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A COMPARISON OF UNSUPERVISED CLASSIFICATION PROCEDURES

ON LANDSAT MSS DATA FOR AN AREA OF COMPLEX SURFACE

CONDITIONS IN BASILICATA, SOUTHERN ITALY

ABS'T'RACT

In this study, two unsupervised classification procedures are applied to ratioed and unratioed

Landsat MSS data of an area of spatially complex vegetation and terrain. An objective accuracy

assessment is undertaken on each classification and a comparison is made of the classification

accuracies. The two unsupervised procedures use the same clustering algorithm. By one procedure

the entire area is clustered and by the other, a representative sample of the area is clustered and

the resulting statistics are extrapolated to the remaining area using a maximum likelihood classifier.

Explanation is given of the major steps in the classification procedures including image preprocess-

ing; classification; interpretation of cluster classes; and accuracy assessment. Of the four classifi-

cations undertaken, the monocluster block approach on the unratioed data gave the highest

accuracy of 807o for five coarse cover classes. This accuracy was increased to 84 17b by applying a

3 X 3 contextual filter to the classified image. A detailed description and partial explanation is

provided for the major inisclassifications. In outline, classification of the unratioed data produced

higher percentage accuracies than for the ratioed data and the monocluster block approach gave

higher accuracies than clustering the entire area. The monocluster block approach was addition-

ally the most economical in terms of computing time.
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A COMPARISON OF UNSUPERVISED CLASSIFICATION PROCEDURES ON

LANDSAT KISS DATA FOR AN AREA O F COMPLEX SURFACE

CONDITIONS IN BASILICATA, SOUTHERN ITALY

I. INTRODUCTION

In the last seven years the NASA Landsat series of satellites have provided remotely sensed data

for many parts of the world. During this time studies have been undertaken to demonstrate the

utility of the data for a wide variety of Earth resources applications, 	 of the most fruitful

applications areas, has been the use of multispectral scanner (MSS) data for surface cover mapping

(e.g. NAS 1978). Surface cover mapping involves the identification and discrimination of vege-

cation or surface materials followed by classification into surface cover types. The most success-

ful results have been obtained for large areas of contrasting cover type, and units, with little or no

topography, suitable for discrimination at the spectral and spatial resolutions of the iNISS system.

Several recent studies have exami nedeXanzin'sd t!i<< preb(=s t)f cover type identification in more complex

areas of small and mixed cover units with rugged terrain (e.g. Hoffer and Staff 1975, Fleming

1977).

This paper is part of a series of studies to examine methods for interpreting Landsat data of such

an area of complex surface conditions in southern Italy (Justice et al, 1976, Justice 1978, Towns-

fiend and Justice 1980). The objective of this particular study is to examine the success with which	 1

two unsupervised classification procedures can be applied to ratioed and unratioed Landsat KISS

data for areas of spatially complex vegetation and terrain. The two unsupervised procedures com-

pared in this study both use the same clustering algorithm. By one p rocedure the entire study

area is clustered and by the other a representative sample of the area is clustered and the cluster

statistics are then extrapolated to the remaining area using a maximum likelihood classifier. The

latter procedure is known as the monocluster block approach and has been used by Fleming (1977)

and Townshend and Justice (1980). As part of this study a thorough and objective accuracy

assessment is undertaken of each of the classifications and the accuracy results are compared for
a

r ^_
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both ratioed and unratioed data, A further analysis was undertaken to examine passible improve-

ments to the classification by applying a contextual filter to the classified data.

The following seven sections of this paper provide: a description of the study area; a definition of

the cover classes; a description of the methodology and classification procedure; the classification

results; a comparison of the results from the four classifications; a description of the results from the

contextual filter and finally a summary and conclusion.

II. DESCRIPTION OF THE STUDY AREA

The study area covers approximately 743 square kilometers (513 X 350 Landsat pixels) and is

located in Basilicata Region, Southern Italy (Figure 1). The geological, morphological, pedological

and botanical phenomena found in this area are representative of many areas within the Mediter-

ranean region and as such provide a useful test site from which to extrapolate results.

The geological structure of the area is dominated by th ee- Sant Arcangelo Basin, which was intilled

in the Pliocene and Pleistocene and shows a continuous depositional sequence from coarse un-

consolidated conglomerates in the west, to tine clays in the east. The Q iaternary Basin is bor-

dered to the west and east by Eocene nappe formations of sandstones and flysch which create a

hilly terrain of moderate ruggedness. Within the study area the nappe formations rise to 864 m at

Mount St. Arcangelo, The conglomerates form a deeply incised tableland at approximately 500 m.

