NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE NASA CONTRACTOR REPORT NASA CR-165574

UTRC REPORT R81-915540-9

NASA

MASS AND MOMENTUM TURBULENT **TRANSPORT EXPERIMENTS WITH CONFINED COAXIAL JETS**

N82-19496

(NASA-CR-165574) MASS AND MCMENIUM TURBULENT TRANSPORT EXPERIMENTS WITH CONFINED COAXIAL JETS Interim Report, 10 Feb. - 1d Uct. 1981 (United leconologies Research Center) 157 p HC ACS/MF Au1

Uncids 63/34 09270

By B.V. Johnson J.C. Bennett

Prepared by UNITED TECHNOLOGIES RESEARCH CENTER East Hartford, CT 06108

For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER CLEVELAND, OHIO NOVEMBER 1981

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS WITH CONFINED COAXIAL JETS

. .

٩.

- S. 646 - 4

1.1

Table of Contents

	Page
SUMMARY	1
INTRODUCTION	2
Background Outline of Present Study	2 4
DESCRIPTION OF APPARATUS AND PROCEDURES	6
Flow System Flow Visualization LV/LIF Instrumentation	6 6 7
FLOW VISUALIZATION RESULTS	10
DISCUSSION OF MEAN AND FLUCTUATING VELOCITY AND CONCENTRATION RESULTS	12
Foreword to Presentation of Results Velocity Results Concentration Results	12 13 15
DISCUSSION OF TURBULENT TRANSPORT RESULTS	18
Momentum Transport Mass Transport	18 19
DISCUSSION OF SKEWNESS, KURTOSIS AND AUTOCORRELATION RESULTS FOR VELOCITY AND CONCENTRATION PROBABILITY DENSITY FUNCTIONS	22
Typical Probability Density Functions Typical Skewness and Flatness Distributions Autocorrelation Measurements of Concentration	22 23 25
DISCUSSION OF SKEWNESS AND FLATNESS RESULTS FOR MASS AND MOMENTUM TRANSFER PROBABILITY DENSITY FUNCTIONS	27
Typical Transport Rate Probability Density Functions Typical Transport Results	27 28
SUMMARY OF RESULTS	31
REFERENCES	33
APPENDIX I - FLOW VISUALIZATION RESULTS FOR ALL FLOW CONDITIONS	35
APPENDIX II - DEFINITIONS OF SKEWNESS AND KURTOSIS FOR VELOCITY, CONCENTRATION, AND TRANSPORT PROBABILITY DENSITY FUNCTIONS	38

Table of Contents (Continued)

Page

2. **4** AN

. . .

.

•

A Contraction of the second second

·二百姓的 "我们要要不少。"

TABLE I-1 - Components Used for Two-Component LV Measurements	40
TABLE 1-2 - Components Used for LV/LIF Measurements	41
TABLE II - Table of Run Numbers from Which Data was Utilized for Tables and Figures	42
TABLE III - Figures on Which Results are Displayed	43
TABLE IV-14 to IV-74 - Velocity, Concentration and Turbulent Transport Data and Correlations	44-78
TABLE V-A - Listing of BASIC Program Used to Edit Two-Component LV Data Stored on Disks	79
TABLE V-B - Listing of BASIC Program Used to EDIT LV/LIF Data Stored on Disks	84
FIGURES	89

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENT'S WITH CONFINED COAXIAL JETS

B. V. Johnson J. C. Bennett

SUMMARY

An experimental study of mixing downstream of coaxial jets discharging in an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. The study used laser velocimeter (LV) and laser induced fluorescence (LIF) techniques to measure velocities and concentration and flow visualization techniques to qualitatively determine the time dependent characteristics of the flow and the scale of the turbulent structure.

Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inner jet inlet duct, a shear region further downstream between the inner and annular jets, a recirculation zone, and a reattachment zone.

A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color LV system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r- θ planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.).

A combination of turbulent mass transport rate, concentration and velocity data were obtained from simultaneous measurements with an LV and LIF system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid. These results also showed that for high transport rate regions, the transport rate p.d.f.s, skewness and kurtosis were similar to those occurring in turbulent boundary layers but that in low transport regions (including the recirculation region) these were higher than previously measured for the wake regions of turbulent boundary layers.

INTRODUCTION

Background

Computational procedures to predict combustion processes are being developed and refined by a number of researchers (e.g., see Ref. 19 and surveys in Refs. 20, 21, 22). These computational procedures predict the velocity, species, concentration, temperature and reaction rate distribution within the combustors which are used to determine combustor liner heat load, engine performance (combustion efficiency), pollution emissions (reactant products) and pattern factor (temperature distribution at turbine inlet). Because most combustors of practical interest have turbulent flow, the calculation procedures usually include mathematical models for the turbulent transport of mass (or species), momentum and heat. However, the prediction of combustion processes is very sensitive to the modeling of the mass and momentum transport processes and improper models result in inadequate predictions of combustion efficiency, liner heat load, emissions and exit temperature pattern factor.

The recent prediction of recirculating combusting flows typical of those found in aircraft gas turbines, have produced qualitative results which "provide insight into the nature of the combustion process rather than quantitative design information" (Ref. 19). Although the insight is helpful in diagnosing problems, the long term goal of the combustion modelers is to decrease combustor development costs by using accurate combustor design procedures. The deficiencies in the current computational procedures have been attributed to weaknesses in the mathematical models, including the transport models, and in the numerical methods. One recommendation from a NASA workshop on combustion modeling was that the mathematical models used in the calculation procedures be validated using experiments specifically designed to provide the required input data (Ref. 19). The first step in this process is the validation of the mass and momentum turbulent transport models for constant density flow.

The data used to formulate and validate the turbulent transport models have been obtained primarily from velocity and momentum transport measurements because only a limited amount of concentration and mass transport data is available. The mass (species) transport data presently available are not sufficient to determine where inadequacies exist in the present models or to formulate improvements for the models. One reason for this situation is that the method for simultaneously obtaining turbulent mass (species) and momentum transport data often have been indirect, requiring compromising assumptions. To overcome these limitations a new technique has been developed to simultaneously measure concentration and velocity and, therefore mass transport data which can be used to evaluate and improve combustion oriented turbulent transport models for scalars such as concentration of species and and temperature.

A review of techniques to measure instantaneous velocity, temperature and species concentration at a point is presented in Ref. 2. The current discussion will be

limited to concentration measurement techniques. There are several intrusive techniques for simultaneously measuring velocity and concentration. Libby (e.g., Ref. 3) has successfully used two hot wires in air-helium mixtures; however, hot wire techniques are generally limited to flows without recirculation and have not been used extensively for gaseous mixtures other than helium and air which have large variations in thermal conductivity and density. Other methods require two probes which are often bulky and preclude 'point' measurements.

Several non-intrusive measurement techniques have been proposed to obtain simultaneously velocity and concentration measurements in recirculating flows (e.g., Ref. 4). Raman scattering, marker nephelometry (Ref. 5), and the laser induced fluorescence (LIF) of a trace material are three techniques previously used for obtaining the concentration portion of these measurements. Raman scattering has applications for combustion studies but has sensitivity limitations for room temperature fluid mechanics studies. Marker nephelometry requires high seed rates and probe volumes for LDV velocity measurements. Laser induced fluorescence of trace dyes or gases offers an experimental method which is compatible with LDV measurements.

The use of fluorescein dye as a trace element in water was chosen for use in the current study of mixing between constant density fluids for several reasons. These reasons are: (1) that the dye and water are relatively inexpensive, (2) the wavelength required to excite the dye is compatible with current LDV equipment, and (3) the fluids are convenient to use. This choice restricts the measurement technique to the acquisition of constant density transport data. Although the combustion process has variable density gases mixing in a reacting environment, the mathematical transport models for combustors are expected to be based on the turbulent transport phenomena found in constant density mixing with modifications for variable density and reacting flows.

A preliminary effort at UTRC to obtain quantitative concentration measurements with fluorescent dye in 1975 was described by Owen (Paper 28 of Ref. 4). The current effort at UTRC was initiated in 1978 and makes use of improved optics, data handling capabilities and operative procedures. Initial results from the current effort were presented in Ref. 6. These measurements were limited in scope as only mean and fluctuating axial and radial velocities and radial mass transport measurements were obtained. The experimental capability for the present study was expanded to include measurement of the mass transport in the axial (z) and azimuthal (θ) directions and the momentum transport in the z-r and z- θ planes. Data acquisition and storage techniques were used in the present study which allowed the calculation of the higher moments of the velocity, concentration and turbulent transport rate probability density functions.

The current application of the combined LV/LIF measurement techniques along with the available data handling procedures provides an opportunity to obtain data which can be used to evaluate a number of computation methods and turbulent transport

models. Results from the present study can be used to evaluate (1) the presently used two-equation turbulence model, (2) the Reynolds stress transport model and (3) the probability density function formulation for predicting turbulent transport and concentration fluctuations.

Outline of Present Study

Turbulent mixing of confined coaxial jets is being studied because of its similarity to the combustor situation and thus its value in the mathematical modeling of combustor flow fields. Surveys of previous experimental studies were presented in Refs. 7 and 8. The turbulent mixing characteristics of confined coaxial jets are applicable to the combustion fluid mixing process because the flow field has the same features found in gas turbine combustors and furnaces. The coaxial jets provide a method of introducing fuel and air into the combustion chamber. The recirculating flow zones associated with coaxial jets in enlarged ducts provide the pilot region usually required to maintain flame in a combustor over a range of operating conditions.

The Reynolds number (Re = ρ Vd/u) of flow injected through various sections of aircraft gas turbine combustors vary from 10⁴ to 10⁶ and, therefore, the flows are generally turbulent. Lower Reynolds numbers occur for flow through cooling holes at engine idle conditions. Higher Reynolds numbers occur for flow through swirlers or dilution jets at engine takeoff conditions. The flow conditions selected for the detailed data acquisition in the present study have Reynolds numbers of 15,900 and 47,500 for the inner and annular streams, respectively. These Reynolds numbers are factors of 5 to 20 greater than the transitional Reynolds number range and in the range occurring in aircraft gas turbines. Therefore, turbulent transport phenomena measured in the present experiment are also expected to be typical of the transport phenomena occurring in gas turbines.

The shear regions of coaxial jets confined in an enlarged duct are presented in Fig. 1. The discussion of the results from the present study will be related to each region as applicable. The terms and symbols shown on the figure will be used throughout the report.

The extent of each region shown in Fig. 1 has been previously shown to depend upon the dimensions of the coaxial jets and ducts, the velocities in the two streams and the fluid properties. The length of the wake region depends upon the jet inlet velocity profiles and the development of the shear layer between the jets. The length of the shear layer between the jets will depend upon the ratio U_i/U_a , and the dimensions of the jets. The length and velocities in the recirculation region will depend on the jet and duct dimensions and the velocity of the annular jet. The flow characteristics in the reattachment region are likely to be influenced by the characteristics in the shear layer between jets before reattachment. Thus, the flow field is relatively complex with interaction between several regions.

The present study was initiated with a flow visualization study to qualitatively determine the effects of velocity regio, U_i/U_a , and Reynolds number on the flow

characteristics of the shear regions cited in Fig. 1. These tests were conducted for one inlet and duct geometry. Results from the study were also used to determine streamwise locations for obtaining detailed velocity, concentration, and transport rate measurements.

The major focus of this study was on the acquisition, reduction and analysis of velocity, concentration, mass transport rate and momentum transport rate measurements at seven axial locations within the duct test section. Single component velocity data and inner jet fluid concentration data were obtained simultaneously to determine the local mass (or scalar) transport rate. Two velocity components were obtained simultaneously to determine the local momentum transport rates. As a result, the concentration and principle velocity distributions were obtained during at least two nonconsecutive data acquisition runs. The data set for each point measurement was analyzed and reduced to obtain the mean and three central moments from each probability density function (p.d.f.), i.e., the mean values, the rms deviation from the mean, the skewness of the p.d.f., and the flatness factor (or kurtosis) of the p.d.f. The averages and central moments were obtained for the mass and momentum transport p.d.f.s as well as the velocity and concentration p.d.f.s. The reduced results for each data point set are tabulated and presented in this report. Graphical presentations of representative results are also included to aid in the discussion of the results.

Although the flow condition of the data reported in Ref. 6 was the same as that for the present study, the additional measurements of the present study produced several interesting and important results. Flow visualization showed the secondary vortex pairs superimposed on the conventional large scale turbulent structure in the shear layer between the jets. The axial mass transport results showed countergradient mass transport rates larger than the radial mass transport rates in a large central region of the flow. With regard to the evaluation of the mass and momentum transport models, the third and fourth central moments of the concentration and mass transport rate. These results provide the turbulent transport modelers with much needed detail to (1) determine differences between the current models and experiments or (2) formulate improved models.

ALC: NO. I

DESCRIPTION OF APPARATUS AND PROCEDURES

Flow System

A sketch of the test section along with the inlet and exhaust sections is shown in Fig. 2. The working fluid for this experiment was water with a temperature of approximately 20C. The test section consisted of a 122 mm inside diameter by 1 m long, thin-wall glass tube mounted in an optical box. Flow to the test section entered through an annular duct and a smaller center tube (Fig. 3). Flow exhausted through the exit duct, up over a weir and flowed to the drain. The top end of the duct containing the weir was open to the atmosphere. The atmospheric pressure at the weir prevented the test section from becoming overpressurized. In order to decrease the optical distortion obtained when conducting flow visualization and optical experiments in circular tubes thorugh water-glass-air interfaces, a flat-faced optical box surrounded the circular test section which was filled with water. The inlet plenum for the annular duct contained three perforated plates to produce approximately uniform flow and an honeycomb section to remove swirl from the flow. No flow straightening devices were used for the inner jet tube which was approximately 25 mm (1 in.) dia. and was fed with the same diameter duct and hose for the lengths of over 10 ft.

A schematic of the flow components used in the experiment is presented in Fig. 4. For the laser velocimeter tests, flow was circulated by a pump from the storage tank, through metering values and flow measuring devices to the center jet inlet and annular jet inlet of the inlet plenum. The flow from the annular duct and center tube entered the test section, mixed, discharged into the exhaust ducts, and returned to the storage tank. For the *XV/LIF* tests and flow visualization tests where fluorescein dye was used as a tracer, the water from the exhaust was discharged into the city sanitary sewer and fresh water replenished the system.

For tests with dye, the dye was added to the inner jet fluid in a mixing chamber a short distance from the innet jet metering valve. Uniform flow of the dye was obtained by metering the dye through a micrometering valve with a 20 to 40 psi pressure drop. This pressure drop was large compared to other pressure drops in the system to ensure a uniform dye concentration in the inner jet fluid. A magnetic rotating mixer was used to keep the dye well stirred. An inline filter was required to prevent the dye micrometering valve from clogging.

Flow Visualization

Sketches of the optical arrangements used to obtain flow visualization photographs and motion pictures of the flow pattern in the r-z and r-6 planes are shown in Figs. 5 and 6, respectively. An argon ion laser with a principle line of 0.4880 μ m wavelength (or all lines operating) and a 1 mm dia. beam was used as the light source. The laser beam was passed through a cylindrical lens (a glass or plastic

round rod) causing the beam to diverge in one plane while maintaining a beam thickness of approximately 1 mm. The glass rod was positioned with the axis vertically to illuminate the r-z plane through the test section axis and with the axis horizontally to illuminate r-0 planes at selected axial locations. Cameras were used to view the flow with the camera optical axis at right angles to the plane being illuminated (Figs. 5 and 6). Relatively high concentrations of dye were used in the inner jet for these flow visualization studies. In general, the dye concentration was increased until the fluorescent light level was high enough for good photographic contrast; too high dye concentrations caused nonuniform light absorption along the light path.

LV/LIF Instrumentation

Overview

The laser velocimeter (LV) and laser induced fluorescence (LIF) measurements were obtained primarily using commercially available components and conventional laser velocimetry practices. Some electronic components, which were not commercially available when first required at UTRC, were designed and fabricated by the UTRC instrumentation group. The equipment utilized for each measurement will be described as the technique is discussed.

The LV measurement systems employed in these experiments used the dual beam LV optics concept. The laser-Doppler velocimeter dual beam operating principle is based on the scattering of light from a small particle traversing the measurement or probe volume. When the seed particle is traveling with the fluid flow, the flow velocity is also determined. The probe volume occurs at the intersection of two equal-intensity coherent laser light beams. The LV optics were arranged to obtain the minimum beam waist diameter (and therefore the highest beam intensity) at the probe volume location. The intersection of two coherent laser light beams at the probe volume caused an interference fring pattern to occur with a fringe spacing, $d_f = \lambda/[2 \sin (\phi/2)]$, where λ is the laser light wavelength and ϕ is the angle between the two laser light beams. Light scattered from the particle traversing the probe volume was collected and focused onto a photomultiplier. The frequency of the light intensity, f_D, arriving at the photodetector was related to one component of the particle velocity component, $f_{\rm D}$ = U_i/d_f , where U_i is the velocity component perpendicular to the optical axis and in the plane of the two laser light beams. Further descriptions of dual beam laser doppler velocimetry including the frequency shift used to prevent flow direction ambiguity are presented in Ref. 10.

Each LV system was comprised of components or subsystems which perform specific functions and which can usually be interchanged with equipment from various manufacturers. A laser-velocimeter system consists of the following components: (1) a laser, (2) a sending and receiving optical subsystem, (3) a signal processor(s), (4) a data handling subsystem, (5) a traverse system to position the probe volume, and (6) a scattering particle generator or seeder. Following are short descriptions of the components used for both the LV/LIF and two component LV systems.

For all the measurements reported, the particles naturally occurring in the East Hartford water supply were used as LV seeds (Item No. 6). The traverse system consisted of a milling machine base with three directions of motion and relative traverse position accuracies of \approx 0.1 mm (Item No. 5).

The laser-Doppler velocimeter signal processors (Item No. 3) amplify and filter the signals from the photomultiplier, validate the Doppler frequency samples, and finally compute the Doppler period which is the reciprocal of the Doppler frequency. The SCIMETRICS Model 800A signal processors measured the elapsed time for 8 Doppler cycles. The processor counter records the pulses from a 125 MHz crystal during the 8 cycle period. In order to check the validity of the LDV signal, the processor also measured the pulses for 4 and 5 Doppler cycles and compares with the 8 cycle result to ensure the LDV signal is a valid one-particle signal. The integer number transmitted to the computer is the period of the Doppler frequency in nanoseconds. Two signal processors are required for the UTRC system (one for each velocity component).

A minicomputer data handling system (Item 4) was used to acquire, store and reduce the data on line. This sytem consisted of (1) a data handling interface (constructed by UTRC), (2) a DEC PDP10/11 minicomputer with a dual disk operating system, (3) a DEC Laboratory Peripheral Systems (LPS) with an A/D signal converter, and (4) a DECwriter III teletype printer. Specific functions of the data handling interface and the A/D converter will be described when applicable to a specific measurement.

Two Component LV Measurements

A list of the equipment employed for the two-component LV measurements is presented in Table I-A. A sketch of the optical arrangement used for the two component laser velocimeter measurements is shown in Fig. 7. The milling machine used to position the probe volume within the test section had a range of approximately 240 mm in the streamwise direction. The ranges for the vertical and cross stream directions were greater than the dimension of the test section.

A sketch of the optical components and beam paths used for the two component velocity measurements is presented in Fig. 8. This system was operated in a direct backscattering mode. The 0.5145 μ m wavelength beams were used for the streamwise velocity measurements. The 0.4880 μ m wavelength beam were used for the radial and azimuthal velocity measurements. A Bragg cell was used for both velocity components to eliminate the flow direction ambiguity. This optical subsystem provided signal to noise ratios greater than 20 except near the test section wails.

The LV Data Handling Interface was used to accept only those data points when the two velocity components were obtained within a period of time of 1 msec. However, data acquisition rate tests showed that almost all of the sets of two component data were obtained from a single particle. This time period w/s considered appropriate for a probe volume of length \approx 1 mm and for typical velocities of 1 m/sec. The time .

from a clock within the data handling system was also recorded at each data acquisition.

LV/LIF Measurements

A list of the equipment employed for the laser velocimeter/laser induced fluorescence measurements is presented in Table I-B. A sketch showing the arrangement of the optical components used for the LV/LIF measurements is shown in Fig. 9. The LV measurements were obtained in a forward scattering mode while the LIF measurements were obtained in a direct backscattering mode where the light was sent and received through the same lens.

The 0.4880 µm wavelength of the argon ion laser was used both to excite the fluorescence of the fluorescein dye for the LIF measurement and to scatter light from particles for the LV measurements. The laser beam intensity used was monitored during bench tests to determine power fluctuations. The peak to peak power drift over a 20 minute period was less than 0.5 percent.

Fluorescein dye was made from fluorescein disodium salt with a chemical formula $C_{20}H_{10}O_{5}Na_{2}$. This dye is used extensively for water pollution studies and is available from chemical supply houses in powder form. Absorption and emission spectra data for fluorescein dye can be obtained from Ref. 11. A liquid dye concentrate was formed by dissolving 2.5 gms of dye rowder in 1 tablespoon of alcohol and then mixing with 1 liter water. A dilute solution of dye was made by mixing 1 ml of concentrate with 3.5L of water. The dilute solution was added to the inner jet fluid in ratios of 1 part dilute solution to 760 parts water. The dye in the dilute mixture was stirred for over one hour and can be considered uniformly mixed. The dilute concentration was mixed "inline" with the inner jet fluid. Variation in dye concentrations at the inner jet inlet location can be attributed to the last mixing process. A current-tovoltage converter was used to convert the current through the LIF photomultiplier tube to a voltage. The signal from the photomultiplier also was filtered with a 2 KHz low pass filter to remove the shot noise associated with photomultiplier tubes. The 2KHz filtering was compatible with the typical velocity of 1 m/sec and probe length of 1 mm. The LIF analog signal was processed through an A/D voltage converger each time an acceptable LV signal was obtained. The LV and LIF data were stored as pairs along with the data acquisition time by the Data Handling subsystem.

LF/LIF Data Reduction

Conventional LV data interpretation techniques were used to process and store the data. Listings of the program used to edit the two component velocity data and the LV/LIF data are presented in Tables V-1 and 2, respectively. The data from the LV signal processors and the LIF signals have been stored and will be available through the NASA Project Manager for researchers who wish to obtain other information from the data than the moments and correlations obtained in the current editing process.

The second second second

FLOW VISUALIZATION RESULTS

Flow visualization studies were conducted to determine the scale of the turbulent structure of the flow within the test section duct (Figs. 2 and 3). The flow visualization was obtained by adding fluorescein dye to the inner jet fluid. The strucutre and scale of the turbulent eddies was deduced from the interface between high and low concentrations of dye recorded on high speed motion pictures (Figs. 5 and 6).

These flow visualization studies were also conducted to determine if the flow field was swirl free, axisymmetric, and statistically stationary before data acquisition was initiated. This experiment was conducted to obtain a data base that can be used to svaluate axisymmetric flow calculation procedures and it is critical that the flow have these forementioned characteristics. Good axisymmetric characteristics are also required because data from the same radial location are obtained at several azimuthal locations. The transport models developed for the computational procedures are based on time-independent statistics. Therefore, it is important that the experimental data used to evaluate these models be obtained from statistically steady or stationary flows.

Motion pictures were obtained in the r-z plane with the center of illumination at z = 100 and 200 mm and in the r-0 plane at z = 51, 102, 152 and 203 mm. The forementioned set of planes were photographed at 500 frames/sec for five flow conditions. The characteristics of Flow Condition 1, that condition selected for detail data acquisition, are described in the following paragraph. The characteristics of the other flow conditions are described in Appendix I.

The photographs for Flow Condition 1 are presented in Fig. 10. This flow condition was the same as that for which lats was acquired in Ref. 6. In the upper left photograph, the classical large eddy structure associated with shear layers could be discerned. The dyed inner jet fluid was moving slower than the annular jet; hence the eddies were "rolling" faster than the inner jet fluid. These eddies were associated with the shear layer between jets (Fig. 1). The upper right photograph shows the scale of the eddies containing inner jet fluid which occurred immediately upstream of the reattachment region (Fig. 1). The inner jet fluid intermittently filled most of the duct cross section. The r- θ plane photograph at z = 51 mm, shows the size of the eddy structure in the wake region. At z = 102 mm, which was in the shear layer between the jets, the radial scale of turbulence was increased and vortex pairs were similar to the vortex pairs observed by the California Institute of Technology fluid mechanics research group. The vortex pairs appeared to occur randomly both timewise and azimuthally in the shear layer between jets. At z = 152 mm, in shear layer petween jets, the inner jet fluid distribution became more three dimensional than at the upstream locations. The largest scale structure with high dye concentrations occurred at z = 203 mm. This location was immediately upstream of the reattachment zone where the annular jet fluid began to decelerate the flow

toward the duct wall. At further downstream locations, the peak concentrations of the inner jet fluid were lower and the dye concentration more uniform across the duct $r-\theta$ cross section.

The flow visualization study showed the flows were as axisymmetric and swirl free as could be determined visually. Although the scale of the turbulent structure was relatively large, the eddies were not axisymmetric or periodic. The large scale waves and eddies appeared to have a range of wavelengths. The flows did not have bistable modes or preferred szimuthal turbulent eddy orientations at any location including the reattachment region. However, the scale of the turbulent structure near the reattachment region was large which will require relatively long data acquisition times to acquire stationary data sets.

DISCUSSION OF MEAN AND FLUCTUATING VELOCITY AND CONCENTRATION RESULTS

Foreword to Presentation of Results

The use of computerized data acquisition storage, reduction and analysis techniques permitted numerous quantities to be determined from the data obtained in this study in addition to the mean and fluctuating velocity components and concentrations usually obtained. These included (1) calculation of parameters which can be used to characterize the probability density functions (p.d.f.s) of the velocity components, the concentrations, the mass transport rates and the momentum transport rates; and (2) the various correlations and cross correlations required to evaluate the modeling of a turbulent transport process.

The determination of all parameters and correlations obtainable from the experimental data was beyond the scope of this study. However, the most universally used terms have been calculated and are included in this report. The parameters presented include the mean and three central moments of the velocity and concentration probability density functions (i.e., the mean, rms variation from the mean, skewness and kurtosis or flatness factor), the mean and three central moments of the mass and momentum turbulent transport rate probability density functions, and the correlation coefficients for the mass and momentum turbulent transport rates.

The calculated parameters for each data point set are tabulated in Tables IV-XX with the terms XX used to denote run number. The number of velocity/velocity or velocity/concentration data pairs used to calculate the parameters for each data point set vary from 239 to 1000 and are also tabulated in Table IV-XX. The number of data pairs used to calculate the parameters for each data point are usually less than 250, 500, or 1000, the number of data pairs acquired for each data point. Data pairs were eliminated from the data set when one of the data pair appeared to be spurious. Spurious data was defined as data well outside the 3 σ region of the probability density function and was believed to occur when the laser velocimeter signal processor passed "bad" data. The run numbers are tabulated in Table II as a function of axial location and direction of mass transport or plane or momentum transport.

Not all the data was stored on floppy disks due to a malfunction of the disk drive. When the data was not stored, it could not be editored to eliminate spurious LV data points and the third and fourth central moments were not considered accurate enough to be included in the data set. Not all combinations of data were obtained at all axial stations; the azimuthal transport terms were determined to be negligible in an initial set of runs and were not obtained when significant data acquisition time could be eliminated.

A tabulation of the figure numbers on which a particular result may be found is presented in Table III. The mean and fluctuating velocity and concentration data and the principle mass and momentum transport rate data for all axial stations are presented

in graphical form. Representative results of other parameters were also plotted and are presented.

The results are presented and discussed in the following order. The mean and fluctuating velocity and concentration results are presented first, the turbulent mass and momentum transport rates and correlations second, the higher moments of velocity and concentrations, the autocorrelations of the concentration signal, and the higher moments of the turbulent transport rates are presented in later sections.

Detailed measurements were obtained for Flow Condition 1, described in the flow visualization section. This flow condition is the same condition used in the previous, less extensive data acquisition experiments sponsored by UTRC (Ref. 6).

Velocity Results

Mean and fluctuating velocity profiles were obtained at the seven axial stations as part of both the mass and momentum turbulent transport measurements. Consequently, each velocity profile is comprised of data from two or four azimuthal locations and two or more runs. The coordinate system employed for this study is presented in Fig. 3. The results will be related to the shear regions shown in Fig. 1.

Mean Axial Velocity

The mean axial velocity profiles are presented in Fig. 11. The velocity profile at the upstream measurement location closest to the inlet, z = 13 mm (0.5 in.), had several significant features. First, the peak velocities from the inner jet were approximately one-half the peak velocities from the annular jet. Second, there was a wake region at radius ratio, $r/R_0 \approx 0.25$, from the flow adjacent to the inner tube. In addition, the axial velocity profile was observed to be axisymmetric.

The change in the axial velocity profile from z = 13 mm to successive locations downstream document the development of the various shear regions within the test region. The shear caused by the wake of the inner jet tube resulted in a decrease in the peak centerline velocity from z = 13 to 51 mm. This wake region disappeared at z = 102 mm.

The shear layer between jets occurred between z = 51 mm and 203 mm. In this shear region, the annular jet flow accelerated the inner jet flow. At z = 254 mm, the velocity profile in the center of the duct was approximately flat.

A third shear region occurred between the annular jet flow and the recirculation region. Note that the radial extent of back flow (U < 0) in this region decreased from $r/R_0 = 0.54$ to 1.0 at z = 13 mm to $r/R_0 \approx 0.85$ to 1.0 at z = 203 mm. The end of the recirculation cell and reattachment of the annular jet to the peripheral wall occurred near z = 254 mm. Note that the measured peak negative velocities occurred at z = 102 mm and had a value of -0.075 m/sec. This negative velocity was 17 percent of the peak streamwise axial velocity at that location. This ratio of reverse flow

velocity to streamwise velocity is typical of that which occurs in free shear rayers downstream of backward facing steps.

The axial variation of mean axial velocity along the centerline is shown in Fig. 12. The data presented shows the effects of the shear layers described previously. First, a decrease in centerline velocity occurred from z = 0 to 100mm due to the inner jet fluid mixing with the flow in the wake from the inner jet tube. Second, an increase in centerline velocity from z = 100 to 175 mm occurred as the fluid from the annular stream accelerated the fluid from the inner jet. Third, the deceleration of the centerline velocity from z = 200 mm to larger values of z occurred as the flow from the annular jet attached to the duct wall and closed the recirculation cell.

Radial Mean Velocity

The profiles of mean radial velocity are presented in Fig. 13. Note the velocity scale is changed by a factor of ten compared to that used for the axial velocity profiles. Positive velocities indicate flow radially outward from the test section centerline.

