x])cIy(). To

prove that equality need not be attained, it suffices to give an example.
Let y(x) txz, J=(-1/2,1]

Then Iy(J) = J2 =(-1/2,1],

P . & v PP P Ty ol e — - tein,

DT
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but [t([x])]-[O,l],
thus [-1/2,1] ¢ [0,1].

We can now apply the interval arithmetic to the evaluations of norms
required in Theorem 4.4,
The closed sphere -S-@o,p) is the vector interval given by

- P
CRERICRDERAUNERAC

0,0 + 4,30
o Ps o1 P] ‘ ( )

which is the Cartesian product of closed intervals. We consider condition

3(iv) of Theorem 4.4 first. We wish to have a bound on

w g @ = sw e o @
Let
i (o, (911 = 8, (9D: (8D,
then

u, Q)| = s .
- (Eo,p)ue“(')" | Jax P{“‘“‘””u,,i‘[-"o]” l91g, (81 113

The computation of IQM([_O_O]) is generally much easier than that of the
[_Q_M([go])], moreover, by Theorem 4.5,
| sup g @]s Max (Max[|1 g, ([8,D], |18, (8 ]I]}
» 8¢5(8,,p) 2 1s1isp g 20 1+ Tl
1, (4.31)
Hence we will compute the right hand side of (4.31) as the bound of
the norm of 9“@)‘

For condition 3(ii{) of Theorem 4.4, we let
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A@ =[a;;@] = [£,©® ]T_f_u(g) (4.32)

for brevity.

Then
s O | Mo a0 1, gy Qg 1]
(4.33)
For condition 3(iii) of Theorem 4.4, we let
8@ =[b,,, @] = 8@ (4.34)
where
N (@ =[£,©® 175, @ + (€@ g @' (4.35)
Then
IB@ll=  sue T s @K (4.36)
95 (800 o® e

We note that ||§]| =1 if and only if g, =%l for some 1=1,---,p. Hence
we introduce the following notation. For i,n=1,--~,p, let
[gi]n=[-1’+1] if 1#n
and [§i]1=[+1,+1]
For i=1,-~~,p and n=p+ 1,~---,2p, let
(g,1,=(-1,#1] 1if i#n-p
z|lal - =Nl
Then we have
lb@lls Max [ mMax  E Twax([rb o Delg,],|
sup ax ax Max{|I b ‘L€
865 (8,,p) 12iep 1emszp 371 RTHI oD ol

| 1504 51 (8,1 - (8, ] 11 (4.37)

PR P S i




We summarize this algorithm by the flow graph in Fig. 1.

3 4.3 An Example of Computing the Region

of Parameter Identifiability

) If a system is linear, time-invariant, and its parametrization is

+

H. known, then its augmented system has the quadratic-in-the-state bilinear

representation. i

x(k+ 1) = [F+Dx(k) Jx (k) + [G+ Ex(k) Ju(k)
¥ (k) =Cx(k) , (4.38)
i.e.,

B(x,k) = [F+Dx]x+[G+Ex]u(k), (4.39)

where u(k) is a q-vector, F is a (p xp) matrix, G i8 a (p xq) matrix, D
o is a (pxpxp) bilinear operator, and E is a (pxqxp) bilinear operator.
Then
* *
8/ (x,k) =F+ (D+D )X+E u(k), (4.40)

and

8" ®,k) =D+D" (6.41)

We now give an example to illustrate the algorithm of Theorem 4.4.