The sand deposits are heavily dissected and have undergone considerable faulting and subsidence.

The marine clays are characterised by a series of cuestas in the north of the study area and rolling

convexo-concave terrain to the south.

The area is traversed by two major river systems, the Agri and Sinni, which drain, predominantly

west-to-east from the southern Appennines to the Gulf of Taranto, Gulley networks occur through-

out the study area where rapid Quaternary uplift combined with poor land use management has

contributed to a severe soil erosion problem (Williams 1981).

2



42°N

ITALY

Bari

Potenza
A

BASILICATA

Study
Area

39°N

IONIAN SEA

15°E
	

18°E

Figure 1. Location of study area.
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Intensive use of the land throughout history at least since 500 B.C. has led to substantial alteration

of the natural vegetation communities. Four major altered vegetation communities occur within

the area, deciduous oak woodland, evergreen oak woodland, Open macchia and riparian scrub.

The deciduous woodland community occurs on the conglomerate deposits and at the summit of

Mt. Sant Arcangelo both lit open and closed stands. The lower more sheltered areas on the con-

glomerates host a degenerate evergreen oak community. Open degraded macchia is the dominant

altered vegetation community in the central and eastern parts of the study area. This consists of

low sclerophyll evergreen shrubs surrounded by rough grass. The community exists in a wide

variety of densities and maturity on open and rugged hillslopes and on the margins of and in the

bottoms of the gulley systems.

Agricultural and managed pasture land make up the major remaining parts of the study area. Farm-

ing with a large subsistence component is predominant except for mechanized wheat farming in

the rolling claylands. The dependence on subsistence farming has led to cultivation wherever

possible, a complex land tenure system and an interculture of tree and grain crops. A two-year

rotation scheme of wheat and fallow is implemented by the larger holdings but the majority of

the smaller land tenure units have no regular rotation scheme. Olives are still an important crop

for the subsistence farmer and olive groves are scattered throughout the study area. Where subsis-

tence farming occurs it gives rise to the following vegetated landscape: small arable plots of wheat

or vetch with scattered fruit trees and vines; small olive groves, irregularly spaced with underlying

arable or grazing land; clumps of thinned deciduous oak trees; heavily grazed macchia in the valley

bottoms and bordering the areas of accelerated erosion. Market farming is undertaken along the

more fertile valley floodplains. The tenure units are often very small, c. 1/8th hectare and culti-

vation is intensive. Most farming families own a small herd of sheep and goats which are kept as

mixed flocks mid graze on virtually all the uncultivated land. The open grazing land which con-

sists generally of rbugh grass with scattered evergreen shrubs and occasional deciduous trees,

occurs extensively on the footslopes of Mt. Sant Arcangelo,
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111. DEFINITION OF COVER CLASSES

For the purposes of land cover classification it is necessary to assign the surface conditions occur-

ring within the study area, to specific cover types or classes. The term `cover type' is used loosely

within remote sensing circles, to refer to both vegetation and exposed surface materials Including

soils. The classification scheme should be designed to satisfy two requirements which are often

conflicting I.e., suitability for spectral discrimination and utility for subsequent applications.° For

studies that consider such requirements, a compromise is often attempted. To be suitable for

spectral discrimination tPie surface cover classes should be defined by ground variables which have

been shown to be highly correlated to spectral response such as vegetation type and density, chloro-

phyll content, physiognomy, soil color, and moisture content. These often differ from the param-

eters that would enable inferences to be made about land-use types such as subsistence farming.

To take account of the mixture of cover types typical of this study area, classes were defined to

!Live an indication of the dominant and secondary Over types at a site, ` -ML 11WHIes such as "herba-

ceous cover with trees and shrubs." A physiognomic subdivision which facilitated field description

of cover types, was selected as the basis for the classification. To be more quantitative the per-

centage cover of each physiognomic type was estimated for each site. Broad physiognomic classes

and bare surface types were defined to include the major cover types found within the study

area. Although describing the degree of mixture at a site, a purely physiognomic classification

did not adequately separate agricultural and non-agricultural cover types. Three agricultural classes

were added to the physiognomic subdivision, namely arable rotation, olive and fruit trees and mar-

ket gardens. The major cover classes occurring in this study are listed in Table 1.

Two other conflicting demands which need to be considered when defining the cover classes are

precision and accuracy of discrimination. The user usually requires both high precision and high

accuracy which in practice have a negative relationship and thus result in an inevitable trade-off.

The refinement of the classes will be dependent on the discriminating ability of the Landsat scanner
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Table 1
The major cover types occurring within the study area.

