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ABSTRACT 

This is a Largely t u t o r i a l  lecture on the basic ideas 
of General Ftelativity - Einstein 's  theory of gravity as 
curved space-time - emphasizing the physical concepts and 
using only elementary mathematics. E t x  the  slow motions and 
weak gravi ta t ional  f i e l d s  which we experience on the earth, 
the main curvature is t h a t  of t i m e ,  not space. €&Gent 
experiments demonstrating t h i s  property (Alley, Cutler, 
R e i s s e ,  Williams, e t  a l ,  1975 and Vessot and Levine, 1976) 
w i l l  be b r i e f ly  reviewed. 

The extraordinary s t a b i l i t y  of modern atomic clocks 
makes it necessary t o  understand and t o  include t h e  
fundamental e f f ec t s  of motion and gravi ta t ional  potent ia l  on 
clocks i n  many prac t ica l  s i tua t ions .  These include t h e  
NAVS!I'AR/Global Positioning System and t i m e  synchronization 
using u l t r a  s tab le  clocks transported by a i r c r a f t .  

I n  future  system such as global t i m e  synchronization 
using clocks i n  l aw ear th  o rb i t ,  the  accuracy may be limited 
by uncertaint ies  i n  the calculated proper t i m e  of the 
t r ave l l i ng  clock, ra ther  than by i n t r i n s i c  clock 
performance . 

INTRODUCTirON 
This talk w i l l  be i n  the s a m e  general vein as  one I gave a t  the 

t i m e  of the  Einstein Centennial. t w o  and half years ago a t  t he  33rd 
Annual Frequency Control Symposium ', so I apologize t o  those of you who 

* %is paper is an edi ted version of a tape recording of the  invi ted 
t u t o r i a l  t a lk .  

C .  0. Alley, "Relativity and Clocks", Proceedings, 33rd Annual 
Symposium on Frequency Control, W 3. Army Electronics Research and 
Development Command, Fort Monmouth, N.J., pp 4 - 39A {19791 . Copies 
available from Electronic Industr ies  Association, 200 1 Eye Street, N .W *, 
Washington, DOC . 20006 

Reference should be made to  t h i s  paper for details of some re su l t s  
given here and for fur ther  references. 
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may have heard t h a t  t a lk .  But for  a t u t o r i a l  ta lk ,  perhaps it is 
excusable, o r  even desirable, t o  repeat important things. Ihe emphasis 
here is somewhat d i f fe ren t  from Reference 1, however. 

The concept of proper t i m e  i n  r e l a t i v i t y  is r ea l ly  cent ra l  t o  t h e  
whole subject. The proper t i m e  is the ordinary t i m e  actual ly  kept by a 
clock, i ts  own t i m e ,  or ,  i n  German, eigenzeit .  %e high s t a b i l i t y  t h a t  
has been achieved by the  time keeping community with modern atomic 
clocks allows the e f f ec t s  of motion and gravity t o  be actual ly  measured, 
with r e su l t s  i n  agreement with Einstein 's  predictions. Einstein 's  ideas 
are  no longer ju s t  a matter of great s c i e n t i f i c  interest, ac tua l ly  
forming the basis of the view of the universe tha t  w e  now have from 
modern astronomy, but a l s o  a matter of prac t ica l  engineering concern. 
These timekeeping applications are the f i r s t  p rac t i ca l  applications of 
General -1ativity which go beyond Newtonian gravity.  

The subject -- can be understood. I n  the past ,  the  subject w a s  
largely taken over by mathematicians, from about 1920 u n t i l  t h e  
1950's. The central physical ideas w e r e  rarely brought t o  the fore. 
The ideas w e r e  obscured by the  lknsor Calculus with a l l  of i t s  b r i s t l i n g  
indices and the  higher mathematics associated with d i f f e ren t i a l  
geometry. Ihe ac tua l  way i n  which Einstein got t o  these concepts w a s  
generally ignored i n  the teaching of the subject (at  the few places 
where it was taught) and those of us i n  the academic community have t o  
take some responsibi l i ty  for  not having understood these things properly 
and fo r  not having taught them t o  many generations of engineering and 
physics students. Rut t h a t  s i tua t ion  has now changed. 

I n  addition t o  these prac t ica l  applications, many modern 
discoveries i n  astrophysics require the use of General Relativity i n  
order t o  comprehend them. There's the whole notion of compact objects  
with the extreme being the black holes which probably exis t .  They may 
be the power sources of quasars. Ihe energy conversion resu l t ing  from 
matter f a l l i n g  down the deep poten t ia l  w e l l  of a black hole is something 
l i k e  30% of the rest energy compared with only 0.7% for  thermo-nuclear 
fusion. The expanding universe could have been .predicted by Einstein, 
except t h a t  it w a s  uncongenial t o  the world view i n  the t eens  of our 
century, and he modified h i s  equations to avoid it. It w a s  probably h i s  
greatest  mistake ( i n  h i s  own evaluation) but General Relativity does 
describe i ts  growth from the "Big Bang". %e changes i n  the orb i t  of 
the Binary Pulsar , revealed by precise timing of its periodic radio 
pulses with atomic clocks, seems t o  show the emission of the gravity 
waves predicted by General Relativity.  W e  w i l l  hear m o r e  t h i s  afternoon 
about attempts t o  detect  l o w  frequency gravity waves l e f t  from the ear ly  

-- 

2 

J. M. Weisberg, J. H. Tayldr, and L. H. F o w l e r ,  "Gravitational Waves 
from an Orbiting Pulsar", Sc ien t i f ic  American, Vol. 245, No. 4, pp. 74 
-82 (October, 1981). 
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universe, using t h e  atomic clock cont ro l led  t r ack ing  of i n t e rp l ane ta ry  
probes, opening a new window on t h e  universe, i f  successfu l .  