Rapid changes in the profiles of the radial velocity occurred from z = 13 mm, the flow from the inner jet and the annular stream was directed into the center tube wake region (+V for $r/R_0 < 0.25$ and -V for $r/R_0 > 0.25$). The negative radial velocities at radius ratios from 0.5 to 0.8 were attributed to the flow radially inward at the upstream end of the annular recirculation region. At z = 51 mm, the radial velocities for $r/R_0 < 0.2$ were positive but near zero and indicated the relatively low, mass flux from the center jet to the tube wake region. Radial velocities inward for 0.2 < $r/R_0 < 0.45$ indicated fluid motion from the annular jet into the tube wake region. Radial velocities outward for 0.45 < $r/R_0 < 0.6$ indicated fluid moving from the annular jet into the shear layer between the annular jet and the recirculation zone.

At z = 102 mm, the radial profiles indicated (1) radial inward flow occurred for $r/R_0 < 0.35$ where the outer annular flow was accelerating the inner region, (2) radial outward flow occurred for $0.35 < r/R_0 < 0.7$ where the annular jet velocity decreased and flow was entrained into the recirculation cell and (3) radial flow inward occurred for $r/R_0 < 0.7$ due to radial flow inward in the outer half of the recirculation cell. Similar descriptions are applicable at z = 152 mm. At z = 203, 254 and 305 mm, the flow had a positive radial component at all radius ratios. There was a trend toward decreasing radial velocity from z = 254 to 305 mm as the reattached flow begins to develop into turbulent duct flow.

The run to run variations are more apparent in the radial velocity profiles than the axial velocity profiles. These variations were attributed to the sensitivity of the radial flow pattern to small changes in velocity ratio and geometry. The flow condition selected had interesting features (wake, shear layer between jets, recirculation, reattachment--see Fig. 1) which occurred over a short distance. The fact that the flow was basically axisymmetric is significant (i.e., data for $\theta = 0$ and 180 are the same).

Azimuthal Mean Velocity

The mean azimuthal velocity profiles are presented in Fig. 14. These data are plotted with the same scale as the radial velocity profiles. For these experiments with axial coaxial jets, a mean azimuthal velocity equal zero was expected. However, it is difficult to obtain a completely swirl-free flow. The results presented here document the local magnitude of the swirl in the test section.

At z = 13 mm, the flow from the center jet, $r/R_0 < 0.25$, had negligible swirl (i.e., $tan^{-1} 0.01/0.8 = 0.7$ deg.), however, the recirculation region adjacent to the end wall had mean swirl velocity of 0.1 m/sec. The higher values of W at z = 13 mm occurred where the recirculating flow is impinging on the upstream wall, $r/R_0 > 0.5$. The tendency toward rotation in the recirculation region was increased as the recirculating flow approaches the upstream wall. As will be shown in subsequent figures these mean azimuthal velocities were less than the rms fluctuation of the velocity component. At further downstream locations, the azimuthal velocity components indicated mean swirl angles of up to 1.5 deg. In all cases, the mean azimuthal velocity was less than the rms of the azimuthal fluctuating velocity and could not be discerned in flow visualization tests.

Fluctuating Velocities

Fluctuating axial, radial and azimuthal velocity profiles are presented in Figs. 15, 16 and 17, respectively. The changes in the intensity of the fluctuations between axial locations were well behaved and can be attributed to the developing shear layers. At z = 13 mm, the peak fluctuating velocities occurred in the wake from the center tube and the shear layer outside the annular jet. The fluctuation intensities at the center of the center and annular jets were 5 to 10 percent of the local velocities which is compatible with previous measurements in ducts and annulus (e.g., Ref. 18). The intensities of the fluctuating velocities increased and decreased with the development of the shear layers (1) between the center and annular jets, (2) between the annular jet and the recirculation zone, and (3) in the reattachment zone. The intensity of the axial velocity fluctuations were greater than those of the radial or azimuthal velocity components in the shear regions. As the local shear rate decreased, the ratio of the intensities, v'/u' and w'/u' tended toward 1.0 (i.e., at z = 203 and 254 mm and $r/R_0 = 0$).

Concentration Results

A small amount of fluorescein dye was added to the inner jet fluid to differentiate the inner jet fluid from the annular jet fluid. Both fluids were water in the experiment. The intensity of the light emitted by the fluorescence of dye from the laser velocimeter probe volume was proportional to the concentration of dye in the probe volume. The local concentration of the inner jet fluid, \bar{f} , was defined to be the ratio of light emitted locally to the light emitted at the inner jet inlet where $\bar{f} = 1.0$ by definition. In the discussion of the experimental results the symbol \bar{f} and term "concentration" refer to the concentration of inner jet fluid as

defined. The term "mass transport" refers to the turbulent transport of the inner jet fluid.

Mean Concentration

The axial variation of the concentration along the centerline is shown in Fig. 12b. These data were obtained in two sets. The first set from z = 25 to 250 mm used the inlet-jet-fluid concentration $\bar{f} = 1$ at z = 0 to 50 mm as reference. The stream-wise traverse range of 225 mm was the maximum obtainable with the available optics and traverse table. The second set of data were obtained from z = 150 to 350 mm. The LIF voltage signals from these data were ratioed to the upstream set of data at locations where the data sites overlap occurred. The LIF voltage signals for the individual concentration profiles presented in Fig. 18 were ratioed to the results from Fig. 12 to obtain a mean centerline concentration level.

The axial variation of the concentration along the centerline (Fig. 12b) showed small decreases occurred from $\bar{f} = 1.0$ for z < 75 mm. The end of the inner tube wake region occurred between z = 50 and 75 mm. The centerline concentrations decreased rapidly for 100 mm < z < 200 mm which is the region where the inner jet fluid is being accelerated by the annular jet flow (see Fig. 11a). The decrease of the centerline concentration with axial distance became more gradual for z > 200 mm and the centerline concentration approached within 0.01 of the mass flow averaged concentration level within the duct, $\bar{f}_{ave} = 0.104$, at z = 356 mm.

The mean concentration profiles are presented in Fig. 18. At z = 13 and 51 mm, the mean concentration along the centerline was 1.0. The variations in f from 1.0 for z = 13 mm and $r/R_0 \le 0.15$ indicate the level of scatter in the value of mean concentration for a given high concentration measurement. These variations are attributed to (1) defects in the glass used for the duct and glass plates used for optical box plates, (2) small air bubbles or dirt on these surfaces that are occasionally formed during the course of a test and (3) a variation in trace material flow rate over the time period required to obtain a profile. At z = 13 mm and for 0.30 < $r/R_0 < 0.45$, the incoming fluid should have zero concentration. These data scattered about the f = 0 value with a variation of less than 0.02. The values of f = 0.03 at z = 13 mm and 51 mm and $r/R_0 > 0.6$ were due to the inner jet fluid being convected from downstream stations upstream into the recirculating zone.

The concentration profiles showed the rapid decrease in peak concentration between 51 mm and 203 mm. Between z = 203 and 305 mm, the decrease in concentration level was more gradual. At z = 305 mm, the mean concentration profile was close to the mass-flow-averaged concentration level within the duct, f_{ave} . The peak concentration was only 0.04 above f_{ave} at this axial location.

The concentration profiles were reasonably axisymmetric and repeatable from run to run. These data were obtained as part of the mass transport measurements in three directions. Each profile contains data which was obtained over a two to four week period.

Fluctuating Concentration

The concentration fluctuations, f', are presented in Fig. 19. Note the peak f' values increased from 0.15 at z = 13 to 0.30 at z = 152 mm. The peak values of the fluctuation intensity at z = 13, 51 and 102 mm, occurred in the high concentration gradient region between the inner jet and the annular jet. At z = 152 and 203 mm, the peak values of the concentration fluctuation intensities were near the centerline. The peak concentration fluctuation in the profiles occurred along the centerline for $z \ge 152$ mm. The peak concentration fluctuations also decreased with distance from the inlet plane for z > 152 mm. The ratio of concentration fluctuations, f', to mean concentration, f, at z = 152 was approximately 0.50 which indicated a large fraction of the fluctuations was due to "all annular jet" to "all inner jet" concentration variations. . .

DISCUSSION OF TURBULENT TRANSPORT RESULTS

Momentum Transport

z-r Plane

The momentum transport rate profile in the z-r plane, uv, are presented in Fig. 20. Because most of the momentum transport in this plane is due to the radial variation of the axial velocity, the discussion of the turbulent momentum transport rate distribution will be related to the axial velocity profiles (Fig. 11a) and the shear regions presented in Fig. 1.

At z = 13 and 51 mm, a weak momentum transport radially outward (i.e., uv > 0) occurred for $r/R_0 < 0.18$ and 0.12, respectively. This momentum flux was due to the shear of the inner jet fluid on the wake region downstream of the inner jet tube. For z = 13 mm and 0.18 < $r/R_0 < 0.3$, the momentum flux was radially inward, i.e., uv < 0, due to the transport of momentum from the annular jet fluid to the wake region downstream of the inner jet tube. At z = 51 mm, the region with negative uv was enlarged to 0.12 < $r/R_0 < 0.33$. The wake region downstream of the inner jet tube disappeared at z = 102 mm, i.e., no region of uv > 0 for $r/R_0 < 0.3$.

The negative momentum transport rate for $r \gtrsim 0.030$ and z = 102, 152 and 203 mm was due to the radial inward transport of axial momentum which accelerated the inner jet fluid. The magnitude of the negative transport rate decreased with increasing z from z = 102 mm and was essentially zero at z = 254 mm. The location of the zero momentum flux toward the center probably occurred at the axial location with peak axial velocities, i.e., z = 170 mm (Fig. 11a).

Radial outward momentum transport for r > 0.35 occurred in the free shear layer between the annular stream and the recirculating fluid at all axial locations. At the upstream end of the recirculation zone, z = 13 mm and 51 mm, the radial transport in the backward flowing region of the recirculation cell had approximately zero transport. At locations further downstream (z > 100 mm), the low or zero transport rate locations were estimated to lie closer to the wall.

At z = 305 mm, the shear stress distribution was approximately linear as expected for fully developed pipe flow. However, the ratio of the wall shear stress rate (extrapolated) to the kinetic energy of the flow was approximately 0.1. This value compares with a value of 0.002 to 0.003 previously obtained for fully developed pipe flow at these Reynolds numbers (e.g., Ref. 18). From this comparison and the high level of the turbulence intensity (\approx 60 percent), it can be concluded that the turbulent structure at z = 305 mm was far from equilibrium.

The correlation coefficients, R_{uv} , obtained from the turbulent transport measurements are presented in Fig. 21. The correlation coefficients, $R_{uv} = uv/(u'v')$, have the same sign as the turbulent momentum transport rate, uv. However, the shapes of

the correlation profiles are easier to interpret at values of the momentum transport rate near zero. At z = 13 and 51 mm, the correlation coefficient profiles for $r/R_0 <$ 0.2 show that the peak radial outward coefficients were 0.35 and 0.2, which was only a factor of two less than the coefficients for the inward transport, i.e., the negative R_{uv} at $r/R_0 = 0.25$. However, the ratio of the inward/outward momentum flux into the wake region was greater than 10 at that location (Fig. 23a). Although the correlation coefficients at $r/R_0 = 0$ were not identically equal to 0.0 as expected for axisymmetric flow, a profile constructed through zero would not result in significant deviations of the data from the profile. The deviations which occurred can be attributed to spatial uncertainties in the measurement location and the location of the jet centerline. The absolute values of the peak transport correlation coefficients in each shear region were 0.35 and 0.55. These values are in the range previously measured for turbulent free shear momentum transport (e.g., Ref. 18). The correlations were higher in regions where the shear layers are stable and lower in the reattaching and recirculation zones where the turbulent structure (1) does not appear to be "ordered", or (2) had longer time-dependent characteristics.

z-0 Plane

The axial/tangential turbulent transport rate and correlation profiles obtained at z = 102 mm are presented in Fig. 22. As expected for this nominally axisymmetric flow, the transport rates were negligible compared to the axial/radial transport rates. The levels measured, $uw < 0.004 \text{ m}^2/\text{s}^2$ and $|R_{uw}| < 0.04$ are the levels of uncertainty which probably occurred in the transport measurements and their associated correlation coefficients.

Mass Transport

Radial Direction

The measured radial mass transport rate profiles are presented in Fig. 23. The radial mass transport rate is generally associated with the radial gradients of the mean concentration profiles (Fig. 18). Discussions of the mass transport measurements will be related to these profiles, to the shear regions, and flow visualization results.

The radial mass transport at z = 13 and 51 mm was concentrated at the interface between the inner jet and annular jet stream. Relatively low peak mass transport rates occurred at these locations even though the radial concentration gradients were the highest in the flow field. Flow visualization of this region showed that coherent waves occurred in this region but that the fluid generally was not mixed. The peak transport rates at z = 102 and 152 mm were higher by a factor of 4 compared to the peak levels at z = 51 mm. The radial extent of the high radial mass transport rate spread inward and outward at z = 102 and 152 mm. The radial profiles at z = 203through 305 mm approached those associated with the self-preserving profiles of free jet mixing.

The correlation coefficient, $R_{\rm vf}$, profiles are presented in Fig. 24. At z = 13 and 52 mm, the peak correlation coefficients were 0.25. These occurred in a region with growing waves but upstream of the region with turbulent eddies. At z = 102 mm, the peak correlation coefficients were 0.55 to 0.6. These occurred where large waves are beginning to break into eddies. The peak correlation coefficients decreased monotonically with increasing z from z = 102 mm. The radial mass transport was radially outward in all regions except in the recirculation region where negative correlations occurred, corresponding to convective mass transport radially inward. The extent of this region can be more easily discerned from the correlation, $R_{\rm vf}$ profiles (Fig. 24) than from the radial mass transport profiles (Fig. 23) because the inward mass transport rates are low.

- 17

Axial Direction

Turbulent scalar (mass) transport is generally absociated with the scalar (concentration) gradients and a transport diffusion coefficient, $\dot{m_i} = -\varepsilon_m (\partial f/\partial x_i)$. However for some classes of flows with turbulent transport, notably atmospheric transport of heat, the scalar transport can be opposite the direction of the scalar gradient. This class of scalar transport is denoted "countergradient" transport and requires a "Reynolds stress" formulation to calculate the scalar (mass) transport rate (e.g., Ref. 12). Some of the axial mass transport rate measurements obtained in this study fall into the "countergradient diffusion transport" category. Discussion of these flows will relate the measured axial mass transport to the velocity shear field which produces the mass transport mechanism.

The axial mass transport rate, uf, profiles are presented in Fig. 25. The most important feature on these figures is the negative mass turbulent transport which occurred in the central region of the test section at z = 51, 102, 152 and 203 mm from the inlet plane. Note the axial mass transport rate decreased from near zero at z =13 mm to a minimum level at z = 152 mm from the inlet plane. Through the region of the test section, the inner stream mass concentration decreased with increasing axial location (see Fig. 18). Note that the peak absolute values of the axial transport rates were higher than the values for the radial transport (Fig. 23) even though the peak radial concentration gradients were approximately five times the axial concentration gradients.

The countergradient transport processes can be explained by considering the shape of the axial velocity profiles in the countergradient transport region (Fig. 11) and the eddy structure associated with the momentum transport. In the region where the inner jet was being accelerated by the annular jet, the large eddies in that velocity shear layer near the centerline were rolling with the negative fluctuating axial velocities near the inner jet fluid. The result was that preferred rotational orientation of these eddies retard the flow in a streamwise (irection and consequently resulted in $\overline{uf} < 0$ and hence countergradient mass transport.

Sketches of the regions with both countergradient and gradient axial mass turbuelnt transport and both axial velocity accelerations are shown in Fig. 26. The

region with countergradient mass turbulent transport (M2) was apparently larger than the region where the flow from the inner jet was accelerated by the flow from the annular jet (V2). This difference in region size may be due to the response time or distance required to change the character of the turbulent structure.

The correlation coefficient, R_{uf} , profiles presented in Fig. 27 show the development of the axial mass transfer distribution at the low axial turbulent mass transfer rate more clearly than the local transport rate measurements. At z = 13 mm, all the axial transport for $r/R_0 < 0.3$ was downstream. At z = 51 mm, the axial turbulent transport was downstream in the portions of the shear layer, $r/R_0 < 0.14$, where the inner jet is accelerating the shear layer between the inner and annular jet. The axial turbulent transport was negative (upstream) in the inner jet-annular stream shear layer where the annular stream fluid was accelerating the shear layer fluid. The peak negative value of the correlation coefficient increases from -0.6 at z = 102 to +0.25 at z = 305 mm. Note that the peak of the negative correlation coefficients, R_{uf} , occurred near the maximum radial gradient in the concentration profiles.

Azimuthal Direction

The azimuthal mass transport rate and the correlation coefficient profiles at z = 102 and 203 mm are presented in Fig. 28. As expected for this nominally axisymmetric flow, the transport rate was close to zero and the correlation coefficients at z = 203 mm were the order of the scatter observed in the radial and axial mass transport results. The correlation coefficient at z = 102 mm near $r/R_0 = 0$ may be high due to errors in location or small asymmetries in the location of the physical centerline of the jet. The radial mass transport data was obtained with the same optical setup but with a traverse vertically through the test section center. Misalignments of 0.5 mm (or 1/2 the probe volume length) sould have caused the radial mass transport correlation coefficient to be approximately 0.2 at z = 102 mm (see Fig. 24). No explanation for the values of $R_{wf} = 0.15$ for z = 102 and $r/R_0 = 0.3$ is apparent except that the overall mass transport at that location is low.

DISCUSSION OF SKEWNESS, KURTOSIS AND AUTOCORRELATION RESULTS FOR VELOCITY AND CONCENTRATION PROBABILITY DENSITY FUNCTIONS

Although mean and fluctuating velocity and concentration distributions and transport rate distributions are required to evaluate the accuracy of predictions with a given turbulent transport model, they do not provide the insight required to determine where the deficiencies in a turbulent transport model are located. Examination of the probability density functions for each data set (data acquired for each location) can show if the experimental conditions are compatible with the assumptions in current or proposed models. The experimental techniques and the computer based data acquisition systems employed in this study permitted the examination of these p.d.f.s and the determinations of their skewness and kurtosis parameters used to characterize the shape of the p.d.f.s. Typical results from this portion of the study are presented in this and the following section. The skewness and kurtosis for each available data set are presented in Table IV.

Typical Probability Density Functions

Velocity and concentration probability density functions (p.d.f.s) were plotted for data sets obtained at selected radial locations at z = 103 mm from the inlet plane. This axial location was chosen for more detailed analysis of the flow characteristics because the momentum and mass transfer rates are high at this location. These data were obtained as part of the momentum and mass transfer data acquisition; consequently the axial and radial velocity p.d.i.s were comprised of data from two different runs. The concentration p.d.f.s are comprised of data from the mass transport rate measurement in three directions. The mean quantity, rms variation from the mean, the skewness and the kurtosis (or flatness factors) tabulated are averages from the number of runs cited in each figure. The data from the runs was plotted to present a composite picture of the p.d.f. at each location.

The mean values and central moments of each parameter were defined using the nomenclature of Ref. 13. The specific definitions for each term are presented in Appendix II.

The axial velocity p.d.f.s (Fig. 29) showed significant changes with radial location. Several apparent relationships between the skewness and kurtosis for the shear layers at z = 102 and 203 mm can also be discerned. First, the p.d.f.s at $r/R_0 = 0.0$ and 0.1 were skewed to the higher velocity region. On the average, flow at these locations was accelerated axially. At $r/R_0 = 0.35$, the p.d.f. was skewed toward the lower velocities. On the average, fluid at this radius was decelerated by the shear layer between the jets. At radius ratios of 0.5 and 0.6, the p.d.f.s were more symmetric and had kurtosis close to that for Gaussian profiles. This latter region had an almost constant velocity gradient and almost constant turbulent momentum transport rate.

Although the radial velocity p.d.f.s (Fig. 30) showed less variation with radial location than the axial velocity p.d.f.s, they did have several varying features. At $r/R_0 = 0.0$, the p.d.f. was sharply peaked at v = 0. Approximately 80 percent of the radial velocity samples lie between $\pm .1$ m/s. The tails on each side of the peak cause the kurtosis to be relatively high, i.e., $K_V = 7.2$. The second central moment, u', increased as r/R_0 increases.

The azimuthal velocity p.d.f.s (Fig. 31) had less variation with radial location than either the axial or radial velocity p.d.f.s. The only significant change was the increase in w' with increasing radius (as did u' and v').

The inner-jet fluid concentration p.d.f.s are presented in Fig. 32. These profiles show the range of the concentration fluctuations which occurred at four radial locations. Each of the profiles shows unique features which were characteristic of specific regions of the flow. At $r/R_0 = 0.1$, the p.d.f. had a double peak. This measurement location occurred in a region where the large eddies had high or low concentration of inner jet fluid. The mean concentration value was 0.69 which occurred between the two peaks. The skewness factor was -5.1 which is a value larger than any obtained for the velocity profiles. However, the kurtosis had a value of only 2.2, which is closer to the value of 1.8 for a square p.d.f. profile than the value of 3.0 for a Gaussian p.d.f. profile.

The concentration p.d.f.s at $r/R_0 = 0.0$ and 0.35 were obtained from measurements on the inner and outer edges, respectively, of the mean concentration profiles. At $r/R_0 = 0$, the most probable inner jet fluid concentration was near 1.0. The tail of the p.d.f. was skewed toward the lower concentrations. The values of S_f and K_f were -2.6 and 12., respectively. At $r/R_0 = 0.35$, the most probable inner stream concentration was 0.0. However, the tail of the p.d.f. was skewed toward values near 0.5. The skewness and kurtosis were 4.4 and 37.0, respectively. Note the precipitious slope of the concentration p.d.f. at values of less than 0.0 which was the shape expected for an ideal seed and measurement system.

The inner jet fluid concentration p.d.f.s show probabilities, $N(f)/N_0$, greater than 1.0 and less than 0.0, the limits for the inner jet concentration. The concentration measurements less than 0.0 were attributed to photomultiplier raise and temporal shifts in the photomultiplier dark current. The concentration measurements greater than 1.0 were attributed to nonuniformity of the dye/inner-jet water mixture and shifts in the inlet dye concentration as well as zero shift and dark current. The maximum magnitude of these effects can be estimated from the concentration fluctuation measurements presented in Fig. 19 for z = 13 mm. For $r/R_0 < 0.1$, the inner jet concentration should be uniform at 1.0; the measured concentration fluctuation values were 0.05 to 0.06 for $0.3 < r/R_0 < 0.4$. The concentration should be uniform; at 0.0; the measured concentration fluctuations were approximately 0.01.

Typical Skewness and Flatness Distributions

The skewness and flatness factors for the axial, tangential and azimuthal velocity and the inner jet concentration distributions at z = 102 and 205 mm for the

inlet plane are presented in Figs. 33 through 35. These axial locations had relatively high and moderate momentum transport rates, respectively, and were therefore, suitable for comparison. Researchers requiring more insight into the radial variation of the skewness and kurtosis of the velocity components and concentrations at other axial locations can obtain the data from Table IV.

Axial Velocity

The skewness and kurtosis profiles for the axial velocity measurements at z = 102 mm (Fig. 33) show that the velocity p.d.f.s had positive skewness in the center region $(r/R_0 < 0.20)$. This indicated the longer tails of the p.d.f.s are in the positive velocity direction; a few eddies of fluid with higher axial velocities penetrated into the inner jet region to accelerate the flow. The skewness factors for $0.2 < r/R_0 < 0.55$ are negative which indicates the longer tails of the p.d.f.s were in the lower velocity direction. The kurtosis tended to be greater than 3.0, the value for a Gaussian distribution, when the skewness factor deviated from zero. The kurtosis, K_u , for $r/R_0 = 0.2$ and 0.65 were less than 3.0 which indicates a tendency toward a flat top on the p.d.f. (see Fig. 29, $r/R_0 = 0.2$).

The axial velocity skewness and flatness factor profiles at z = 203 mm had less variation from 0.0 and 3.0 respectively, than the profiles for z = 102 mm. Note that the axial velocity profile at 203 mm (Fig. 14) had less shear than the profile at z = 102 mm. The same relationships between S_u and K_u as described for z = 102 mm appear to have occurred at z = 203 mm. For 0.15 < r/R_0 < 0.6, the S_u values are negative for 0.1 < r/R_0 < 0.6 but with a much smaller magnitude than at z = 102 mm. The variation of the skewness and kurtosis from 0 and 3 was in the same direction as for z = 102 but with less deviation.

The variation of the skewness and kurtosis, from the values for a Gaussian p.d.f., appeared to be correlated to the local curvature of the axial velocity profile. The relationship is that $S_u > 0$ if $\partial^2 U/\partial r^2 > 0$ and $S_u < 0$ if $\partial^2 U/\partial r^2 < 0$. The kurtosis is also related to the curvature of the axial velocity profile. When the absolute value of curvature is high, the kurtosis is also higher than occurs for a Gaussian p.d.f. When the curvature passes through zero, the kurtosis decreases and the p.d.f. becomes flatter. The magnitude of the deviations from the values for a Gaussian p.d.f. also appears to be proportional to the magnitude of $\partial^2 U/\partial r^2$.

The forementioned relationships may not be universal but existed for the flow at these two axial locations. The positive skewness, $S_u > 0$, at z = 102 mm occurred where the curvature of axial velocity profile is positive, i.e., $\partial^2 U/\partial r^2 > 0$. The negative skewness occurred when the curvature of the axial velocity profile is negative, i.e., $\partial^2 U/\partial r^2 < 0$. Likewise, the values of the kurtosis at z = 102 mm were less than 3.0 where the curvature was near zero, i.e., $\partial^2 U/\partial r^2 = 0$ at $r/R_0 = 0.2$ and 0.6. The deviation of S_u and K_u from 0 and 3 respectively, at z = 203 mm were not as large as at z = 102 mm but were compatible with the stated hypothesis. Near $r/R_0 = 0$, the curvature of the axial valocity profiles was positive but the magnitude was small. The composite skewness profile at $r/R_0 = 0$ appears to be equal or greater than zero which is also compatible with the stated hypothesis.

Radial Velocity

The skewness and kurtosis of the radial velocity profiles are presented in Fig. 34. The skewness factor of the radial velocity p.d.f.s approached zero at $r/R_0 = 0$, as expected for axisymmetric flow. At z = 102 mm, the skewness was negative or near zero for the region $r/R_0 < 0.5$ where the radial velocity curvature was less than zero, i.e., $\partial^2 U/\partial r^2 < 0$. Values of kurtosis greater than the Gaussian value of 3.0 occurred when the skewness deviated appreciably from zero.

Azimuthal Velocity

As might be expected for axisymmetric flow, the skewness factor, S_w , profiles for the azimuthal velocities at both z = 102 and 203 mm were near zero at all radii (Fig. 35). However, the flatness factors, K_w , deviated from the Gaussian value of 3.0 in the regions where the axial and radial velocity profiles had nonzero values for skewness and had flatness factors greater than 3.0.

Inner Jet Concentration

The skewness and flatness factor profiles obtained from the concentration data at z = 102 and 203 mm are presented in Fig. 36. These data were obtained from two sets of mass transport concentration measurements: uf and vf.

At z = 102 mm, the values of S_f for $r/R_0 < 0.15$ were negative, indicating the tails of the concentration p.d.f.s were toward low values of f (see Fig. 32). At z = 102 mm and $r/R_0 = 0.4$ the skewness factor reached a value of 4 to 6. These values were higher than the skewness factors obtained for the velocity p.d.f.s. At z = 203 mm, the skewness factor was positive with a value of approximately 1 or more all radius ratios. Thus the tails of the p.d.f.s indicated a few occurrences of high inner-jet fluid concentration.

The flatness factor or kurtosis profile at z = 102 mm has an interesting variation. Near $r/R_0 = 0$, K_f was approximately 20, decreased to approximately 2 at $r/R_0 = 0.1$, increased to approximately 50 at $r/R_0 = 0.4$, and decreased to approximately $r/R_0 < 0.6$, the mean concentration level was 0.04 to 0.05 and the concentration fluctuations, r', had the same level. The motion picture frames (Fig. 10) from the flow visualization study, photographically show the magnitude of the eddy size and the variation in inner jet concentration.

Autocorrelation Measurements of Concentration

Autocorrelation measurements of the concentration photomultiplier signal were obtained at several radial locations for z = 102 mm in an attempt to obtain a quantitative measure of the axial scale of the large eddies. Results obtained at $r/R_0 =$ 0.0, 0.10 and 0.21 are presented in Fig. 37. Although the large eddy structure was discernible in the flow visualization motion pictures and on the LIF photomultiplier output, the autocorrelations did not show that a dominant frequency occurred in the

flow. The correlation $R_f(\tau) = 0$ occurred at 20 to 25 ms for all three radial locations. At $r/R_0 = 0.1$, a secondary peak in the autocorrelation occurred at $\tau = 50$ ms. This period for large scale eddies was in the range observed in the motion pictures, i.e., wavelengths of 20 to 100 mm with convective velocities of 1 to 1.5 m/sec. From the autocorrelations it was difficult to determine other times, τ , where significant peaks in the correlation coefficients occur.

Stability studies of this axisymmetric flow are currently being conducted at UTRC under Corporate sponsorship. The preliminary results indicate several axisymmetric disturbance modes with high spatial growth rates can occur with the velocity profile at z = 102 mm. The results also indicate that growth rate remains constant over a large range of cyclic frequencies, rather than reaching a peak and decreasing toward a cutoff frequency as occurs for the plane shear layer (e.g., Ref. 14). A tentative conclusion from the analytical results is that this coaxial flow with recirculation does not have a preferential large eddy wavelength but rather a range of disturbance wavelengths which can develop into large eddy structure.

DISCUSSION OF SKEWNESS AND FLATNESS RESULTS FOR MASS AND MOMENTUM TRANSFER PROBABILITY DENSITY FUNCTIONS

Typical Transport Rate Probability Density Functions

Data from the turbulent momentum and transport measurement at z = 102 mm were plotted for the same data sets used in the presentation of the velocity of the velocity and concentration p.d.f.s. The locations selected include data typical of that obtained at high turbulent mass and momentum transport rate locations.

Momentum Transport

The probability density functions for the momentum transport in the r-z plane are presented in Fig. 38. These p.d.f.s all had the peaked distributions about the zero uv momentum transport rate. This shape of momentum rate p.d.f. also occurs in turbulent boundary layers (Ref. 15). The p.d.f.s all had the two highest probability of occurences, $N(uv)/N_0$, in the probability bins adjacent to uv = 0.