Water (Reservoir) Herbaceous with shrubs and/or trees

Water (River channels) Evergreen shrubs

Bare river gravels Mixed evergreen and deciduous shrubs

Bare eroded slopes Orchards and Olive groves

Eroded slopes with shrubs Open woodland (deciduous)

Bare ground with herbaceous Closed woodland (evergreen)

Herbaceous (permanent pasture) Closed woodland (deciduous)

system and the sophistication of the classification techniques used. Often it may well be that the

categories discriminable using Landsat data are less precise than those ideally required. Users of

Landsat data should be aware both of the type of categories obtainable from such data and of the

way in which they can relate to more detailed land cover classes derived from other data sources.

The most common cover classification system used for Landsat analysis is the hierarchical scheme

developed for land use mapping by Anderson et al. (1 973) for the U.S. Geological Survey, but in

several respects it is poorly suited to conditions found in our study area. In particular, where

several cover types exist at an individual site, classification into a single cover type, such as the

dominant one, is unlikely to be satisfactory. 	 1 {

IV. METHODOLOGY AND TECHNIQUES

The description of the methodology adopted in this study is subdivided into two sections, firstly

image preprocessing and classification procedures, and secondly accuracy testing. All the image

processing and analysis was undertaken using the Electromagnetic Systems Laboratory (ESL)

Interactive Digital Image Manipulation System (IDIMS) at the ERRSAC (Eastern Region Remote

Sensing Applications Center) Facility, NASA/Goddard Space Flight Center.
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The IDINIS system includes a Hewlett Packard MP) 3000 svrics III minicomputer, an ESL Ad-

vanced Scientific Array Processor (ASAP) with an HP 2I KX tniniconiputer, three disc drives with

450 megabytes of storage, a Comtal color image display, Versatee printer plotters and an Dptronics

color film recorder. A more comprehensive &L 'option of the system is given by Campbell (1980).

The imagery used in this analysis was recorded by Landsat I on At;gust 8, 1972. The high sun

angle imagery was selected to avoid misclassification caused through possible topographic effects

on the data (Holben and Justice, 1979), Panchromatic acrial. photography (1:20,000) flown at

the same season, two years after imaging, was used to aid the interpretation of the Landsat data.

I) Image preprocessing

Selected image processing techniques were applied to the Landsat data to provide the optimum

image for classification.

Destriping was undertaken using the IDIMS HIstnorm function (ESL 1976) to reduce the six line

banding, which was particularly noticeable on bISS Channel 4, This Amcdon uses a relatively

simple procedure of normalizing the mean values for the six detectors in each channel of the KISS

system to either the maximum or minimum value or the middle four values averaged. The user is

prompted for multiplication factors .o adjust the mean and standard deviation for any detector

and create a destriped image.

A simple atmospheric correction was undertaken to remove the different diffuse light components

in the four MSS channels. Taus method is known as dark area subtraction and is demonstrated in

Bentley et al. (1976): it involves subtracting a constant value equal to the darkest response on the

image, from all the pixel values.

Linear contrast stretching was undertaken for each MSS channel to provide an improved visual

product. A stretch function was also applied to the pixels, thereby rendering the image more

7
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comparable geometrically with reaps and aenal photography. This was achieved by multiplying

Lardsat lines and samples by factors of 7 and 5. respectively. HISS channel 5 of the final pro-

cessed image used is shown in Figure '

Figure'. The final processed image of Landsat HISS 5 for the study area.

Spectral band ratioing of the form (channel i/channel j) was undertaken. since a previous study

(Justice 1978) indicated that ratioed data may lead to improved classification of cover types. File

theory betund ratioing is that multiplicative environmental factors affecting the spectr-1 response

can be reduced by dividing one channel by another (Vincent 1973, 1977) though Holben and

Justice (1980) demonstrated that for some areas there may be serious limits to the degree of re-

duction of environmental factors that can be expected from such ratioing. Four ratio combinations

were produced for this study namely 7/5, 4/7, 5/6, 7/6, and these were combined into one multi-

band image. These ratios were chosen based on preliminary analysis of ratioing for cover discrimi-

nation by Iiistice (1978).
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ii) Classification Procedure and Accuracy Assessment Techniques

Unsupervised classification procedures are characterized by the use of image properties to produce

an initial definition of the cover types, which are subsequently interpreted after classification of

the data, as distinct from su pervised classification techniques, which define ti ►e cover classes to be

discriminated prior to classification. The term `unsupervised' can be misleading since extensive

user interaction is usually required to implement the technique. Implementation of the unsuper-

vised technique normally requires the definition of parameters to control the size and number of

classes prior to the classification, followed by interpretation and regrouping of the cluster classes

after classification.