Now, l e t  me give you some good introductory references.  I l i k e  t o  
approach t h e  subject f r o m  an h i s t o r i c a l  p i n t  of view, t h e  way I th ink  
E ins t e in  ac tua l ly  developed it. There's a great book by Banesh Hoffmann 
called A l b e r t  Einstein: Creator and Rebel (Plume Books, 1973). I 
recommend t h i s  to  a l l  of my s tudents  and I recommend it t o  you t o  read 
both f o r  E ins t e in ' s  physics and f o r  h i s  l i fe .  Nigel Calder has  r ecen t ly  
wr i t t en  a popular book called Eins te in ' s  Universe (Penguin Books, 1979) 
which w a s  made i n t o  a two-hour BBC t e l e v i s i o n  f i l m  of t h e  same name, 
which is highly recommended. I ' m  going t o  use an approach to  r e l a t i v i t y  
c a l l e d  t h e  k-calculus by its developer, Ihermann Bondi. It i s  described 
i n  a book called R e l a t i v i t y  and Common Sense (Dover Books, 1980) and i n  
another, Assumption and Myth i n  Physical Theory (Cambridge University 
Press, 1967) . On t h e  astrophysics,  t he re  are exce l l en t  books by Robert 
W a l l ,  
(University of Chicago Press, 19771, and by Roman and Hannelore Sexl, 
White Dwarfs and Black Holes (Academic Press, 1979). 

The plan  of t h e  t a l k  is t h e  following. I w i l l  give you an 
in t roduct ion  t o  General Re la t iv i ty  by adding g rav i ty  t o  s p e c i a l  
r e l a t i v i t y  through E ins t e in ' s  Pr inc ip le  of Equivalence. This is the  
h i s t o r i c a l  approach I mentioned. Then I w i l l  d i scuss  some recent 
experiments which have measured the  r e l a t i v i s t i c  e f f e c t s  on clocks. 
?his inciude experiments with a i r c r a f t  and lasers i n  which Len Cutler 
and I col labora ted  w i t h  some of t h e  students and s t a f f  a t  Maryland, w i t h  
t h e  support of the Navy and Air Force, and, very b r i e f l y ,  t h e  rocket 
probe experiment w i t h  a hydrogen maser and microwave frequency 
detection, which Bob Vessot and Marty Levine have done with t h e  support 
of NASA. Finally,  I w i l l  t a l k  about the influence of these  e f f e c t s  i n  
some a c t u a l  systems: t h e  NAVSTAR/Global Posit ioning System, t h e  LASSO 
(Laser Synchronization f r o m  S ta t ionary  O r b i t )  experiment, and a 
technique called t h e  Shut t le  Time and Frequency Transfer ( STIFT), which 
some of us are planning and hoping to persuade NASA t o  develop. The 
relativist ic effects on clocks t ranspor ted  by a i r  c r a f t  w i l l  also be 
discussed . 
REVIEW O F  SPECIAL RELATIVITY 

Figure 1 s h o w s  E ins te in  i n  h i s  study a t  t h e  age of about 40, 
seve ra l  years a f t e r  he completed General Rela t iv i ty .  (Some of us  t a k e  
great solace from t h e  d i so rde r l ines s  of h i s  shelves.) E ins te in  began t o  
th ink  about r e l a t i v i t y  when he w a s  16 years old. Figure 2 shows him a t  
age 16 i n  a classroom i n  Aarau, Switzerland (he is on t h e  f a r  r i g h t ) .  
Ihe began t o  th ink  along t h e  l i n e s  of: "What would happen i f  I could 
ca tch  up with a beam of l i g h t ?  Suppose I w e r e  looking a t  a mirror and 
could run with t h e  speed of l i g h t ,  what would I see?" A t  h i s  l a s t  
l e c t u r e  i n  Princeton i n  1954, before he died i n  1955, I w a s  p r iv i l eged  
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Figure 2 

Figure 1 

t o  be present when he reminisced 
about some of these things.  He 
mentioned t h a t  h i s  independent 
study of Maxwell's Electro- 
magnetic Theory a s  an under- 
graduate gave him the answer: 
t h a t  i f  you could catch up with a 
beam of l igh t ,  you would see a 
s ta t ic  electric f i e l d  and a 
s t a t i c  magnetic f i e l d  a t  r i g h t  
angles t o  each other, with no 
charges and no cur r en t s  

present.  But Maxwell's theory doesn't allow t h a t .  Therefore, you can 
never catch up with l@ht .  No matter how f a s t  you move, it recedes with 
the speed c f: 3 x 10 m / s e c .  % i s  w a s  one of the r e a l  clues t o  h i s  
r ea l i za t ion  a t  the age of 26, a t  the Patent Office i n  Bern, Switzerland 
(Figure 31, t h a t  t i m e  is  not absolute, and t h a t  t h i s  i s  the  key t o  t h e  
question: Hbw do you reconcile the classical Principle of Fklat ivi ty ,  
t h a t  any i n e r t i a l  observer should formulate i n  the same way the  l a w s  of 
physics, with the notion 
a l l  i n e r t i a l  observers? 