Radial Mass Transport

Probability density functions of the radial mass transport data re presented in Fig. 39. The data obtained at $r/R_0 = 0.1$ and 0.2 had high mean turbulent mass transport radially outward. The mean turbulent radial mass transport rates at $r/R_0 = 0$, 0.35, 0.5 and 0.6 were an order of magnitude less than the highest rates at r/R_0 = 0.1 and 0.2. Although the p.d.f.s for $r/R_0 = 0.1$ and 0.2 were skewed toward positive values, the most probable occurrence was the negative bin adjacent to the zero transport rate. For all the data shown, the peak transport rate occurred at the smallest values of vf near zero with the sign opposite the mean turbulent radial transport direction. For the locations with the high mean turbulent transport rates, the p.d.f.s and the higher amounts, S_{vf} and K_{vf} , were well behaved and in the general range expected from Gaussian p.d.f.s of the velocity and concentration distributions with reasonable correlation coefficients. Although the p.d.f. at $r/R_0 = 0.35$ had the same general shape as these at $r/R_0 = 0.1$ and 0.2, the skewness and kurtosis, S_{vf} and K_{vf} , were large. These large values may have been due to the low turbulent intermittency factor for the mass transport that occurred as a result of the large eddy structure at this location (see Fig. 10 for flow visualization of this phenomena).

Axial Mass Transport

Probability density functions (p.d.f.s) of the axial turbulent mass transport rate for five radial locations are presented in Fig. 40. At all radial locations, the net mass transport was negative and the skewness factors were negative. For four of the five p.d.f.s including the two with high turbulent transport, the most probable turbulent transport rate was the smallest positive transport rate bin, uf = +0.02 m/s. For the two locations with the highest transport rate $(r/R_0 = 0.1 \text{ and } 0.2)$, 60 percent of all the transport occurrences were at that rate. For $r/R_0 = 0.1$ and 0.2, the

probability of occurrences, $N(uf)/N_0$ at uf = 0.02 was also more than twice as high as at uf = -0.02. These statements were also true for the radial transport at the same location.

Azimuthal Mass Transport

Probability density functions for the turbulent azimuthal mass transport data are presented in Fig. 41. Compared to the radial and axial mass transport p.d.f.s, the distributions on either side of wf = 0 were reasonably symmetric. For a nonswirling axisymmetric flow, the mean azimuthal mass transport rate and the skewness should be zero at all locations; the kurtosis would be expected to be the same order of magnitude as the kurtosis for the turbulent axial and mass transport p.d.f.s.

Typical Transport Results

Momentum Transport

The second central moment (or rms fluctuation from the mean) of the turbulent transport in the r-z plane, σ_{uv} , are presented in Fig. 42. This quantity previously was used to analyze and evaluate the turbulent transport process in boundary layers, e.g., Ref. 16. A comparison of the values of σ_{uv} with uv from Fig. 24 show that σ_{uv} was always at least a factor of two greater than uv. Ratios of σ_{uv}/uv approximately equal 3 were previously reported for boundary layers (Ref. 16). At z = 13 and 51 mm, the minimum values of uv occurred in the core regions of the inner and annular jets. In these regions, the large scale eddy structure with accompanying large values of σ_{uv} were not yet developed.

Skewness and kurtosis profiles $(S_{uv} \text{ and } K_{uv})$ for z = 102 and 203 mm are presented in Fig. 43. At z = 102 mm, the skewness factor varied across the shear layer depending on the local shear direction. The skewness factor should have approached zero at $r/R_0 = 0$ due to the zero shear stress at that location and symmetry of the flow. At z = 203 mm, the peak value of the skewness factor occurred at $r/R_0 \approx 0.3$ although the peak shear stress rate occurred at $r/R_0 \approx 0.7$ (Fig. 22). The flatness factors, K_{uv} at z = 102 mm varied across the shear layer. The values for $r/R_0 \approx 0.0$ ranged from 30 to 70. The values of K_{uv} at $r/R_0 \approx 0.2$, which was the location with the peak negative shear, decreased to values of approximately 10. Near the zero shear location, $r/R_0 \approx 0.3$, the flatness factor K_{uv} increased to 50. At z = 203 mm, the flatness factor varied from 10 for r/R_0 near zero to 25 at $r/R_0 \approx 0.7$ (the peak shear region).

These flatness factor results are similar to the results obtained in a turbulent boundary layer by Gupta and Kaplan (Ref. 17). For the boundary layer, values of the flatness factors were approximately 3 in the logarithmic shear region and increased to values above 40 in the low shear region at the edge of the boundary layer.

Radial Mass Transport

The second central moments of the turbulent axial mass transport rate p.d.f.s obtained at z = 102 and 203 mm are presented in Fig. 44. These second moments, σ_{vf} were generally less than the second moments for the axial mass transport rate, σ_{uf} . This result was compatible with higher rms fluctuations being obtained for the axial velocity component than for the radial velocity component (Figs. 15 and 16).

The skewness of the radial mass transport rate profiles (Fig. 45) show that large values of skewness were obtained for S_{vf} than either S_{uf} or S_{uv} . This increase in skewness was greatest where the radial mass transport rates were low, at $r/R_0 =$ 0.05 and 0.35 at z = 203 mm. The kurtosis, K_{vf} , was also high where the skewness was large. At z = 203 mm, the skewness increased from a value of zero at $r/R_0 = 0$ and reached values of 4 to 6 for $r/R_0 \approx 0.5$ (locations where the concentration, f, is low and the concentration fluctuation, f', are relatively high). The kurtosis also increased from values of approximately 8 at $r/R_0 = 0$ to values above 40 for $r/R_0 \approx 0.5$.

Axial Mass Transport

Profiles of σ_{uf} , the rms variation from the mean turbulent axial transport, uf, at z = 102 and 203 are presented in Fig. 46. The peak values of $_{uf}$ were approximately twice the values of the peak values of uf (Fig. 25). This ratio was less than the corresponding ratio for the momentum transport measurements. These relationships may be associated with the result that the peak correlation coefficients for the axial mass transport were greater than the correlation coefficients for the momentum transport measurements.

The skewness and flatness factor profiles for the turbulent axial mass transport measurements at z = 102 and 203 mm are presented in Fig. 47. At z = 102 mm, where the axial mass transport was in the countergradient direction, the skewness factors were negative. The peak flatness factors were 50 to 200, the largest values obtained in this study and occur at $r/R_0 \approx 0$ and 0.4 where the axial mass transport rate was negligible. The minimum kurtosis occurred at $r/R_0 \approx 0.2$, where the axial mass transport rate was negligible. At z = 203 mm, the skewness factors in the high axial mass transport rate was high. At z = 203 mm, the skewness factors in the high axial mass transport region were 1 or less. However, $S_{\rm uf}$ increased to 2 in the region where the shear was high and the axial mass transport was low. The kurtosis of the turbulent axial mass transport rate p.d.f.s varied from 7 to 10 in the high axial mass transport rate second to more than 20 at $r/R_0 = 0.65$ where the axial mass transport rates and mean concentrations were low.

Azimuthal Mass Transport

The second central moment, skewness and kurtosis for several turbulent azimuthal mass transport p.d.f.s at z = 102 mm are presented in Fig. 48. The central moment results were approximately equal to those for the radial mass transport (Fig. 44). The skewness results were near zero at all radii except for $R/R_0 = 0$ where the value

of -2.8 was obtained. For an axisymmetric flow, skewness values equal zero were expected. The large skewness at $r/R_0 = 0$ was attributed to possible errors in probe volume location. Recall the skewness vlaues for vf increased to large values near zero (Fig. 45) and the optical arrangements for the radial and azimuthal mass transport rate measurements are identical with the exception of the traverse path. The kurtosis for wf was in the same range as that obtained for uf.

a si je

SUMMARY OF RESULTS

Qualitative and quantitative studies were conducted of the flow downstream of coaxial jets discharging into an expanded duct. The ratio of annular jet diameter and duct diameter to the inner jet diameter were 2 and 4, respectively. The inner jet peak velocity was approximately one-half the annular jet peak velocity. Results from the studies were related to the four shear regions within the duct: (1) wake region downstream of the inlet, (2) shear layer between the jets, (3) recirculation region, and (4) reattachment region.

Flow visualization studies were conducted using dye as a trace material and high-speed motion pictures to record the dye patterns in selected r-z and r- θ planes. Following are the principal results from this study:

1. The flow was as axisymmetric and swirl-free as could be determined visually.

2. The larger scales of the turbulent structure were observed to grow from the width of the wake region downstream of the inner jet tube to a large fraction of the duct diameter immediately upstream of the reattachment zone.

3. The turbulent eddies were <u>not</u> axisymmetric or periodic at any location within the duct. The large scale waves and eddies appeared to have a range of wave lengths.

4. Vortex pairs of secondary eddies were observed in the r- θ plane in the region where the shear layer between the jets was developing.

A detailed map of the velocity, concentration, mass transport rate and momentum transport rate distribution within the duct was obtained to provide data for the evaluation and improvement of turbulent transport models. Data sets of two velocity components pairs were obtained simultaneously to determine momentum transport rate and velocities. Data sets of velocity and concentration pairs were obtained simultaneously to determine mass transport rate, concentration, and velocity. Probability density functions (p.d.f.s) of all the forementioned parameters were obtained from the data sets. Mean quantities, second central moments, skewness and kurtosis were calculated to characterize each data set. Following are the principal results from this study:

5. The axial and redial velocity profiles documented the changes in the shear regions within the duct.

6. The mean and fluctuating concentration profiles documented the inner jet fluid distribution within the duct.

7. The turbulent momentum transport rate measurements in the r-z plane documented the local momentum fluxes due to turbulent mixing. Correlation coefficients were determined for each measurement location and data set.

Ę

8. Countergradient turbulent axial mass transport was measured in the shear region between jets. The peak axial mass transport rates were greater than the peak radial mass transport rates even though the axial concentration gradients were approximately one-fifth the radial gradients.

1. (m. 1. m. 1.

9. The countergradient turbulent axial mass transport was related to the general direction of the eddies between the inner and annular jets. The countergradient axial mass transport occurred when the annular jet was accelerating the inner jet fluid.

10. Turbulent axial mass transport correlation coefficients as high as 0.6 were measured. These correlation coefficients were greater than the peak momentum transport or radial mass transport correlation coefficients.

11. The skewness and kurtosis of the momentum transport p.d.f.s in the peak shear region were approximately the same as previously measured in turbulent boundary layers. However, the kurtosis in the low shear region was greater than previously measured in the wake region of the turbulent boundary layers.

12. The skewness of the axial velocity p.d.f.s was related to the curvature of the axial velocity profiles. $S_u < 0$ was obtained for $\partial^2 U/\partial r^2 < 0$; $S_u > 0$ was obtained for $\partial^2 U/\partial r^2 > 0$. The skewness was also proportional to the magnitude of $\partial^2 U/\partial r^2$.

13. The peak values of kurtosis for the mass transport p.d.f.s were greater than the peak values for the momentum transport p.d.f.s.

14. The kurtosis for all the transport rate p.d.f.s were an order of magnitude greater in the low transport rate regions, including the recirculation region, than in the high transport rate regions.
REFERENCES

- 1. Launder, B. E. and D. B. Spalding: <u>Mathematical Models of Turbulence</u>. Academic Press, 1972.
- 2. Demetriades, A.: Probes for Multivariant Flow Characteristics. Proceedings of the Dynamic Flow Conference, 1978.
- 3. Libby, P. A.: Studies in Variable-Density and Reacting Turbulent Shear Flows, Studies in Convection, Vol. 2, Academic Press, 1977.
- 4. ----: Application of Non Intrusive Instrumentation in Fluid Flow Research. AGARD Conference Proceedings No. 193, May 1976.
- 5. Becker, H. A.: Mixing Concentration Fluctuations, and Marker Nephelometry Studies in Convection, Vol. 2, Academic Press, 1977.
- Johnson, B. V. and J. C. Bennett: Velocity and Concentration Characteristics and Their Cross Correlations for Coaxial Jets in a Confined Sudden Expansion; Symposium on the Fluid Mechanics of Combustion Systems, 1981 ASME Fluids Engineering Division Meeting, Boulder, CO, June 22-24, 1981. Also issued as UTRC Report UTRC81-16, March 1981.
- Habib, M. A. and J. H. Whitelaw: Velocity Characteristics of Confined Coaxial Jets With and Without Swirl. ASME Journal of Fluids Engineering, Vol. 102, pp. 47-53 (1980).
- 8. Schetz, J. A.: Injection and Mixing in Turbulent Flow, Vol. 68, Progress in Astronautics and Aeronautics, AIAA, 1980.
- 9. Habib, M. A. and J. H. Whitelaw: Velocity Characteristics of a Confined Coaxial Jet. ASME Journal of Fluids Engineering, Vol. 101, pp. 521-529, December 1979.
- 10. Durst, F., A. Melling and J. H. Whitelaw: <u>Principles and Practices of Laser-</u> Doppler Anemometry. Academic Press, NY, 1976.
- 11. -----: Data for Dye Lasers. Kodak Publication No. JJ-169, March 1972.
- 12. Lumley, J. L.: Computational Modeling of Turbulent Flows. Advances in Applied Mechanics. Vol. 18, Academic Press (1978).
- 13. Tennekes, H., and J. L. Lumley: <u>A First Course in Turbulence</u>, Chapter 6, MIT Press, 1972.
- 14. Michalke, A.: On Statial Growing Disturbances in an Inviscid Shear Layer, Journal of Fluid Mechanics, Vol. 23, Part 3, 1965, pp. 521-544.

R81-915540-9

- 15. Lu, S. S. and W. W. Willmarth: Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer, J. Fluids Mechanics, Vol. 60, Part 3, pp. 481-511 (1973).
- 16. Willmarth, W. W.: Structure of Turbulence in Boundary Layers, Advances in Applied Mechanics, Vol. 15, Academic Press, NY, 1975.
- 17. Gupta, A. K. and R. E. Kaplan: Statistical Characteristics of Reynolds Stress in a Turbulent Boundary Layer, Phys. Fluids, Vol. 15, pp. 981.
- 18. Hinze, J. O.: Turbulence, McGraw-Hill, NY, 1959, Chapter 7.
- 19. Gerstein, M. (Ed): Fundamentals of Gas Turbine Combustion, NASA Conference Publication 2087, 1979.
- 20. Hudson, D. A.: Combustion Modeling Needs for the 80's. AIAA Preprint 80-1288.
- Mellor, A. M.: Turbulent-Combustion Interaction Models for Practical High Intensity Combustors: Seventeenth Symposium on Combustion, p. 377, Combustion Institute, 1979.
- 22. Dryburgh, D. and R. B. Edelman: Technical Evaluation Report on the Propulsion and Energetics Panel 54th Meeting on Bomcustic Modeling. AGARD Advistory Report No. 153, March 1980.

APPENDIX I

FLOW VISUALIZATION RESULTS FOR ALL FLOW CONDITIONS

Flow visualization studies were conducted prior to the selection of the flow condition for detailed data acquisition to determine the effects of the velocity ratio, V_i/V_a , on the flow characteristics within the test section.

Motion pictures were obtained in the r-z plane with the center of illumination at z = 100 and 200 mm and in the r-0 plane at z = 51, 102 and 203 mm. Motion pictures with a frame speed of 500 per second were obtained for each flow condition for the following five conditions:

Flow Condition	Inner Jet Velocity, V _i m/s	Annular Jet Velocity, V _a m/s	Inner Jet Flow Rate gpm	Annular Jet Flow Rate gpm
1	0.52	1.66	6.2	52.8
2	0.27	1.66	3.2	52.8
3	2.08	1.66	24.6	52.8
4	0.94	1.51	11.1	48.0
5	0.94	2.87	11.1	94.8

In the following paragraphs, the photographs presented in Figs. 10 and 49 to 52 will be discussed. Discussion about the characteristics of Flow Condition 1 is repeated to form a basis for comparison. Where possible, the turbulent structure will be related to the shear regions shown schematically in Fig. 1. The motion picture frames chosen from each sequence were selected to show the largest scale of turbulence which occurred at each location. For some locations the large scale structure was intermittent.

The photographs of Flow Condition 1 are presented in Fig. 10. This flow condition was the same as that for which data was acquired in Ref. 6. In the upper left photograph, the classical large eddy structure associated with shear layers could be discerned. The dyed inner jet fluid was moving slower than the annular jet; hence the eddies were "rolling" faster than the inner jet fluid. These eddies were associated with the shear layer between jets (Fig. 1). The upper right photograph shows the scale of the eddies containing inner jet fluid which occurred immediately upstream of the reattachment region (Fig. 1). The inner jet fluid intermittently filled most of the duct cross section. The r-0 plane photograph for z = 51 mm shows the size of the eddy structure in the wake region. At z = 102 mm, which was in the shear layer between the jets, the radial scale of turbulence was increased and vortex pairs could be discerned from observation of the motion picture sequences. These vortex pairs were similar to the vortex pairs observed by the California Institute of Technology fluid mechanics research group. The vortex pairs appeared to occur randomly both timewise and azimuthally in the shear layer between jets. At z = 152 mm

R81-915540-9

the inner jet fluid distribution became more three dimensional than at the upstream locations. This location was also in shear layer between jets. The largest scale structure with high dye concentrations occurred at z = 203 mm. This location was immediately upstream of the reattachment zone where the annular jet fluid began to decelerate and flow toward the duct wall. At further downstream locations, the peak concentrations of the inner jet fluid were lower and the dye concentration more uniform across the duct $r-\theta$ cross section.

The inner jet velocity, V_i , for Flow Condition 2 was approximately half that of Flow Condition 1. As a result the wake region length was decreased and the classical large eddy structure of the shear layer between jets occurred at z = 51 mm. The $r-\theta$ plane photograph showed dye filaments at the edge of the inner jet fluid which were associated with the vortex pair phenomena described for Flow Condition 1. The lack of axisymmetry in the shape of the inner jet fluid also occurred at z = 102 mm rather than at z = 153 mm for Condition 1. At z = 203 mm the radial extent of the diffuser inner jet fluid spanned the entire duct diameter.

For Flow Condition 3, the inner jet velocity, V_i , was four times that for Flow Condition 1. Thus, the inner jet was flowing faster than the annular stream. In the upper left photograph, the shape of the eddies in the shear layer between jets seem to be different than occurred for Flow Condition 1 c. 2. The eddies were observed to roll in the opposite direction with a wave speed less than the inner jet fluid. In the right r-z plane photograph, the size of the turbulent eddies was smaller than for the previous case. The reattachment zone was also moved downstream compared to Flow Conditions 1 and 2. At z = 51 mm and 102 mm the double-vortex structure could be discerned. At z = 203 mm the inner jet fluid concentration was decreased in some locations, but the large scale structure which occurred upstream of the reattachment zone had not yet formed.

Flow Condition 4 was chosen to obtain approximately equal peak velocities in the inner jet and annular stream. The flow rates were determined by ratioing the peak velocities and flow rates from Ref. 6 to the desired velocity ratio. The r-z photograph for z = 100 mm showed eddies in the shear region layer between jets that did not have a single "roll" direction. Observation of the motion pictures showed rolls in both directions but with most of the direction previously associated with higher annular jet velocities. At z = 200 mm, the inner jet had large eddy structures similar to that for Flow Condition 1. The reattachment zone for Flow Condition 4 was approximately 4 mm downstream of that for Condition 1. The turbulent structure in the r-0 planes at z = 102, 157 and 203 mm had slightly smaller eddy sizes than at the same axial locations for Flow Condition 1.

Flow Condition 5 has approximately 75 percent greater velocity in both jets than Flow Condition 1. Within the ability to discern flow characteristics from the high speed motion pictures, the turbulent structure of Flow Condition 5 was the same as Flow Condition 1.

The flow visualization study showed the flows were as axisymmetric and swirl free as could be determined visually. Although the scale of the turbulent structure

R81-915540-9

i-l

was relatively large, the eddies were not axisymmetric or periodic. The large scale waves and eddies appeared to have a range of wavelengths. The flows did not have bistable modes or preferred azimuthal turbulent eddy orientations at any location including the reattachment region. However, the scale of the turbulent structure near the reattachment region was large which will require relatively long data acquisition times to acquire stationary data sets. u

APPENDIX 11

DEFINITIONS OF SKEWNESS AND KURTUSIS FOR VELOCITY, CONCENTRATION, AND TRANSPORT PROBABILITY DENSITY FUNCTIONS

Terms in this appendix for the velocity components and concentrations are defined using the notation of Ref. 13 and conventional statistical methods.

û Local	instantaneous	axial veloc	ity component
---------	---------------	-------------	---------------

B(\tilde{u}) Probability density function (p.d.f.) of \tilde{u} with properties B(\tilde{u}) ≥ 0 and $\int_{-\infty}^{\infty} B(u) du = 1.0$

U Mean value of axial velocity component defined: $U = \int_{-\infty}^{+\infty} \tilde{u} B(\tilde{u}) d\tilde{u}$

Local instantaneous axial velocity fluctuation from the mean, defined: $u = \tilde{u} - U$

 σ_u or u' Second central moment of velocity u defined: $\sigma_u^2 = u^{*2} = \int_{-\infty}^{\infty} u^2 B(\tilde{u}) d\tilde{u}$ Will also be denoted as rms fluctuation.

 u^{n} nth central moment of velocity u defined: $u^{n} = \int_{-\infty}^{\infty} u^{n} B(0) d0$

 S_u Skewness of velocity component, u, p.d.f. defined: $S_u = \overline{u^3}/\sigma_u^3$

 K_u Kurto<u>sis</u> (or flatness factor) of velocity component, u, p.d.f. defined: $K_u = u^4/\sigma_u^4$

In like manner, the mean, rms fluctuation, skewness, and kurtosis for the radial velocity, azimuthal velocity and concentration are defined.

The second moments, skewness and kurtosis for the momentum and mass transport rates are defined in a similar manner.

uÝ	Local instantaneous momentum turbulent transport rate: $(\tilde{u}-U)(\tilde{v}-V)$
B(uv)	Probability density function (p.d.f.) of uv with properties $B(uv) > 0$ and $\int_{-\infty}^{+\infty} B(uv) d(uv) = 1.0$
ūV	Mean value of turbulent momentum transport rate defined: uv = ∫ (ũ-U) (ỹ-V) b(uv) d(uv)
(uv)'	Local instantaneous fluctuation of momentum transport rate from mean,

σ _{uv}	Second central moment of momentum transport rate: $\sigma_{uv} = \int_{-\infty}^{\infty} (uv)^2 B(uv) d(uv)$
(uv) ⁿ	nth central moment of momentum transport rate: $(uv)^n = \int_{-\infty}^{\infty} (uv)^{in} B(uv) d(uv)$
Suv	Skewness of momentum transport rate: $S_{uv} = (\bar{uv})^3 / \sigma_{uv}^3$

 K_{uv} Kurtosis of momentum transport rate: $K_{uv} = (\overline{uv})^4 / \sigma^4$

In a like manner, the mean, second central moment, skewness and kurtosis for the momentum transport in the r-z plane and the mass transport in three directions are defined.

r

Components Used for Two-Component LV Measurements

I. Laser Light Source

Argon Ion Laser (Lexel Model 95) All lines, 1.0 watt power Etalon installed TEM_{mo} mode

II. LV Optics

DISA Model 5500 Optics Beamsplitters (2) Bragg cell: 1 mHz effective frequency offset Backscatter unit: 2 color Optical filters 0.5145 and 0.4880 µm wavelengths Field stop unit Beam spacing unit Beam expander Achromatic lens: 310 mm FL Photomultiplier tubes (2)

III. Electronics

LV Signal Processors - 2 (SCIMETRICS Model 800A) 0.4 to 2.0 mHz range 3% data window 4/8 and 5/8 comparison for "good signals" Oscilloscope - 2 (Tektronics Model 465B) LV Data Handling Interface (UTRC design) Clock Coincidence check Computer (PDP 11/10) Floppy disk DECwriter III (1200 baud rate)

Components Used for LV/LIF Measurements

Light Source Ι. Argon Ion Laser (Spectra Physics Model 164) 0.4880 µm wavelength 0.5 watts power II. LV/LIF Optics Transmitting Optics Polarization rotator (TSI 9102 12) Beamsplitter (TST 9115) Bragg cell: 1.0 mHz frequency offset (TSI 9180) Beam spacer (TSI 9113-22) Beam expander (TSI 9188) Transmitting lens (ϕ = 7.57 deg.) (TSI 9110) Concentration Data Acquisition Optics Backscatter unit (TSI 9140) Photomultiplier tube (RCA 7265) Wratten filter (Kodak #15) Velocity Data Acquisition Optics Backscatter unit (TSI 9140) Photomultiplier (TSI 9160) Collecting lens: 250 mm F.L. (TSI 9118) III. LV Electronics LV Signal Processor (SCIMETRICS Model 800A) 0.4 to 2 mHz range 3% data window 4/8 and 5/8 comparison for "good signals" Oscilloscope (Tektronics Model 465b) 2 units Minicomputer (PDP 11/10) Floppy disk DECwriter III (1200 baud rate) IV. LIF Electronics Current-to-Voltage Converter (UTRC design) Low Pass Filter 2 KHz (Kronhite Model 3202) Oscilloscope (Tektronics Model 465B) A/D Converter (PDP LPS Unit) Computer controlled Digital Voltmeter (HP Model 3465A) Minicomputer (PDP 11/10) Same as for LV electronics LV Data Interface (UTRC design) Clock

TABLE II

Table of Run Numbers from Which Data was Utilized for Tables and Figures

Velocity Component or Transport Measurement	Traverse		Axial Location, z-mm									
Obtained	Direction	C _L	13	51	102	152	203	254	305			
, U, V, uv	Vertical		44,8	17	16,15	20	21	72	74			
U, W, uw	Horizontal		9	14	18,23	19,24	22	71	73			
U, C, uc	Vertical	59,68	60	61	62	63	64	66	67			
V, C, vc	Vertical	55	45	47	52	51	50	69	70			
W, C, wc	Horizontal		57	58	53	54	56					
U (only)	± 45 deg		10,11									

--'--

TABLE III

Figures on Which Results are Displayed

	Direction	Central				Ax	ial Lo	ocati	on, z	-mm	
Quantity	or plane	Moment	Symbol	CL	13	51	102	153	203	254	305
Velocity	Z	1 2 3 4	U u' S _u Ku	12	11 15	11 15	11 15 33 33	11 15	11 15 33 33	11 15	11 15
	r	1 2 3 4	V v' S _V K _v		13 16	13 16	13 16 34 34	13 16	13 16 34 34	13 16	13 16
	0	1 2 3 4	W W' S _W K _W		14 17	14 17	14 17 35 35	14 17	14 17 35 35	14 17	14 17
Concentration		1 2 3 4	f f' S _f K _f	12	18 19	18 19	18 19 36 36	18 19	18 19 36 36	18 19	18 19
Momentum Transport	2-r	1 2 3 4	uv R _{uv} ^J uv S _{uv} K _{uv}		20 21	20 21	20 21 42 43 43	20 21	20 21 42 43 43	20 21	20 21
	z-0	1	uw R _{uw}				22 22				
Mass Transport	Z	1 2 3 4	uf R _{uf} ^O uf S _{uf} K _{uf}		25 27	25 27	25 27 46 47 47	25 27	25 27 46 47 47	25 27	25 27
	r	1 2 3 4	vf Rvf ^o vf Svf Kvf		23 24	23 24	23 24 44 45 45	23 24	23 24 44 45 45	23 24	23 24
	6	1 2 3 4	Wf Rwf Øvf Swf Kwf				28 28 48 48 48				

43

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 6/15/81

8 * ***** * ____

Run No.: 14 Flow Condition: 1 Geor

1 Geometry: 1

Axial Location: $51 \text{ mm} (2.0 \text{ in.}); x/R_0 = 0.83$

۲ _L No.	r m +(6-270) -(8-90)	r/R _o	ป m/ม	u' m/s	Su	Ku	¥ m/s	V' R/S	స్త	Ky	<u>uv</u> n ² /s ²	R _{uer}	€ uv m²/s²	w	K _{uw}	N
1	0.7	.011	0.717	.051			.007	.044		_						
2	3.7	.061	0.676	.069			.000	.050								
3	6.8	.111	0.616	.079			.004	.054	1							
4	9.8	.161	0.658	.134			.008	.082		1	J					
5	12.9	.211	0.888	.188			.003	.148			1]			
6	15.9	.261	1.243	.169			.024	.132			J					
7	19.0	. 311	1.443	.091			.007	.060			1		ł			
8	22.0	. 361	1.491	.064			020	.045		[I			
9	25.1	.411	1.474	.083		1	030	.063					i i			
10	28.1	.461	1.241	. 203			026	.159					ľ			
11	31.2	.511	0.865	.225			027	.215								
12	34.2	.561	0.443	. 292			031	.199					1			
13	37.3	.611	0.110	. 198			029	.176			1					
14	40.3	.661	-0.015	.141			003	.129								
15	46.4	.761	-0.078	.139			011	.127	Į							
16	52.5	.861	-0.075	.141		[023	.119			1					
17	0.7	.011	0.706	.057			002	.041	(1					
18	-2.4	039	0.724	.049			002	.037	1 .							
19	-5.4	089	0.700	.065			.002	.045	1							
20	-8.5	139	0.649	.087			.002	.079	1							
21	-11.5	189	0.845	.170		1	.023	.139								
22	-14.6	239	1.195	.190			.073	.138	Ì							
23	-17.6	289	1.438	.105			.069	.080		1						
24	-20.7	338	1.486	.069			.021	.054								
25	-23.7	388	1.483	.097		ļ	.005	.071	[l	ļ					
26	-26.7	438	1.324	. 194			.008	.121	ŀ							
27	-29.8	488	0.901	.276			.001	.191								
28	-32.8	538	0.487	.283			.020	.200								
29	-35.9	588	0.187	.259		[.038	.161		Į						
30	-38.9	638	-0.030	.135			.016	.138	1							
31	-45.0	738	-0.067	.122			.029	.098								
32	-51.1	837	-0.128	.141			.020	.081								
33	0.7	.011	0.737	.053			.004	.042		[