Consider the parametrized system which has already been given in Sec. 2.3.

| wl(k+1) n 1 wy (k) 0
r‘ = + U(k)
w2(k+1) 0 n, wz(k) n,
w; (k)
yk={ 1 0 ] k=0,1,2,--- (4.42)
w,(l) |
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: The block diagram of this system is depicted in Fig. 2. We note that

E by reversing the positions of - and .1 _ , and by transforming the
; z2-1My z- M
e initial conditions by a similarity transformation, the resulting equivalent

r:'_ P system will generate the same output sequence. The equivalent transfor-
E.\ ' mation matrix is given by

1 0

f P =

| Mty !

which has already been obtained in Sec. 2.3. The parameter g-[w1 0),
v,y (0), s Ngo n3]T is to be identified. Letting x(k) -[wl(k), w, (k) ,
N1 Ny n3]T, this system can be written in the quadratic-in-the-state

bilinear system form as given in (4.38) if we let

01 000]
00 000
Fe]| 00 100

00 010

00 001 ’

i k. A
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(00100 00000 00000 00000 00000
00000 00010 00000 00000 00000
D=|00000 00000 00000 00000 00000
00000 00000 00000 00000 00000

LOOOOO 00000 00000 00000 00000

F00000]
00001
E=|{00000

00000

OOOOOJ,

and

c={10000]

We have used the notation in [14] for representing the bilinear form
D, and E degenerated to an ordinary matrix since u(k) is a scalar.

Let g-[wl(O), v, (0), ny» Mys n3]r. It can be easily seen that
g*- [wl o), wz(O) +(n +n2)w1 0), Ngs Mys n3]T is a point in Q which is
unresolvable from @ by the equivalent transformation. Hence the solution
to the equation __fMQ) =0 is not unique in R5 and only local identifiability
can be imposed on the parameters of systems (4.42). We applied the
algorithm of Theorem 4.4 to this example with go-[o.s, 0.1, 0.3, 0.7,
1.0]*. We note that g, =[0.5, -0.1, 0.7, 0.3, 1.0]" will give exactly the
same set of y(k) sequence for any input sequence u(k) and hence is |
unresolvable from 8 . However, the distance from @ to @

0 0 1

the {_-norm. Therefore _0_0 and 31 are each locally identifiable in the

is 0.4 by using
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spheres s@o.p) and SQl,p) respectively where p <0.4. By applying
Theorem 4.4 and the algorithm developed in the above section, we are able
to find two spheres centered at go and 21 respectively such that _0_0 and

8. are locally identifiable in those two spheres respectively. To

1
demonstrate this situation, we use an input sequence u(k) = 100 sin (kn/4),

for k=0,1,---, 19, we found that with twenty observation, the sphere

centered at 90 is of radius p =0,21 and

A = 0.1314 x 10"’

n = 0.3646 x 107

y = 0.2284 x 10°

B o= 0,2124 10’
An = 0,0479<0.0525 = p/4

A(2up+y) = 0.312<0.5 .

Thus the hypotheses of Theorem 4.4 are satisfied, and we conclude
that _oo is locally identifiable in S(go, 0.21) and the Gauss-Newton
sequence will converge to go starting from any point in the sphere
SQO, 0.105). We also tested the conditions of Theorem 4.4 about the

point gl and found that p=0.31. Hence ©. 1is locally identifiable in

1
S@l, 0.31) and the Gauss-Newton sequence will converge to _91 starting
from any point in the sphere S@l, 0.155).

Since Theorem 4.4 gives sufficient conditions for convergence, and

because of the upper bounding implied by the use of interval analysis, the

question of whether these results are overly conservative naturally arises.
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However, this example illustrates that the computed sphere of convergence
is of reasonable size in view of the distance from _O_o to gl. i.e., the
theoretical radius of the region of identifiabilicy.

The computer program for testing the conditions in Theorem 4.4 for

the above specific example is listed in the Appendix. i




IR . 2 5o i e e o o e

89

READ: po, Ap. go. Y*. M. LMT

I

INITIALIZE: x(0) = 8
Ty@,) BY B (4.26)

!