Einstein wanted t o  
( res t r ic ted ,  t h a t  is, t o  
j u s t  mechanical physics: 
wanted t o  say t h a t  the  

tha t  the  speed of l i gh t  should be the  same fo r  

have t h i s  restricted Principle of Fklat ivi ty  
i n e r t i a l  observers) include a l l  of physics, no t  
electro-magnetism and everything else. He a l so  
veloci ty  of l i gh t  should be the  same fo r  a l l  

observers independent of t h e  speed of the  source. Now these 
requirements s e e m  incompatible, because, i f  you imagine two space 
shu t t l e s  going by each other (Figure 41, each with a l i g h t  source i n  the 
center of i t s  bay, which emits beams of l igh t ,  forward and backward, A 
would want to  see the t w o  waves spreading out with t h e  velocity c i n  
each direct ion.  But then A would observe, from h i s  p o i n t  of view, t h a t  
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Figure 4 

speed v 
relative 
to A 

Figure 3 Figure 5 

i n  B's system t h e  l i g h t  going forward would be t r a v e l l i n g ,  w i t h  respect 
to B, with a smaller ve loc i ty  than the  l i g h t  going backward. But €3 
ought t o  be able t o  maintain t h e  s a m e  point of view as A! How do you 
reconci le  t hese  things? W e l l ,  i n  1905, a t  t h e  age of 26, according t o  
Hoffman, Eins te in  sa t  bolt upright i n  bed one morning, a f t e r  having 
pondered these  matters for t e n  years, with the  r e a l i z a t i o n  t h a t  t i m e  i s  
not absolute;  t h a t  t h e  simultaneity of separated events is r e l a t i v e  to  
t h e  i n e r t i a l  observer. This w a s  t h e  key to  reconci l ing  t h i s  whole 
th ing .  It has had profound consequences for a l l  of physics. Le t ' s  
formulate these  ideas i n  terms of Minkowski space-time diagrams, and the  
so-called k-calculus . 

I n  Figure 5 t i m e  is p l o t t e d  v e r t i c a l l y  i n  u n i t s  of nanoseconds, and 
d is tance  ho r i zon ta l ly  i n  u n i t s  of 30 centimeters, so t h a t  a l i g h t  pu lse  
has a slope of 45O. The dashed l i n e  is the  worldline of a l i g h t  pulse 
t h a t  would be s e n t  ou t  and r e f l e c t e d  back from some event. Events are 
t h e  r a w  materials of r e l a t i v i t y :  the  t i m e  and p lace  where something 
happens. If you send t h e  l i g h t  pu lse  out a t  a c e r t a i n  t i m e ,  t and g e t  
t h e  pulse back a t  a t i m e ,  t3, then you would say you'd be sending out  a t  
tl = t - x/c, and g e t t i n g  it back a t  t3 = t + x/c, where x is  t h e  
pos i t i on  coordinate and t is the  t i m e  coordinate of the  r e f l e c t i o n  
event.  The t i m e  of r e f l e c t i o n  f o r  you is na tu ra l ly  taken as midway 
between t h e  emission and reception events, 
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t = tl +1/2 (t3 - t l )  = tl +1/.t3 -'/2t1 "/2 (t 1 + t,) 0 

%is is Einstein 's  o r ig ina l  prescr ipt ion for defining t i m e  a t  a distance 
when comparing clocks which a re  not adjacent t o  one another, which he 
gave i n  1905 i n  h i s  paper on r e s t r i c t ed  r e l a t i v i t y .  You get the  
distance of an event by taking the  difference between the  emission and 
reception times and multiplying by the speed of l i g h t  and dividing by 2: 

x = (t, - t,) c/2 0 

This i s  the  basis  f o r  all the laser ranging measurements, including t h e  
ranging t o  corner r e f l ec to r s  on the moon , whose motion has been 
monitored since 1969 with an accuracy of t en  centimeters or SO. It 
turns  out t h a t  t h i s  method of comparing t i m e  between d is tan t  clocks is 
n o t  only conceptually very c lear ,  but i t ' s  p rac t i ca l ly  the  bes t  way, t h e  
most accurate way, of comparing d is tan t  clocks which we know a t  the 
present t i m e  . 

3 

Modern observers now would 
be equipped with atomic clocks, 
short  pulse lasers, f a s t  photo 
detectors,  and event t i m e r s  t o  
measure the  epoch of a r r i v a l  of 
l i gh t  pulses. L e t ' s  consider two 
such observers, A and B, B moving 
with some r e l a t ive  veloci ty  with 
respect t o  A, as shown i n  Figure 
- 6. A sends out pulses with t h e  
separation T between them, and 
i t ' s  clear t h a t  they w i l l  be  
received by B with the separation 
kT, because of h i s  motion. It i s  
very easy (See Ref. 1) to  show 
t h a t  k, t h i s  r e l a t i v i s t i c  Doppler 
factor ,  is 

k = [  
1 - v/c 

Now, how would A define h i s  ax i s  
of simultaneity? (Refer t o  Figure 
- 6) He would send out a pulse and 
get  it ref lec ted  back. I f  it is 
sent  out a t  the same t i m e  before 
h i s  or igin event as the t i m e  he 