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

R91-915540-9

AXIAL AND RADIAL VELOCITY DATA AND CORRELATIONS

Test Date: 6/16/81 Run No.: 15

 $\tau_{\tilde{i}}$

: 15 Flow Condition: 1

Geometry: 1

Axial Location: 102 mm (4.0 in.); $x/R_0 = 1.66$

Pt. No.	r mm + (6=0) - (8=180)	r/R _o	U m/s	u' =/s	Su	Ku	V m/s	v' n/s	S _V	۴v	<u>uv</u> ∎2/54	R _{uv}	σ _{uv} =2/=2	Suv	K _{uv}	N
1	0.5	.008	.780	.123	1.318	7.53	019	.123	-1.627	12.99		1		1		491
2	3.6	.058	.784	.123	1.017	5.83	067	.125	- 1	- 1	1	1	1]		499
3	6.6	.108	.860	.170	.799	3.39	067	.129	870	6.25	1	1	1	1		497
4	9.7	.158	1.005	.194	.409	2.70	055	.143	399	3.33	ļ	1	1]		499
5	12.7	. 208	1.212	.201	072	2.35	078	.148	244	3.81	}	Į.	ł	1		499
6	15.7	.258	1.370	.187	719	2.94	046	.144	013	4.04	1	ł	1	1		999
7	18.8	.308	1.491	.146	-1.284	5.36	018	.140	127	4.44	{		1	ſ	[998
8	21.8	.358	1.372	.184	-1.760	6.94	.008	.149	878	5.80	{	1	1	1	1	999
9	24.9	.408	1.264	.244	-1.198	4.80	.028	.174	604	4.12	1	1	1	1		999
10	27.9	.458	1.069	.276	-	-	.043	.198	- 1	- 1	1	1	1	1		1
1 11	31.0	. 508	.821	. 309	336	3.09	.055	.223	180	2.92	ł	{	1	1	ł	997
12	34.0	.558	.586	.319	159	2.88	.040	.232	.510	4.72	}]		}	1	499
13	37.1	.608	. 342	. 321	028	2.70	.025	.237	.916	5.71	ł	1		ł	}	249
14	43.2	.708	032	.279	.576	3.40	.018	. 196	.744	4.00	1		1	1	í.	249
15	49.3	808.	187	.228	.897	4.40	028	.134	.726	5.06	1		1			248
16	0.5	.008	.732	.119	.927	4.97	014	.114	896	11.65	1	i	1	1	i	498
17	-2.5	042	.742	.136	1.068	5.36	058	.155	-2.537	15.01	{	1	1	1		499
18	-5.6	092	.782	.143	.817	3.58	061	.154	-3.312	24.91	1	1	1	I	I	499
19	-8.6	142	.889	.170	.632	3.16	070	.143	771	4.91	1	}	1	}		498
20	-11.7	192	1.047	.193	.059	2.46	070	.145	046	3.00	ł	ł	ł			498
21	-14.7	241	1.229	.179	492	3.00	060	.156	-1.435	12.41		1	1	1		999
22	-17.8	291	1.351	.161	904	4.05	031	.150	-1.059	9.77	{	ł	1	l		999
23	-20.8	341	1.396	.169	-1.476	6.29	013	.155	862	6.73	1	[1	Ş		997
24	-23.9	391	1.316	.212	-1.272	4.90	.028	.171	537	4.03	ł	Į	1	ł		998
25	-26.9	441	1.133	.268	819	3 59	.040	.217	778	4.96	ļ	Į –	1	ţ		998
26	-30.0	491	.880	. 304	255	2.85	.067	.226	230	2.81	1	ł		1	1	999
27	-33.0	541	.629	. 321	076	3.09	.043	.240	.024	2.77	1		}	i	ł	499
28	-36.1	591	.461	. 340	-	-	.044	.207	- 1	-	}	ł		ł		1
29	-42.2	691	.079	.338	-	-	013	.145	-	-	ł	1		ł	[ł
30	-48.3	791	.029	.202	-	-	094	.096	-	- 1		l		1		1
31	0.5	.008	.723	.088	(-)	-	001	.063	- 1	-	1				1	1

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 6/17/81 Run No.: 16

Flow Condition: 1

Geometry: 1

Axial Location: 102 mm (4.0 in.); $x/R_0 = 1.66$

P _t No.	r === +(0=0) -(0=180)	r/R _o	U m/s	u* m/s	Su	Ku	V m/s	v' m/s	Sv	Ky	<u>uv</u> ■²/s²	R _{uv}	σ _{.JV} m ² /s ²	S _{uv}	K _{uv}	
	0.5	0.008	.768	.126	1.118	6.38	.001	.117	.163	8.99	.0005	.003	.030	1.28	41.23	498
2	3.6	0.058	.768	.131	1.409	7.36	026	.106	-1.019	5.89	0049	355	.025	-3.14	31.49	499
3	6.6	0.108	.840	.158	.903	3.80	043	.119	752	3.97	0088	470	.023	-2.69	15.73	499
4	9.7	0.158	.976	.199	.394	2.67	065	.146	401	2.87	0167	576	.032	-1.85	10.08	499
5	12.7	0.208	1.172	.204	140	2.67	071	.137	059	2.92	0142	508	.030	-2.14	11.90	499
6	15.7	0.258	1.368	.187	797	3.24	047	.146	065	3.86	0082	300	.032	-1.07	19.01	999
1 7	18.6	0.308	1.493	.135	-1.492	6.97	017	.134	025	4.17	0006	035	.028	2.31	50.58	999
8	21.8	0.358	1.459	.176	-1.434	5.80	.013	.149	281	5.02	.0064	.244	.039	3.94	49.91	999
9	24.9	0.408	1.333	.253	-1.288	5.44	.046	.173	678	5.23	.0167	.381	.063	3.82	36.09	999
1 11	31.0	0.508	.894	.311	423	3.17	.068	.222	193	3.40	.0277	.402	.077	1.15	13.24	998
12	34.0	0.558	.663	.319	345	3.12	.059	.224	.029	3.51	.0271	.379	.078	1.70	9.71	499
13	37.1	0.608	.454	.355	040	2.70	.049	.216	.327	4.00	.0379	.494	.085	2.42	11.58	249
14	43.2	0.708	.006	.348	.135	2.19	.008	.211	.611	3.81	.0320	.436	.072	2.37	18.72	249
15	49.3	0.808	205	.229	.723	3.40	031	.143	.663	3.57	.0126	. 384	.036	2.2/	12.71	249
16	0.5	0.008	.761	.126	1.041	5.45	.001	.112	.017	5.26	.0004	.025	.022	1.48	25.26	49/
17	-2.5	-0.041	.785	.126	1 1.077	6.04	042	.121	-1.234	5.41	0034	225	.020	-1.43	23.51	477
18	-5.6	-0.091	.842	.156	.833	4.30	070	.141	812	3.58	0096	436	.029	-1./9	21.51	477
19	-8.6	-0.141	.957	.186	.566	2.97	072	.151	493	3.46	0119	424	.033	-3.73	39.33	477
20	-11.7	-0.191	1.132	.205	.196	2.46	068	.164	436	4.35	0138	410	.031	-0.90	16 40	477
21	-14.7	-0.241	1.292	.192	.547	3.05	058	.148	010	4.21	0089	313	.031	2 02	13.49	000
22	-17.8	-0.291	1.422	.176	.752	3.53	034	.152	450	5.84	0010	03/	.03/	5.05	40.17	000
23	-20.8	-0.341	1.473	.171	1.329	6.06	.006	.151	348	2.38	.0054	.208	.044	3 68	23 45	000
24	-23.9	-0.391	1.381	.237	-1.356	5.07	.022	.102	807	9.70	.019/	-437 600	.060	2 76	17 49	999
25	-26.9	-0.441	1.168	.299	651	3.11	.051	.200	20/	2.77	.0314		.000	0.38	18 81	000
26	-30.0	-0.491	.955	.319	398	3.30	.0/5	253	093	3.10	.0321	.443	.002	1.64	12.76	499
27	-33.0	-0.541	.707	.326	1/3	3.22	.007	255		2 52	.0349	404	.093	1.53	7.26	248
28	-36.1	-0.591	.468	.358	209	3.17	.039	208	040	2.52	.03/1	396	072	1.43	9.09	249
29	-42.2	-0.691	.074	.334	.1/0	2.92	.002	.132	1 352	7.30	.0200	. 362	.043	4.63	32.22	249
1 30	-48.3	-0./91	209		91C	7 11	- 002	.105	- 403	7.94	.0000	070	.023	-4.23	67.05	499
31	0.5	0.008	.112	.111	.01)	/.11			.403							

٠

MASS AND HOMENTUM THREULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract MAS3-22771)

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 6/18/81

Flow Condition: 1

Geometry: 1

Axial Locstion: 51 mm (2.0 in.); x/R_o = 0.83

Run No.: 17

۲ _נ Nv.	r - (+ (++++)) - (++++++++++++++++++++++++++++++++++++	r/R _o	U m/s	u' m/s	Su	Ku	V m/s	v' m/s	5.	Ky	uv m ² /s ²	Ruv	σ _{υν} 12/18 ²	S _{uv}	Kuv	N
1	0.0	.000	.762	.054	253	2.97	.002	.041	.131	3.28	0002	090	.002	-0.05	8.69	499
2	3.0	.050	.754	.055	438	3.29	.001	.039	005	3.72	.0001	.062	.002	-0.83	18.36	499
3	6.1	.100	.723	.066	480	3.34	.002	.049	337	3.29	.0006	.175	.003	2.77	22.61	499
4	9.1	.150	.694	.116	1.137	6.36	039	.114	620	3.23	0047	353	.017	-4.04	31.24	499
5	12.2	. 200	.927	.174	.371	2.92	049	.136	211	2.58	0112	473	.025	-1.47	7.68	499
6	15.2	.250	1.297	.185	517	2,75	058	.130	.367	3.05	0116	484	.026	-1.82	8.06	999
7	18.3	. 300	1.551	.087	-1.753	8.39	029	.082	.788	5.47	0017	235	.011	-5.94	69.40	998
8	21.3	. 350	1.569	.066	849	1.90	026	.076	760	6.52	.0014	.273	.006	3.29	25.64	997
9	24.4	.400	1.506	.124	-1.342	7.47	009	.103	-1.111	8.33	.0050	.394	.021	5.77	55.86	998
1 11	30.5	. 500	1.254	.228	672	3.28	.029	.156	809	4.44	.0145	.409	.048	3.66	29.89	999
12	33.5	.550	.841	.276	056	3.03	.052	.200	211	2.71	.0232	.421	.058	1.72	11.86	499
13	36.6	.600	.482	.256	.108	2.91	.051	.209	091	3.00	.0262	.489	.054	1.35	6.50	249
14	42.7	.699	039	.198	.427	4.43	021	.136	1.405	8.37	.0075	.278	.034	2.25	15.83	249
15	48.8	.799	134	.154	204	2.95	034	.092	.337	4.74	.6018	.127	.013	-0.12	7.14	247
16	0.0	.000	.747	.055	545	3.34	004	.045	075	3.20	.0000	.006	.003	0.54	10.27	498
17	-3.0	050	.743	.059	373	2.79	002	.045	468	4.39	.0004	.136	.003	2.66	23.75	479
18	-6.1	100	.724	.066	528	3.53	001	.048	353	3.06	.0007	.229	.004	3.17	27.71	477
19	-9.1	150	.689	.099	.682	4.55	039	.098	-1.078	4.85	0029	297	.014	-4.58	35.00	499
20	-12.2	200	.906	.158	.313	2.90	065	.139	622	4.75	0091	413	.022	-1.04	8.24	476
21	-15.2	250	1.249	.170	334	2.76	062	.127	.517	3.38	0092	427	.023	-2.24	13.38	998
25	-27.4	450	1.281	.227	732	3.50	031	.155	724	4.46	.0143	.406	.045	5.69	72.36	777
26	-30.5	500	. 626	.285	210	2.81	048	. 208	091	3.15	.0302	.510	.065	1.76	9.04	777
27	-33.5	550	.413	. 268	152	3.14	027	.211	.239	3.03	.0241	.427	.061	1.92	8.90	477
28	-36.6	600	.090	.268	.442	3.08	024	.174	.657	3.35	.0222	.475	.053	1.79	9.80	247
29	-42.7	699	136	.161	053	2.78	051	.092	.936	7.78	.0049	.333	.017	2.16	10.20	249
30	-48.8	799	131	.155	121	2.97	032	.069	209	4.36	.0026	.242	.013	2.19	25.43	248
31	-51.8	849	111	.148	458	3.69	027	.093	2.272	18.65	.0023	.170	.010	1.38	9.97	1 239
32	0.0	.000	.753	.057	248	2.71	002	.041	.210	3.22	.0001	.058	.002	0.01	10.97	
										1						

Test Date: 6/22/81

Flow Condition: 1 Geometry: 1

Axial Location: 102 mm (4.0 in.); $x/R_0 = 1.66$

Run No.: 18

Pt No.	r + (6-270) - (9-90)	r/R _o	U m/=	u* n/s	S _u	Ku	W m/a	v' =/=	Su	K.	ŪW 12/12 ²	Ruw	ອັນນ 11 ² /8 ²	بىنS	Kuw	и
1	0.5	0.008	0.771	0.154	1.428	6.98	-0.004	0.144	0.377	5.16						496
2	3.6	0.058	0.783	0.141	0.681	4.27	-0.002	0.125	0.162	4.46					l .	498
3	6.6	0.108	0.881	0.201	0.734	3.89	-0.001	0.144	0.044	3.89						499
4	9.7	0.158	1.004	0.198	0.333	2.82	0.019	0.150	0.057	3.58						499
5	12.7	0.208	1.173	0.218	-0.066	2.48	-0.002	0.153	0.057	3.44					Į	499
6	15.7	0.258	1.332	0.187	-0.508	2.82	-0.001	0.132	0.186	3.37					1	: 997
7	18.8	0.308	1.451	0.170	-1.324	5.55	-0.004	0.115	-0.126	3.75	1 ·					993
8	21.8	0.358	1.469	0.187	-1.512	5.71	- 0.019	0.130	-0.046	5.44					1	996
9	24.9	0.408	1.363	0.247	-1.223	4.52	-0.019	0.179	0.126	5.08						997
11	27.9	0.508	1.150	0.296	-0.548	2.71	-0.005	0.222	-0.052	3.33			l			499
12	31.0	0.558	0.900	0.306	-0.286	2.56	-0.002	0.244	-0.131	3.48			1			499
13	34.0	0.608	0.694	0.333	-0.250	3.10	- 0.005	0.247	0.094	3.19	1		1		Ì	499
14	37.1	0.658	0.472	0.327	-0.301	Z.96	-0.041	0.218	0.170	3.29					}	249
15	43.Z	0.708	0.097	0.300	0.206	Z.59	-0.011	0.1%	-0.018	2.07			1		1	247
16	49.3	0.506	-0.150	0.240	0.721	4.41	- 0.020	0.151	-0.181	3.3/						249
	0.5	0.008	0.768	0.103	1 1 1 5 7	3.73	- 0.025	0.130	-0.170	4.50						47/
10	-2.3	-0.041	0.750	0.150	0.300	4 57	0.004	0 1 34	-0.016	4 81						4970
2	-3.0	-0.091	0.042	0.179	0.700	1 01	0.021		-0.010	3 78						497
21	-11 7		1 140	0 214	0.171	2.44	0.027	0.153	-0.193	3.00]			497
22	-14 7	-0 241	1 294	0.205	-0.386	2.67	0.011	0.148	-0.176	3.83					} :	991
24	-20.8	-0. 341	1.465	0.177	-1.299	5.46	0.022	0.112	0.270	5.13						999
25	-23.9	-0.391	1.396	0.229	-1.092	4.06	0.028	0.177	0.165	4.69						998
26	-26.9	-0.441	1.251	0.271	-0.811	3.31	0.012	0.220	-0.064	3.78						997
27	- 10.0	-0.491	0.982	0.335	-0.507	3.22	0.005	0.252	0.257	3.09						499
28	-33.0	-0.541	0.754	0.341	-0.102	2.92	0.024	0.263	-0.068	2.75						499
29	-36.1	-0.591	0.520	0.359	-0.310	3.26	-0.003	0.242	-0.072	3.21						496
30	-39.1	-0.641	0.355	0.388	-0.158	2.68	0.053	0.255	-0.283	2.69						249
31	-45.2	-0.741	0.001	0.292	0.309	2.70	0.031	0.205	-0.102	3.59						249
32	-51.3	-0.841	-0.231	0.221	0.646	3.91	0.041	0.148	0.147	3.15						249
33	0.5	0.008	0.753	0.132	0.543	3.62	0.001	0.141	-0.107	6.25						491

MASS AND NOMENTUM TURBULENT TRANSPORT EXPERIMENTS United Technologies Research Center/NASA Lovis Research Center (Contract NAS3-22771)

.

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 6/19/81

Flow Condition: 1 Geometry: 1

Axial Location: 152 mm (6.0 in.); $x/R_0 = 2.50$

Run No.: 19

Pt No.	r +(0-270) -(9-90)	r/R _o	U 11/0	u' •/e	Su	Ku	₩ ■/=	v' #/s	8-y	Ku		R _{uw}	σ 12/192	Sur	Kuk	
1	1.6	.029	.898	. 188	.230	2.82	.002	.164	.343	4.78						499
2	4.8	.079	.939	.216	.098	2.80	.016	.168	.042	4.19	i i	1			l	499
3	7.9	.129	.983	.199	.135	2.49	.014	.155	.243	.412	1		l i			497
4	10.9	.179	1.043	.213	104	2.48	.010	.150	.163	4.09	1	(1	1	1	499
S	14.0	.229	1.149	.212	260	2.92	009	.142	.068	3.63	1	1			[478
6	17.0	.279	1.205	.219	671	3.89	.003	.152	116	5.06	l					598
1 7	20.1	. 329	1.326	.218	738	3.22	.005	.158	.156	5.25	1		í		ĺ	998
	23.1	.379	1.286	.261	-1.12/	5.02	.005	.183	.036	6.21	l l	1	1	l l	1	999
	26.2	.429	1.203	.279	002	3.79	.007	.210	109	4.90	(1	999
	29.2	.479	1.068	.304	010	3.37	.015	.231	.045	4.40	ł	[1		ĺ	777
	32.3	.529	.899	.355	- 577	3.24	.010	.276	152	4.03	Í	[I		1	479
	35.3	.579	.///	.373	- 749	3.2/	.023	.270	113	4.36				1	i i	470
	38.4	.629	.304	.413	- 074	2.74	.006	.2/9	067	3.98	1	1	1	[{	348
	41.4	.6/7	.35/	. 384	.417	2.10	009	.281	.032	3.09	1				1	2497
1 16	47.5	.//7	.045	. 328	.475	2.75	014	.220	.350	3.70	1					240
117	>3.0	.079	101	.2//	.351	2.17	.028	167	.385	3.34	(1			{	400
1 18	1.0	- 021	059	.180	.367	1.01		165	.315	1 2 75	ſ	[1	1	400
1 19	-1.3	071	.996	.1/1	.315	1.07	001	154	.010	4 96	1	[1	499
20	-7.5	171	1.062	192	.254	2.67	.017	151	048	3.97	[1	j	1	498
21	-10 4	171	1.163	200	205	2.52	.024	.159	- 185	5.06	1	1				499
1 77	-16 5	271	1 919	220	341	2.84	.039	.161	- 046	4.03	í					998
24	-10.5	321	1.213	.223	775	3.78	.035	.163	183	4.26	1	1	1	{	1	999
1 25	-22.6	371	1 284	.238	-1.099	5.40	.034	.179	.259	4.31	1	1	i i	1		998
26	-25.7	420	1 198	.269	786	3.66	010	.215	079	3.83	(1	1	1	1	999
27	-28.7	470	1.112	.309	787	3.81	.020	.234	040	3.26	1	1	[[[499
28	-31.8	520	.976	.337	889	4.08	.010	.249	103	3.48						499
29	-34.8	570	.868	.350	645	3.46	004	.260	057	3.81	[1	Í	I	1	496
30	-37.8	620	.680	.354	354	2.91	.048	.279	015	3.14			J]	J	249
31	-43.9	720	.278	.411	.141	2.65	.030	.260	. 526	3.68			1		1	249
32	-50.0	920	.040	. 361	.553	3.09	.026	.236	.097	3.02	[Į	[[1	249
				}			}	}			ł		1	ł		
	L				L	L		<u>L</u>						l		

NASS AND MONENTUN TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/MASA Levis Research Center (Contract MAS3-22771)

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 6/23/81 Run No.: 20

44.5

Flow Condition: 1

Geometry: 1

Axial Location: 152 mm (6.0 in.); $x/R_0 = 2.50$

Pt No.	r m +(0=0) -(0=180)	r/R _o	U •/•	u' 2/5	S.	K.	¥ •/•	v' •/=	S _V	Ky	uv 12/15 ²	Ruv	σ _{υν} ∎²/ョ²	Suv	Ruv	
1	0.8	.012	0.936	0.193	0.313	3.03	-0.011	0.185	0.068	3.02	-0.0030	-0.006	0.034	-0.61	8.34	499
2	3.8	.062	6.979	0.214	0.185	2.63	-0.045	0.167	-0.327	4.10	-0.0124	-0.348	0.034	-1.33	8.10	498
	6.7	.112	1.033	0.207	0.046	2.72	-0.050	0.167	-0.405	3.65	-0.0122	-0.353	0.033	-1.14	9.13	499
	9.7	.162	1.101	0.226	-0.050	2.76	-0.046	0.183	-0.133	3.79	-0.0119	-0.287	0.040	0.20	9.34	499
	13.0	.212	1.197	0.224	-0.272	2.38	-0.046	0.177	-0.473	3.44	-0.0068	-0.221	0.040	0.05	8.25	499
	10.0	.262	1.247	0.222	-0.624	3.44	-0.006	0.187	-0.497	4.10	0.0003	0.008	0.054	2.62	23.89	999
1 1	17.1	.312	1.284	0.229	-0.773	3.55	0.007	0.193	-0.535	3.73	0.0066	0.150	0.053	2.66	19.65	999
	22.1	. 362	1.244	0.258	-1.028	4.77	0.048	0.213	-0.602	4.04	0.0141	0.257	0.074	3.64	24.44	999
	23.1	.412	1.156	0.294	-0.897	4.01	J.065	0.230	-0.479	3.41	0.0219	0.324	0.009	4.25	37.68	999
	20.2	.462	1.052	0.322	-0.885	3.95	0.068	0.241	-0.360	3.07	0.0314	0.405	0.093	2.31	16.17	998
	14.1	.512	0.898	0.361	-0.691	3.94	0.106	0.268	-0.303	3.31	0.0414	0.428	0.103	2.09	10.20	999
	12.5	. 302	0.725	0.396	-0.432	2.70	0.105	0.290	0.001	2.63	0.0568	0.492	0.107	0.95	4.71	499
	41.4	.012	0.547	0.381	-0.50/	3.32	0.045	0.297	0.133	2.54	0.0412	0.364	0.102	0.50	4.36	249
1 15	40 5	./12	0.193	0.398	0.034		0.010	0.265	0.079	4.13	0.0276	0.261	0.096	0.90	7.12	248
16	\$2.6	.812	-0.119	0.298	0.024	3.39	0.007	0.228	0.289	3.09	0.0269	0.396	0.074	1.45	14.13	247
1 17	0.8	.002	-0.1//	0.245	0.364	3.37	-0.019	0.188	0.173	3.57	0.0090	0.196	0.043	1.30	10.56	241
1 10	-2.3	.012	0.920	0.194	0.257	2.0	-0.002	0.163	-0.312	4.37	0.0017	0.055	0.034	1.37	14.8/	499
1.	-5.1	037	0.916	0.200	0.200	2.10	-0.017	0.178	-0.079	3.60	-0.0039	-0.109	0.037	0.30	12.10	497
20	-8.6	-, 117	0.993	0.200	0.100	2.50	-0.038	0.165	0.100	3.02	-0.00/8	-0.229	0.034	0.01	8.43	470
21	-11.4	13/	1.000	0.235	-0.103	2.11 9 si	-0.040	0.178	-0.276	3.83	-0.0115	-0.274	0.042	0.70	17.47	498
22	-14.5	10/	1.1/1	0.217	-0.230	2.5	-0.040	0.175	-0.215	3.10	-0.0007	-0.181	0.036	-0.50	3.03	477
23	-17.5	23/	1.234	0.225	-0.550	1.04	-0.016	0.182	-0.282	3.71	-0.0005	-0.012	0.051	4.07	60.43	377
24	-20.6	- 117	1.200	0.212			0.010	0.178	-0.182	9.00	0.0005	0.014	0.042	3.00	40.31	776
25	-21.6	- 197	1.201	0.204	-0.809	1.00	0.023	0.201	-0.341	3.70	0.0125	0.235	0.064	2.20	17.47	777
26	-26.7		1.220	0.276	-0.500	1 15	0.057	0.222	-0.354	3.70	0.0210	0.341	0.072	3.37	20.70	777
27	-29.7	- 487	1.005	0.305	-0.369	2.07	0.066	0.232	-0.000	1 2 24	0.0268	0.379	0.074	1.40	10.14	770
28	-32.8	- 517	0.970	0.321	-0 175	1.57	0.095	0.236	-0.216	3.37	0.0324	G.427	0.065	3.5/	20.32	778
29	-35.8	547	0.707	0.412	-0.474	2.44	0.0/6	0.207	-0.054	1 4 4		0.399	0.100	1.43	7.44	348
30	-41.9	687	0.265	0.412	0.181	2.97			-0.558	2.70	0.0575	0.456		2 10	10.77	240
31	-48.0	787	-0.014	0.344	0.567	3.54	0.003	0.2/4	-0.321	6.13	0.0247	0.464	0.120	2.10	1.90	246
32	-51.1	837	-0.174	0.250	0.750	3.55	0.023	0.201	-0.900	4.04	0.024/	0.200	0.054	2 24	17.57	230
1							0.00/	0.200	0.319		0.0140	U.280	0.07	4.73		£39

NASS AND NONENTUM THREFLIGHT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Levis Research Center (Contract NAS3-22771)

R81-915540-9

S

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 6/24/81 Run No.: 21

MASS AND NUMBRICH SURBILIERT TRANSPORT EXPERIMENTS

-

Flow Condition:]

United Technologies Research Center/NASA Levis Research Center (Contract MAS3-2277))

Geometry: 1

Axial Location: 203 mm (8.0 in.); $x/R_0 = 3.33$

-																
۲ _נ No.	r ====================================	r/N _o	U •/=	u' n/s	Su	Ku	¥ m/s	v* m/s	54	Ku	<u>uv</u> m ² /s ²	R _{uv}	6 _{uv} 12/15 ²	Suv	Kuv	
1	0.8	.013	.968	. 205	087	2.73	003	.175	058	3.93	0013	038	.039	0.57	12.94	498
2	3.8	.063	.976	. 201	211	2.83	.000	.194	077	3.75	0061	156	.045	073	14.87	499
3	6.9	.113	.991	. 209	314	3.37	.009	.179	298	3.96	0//30	001	.039	0.60	15.75	499
4	9.9	.163	1.030	.213	127	2.46	.011	.179	387	3.38	0335	092	.039	0.24	7.97	499
5	13.0	.213	1.021	.238	259	3.05	.007	.201	574	4.75	.0015	.031	.058	1.90	13.93	499
6	16.0	.263	1.035	.245	452	3.66	.026	.206	748	4.08	.0(52	.102	.062	2.04	19.17	999
17	19.1	.313	1.051	.253	541	4.11	.031	.200	610	4.28	-00.56	.110	.060	3.87	43.95	999
	22.1	. 363	1.013	.276	621	3.32	.067	.203	372	3.64	.0105	.188	.065	2.05	15.28	999
•	25.2	.413	.976	. 300	799	4.26	.083	.231	312	3.55	.0185	.267	.647	2.86	23.70	999
10	28.2	.463	.891	. 315	732	3.87	.082	.237	302	3.54	.0206	.276	.084	1.99	14.35	999
11	31.3	.513	.797	. 332	585	3.45	.120	.260	300	3.26	.0269	.311	.095	1.94	14.58	999
12	34.3	.563	.684	.351	329	2.96	.115	.269	192	2.85	.0324	.345	.106	2.23	13.28	499
11	37.4	.613	.575	. 336	-	- 1	.136	.258	-	-	-	-	-	i –	- 1	-
14	43.5	.713	. 306	. 363] -	-	. 107	.266	-) -	- 1	-	-	-	-	-
15	49.6	.613	.031	.288	- 1	- 1	.054	.259	-	- 1	-	- 1	-	-	- 1	- 1
16	52.6	.863	054	.261	- 1	-	.039	.226	-	-	- 1	-	- 1	-	1 –	-
] 17	0.8	.013	1.007	.206	- 1	-	023	.183	-	- 1	-	- 1	-	-	-	-
18	-2.3	038	1.004	. 203	008	2.55	003	.177	.089	3.21	0021	059	.034	-0.23	8.02	499
19	-5.4	068	1.018	.205	.061	2.95	002	.184	.072	3.43	0031	062	.036	0.09	7.35	496
20	-8.4	138	1.013	.214	270	3.42	.001	.194	335	3.58	0010	025	.049	0.04	16.55	496
21	-11.5	186	1.045	.222	514	3.46	002	.189	236	3.57	.0009	.022	.052	-1.50	20.09	499
22	-14.5	238	1.077	.230	336	3.52	.002	.197	543	4.00	.0970	.155	.055	3.53	29.32	999
23	-17.6	288	1.061	.244	572	4.15	.029	.199	419	3.55	.0086	.177	.054	2.34	15.60	999
25	-23.7	388	.966	.291	538	3.30	.061	.235	213	3.12	.0218	.319	.079	2.26	13.57	999
26	-26.7	438	.897	.313	624	3.57	.050	.249	394	3.12	.0301	.307	.094	2.95	23.80	999
27	-29.7	488	.841	. 319	413	3.22	.056	.258	596	3.64	.0302	.367	.089	1.47	11.03	999
28	-32.8	538	.734	. 356	523	3.26	.070	.296	475	3.02	.0391	.371	.103	1.06	6.96	498
29	-35.8	588	.603	.385	364	2.91	.07E	.272	137	2.46	.0488	.466	.104	1.20	5.33	249
30	-41.9	688	.383	.413	225	2.36	.093	. 304	.107	2.55	.0640	.510	.116	1.01	4.26	249
1 31	-48.0	788	.107	. 367	.384	2.41	.022	.312	768	5.13	.0488	.426	.m	1.59	7.60	241
32	-51.1	838	.032	.293	l –		.184	.446	- 1	-	-	-	-	-	-	-
33	0.8	.013	.979	.213	052	2.70	.001	.179	061	3.18	0019	049	.037	-0.32	6.46	498
L			I	I		L		L	L	L	Long the second s	L	L			

51

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 6/25/81

Run No.: 22

Flow Condition: 1

: 1 Geometry: 1

1.1

저	
8	
-	
Ŷ	
-	
5	
e,	
4	
0	
Ē	
10	

......