FOR ks 1l TO M

COMPUTE : x(k) BY EQ. (4.11)
T8, BY EQ. (4.26)

i

COMPUTE gt@o) BY EQ (4.23)

N@) BY R (4.19)
DET Ny(8,)

YES

Figure 1. Flow Graph for Computing Regions of Parameter ldentifiability
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A= Z"NM @o) "
LET: P - po
ITERATION = 1

:
E\

-

INITIALIZE: 1f BY EQ. (4.30)

Il‘o BY EQ. (4.25)

IT BY BEQ. (4.28)

FOR k.l’ --.. M

COMPUTE:

COMPUTE: I x(k) BY EQ. (4.9)
I .I;H BY EQ. (4.12)
1 _fu BY BEQ. (4.13)
1 I‘k BY BEQ. (4.24)
1 I‘l" BY Q. (4.27)

Figure 1. Continued

e




Ty

: 91
COMPUTE: 1f BY K. (4.23)
I_g;" BY EQ. (4.26)
IN, B K. (4.39)
1g, BY K. (4.17)
1A BY EQ. (4.32)
18 BY BEQ. (4.34)

y RHS of EQ. (4.33) 1
w RHS of . (4.37)
n RHS of mo (6031)

Figure 1. Continued




92

Y

(= )

AL _aoac Al dalhe B

I A A Sace S -

|‘=:, ITERATION = LIMIT

PRINT: "UNABLE TO FIND RHO"
STOP '

'

LET: p=p=-4A4p)

ITERATION = ITERATION + 1

1N

o o I

Figure 1. Continued
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5. LOCAL PARAMETER IDENTIFIABILITY AND
LOCAL CML PARAMETER IDENTIFIABILITY OF DYNAMIC
SYSTEMS WITH MEASUREMENT NOISE
In this chapter we will study the parameter identification problem
of general disctete-ti:ne, multiple.input/multiple-output dynamic systems
with measurement noise. Specifically, we will establish the concept of
local parameter identifiability and provide a computation procedure for
finding the explicit regions of parameter identifiability. Moreover, we
will show that the constrained maximum likelihood estimation sequence
converges to the locally identifiabile parameters with probability one.
5.1 Local Parameter Identifiability and Local
CML Parameter Identifiability
Let [gi}:-o be a sequence of random vectors, which we shall call the
observations, with joint probability density function p(go,--- ,_gu 3 9),
M=0,1,2,--~, parameterized by the unknown parameter gchRp . Rp is the
space of real p-tuples with an arbitrary norm denoted by ||'||, and Q) is a

compact subset of P, We let 'Z'M. (z - ,_z_M), and we assume that the

0’31’
true parameter 20 lies in the interior of {}. Furthermore, we assume that
p@M;_Q) is continuous with respect to 8¢} for Z’b 1 almost everywhere, i.e.,
for ¢ >0 and e}, there exists a §(e) >0 such that for all 8'¢Q with
le-9'll <5 we have |p(Z";_9_) - p(zM;_q’)| <e for Z almost everywhere,

Following Tse and Anton [19], we make the following definitionms.

Definition 5.1

Two parameters 6,0

1

200, _9_1 #Qz, are said to be unresolvable if the

equality
TAUCEDING PAGE BLANK IOl vilMED
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pz ) 'P@;Qz) (5.1)

holds with probability one wtéh respect to O  and .92 for all except a

1
€inite number of integers n>0, i.e., for all except a finite number of

integers n >0, (5.1) holds with respect to the measure "%«‘91)‘-& as
well as pLz“;_Qz)d;H. |

A parameter _goeﬂ is said to be locally identifiable {f there exists

an open sphere s@o,p) cl with radius p >0 centered at go such that there
is no other 8¢S QO:D). Q#Qo, which is unresolvable from _Qo.‘

The problem of constrained maximum likelihood (CML) estimation is
as follows: find _é“ ¢1, an estimate of the true parameter _9_0, vhere ‘C'M

is such that

P8 = Max pQi®), N=0,1,2,- (5.2)

Since {} is closed and bounded and p@M;_g) is continuous on ) for

Z"M almost everywhere, a solution to (5.2) exists. However, if 91 and gz

are unresolvable in 0, then they cannot be identified by the CML esti-

mation method constrained to . Therefore the following definition is

established.