The unsupervised classification procedure used in this study was the ESL (DIMS 'ISOCLS' function

(ESL 1976, Townshend and Justice 1980). ISOCLS is a clustering, algorithm which requires input

by the analyst of maximum standard dev.ation and minimum distance parameters to control split-

ting and combining of the clusters. Parameter; are used to control the number and minimum size

of cluster classes derved from the data. Ideally the aser requires a knowledge of the approximate

number of cluster classes finally needed. Approximately twice the number of cluster classes ulti-

mately required were created in each cluster analysis, to allow for the same cover type being repre-

sented by different spectral responses in different locations. Extensive field work in the study

area revealed approximately 10 major cover types for discrimination, excluding water surfaces

which covered only a small part of the study area.

Two methods of applying the clustering algorithm were used in this study: firstly, applying the

clustering algorithm to the entire study area and secondly, applying the clustering algorithm to a

representative sample of the area and then extrapolating the cluster statistics to the remaining

study area using a maximum likelihood technique.

The principal advantage in performing the latter monocluster block approach is that it reduces the

computer time involved in clustering the whole area (Fleming 1977). The monoch ►ster block
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approarh used in this study, involved selection of four sample areas representative of the cover

conditions occurring in the area. The four sample areas, which amounted to 6.3 percent of the

total area, were merged to create one image, which was subsequently clustered. The sample areas

contained the major cover classes occurring in the study area and were selected base; on field

experience.

After clustering the image into a suitable number of classes it is necessary to identify the cluster

classes in terms of the ground conditions they represent. Accurate identification of the cluster

classes requires detailed knowledge of ground conditions. For this study, information from pre-

vious held visits and aerial photography were used to interpret the cluster classes. An earlier

study to assess the interpretability of the aerial photographs revealed that the major physiognomic

composition could be identified consistently with 95% accuracy (Townshend and Justice 1980).

A two-level interpretation of the cluster classes was undertaken, firstly by !(,_.,rying homogeneous

areas of each class occurring within the study area and locating and interpreting these areas on the

aerial photographs and secondly by examining each of the cluster classes occurring in the mr;no-

cluster block sample areas and identifying the classes on the aerial photographs. The two-level

interpretation was undertaken both interactiveiv on the color Cromtal display and by using hard-

copy color products created using the Qptronix systern, at approximately the same scale as the

aerial photographs. Interpretation of the cluster classes was facilitated by ranking the clusters in

order of the 7/5 ratio prior to displaying the classes. This gave an indication of the amount of

green biomass in the class (Richardson and Wiegand 1977, Tucker 1979) and provided more homo-

geneous areas of similar classes for interpretation.

When the final classified image had been produced by clustering the entire area or by extrapolating

the monocluster block statistics, interpretations were undertaken for each of the cluster classes,

and percentage cover estimates of the four major physiognomic classes were made, i.e., bare, herba-

ceous, shrubs, and trees. Interpretations of the cluster classes for the different pans of the study

10



area were then compared and limits for the interpretation classes formulated, which included the;

range of ground conditions within each cluster class, Similar classes were then grouped together

to produce the final number of interpreted classes required, This stage resulted in a reduction in

the precision of discrimination of the cover classes representing differing proportions of cover

types in different parts of the study area. One way to preserve precision may be to stratify the

t	 area prior to classification, but this was not undertaken as part of this study.

When the cluster classes had been identified and where necessary grouped together to provide the

final number of interpreted classes on the classified image, the accuracy testing phase was executed.

Objective accuracy assessment is critical in evaluatingevaluating tine utility of the classification. To facilitate

accuracy assessment a set of random testing sites was created which was then used to evaluate the

several different classifications. The testing set included o sites, of 3 A 3 pixels for each of the 10

major cover types. The percentage cover of the four major physiognomic classes was then esti-

mated tear each randomly Selected test, site, These wem than located visually on the Landsat scene

using the Cromtal color video display. The locations of these test sites were stored in terms of

line and sample coordinates and subsequently transferred to each classified image. The individual

test sites were then assigned to their respective interpreted cluster classes using percentage cover

criteria. The cluster class of each pixel within the training sites was listed and a confusion matrix

created to show the errors of commission and omission and to provide the final percentage accu-

racies. Once the final accuracies were calculated a final stage of regrouping the classes was under-

taken to provide the optimum classification accuracy for a given range of cover classes.