States and states and states

Axial 1	ocation:	203 555	(8.0	in.);	$x/R_{o} =$	3.33
---------	----------	---------	------	-------	-------------	------

PL But	r mm +(m 270) -(0=90)	r/R _o	U n/s	u* m/=	Su	Ku	W m/s	¥' R/S	⁵ ¥	Kw	₩ ■2/s2	Ruw	=us ∎2/s2	s _w	Kuw	K
1	2.5	0.042	.975	.206	.000	2.609	.0096	. 169	.021	3.205				I		498
2	5.6	0.092	1.009	.219	.013	2.675	.0069	.175	.013	2.902	f		}			495
3	5.6	0.142	1.025	. 209	245	2.610	.0049	.172	.087	3.610	1			4		496
4	11.7	0.192	1.042	.230	194	2.760	.0091	. 169	.239	3.346	{ .		l	[493
5	14.7	0.241	1.078	.217	297	2.694	.0016	.174	029	3.224	ł			[496
6	17.8	0.291	1.085	.229	295	2.731	+ 0004	.193	. 144	3.409			ł			985
1 7	20.8	0.341	i.056	.254	462	3.040	0067	.188	.022	3.037]]			986
8	23.9	0.391	1.035	.273	442	3.063	.0012	.216	148	3.519	i		}		l i	994
9	26.9	0.441	.982	.279	446	2.836	~.0198	.244	. 209	3.282)		}			991
10	30.0	0.491	.900	.288	234	2.803	.0085	.251	075	2.925						982
11	33.0	0.541	.779	.318	328	2.600	0159	,252	.099	2.818	· ۱		{ ·			490
12	36.1	0.591	.659	.337	175	2.736	0220	.289	260	3.223	ł				;	492
13	39.1	0.641	.540	. 374	257	2.649	0049	.271	-,276	2.997	<u> </u>		Į			495
14	42.2	0.691	. 389	. 369	.011	2.367	.0079	,298	136	3.032	(·		ļ		i	244
15	48.3	0.791	.152	.374	.268	2.441	.0159	.236	.060	2.713			1			241
16	54.4	0.891	065	.280	.328	2.420	0020	.245	081	3.437						248
1 17	2.5	0.042	.977	.197	140	2.720	0134	.188	324	4.289	1	Ì	1			495
18	-0.5	-0.008	.963	.183	.095	2.629	.0038	.160	102	3,10%	1		1			493
19	-3.6	-0.058	.990	. 201	131	2 7 7 1	.0034	.175	310	3.603	ł					492
20	-6.6	-0.108	.970	.212	084	2.617	.0340	.182	112	3.513						493
21	-9.7	-0.158	1.007	.219	145	3.054	.0267	.172	131	3.523	ł		1			495
22	-12.7	-0.208	1.015	.218	286	3.375	.0401	.181	.402	4.143	ł i					994
25	-15.7	-0.258	1.060	.220	183	2.792	.0315	.179	043	3.806	i 1		ł			991
24	-18.6	-0.308	1.050	. 238	506	3.797	.0274	.188	032	3.419						990
25	-21.6	-0.358	1.039	.251	521	3.354	.0161	.211	107	3.585						992
26	-24.9	-0.408	1.012	.280	669	3.69)	.0236	.225	.067	3.493						996
27	-29.9	-0.458	.977	.280	572	3.038	.0297	.235	.044	3.308	1					494
28	-31.0	-0.508	.875	. 301	527	3.174	.0265	.257	.050	3.053						498
29	-34.0	-0.558	.706	. 372	497	3.004	.0041	.266	.047	3.284						499
30	-37.1	-0.608	.694	.371	444	3.254	.0391	.283	.045	2.825						247
1 11	-43.2	-0.708	.498	. 340	190	2.657	0089	.295	115	2.891			1			249
32	-49.3	-0.608	.213	.378	066	2.319	.0177	.257	.073	2.588			l			249
1	1						Į	l	l							

BASS AND HOMEN (UN AURBULENT TRANSPORT EXPERIMENTS)

¢

United Technologies Research Center/NASA Lewis Research Center (Contract MAS3-22771)

52

 \mathcal{O}

. .

AXIAL VELOCITY, AZIMUTHAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 6/26/81

Run No.: 23

Flow Condition: 1

Geometry: 1

Axial Location: 102 mm (4.0 in.); $x/R_0 = 1.66$

Ρ _L No.	r httn + (0 = 270) - (0 = 90)	r/R _o	נו m/s	u' m/s	S _u	Ku	₩ m/s	w' m/s	Sw	Кw	<u>uw</u> m ² /s ²	K _{u w}	σ _{uw} π ² /s ²	S _{uw}	K _{uw}	ĸ
1 2 3 4 5 6 7	0.00 6.10 12.19 18.29 21.34 30.48 36.58	0.00 0.10 0.20 0.30 0.35 0.50 0.60	.777 .879 1.171 1.458 1.485 .880 .480	.138 .170 .206 .170 .183 .340 .336	1.035 .552 153 -1.344 -1.714 475 243	5.07 3.15 2.63 6.22 7.28 3.65 3.13	.011 .002 .010 001 .018 .009 .042	.135 .157 .159 .116 .137 .258 .278	.230 406 .112 036 .466 .184 202	7.48 4.53 2.94 4.64 6.59 4.05 4.01	.0045 .0011 .0005 .0004 0011 0018 .0068	-0.024 -0.040 -0.015 -0.022 .043 .021 072	.0301 .0295 .0313 .0218 .0405 .0866 .0947	3.145 .775 .943 883 -1.446 893 .168	27.89 11.93 10.60 13.93 37.67 12.65 7.86	496 498 499 999 499 499

MASS AND MOMENTUM TURBULENT TRANSPORT EXFERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

AXIAL VELOCITY, AZIMUTHAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 6/26/81

Run Mo.: 24

Flow Condition: 1

Geometry: 1

R81-915540-9

Axial Location: 152 mm (6.0 in.); $x/R_0 = 2.50$

1ª 1 1900 -	r *** + (5=270) - (6=90)	r/k _o	ย 11/5	ut ¤/s	Su	к _u	₩ m/s	₩' ¤/5	ž.	Kw	=2/52	P.54	σ ₁₈ ==2/s2	S.	1 . yu	5
1	0.0	.00	.946	.208	.187	2.76	.006	.197	716	6.25	.0055	134	.041	0.62	10.17	499
2	6.1	.10	1.942	.214	.059	2.62	.018	.177	.403	4.25	.0034		.040	-0.76	12.20	499
3	12.2	. 20 ati	1.193	.220	145	2.63	.002	181	.202	5.02	0014	011	.053	-2 32	41.54	998
5	24.4		1.272	.239	840	4.10	.006	.201	054	5.55	0020	.041	.061	-1.89	34.91	998
6	30.5	.50	.931	.331	463	3.21	.010	.282	024	3.8i	.0034	~.036	.099	0.56	19.23	499
7	36.6	.60	.574	.377	298	3.09	.031	.280	.263	2.75	.0036	034	.107	0.30	5.79	498

54

RAUS AND MOMENTON JURBITENIT TRANSPORT EZPERTMENTS

United Technologies Research Center/MARA Lewis Research Center (Contract NAS3-22771)

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 7/29/81

Run No.: 44 Axial Location: 13 mm (0.5 in.); $x/R_0 = 0.21$

Flow Condition: 1

Geometry: 1

	Р ₁ Ко.	r nun +(⊕=0) (⊕=180)	r/R _o	U m/s	u' m/s	S _u	κu	V m/s	v' m/s	5 _V	Κv	$\frac{1}{m^2/s^2}$	R _{uv}	σ _{uv} m ² /s ²	s _{uv}	Kuv	x
	1	0.0	.000	.790	.064	144	3.17	.005	.049	.147	3.40	0002	050	.003	046	10.82	487
	2	3.0	.050	.792	.062	167	2.99	.011	.048	010	4.33	.0002	.054	.003	1.84	13.07	475
1	3	6.1	.100	.744	.075	586	4.66	.012	.051	.144	4.23	.0008	.218	.004	3.56	46.70	467
	4	9.1	.150	.647	.091	094	2.80	.013	.060	318	4.87	.0014	.260	.006	1.77	14.26	487
1	5	12.2	.200	.526	.137	.640	3.49	063	.148	626	3.98	0069	342	.025	-2.94	24.80	497
	6	15.2	.250	1.230	.216	255	2.72	066	.163	1.106	6.48	0149	423	.039	-1.53	13.26	992
	7	18.3	. 300	1.582	.065	364	-1.56	040	.057	.420	3.87	0005	130	.004	-2.42	26.47	992
	8	21.3	.350	1.588	.054	072	-5.29	045	.051	.254	4.12	.0000	.010	.003	-0.16	17.38	994
	9	24.4	.400	1.542	.083	656	2.78	029	.064	.703	15.87	.0010	.184	.006	0.36	33.74	995
	10	27.4	.450	1.340	.129	1	1	010	.085		{				ļ		
	11	30.5	.500	.694	.235		l	.028	.172		1	1		İ	1	ł	ł
	12	33.5	. 550	005	.144	}	}	032	.104	}		ł			1	Į	
	13	36.6	.600	063	.113	127	3.38	040	.071	.403	4.74	.0020	.244	.009	1.45	11.67	241
	14	42.7	.699	079	.120	385	3.30	035	.069	.156	3.19	.0013	.161	.009	1.32	10.77	241
	15	48.6	.799	055	.107	633	3.99	033	.080	118	3.70	.0013	.157	.009	2.34	16.77	239
	16	0.0	.000	.780	.059	494	3.40	.010	.046	.013	3.92	0004	148	.003	-1.58	11.15	494
	17	-3.0	050	.749	.065	312	3.11	0 05	.047	394	4.98	0006	.189	.003	1.65	15.73	495
1	18	0.0	.000	.802	.061	223	2.82	008	.040	.111	3.20	0001	.030	.003	-0.19	14.17	493
	19	-6.1	100	.722	.084	-1.292	11.52	.001	.045	375	4.26	0006	.155	.004	-2.44	28.29	495
	20	-9.1	150	.646	.096	311	2.71	001	.050	281	3.68	0016	.340	.005	1.94	12.15	494
	21	-12.2	200	. 509	.115	.396	3.32	038	.107	706	3.65	.0004	029	.015	-1.69	18.15	498
	22	-15.2	250	1.060	.207	086	2.76	085	.160	.414	3.26	.0154	465	.035	-1.25	11.31	999
	23	-18.3	300	1.563	.081	-1.175	3.28	068	.052	.264	4.35	.0009	212	.006	-0.57	49.40	998
	24	-21.3	350	1.603	.048	926	-5.48	060	.038	.521	4.63	.0004	206	.003	-4.98	41.97	999
	25	-24.4	400	1.611	.044	034	-15.66	058	.038	017	4.75	.0000	.000	.002	-2.45	41.96	999
	26	-27.4	450	1.505	.111	794	3.65	046	.068	459	3.90	0020	.269	.009	-3.23	27.27	999
	27	-30.5	500	.774	.253	097	2.83	.026	.179	172	2.96	0211	.465	.049	1.91	10.63	997
	28	-33.5	550	009	.134	.834	4.63	044	.097	.906	6.53	0057	.440	.020	5.14	39.03	498
	29	-36.6	600	065	.109	187	3.34	042	.060	358	5.94	0017	.266	.007	2.23	11.39	239
Ì	30	-42.7	699	040	.112	534	4.10	033	.073	.033	3.38	0007	.085	.010	-1.75	21.11	246
	31	-48.8	799	036	.100	-1.144	4.93	021	.074	.661	8.34	.0002	022	.006	-0.16	5.89	244
ļ	32	0.0	.000	.805	.053	518	2.68	.008	.037	.165	3.37	0001	062	.002	-0.17	10.46	498
		1	1	1	1	1		1	1		1	1		1	1	[[

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 7/31/81 Run No.: 45 Flow Condition: 1 Geometry: 1

Axial Location: 13 mm (0.5 in.); $x/R_0 = 0.21$

P ₁ No.	r min +(6=0) -(0=180)	r/R _o	V ៣/ម	v' m/s	s _v	κ _ν	f	f'	⁵ f	ĸ _f	vf m/s	R _{vf}	σ _{vf} m/s	s _{vf}	K _{vf}	N
2	.00	.000	.006	.032	. 280	3.82	1.051	.065	.019	3.06	0001	.045	.002	583	7.76	500
3	1.52	.025	.010	.034	099	3.45	1.018	.062	. 106	3.22	.0001	.029	.002	. 287	9.07	500
4	3.05	.050	.011	.035	170	3.38	.998	.066	038	3.02	.0000	.014	.002	089	7.64	500
5	4.57	.075	.014	.038	240	3.11	.949	.061	. 108	2.88	.0000	021	.002	198	6.89	500
6	6.10	. 100	.018	.035	236	3.49	1.084	.067	.224	3.36	.0000	.048	.002	.627	10.17	500
8	9.14	.150	.017	.042	253	3.06	1.007	.062	.029	1	.0000	.006	.003	. 128	6.75	500
9	10.67	.175	.019	.053	425	4.53	.989	.067	046	3.25	.0001	.022	.004	1.286	18.35	500
10	12.19	. 200	.016	.087	-1.233	7.61	. 850	.094	845	4.07	.0018	.228	.010	3.902	50.71	1000
11	15.24	. 250	049	. 149	080	3.91	. 198	. 114	. 700	3.87	.0045	. 267	.016	1.315	8.36	1000
12	18.29	. 300	046	.049	.237	4.01	.009	.014	. 366	3.17	.0000	049	.001	354	7.64	1000
13	21.34	. 350	031	.042	638	3.46	.015	.014	. 370	3.09	.0000	015	.001	-1.044	14.90	1000
14	24.38	. 400	017	.036	-1.803	7.15	.015	.014	.274	3.14	.0000	021	.001	.616	22.11	1000
15	27.43	.450	011	.067	584	4.26	.006	.013	.265	3.05	.0000	.013	.001	440	13.22	1000
16	30.48	. 500	.029	. 140	014	5.01	.021	.016	. 506	3.70	0001	051	.002	176	11.48	1000
17	33.53	.550	009	.043	153	13.25	.035	.017	.212	2.72	0000	060	.001	392	26.66	500
18	36.58	.600	.001	.005	-2.992	29.47	.035	.016	.298	2.95	.0000	.070	.000	1.268	12.82	500
25	-4.57	075	001	.039	.252	2.93	1.025	.065	055	3.78	.0001	.033	.002	198	5.70	500
29	-10.67	175	.006	.060	.902	7.07	.981	.066	112	2.92	.0000	.012	.004	396	19.98	500
32	-12.19	200	003	. 106	1.188	6.45	.970	. 149	-1.046	3.77	.0031	. 200	.019	-3.640	28.05	999
33	-15.24	250	074	. 144	654	4.67	.172	.119	. 796	3.35	.0043	.251	.018	-2.051	18.31	1000
34	-18.29	300	050	.049	578	5.21	.006	.015	.225	2.93	.0000	.022	.001	. 294	8.94	1000

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

٠

٠

ment and an interview.

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/3/81 Run No.: 47 Flow Condition: 1 Geometry: 1

Axial Location: 51 mm (2.0 in.); $x/R_0 = 0.83$

۲ _L No.	r sun + (+=0) - (==180)	r/K _o	V m./ษ	ប' ៣/ម	S _v	K,	f	£'	\$ _f	K£	vf m/s	R _{uf}	σ _{vf} m/s	s _{vf}	Kvf	x
3	0.0	.000	.007	.032	.248	3.85	0.992	.059		[0001	037	[500
4	0.0	.000	.009	.031	. 286	3.52	1.008	.064			~.0001	038			l -	500
5	0.0	.000	.005	.034	004	3.73	1.000	.059		Į	.0000	.015	1			499
6	3.0	.050	.006	.034	Ū9O	3.71	1.008	.063		ł	.0000	.003		I		500
7	6.1	.100	.006	.042	482	4.17	1.016	.085	1		.0004	.115	1	1	1	500
8	9.1	.150	.005	.060	278	5.61	0.807	.205			.0011	.088			1	500
9	10.7	.175	003	.084	-1.287	7.82	0.627	.224]		.0037	.196	1	}	}	500
10	12.2	.200	006	.092	203	5.91	0.418	.190			.0046	.265			I	1000
11	15.2	.250	015	.080	029	5.36	0.150	.129		1	.0024	.231				1000
12	18.3	.300	012	.053	089	5.57	0.011	.050		1	.0002	.075		1		1000
14	18.3	.300	015	.052	064	5.21	0.009	.039		ļ	.0003	.012	1	1	ļ	1000
15	21.3	.350	007	.048	538	6.66	0.000	.015		ł	0001	083		ł		999
16	24.4	.400	.007	.055	.334	7.78	0.001	.016	1		0001	067			1	998
17	27.4	.450	.022	.095	376	6.09	0.006	.016			0002	123				399
18	30.5	.500	.011	.108	.894	10.58	0.011	.016		1	0001	034	ł		j –	1000
19	33.5	.550	.005	.086	.986	13.28	0.021	.018			0001	062				500
20	36.6	.600	003	.045	.185	5.91	0.025	.017			.0001	.059				500
21	42.7	.699	008	.034	-1.490	10.96	0.025	.016	1		.0000					500
22	48.8	.799	.000	.010	-1.930	20.03	0.021	.018	ļ	1	.0000	ļ.	1	}	}	500
26	0.0	.000	.008	.034	.175	3.74	1.000	.060	{		.0000		1	4	1	500
27	0.0	.000	.008	.034	.225	3.74	1.000	.069	i	4	.0000	0.27		Į –		477
28	-3.0	050	004	.035	.044	3.26	1.017	.060	}		.0001	.024	i -	}		500
29	-6.1	100	003	.046	.115	5.33	1.015	.080			.0004	.109	1		1	600
30	-9.1	150	006	.065	.468	5.57	0.845	.182		[.0017	.141		1	1	500
31	-10.7	175	008	.075	.904	6.06	0.667	.21/			.0028	.230]	1	1000
32	-12.2	200	028	.099	1.200	5.81	0.451	.193			.0043	.229		I		1000
33	-15.2	250	034	.094	036	5.04	0.174	.124			0032	.276		l		1000
34	-18.3	300	029	.058	216	5.85	0.026	.056	[{	.0004	.014	ſ		[500
35	-21.3	350	020	.059	.943	8.18	-0.002	.018		1	.0000	1				500
36	-24.4	400	006	.074	180.	1.90	-0.002	.014				- 158				500
37	-27.4	450	.010	.110	./1/	0.43	0.001	.015	ļ		- 0003	- 103	İ]	1	500
38	-30.5	500	.003	.120	(50)	0.37		.010			002	103	1			499
39	-33.5	550	.002	.095	918	8.03	0.014	.018	1	ļ			1	l	1	500
1 41	-42.7	i699	023	1.052	j .5/3	3.92	1 0.019	1 .018	1	1	1 .0000	L	L	L		1 100

R81-915540-9

53

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

MASS AND HOMENTUM TURBULENT TRANSPORT EXPERIMENTS

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/6/81

/6/81 Run No.: 50

Run No.: 50 Flow Condition: 1 Geometry: 1

Axial Location: 203 mm (8.0 in.); $x/R_0 = 3.33$

ľ _E No.	r mm +(8=0) -(8=180)	r/K _o	V m/s	v' m/s	s _v	K _v	ī	ſ'	⁵ f	ĸŗ	vf m/s	R _{vf}	σ _{vf} m/s	Svf	Kvf	N
9	0.0	.000	008	. 169	121	3.78	.287	.160	. 708	3.71	.0008	.030	.027	0.09	10.33	1000
10	3.0	.050	.604	.169	150	3.67	.280	.174	_	- 1	.0028	.095	-	-	-	1000
11	6.1	.100	.017	.171	173	3.52	.272	.167	.842	3.90	.0056	.197	.028	0.80	8.45	1000
12	9.1	.150	.005	.169	601	5.11	.233	.160	.953	4.34	.0076	.280	.026	1.87	12.49	1000
14	12.2	. 200	.010	.191	303	4.09	.192	.151	1.090	4.41	.0082	.285	.026	1.39	9.20	999
15	15.2	.250	.039	. 187	178	4.11	.150	.137	1.157	4.44	.0063	.246	.023	0.87	6.41	1000
16	18.3	. 300	.043	. 198	483	3.82	-	-	- 1	1 -	-	-	-	-	-	1000
17	21.3	. 350	.062	. 214	416	3.61	.086	.113	1.998	8.60	.0064	. 267	.023	3.58	33.49	1000
18	24.4	.400	.077	.229	425	3.88	.058	.093	2.396	12.00	.0058	.275	.027	10.97	222.20	1000
19	27.4	.450	. 088	.226	279	3.63	.038	.075	2.924	15.39	.0038	.228	.018	5.95	67.58	1000
20	30.5	. 500	.114	.233	135	3.50	.025	.059	2.223	9.18	.0029	.211	.014	4.16	34.71	1000
21	33.5	. 550	.095	. 260	281	3.44	.021	.053	3.092	17.96	.0029	.210	.014	4.59	35.47	998
22	36.6	. 600	. 164	.252	.166	3.56	.026	.050	2.868	17.05	.0015	.116	.013	3.37	34.84	1000
23	42.7	. 699	.051	.173	1.122	5.67	.019	.031	1.781	12.53	.0001	.016	.006	4.17	44.81	999
24	0.0	.000	005	. 169	202	4.45	.274	.157	.790	3.83	.0004	.016	.026	0.20	10.32	1000
29	0.0	.000	003	.170	141	3.54	.280	.162	.787	3.59	.0005	.017	.026	0.21	6.84	1000
30	-3.0	050	.003	.182	.069	3.82	. 203	.118	.936	4.73	.0019	.088	.020	0.14	8.27	1000
31	-6.1	100	.008	. 181	.014	3.43	.263	.159	.915	4.18	.0044	.153	.027	0.48	7.47	1000
32	-9.1	150	.011	. 182	137	3.68	.238	.156	.934	4.20	.0060	.213	.028	0.48	8.93	1000
33	-12.2	200	.016	.193	387	3.83	.198	.142	.913	3.76	.0074	.270	.026	0.90	7.35	999
34	-15.2	250	.030	. 185	521	3.90	. 181	.140	1.030	4.02	.0082	.316	.025	1.69	9.25	1000
35	-18.3	300	.038	.206	433	3.62	.135	.126	1.556	6.76	.0073	.282	.024	1.75	9.68	1000
36	-21.3	350	.048	.232	416	3.32	.121	.121	1.702	6.95	.0090	.319	.028	2.76	21.30	1000
37	-24.4	400	.071	.224	274	3.06	.089	.100	1.842	8.09	.0063	.282	.021	2.79	22.06	1000
38	-27.4	450	.079	.245	378	3.29	.066	.086	2.262	9.78	.0055	.259	.020	3.01	20.09	1000
39	-30.5	500	.091	.242	040	3.20	.056	.071	2.446	11.27	.0041	.235	.020	5.26	58.40	999
40	-33.5	-, 550	.097	.243	137	3.22	.053	.065	3.087	17.51	.0031	. 195	.018	6.45	72.01	1000
41	-36.6	600	.117	.250	061	2.98	.031	.049	3.342	23.26	.0018	. 143	.012	4.54	42.06	999
42	-42.7	699	.097	.260	.125	2.99	.035	.036	2.581	13.08	ί 003	.036	.010	5.75	77.82	1000
43	48.8	799	. 120	. 288	.443	2.97	.028	.036	2.591	18.38	_^005	.050	.012	6.58	86.73	999
44	0.0	.000	.001	.173	117	3.80	.280	.150	.748	3.89	.0001	.005	.025	0.11	9.54	1000
											· ·					

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

R81-915540-9

マノオイ

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/10/81 Run No.: 51 Flow Condition: 1 Geometry: 1

Axial Location: 152 mm (6.0 in.); $x/R_0 = 2.50$

Р ₁ No.	r mun +(f=0) -(0=180)	r/K _o	V m/s	ับ m/ย	S _V	K _v	Ŧ	£'	s _f	Kŗ	√f m/s	^R vf	σ _{ef} ∎/s	s _{vf}	K _{vf}	N
8	1.52	.025	0.001	. 147	. 390	5.18	.542	. 267	. 260	2.13	0023	058	.044	-1.286	15.23	1000
9	4.57	.075	-0.017	.144	585	4.16	. 508	.257	.236	2.18	.0125	. 338	.039	1.245	10.40	1000
10	7.62	.125	-0.021	.158	241	3.71	. 398	.237	.606	2.60	.0165	.439	.036	0.897	8.78	1000
11	10.67	.175	-0.040	.167	319	3.40	. 320	.216	. 790	3.23	.0178	.494	.035	1.732	8.28	1000
12	13.72	.225	-0.018	.174	397	3,49	. 249	. 209	1.196	4.44	.0167	.459	.037	2.32	13.80	1000
14	16.76	.275	-0.019	. 189	648	4.57	.167	.173	1.430	5.31	.0133	.409	.033	2.17	10.42	1000
15	19.81	. 324	0.011	. 199	422	3.87	.086	.127	2.142	8.28	.0078	.311	.027	2.91	16.55	1000
16	22.86	.375	0.009	.218	558	4.34	.045	.090	3.059	14.66	.0045	.227	.020	5.15	43.80	1000
17	25.91	.425	0.035	. 229	538	3.70	.023	.056	3.543	21.20	.0021	.162	013	5.27	50.10	999
18	28.96	.475	0.018	.255	148	3.06	.017	.040	4.680	36.53	.0010	.011	.096	6.62	77.26	1000
19	32.00	.525	0.064	. 243	202	4.10	.005	.026	3.438	40.70	0001	009	.006	3.02	36.44	1000
20	35.05	.575	0.066	.251	022	3.43	.007	.022	1.008	6.29	0000	002	.006	1.74	15.59	999
21	38.10	.624	0.041	.244	.180	3.99	.013	.022	.602	4.07	0004	067	.006	0.82	22.97	999
22	44.20	.724	0.003	. 174	. 353	4.75	.010	.022	.405	3.58	0.04	114	.004	-0.36	13.40	1000
27	1.52	.025	0.011	.151	034	4.42	.547	.276	.235	2.17	0044	10/	.046	~0.088	12.56	1000
28	-1.52	025	-0.005	.158	.318	5.10	.573	.289	.280	2.02	.0116	.253	.050	0.882	14.03	1000
29	-4.57	075	-0.010	. 161	.432	4.29	. 504	.289	. 386	2.23	.0170	.305	.045	0.964	10.04	999
30	-7.62	125	-0.008	. 160	.332	3.98	.408	.259	.676	2.87	.0176	.426	.040	1.397	10.03	1000
31	-10.67	175	-0.000	.163	.288	3.74	.327	.239	.938	3.76	.0166	.426	.038	1.150	7.30	1000
32	-13.72	225	0.011	.186	.291	3.52	.236	.213	1.218	4.57	.0177	.441	.042	1.764	9.41	999
33	-16.76	275	0.030	. 189	.364	4.22	.158	.184	1.601	5.75	.0130	.3/5	.037	2.687	14.47	1000
34	-19.81	325	0.039	.208	.311	3.43	.101	.146	2.130	8.30	.0088	.289	.033	3.830	29.70	999
35	-22.86	375	0.061	.217	.193	3.45	.046	.091	3.311	18.94	.0040	.203	.020	4.628	49.12	1000
36	-25.91	425	0.066	. 236	.337	3.02	.028	.066	4.321	27.73	.0024	.151	.015	5.22	48.94	999
37	-28.96	475	0.097	.259	.218	3.45	.026	.060	5.307	43.72	.0022	.141	.016	6.908	86.65	999
38	-32.00	525	0.095	.273	008	3.15	.002	.027	4.902	53.68	.0003	.036	.008	5.810	79.73	999
39	-35.05	575	0.086	. 276	144	2.97	.005	.021	3.005	24.16	.0000	.001	.008	8.006	115.72	999
40	-41.15	675	0.065	.264	372	2.93	.012	.019	1.246	9.70	0005	.094	.006	2.478	31.99	1000
41	1.52	.025	-0.015	.151	089	4.01	.539	.272	.374	2.18	.0009	.022	.041	-0.263	9.42	1000

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

ITS United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

59

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

· ...

Test Date: 8/10/81 Run No.: 52 Flow Condition: 1 Geometry: 1

Axial Location: 102 mm (4.0 in.); x/R₀ = 1.66

۲ _L No.	r 1000 + (6=0) - (9=180)	r/R _o	V m/s	v' m/s	S _v	K _v	f	f'	^S f	ĸf	√f m/s	R _{vf}	σvf ∎/s	Svf	K _{vf}	N
2	0.0	.000	012	.064	068	5.32	.915	.128	-2.654	12.39	.0004	.051	.017	0.16	60.26	999
3	9.1	.150	035	.135	493	2.98	.429	.212	.355	2.44	.0152	.532	.029	1.66	7.92	1000
4	3.0	.050	011	.085	-1.642	9.10	.851	.184	-1.600	5.05	.0078	.498	.030	4.90	34.90	1000
5	6.1	.100	021	.111	991	4.60	.651	.240	444	2.07	.0139	.523	.032	2.60	15.69	1000
6	12.2	.200	054	.160	331	3.48	.262	.174	.848	3.78	.0165	. 595	.028	2.23	10.36	1000
7	15.2	.250	054	.144	.105	3.59										1000
8	18.3	.300	052	.132	596	5.62	.033	.077	2.336	8.39	.0035	. 339	.014	4.43	31.29	1000
9	21.3	. 350	020	.157	296	4.60	.002	.038	6.377	64.09	.0010	.174	.011	15.96	340.84	1000
10	24.4	.400	.012	.161	940	6.05		.016	1.865	20.63	0001	055	.003	0.28	19.61	1000
14	33.5	.550	.041	.237	.134	3.87	.008	.016	.248	2.94	0004	115	.004	-0.20	8.49	1000
15	36.6	.600	.011	. 202	.329	3.99	.010	.016	.220	3.46	0004	135	.003	-0.81	12.23	1000
16	42.7	.699	013	.202	.588	4.12	.009	.016	.290	3.38	0003	088	.003	-0.61	8.68	1000
17	48.8	.799	033	.134	.777	5.09	.005	.016	.377	3.56	0001	035	.002	-0.59	14.50	1000
18	0.0	.000	010	.068	1.286	14.25	.936	.140	-2.511	11.84	.0001	.011	.028	-10.45	175.69	1000
22	0.0	.000	.011	.074	353	13.11	.877	.132	-2.394	10.87	0005	.047	.025	2.33	92.75	1000
23	-3.0	050	.005	.087	-1.837	10.90	.829	.158	-1.987	7.48	.0063	.458	.032	7.96	87.11	1000
24	-6.1	100	004	.117	-1.199	5.62	.657	.222	707	2.54	.0146	.561	.038	3.95	28.59	1000
25	-9.1	150	015	.141	630	3.90	.481	.230	.128	2.09	.0179	.550	.034	2.10	12.72	1000
26	-12.2	200	017	.148	137	2.84	. 320	.198	.715	3.21	.0168	.570	.029	1.82	7.74	1000
27	-15.2	250	015	.155	.053	3.37	.176	.151	1.023	3.94	.0131	.558	.025	2.26	11.37	1000
28	-18.3	300	003	.157	136	3.97				ĺ	1					1000
29	-21.3	350	.014	.173	429	4.87	.027	.066	4.126	28.59	.0029	.252	.016	7.81	91.84	1000
30	-24.4	400	.037	.180	367	3.58	.008	.027	3.432	25.17	.0003	.057	.007	7.17	75.79	1000
31	-27.4	450	.054	.214	261	3.29	.007	.018	.508	4.71	0005	119	.004	-0.35	14.31	998
32	-30.5	500	.080	.220	067	3.03	.010	.018	.288	3.15	0005	137	.004	-0.59	7.65	1000
33	-33.5	550	.092	.242	.071	3.12	.012	.018	. 388	3.39	0007	169	.004	-1.30	9.52	1000
34	-36.6	600	.070	.254	.331	3.01	.008	.018	. 168	3.05	0007	152	.005	-1.16	9.35	998
35	-42.7	699	.025	.214	.533	3.09	.020	.018	.203	3.25	0003	064	.004	-0.36	7.66	996
36	0.0	.000	011	.067	.560	9.98	.953	.131	-2.668	12.94	.0007	.076	.020	5.92	142.96	999

٠

.