A 6 

-- 
C regards as simul 

which A 
taneous 

with his origin everit t = O  

Figure 6 

C. 0. Alley, "Apollo 11 Laser Ranging Retro-Reflector (LR3) 
Experiment: One Researcher's Personal Account", i n  Adventures i n  
Experimental Physics, edi ted by B. Maglich, (x 1972. 
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I B 
gets  it back a f t e r  h i s  or ig in  A 
event, he would, say t h a t  t he  
event is simultaneous with h i s  
or ig in  event. lhis procedure 
defines h i s  X axis,  the locus of 
events which he regards as 
simultaneous with h i s  or ig in  
event . B can do the same which B regards 

as simultaneous 
thing. But both A and B measure * with his origin 
the  s a m e  speed of l i gh t ,  event t ' = 0 
represented by the  dashed l i nes  
i n  Figure 7 ,  so t h a t  when B sends 
out  h i s  pulse and gets it back 
the same t i m e  before h i s  or ig in  
event (taken t o  be the s a m e  a s  
A ' s 1  as afterward, the  
re f lec t ion  must occur as shown i n  
Figure 7. This procedure defines 
a t i l t e d  space axis, which is B's 
locus of events which are 
simultaneous with respect t o  h i s  
or igin event. SO, B'S time axis  ' 
is t i l t e d  with respect t o  A ' s  
time axis, and h i s  space axis  is  
t i l t e d  with respect t o  A ' s  space 
axis .  %is is  the famous 
Minkowski diagram . Hermann 
Minkowski w a s  one of E i n s t e i n ' s  
teachers a t  the technical I 

university i n  Zurich, who was 
very negatively impressed with for all 
Einstein as a student, but l a t e r  
came t o  recognize h i s  great Figure 8 
accomplishments. It w a s  Minkowski who 
contributed the space-time geometry t o  the 
physics of r e l a t i v i t y  t h a t  Einstein had 
developed. 

Space -Time 

Figure 7 

Minkowski's Absolute Space-Time (1907) 

Light speed same 

We've had observers A and B, now 
suppose w e  have C.  I f  C is moving t o  the  
l e f t  then  h i s  axis  of simultaneity is 
t i l t e d  down, as shown i n  Figure 8 .  ?he 
several  observers w i l l  r eg i s t e r  different  
re la t ive  t i m e s  fo r  two events. Consider 
t he  events, labelled 1 and 2 i n  Figure 9. 
Then i t 's  clear t h a t  A would regard these 
as occurring a t  the same t i m e  since they're 
on h i s  axis  of simultaneity. But f o r  B, he Figure 9 
has t o  project  over paral leb t o  h i s  axis  of 
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simultaneity and it is clear tha t  Event 2 occurs before Event 1, 
according t o  B ' s  t i m e .  C must project p a r a l l e l  t o  h i s  axis  of 
simultaneity and he w i l l  conclude t h a t  Event 1 occurs before Event 2. 
So they don't agree on which occurs first. ?hey also don't agree on t h e  
magnitude of the t i m e  in te rva l  between two events. They won't agree 
e i the r  on the distance in te rva l  between two events. But Minkowski 
showed t h a t  they do agree on something! What they agree on is the so- 
cal led invariant in te rva l ,  A s ,  which is given by: 

(A) 
( A s )  = c 2 ( A t )  2 - (Ax) 2 

= c 2 ( A t ' )  2 -  AX')^ (B) 

= c 2 ( A t " )  2 - (Ax"I2 
( C )  

where unprimed, primed, and double-primed r e fe r  t o  A, B, and C 
respectively. ?hey a l l  get the same value when they make t h i s  
combination of t i m e  and space intervals .  me quantity A s  is invariant 
w i t h  respect t o  a change of i n e r t i a l  observers with t h e i r  respective 
t i m e  and space coordinates. It 's a very important r e su l t .  It forms the 
basis  fo r  Einstein 's  whole development of gravity as curved space-time. 

E i n s t e i n  w a s  often tempted t o  change the name of the theory of 
r e l a t i v i t y  t o  the  theory of invariance because it wasn ' t  so much, i n  h i s  
view, the way d i f fe ren t  observers see things i n  r e l a t ive  fashion, but 
what is  unchanged fo r  the various observers. But t h a t  suggested change 
of name never caught on. It is not hard t o  demonstrate the invariance 
of the in te rva l .  Because of l imited t i m e ,  I ' m  not going t o  do it. It 
can be done i n  only a f e w  algebraic s teps  using the k-calculus and 
space-time diagrams I See Ref. 1 ) .  You don't have t o  introduce Lorentz 
transformations, and other complications t o  prove it. 

Here's how Minkowski described h i s  r e su l t  i n  a t a l k  i n  1908: 

"?he views of space and t i m e  which I wish t o  lay 
before you have sprung from the soil of 
experimental physics and therein lies t h e i r  
strength.  Henceforth, space by i t s e l f  and t i m e  by 
i t s e l f  are doomed t o  fade away in to  mere shadows 
and only a kind of union of the t w o  w i l l  preserve 
an independent r e a l i t y  ." 

H e ' s  ta lking about h i s  s l i c ing  up of space-time with the t i l t ed  axes i n  
Figure 8 .  I think of the  axes t i l t i n g  for  d i f fe ren t  observers l i k e  t h e  
blades of a pa i r  of scissors  pivoted a t  the origin.  