V. DESCRIPTION OF CLASSIFICATION RESULTS

This section describes and compares the accuracy results for the four classifications undertaken

using the two classification procedures on both multiband ratioed and note-ratioed images (Figure

3). The first sub-section presents the results for the ratloed data by clustering the entire study area

and subsequently by using the monocluster block approach. The second sub-section presents results
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for the unratioed data in the same order. Tile third sub-section describes the results for the agri- 	 ,

cultural test sites.

D Classification results from the ratioed data

The 25 cluster classes derived by clustering the entire study area (Figure 3, Box I ), were interpreted

and regrouped to form the 10 classes described in Tu'ale 2. The 10 classes were classified with an
A

overall accuracy of only 36.41 (Table 3), Low accuracies (<20'" ,) were found for the open wood-

land, herbaceous with trees and shrubs and one herbaceous class. Regrouping the classes into live

mujor cover classes gave all 	 accuracy of G7',. Misclassification of deciduous and ever-

green woodland, with herbaceous and lierbaccous with trees and shrubs (Table 3, classe U and 7)

accounted for the particularly poor accuracy figures for this classification.

Table _2.

table showing, the cover classes derived from the ratioed data by clustering the entire area.

Final
class

number

Original
cluster
number

'.`, trees
and

shrubs

1^1
herbaceous bare

ground
Class description

I 1 < 3 < 3 >97 Bare ground

2 21, 14,9 <10 <25 1)0-90 Bare ground

3 18 <10 10-35 05-89 Baru with herbaceous

4 24, 5, 17 <10 36-94 10-64 Herbaceous with bare

5 15, 13, 20, 3, 22 < 5 >95 <10 Herbaceous

6 10, 7, 2, 6 5-15 >85 <10 Herbaceous

7 4, 23, l6, l 1 15-30 65-84 <10 Herbaceous with trees
and shrubs

8 25, 19 35.70 <65 <20 Open woodland

9 8, 13 >70 <30 <20 Closed woodland

10 <10 0-100 0-100 Agriculture Rotation
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Twenty preliminary clusters were obtained by applying the monocluster block approach to the

ratioed data (Figure 3, Box 2). These cluster classes were interpreted and regrouped into the 10

interpretation classes described in Table 4. The 10 classes were discriminated with an overall

accuracy of 44,3"D (Table 5). Major misclassification occurred between open woodland and the two

herbaceous classes with trees and shrubs. Regrouping the classes into five coarse cover classes

gave an accuracy of 71%. Remaining misclassification was highest between herbaceous cover and

herbaceous with shrubs and trees.

Table 4.
Table showing the cover classes derived from the ratioed data by applying the monocluster

block classification

Final
class

number

Originals
cluster

number

trees
and

slinubs

`"
herbaceous

"r
bare

ground
Class description

1 1 <10 <20 >80 Bare ground (River
Gravels)

2 <20 <33 o6-80 Bare ground (Eroded)

3 3 530 <66 33-80 Bare around with
herbaceous

4 4, 5, 6 S 5 66-84 <33 Herbaceous, with some
bare ground

5 7, 8, 9, I0 <15 >85 < 5 Herbaceous

6 11, 12, 13, 14 15-40 60-84 <10 Herbaceous with shrubs
and trees

7 15, 16, 17 41-60 <60 <20 Herbaceous with trees
and shrubs

8 18, 19 61-90 <40 420 Open woodland with
herbaceous and bare
ground

9 20 >90 <10 <10 Closed woodland

10 <10 0-100 0.100 Agricultural Rotation
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ii) Classification results from the unratioed data

The 33 cluster classes derived by clustering the entire multiband unratioed image ( Figure 3, Box 3)

were interpreted and regrouped to produce the 10 interpretation classes described in Table 6.

Overall classification accuracy for the 10 classes was 43^ 'v (Table 7). Misclassification was high

between the herbaceous and herbaceous wii'h shrubs and trees class (Table 7, classes 4 and 5) and

between herbaceous with shrubs and. trees, and shrubs and trees with herbaceous (Table 7, classes

S and 6). Regrouping the classes into rive coarse cover classes gave an accuracy of 71%, but mis-

classification remained high between the herbaceous and bare ground classes and between deciduous

woodland and the evergreen trees and shrub class.

Table 6
Table showing the cover classes derived from the unratioed data by clustering the entire area.