O A

Definition 5.3

A parameter goeﬂ is said to be locally CML identifiable if there
exists an open sphere s@o,p) with radius p >0 centered at 90 such that
the sequence \_&H}:_o converges to 8, with probability ome, where LSM j;_o 3

18 constructed by

PR S L N
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P2 9 )= _Max Pp(Z2,;0), M=0,1,2,--- | (5.3)
@"QH ’s(ouiﬂ) q“ K .

3@0.9) denotes the closure of S(Qo.p). We will call s@o.p) given above
the region of parsmeter identifiasbility.

We now consider the problem of identifying the vector of unknown
parameters, 5}, of a system whose state at time k is the vector w(k) where
k=0,1,2,~--, Let x(k)= *® and Aum Xx(k) is a p-component vector
which we shall call the augmented state vector. Let the initial state

w(0
¥(0) also be unknown, then @=x(0) = |~ is the parameter vactor to be

identified. The identification problem is then equivalent to the initial

state observation problem of the augmented system. We assume that the

function g(x,k) is known as a function of x and k and that

x(k+1) = g(x(k),k) k=0,1,2,---, (5.4)

Observations of the state are taken which we will assume can be written

in the form

Y(k) =Cx(k)

2(k) = y(k) + v(k) k=0,1,2,°==. (5.5)

where C is a known (r x p) matrix and v(k) is a Gaussian-white noise vector

with r components which has zero mean and covariane matrix Q -cz

oz<m. The observation sequence of system (5.4) and (5.5) is

I »
Xy

lﬂ 3 ur(o) o_!T(l) » " o,!T(M) ]T

and the joint probability density function is given by
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P@i® = come.cempl-§ & (500 - @001 Ta" gk - cx0) 10569

where x(k) is the solutiomn to (5.4) when %(0) =6, end M=0,1,2,---,

We assume that the structure of g(x,k) is such that the following

assumptions hold.

(1) The inputs to the system are known implicitly in g(x,k).

(2) For every admissible input sequence and all OeQd, the states x(k)
and the deterministic part of the observations, w(k), gemerated
by @ when applied with the input sequence are bounded.

(3) g(x,k) is at least twice continuously differentiable with

respect to 8, and hence so is p(;n;g).

5.2 Regions of Parameter ldentifiability

Let the assumptions given in Section 5.1 hold, and let us define

MORE et k}: (200 - cx (0 1Lz (M) - cx(i) ]
for M=0,1,2,-~-, (5.7)

Then the CML estimation method in Eq. (2) is equivalent to finding

M:ln L, (@ = 1“(1) Me0,1,2,--~,

Following the notation in Chapter 4, we let

[cx(0) ]

b@ = .

i .

Cx () | (5.8)

be the m~component vector where m=r(M+ 1) 2p and x(k) is the solution to

equation (4) when x(0) = 6.

—— }
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Then

and

Let

¥(0)
el |
| X00 |
[ v(0) '
- | -
i !m) ] ’
.f.“(g)‘!%(ﬁ) -!“.

L@ 1@ 2,

1L,® * i 5@ ©.

* -1- '
CNORFRMOR

L@ fhly@)s,®.

9@ = L5 (ls; @1 T3y @1+ L5;@1's, @),

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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We note that
PMORFMC) (5.16)
.
:' and
;‘ -'{:@ -_f";(g). (5.17) -
Let .
Y@ = ——[£@1°[£%0)]
N,® = g lE@) (5@ (5.18)

By eqs. (5.5), (5.11), (5.12), and (5.13),

V- o 1oy

or
SROLE ¥ RO RORE 5 NEROM A - 3 M CR )
Let us define
1@ = lin B, @],

The following Theorem is a generalization of Aoki and Yue's Theorcm given

% in [1].

j Theorem 5.1

; Let the assumptions given in Section 5.1 hold.

1 Thenulim 114(9) -L*@) for all ¢ with probability one. Furthermore,

F "

* L*@) = Lin u%-“rqu@)]T-fu@ +rot. (5.20)
- ®

!
L-; Proof. By assumption (2), -'-‘H@) has bounded elements for all 8¢} and XM

l has bounded elements. Hence %@) = h@ - Y,, has bounded elements for all
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9e0. Let

i 9
£, @

) .«_»

L@

t@| .