Now we have a l l  we need i n  order t o  deduce the  e f f ec t  of motion on 
clocks. Consider figure 10, which shows the worldline of a moving clock 
with the events corresponding t o  a couple of t i c k s  on the  clock i n  the  
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space-time diagram fo r  some 
i n e r t i a l  observer. Between the  

The Effect of Motion on Clocks 

two t icks ,  the i n e r t i a l  observer 
w i l l  say there ' s  a cer ta in  
in te rva l  of t i m e ,  A t ,  which w e  
w i l l  ca l l  t he  coordinate time 
in te rva l  . 'lhe moving observer, 
of course, w i l l  record the  
in te rva l  between h i s  own t i c k s  
and we w i l l  c a l l  t h a t  the  
in te rva l  of proper t i m e ,  AT . Ax X 

For the  coordinate observer 
there 's  a l so  a space in te rva l  
between these two t icks:  t h e  Figure 10 
clock is moving. But fo r  the 
clock i t s e l f  there is no spacial  difference because the clock is always 
a t  the or igin of i ts  own instantaneous coordinates. So, i n  terms of 
t h i s  notion of proper t i m e ,  we can deduce the difference between it and 
coordinate t i m e  by appealing t o  the invariance of the in te rva l .  

World Line of 
moving clock Reoding of moving 

clock is i ts  own time, 
Proper Time. 
Denote by r Clock Ticks 

A t  { I . ' * T ( A t ,  Ax, 
t~ ( A r , O )  

= 2 ( A t ) 2  -   AX)^ = c 2 ( A t ' )  2 - ( A X ' )  2 

where the prime now refers  t o  the moving clock. But we've agreed t o  
ident i fy  A t '  with A T ,  the  proper t i m e  in terval ,  and we've agreed 
t h a t  Ax'= 0, so i f  w e  subs t i tu te  tha t  into the equation, and fur ther  
note t h a t  Ax = v A t  where v is the instantaneous velocity, we have 

2 2 = (c2At) 2 - (Ax)2 = c 2 ( A t )  2 - (vAt) 2 ( A s 1 2  = c ( A t ' )  - (Ax') 

  AT)^ = ( 1  - v 2 2  /c ( A t )  2 

= [ 1 - v2 /c2f'2At AT 
proper 
t i m e  
i n  t e rva 1 

coordinate 
t i m e  
in te rva l  

This famous equation, of course, is one of 
the  basic equations tha t  w e  w i l l  be dealing 
with. I f  we consider two clocks, A and B, 
which are moving along d i f fe ren t  paths i n  
space-time, as shown i n  Figure 11, the  
elapsed proper t i m e  f o r  each w i l l  be 
different .  "Your time is not my t i m e . "  I f  
w e  synchronize the  clocks when thay are 
together and they then go on d i f f e r e n t  paths 
and rejoin,  one must evaluate an integral  t o  
get the elapsed proper t i m e  for  each clock 
with respect to  the coordinate t i m e  for  some 
i n e r t i a l  observer. 

/ o /  "Your time is 
/ 

/ not my time' P / 

Figure 11 



r A ( f i n a l )  - T ( i n i t i a l )  = f(l - v 2/ c2 l4dt 
A A 

T ( f i n a l )  - T ( i n i t i a l )  = J(1 - v 2/ c2 ) "2dt B B B 

And since vA2 w i l l  be d i f fe ren t  from vB2 over the  paths, these are not  
equal. There's a route dependence f o r  proper t i m e .  

Einstein recognized these implications f o r  
clocks i n  1905, and he actual ly  made a prediction 
and suggested an experiment. €& sa id  t h a t  a clock 
(excluding one whose rate depends on the local  value 
of the apparent acceleration of gravity, l i k e  a 

respect t o  a similar clock a t  the Pole, because of -0.46 km/s 

the  surface velocity produced by the ear th ' s  
rotat ion,  a s  shown i n  Figure 12. I f  you put i n  t h e  
value 0.46 kilometer per second for  t h e  equatorial  
surface velocity, you get  102 nanoseconds per day, Figure 1 2  
according t o  the t i m e  d i la t ion  equation for  the 
difference i n  r a t e  between an equatorial  clock and a polar clock. I f  
one could have done t h a t  experiment i n  1905 -- i f  suf f ic ien t ly  s table  
clocks had exis ted then -- a different  resfilt would have been obtained 
than he predicted: a nu l l  resul t !  His 1905 prediction ignores the 
e f f ec t  of gravity.  It was t o  be t w o  years before he discovered the  
e f f ec t  of gravity on time as a consequence of h i s  famous Principle of 
Equivalence. I w i l l  come back t o  t h i s  question and describe an 
experiment we've done recently transporting clocks from Washington, D.C. 
t o  Thule, Greenland and back. 

@ e------ 

pendulum clock) a t  the Equator w i l l  run slow with - 

I ' d  l i k e  t o  quote from the Presidential  Address a t  the American 
Association fo r  the Advancement of Science i n  1911 by Professor W. F. 
Magie of Princeton University. 

"I do not believe t h a t  there is any man now living, 
who can assert, with t ru th ,  t h a t  he can conceive of 
t i m e ,  which is a function of velocity." 

That w a s  s i x  years a f t e r  Einstein 's  paper of 1905 by which t i m e  m o s t  of  
the leading physicis ts  had accepted h i s  ideas. But t o  t h i s  day, there 
are people who do not believe t h a t  clocks behave i n  t h i s  fashion. 