Final
class

number

Original
cluster
number

17e trees
and

shrubs

17e
herbaceous

170

bare
ground

Class description

1 1, 2, 3 <10 <20 >80 Bare ground

2 4.5 <10 <50 50-80 Bare ground with
herbaceous

3 6 < 3 50-65 35 -49 Herbaceous with bare
ground

4 7, 8, 9 <15 >65 <35 Herbaceous

5 10, 11, 12 15-40 60-80 <10 Herbaceous with shrubs
and fruit trees

6 13, 14, 15 40-60 40-60 < 10 Evergreen shrubs and
trees with herbaceous

7 16, 17, 18, 19 >60 <40 <10 Evergreen trees and
shrubs with herba-

ceous

8 -M'21 60 -90 <40 <10 Open Woodland
(deciduous)

9 22, 23 >90 <10 <10 Closed Woodland
(deciduous)

10 <10 0-100 0-100 Agricultural Rotation
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Sixteen clusters were derived using the monocluster block approach on the unratioed data (Figure 	 j

3, Box 4). These were interpreted and regrouped to form the 10 classes described in Table 8. The

overall accuracy for these 10 classes was 59V, (Table 9). Misclassification was highest between the

herbaceous with trees and shrubs and the herbaceous with trees class (Table 9, classes 5 and 4).

When regrouped into the five coarse cover classes, the overall accuracy increased to 80.2%, which

was the highest percentage accuracy of all the four classification schernes examined. The remaining

misclassification was highest between the deciduous and evergreen woodland classes.

Table 8
Table showing the cover classes derived from the unratioed data derived by applying the

monocluster block approach.

Final
class

number

Original
cluster
number

% trees
and

shrubs

17,

herbaceous
`'P

bare
ground

Class description

1 1, 13, 15 <10 <20 >80 Bare ground

2 3, 5, 9 <10 20-75 25-80 Bare ground with
herbaceous

3 7, 2 10-19 >75 10-25 Herbaceous with bare
ground and shrubs

4 4,11 10-19 >80 <10 Herbaceous

5 2 20-33 66-80 <10 Herbaceous with ever-
green trees

6 10 34-50 40-65 <10 Evergreen shrubs with
herbactmus

7 8 >SO <50 <20 Dense evergreen shrubs
with herbaceous

8 16 >33 <66 <20 Evergreen woodland

9 6,14 >33 <66 <20 Deciduous woodland

10 <10 0-100 0.100 Agricultural Rotation
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iii) Classification accuracies for the arable rotation sites

As no ground data concerning the physiognomic conditions of the agricultural areas was available

for the time of imaging, it was necessary to isolate the arable rotation sites to form a separate

cover class. The agricultural test sir es were classified with a relatively high degree of accuracy

(76.8( o) for all data sets (Tables 3, 5, 7 and 9). The highest accuracies were obtained for the un-

ratioed data, independent of the clustering procedure used. Inclusion of the agricultural class

with the four semi-natural cover classes, increased the overall accuracy in all but one case. Mis-

classifications frequently occurred between the agricultural sites and the herbaceous (permanent

pasture) cover classes, which is certainly understandable in terms of their spectral similarity. It

should be made clear that the accuracies quoted refer to distinguishing the rotational arable classes

from cover types with contrastt^! physiognomic properties, and not to distinguishing them from

cover types with similar physiognomic properties. For the latter situation accuracies would in-

evitably be much poorer.

VI. COMPARISON OF RESULTS AND EXPLANATION OF MISCLASSIFICATIONS

This section is divided into three sub-sections, the first of winch provides a comparison of the

accuracy results for the two clustering methods used in the study. The second sub-section com-

pares the accuracy results derived using the ratioed and unratioed data. The third sub-section

provides an explanation for some of the major misclassifications for the monocluster block

approach for the unratioed data.

i) A comparison of classification accuracies obtained by clustering the entire area and those

obtained using the monocluster block approach.

Results obtained using the monocluster-block approach gave higher classification accuracies than

those obtained by clustering the entire image (Figure 4). A completely satisfactory explanation

has not been found for thus, but we hypothesise that selection of the Tonocluster block sample

sites provides a bias to the type and variability of the final classes required. Selection of these

sample areas to include typical cover types, will inevitably reduce the `noise' from atypical cover
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RATIOED DATA	 UNRATIOED DATA

MONOCLUSTER
BLOCK

APPROACH

CLUSTER
ENTIRE
AREA

2 4
10 classes (Inc, agric.) = 44% 10 classes (Inc. agric.) r 59%

5 classes (Inc. agric.) 71 % 5 classes (Inc. agric.) W 80%

4 classes (exc, agric.) r 7156 4 classes (exc. agric.) = 78%

1 3.