Then there exists a K<« such that |£k(9)| sK for all O¢) and for all k.

Thus

n HrTl, @1 © - ;*_mwm Zf ‘@

s lim EQ*D 202
1= e K

Therefore the limit in (5.20) exists.

Consider the second term on the right hand side of (5.19). Let

2 v 1
1
v
2
e |
v
3 m 4
1 1
Then &1, (9)] M+1 k1 k@)v ‘

2
Since F.vk-o, EVk _02 for all k, applying Lemma 2.l.a to our

situation, we have x = fk@)vk, bM-M, and

k

2 2 2
w Ex o f @)EVI 2 ®

k El ‘GZK T 1 < ®
k-l " k=1

(5.21)

s . o "ﬂl‘ - o
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] 1 o
ﬁ}T T B (Eyfx @V, =0 vith probability one. (5.22)

Consider the third term on the right hand side of (5.19).

n 2
Ml MM Mel kSl k

2
Applying Lemma 2.1.b to this situation, ve have x =V, %, E|x | =EV,*=
“2<°. “‘“.

2

m
- . TV -‘m2 with probability one. (5.23)

M+1l k=1 k

By (5.21), (5.22), and (5.23), the theorem is proved.

I1f 6 is the true parameter, then I.*(go) -rcz =min !.*(9_). The
following theorem provides sufficient conditions for the existence of a
sphere S(Qo,p) such that 20 is the unique minimal point of J*@) for all
SeS (Qo,p). The form of the theorem was motivated by the work of
Pereyra ([13].

We first recall that the Lz-nom, or the Euclidean norm on the Rn

space is defined by
B 1 (3 n
|k||2-(m|x1| ) , for all xeR .

Theorem 5.2

Let ||‘||2 denotes the Euclidean norm. For brevity, let

- - 1 ¢
A [‘ij] m...l-f"@ .

Note that ATA-NM(Q) which is an mx p matrix,
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If (1) there is a _gocn such that _gu(go) = 0 and hence

o o £ @1, @) =0,

(2) NH(Q) is nonsingular for all Mcf", end

M"o

(3) there is a sphere S(Qo.p) Cfl with radius p >0 centered
at _g‘o and a set of positive numbers (A,y,u,K) such that
for all Me1*

(1) llnM Lo)ll s\, - ‘
an (& jglm M, 21 <k for all 5@ .0

(111) “'M-l-_lu,u(g) M, sy for all @es (Qo,p).

*
(iv) ||NM(Q)"2$u for all 9eS(,p), and
(V) App+y) <l.

Then (a) ©_1is the unique point in S(Q »p) such that £ (_o) =0 for all

=0
McI and is the unique minimal point for lim rf @)f ()]
M=w® .M
in s(_o,p). I.e., _Qo is the unique point in s@o,p) such that
* *
L (@) =ro’sl ©)-
(b) Oo is the unique minimal point for 1lim L @) in S(_ »p) with

M=o

probability one.
Proof. A result due to Bartle in Herget [7] is: 1f llg;‘(_g) -Q;’(g )|| sp
for all @eS(8,0), then ug;@ ) =2y (@ )-1;@ )@ -9l <sllo, - o, for
all @ ,8 es@ »p) . In our particular case, Q_H'(_) = M(Q) +-_[_M(_O_)]Tf ()]
and QM@ ) = NM(Q ).

Thus [[g,10) - 9348 )|, Sup+y for all 8e5(@),0) by 3(111) and (iv).

Therefore we have
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lo, @) - 9,)) - 2,0 @, -9l < o +v) e 8],

for all 91 .Qzes (Qo.p) .

Now suppose there is another point 3108(90.9). !1 ¢ -!2’ such that

1
lin FTT 5 @)5(@) =0,
i.e.
1 2
Ua 1051 5@, =0

We can write

L "{1@0)";@& @,-8)
w=1

L PR Y (ﬁ;@l) °'Qi:(!o) @, -8y

+ (@) - 2,01, - 8)

. ¢;@1)+¢;(go)] for a1l Mer'.