INCLUSION O F  GRAVITY: THE PRINCIPLE O F  EQUIVALENCE 

L e t  me now turn  t o  gravity. Haw does gravity get i n t o  t h e  
r e l a t i v i t y  picture? This is an excerpt from an essay tha t  Einstein 
wrote i n  1919 t h a t  was published i n  the  N e w  York Times when h i s  papers 
began t o  be edited i n  1972 (he w a s  recal l ing what he w a s  doing i n  1907); 
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"At  t h a t  point there  came t o  m e  the  happiest  
thought of my l i f e  i n  the  following form: Just as 
i n  the  case where an electric f i e l d  is induced by 
electromagnetic induction, the  gravi ta t ional  f i e l d  
s imilar ly  has only a r e l a t ive  existence. %us, for  
an observer i n  free f a l l  from the  roof of a house, 
there ex is t s ,  during his f a l l ,  no gravi ta t ional  
f i e ld ,  a t  least not i n  h i s  immediate vacinity.  I f  
t he  observer releases any objects, they w i l l  remain 
r e l a t i v e  t o  him i n  a s t a t e  of rest or i n  a state of 
uniform motion independent of t h e i r  pa r t i cu la r  
chemical and physical nature. Ihe observer is 
therefore  j u s t i f i e d  i n  considering h i s  state as one 
of rest." 

This is Einstein 's  own statement of the Principle of Equivalence between 
an accelerated system and a system i n  a gravi ta t ional  f i e l d ,  

There is a story,  probably apocryphal, t h a t  while Einstein w a s  a t  
t he  Patent Office i n  Bern, a workman f e l l  off  of the  roof of a house and 
reported t h a t  h i s  too ls  f e l l  along w i t h  him. %ey a l l  landed i n  bushes, 
and so he survived t o  t e l l  the tale, thereby influencing Einstein. But 
I think t h a t ' s  r ea l ly  not t rue.  

In  a system f a l l i n g  f r e e l y  Free Fall 

No Local 
Gravitational Fl' Field! 

under the influence of gravity, 
there  is no local grav i ta t iona l  
f i e l d .  Of course, w e ' r e  very 
familiar with t h i s  now, from the  
space f l i g h t s  of the  Apollo 
Program, the  Skylab, Space 
Shuttle and the Soviet Soyuz 0 

spacecraft, and so on. Objects 
t h a t  a re  put out i n  f ront  of an 
astronaut w i l l  s t ay  there,  as 
shown i n  the upper l e f t  pa r t  of 
Figure 13. I ' m  t o l d  t h a t  on the 
Skylab, s o m e  of the astronauts 
made a basketball-size drop of 
w a t e r ,  which would j u s t  s t a y  there, held together by surface tension 
(and of course osci l la t ing j u s t  a b i t ) .  Consider now, i n  a region where 
gravi ty  is not present, an accelerated lab, an "Aclab", which is pushed 
by a rocket engine. s e n ,  i f  you release objects  of whatever 
composition they would s e e m  to  approach the floor i n  the  same way, 
equivalent t o  what you would see i n  a gravi ta t ional  lab, "Gravlab", i n  
t h e  presence of a gravi ta t iona l  f i e ld ,  for example, on the surface of 
the  ear th .  ?here have been many experiments showing t h a t  all objects, 
whatever t h e i r  composition, f a l l  ( i n  a vacuum) with the  s a m e  

1 ~ 1 ~ ~ ~ ~ ~  
" Aclob '' "Gravlob" 

Figure 13 
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acceleration. I n  technical language, one says t h a t  the i n e r t i a l  mass is 
the same as the gravi ta t ional  mass. In recent years, t h i s  has been 
shown by R. H. Dicke and by V. Braginsky to  be val id  to  parts i n  
10' Lunar laser ranging has shown t h i s  a l so  t o  be t r u e  f o r  
the  ear th  and moon f a l l i n g  t o  the sun, with the same precision . 
Einstein's idea w a s  not t o  st ick with the mechanical properties only but 
t o  ask what are the consequences of the Principle of Equivalence for  
other p a r t s  of physics, i n  
par t icu lar  f o r  Wavefron t s  
phenomena, which 
l i g h t .  Suppose you 
sent across t h i s  "Aclab", as 
shown i n  Figure 14. Think of it 
as  rows of marching so ld ie rs  
corresponding t o  t h e  
wavefronts. !&e l a b  is 
accelerated, so it would appear 
in s ide  it as though the l i g h t  
beam w e r e  being bent. I f  the Figure 1 4  
equivalence idea is  t r u e  then i n  
a gravi ta t ional  f i e l d ,  you would see t h i s  bending of l igh t ,  and the 
marching soldier  analogy tells you t h a t  the soldiers a t  the top  would 
have t o  move f a s t e r  than those a t  the bottom i n  order t o  make the 
curve. So you predict  t h a t  l i g h t  paths should be bent by a 
gravi ta t ional  f i e ld ,  and tha t  the speed of l i g h t  increases w i t h  the 
height. There's no mathematics i n  t h i s  deduction a t  a l l ,  j u s t  physical 
ideas,  

t o  1 O1 . 6 

"Gravlab" I' Ac la b" 

There's a l i t t l e  mathematics needed t o  deduce the properties of 
clocks i n  a gravi ta t ional  f ie ld .  Suppose you have t h i s  "Aclab" with a 
low clock on the f loor  and a high clock on the ce i l i ng  and you are 
exchanging laser pulses between them, as displayed i n  Figure 15. W e  can 
calculate  w h a t  would happen i n  t h i s  si tuation, and I'll do it i n  ju s t  a 
moment. If the "Gravlab" is equivalent t o  the "Aclab", then what w e  

P. G. Roll, R. Krotkov, and R .  H. D i c k e ,  "The Equivalence of I n e r t i a l  
and Passive Gravitational Mass," Ann. Phys. (U.S.A.), Vol. 26, pp. 442 
-517 (1964). 