10 classes (Inc. agric.) = 36% 10 classes (Inc. agric.) = 43%

5 classes (Inc. agric.) = 67% 5 classes (Inc. agric.) 71 %

4 classes (exc, agric.) = 62% 4 classes (exc. agric.) = 691/o

Figure 4. Summary of classification results for the tour classification scheme.

types which would be incorporated when forming clusters for the entire area. Two observations

from the analysis support this hypothesis. Firstly, correct classification of woodland classes was

consistently higher for the monocluster block approach (Tables 3, 5, 7 and 9). The choice of

sample areaF for clustering included some of the most uniform and homogeneous woodland areas

which were sufficiently large and spectrally distinctive to form a separable cluster class. Secondly,

classification of the first bare ground class, which in all cases rer re,5ented river gravels, was higher

by clustering the entire image than by using the monocluster block approach. Visual examination

of a standard color composite of the area, after the analysis, showed the river gravels to have u

higher degree of spectral diversity than was represented by the sample areas.

(ii) A comparison of classification accuracies derived from the ratioed and unratioed data.

Classification accuracies for the unratioed data were consistently higher than for the ratioed data

(Figure 4). The result appears to contradict the preliminary findings reported by Justice (1978)
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but it should be noted that different criteria were Used to define the classes in the discrimimiat

analysis performed in this previous study. Although a topographic effect can be expected in August

Landsat data (Justice et al. 1980), it does not appear either to have affected th,.. unratioed data

sufficiently to limit classification accuracy or, alternatively, to have been removed by band-ratioing.

Two distinct groups of cover classes were derived using ratioed and unratioed data, which may have

affected the resulting accuracies. Both class descriptions for the unratioed data (Tables 6 and 8)

included evergreen shrub classes which were absent from the classes derived from the ratioed

data (Tables 3 and 4). The classes re^.zsented more dominant herbaceous cover classes. Woodland

classes were classified with a higher accuracy using the unratioed data than :vith the ratioed data,

though Individual herbaceous classes were classified with higher accuracies using the ratioed data.

Evergreen woodland was discriminated from other deciduous woodland classes most successfully

using the unratioed data.

iii) Description and explanation of the major misclassifications for the monocluster block

analysis of the unratioed data.

A detailed examination of the major misclassifications will provide a partial explanation for tiie

general levels of accuracy achieved during this study. Although only results from the optimum

scheme are discussed, the more general explanations apply to all the classifications. The distribu-

tion of the original 16 clusters derived from clustering the sample areas for the unratioed data

are presented for the MSS 5 and MSS 7 feature space in Figure S. There is good separability with

no overlap for all the clusters for MSS 5 and MSS 7 but poorer separation in the MSS 4 and MSS 6

feature space (Figure 6). It is likely that misclassification could well arise between classes 1 and

and classes 9 and 5, when the data from the remaining parts of the study area are assigned to these

classes. The distribution of the clusters in the MSS 4 and MSS 5 feature space (Figure 7) shows a

strong correlation between the channels and their high degree of redundancy for discrimination.

Cluster classes for cloud, cloud shadow and water are riot shown in these figures, but these classes

were sufficiently spectrally distinct for all classification schemes to warrant no further analysis.
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Figure 5. Distribution of the original 16 clusters for the unratioed data, monocluster
block approach in MSS 5 and 7 feature space.
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Figure 6. Distribution of the original lb clusters for the unratioed data, mollocluster
block approach in IWSS 4 and 6 reature space.
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Figure 7. Distribution of the original 16 clusters for the unratioed data, monocluster
block approach in MSS 4 and S feature space.
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Examination of the confusion matrix for the above classification (Cable 9) and the results for the

individual testing sites, showed the herbaceous class to be assigned to the largest number of cover

classes. Fifty-one percent of the herbaceous class (Table 9, class 4) was misclassed as herbaceous

with bare ground. There is no immediate explanation for this, apart from the wide variety of

ground conditions which fall under the herbaceous physiognomic category.

The largest single percentage misclassification was between classes 1 and 3 (Table 9), where bare

ground was misclassed as bare ground with herbaceous. The only test site with 100", bare ground

was classified correctly; all other sites showed some confusion with class 3. In the final classifica-

tion, no consideration was made of material types such as the distinction between river gravels and

eroded clays; discrimination between sites was based purely on percentage cover criteria. The

inherent spectral diversity between the bare areas, which is indicated by three clusters for class 1

in Figure S, may account in part for the high degree of misclassification. Sonic of the niiselassiti-

cation between the evergreen shrubs and trees with herbaceous class and the herbaceous class

(Table 9, classes 6 and 5) occurred for olive grove sites, the understory of which may have consider-

ably altered the spectral response. A similar confusion may have arisen between the market garden

sites in class', and herbaceous with evergreen shrubs (class S) and may be explicable by the mini-

mum percentage cover of trees (> 33%) used to define the woodland class. A general observation

from several of the classes is that misclassification often occurred for those testing sites that came

close to the class limits of the cover class. Some of the misclassifications were overcome by re-

grouping adjacent classes, but this led to a reduction in the precision of classification.