We note that

g;'(go) -u;(_o_o) and ¢%(@) = 0. Therefore

199- 8,1, = N @) [0y @) - £5@ ) @, - 8 - g @),
< I @l @) - 50 8@y @, -3
+ Iy @1 e @)l
< Mo +)lle, -8 ll,+ Migy@)l,

< ||g°-_gl||2+x||1;(gl)||2 for all meI'.
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We now want to show that

lim lh;@l) “2 =0,

M=o

3 PRCRTREPRICRPYCR

. rle -2 4@ ;H@n‘tt.“@ ))

; _1
9 £
| (H 1)21 Q)[_H(. )][ @)]

: < (@D Nepligep ™™ | (o s,,"@lu,,@l)] :

The final inequality follows easily from Schwarz inequality aud properties
. 2

2.

We now state a result given in (14 ]. If B is a p x p matrix,

1!
2
B=[b,,], then |3}, < ( El Soph.

L of a norm, i.e. |§TA_’!| ‘ll!“zl =

Now look at

-,,—‘an,;@gJ[_f.,;el)]’

oy M@ o— @ T’
T

= AA

T
where [AA ]“ = kgl.lk.jk'
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Thos ], < & 3§1 (Eyags 2w 2}
{1-1 3-1 h51 E'tk‘u'u‘lk]
- 1_1 1 ugl v *s u“kj
- {12:1 j::l(kgl.kia“i)z]&
- 1,5 Hatn,) 2y

£ for all 9e8(9 ,p) and me1t by 3(14).
Therefore
a1, estgh £,7)8,0)1 -ehl 1,
Thus ;s_..n.m;(gl)ﬂz =0, and ve conclude that
8, - 2,1l <lle, - 2,1

vhich is & contradiction, and so we conclude 91 - 30. This completes the
proof of part a.

To prove part (b), we see that
x.u(g)-x.*(g) vith probability ome for all 9¢0

and 1°(9) <e  for all 91 by iheorem S.1.
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Thus " ‘
L“Qo)-!. uo) with probability one. |

1£ 949, then () >L*@o). therefore there exists & §(9,8,) >0 such that
'@ - L'Qo) >8>0
Since 1,(9) ~L"(@) with probability one, there exists a M,(8) such that

|,,® - L@ | <6/2  wich probability one

*
"nQo’ -1 Qo)l <8/2  with probability one for all M>M (8)

g

| (@ - 1" @) + (1, @) - 1" @) | <5 wich probabiliey one.
Now look at
|2, @ -1, @)1
* * » w
= [(1,® -L"@) +1 @ - L' @) - (1, @) -1 ()|
o * hd * "
U@L @)+ @ -1 @) - @) -1 @) |
> 0 with probability one for all M>Ho(6).

This compietes the proof of part (b).

The above theorem gives explicit forms for the desired spheres s@o.p);
however, use of the Euclidesn norm was needed in the proof of the theorem
rather than an arbitrary norm. It is usually difficult to compute the

indicated bounds using the Puclidean norm, and so we present in the
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following theorem a set of conditions in terms of a more general norm.

Again, let ||‘||2 denote the Euclidean norm on the particular real vector

space under consideration. We will say that any other norm, ||*||, is sub-

ordinate to ||*||, 1f || 2"5"2 for all x. We see that if we let _gckp, and |
deline

"’-‘" . Max |x1" : |
» lsisp : |

then ||°||¢ is subordinate to ||‘"2. This fact makes the computation of all
the required bounds particularly simple if we use interval arithmetic [11].

Theorem 5.3

Let ||‘||2 denotes the Buclidean norm, and let {|*|| be any norm which 1s

subordinate to || "2.

oco such that ;M(Qo) =0 for all MeI' and hence

!