V. B Braginsky and V.1 . Panov, "Verification of the Equivalence of 
I n e r t i a l  and Gravitational M a s s " ,  Zh. a s p .  & mor.  Fiz, Vol. 61, pp. 
873 - 879 (1971) . English t ranslat ion i n  Sov. Physics - JETP Let t . ,  
Vol. I O ,  pp 80 - 283 (1972). 
J.G. W i l l i a m s ,  R. H. Dicke, P. L. Bender, C ,  0. Alley, W. E. Carter, 

D. G. Currie, D. H. Eckhardt, J. E. Faller, W. M. Kaula, J, D. 
Mullholland, H. H. Plotkin, S. K. Poultney, P. J. Shelus, E. C. 
Silverberg, W. S .  Sinclair ,  M. A. Slade, and D. T. Wilkinson, "A New 
Test of the Equivalence Principle from Lunar Laser Ranging", Physical 
Review Letters, Vol. 36, pp 551 - 554, (1976). 
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calculate  i n  the "Aclab" should High 

w i l l  apply see fo r  t h a t  t he  the "Gravlab", high clocks and are  w e  * i ~ l  <I> g1  
predicted t o  run fas t  with Low 

can deduce t h i s  r e su l t  ea s i ly  by I l l  
;777 respect t o  the low clocks. One 

using the  ideas of the k-calculus 
which w e  introduced earlier. 

"Aclab" 

High 

"Gravlab" 

F igure  15 
It is not t r u e  t h a t  you 

cannot consider accelerated COmpOriSOn of Clocks in "Aclab" 
motions i n  special  r e l a t i v i t y .  
L e t  us consider t h e m .  The l e f t  
of Figure 16 shows the curved 
worldlines plot ted i n  an i n e r t i a l  
system Minkowski diagram of the 
low and high clocks of Figure 15 
i n  the "Aclab". L e t  us send 
l i gh t  pulses from the low clock 

the r igh t  of Figure 16. There 
w i l l  be a s t re tching factor  kT Figure  16 
ju s t  as we have discussed 
ea r l i e r ,  because there is some velocity of the high clock a t  the t i m e  of 
reception. Even though the high clock started off w i t h  zero veloci ty  
with respect t o  the i n e r t i a l  system, the acceleration produces some 
velocity according t o  v = a t .  If we subs t i tu te  fo r  v i n  the equation, 
and make a f e w  manipulations, we f ind fo r  k 

T '  

~~ * I{' 
t o  the high clock, as shown on h X h X 

k = [ ( l  + V/C) / ( 1  - v/c)] '4 = + at /c)  / (1  - a t /c ) l  '12 

f( (1 + 2at/c) '12 

But t = h/c where h is the separation of the clocks. Therefore, 

k 1 + 2ah/c2 ) l4 

But by the Principle of Equivalence, the acceleration of  gravity g is 
equivalent t o  a, so w e  subs t i tu te  g f o r  a and get  

k = ( 1 + 2gh/c 

Then w e  remember t h a t  , according t o  Newtonian physics, the 
gravi ta t ional  po ten t ia l  difference 4 is gh, so we have 

k 1 + 24/c ) '12 
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I n  t h e  "Gravlab", as shown i n  Figure 17, t h e  
worldlines of t h e  l o w  and t h e  high clocks w i l l  be 
s t r a i g h t ,  s ince  they are not moving. However, i f  
we send l i g h t  pu lses  from t h e  l o w  clock t o  t h e  
high clock, we would still ge t  a s t r e t c h i n g  
f a c t o r  given by t h e  above equation because of t h e  
P r inc ip l e  of Equivalence. This s t ra ightened  
space-time diagram e x h i b i t s  t h e  curvature of 
space-time, i n  t h i s  case, the  curvature of t i m e ,  
t h a t  is a t  t h e  h e a r t  of Eins te in ' s  theory of 
grav i ty ,  General Re la t iv i ty .  L e t ' s  look a l i t t l e  
m o r e  a t  t h a t .  

To compare a low clock with a high clock i n  
a g r a v i t a t i o n a l  f i e l d ,  we can use t h e  same 
Eins te in  p re sc r ip t ion  w e  discussed earlier: send 
out a l i g h t  pulse, ge t  it r e f l e c t e d  back, and 
i d e n t i f y  t h e  mid-point between sending and 
rece iv ing  with t h e  t i m e  of r e f l ec t ion ,  as shown 
i n  Figure 18. These two events are simultaneous 
f o r  t h e  low observer. A l i t t l e  b i t  later, t h e  
low observer could do t h e  same th ing  and i d e n t i f y  
the mid-point t i m e  with t h e  r e f l e c t i o n  t i m e  as 
being simultaneous. But what we've j u s t  seen is 
tha t  t h e  elapsed t i m e  f o r  the high clock, A T , i s  
going t o  be d i f f e r e n t  from the elapsed t i m e  for 
the  l o w  clock, A t ,  defined t h i s  way: AT r f  A t  . 

Now, how t o  incorpora te  t h i s  g r a v i t a t i o n a l  
effect i n t o  t h e  metric s t r u c t u r e  t h a t  Minkowski 

Low High 

X 

Figure 1 7  

t t  

Figure 18 

had proposed, t h e  
i n v a r ' a n t  i t e r v  13 Eins te in ' s  idea  w a s  t o  r e t a i n  t h e  i d e n t i f i c a t i o n  of 

( A s )  E c ( A T )  , AT being t h e  proper t i m e  i n t e rva l ,  and to  i n s e r t  a 
m e t r i c  c o e f f i c i e n t  i n  t h e  inva r i an t  i n t e r v a l  expression i n  order t o  make 
th ings  come ou t  t h e  way w e  have j u s t  ca l cu la t ed  for a s ta t ic  
s i t u a t i o n .  So here is t h e  presence of a m e t r i c  coe f f i c i en t  i n  t h i s  
i nva r i an t  i n t e r v a l  which is a manifestation of t i m e  curvature.  

