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SUMMARY

A wind-tunnel investigation was conducted to determine the effects of F101 DFE
(derivative fighter engine) nozzle axial positioning on the afterbody-nozzle longi-
tudinal aerodynamic characteristics of the F-14 airplane. The model was tested in
the langley 16-Foot Transonic Tunnel at Mach numbers from 0.7 to 1.25 and angles of
attack from about -2° to 6°. Compressed air was used to simulate nozzle exhaust flow
at jet total-pressure ratios from 1 (jet off) to about 8.

The results of this investigation show that variations in jet total-pressure
ratio (once the jet has been turned on) have only small effects on afterbody-nozzle
drag characteristics at subsonic speeds, whereas at supersonic speeds increasing jet
total-pressure ratio resulted in reduced drag. At subsonic speeds the intermediate
cruise nozzle position of the three positions tested resulted in the lowest drag,
whereas at supersonic speeds for positive lift coefficients the aft nozzle position
resulted in the lowest drag. Speed-brake deployment resulted in the expected
increase in drag without significantly affecting lift or pitching moment.

INTRODUCTION

The Grumman F-14A is the current front-line, fleet, air~defense airplane for the
U.S. Navy. It is powered by two Pratt & Whitney TF30-~-P-414 engines. A program is
currently underway to investigate the feasibility of reengining this airplane with
General Electric F101 DFE (derivative fighter engine) engines to increase its per-
formance. The F101 DFE is a version of the F101 engine first developed to power the
B-1 bomber.

As a part of the reengining program an investigation was conducted to determine
the aerodynamic effects of integrating the F101 DFE engines and exhaust nozzles into
the F-14 airframe. Since the F101 engine is somewhat shorter than the TF30 engine,
there exists the possibility that the airplane afterbody can be shortened when the
F101 engines are installed, thus resulting in a lighter configuration. However, it
was feared that the drag for this configuration would be unacceptably high because
of steep boattail angles where the F101 exhaust nozzles would be integrated into the
afterbody. As a result, the investigation included afterbody-nozzle configurations
(cruise power nozzles) representative of the shortest possible configuration, an
intermediate nozzle location, and an aft nozzle configuration (which was the same as
the formerly proposed F-14B configuration with Pratt & Whitney F401-PW-400
engines). (See refs. 1 to 3.) The intermediate and aft nozzle configurations would
require extensions to be added to the F101 afterburner duct in order to place the
nozzles at the desired location and would, therefore, be heavier than the short con-
figuration.

This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach
numbers from 0.7 to 1.25. BAngle of attack was varied from about =2° to 6°. The jet
total-pressure ratio was varied from 1 (jet off) to about 8, depending on Mach
number.:



SYMBOLS

All force and moment coefficients are referenced to the stability-axis system

and are based on the geometry of the model having a wing leading~edge sweep of 20°.
The origin of this axis system is at fuselage station 0.9127 m and water line

0.3175 m.

All reference dimensions are given in meters; model dimensions are shown

in centimeters.

wing span, 1.6289 m

Afterbody drag
q.S

afterbody Adrag coefficient,

nozzle drag coefficient obtained from integration of nozzle pressures and

Drag of two nozzles
q_S

calculated skin friction,

(Afterbody drag) + (Nozzle drag)

total afterbody-nozzle drag coefficient, q S
‘0

Afterbody lift
q.S

afterbody 1lift coefficient,

nozzle 1lift coefficient obtained from integration of nozzle pressures,

Lift of two nozzles
q,S

(Afterbody lift) + (Nozzle lift)

total afterbody-nozzle lift coefficient, g S

Afterbody pitching moment
quG

afterbody pitching-moment coefficient,

nozzle pitching-moment coefficient obtained from integration of nozzle

Pitching moment of two nozzles
qmsa

pressures,

total afterbody-nozzle pitching-moment coefficient,

(Afterbody pitching moment) + (Nozzle pitching moment)
quE

mean aerodynamic chord of wing, 0.2490 m
free-stream Mach number

jet total pressure, Pa



Po free~stream static pressure, Pa

Ao free-stream dynamic pressure, Pa
S wing reference area, 0.3645 m2

a angle of attack, deg

5h horizontal~-tail deflection, deg
6s speed-brake deflection, deg

A wing sweep angle, deg

Abbreviations:

A/B afterburning

BL buttock line

FS fuselage station

NPR nozzle pressure ratio, p, ./p
t,j "

WL water line

APPARATUS AND PROCEDURE
Wind Tunnel

This investigation was conducted in the Langley 16-Foot Transonic Tunnel, which
is a single~return, continuous-flow, exchange-air-cooled, atmospheric wind tunnel.
The test section is a regular octagon in cross section with slots at the corners of
the octagon. The tunnel speed is continuously variable for a Mach number range from
0.20 to 1.30. Further description of the Langley 16-Foot Transonic Tunnel can be
found in reference 4.

Model

Photographs of the model mounted in the Langley 16~Foot Transonic Tunnel are
shown in figure 1. A sketch showing the principal dimensions of the model is shown
in figure 2(a). The model was supported in the 16-foot tunnel by a thin sweptback
strut attached to the bottom of the fuselage just aft of the nose, as shown in fig-
ure 2(b). The strut blended into a sting which had a constant cross section begin-
ning at the intersection with the strut trailing edge and extending downstream to a
station well aft of the model. Model details and dimensions are presented in
figure 3.

The model was tested with two wing-sweep positions: 22°¢ for subsonic speeds
(M < 0.9) with extendible glove vanes retracted, and 68° for transonic and super-
sonic speeds (M > 0.9) with glove vanes extended. The inlets, located on each gide
of the fuselage, maintained true geometric lines but were closed to flow passage a
short distance inside the inlet lip. The model consisted of three parts: the



forebody and wings, the aft fuselage and empennage (hereinafter referred to as the
afterbody), and the engine exhaust nozzles. The forebody and wings were rigidly
attached to the support system and were not metric. The afterbody was the metric
portion of the model and started at the model metric break (station 1.1261 m,

FS 112.607); it included the horizontal and vertical tails, ventral fins, speed
brake, aft fuselage, and interfairing between the engines. The metric break is
indicated in the sketches of figure 2 and can be seen in the photographs shown in
figure 1. A flexible Teflon strip, inserted into slots machined into the metric
and nonmetric portions of the model, was used as a seal at the metric~break station
to prevent flow through the gap between the afterbody and the forebody.

Four different pairs of exhaust nozzles representing cruise and afterburning
power settings for the F101 DFE engines were tested. Three pairs represented
cruise power-setting nozzles installed at three different axial stations (forward,
intermediate, and aft as shown in figs. 1 and 4). (It must be noted that the aft-
position nozzles were the same as those tested in refs. 1, 2, and 3 as configura-
tion 9. It was deemed that they were sufficiently similar to the F101 DFE nozzles
that, in the interest of economy, new nozzles did not need to be constructed.) The
fourth pair of nozzles represented after-burning power-setting nozzles at the forward
position. (See figs. 1 and 4.) The nozzle exhaust flow was simulated by use of a
high-pressure compressed-air system.

Instrumentation

External static-pressure orifices were located on the exhaust nozzles, and the
pressure coefficients were integrated to obtain nozzle force characteristics. 1In
addition, internal static~pressure orifices were located in the afterbody cavity and
at the seal station in the gap between the forebody and afterbody. The jet total
pressures and temperatures were measured in each tailpipe by use of a total-pressure
probe and a thermocouple. Forces and moments on the metric portion (afterbody) of
the model were obtained by use of a six-component strain-gage balance.

Tests

Data were obtained for Mach numbers from 0.7 to 1.25 at angles of attack_from
about -2° to 6°. The_average Reynolds number per meter varied from 1.12 x 107 at
M= 0.7 to 1.26 X 107 at M = 1.25 in the 16-foot tunnel. The jet total-pressure
ratio was varied from 1 (jet off) to about 8, depending on Mach number.