F If (1) there is a @
| 1

] T =

| :{1_:““ M1 &y €5 €y =0

(2) N;(Qo) is nonsingular for all MsI+,
| (3) there is a sphere s@o,p) with radius p >0 centered at _oo 1

and a set of positive numbers (A,y,u,B) such that for all

+
Mel

® [y @l 2
) plle @1 sp  for all ges (.0
v o T
1) gl @1 @) sy  for all 8¢5(8,,0)

(iv) ||N;(_O)||su for all 9¢5(8,p)
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(v) Aup+y) <1

Then conclusions (a) and (b) of Theorem 5.2 are true.
Proof: As in the proof of Theorem 5.2, we suppose there is a‘glcs(go,p),

91 #90, such that

1 T .
e EWCRLRRL

Hence,

;?J'?F!ﬁ 2“@1)"2 =0

Since ||*|| is a subordinate to "’"2,

1
11 '—— £ =(Q,
u.'.n,'/kn -M@l)" 0
Again we have
*
"90-91"<"£o'21"”‘"9u@1)" for all Mert
Now look at
* [
ey @)1l = Iyt L2 @ ) 1T @
, T
o7 e (CACRBN "7ﬁ'l+_1 £,6@)
‘ B"fﬁ% £,@)l

Hence 1lim "1‘:(91)” =0

M-
Thercfore we conclude that

le, - 2,1 <llgy- 9,1

<
1
e e g = ——e e - . i
D T T VO U mm.wm o o PRI U, § SRpuNY ¥ S S
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which is a contradiction, and so _o_l - go. Part b is the same as in Theorem
5.2. This concludes the proof of the theorem.

Now let s@o,p) be a sphere such that gcsgo.p) and L*(g) -L*(Qo)
fmplies g-go, e.g. as provided in Theorems 5.2 and 5.3. Now consider the
CML estimation problem: f£find _6“cs (Qo,p) as an estimate of _O_o vhere QM

is constructed by

L = _mn Q ’ M.O’I’Z’--- (5027)
o (300
E(Qo,p) denotes the closure of s@o,p).
A
To show that LOH};_O converges to go with probability one, we need
the following Lemma.
Lemma 5.4 [Wald-Kendall-Astrim] (Aoki and Yue, 1]
A @ A o
Let LO‘H}M-O be constructed by (5.2), then Lgu}lho converges to

g*eo*na with probability ome, where Q* is defined by
0'=(0:17@ =179 ).

Theorem 5.5
Let S(8_,p) be gi Th 5.2 or 5.3 and let {8 )" . b
et S(_o,p) e given by Theorems 5.2 or 5.3 and let L'H}M-O e con-
structed by (5.27). Then the CML estimation sequence @M};-O converges
to _Qo with probability ome.
Proof: Since go is the unique 9 in S@c,p) such that L*@) tL*@o) ,'
*
Q ﬂs@o,p) -(90} is a singlec.on.

Hence the result follows immediately from Lemma 5.4.
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Corollary 5.6
Let s@o,p) be the given in Theorem 5.2 or 5.3, then _0_0 is locally

CML identifiable. B

5.3 An Example of Computing the Region of
Parameter Identifiability

We now give an example to illustrate the algorithm of Theorem 5.3.

PR

Consider the system

“‘ —”kaw‘wvvr EEY

wl(k-l- 1) n 1 wl(k) 0
= + u(k)
Wz(k'i' 1) 0 'ﬂz Hz(k) na
| "l(k)
y)= [ 1 0 ]
w, (k) (5.28)
F z2(k) = y(&) + v(k) , k=0,1,2,---

v(k) is N(O,cz), oz<o.