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

,

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

.

60

AZIMUTHAL VELOCITY AND CONCENTRATION DATA AND CORRELATIONS

Test Date: 8/11/31 Run No.: 53 Flow Condition: 1 Geometry: 1

Axial Location: $102 \text{ mm} (4.0 \text{ in.}); x/R_0 = 1.66$

and the second second second second second second second second second second second second second second secon

Pr. No.	r nm + (f= 270) - (f= 90)	r/R _o	₩ m/⊔	w' m/s	s _w	Kw	Ŧ	£'	35	κŗ	wf m/s	Ruf	σ _{wf} m /s	Swf	Kuf	N
2	0.0	.000	.011	.063	.276	5.07	.916	.131	-2.588	11.37	0012	. 140	.017	-2.66	63.51	100
3	3.0	.050	.012	.082	.171	9.68	.871	.190	(1	1				ł	100
4	6.1	.100	.008	.099	.181	4.95	.749	.256	486	2.08	0022	.086	.033	98	12.63	100
5	9.1	.150	.010	.123	.385	3.98	. 564	.257	i		1		ļ			99
6	12.2	.200	.018	.140	102	3.26	. 336	.199	.844	3.82	0019	.068	.024	20	7.72	1.100
7	18.3	. 300	.030	.121	158	4.47	.096	.115	1.799	7.00	0022	.156	.016	72	19.39	100
8	24.4	.400	.029	.170	263	5.49	.008	.034		1	1		1		1	100
9	30.5	.500	.032	.261	.101	3.78	.007	.016	.310	3.24	.0001	026	.005	.29	13.14	100
10	36.6	.600	.041	.256	.118	3.50	.014	.017	.227	2.94	0001	.025	.004	34	8.19	97
11	42.7	.699	.019	.208	.148	3.35	.021	.017	1	1	1	}		{		100
12	0.0	.000	.009	.072	240	12.25	.912	.145	1	1	1		1	1		00
16	0.0	.000	800.	.074	.253	6.83	.904	.141			1	1			{	00
	-3.0	050	009	.075	.231	7.43	.905	.145		ļ	1	ļ		1	1	100
10	-6.1	100	.004	.093	.413	0.50	.015	.222	[(t i	ł	-		100
19	-9.1	150	.009	.125	.115	4.21	.005	.249	ļ		(Į	1		1	99
20	-12.2	200	.015	122	.032	2 07	.404	.220	1		1					100
	-18.3	300	.034	1.122	1/2	5.99	.11/	.124			1	İ	1	Ì		100
22	-24.4	400	- 005	260	124 ASB	3.50	.010	.020			1					100
23	-30.3	300	- 033	108	.038	4 62	076	.010))	Ì	1	1]	100
25	10.3		- 013	070	245	5.16	025	143	1		}	1	1			100
														 		<u> </u>

σ

HASS AND NOMENTON TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/12/81 Run No.: 54

Flow Condition: 1 Geometry: 1

Axial Location: 152 mm (6.0 in.); $x/R_0 = 2.50$

۴ _ل ۸۰۰	r +(6-0) -(8-180)	r/R _o	¥ m/s	¥' #/s	Sw	Ky	ī	f'	°r	ĸŗ	uf a/s	R _{wf}	σ _{vf} ∎/s	Swf	Kwf	Ň
2	1.52	.025	.015	. 156	.106	4.40	.578	. 304			0038	.080.				1000
3	1.52	.025	.010	. 153	.042	4.04	. 558	. 304			0010	.021		1		1000
4	4.57	.075	.017	.152	.387	4.73	.510	. 294		1	0060	.134		i i		999
5	7.62	. 125	.025	. 152	.132	3.82	.448	. 276	•		0060	. 143				999
6	10.67	. 175	.026	.157	.175	3.52	.343	. 249			0040	. 102				999
17	13.72	. 225	.025	. 162	.007	3.57	. 266	. 221		ľ	0035	.098	1			1000
8	19.81	. 325	.031	. 165	.043	4.27	. 105	.155			0013	.051				1000
9	25.91	.425	.023	.216	. 196	3.88	.013	.069			.0002	013				999
10	32.00	. 525	.038	.267	102	3.38	010	.035			.0002	021				999
11	38.10	.625	.023	.290	.066	3.17	010	.022			.0002	031				999
12	44.20	.725	.030	. 28 3	.059	3.33	008	.025			0000	.000				1000
14	1.52	.025	.004	.157	.017	4.33	.528	. 289		ſ	0013	.029	1			1000
17	1.52	.025	.002	. 159	147	4.56	.555	. 296			0000	.000				999
18	-1.52	025	.004	. 151	017	4.27	.551	. 294			.0010	.016				998
19	-4.57	075	.007	. 164	. 302	6.51	.485	.274		{	0008	019				1000
20	-7.62	125	.013	. 164	.084	3.70	. 390	.251	1	1	0008	020	ļ			1000
21	-10.67	175	.019	. 163	.278	3.73	. 324	.229	1	1	0030	080	Į			999
22	-16.76	275	.016	.177	. 176	5.49	. 151	. 171	1	1	0016	052	}			999
23	-22.86	375	004	.203	084	4.51	.040	. 101		1	.0002	.012	1			1000
24	-28.96	475	001	.273	.128	3.77	.001	.048			.0006	.046	1			1000
25	-35.05	575	.009	.296	.001	3.52	.000	.030			0002	027	1			999
26	1.52	.025	015	. 151	108	4.48	.531	.286		1	.0014	.034	ł			1000
27	1.52	.025	005	. 149	.098	3.61	018	.020			.0000	.000	1			1000

NASS AND NUMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/14/81 Run No.: 56

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

Flow Condition: 1 Geometry: 1

United Technologics Research Center/NASA Lewis Research Center (Contract NAS3-22771)

Axial Location: 203 mm (8.0 in.); $x/R_0 = 3.33$

P _E No.	r m +(0-270) -(0-90)	r/R _o	W m/s	¥' •/s	Sw	K _e	Ē	ſ'	Sf	ĸŗ	ví n/s	R _{Wf}	σ _{wf} ∎/s	S _{hi} f	Kuf	N
2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24	$\begin{array}{c} .0\\ 3.0\\ 6.1\\ 9.1\\ 12.2\\ 18.3\\ 24.4\\ 30.5\\ 76.6\\ 42.7\\ .0\\ -3.0\\ -6.1\\ -9.1\\ -12.2\\ -18.3\\ -30.5\\ -42.7\\ .0\end{array}$.000 .050 .100 .150 .200 .300 .400 .530 .600 .699 .000 .000 050 100 150 200 300 500 699 .000	.011 .014 .023 .029 .022 .010 .009 .015 .016 .019 .012 .003 007 .006 .013 .019 .001 .013 .012 006	. 182 . 184 . 179 . 195 . 182 . 211 . 231 . 267 . 302 . 285 . 183 . 174 . 176 . 185 . 181 . 191 . 265 . 317 . 173	.021 .150 .194 .088 .233 .039 047 237 037 005 062 .016 .306 .881 069 .221 .136 .189 060 .035	4.62 3.80 4.20 4.54 4.47 3.60 3.84 3.79 2.92 2.94 3.61 3.64 4.64 4.03 3.66 3.86 3.85 3.38 3.20 3.56	.045 .035 .035 .277 .273 .265 .256 .243 .208 .151 .060 .044 .288	.059 .036 .024 .148 .141 .157 .149 .147 .138 .133 .078 .042 .153			.0005 0000 .0002 0006 0018 .0000 .0001 .0002 0001 0003 .0001 .0003 .0018	032 .000 025 .022 .070 .000 .004 .007 004 012 .005 .023 .068	.000 .001 .001 .001 .001 .001 .002 .002			1000 1000 1000 1000 1000 1000 1000 100

63

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/17/81 Run No.: 57 Flow Condition: 1

ition: 1 Geometry: 1

লা নাম আজ

Axial	Location:	13 mm ((0.5 in.)	; $x/R_0 =$	0.21

r _L N	r tun + (6=270) - (8=90)	r/R _o	¥ m/s	v' =/=	Sy	Ky	Ē	£'	\$f	ĸf	uf m/s	Ruf	Tuf n/s	Suf	Kuf	ĸ
I I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	$\begin{array}{c} \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ + (\mathbf{G} = 270) \\ - (\mathbf{U} = 90) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	r/R ₀ .000 .000 .000 .050 .100 .150 .200 .300 .600 .500 .600 .000 .000 .000 .000 .0	W m/s .010 .009 .008 .007 .008 .007 .001 .027 .046 .031 .027 .046 .031 .066 .111 .066 .111 .009 .009 .009 .009 .008 .010 .007 .010 .017 .012 013 017 .063	w ¹ m/s .033 .036 .034 .037 .042 .047 .074 .064 .028 .220 .124 .123 .036 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .040 .051 .095 .048 .210 .132	Syr .082 258 294 .015 208 .167 .013 193 016 .193 016 .050 120 199 256 064 .141 072 021 076 072 072 076 076 076 077 077 076 076 077 076 077 077 076 076 077 077 077 076 077 077 076 077 076 076 077 076 076 077 076 077 076 076 076 076 077 076 076 077 076 076 076 076 076 077 076 076 077 076	K, 2. 66 3. 50 3. 45 3. 34 3. 32 3. 24 3. 72 3. 77 3. 39 2. 82 2. 78 2. 89 3. 25 3. 30 2. 85 3. 00 3. 72 2. 98 2. 82 2. 87 4. 51 3. 11 4. 96 3. 51 2. 96	1.002 .999 1.000 .998 .837 .015 .000 .006 .033 .019	2° .056 .056 .056 .057 .118 .018 .014 .025 .025 .019	5 f . 371 .060 .182 .005 .093 .098 660 .810 .309 .296 .549	Kf 3. 10 2. 63 3.08 3.07 3. 81 2. 54 3. 46 5. 90 3. 61 3. 05 3. 63	B/3	Ruf 058 .008 019 037 025 066 .098 .035 .048 .029 .047	"st ≥/s	5wf	Kuf	K 994 1000 999 999 999 999 999 990 999 990 999 996 996
26 27 28	-42.67 .00 .00	700 .000 .000	.116 009 008	. 113 .036 .037	393 .114 .158	3.21 3.64 3.23			.272 .067 .397	3.15 1.82 3.23		.098 000 .008				990 1000 1000

NASS AND HUNERTUN TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Levis Research Center (Contract NAS)-22771)

AZIMUTHAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/17/81 Run No.: 58 Flow Condition: 1 Geometry: 1

Axial Location: 51 mm (2.0 in.); x/R₀ = 0.83

۲ ₁ ۲.	r mn + (8-270) - (8-90)	r/K	¥ ¶/s	4' N/S	Sy	Ky	r	Ľ,	8 _f	ĸŗ		Ref	G _{uf} B/3	Sur	Kwf	s
2	.0	.000	.010	.03A	.088	3.35	1.000	.051	400	5.18	0000	.011	.002	.08	6.44	1000
3	.0	.000	.008	.038	. 169	3.64	.971	.054	163	2.58	0000	017	.002	.20	9.52	1000
4	3.0	.050	.010	.041	. 20 3	3.08	.993	.053	235	3.84	0^)1	.000	.002	.06	6.34	999
5	6.1	. 100	800.	.045	. 1 32	3.52	1.021	.058	-1.605	9.57	0002	.970	.003	-1.79	22.36	1000
6	9.1	.150	.007	.068	.132	5.13	.860	. 162	-1.046	3.88	~,0007	.059	.015	-3.96	79.97	1000
7	12.2	. 199	.010	.133	.083	3.74	.467	.185	.423	2.75	0010	.040	.023	75	8.67	999
9	.0	.000	.012	.038	105	3.27	.971	.052	; ;		i					1000
10	0.	.000	.012	.038	194	3.45	1.028	.058	1		,		ł	1		1000
1 11	18.2	.299	.028	.075	220	4.44	.054	.052	1 1		1		ł	1		996
12	24.3	. 399	.039	.078	.044	5.46	.018	.014	1		1					996
113	30.4	.498	.045	. 222	. 177	3.12	.025	.015]	1		997
14	36.5	. 596	.050	. 192	.177	3.70	.035	.017						1		996
15	42.6	.698	.019	.138	.237	2.51	.040	.017	.457	3.77	.0001	054	.002	1.25	14.0Z	791
18	0.	.000	009	.038	. 162	3.67	1.001	.074	.430	3.21	0002	079	.003	47	8.17	1000
19	-3.0	050	013	.037	042	3.23	.981	.056	.029	4.18	0000	010	.00Z	. 10	1.17	1000
20	-6.1	100	010	.044	.089	3.07	1.026	.063	946	8.54	0000	009	.003	a. 1	13.49	777
21	-9.1	150	007	.058	.003	3.30	.933	. 122								772
22	-12.2	199	006	. 124	.090	3.76	.565	. 205	.136	2.31	.0017	.06/	.025		7.40	1000
23	-18.2	299	.047	.090	.241	4.71	.072	.066	1.889	7.93	.0005	.1381	.007	. 62	17.33	1000
24	-24.3	399	014	.092	655	13.83	.021	.015	- 36 L	3.21	0000	002	.002	77	34.09	1000
27	.0	.000	013	.035	.071	Z.43	.998	.954	-					1		774
28	0.	.000	110	.039	006	3.23	.991	.051	{		(1		798
27	-30.4	478	001	.217	141	3.19	.013	.015	1 1		1			1		776
	-36.5	398	.046	. 174	327	3.43	.024	.010	1					i i		770
1	-42.6	678	.0/1	. [40	252	3.10	.033	.018						1		
32		.000	011	.030	. 104	3.19	1.002	.032								

NASS AND NUMERIUM TURBULERT TRANSPORT EXPERIMENTS

United Technologies Research Center/KASA Lewis Research Center (Contract MAS3-22771)

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/19/81 Run No.: 60 Flow Condition: 1 Geometry: 1

Axial Location: 13 mm (0.5 in.); $x/R_0 = 0.21$

r ₁ No.	r + ((n=0) - (0=180)	€/R _o	ון א/א	u* 14/5	Su	Ku	Ī	Ľ,	"r	ĸŗ	uf a/s	Ruf	G _{uf} ∎/>	Suf	Kuf	X
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	-(8-[30]) .00 3.05 6.10 9.14 12.19 18.29 24.38 30.48 36.58 42.67 .00 .00 .00 .00 .00 .00 .00 .0	$\begin{array}{c} .00\\ .05\\ .10\\ .15\\ .20\\ .30\\ .40\\ .50\\ .60\\ .70\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .0$. (7, 3 . 80) . 759 . 674 . 50 3 1. 6 30 1. 596 . 702 047 057 . 816 . 81 3 . 81 3 . 81 3 . 81 3 . 81 3 . 716 . 625 . 472 1. 589 1. 642 . 650 038	- 053 .049 .061 .07% .107 .057 .062 .256 .044 .053 .054 .054 .054 .054 .054 .054 .054 .054	543 244 465 348 148 -1.217 832 016 609 827 534 477 461 458 431 458 431 490 273 166 647 040 764 491	3.72 2.86 3.12 3.05 3.28 11.09 11.26 2.69 4.23 5.12 3.33 3.00 3.66 3.18 3.36 3.19 3.05 2.78 2.82 4.33 11.73 2.65 4.25 3.08	.996 .948 1.019 .983 .806 007 008 .001 .006 001 1.005	.053 .056 .048 .058 .096 .013 .013 .014 .013 .052	380 081 670 895 794 .304 .331 .195 .142 .288 457	3.17 2.62 4.48 7.34 4.19 2.88 3.08 2.94 2.92 3.29 3.34	.0000 0000 0002 .0019 .0000 0000 0000 0000 0000 0000	.014 016 016 .035 .186 .034 020 095 024 044 .029 154 .032 .059 .009 .062 .055 .272 .004 015 098 098	.003 .003 .005 .107 .001 .001 .003 .001 .003	003 550 .033 711 .063 240 -1.276 433 154 530 .526	10.13 8.72 6.12 13.73 10.69 15.27 16.17 5.63 12.75 14.14 11.78	999 1000 1070 999 988 1000 999 1000 994 994 994 994 994 994 994 994 994

NASS AND ININERTAL TURBULENT TRANSPORT EXPERIMENTS

United Technologius Research Center/NASA Levis Research Center (Contract NAS3-22771)

TABL: IV-61

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/19/81 Run No.: 61 Flow Condition: 1 Geometry: 1

Axial Location: $51 \text{ mm} (2.0 \text{ in.}); x/R_0 = 0.83$

P _E No.	r uun +(6=0) -(6=180)	r/R _o	บ m/ร	น' ๓/ธ	Su	Ku	f	ſ'	Sf	۴ſ	uf m/s	R _{uf}	σ _{uf} m/s	Suf	Kuf	Ň
No. 2 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20 21 22 23 24	+(6-0) - (9-18	0.008 0.058 0.108 0.158 0.208 0.308 0.408 0.508 0.608 0.608 0.708 0.608 -0.042 -0.092 -0.142 -0.192 -0.142 -0.192 -0.291 -0.391 -0.491 -0.591 -0.691	m/s .803 .806 .759 .712 1.004 1.629 1.519 .775 .027 079 .792 .753 .693 .663 .886 1.581 1.571 .831 .062 061	m/s .054 .051 .076 .098 .219 .069 .140 .300 .167 .146 .057 .070 .083 .092 .173 .100 .153 .328 .187 .123	463 290 429 . 575 . 320 970 -1. 191 641 223 196 250 . 408 . 336 -1.039 -2. 444 427 1.091 435	3. 48 3. 43 3. 25 4. 31 2. 47 11. 52 5. 40 3. 43 	1.000 .980 1.013 .772 .367 001 007 003 .010 .979 1.000 .918 .870 .473 .024 .000 .005 .017 .017	.059 .063 .070 .156 .171 .032 .015 .015 .015 .022 .059 .059 .062 .165 .190 .050 .014 .015 .016 .015	.054 .098 414 944 .600 3.803 .139 .362 .418 .065 .187 974 .445 3.594 .070 .199 .164 .222	3. 10 3. 44 4. 26 3. 43 2. 91 25. 60 2. 94 3. 28 	m/s .0001 .0000 .0011 0017 0183 0002 0001 0005 0005 .00000 0008 0001 0142 0014 0002 0004 0002	.046 .013 .204 113 491 089 053 120 163 .006 157 005 429 276 074 151 125 124	<pre>m/s .003 .006 .029 .034 .005 .002 .005003 .003006 .021 .032 .010 .003 .005 .003 .002</pre>	-50 37 1.54 -2.86 -1.05 -10.14 -1.10 52 -1.95 .72 -1.99 -4.22 -1.15 -9.87 -4.53 -1.32 76 67	8.50 9.55 11.20 20.44 4.76 192.18 13.63 9.61 	x 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 500 498 500 500

67

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/20/81 Run No.: 62 Flow Condition: 1 Geometry: 1

Axial Location: $102 \text{ mm} (4.0 \text{ in.}); x/R_0 = 1.66$

۲ _L No.	r mans +(6≈0) -(0=180)	r/R _o	U m/ธ	ບ' m/s	Su	Ku	f	£'	\$ _f	^K f	uf m/s	R _{uf}	σ _{uf} m/s	Suf	K _{uf}	N
3	1.5	.025	.770	.090	.199	4.17	.934	.126	-2.458	11.76	0002	013	.018	-9.72	175.89	1000
4	4.6	.075	.784	.102	.790	6.51	.852	.163	-2.058	7.89	0018	111	.032	-9.08	131.17	1000
5	7.6	.125	.834	.145	1.192	5.77	.665	.225	569	2.30	0146	446	.044	-3.74	25.35	1000
6	10.7	.175	1.004	.201	.468	2.74	.447	.221	.291	2.28	0265	595	.042	-1.46	6.27	1000
7	13.7	.225	1.231	.228	157	2.48	.241	.166	.979	4.31	0229	607	.044	-2.44	11.46	1000
8	19.8	.325	1.547	.141	-1.813	8.69	.028	.068	2.444	9.90	0021	220	.014	-5.06	54.60	1000
9	25.9	.425	1.349	.260	-1.535	7.19	.000	.036	5.466	42.57	0003	032	.010	-0.06	85.76	997
10	32.0	.525	.817	.361	1	[ļ	(·	[1	1	ĺ	í	ļ	1	1000
11	38.1	.624	.321	.342	1		ļ			Í			1	-	j	1000
12	44.2	.724	010	.274			ł	1	1	1	1		ł	1	1	1000
13	1.5	.025	.766	.090	.067	3.24	.896	.121	-2.452	12.66	.0001	.012	.018	-5.33	54.23	999
17	1.5	.025	.779	.089	.159	3.78	.901	.118	-2.962	15.40	0002	018	.020	-7.42	92.99	1000
18	-1.5	025	.763	.098	.409	4.11	.885	.146	-2.046	7.60	.0003	.019	.023	-6.45	75.19	1000
19	-4.6	075	.788	.126	.865	4.60	.730	.227	809	2.69	0100	352	.039	-3.41	22.86	1000
20	-7.6	125	.920	. 192	.790	3.32	.546	.262	.121	2.01	0291	578	.052	-2.22	11.13	998
21	-10.7	175	1.110	.211	.180	2.51	.351	.202	.614	3.11	0251	590	.042	-1.46	5.73	1000
22	-16.7	275	1.487	.179	950	4.08	.081	.117	2.004	8.15	0107	~.511	.033	-5.39	43.04	1000
23	-22.9	375	1.410	.260	1	}	ł			ł	1		1 1]	1	999
24	-29.0	475	.940	.340	· ·	(ſ	1	1	ſ			[1	[1000
25	-35.1	575	.424	.377	086	2.97	.001	.016	. 364	3.06	0011	181	.006	-0.65	6.44	1000
26	-41.1	674	.023	.291	.269	2.89	002	.016	.294	3.04	0009	190	.005	-0.89	7.66	1000
27	1.5	.025	.775	.092	191	3.19	.929	.112	-3.392	18.97	.0003	.028	.016	-6.77	92.34	999

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)
AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/20/81

Run No.: 63 Flow Condition: 1 Geometry: 1

Axial Location:	152 mm (6	.0 in.);	$x/R_0 =$	2.50
-----------------	-----------	----------	-----------	------

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

مخصر إستخاذه فحأ سرتيون

R81-915540-9

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/21/81 Run No.: 64 Flow Condition: 1 Geometry: 1

Axial Location: 203 mm (8.0 in.); $x/R_0 = 3.33$

i' _t Νυ.	r nim +(6=0) -(0=180)	r/R _o	U m/s	u' m/s	Su	Ku	f	£'	⁵ f	Кf	uf m/s	R _{uf}	σuf m/s	Suf	Kuf	N
4	2.03	.033	.970	.208	224	3.46	.279	.170	.853	3.68	0090	254	.034	.522	10.83	999
	9.00	.003	.909	.215	1.50	3.15	.201	.102	.722	4.21	0108	310	.035	040	E 70	1000
1 7	0.13	.133	. 976	.230	072	2.07	. 252	.103	.734	3.30	0108	207	.037	409	3.78	1000
A	14 22	.105	1.078	.230	- 402	2.09	.205	130	1.140	4.00	0108	- 219	031	-1.056	9.94	000
9	20.32	111	1.115	288	- 878	4 18	.151	106	1.555	5 43	- 0010	- 032	024	- 138	5.05	999
18	0.00	.000	983	211	106	2.85	268	.158	. 684	3.41	0105	- 313	033	- 337	8 41	1000
19	-1.02	017	.973	.203	173	2.90	281	.157	.756	3.81	0083	261	.030	639	8.05	1000
20	-4.06	067	.983	.220	192	2.93	.271	.171	.858	3.61	0099	264	.035	270	6.25	1000
21	-7.11	116	1.018	.217	184	3.04	.256	.167	.929	4.08	0110	304	.033	839	5.80	1000
22	-10.16	166	1.049	.239	404	3.66	.222	.154	.878	3.83	0088	240	.034	- 481	9.59	1000
23	-16.26	266	1.074	.262	506	3.46	.143	.131	1.114	3.95	0043	125	.032	120	6.44	1000
24	-22.35	366	.995	. 307	584	3.39	.089	. 102	1.953	7.76	.0026	.082	.026	288	17.78	1000
25	-28.45	466	. 828	.355	578	3.29	.044	.072	3.730	24.81	.0014	.054	.016	1.049	10.71	1000
26	-34.54	566	.626	.372	408	2.78	.044	.056	4.620	37.82	.0000	002	.014	1.574	20.20	1000
27	-40.65	666	.347	.377	062	2.49	.030	.030	2.570	18.03	0001	.006	.012	2.882	27.43	1000
28	0.00	000	.980	.208	125	3.00	.272	. 155	. 831	3.92	0104	326	.030	711	6.67	1000

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

70

R81-915540-9

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/24/81 Run No.: 66 Flow Condition: 1 Geometry: 1

Axial Location: 254 mm (10.0 in.); $x/R_0 = 4.16$

P _t No.	r um +(0= 0) -(0= 180)	r/R _o	ប ៣/៩	u' m/s	Su	Ku	f	f'	Sf	Kſ	uf m/s	R _{uf}	σu£ m∕s	Suf	Kuf	N
3	-0.76	-0.012	.885	.224	404	3.52	. 200	.095	.676	3.52	.0009	.041	.021	0.68	7.88	1000
4	2.29	0.037	.859	.234	483	3.51	.182	.094	.745	3.50	.0017	.075	.021	0.39	6.07	1000
5	5.33	0.087	.850	.225	399	3.23	.180	.094	.759	3.73	.0011	.054	.020	0.33	5.91	1000
6	8.38	0.137	.847	.258	678	3.72	.160	.089	.915	3.99	.0030	.130	.021	1.05	8.02	1000
7	11.43	0.187	.846	.254	562	3.53	.151	.085	.740	3.37	.0024	.111	.020	0.48	6.17	1000
8	17.53	0.287	.800	. 281	416	2.90	.124	.077	1.068	3.87	.0027	.124	.019	0.63	6.20	1000
9	23.62	0.387	.716	.306	319	2.79	.104	.067	1.460	5.70	.0031	.152	.017	0.48	6.50	1000
10	29.72	0.487	.549	.321	121	2.53	.080	.052	1.696	7.57	.0024	.142	.015	1.45	11.41	1000
11	35.81	0.587	.420	.327	025	2.64	.061	.039	2.032	10.52	.0014	.108	.013	2.65	21.12	1000
12	41.91	0.687	.272	.305	.394	2.86	.062	.034	1.641	8.56	.0005	.048	.011	2.46	21.26	1000
13	-0.76	-0.012	.870	.239	112	4.52	.180	.090	.894	4.54	.0014	.067	.020	1.08	1.12	1000
15	-0.76	-0.012	.848	.247	641	3.88	.195	.095	.750	3.72	.0025	.107	.023	1.29	8.53	1000
10	-3.81	-0.062	.866	.222	544	4.01	.207	.096	.538	2.98	.0012	.054	.021	0.91	8.07	1000
1/	-6.86	-0.112	.842	.249	631	5.75	.195	.099	./32	3.80	.0030	.120	.024	0.99	5.00	1000
18	-9.91	-0.162	.840	.250	/25	4.01	.192	.100	.809	3.50	.0031	.123	.024	0.58	2.82	1000
19	-12.95	-0.212	.821	.205	- 611	2 59	1/0	.095	061	2 70	.0041	125	.024	0.20	6 10	1000
20	-19.05	-0.312	.804	211	011	5.55	125	.072	.901	3.75	.0032	171	024	0.35	0.15	1000
	-25.15	-0.412	.709	323	- 230	2 62	.125	.070	1 051	10.06	.0045	140	016	0 73	9.55	1000
22	-31.24	-0.512	. 592	123	- 113	2.02	.095	055	1 758	7 34	0031	177	017	2 82	22 52	1000
23	-42.62	-0.012	.403	328	- 014	2 60	074	041	2 158	12 68	0016	120	015	3 59	32 08	1000
24	-43.43		. 354	238	- 437	3 45	186	088	488	2 98	0016	.076	021	0.54	6 74	1000

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

71

AXIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/24/81 Run No.: 67 Flow Condition: 1 Geometry: 1

Axial Location: 305 mm (12.0 in.); $x/R_0 = 5.00$

۲ _נ No.	(mm +(6=0) -(θ=180)	r/R _o	U m/s	u' m/s	Su	ĸu	f	f'	Sf	Kf	uf m/s	R _{uf}	or _{u:} m∕s	S _{uf}	K _{uf}	N
3	0.0	.000	. 690	.243	451	2.91	.146	.056	.881	3.99	.0034	.250	.012	0.97	6.57	999
4	3.0	.050	.708	.238	384	2.83	.134	.050	.795	3.64	.0028	.237	.011	0.90	6.03	999
5	6.1	,100	. 686	. 244	345	2.94	.136	.050	.771	3.58	.0030	.240	.011	1.46	13.40	1000
6	9.1	.150	.659	. 262	448	2.96	.130	.050	1.015	4.30	.0032	.239	.012	0.66	5.30	1000
8	18.3	. 300	.636	.256	233	2.79	.121	.046	.974	4.43	.0029	.246	.010	0.69	5.92	1000
9	24.4	.400	.544	268	142	2.53	.116	.045	1.442	6.60	.0027	.227	.012	1.55	16.22	1000
10	30.5	. 500	.462	.264	004	2.58	.099	.036	.914	3.93	.0022	.239	.009	1.36	9.50	1000
11	36.6	. 600	.388	.258	.121	2.41	.094	.035	1.164	5.09	.0015	.172	.009	1.93	15.50	1000
12	42.7	.699	.303	. 248	.226	2.65	.090	.030	1.126	5.46	.0014	.186	.007	1.76	11.95	1000
13	0.0	.000	.720	.231	389	2.88	.140	.054	.992	4.06	.0028	.224	.011	0.77	6.96	1000
16	0.0	.000	. 698	.243	440	3.18	.144	.060	.937	4.21	.0034	.233	.014	0.85	7.15	1000
1.7	-3.0	050	.699	.246	383	2.75	.141	.058	.849	3.91	.0038	.199	.012	0.57	5.25	1000
18	-6.1	100	.679	.247	457	2.95	.142	.058	.809	3.48	.0038	.262	.013	0.73	5.39	1000
19	-9.1	150	.688	.247	441	3.08	.141	.060	.773	3.39	.0033	.220	.013	0.71	6.69	1000
20	-12.2	200	.663	.244	336	2.99	.138	.059	.863	3.81	.0034	.238	.013	1.05	7.40	1000
21	-18.3	300	.634	.260	382	2.80	.129	.059	1.093	4.69	.0033	.217	.014	1.40	9.02	1000
22	-24.4	400	. 548	.270	244	2.68	.122	.052	1.212	5.30	.0038	.271	.013	2.68	26.39	1000
23	-30.5	500	.476	.269	.025	2.52	.104	.046	1.231	5.57	.0029	.232	.011	1.41	10.86	1000
24	-36.6	600	. 398	.262	.082	2.43	.101	.040	1.383	6.71	.0021	. 194	.010	1.32	11.41	1000
25	-42.7	699	. 306	. 249	. 329	2.80	.088	.037	1.463	7.20	.0018	.192	.010	1.58	13.21	1000
26	0.0	.000	. 681	.248	452	2.89	.142	.064	.717	3.33	.0042	.270	.014	0.77	6.08	1000

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وال

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

اسر ا

1.