Transition was fixed on the model by means of 3.2-mm-wide strips of No. 120
carborundum grains. The transition strips were located on the ventral fins and on
. the horizontal~ and vertical-tail surfaces at a distance of 5.08 mm measured normal

to the leading edge. The transition strips on the wing were located as shown in
figure 5. A 3.2-mm-wide ring of transition-strip grit was also located 13.5 mm aft
of the nose of the fuselage.

In addition to the various exhaust nozzles, other variables investigated
included the effect of wing sweep, speed-brake deflection, and horizontal-tail
deflection.

1Teflon: Trademark of E. I. du Pont de Nemours & Co., Inc.



Data Reduction

Model data recorded on magnetic tape were used to compute standard force and
pressure coefficients. All force and moment data in this paper are referenced to the
stability axes through the airplane center of gravity. Model angle of attack was
corrected for support deflection due to loads and for tunnel upflow. No correction
was made for strut interference since data from references 5 and 6 indicate that the
effect is small for a similar type of support system.

The afterbody axial force was obtained from the reading for balance axial force
corrected for pressure-area terms which consisted of internal-cavity and seal-cavity
forces. The forces and moments on the exhaust nozzles were obtained from pressure
measurements by assigning an incremental projected area to each nozzle pressure
orifice and summing the incremental forces. Skin friction on the nozzles was cal-
culated by using the Frankl and Voishel method (ref. 7) for compressible, turbu-
lent flow on a flat plate.

RESULTS AND DISCUSSION

Data for this model have been previously reported in references 1, 2, and 3.
However, the data in these references were obtained with various nozzle interfairings
which were different from that on the current configuration, although the current
interfairing is a derivative of interfairing 6 of reference 3. As a result, no com-
parisons with the previous data will be made in this report.

Presentation of Results

The following table lists the figures through which the results of this investi-
gation are presented. When more than one figure is indicated for a given condition,
such as 6(a), (b), and (c), the first (6(a)) presents the afterbody-nozzle character-
istics, the second (6(b)) presents the afterbody characteristics, and the third
(6(c)) presents the nozzle characteristics. '

Basic Force and Moment Data

Basic afterbody and nozzle force and moment coefficient data for the four nozzle
configurations investigated are presented in figures 6 to 9. These figures present
the afterbody and total afterbody-nozzle forces and moments as a function of after-
body or afterbody-nozzle lift coefficient and the nozzle forces and moments as a
function of angle of attack at the various nozzle pressure ratios investigated.
(Nozzle characteristics are shown as a function of angle of attack and not lift since
nozzle 1lift remains essentially zero for all conditiong tested.) It should be noted
that these aerodynamic forces and moments represent only those measured on the aft
portion of the model (afterbody-nozzle combination was approximately one-third of the
model length) and do not include forces and moments on the wings or forward portion
of the fuselage. WNozzle pressure ratio had virtually no effect on the lift or pitch-
ing moment of the afterbody or nozzles for all four configurations at all conditions
tested. At subsonic speeds, turning on the jet exhaust generally reduced both after-
body and nozzle drag (except at M = 0.7 shown in fig. 6(a)), whereas increases in
nozzle pressure ratio above the initial jet-on point generally resulted in either a
small further reduction in afterbody or nozzle drag or no effect at all. (For
example, see figs. 6(a) to 6(1l).) At supersonic speeds turning on the jet exhaust



Figures showing results of this investigation for -

Configuration A = 22° A = 68°
M= 0.7 M = 0.8 M = 0.9 M = 0.9 M= 1.15 M= 1.25
Effect of nozzle pressure ratio

Cruise-nozzle position:

Aft ceseececsvecssssnvssncacsscoane 6(a), (b), (c) 6(d), (e), (f) 6(g), (), (1) 6(3), (k), (1) 6(m), (n), (o) 6(p), (q), (r)