VII. CONTEXI^UAL CONSIDERATIONS

So far only spectral information has been used in the classification of the pixels, Additionally, we

can use contextual information concerning the classes of surrounding pixels to modify the classifi-

cation of  pixel. This potentially has the benefit of improving classification accuracies by removal 	 go

of isolated inliers within homogeneous areas. The procedure used involved the execution of the

4
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Reclass function of [DIMS (ESL 1976). Specifically, each pixel was reassigned to the most corn-

mon class of its eight immediate neighboring pixels. Although large homogeneous areas are not

typical of the study area, comparison of Tables 9 and 10 shows that a modest improvement in the

overall accuracy of 45o was achieved. The regrouped bare class and herbaceous class both showed

improvement and a substantial improvement occurred in the evergreen shrub with herbaceous

understory category.

VIII. DISCUSSION OF RESULTS AND CONCLUSION

The results and experience of this study have Indicated certain methods that may lead to improve-

ment of the present class accuracies. Division of the classification feature space into approximately

30 clusters is achieved by applying the same statistical thresholds, i.e. maximum standard deviation

and minimum distance criteria to all the data. It is likely that a more subtle division of the feature

space could be achieved equally successfully by stratifying the data prior to final clustering. For

example, on the basis of visual examination of the data, finer discrimination of deciduous wood-

land cover types and bare surface types than was achieved by this study, appears feasible. Similarly,

stratification of the study area into areas with a similar range of cover types and ground conditions,

prior to classification, would reduce the loss in precision experienced when the same cluster class

represents different physiognomic characteristics in different parts of the study area. Furthermore,

improvements in classification may be achieved by adjusting the cover classification scheme to in-

corporate more than just physiognomic criteria. The scheme used in this study relies heavily on a

strong relationship between physiognomic composition and spectral response, which probably does

not always exist.

Of the four unsupervised schemes examined in this study (Figure 3), the monocluster block ap-

proach on the unratioed data gave the highest classification accuracies. When `reclassed' using a

3 X 3 pixel grid, the accuracy results were 61;"o for 10 cover classes and 84;"o for 5 cover classes.

The monocluster block approach on the unratioed data was also the most economical in terms of
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computing time. Classification of the unratioed data produced higher percentage accuracies than

for the ratioed data and the monocluster block approach gave higher accuracies than clustering the

entire study area. The results from the different classifications were on the whole disappointing,

the majority of classes being discriminated with less than 80170 accuracy.

The results from this study can be compared with those presented by Townshend and Justice

(1980). In the latter study, unsupervised classification was undertaken on ratioed data for the same

four sample areas used in this present study. Instead of creating an objective testing set of random

sites, Townshend and Justice (1980) selected two test areas which gave conflicting accuracy figures.

Accuracies of 84.77o (4 classes, excluding agricultural sites) and 65.S%, (7 classes, excluding agri-

cultural sites) were achieved for the two sites. These results were a little higher than those shown in

Box 3 Figure 4, and show the importance of developing a representative testing set to derive a

realistic statement of the success of classification. It would appear that the accuracy figures quoted

are not an underestimate as indicated in the previous paper and provide a fair indication of the

classification accuracies obtainable for the time of imaging using this approach.

Selection of the sample areas used for monocluster block classification, plays an important part in

determining the success of the classification. Although the four selected areas were known to

possess examples of all the major cover classes within the study area, the choice of these areas in

terms of size and cover variability was largely arbitrary. One consideration arising from applying

the monocluster block method is that extrapolation of the cluster statistics by the maximum likeli-

hood rule may lead to inclusion of numerically insignificant cover classes unless the minimum size

and number of clusters is carefully controlled during clustering of the sample blocks

However rigorous the design of the testing phase, the reliability of the testing will ultimately depend 	
s

on the success with which the test sites are located on the satellite data. With the present resolution

of Landsat MSS, location of random test sites will remain difficult in areas with a high degree of 	 y

mixture and may possibly lead to a spurious increase in errors of misclassification. With the advent 	 ^>
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of higher resolution satellite systems ground location will undoubtedly become easier. This as

much as the improved spatial resolution per se may help improve classification accuracies in areas

with terrain as complex as the area described in this paper.
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