72

ì

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Test Date: 8/25/81 Run No.: 69 Flow Condition: 1 Geometry: 1

Axial Location: 254 mm (10.0 in.); $x/R_0 = 4.16$

Pt. No.	r suns +(6=0) -(0 =180)	r/k _o	V ៣/ម	v' m/s	s _v	K _v	ŕ	f'	Sf	Kſ	vf m/s	R _{vf}	σ _{vf} m/s	Svf	Kvf	N
3	1.52	.025	.023	.175	.028	3.87	.187	.100	.693	3.29	.0001	.006	.016	331	6.57	1000
4	4.57	.075	.030	.189	195	3.47	. 183	. 101	.648	3.47	.0030	.158	.018	. 322	6.02	1000
5	7.62	.125	.035	. 183	363	4.14	.173	.098	.895	4.47	.0024	.136	.017	.452	7.48	999
6	10.67	.175	.042	.189	307	3.46	.156	.091	.673	3.04	.0036	.210	.016	1.067	7.07	1000
7	13.72	.225	.045	.187	292	3.41	.146	.092	.744	3.13	.0036	.210	.016	. 59 5	5.31	999
8	19.81	.325	.072	. 196	188	2.92	.138	.098	1.409	6.24	.0047	.243	.017	.883	6.37	1000
9	25.91	.425	. 100	.219	263	3.75	.087	.076	1.416	5.25	.0046	.277	.016	2.420	16.40	998
10	32.00	.524	.097	.229	245	3.24	.059	.059	1.924	8.27	.0030	.226	.014	3.838	33.22	1000
11	38.10	.624	. 108	. 236	.004	2.84	.041	.042	1.985	8.71	.0020	. 204	.011	3.608	26.26	998
12	44.20	.724	.087	.222	.416	3.87	.031	.032	1.570	9.34	.0008	.119	.007	2.811	23.68	999
13	1.52	.025	.017	. 168	177	3.78	.194	.101	.657	3.38	.0013	.075	.017	.766	8.74	1000
16	1.52	.025	.017	.180	099	3. 9 0	.190	.091	.530	2.94	.0002	.011	.016	.321	7.63	999
17	-1.52	025	011	.179	141	3.95	.182	.093	.660	3.27	0001	.004	.016	183	7.95	1000
18	-4.57	075	.001	. 175	.107	4.31	.175	.091	. 580	3.14	.0015	.096	.016	.419	9.28	1000
19	-7.62	125	001	.170	.286	3.90	.164	.090	.994	5.33	.0032	.209	.015	.864	8.11	998
20	-10.67	175	.006	. 190	.233	3.47	.151	.086	.736	3.46	.0035	.214	.015	.849	7.10	1000
21	-16.76	275	.037	.197	.143	4.09	.140	.083	.926	3.86	.0040	.243	.016	.92?	6.64	1000
22	-22.86	375	.048	.205	.286	3.24	.106	.074	1.165	4.13	.0040	.263	.014	1.2/0	10.11	1000
23	-28.96	475	.066	.219	.081	3.21	.090	.061	1.604	6.20	.0033	.246	.012	2.283	16.67	1000
24	-35.05	574	.096	.224	.110	2.84	.061	.045	2.010	9.34	.0018	.178	.010	2.008	16.01	999
25	-41.15	674	.108	.236	046	2.92	.071	.043	1.955	9.62	.0017	.169	.010	2.596	20.06	997
26	1.52	.025	014	.180	.274	4.37	.185	.092	.678	3.24	.0006	.039	.016	.530	9.02	1000

R81-915540-9

73

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

RADIAL VELOCITY, CONCENTRATION AND MASS TRANSPORT DATA AND CORRELATIONS

Flow Condition: 1 Test Date: 8/25/81 Run No.: 70 Geometry: 1 Axial Location: $305 \text{ mm} (12.0 \text{ in.}); x/R_0 = 5.00$

P ₁ No.	r man +(6=0) -(θ=180)	r/R _o	V m/s	∨' m/s	Sv	ĸ	Ŧ	ſ'	Sf	Kſ	vf m/s	R _{vf}	σ _{vf} ∎/s	Svf	к _{vf}	N
3	0.00	.00	.020	.179	238	4.00	.142	.057	.734	3.81	.0003	.034	.010	.104	8.19	1000
4	3.05	.05	.021	.175	108	3.45	.143	.058	.646	3.13	.0013	.130	.010	1.156	9.82	1000
5	6.10	. 10	.031	.169	019	3.63	.128	.055	.839	3.76	.0009	.096	.009	.758	13.10	1000
6	9.14	.15	.033	.171	209	3.74	.131	.055	.660	3.12	.0013	. 140	.009	.769	9.86	1000
7	12.19	.20	.045	.174	240	3.38	.129	.056	.857	3.82	.0018	.187	.009	.728	9.12	1000
8	18.29	.30	.060	. 192	192	3.48	.115	.052	.947	3.76	.0022	.219	.009	1.378	9.61	999
9	24.38	.40	.082	.206	226	3.05	.103	.047	1.339	5.69	.0022	.228	.009	1.533	10.67	1000
10	30.48	.50	.088	.205	103	2.93	.092	.040	1.407	5.80	.0021	.250	.007	1.698	10.74	1000
11	36.58	.60	.088	.214	.023	2.90	.085	.034	1.243	5.85	.0018	.250	.008	2.241	15.54	998
12	42.67	.70	.072	.210	.139	2.92	.068	.027	1.334	7.22	.0012	.214	.006	3.142	32.44	998
13	0.00	.00	.018	.179	088	3.35	.143	.058	.778	3.94	0001	010	.010	021	8.16	991
16	0.00	.00	022	.170	.042	3.32	.149	.067	.707	3.23	.0002	.020	.011	. 314	6.14	999
17	-3.05	05	001	.171	082	3.72	.140	.064	.736	3.45	.0002	.020	.011	241	9.28	1000
18	-6.10	10	002	.175	.072	3.51	.134	.060	.648	3.12	.0006	.054	.010	.649	8.96	999
20	-12.19	20	.016	.178	. 109	3.02	.129	.063	.998	4.59	.0013	.118	.010	. 390	7.24	999
21	-18.29	30	.021	.167	.069	3.10	.128	.060	.874	3.58	.0017	.172	.009	.405	6.53	1000
22	-24.38	40	.035	. 188	020	3.22	.106	.058	.940	4.10	.0024	.243	.010	2.180	24.82	999
23	-30.48	50	.041	.204	048	3.03	.102	.048	1.063	4.64	.0022	.224	.009	1.046	8.38	1000
24	-36.58	~.60	.064	. 194	022	3.13	.076	.041	1.286	5.56	.0018	.222	.007	1.401	11.52	998
25	-42.67	70	. 056	. 195	094	2.83	.083	.040	1.281	5.90	.0015	. 199	.008	1.855	14.37	999

٠

٠

74

.

TA .

R81-915540-9

1

And a grading with

.

.

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 8/26/81

• • •

Run No.: 71 Flow Condition: 1

1 Chometry: 1

R81-915540-9

. .

Pr. No.	r mm +(4=0) -(0=180)	r/R _o	U m/s	u' m/s	Su	Ku	W m/s	w' m/s	S₩	Kw	<u>uw</u> m²/s²	R _{uw}	σ _{sw} m ² /s ²	Suw	Kuw	N
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20	1.5 4.6 7.6 10.7 13.7 19.8 25.9 32.0 38.1 44.2 -1.5 -4.6 -7.6 -7.6 -7.6 -10.7 -16.8 -22.9 -29.0 -35.1 -41.1	.025 .075 .125 .175 .225 .325 .425 .525 .624 .724 -025 075 125 175 275 375 375 575 674	.886 .876 .880 .888 .886 .859 .814 .746 .605 .450 .898 .899 .874 .874 .845 .794 .689 .539 .406	.219 .210 .220 .209 .219 .242 .271 .290 .305 .318 .207 .231 .225 .238 .248 .248 .291 .289 .288 .324	631 424 508 634 271 424 314 465 349 476 427 574 533 504 515 175 081 255	4.15 3.45 3.77 3.90 3.12 3.35 2.84 3.58 3.40 3.70 3.72 3.70 3.72 3.12 3.18 3.07 2.75 2.72	041 017 028 .066 033 010 012 016 014 .028 .040 .028 .040 .025 .042 .007 .046 .025 .042	. 180 .218 .186 .395 .198 .255 .220 .245 .289 .317 .195 .187 .172 .195 .216 .215 .244 .255 .300	.175 1.834 .374 2.413 .519 2.518 .239 .260 1.174 1.464 664 206 274 339 .169 138 .014 196 .722	4.77 13.22 3.97 9.37 4.85 18.16 3.48 3.61 8.22 8.91 5.22 3.77 3.89 3.27 3.88 4.03 3.12 2.63 4.24						993 991 998 998 998 994 982 990 492 996 997 498 499 498 499 498 499

..........

Axial Location: 254 mm (10.0 in.); $x/R_0 = 4.16$

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

and a state of the second state of the second state of the second state of the second state of the second state

75

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 8/26/81

Run No.: 72

Flow Condition: 1

Geometry: 1

.

. .

-

-~

Axial Location: 254 mm (10.0 in.); $x/R_0 = 4.16$

P _t No.	r mm +(0=0) -(0=180)	r/R _o	ี่ ต/ ร	u' m/s	Su	Кu	V m/s	v" m/s	S _V	K _V	ων m ² /s ²	R _{uv}	σ _{uv} m ² /s ²	S _{uv}	Kuv	N
1	.0	.000	.873	.221	459	3.27	.058	. 206	.644	4.31	0048	105				492
2	3.0	.050	.907	.219	307	3.42	.053	. 194	004	6.20	.0019	.045	1	1	1	496
3	6.1	.100	.904	.211	301	3.23	.034	.177	296	3.34	.0023	.061		1		498
4	9.1	.150	.883	.225	573	3.59	.041	. 188	483	4.89	.0029	.069		1		498
5	12.2	.200	.8 87	.227	326	3.05	.024	.216	791	4.12	.0066	. 134				498
6	18.3	. 300	.862	. 266	312	2.86	.054	. 203	356	3.48	.0125	.231	l I	í .	Ì	497
7	24.4	.400	.787	. 298	440	3.43	. 113	. 210	313	3.00	.0086	.138	.059	.93	7.53	499
8	30.5	. 500	.671	. 301	160	3.28	.099	.235	457	3.50	.0212	. 299	.071	2.18	13.16	495
9	36.6	.600	. 559	. 309	298	3.10	. 129	.236	295	3.41	.0254	. 349	.069	.87	6.63	493
10	42.7	.699	. 369	. 330	008	2.80	. 1 19	.271	309	3.55	.0227	.254	.084	. 59	6.57	247
11	-3.0	050	.901	.213	689	3.80	024	.173	102	4.05	.0027	.072	.043	1.28	16.55	496
12	-6.1	100	.887	. 192	473	3.28	007	. 190	. 281	3.98	.0012	.033	.041	1.39	20.36	498
14	-9.1	150	.863	.214	321	3.37	.003	. 187	. 165	4.67	.0003	.009	.045	05	14.92	496
15	-12.2	200	.874	.229	449	2.96	.001	.181	139	3.88	.0012	.029	.049	1.48	12.76	494
16	-18.3	300	.859	. 246	469	3.18	.026	. 199	159	3.17	.0111	.228	.062	2.95	18.37	498
17	-24.4	400	.775	.280	436	3.46	.043	.223	196	3.51	.0151	.241	.070	2.51	17.42	498
18	-30.5	500	.681	.312	601	3.81	.085	.211	.078	3.11	.0165	.251	.075	1.59	13.62	249

•

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS.

.

.

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

AXIAL AND AZIMUTHAL VELOCITY DATA AND CORRELATIONS

Test Date: 8/27/81 Run No.: 73

Flow Condition: 1 Geometry: 1

Axial Location: $305 \text{ mm} (12.0 \text{ in.}); x/R_0 = 5.00$

ľt No.	r nam +(⇔=270) -(⊖=90)	r/K _o	្រ ៣/៩	u' m/s	Տս	Ku	W m/s	₩' m/s	S _W	Kw	un m ² /s ²	R _{uw}	σι, ∎²/s²	S _{uw}	K _{uw}	N
1	-2.03	.033	.774	. 220	476	3.08	.003	.214	1.309	7.57						991
2	1.02	.017	.774	.217	492	8.16	.018	.254	2.656	16.16					1	999
3	4.06	.067	.774	.212	422	3.12	.014	.219	1.748	11.91			l	Į	i	999
4	7.11	.116	.797	. 221	674	3.93	.000	.198	1.361	10.32	1		1		i	997
5	10.16	.167	. 768	.217	366	3.12	.007	.188	526	5.59						996
6	16.26	.266	.734	.232	431	3.42	006	.249	095	10.38		}				995
7	22.35	. 366	.667	.246	332	3.20	.050	.383	1.231	11.01	l		[Į	998
8	28.45	.466	.614	. 248	249	2.73	. 148	.462	1.959	6.93	ł		1		1	996
9	34.54	. 566	.528	.247	206	2.87	014	.313	-1.223	12.09]				996
10	40.64	.666	.450	.259	097	2.98	.005	.440	067	7.74						996
11	-2.03	033	.778	.214	432	3.21	013	.326	-1.354	10.66	Į	[1	l		996
12	-5.08	083	.756	.215	402	3.02	.015	.222	1.980	17.05				1		999
13	-8.13	133	.796	.214	615	3.73	.018	.193	.369	4.34			1	1	1	996
14	-11.18	183	.766	.224	401	3.26	.016	.217	1.459	10.80	\$		{			999
15	-14.22	233	.756	.218	443	3.24	.007	.190	203	3.56			1			997
16	-20.32	333	.680	.242	423	3.05	.014	.208	. 387	4.31				1	-	996
17	-26.42	433	.634	.240	224	3.01	.022	.264	2.595	19.16	ţ			1]	996
18	-32.51	533	.561	.252	289	3.08	.016	.217	.009	3.26	§	4			ł	977
19	-38.61	633	.475	.256	083	2.68	.041	.319	2.878	19.11	1	ł	1			999
20	-44.70	733	.379	. 248	110	2.86	.062	.338	2.59	14.34						992
	1								}			}		Ì		}
		{		ļ				ļ	ł	l .	{			Į –	ļ	
[{]	1		ł					i –
	1		1	}				Ì		1	1		1	1	•	
]	1						ļ	1		}	i -		}
				1		ţ		l	(Į	Į			ļ.	1	
1		Ì											1			
										1			1	1	1	
		1	1					}	1		1		1	1	1	ł
1		ļ				{		[1	ł	ł			ł		ł
1		l	1	l				ł		1				[ł	l
	1								ļ	[l

MASS AND MOMENTUM TURBULENT TRANSPORT EXPERIMENTS

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

R81-915540-9

AXIAL VELOCITY, RADIAL VELOCITY, AND MOMENTUM TURBULENT TRANSPORT DATA AND CORRELATIONS

Test Date: 8/27/81 Run No.: 74

Flow Condition: 1

Geometry: 1

Axial Location: 305 mm (12.0 in.); x/R₀ = 5.00

1	r Halls + (H=0) (H=180)	r/k _y	ני m/5	u* m/s	Su	ĸu	V n/s	v" m/s	5v	ĸ		R _{eg}	σ ₂₀ m ² /s ²	Suy	¥.,,,	>
1	-1.27	021	. 792	.203	359	3.16	.007	.175	082	3.60		024	.040	.431	15.93	499
2	1.76	.029	.777	.210	490	3.78	.014	. 181	116	4.16	.0013	.035	.039	.575	9.19	497
3	4.83	.079	. 786	.215	472	3.35	.027	.178	225	3.55	.0045	.117	.043	1.834	14.62	497
4	7.87	.129	.748	.214	159	2.53	.049	.194	277	3.50	.0017	.042	.043	107	8.07	496
1 5	10.92	.179	.752	.218	385	3.00	.030	.176	348	3.11	.0035	.092	.043	1.363	13.40	498
6	17.02	.279	. 709	.231	615	4.09	.071	.198	298	3.73	.0078	.171	.047	2.719	21.57	498
17	23.11	. 379	. 684	.235	166	3.20	-089	.201	410	3.19	.0054	.114	.053	.327	11.54	499
8	29.21	.479	.603	.243	256	3.26	104	. 222	039	3.28	.0132	.246	.056	2.187	13.75	498
9	35.31	.579	.519	.241	209	2.96	.126	.227	255	2.53	.0126	.229	.058	.902	7.11	499
10	41.40	.679	. 392	.256	024	2.80	.102	.219	159	3.37	.0198	. 354	.054	.830	6.20	497
11	-1.27	021	.773	.218	435	3.55	017	.177	.029	3.04	.0009	.023	.047	.504	18.88	499
12	-4.32	071	.776	.215	397	3.07	008	.182	154	3.72	.0055	.140	.043	1.064	10.74	499
14	-7.37	121	.757	.202	374	2.97	.004	.1/4	.024	3.28	0004	011	.038	535	9.47	498
15	-10.41	171	.747	.215	413	3.06	001	.230	322	6.91	.0051	.103	.051	1.181	15.92	494
16	-13.46	221	.733	.219	372	3.12	.014	.213	-112	4.78	.0057	.123	.049	1.655	15.32	497
17	-15.56	321	. 701	.224	475	3.66	.041	. 193	232	3.50	.0079	. 183	.041	.931	7.38	494
18	-25.65	420	.609	.259	625	4.02	.024	.222	609	6.53	.0121	.211	.054	.779	9.87	493
19	-31.75	520	.5/1	.253	152	2.62	.05/	.210	131	3.10	.0184	.361	.050	1.089	5.08	247
20	-37.85	620	.4/3	.251	300	3.00	.070	.220	.432	3.78	.0107	.193	.052	.293	6.68	246
21	-43.94	720	. 374	.257	265	2.99	.040	2 3	.327	3.24	.0194	. 338	.061	472	11.81	24/

MALS AND MOMENTUM TURBULENT THANSPORT EXPERIMENTS.

United Technologies Research Center/NASA Lewis Research Center (Contract NAS3-22771)

An and server appropriate the entry of the server of the

TABLE V-A

LISTING OF BASIC PROGRAM USED TO EDIT TWO-COMPONENT LV DATA STORED ON DISKS

```
10 D1$=*DY1:R*
12 R1$=*R*
14 P1$="F"
16 PRINT "TWO-DIMENSIONAL DATA EDITING - CORRELATION"
20 PRINT
30 PRINT "RUN $*, \ INPUT R2$
35 PRINT "DATE ", \ INFUT DOS
40 FRINT
50 DIM F2(2)+F5(2)+L1(2)+L2(2)+F0(2)
52 L1(1)=.5145 \ L1(2)=.488
54 PRINT *P5=PULSE STRETCHER (GREEN 1 OR 100)=*; \ INPUT P5(1)
56 PRINT *P5#PULSE STRETCHER (BLUE 1 OR 100)#*7 \ INPUT P5(2)
58 PRINT *P2=MIN, FREQ, SCALE (GREEN, MHZ)=*; \ INPUT P2(1)
60 P3=125
62 PRINT *P2=MIN, FREQ, SCALE (BLUE, MHZ)=*; \ INPUT P2(2)
64 PRINT *L2= DUAL BEAM INCLUDED ANGLE (GREEN; DEG.)=*; \ INPUT L2(1)
66 PRINT *L2= DUAL BEAM INCLUDED ANGLE (BLUE, DEG.)=*; \ INPUT L2(2)
68 PRINT *FO=FREQ. OFFSET (GREEN, MHZ)=*; \ INPUT FO(1)
70 F4=8
72 PRINT *FO=FREQ, OFFSET (BLUE, NHZ)=*# \ INPUT FO(2)
73 PRINT *CLOCK SCALE(MSEC)=** \ INPUT T1
74 PRINT *VELOCITY COMPONENT (GREEN)=*; \ INPUT A7$
76 PRINT "VELOCITY COMPONENT (BLUE)="$ \ INPUT A8$
77 P5=1 \ L1(1)=.5145 \ L1(2)=.488
78 PRINT *POINT $ *, \ INPUT P2$
79 PRINT "POSITION="; \ INFUT A9$
BO DIM D1(1000),D2(1000),C1(1),C2(1)
B1 DIM A(1000), B(1000)
82 OPEN D1$$R2$$F1$$P2$ FOR INPUT AS FILE #1
84 INPUT $1:NO
86 FOR I=1 TO 1000
88 D1(I)=0 \ D2(I)=0
90 NEXT I
110 K=1
111 FOR I=1 TO NO
112 INPUT #1:D1(1)
113 INFUT #1:C1(1)
114 INFUT #1:02(1)
115 INFUT #1:02(1)
115 NEXT ]
117 CLOSE #1
119 P1=3.14159
120 C2=L1(K)/2/SIN(U2(K)/2*P1/180)
125 V3=C2#(P2(K)~F0(K))
130 V4=C2=(5=P2(K)-F0(K))
135 C1 = 100/(V4 - V3)
140 PRINT *COEF FOR DATA RED(FT/SEC/NHZ)+C2=*+C2
150 PRINT *VMIN=*#V3#*MPS***VH&X=*#V4#*MP5*
```

TABLE V-A (Cont.)

2

•

250 DTM N1(100) 260 IF K=2 GD TO 295 291 N5=N0 292 PRINT *RESULTS FOR VELOCITY COMPONENT=*#A7\$ 294 GO TO 300 296 PRINT *RESULTS FOR VELOCITY COMPONENT=*#48# 300 N9=0 305 F1=0 310 FOR I=1 TU 100 \ N1(I)=0 \ NEXT I 320 D1=1 \ U2=1 400 FOR N=1 TO NO 410 IF K=2 G0 T0 416 412 E=D1(D1) 413 D1=D1+1 414 GO TO 440 416 E=D2(D2) 418 02=02+1 436 IF E=0 GO TO 480 440 F=P3*P4*P5(K)/E 445 V=C2*(F-FO(K)) 451 IF V>V4 GO TO 454 452 IF V>=V3 GO TO 460 454 N9=N9+1 455 GO TO 480 460 I = INT((V-V3) + C1)470 N1(I)=N1(I)+1 480 NEXT N 485 FRINT "HISTOGRAM BASED ON" FNF "SAMPLES" 495 FOR I=1 TO 100 500 IF N1(I)=0 G0 T0 530 501 K3=V3+(I+.5)/01 502 PRINT I+N1(I)+K3 508 IF F1=1 GO TO 524 $512 F1=1 \setminus T3=N1(I)$ 524 IF N1(I) <= T3 G0 T0 530 526 T3=N1(I) 530 NEXT I 616 FOR I=1 TO 4 \ PRINT \ NEXT I 618 FOR I=1 TO 100 619 Z=INT(N1(I)/T3*50) 620 IF (N1(I)/T3)<.01 GO TO 622 621 PRINT TAB(Z)11 622 NEXT I 623 PRINT 'INPUT N2+N3'; \ INPUT N2+N3 624 V9=N3/C1+V3 625 V8=N2/C1+V3 627 V0=(V9-V8)/20 628 U4=0 630 N4=0 \ V1=0 \ V2=0 \ U3=0 632 IF K=2 GO TO 640 634 M1=V8 \ M2=V0 636 GO TO 650 640 M3=V8 \ M4=V0 650 D1=1 \ D2=1 660 FOR N=1 TU NO 665 IF K=2 GO TO 687 670 E=D1(D1)

R81-915540-9

i

2 *****

675 D1=D1+1 680 IF E=0 GO TO 740 686 GO TO 690 687 E=D2(D2) 688 D2=D2+1 689 IF E=0 G0 T0 740 690 F=P3*P4*P5(K)/E 700 V=C2*(F-F0(K)) 704 IF V<V8 60 TO 732 706 IF V>V9 GO TO 732 712 N4=N4+1 722 IF K=2 GO TO 728 724 A(N)=V 726 GO TO 740 728 B(N)=V 730 GD TO 740 732 IF K=2 G0 T0 738 734 A(N) = -100736 GO TO 740 738 B(N)=-100 740 NEXT N 741 K=K+1 742 IF K=2 00 TO 120 743 K=1 \ N4=0 744 FOR I=1 TO 100 \ N1(I)=0 \ NEXT I 745 FOR N=1 TO NO 746 IF A(N)=-100 GD TD 753 747 IF B(N)=-100 GO TO 753 748 IF K=2 GO TO 751 749 I=INT(A(N)/.1)+50 750 60 (0 752 751 I=INT(B(N)/.1)+50 752 N1(I)=N1(I)+1 \setminus N4=N4+1 753 NEXT N 754 U3=0 \ U4=0 755 IF K=2 GO TO 767 756 FOR I=1 TO 5 \ PRINT \ NEXT I 757 PRINT . ";A7\$;" HISTOGRAM BASED ON";N4;"EDITED SAMPLES" 758 FRINT "I", "N1(I)", "V(I)", "F1(I)", "F2(I)" 759 FOR I=1 TO 100 760 IF N1(I)=0 G0 T0 765 761 K3=1*.1-4.95 762 R2=N1(I)/N4 763 U3=U3+R2 764 PRINT I+N1(I)+K3+R2+U3 765 NEXT I 766 GD TO 778 767 FOR I=1 TO 5 \ PRINT \ NEXT I 768 FRINT * *;A8\$;* HISTOGRAM BASEDON*;N4;*EDITED SAMPLES* 769 FRINT "I", "N2(I)", "V(I)", "F1(I)", "F2(I)" 770 FOR I=1 TO 100 771 IF N1(I)=0 GO TO 776 772 K3=I*.1-4.95 773 R2=N1(I)/N4 774 U4=U4+R2 775 PRINT I,N1(I),K3,R2,U4 776 NEXT I

R81-915540-9

:

```
777 FOR J=1 TO 5 N PRINT IN NEXT J
778 K=K+1 \ N4=0
779 IF K=2 G0 T0 744
780 A1=0 \ A2=0 \ A3=0 \ A4=0
781 N5=0
782 B1=0 \ B2=0 \ B3=0 \ B4=0
784 U4=0 \ W2=0 \ W3=0 \ W4=0
790 FOR J=1 TO 100 \ N1(J)=0 \ NEXT J
792 FOR N=1 TO NO
794 IF A(N)=-100 GO TO 820
796 IF B(N)=-100 GO TO 820
798 A1=A1+A(N)
800 A2=A2+(A(N)) 12
802 A3=A3+(A(N))^3
804 A4=A4+(A(N))*4
806 B1=B1+B(N)
808 B2=B2+(B(N))^2
810 B3=B3+(B(N))^3
812 B4=B4+(B(N))"4
814 N5=N5+1
820 NEXT N
830 A1=A1/N5
832 B1=81/NS
334 A4=A4/N5-4*A1*A3/N5+6*(A1^2)*A2/N5-3*(A1^4)
836 B4=B4/N5-4*B1*B3/N5+&*(B1^2)*B2/N5-3*(B1^4)
838 A3=A3/N5-3*A1*A2/N5+2*(A1*3)
840 B3-B3/N5-3*B1*B2/N5+2*(B1^3)
842 A2=A2/N5-(A1^2)
844 A2=SQR(A2)
846 B2=B2/N5-(B102)
848 B2=SQR(B2)
                 RESULTS FOR RUN*#R2##*POINT*#P2#
860 FRINT *
862 FOR J=1 TO 4 \ PRINT \ NEXT J
864 PRINT *
                 RESULTS FOR COMPONENT
                                          *$A7$
866 FOR J=1 TO 2 \ PRINT \ NEXT J
868 PRINT "VBAR=";A1; "MPS"
870 FRINT "VRMS=";A2;"MFS"
872 PRINT "THIR! MOMENT OF TURBULENCE=";A3;"MPS^3"
874 R3=A3/(A2^3)
876 FRINT *3RD CORRELATION COEFFICIENT=*;R3
878 PRINT "FOURTH MOMENT OF TURBULENCE="$A4} "MPS"4"
880 R4=A4/(A2^4)
882 PRINT *4TH CORRELATION COEFFICIENT=*#R4
890 FOR J=1 TO 4 \ FRINT \ NEXT J
892 FRINT *
                RESULTS FOR COMPONENT * JA8$
894 FOR J=1 TO 2 \ PRINT \ NEXT J
896 PRINT *VBAR=*;B1;*MPS*
898 PRINT 'VRMS=';82; MPS'
900 PRINT "THIRD MOMENT OF TURBULENCE="#B3;"MPS^3"
902 R3=B3/(B2^3)
904 PRINT "3RD CORRELATION COEFFICIENT=";R3
906 PRINT "FOURTH MOMENT OF TURBULENCE="#84#"MPS"4"
908 R4=B4/(B2^4)
910 PRINT *4TH CORRELATION COEFFICIENT=*#R4
944 PRINT
```

```
946 PRINT
948 W2=0 \ W3=0 \ W4=0
949 N5=0 \ U4=0 \ R8=0
950 FOR N=1 TO NO
952 IF A(N)=-100 GD TD 972
954 IF B(N)=-100 GO TO 972
956 W1=(B(N)-B1)*(A(N)-A1)
960 I=INT(W1/.01)+50
962 IF I>99 GO TO 972
934 IF I<1 60 TO 972
966 N5=N5+1
967 U4=U4+W1
968 W2=W2+W1^2
969 W3=W3+W1^3
970 N1(I)=N1(I)+1
971 W4=W4+W1~4
972 NEXT N
974 U4=U4/N5
975 FOR I=1 TO 5 \ PRINT \ NEXT I
980 PRINT "UV HISTOGRAM BASEDON ";N5;"SAMPLES"
981 FOR I=1 TO 2 \ PRINT \ NEXT I
983 FRINT *I*,*N2(I)*,*UV(1)*,*F1(I)*,*F2(I)*
984 FOR J=1 TO 100
985 IF N1(J)=0 GD TO 994
986 K3=J*.01-.495
988 P9=N1(J)/N5
990 R8=R8+F9
992 PRINT J+N1(J)+K3+P9+R8
994 NEXT J
996 FOR J=1 TO 5 \ FRINT \ NEXT J
1000 FRINT "
                 UV CORRELATION RESULTS*
1004 FOR I=1 TO 4 \ FRINT \ NEXT I
1008 W4=W4/N5-4*U4*W3/N5+6*(U4^2)*W2/N5-3*(U4^4)
1012 W3=W3/N5-3*U4*W2/N5+2*(U4^3)
1016 W2=W2/N5-(U412)
1020 FRINT *UV CORRELATION =*;U4;*MPS^2*
1024 PRINT "2ND MOHENT OF UV HISTOGRAM="#W2#"MPS"4"
1028 PRINT "3RD MOMENT OF UV HISTOGRAM="#W3#"MPS"3"
1032 PRINT *4TH MOMENT OF UV HISTOGRAM=*#W4#*MPS*8*
1080 PRINT "END OF RUN";R2$;"OINT";P2$
1085 FOR I=1 TO 10 \ PRINT \ NEXT I
1090 GO TO 78
1100 STOP
```

ship makina mangana n

TABLE V-B

LISTING OF BASIC PROGRAM USED TO EDIT LV/LIF DATA STORED ON DISKS

```
10 D1$="DY1:R"
12 R1$="R"
14 F1$=*F*
16 FRINT "LDV - LIF DATA EDITING"
20 FRINT "RUN #"+ \ INFUT R2$
30 FRINT
         N FRINT
40 FRINT
50 PRINT "MIN FREQ SCALE(MHZ)", \ INPUT P2
60 F3=125
70 F4=8
80 PRINT *P5= PULSE STRETCHER(1 OR 100)=*; \ INPUT P5
90 PRINT "L1=LASER WAVELENGTH(MICRONS)="; \ INPUT L1
100 PRINT "L2= DUAL BEAM INC ANGLE(DEG)="; \ INPUT L2
110 PRINT "FO=FRER OFFSET, ZERO VEL(MHZ)="; \ INPUT FO
112 PRINT "CBAR(NO DYE)="; \ INPUT CO
113 PRINT "CBAR(CENTERLINE)="; \ INPUT CS
114 PRINT "C-TO -F SCALING PARAMETER="# \ INPUT SO
115 FRINT "DATE", \ INPUT DO$
119 F1=3.14159
120 C2=L1/2/SIN(L2/2*P1/180)
125 V3=C2*(F2-F0)
130 V4=C2*(5*F2-F0)
135 C1=100/(V4-V3)
140 PRINT "COEF FOR DATA RED(MPS/MHZ),C2+";C2
150 FRINT "VMIN=";V3;"MPS";"VMAX=";V4;"MPS"
250 DIM N1(100),N3(100)
251 DIM E1(1000)+E2(1000)
255 BIM D1(1000),C1(1)
257 DIM V1(1000)+N2(100)
280 PRINT *POINT #*+ \ INPUT P2$
281 PRINT "POSITION", \ INPUT A9$
291 N5=N0
300 N9=0
305 F1=0
310 FOR I=1 TO 100 \ N1(I)=0 \ NEXT I
316 FOR I=1 TO 1000 \ D1(I)=0 \ NEXT I
318 FOR I=1 TO 1000 \ E2(I)=0 \ NEXT I
320 OPEN D1$&R2$&P1$&P2$ FOR INPUT AS FILE #1
324 INFUT #1:NO
326 FOR I=1 TO NO
328 INPUT #1:D1(I)
330 INPUT #1:C1(1)
332 INPUT #1:E1(I)
336 E2(I)=S0*(E1(I)-C0)/(C9-C0)
340 NEXT 1
344 CLOSE $1
```