Intermediate .essseccccccccccccas . 7(a), (b), (c) 7(4), (e), (f) 7(g), (h), (1) 7(3), (k), (1) 7(m), (n}, (o) 7(p), (q), ()

FOYWATA cresseesssssoscccsnsscnnee 8(a), (b}, () 8(d), (e), (£) 8(g), (), (1) 8(3), (k), (1) 8(m), (n), (o) 8(p), (g}, (x)
A/B nozzles, forward position ...... 9(a), (), (c) 9(d), (e), (f) 9(g), (h), (1) 2(3), (k), (1) 3m), (n), (o) 9(p), (q), (r)
Effect of cruise-nozzle position ... [10(a), (b), (¢) | 10(&), (e), (£f) |10(g), (h), (i) [10(j), (k), (1) [10(m), (mn), (o) {10(p), (q), (x)
Effect of power setting ..ceecececes 11(a), (b), () | 11(&), (e}, (£) [11(g), (h), (1) |11(]), (k), (1) {11(m), (n), (o) |11(p), (q), (r)

Effect of wing sweep (M = 0.9 only)

Cruise-nozzle position:

Aft cevecscssesscccrssscanssacsces 12(a) 12(a)

Intermediate .sesevesscecsccsscnsss 12(b) 12(b)

FOYWArd eeecscsscecssccasscccscnns 12(c) 12(c)
A/B nozzles, forward position ...... 12(4d) 12(4)

Effect of 20° speed brake

Cruise-nozzle position:

Intermediate eeeeeevecenacacscnans 13{a), (b), () }13(4), (e), (f) |[13(g), (h), (i)

FOIWward eeeescsoesas teessasssesanen 14(a), (b), (c) |14(d), (e), (f) [14(qg), (h), (1)

Effect of horizontal-tail deflection

Forward position:

Cruise nozzles .ceecrsecaces
A/B NOZZ1ES ccseeecoscscsean

15(a)
15(b)




generally resulted in a decrease in afterbody and nozzle drag which was further
enhanced by increases in nozzle pressure ratio. (For example, see figs. 6(m) to
6(r).) Since nozzle pressure ratio generally had virtually no effect on afterbody
and nozzle lift and on pitching-moment coefficients and since the effect on drag was
generally consistent, further data comparisons will be made at only one nozzle pres-—
sure ratio for each Mach number tested.

Effect of Nozzle Position

The primary purpose of this investigation was to determine the nozzle axial
position for lowest drag. Comparisons of the aerodynamic data for the three cruise-
nozzle axial positions are shown in figure 10. At subsonic speeds for both wing
sweeps, the changes in afterbody and nozzle 1lift and pitching moment with nozzle
position were virtually negligible. At supersonic speeds the nozzle 1lift and pitch-
ing moment were about the same for all three axial positions, whereas the afterbody
lift and pitching moment were the same for the intermediate and aft nozzle
positions. The forward nozzle position resulted in a somewhat lower afterbody 1lift
and pitching moment than that of the other two positions at supersonic speeds. Since
the subsonic 1lift and pitching-moment characteristics do not change with nozzle posi-
tion, direct comparisons of the drag characteristics of the three nozzle positions
can be made without adjustment of the data for possible changes due to trim. At
supersonic speeds, with the comparisons made at a constant lift coefficient, in order
to get a totally accurate comparison between configurations the differences in
pitching-moment characteristics should be taken into account. However, since the
pitching-moment differences between configurations are generally small and the super-
sonic comparison is not realistic (because the airplane will never operate at super-
sonic speeds with the nozzles at the cruise power setting except in the event of a
flameout, and then not for long), the comparison will be made without adjusting for
the pitching-moment difference between configurations.