The block diagram of this system is depicted in Fig. 3. The deter-

r ministic part of this system is the same as system (4.42) hence by

reversing the positions of 1 _ gnd 1 » and by transforming the initial
zZ-mM z - 1"2
conditions by a similarity transformation, the resulting equivalent system

will generate the same y(k) sequence.
T
Let 9==[w1(0), wz(O), Ny Tys n3] . Recalling from Sec. 4.3,
*
[ =[y1(0), wy(0) + (nl-nz)wl(O), Ny Nys n3] is a point in Q which is

unresolvable from @ by the equivalent transformation. Hence the solution

can be imposcd on the parameters of system (5.28). We applied the

%
!
; t to the equation _gM(g) =0 is not unique in RS and only local identifiability
!
4
;
%
¢
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algorithm of Theorem 5.3 to this example with _Qo- (6.5, 0.1, 0.3, 0.7,
l.O)T. We note that _gl- (0.5, -0.1, 0.7, 0.3, 1.0)T will give exactly
the same set of y(k) sequence for any input sequence u(k) and hence is
unresolvable from _Qo. However, the distance from 90 to gi is 0.4 by

-o
in the spheres's@o,p) and S(Ql,p) respectively where p <0.4, Using an

using the norm ||*|| . Therefore 8, and 8, are each locally identifiable

input sequence u(k) = 100 sin (kn/4) for k=0,1,---, the following data
listed in Table 1 are obtained.

We see that uniqueness is guaranteed in a sphere of radius p =0.33.
We know the true radius to be p =0.4 in this example. Again, this
example illustrates that the computed sphere of parameter identifiability
is of reasonable size in view of the distance from 91 to _O_o. Moreover,
the region size obtained by applying Theorem 5.3 is larger than that
obtained by applying Theorem 4.4 since condition 3(vi) of Theorem 4.4 is

more conservative than condition 3(v) of Theorem 5.3.
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Concepts of local identifiability and local CML identifiability
of parameters which parametrizes the joint probability density function of
the observation sequence are established. They are applicable to the
identification problem of control systems where there are stochastic
disturbances present. The local least-square identifiability and the
transfer-function identifiability of parameters of deterministic linear
dynamic systems are also introduced. Sufficient conditions for their
identifiability are provided. It has been shown that for single-imput,
zero-state linear systems, we are able to find a region containing the
true parameter as an interior point such that the true parameters are
both locally least-square identifiable and identifiable from the transfer
function in the same region under certain constant rank assumptions on
the impulse response matrix and the derivatives of the identification
criterion,

By modifying Glover and Willemg' theorem in [67, a theorem is given
to show that if a system is of minimal dimension, the system parameters
(including the unknown initial state) are locally identifiable if it has
unique equivalent system locally when the system is restricted to a given
parametrization.

A bricf survey on the theory of solving nonlinear least-square prob-

lems, Lm-norm, and interval arithmetic is given. Employing these techniques,

a lcast-square type identification algorithm for finding explicitly the

regions of parameter identifiability of general linear deterministic
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dynamic systems is developed. A numerical example i{s included to
illustrate this algorithm.

By modifying Herget's result [7], a theorem providing sufficient
conditions for local CML identifiability of parameters of general dymamic
systems with Gaussian-white measurement errors is established. A com-
putation procedure is provided by the theorem for finding the regions of
parameter identifiability. It has been shown that with probability one,
the true parameter vector is the unique extremal point of the maximum
likelihood function parametrized by the unknown parameter vector and the
constrained maximum likelihood estimation sequence is consistent in the
region of parameter identifiability. A numerical example is included to
illustrate this computation procedure.

The system parameter identification problem of Gauss-Markov stochastic

control systems driven by rlant Gaussian-white noise and observed with
Gaussian-vhite noise is an an area of further endeavor.

It has been shown the parameter identification problem of linear
dynamic systems is equivalent to the initial-state observation problem of
the quadratic-in-the-state bilinear systems. Hence the observability
theory of quadratic-in-the-state bilinear systems needs to be studied
more extensively.

Since the sufficicent conditions for parameter identifiability are
sengitive to the input sequence, further work in the area of optimal

input synthesis for system identification may prove fruitful,
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9. APPENDIX

This Appendix contains a listing of the computer program used to
conduct the parameter identification example of the parsmeterized system
given in Sec. 4.3. It has bm-\n':lc:on in Fortran languags using double
precision,

If actual input/output measurement data are available, "GENERATE
INPUT AND OUTPUT SEQUENCES" in this computer program should be removed.
Proper dimensioning of the matrix arrays should be noted.
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