â,

400 FOR N=1 TO NO 410 T2=I(1(N) 420 IF T2=2.5 GO TO 410 440 F=F3*F4*F5/T2 445 V=C2*(F-F0) 446 V1(N)=V 451 IF V>V4 GD TO 454 452 IF V>=V3 G0 T0 460 454 N9=N9+1 455 GO TO 480 460 I=INT((V-V3)*C1) 470 N1(I)=H1(I)+1 480 NEXT N 482 FOR J=1 TO 3 \ PRINT \ NEXT J 485 PRINT "HISTOGRAM BASED ON";N; "SAMPLES" 495 FOR I=1 TO 100 500 IF N1(I)=0 GO TO 540 501 K3=V3+(I+,5)/C1 502 PRINT I;N1(I);K3 505 C3=C3+1 N C4=I 508 IF F1=1 G0 T0 524 512 F1=1 \ T3=N1(I) 514 C5=1 524 IF N1(1)<=T3 G0 T0 540 526 T3=N1(I) 540 NEXT 1 560 FOR J=1 TO 3 \ PRINT \ NEXT J 570 FOR I=1 TO 100 575 Z=INT(N1(I)/T3*50) 578 IF (N1(I)/T3)<.01 GO TO 590 580 PRINT TAB(Z) #1 590 NEXT I 623 PRINT *INPUT N2,N3*; \ INPUT N2,N3 624 V9=N3/C1+V3 625 V8=N2/C1+V3 627 V0=(V9-V8)/20 628 U4=0 629 Q3=0 \ Q4=0 \ W2=0 \ W3=0 \ W4=0 630 N4=0 \ V1=0 \ V2=0 \ U3=0 631 Q1=0 \ Q2=0 \ G1=0 632 62=0 640 FOR I=1 TO 100 \ N1(I)=0 \ NEXT I 650 FOR J=1 TO 100 \ N2(J)=0 \ NEXT J 655 FOR J=1 TO 100 \ N3(J)=0 \ NEXT J 660 FOR N=1 TO NO 700 U=V1(N) 702 I=INT(V/.1)+50 704 IF V<V8 GD TO 740 706 IF V>V9 GO TO 740 708 N1(I)=N1(I)+1 710 V1=V1+V 720 V2=V2+V¥V 725 03=03+013 726 U4=U4+V^4 730 N4=N4+1 731 Q1=Q1+E2(N)

85

f

E

732 Q2=Q2+E2(N)*E2(N) 733 G1=G1+V*E2(N) 734 Q3=Q3+(E2(N))^3 735 Q4=Q4+(E2(N))~4 740 NEXT N 750 V1=V1/N4 752 U4=U4/N4-4*V1*U3/N4+6*(V1^2)*V2/N4-3*(V1^4) 754 U3=U3/N4-3*V1*V2/N4+2*(V1^3) 755 Q1=Q1/N4 756 Q4=Q4/N4-4*Q1*Q3/N4+6*(Q1^2)*Q2/N4-3*(Q1^4) 757 Q3=Q3/N4-3*Q1*Q2/N4+2*(Q1^3) 760 V2=V2/N4-V1^2 761 U2=SQR(V2) 764 Q2=Q2/N4-Q1*Q1 765 Q2=SQR(Q2) 766 G1=G1/N4-Q1*V1 767 N6=0 \ F8=0 \ R9=0 \ N7=0 \ R8=0 768 IF (02/01)<1.00000E-03 GD TD 809 770 A1=Q2/3 771 B2=2*R2*U2 772 FOR N=1 TO NO 774 IF V1(N)<V8 GD TO 808 776 IF V1(N)>V9 GO TO 808 778 J=INT(E2(N)/.02)+25 779 IF J<1 GO TO 808 780 IF J>99 GO TO 808 782 N2(J)=N2(J)+1 784 N6=N6+1 786 R2=((V1(N)-V1)*(E2(N)-Q1))-G1 787 J1=INT(R2/.04)+50 788 IF J1<1 GO TO 808 790 IF J1>99 G0 T0 808 792 N3(J1)=N3(J1)+1 794 N7=N7+1 797 G2=G2+R2 798 W2=W2+R212 799 W3=W3+R2^3 800 W4=W4+R2*4 808 NEXT N 809 FOR N=1 TO 10 \ PRINT \ NEXT N 810 PRINT "DATA OUTPUT FOR RUN";R2\$; POINT";P2\$ 811 PRINT A9\$ 820 PRINT *NO=*;NO;*N4=*;N4 821 G2=G2/N7 822 W4=W4/N7 824 W3=W3/N7 826 W2=W2/N7 827 W1=SQR(W2) 828 S3=W3/(W1^3) 829 S4=W4/(W1^4) 830 PRINT "VBAR="JV1; MPS" 850 PRINT 'VRMS='/U2/'MPS' 858 R3=U3/((U2)^3) 868 R4=U4/((U2)~4) 872 H3=S0*W1 874 FRINT *FBAR=*;Q1

t

i

-

TABLE V-B (Cont.)

الرابية فيعرف المتعاد

875 PRINT *FRMS=*#02 877 PRINT *F'V' BAR =*;G1;*MPS* 878 PRINT "F'V' RMS ="#W1#"MPS" 880 PRINT "DATE", DO\$ 885 PRINT *DATA STORED AS FILE *#R1\$&R2\$&P1\$&P2\$ 886 FUR I=1 TO 5 \ PRINT \ NEXT I 888 PRINT "VELOCITY HISTOGRAM BASED ON";N4; "SAMPLES" 890 PRINT *I*,*N1(I)*,*V(I)*,*P1(I)*,*P2(I)* 892 FOR I=1 TO 100 894 IF N1(I)=0 G0 TO 899 895 K3=I*.1-4.95 896 F9=N1(I)/N4 897 R9=R9+P9 898 FRINT 1,N1(1),K3,F9,R9 899 NEXT I 900 FOR J=1 TO 5 \ PRINT \ NEXT J 901 IF N6=0 G0 T0 920 902 PRINT "CONCENTRATION HISTOGRAM BASED ON";N6; SAMPLES" 904 FOR J=1 TO 2 \ PRINT \ NEXT J 906 FRINT 'I', 'N2(I)', 'C(I)', 'F1(I)', 'F2(I)' 907 FOR J=1 TO 100 908 K3=J*.02-.49 909 IF N2(J)=0 GD TO 914 910 F9=N2(J)/N6 911 P8=P8+P9 912 PRINT J+N2(J)+K3+P9+P8 914 NEXT J 920 IF N7=0 GD TO 980 924 FOR J=1 TO 5 \ PRINT \ NEXT J 928 PRINT *C-V HISTOGRAM BASED ON*;N7; SAMPLES* 930 FOR J=1 TO 2 \ FRINT \ NEXT J 932 PRINT 'I', 'N3(I)', 'CV(I)', 'P1(I)', 'P2(I)' 936 FOR J=1 TO 100 940 IF N3(J)=0 GD TO 960 944 K3=J*.04-1.98 948 F9=N3(J)/N7 952 R8=R8+F9 956 FRINT J;N3(J);K3;F9;R8 960 NEXT J 976 FOR J=1 TO 4 \ PRINT \ NEXT J 985 PRINT 990 PRINT MOMENTS OF FROBABILITY DISTRIBUTIONS' 992 FRINT * 994 FOR J=1 TO 3 \ PRINT \ NEXT J 996 PRINT * VELOCITY* 997 PRINT \ PRINT 998 PRINT 'THIRD MOMENT OF TURBULENCE="\$U3; MPS^3" 1000 PRINT *3RD CORRELATION COEFFICIENT=*#R3 1002 FRINT "FOURTH MOMENT OF TURBULENCE="U4;"MFS"4" 1004 PRINT "4TH CORRELATION COEFFICIENT="#R4 1010 FOR N=1 TO 5 \ FRINT \ NEXT N CONCENTRATION* 1012 PRINT *

......

1014 PRINT \ PRINT 1016 PRINT "THIRD MOMENT OF CONCENTRATION=";Q3 1018 R3=Q3/(Q2^3) 1020 PRINT *3RD CORRELATION COEFFICIENT=*;R3 1022 PRINT "FOURTH MOMENT OF CONCENTRATION=";Q4 1024 R4=Q4/(Q2~4) 1026 FRINT *4TH CORRELATION COEFFICIENT=*;R4 1028 FOR J=1 TO 5 \ PRINT \ NEXT J 1030 FRINT . VELOCITY-CONCENTRATION PRODUCT* 1032 PRINT \ FRINT 1033 R3=G1/U2/Q2 1034 PRINT "PRODUCT CORRELATION COEFFICIENT="R3 1035 PRINT "SECOND HOMENT OF PRODUCT=";W2;"MPS^2" 1036 PRINT "THIRD MOMENT OF PRODUCT=";W3;"MPS"3" 1038 PRINT '3RD CORRELATION COEFFICIENT='#S3 1040 PRINT "FOURTH MOMENT OF FRODUCT=";W4;"MPS"4" 1042 PRINT *4TH CORRELATION COEFFICIENT=*;54 1044 PRINT 'G2=';G2 1078 FRINT \ PRINT \ FRINT 1080 PRINT "END OF RUN";R2\$;"POINT";P2\$ 1100 GO TO 280

.

SHEAR REGIONS OF COAXIAL JETS CONFINED IN AN ENLARGED DUCT

1

SKETCH OF TEST SECTION

SKETCHES OF TEST SECTION INLET REGION WITH VELOCITY AND COORDINATE SYSTEM

DIMENSION	R .1	R12	Ra	RG	L
LENGTH (mm)	12.5	153	29.5	61 0	1016
LENGTH (in.)	0.492	0.601	1.162	2 402	40

PLAN VIEW A-A

91

END VIEW B-B

SCHEMATIC OF FLOW COMPONENTS FOR TEST APPARATUS

92

81-12-34

FIG. 4

OPTICAL ARRANGEMENT FOR FLOW VISUALIZATION PHOTOGRAPHS AND MOTION PICTURES IN r-z PLANE

.

.

93

OPTICAL ARRANGEMENT FOR FLOW VISUALIZATION PHOTOGRAPHS AND MOTION PICTURES IN r-# PLANE

West Long G

94

81-12

SIMILAR COMPONENTS USED FOR LV/LIF MEASUREMENTS (SEE FIG. 9) - OPTICAL BOX TWO COMPONENT LV OPTICS (DIRECT BACKSCATTER ARRANGEMENT) ARGON MILLING MACHINE ION TABLE WITH LASER THREE DIRECTION TRAVERSE

OPTICAL ARRANGEMENT FOR TWO COMPONENT LV MEASUREMENTS

. .

.

.

SKETCH OF OPTICAL COMPONENTS AND BEAM PATHS USED FOR TWO COMPONENT VELOCITY MEASUREMENTS

DISA 55 × 00 OPTIC COMPONENTS

- 02 BACKCOVER PLATE WITH POLARIZATION ROTATOR
- 03 BEAM SPLITTER SECTION 1
- 04 BRAGG CELL SECTIONS
- 05 BEAM SPLITTER SECTION 2
- D6 BACKSCATTER SECTION WITH GREEN LASER LINE FILTER
- 07 BACKSCATTER SECTION WITH BLUE LASER LINE FILTER
- 08 PHOTOMULTIPLIER TUBE

and the second second

1985

- 09 LENS MOUNT
- 10 PINHOLE SECTION
- 11 BEAM TRANSLATOR
- 12 BEAM EXPANDER

TRANSMITTER BEAM PATH

RECEIVER BEAM PATH

SKETCH OF OPTICS COMPONENTS USED FOR LV/LIF MEASUREMENTS

18

E.

AK BA

Ville Charles

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

VISUALIZATION OF FLOW CONDITION 1 FROM HIGH SPEED MOTION PICTURES

 $\begin{array}{lll} V_{j}=0.52 \text{ m/s} & V_{a}=1.66 \text{ m/s} \\ Q_{j}=6.2 \text{ gpm} & Q_{a}=52.8 \text{ gpm} \\ \text{DYE ADDED TO INNER JET FLUID} \end{array}$

r-z PLANE

0 - z - 125 mm

125 < z < 250 mm

r-θ PLANE

z = 51 mm

z = 153 mm

z = 203 mm

z = 102 mm

MEAN AXIAL VELOCITY PROFILES

SYMBOL	0	•			Δ	
LOCATION, #	0	180	270	90	U	180
RUN NOS	44, 17	, 16, 20	9, 14,	18, 19	60, 61,	62,63

23

MEAN AXIAL VELOCITY PROFILES (CONT.)

SYMBOL	0	-	0		Δ	
LOCATION, #	0	180	270	90	0	180
RUN NOS	21, 72, 74		22, 71, 73		64, 66, 67	

RADIUS LOCATION, r/Ro

AXIAL VARIATION OF MEAN AXIAL VELOCITY AND MEAN INNER JET FLUID CONCENTRATION ALONG CENTERLINE

1.50

FIG. 12

MEAN RADIAL VELOCITY PROFILES

SYMBOL	0	•	0	•
LOCATION, #	0	180	0	180
RUN NOS	44, 17, 16, 20		45, 47, 52, 51	

MEAN RADIAL VELOCITY PROFILES (CONT.)

SYMBOL	0	•	0	•
LOCATION, #	0	180	0	180
RUN NOS	21, 72, 74		50, 69, 70	

RADIUS RATIO, r/Ro

MEAN AZIMUTHAL VELOCITY PROFILES

MEAN AZIMUTHAL VELOCITY PROFILES (CONT.)

FLUCTUATING AXIAL VELOCITY PROFILES

FLUCTUATING AXIAL VELOCITY PROFILES (CONT.)

SYMBOL	0	•			Δ	
LOCATION, #	0	180	270	90	0	180
RUN NOS	21, 72, 7*		22.7	1, 73	64, 6	36, 67

FLUCTUATING RADIAL VELOCITY PROFILES (CONT.)

SYMBOL	0	•	\$	•
LOCATION, #	0	180	0	180.
RUN NOS.	21, 72, 74		50,	69.70

FLUCTUATING AZIMUTHAL VELOCITY PROFILES

FLUCTUATING AZIMUTHAL VELOCITY PROFILES (CONT.)

SYMBOL			Δ	•
LOCATION, #	270	90	270	90
RUN NOS	22, 71, 73		5	6

MEAN INNER JET FLUID CONCENTRATION PROFILES

FIG. 18a

MEAN INNER JET FLUID CONCENTRATION PROFILES (CONT.)

SYMBOL	Δ			•	Δ	•
LOCATION, #	0	180	0	180	270	90
RUN NOS	64 66.67		50, 69, 70		56	

RADIUS RATIO, r/Ro

FLUCTUATING INNER JET FLUID CONCENTRATION PROFILES

SYMBOL	Δ	•	\$	•	4	
LOCATION, #	0	180	270	90	0	180
RUN NOS	60, 61, 62, 63		45, 47, 52, 51		57, 58, 53, 54	

FLUCTUATING INNER JET FLUID CONCENTRATION PROFILES (CONT.)

SYMBOL	Δ	•	\$	•	Δ	•
LOCATION, #	0	180	270	90	0	180
RUN NOS	64, 66, 67		50, 69, 70		56	

81-12-38-27

MOMENTUM TRANSPORT RATE, UV, PROFILES

MOMENTUM TRANSPORT RATE, UV, PROFILES (CONT.)

SYMBOL	0	•
LOCATION, #	0	180

MOMENTUM TRANSPORT CORRELATION COEFFICIENT, Ruy, PROFILES

MOMENTUM TRANSPORT CORRELATION COEFFICIENT, Ruy, PROFILES (CONT.)

MOMENTUM TRANSPORT RATE, UW, AND CORRELATION COEFFICIENT, RUW, PROFILES

SYMBOL		
LOCATION, #	270	90

AXIAL LOCATION: 102 mm DATA FROM RUN 23

RADIAL MASS TRANSPORT RATE, VI, PROFILES

RADIUS RATIO, r/Ro

RADIAL MASS TRANSPORT RATE, v, PROFILES (CONT.)

0

٠

SYMBOL

RADIUS RATIO, r/R_o

RADIAL MASS TRANSPORT CORRELATION COEFFICIENT, Ryf, PROFILES

AXIAL MASS TRANSPORT RATE, uf, PROFILES

Δ

۵

SYMBOL

RADIUS RATIO, r/Ro

81-9-33-2

AXIAL MASS TRANSPORT RATE, uf, PROFILES (CONT.)

Δ

۸

SYMBOL

81-9-33-1

ZONE

- M1 CONSTANT CONCENTRATION, NO AXIAL MASS TRANSFER
- M2 COUNTER-GRADIENT MASS TRANSPORT, uf/(-∂./∂z)<0
- M3 GRADIENT MASS TRANSPORT, uf /(-at/az)>0
- M4 LOW AXIAL TRANSPORT RATE

a) AXIAL TURBULENT MASS TRANSPORT

ZONE

V1 - CONSTANT AXIAL VELOCITY

V2 - ACCELERATING AXIAL VELOCITY, aU/az >0

V3 - DECELERATING AXIAL VELOCITY, au/az<0

V4 - RECIRCULATION ZONE

81-9-33-3

AXIAL MASS TRANSPORT CORRELATION COEFFICIENT, Ruf, PROFILES (CONT.)

AZIMUTHAL MASS TRANSPORT RATE, \overline{wf} , AND CORRELATION COEFFICIENT, R_{wf}, PROFILES

81-12-38-39

AXIAL VELOCITY PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION 102 mm

DATA FROM PUNS 16 AND 62

r/R _o	U	u	s _u	ĸ _u
0	0.77	0.11	0.66	5.3
0.1	0 84	0.15	1.01	5.0
0.2	1.20	0.22	-0.15	2.6
0 35	1.50	0.16	-1.62	7.2
0.5	0.86	0 34	-0.42	3.2
06	0.45	0.37	-0.15	31

 $\Delta u=0.1\ m/s$

AXIAL VELOCITY, u - m/s

°° æ യു ∞ fano 0

1

 $r/R_0 = 0.6$

-1

RADIAL VELOCITY PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION 102 mm

DATA FROM RUNS 16 AND 52

r/R _o	V	v	Sv	κ _v
0	-0.01	0.9	0.05	7.2
0.1	-0.05	0.13	-0.90	4.1
0.2	-0.06	0.15	-0.14	3.2
0.35	0	0.15	-0.29	4.8
05	0.07	0.22	-0.13	3.2
0.6	0.06	0.26	0.15	2.8

 $r/R_0 = 0.1$

$$\Delta v = 0.1 \text{ m/}$$

 $r/R_0 = 0.35$ $r/R_0 = 0.5$ $t/R_0 = 0.6$ 0.2 00080 0000 0.5 000 $\frac{N(v)}{N_0}$ 0 00 0.1 0 0 œ 0 ō œ 0 00 0.002 0 0 8 \mathfrak{x} 06 ∞ 1010 \mathbf{m} 2 0 0 2 0 1 -1 -1 1 -1

RADIAL VELOCITY, v - m/s

2

AZIMUTHAL VELOCITY PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION 102 mm

DATA FROM RUNS 53

w = 0 1 m/s

r/R _o	W	w	Sw	ĸw
0	0.01	0.06	0.28	5.1
0.1	0.01	0.10	0.18	50
0.2	0.02	0.14	0.10	3.3
0.3	0.03	0.12	-0.16	4.5
0.5	0.03	0.26	0.10	38
0.6	0.04	0.26	0.12	3.5

AZIMUTHAL VELOCITY. v - m/s

81-12-38-42

INNER JET FLUID CONCENTRATION PROBABILITY DENSITY FUNCTIONS

DATA FROM RUNS 52, 53 AND 62 21 = 0.02

SKEWNESS AND KURTOSIS OF AXIAL VELOCITIES PROFILES

SYMBOL	0	•			Δ	
LOCATION, #	0	180	270	90	0	180
RUN NOS	16, 21		18,	22	62	. 64

SKEWNESS AND KURTOSIS OF RADIAL VELOCITIES PROFILES

SYMBOL	0	•	\diamond	•
LOCATION. 0	0	180	0	180
RUN NOS.	16. 21		52, 50	

SYMBOL					Δ	•
LOCATION, Ø	270	90	270	90	270	90
RUN NOS	18.	22	2	23	53,	56

SKEWNESS AND KURTOSIS OF INNER JET FLUID CONCENTRATION PROFILES

AUTOCORRELATION OF LIF SIGNAL

AXIAL LOCATION = 102 mm SIGNAL DC COUPLED TO SAICOR 42 CORRELATOR

TURBULENT MOMENTUM TRANSPORT RATE, uv, PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION 102 mm

DATA FROM RUN 16

r/R _o	ūv	σ _{uv}	S _{uv}	ĸ _{uv}
0	0.0005	0.030	1.28	41.2
0.1	-0.0096	0.029	-1 79	21.5
0.2	-0.0142	0 0 3 0	-2.14	11.9
0.35	0.0064	0.039	3.94	49.9
0.5	0.0277	0077	1.15	13.2
0.6	0.0371	0.086	1.53	72
- S	1.25.0 19.1.3			-

 $\Delta(uv) = 0.1 \text{ m}^{2}/\text{s}^{2}$

MOMENTUM TRANSPORT RATE, $uv - m^2/s^2$

MOMENTUM TRANSPORT RATE, uv - m²/s²
TURBULENT RADIAL MASS TRANSPORT RATE, vf, PROBABILITY DENSITY FUNCTIONS

U.1 0.0139 0.032 2.60 15.7 0.2 0.0165 0.028 10.4 2.23 0.35 0.0010 0.011 15.96 340.8 0.5 0.0005 0.004 - 0.59 7.65 06 -0.0007 0.005 1.16 9.35 $\Delta(v!) = 0.4 \text{ m/s}$ $r/R_0 = 0.0$ $I/R_0 = 0.1$ $t/R_0 = 0.2$ 1.0 0 0 0 0 0.2 0.05 0 N(vf) 0 0 0 No 0.01 0 0 0 О 0 0 0 0.002 00 0 0 0 00 0 0 0 -000 000 600 ∞ C 0000 -0.2 0 0.2 -0.2 C 0.2 -0.2 0 0.2 RADIAL MASS TRANSPORT RATE, vf - m/s $r/R_0 = 0.35$ $t/R_0 = 0.5$ $t/R_0 = 0.6$ 1.0 0 h 0 0 0 0.2 lo 0.05 N(vf) No 0.01 0 0.002 0 0 0000000 00000 00000 $\mathbf{o}\mathbf{r}$ 0 0 0 02 -02 0.2 -02 0.2 -02

RADIAL MASS TRANSPORT RATE, vf - m/s

AXIAL LOCATION 102 mm

ø_{vt}

0017

Svi

0.16

Kvt

60.3

DATA FROM RUN 52

r/R_o

0

vI

0.0004

TURBULENT AXIAL MASS TRANSPORT RATE, uf, PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION 102 mm

DATA FROM RUN 62

r/R _o	ut	σ _{ut}	s _{u1}	ĸ _{uf}
0	-0.0002	0.018	-9.72	175.9
0.1	-0.0146	0.044	-3.74	25.4
0.2	-0.0229	0.044	-2.44	11.5
0.35	-0.0021	0.014	-5.06	54.6
0.6	-0.0011	0.006	-0.65	6.4

 $\Delta(ut) = 0.4 \text{ m/s}$

0 00

00

-0.2

00

0

0000

0.2

0000000

-0.2

AXIAL MASS TRANSPORT RATE, uf - m/s

0

0000-00

0.2

TURBULENT AZIMUTHAL MASS TRANSPORT RATE, wf, PROBABILITY DENSITY FUNCTIONS

AXIAL LOCATION: 102 mm

DATA FROM RUN 53

r/R _o	wt	σ _{w1}	s _{wt}	ĸ _{wt}
0	-0.0012	0.017	-2.66	63 5
0.1	+0.0022	0.033	-0.98	12.6
0.2	-0.0019	0.024	-0.20	7.7
0.3	-0.0022	0.016	-0.72	19.4
0.5	0.0001	0.005	0.29	13.1
0.6	-0.0001	0.004	-0.34	82

 $\Delta(wf) = 0.4 \text{ m/s}$

AZIMUTHAL MASS TRANSPORT RATE, wf - m/s

81-12-38-52

143

SECOND CENTRAL MOMENT OF TURBULENT TRANSPORT RATE PROFILES

SKEWNESS AND KURTOSIS OF TURBULENT MOMENTUM TRANSPORT RATE PROFILES

RADIUS RATIO, r/Ro

81-12-38-54

FIG. 43

SECOND CENTRAL MOMENT OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES

SYMBOL	Δ		<u> </u>	•
LOCATION, <i>θ</i>	0	180	U	180

RADIUS RATIO, r/Ro

R81-915540-9

SKEWNESS AND KURTOSIS OF TURBULENT RADIAL MASS TRANSPORT RATE PROFILES

81-12-38-56

147

SECOND CENTRAL MOMENT OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES

SYMBOL	Δ	•	0	٠
LOCATION, #	0	180	0	180

RADIUS RATIO, r/Ro

SKEWNESS AND KURTOSIS OF TURBULENT AXIAL MASS TRANSPORT RATE PROFILES

SECOND CENTRAL MOMENT, SKEWNESS AND KURTOSIS OF TURBULENT AZIMUTHAL MASS TRANSPORT RAVE PROFILES

SYMBOL	Δ	•
LOCATION, U	270	90

AXIAL LOCATION 102 mm DATA FROM RUN 53

RADIUS RATIO, r/Ro

R81-915540-9

GRIGINAL PAGE BLACK AND WHITE PHOTOGRAFH

VISUALIZATION OF FLOW CONDITION 2 FROM HIGH SPEED MOTION PICTURES

$V_{J} = 0.27 \text{ m/s}$	Va = 1.66 m/s
$Q_{j} = 3.1 \text{ gpm}$	Qa = 52.8 gpm

DYE ADDED TO INNER JET FLUID

r-z PLANE

 $0 < z < 100\ mm$.

100 < z < 250 mm

r-# PLANE

z = 51 mm

z = 203 mm

z = 153 mm

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

VISUALIZATION OF FLOW CONDITION 3 FROM HIGH SPEED MOTION PICTURES

 $V_{I} = 2.08 \text{ m/s}$ Va = 1.66 m/s $Q_1 = 24.6 \text{ gpm}$ Qa = 52 8 gpm

DYE ADDED TO INNER JET FLUID

r-z PLANE

0 - 2 - 100 mm

100 < 2 < 250 mm

T-# PLANE

z = 51 mm

2 = 153 mm

2 - 102 mm

FIG. 50

URIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

VISUALIZATION OF FLOW CONDITION 4 FROM HIGH SPEED MOTION PICTURES

 $V_{J} = 0.94 \text{ m/s}$ $Q_{J} = 11.1 \text{ gpm}$

Va = 1.51 m/sQa = 48.0 gpm

DYE ADDED TO INNER JET FLUID

r-z PLANE

0<z<100 mm

r-θ PLANE

z = 153 mm

z = 51 mm

100 < z < 250 mm

FIG. 51

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

VISUALIZATION OF FLOW CONDITION 5 FROM HIGH SPEED MOTION PICTURES

$V_{j} = 0.94 \text{ m/s}$	Va = 2.87 m/s
Qj = 11.1 gpm	Qa = 94.8 gpm

DYE ADDED TO INNER JET FLUID

r-z PLANE

100 < z < 250 mm

0<z<100 mm

r-θ PLANE

z = 51 mm

z = 153 mm

z = 102 mm

z = 203 mm