At subsonic speeds with a wing sweep of 22°, the intermediate cruise~nozzle
position had the lowest total afterbody-nozzle drag, the aft nozzle position had a
somewhat higher drag, and the forward nozzle position had the highest drag. The data
show that the difference in total afterbody-nozzle drag between the aft and forward
nozzle positions is almost entirely the result of the difference in nozzle drag
between the two configurations. This is due to the higher boattail angles on the
forward configuration since the nozzle closure must occur in a much shorter dis-
tance. The intermediate nozzle position has both lower afterbody drag and lower
nozzle drag than either of the other two configurations. As expected, the nozzle
drag of the intermediate configuration was lower than that of the forward configu-
ration, again because of a shallower boattail angle. The fact that the intermediate
configuration had a lower nozzle drag than that of the aft configuration may be
explained because the aft nozzle was not exactly of the same design (being a cost-
saving holdover from previous tests with a different external contour and a slightly
higher closure than the other two cruise nozzles). However, without data from diag-
nostic pressure taps on the afterbody, the advantage that the intermediate-nozzle
configuration holds in afterbody drag over the aft configuration is not explainable
at the present time. It might be possible that the exits of the intermediate nozzles
were in such a position that the jet exhaust provided a favorable interference on the
adjacent portions of the interfairing. However, when the data for the jet-off condi-
tion were examined (not shown), the intermediate-nozzle position also exhibited the
lower afterbody drag. Therefore, the characteristic is not a plume effect and may be
due to details of the integration of the nozzles with the afterbody.



At M = 0.9 with a wing sweep of 68°, the intermediate- and aft-nozzle configu-
rations have approximately the same afterbody-nozzle drag level CD y whereas the
forward-nozzle configuration has significantly higher drag. The afft-nozzle position
yields slightly lower afterbody drag CD,a than that of the intermediate posgition,
whereas the intermediate position yields slightly lower nozzle drag cD,n‘ Thus, the
total afterbody-nozzle drags for the two configurations are about the same.

At supersonic speeds the relative positions of the total afterbody-nozzle drag
and the afterbody drag for the three configurations vary with 1lift coefficient.
However, for positive values of 1lift coefficient, the aft configuration has the
lowest drag, the intermediate configuration has a slightly higher drag, and the for-
ward configuration has the highest drag. This is as expected at supersonic speeds
because of area-rule considerations and is reflected in only the afterbody drag (as
expected). The three cruise nozzles have about the same drag at supersonic speeds
because their boattail angles almost ensure that all three are highly separated at
these supersonic speeds.

Effect of Nozzle Power Setting

Figure 11 presents a comparison of the cruise~ and afterburning-nozzle data
(forward position) for the various Mach numbers investigated. The only unexpected
result shown by this figure is that the cruise power-setting nozzles resulted in
slightly lower afterbody lift and, hence, total afterbody-nozzle lift than did the
afterburning-nozzle configuration at both subsonic and supersonic speeds. It was
expected that the 1lift would be the same for both configurations as was the pitching
moment. As expected, the A/B configuration exhibited lower nozzle and resulting
total drag than that of the cruise-nozzle configurations as a result of the much
shallower boattail angles of the A/B configuration.

Effect of Wing Sweep

At M = 0.9, tests were conducted with the wings swept at both 22° and 68°. The
comparison of results for the two wing sweeps is presented in figure 12. The results
shown are not unexpected since, at 68°, the wings are in much closer proximity to the
afterbody and horizontal tails than at 22° and, therefore, would be expected to cause
a higher level of interference. Generally, the 68° wing sweep resulted in slightly
higher afterbody lift and, hence, total lift than that of the 22° wing sweep. Also,
in all cases, the 68° wing sweep resulted in increased drag (nozzle, afterbody, and
total) over the 22° wing sweep. Pitching moment was not significantly affected by
wing sweep.

Effects of Speed-Brake Deployment

The effects of 20° speed-~brake deployment for the intermediate and forward
cruise-nozzle configurations are shown in figures 13 and 14, respectively. As
expected and desired, the afterbody and total drag coefficients were significantly
increased at all conditions with the speed brakes deployed. At subsonic speeds the
nozzle drag was also increased. However, at supersonic speeds the nozzle drag was
reduced when the speed brakes were deployed. This phenomenon was a result of the
flow aft of the speed brakes (especially at supersonic speeds) having a greatly
reduced velocity; hence, the nozzles were at least in part in a reduced Mach number
flow field and, therefore, the drag was reduced. Also, generally the afterbody and,



hence, total lift were reduced slightly with speed-brake deployment, whereas the
pitching moment remained essentially constant with constant lift.

Effect of Horizontal-Tail Deflection

The effects of ~-2° horizontal-tail deflection for the forward cruise-nozzle
configuration in combination with 20° gpeed~brake deflection are shown in figure 14
and with the basic afterbody in figure 15. The effects of the -2° tail deflection on
the afterburning-nozzle configuration are also shown in fiqure 15. The drag results
for ~-2° tail deflection are mixed, with some conditions resulting in higher drag than
the 0° tail deflection, some with the same, and some with lower. The effects of the
-2° tail deflection on lift, however, are consistent. It was expected that the =-2°
tail deflection would result in a reduction in afterbody lift, and this was the case
for both the cruise and afterburning-nozzle configurations with the basic afterbody.
However, with the speed brakes deflected, the flow interference from the speed brakes
was such that the ~2° of tail deflection resulted in an increase in lift rather than
a decrease. In addition, for all conditions and configurations, when compared at a
constant lift coefficient, the afterbody, nozzle, and total pitching-moment coef-
ficients remained the same at both tail settings. This would indicate that, at a
constant angle of attack, the pitching-moment change due to the change in tail
deflection was being offset by a change in lift; thus, when compared at a constant
1lift ecoefficient, the pitching moments were essentially identical.

CONCLUSIONS

A wind-tunnel investigation of the axial positioning of the F101 DFE (derivative
fighter engine) exhaust nozzles and other configuration variables on the afterbody-
nozzle longitudinal aerodynamic characteristics of the F-14 airplane has indicated
the following conclusions:

1. At all conditions investigated jet total-pressure ratio had virtually no
effect on either the afterbody, nozzle, or total 1lift or on pitching-moment
coefficients for all four nozzle configurations investigated.

2. At subsonic speeds increases in jet total=-pressure ratio, once the jet had
been turned on, had only small effects on afterbody and nozzle drag
characteristics for the four nozzle configurations investigated.

3. At supersonic speeds increases in jet total-pressure ratio resulted in
reduced drag for all four nozzle configurations investigated.

4. The intermediate cruise-nozzle position of the three positions investigated
resulted in the lowest afterbody-nozzle drag for subsonic Mach numbers. At
supersonic Mach numbers and positive values of lift coefficient, the aft
cruise-nozzle position resulted in the lowest drag.

5. Speed-brake deployment resulted in higher drag with only small changes in
afterbody-nozzle 1lift and with essentially none in pitching moment.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 14, 1982
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(a) Side view with aft-position cruise power nozzles installed.

Figure 1.- Model installed in the Langley 16-Foot Transonic Tunnel.
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(b) Rear view

with intermediate-position cruise power nozzles installed.

Figure 1.- Continued.
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(c) Rear view with forward-position

L-80-5565

cruise power nozzles installed and speed brakes deflected 20°.

Figure 1.- Continued.
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(d) Rear view with forward-position A/B power nozzles installed.

Figure 1.- Concluded.
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(a) Model with maximum-afterburning, power-setting nozzles of type A installed.

Figure 2.~ Sketch of model with geometric details of model support. All
dimensions are in centimeters unless otherwise specified.
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(b) Geometric details of model support.

Figure 2.~ Concluded.
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Figure 3.~ Details of model. All dimensions are in centimeters
unless otherwise specified.
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(e) Tail hook and fairing.

Figure 3.- Continued.
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(g) Interfairing with cross sections and position of speed brakes.

Figure 3.- Concluded.
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(a) Cruise power-setting nozzles installed at aft position.
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