[ A s ) 2  = ( 1  + 2+/c ) c ( A t )  - (Axl2 = c ( A T )  

t 9 9  

2 2  2 2 2 

metric 
c o e f f i c i e n t  

For t h e  s t a t iona ry  high clock, we have then t h a t  

AT = ( 1  + 2+/c ) 'hAt 

W e  can ge t  t h e  speed of l i g h t  by n o t y g  t h a t  f o r  l i g h t  pulses,  the t w o  
events ly ing  along a licjht l i n e ,  ( A s )  is going t o  be 0, so i f  you p u t  
t h i s  equal t o  0 ,  w e  can solve f o r  Ax/At, the  coordinate speed of l i g h t ,  
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and we get 

A t  = (1 + 24/c2) lhc 

This shows t h a t  the  higher you go, the f a s t e r  the l i g h t  must move, as w e  
had concluded already. W e  can nuw ask what happens t o  a moving clock. 
L e t ' s  bring i n  three dimensions, and include Ax, By and Az i n  the 
m e t r i c ,  

2 2 2  2 2 2  AS)^ = c ( 1 8 ~ ) ~  = (1 + 24/c ) c ( A t ) 2  - (Ax) - (Ay) - (Az) 

Making t h a t  2 2 
The sum of the squares of these is j u s t  v ( A t )  .. 
substi tution, and carrying out a f e w  l i n e s  of algebra, 

c2(A.r12 = ( 1  + 24/c2) c2(AtI2 - v 2 ( A t )  2 

 AT)^ = ( 1  + 24/c2 - v 2 2  /c ) ( A t )  2 

w e  get t h a t  i n  t h i s  gravi ta t ional  case the relationship between the 
proper t i m e  in te rva l  and the  coordinate time 

2 2  
AT = ( 1  + 24/c 2 - v / c )  
proper 
t i m e  
in te rva l  - C I C I  

in te rva l  is given by 

'4 A t  
coordinate 
t i m e  
in te rva l  

W e  can expand t h i s  when 4/c" and vL/cL are  small, which is cer ta in ly  
the case on the surface of the  earth,  and w e  ge t  

2 2 AT = ( 1  + 4/c2 - v / 2c 1 A t  

One can synchronize clocks t o  the coordinate t i m e  (which w e  are  
taking as  the  time kept by clocks on the  surface of the  ear th)  by using 
the  laser  pulse technique i l l u s t r a t e d  i n  Figure 18. The l igh t  l i n e  is 
drawn s l igh t ly  curved i n  Figure 18 t o  i l l u s t r a t e  the  speed of l i g h t  
changing with a l t i tude .  make the high clock run a t  the s a m e  rate as  
the l o w  clock, one must physically adjust  it (See the  l a t e r  dismission 
on the GPS) . @gas =78.9 km 

The above equation i s  the basic one needed 
i n  order t o  understand these e f f ec t s  of General 
Relat ivi ty  on proper t i m e .  I ' d  l i k e  t o  give an 
analogy to  the  curved surface of the ear th  i n  

of longitude, c a l l  it Aa, with Aa being one 
degree. You know t h a t  a t  the equator the ac tua l  
proper distance on the ear th  is about 112 
kilometers, whereas, i f  w e  go t o  a la t i tude  of 45O and consider the  same 
longitude interval ,  i t 's only about 79 kilometers. There is a proper 

Figure 19. H e r e  w e  have a coordinate increment \AS = I l l . ?  kin 

Figure 19 
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distance interval As which is related to the coordinate distance 
interval Aa by the following equation 

As = R cos B Aa 
Proper Coordinate 
Distance Distance 
Interval Interval 

and there is a coefficient, called the metric coefficient, R cos B, 
where is the latitude and R is the radius of the earth. ?.his is an 
excellent analogy to the situation in curved space-time. There, we 
have, when the clock is not moving 

2 2  2 2  AS)^ = c ~ A T ~  = ( 1  + 2+/c 1 c = goo c (At) 

or 

where goo is the name given by relativists to the metric 
coefficient ( 1  + 2+/c 1 . 'Ihe proper time interval AT is related to 
the coordinate time interval At in this way for stationary clocks: 

2 

AT = ( 1  + 2+/c2I1hAt = goo "2 At 

One can often establish on two-dimensional 
curved surfaces a metric formula. In the case 
of the sphere when we consider both latitude and 
longitude we get 

2 2 2  AS)^ = R cos B ( A ~ I ~  + R~(AB) 

For a different choice of coordinates on a two- 
dimensional surface, as shown in Figure 20, 

A x2 
2 (Ax2 1 

Figure 20 

there can be cross-product terms 

2 
(As)2 = gI1(Ax1) + ql2Axl 

22 + g21 Ax Ax + g 2 1  

Ihe great mathematician Gauss and his successors Riemann and Levi-Civita 
and many other differential geometers, have extended this to any number 
of dimensions and have written the proper interval of distance as a 
quadratic form with metric coefficients, which are always called g now, 
because of their application to gravity by Einstein in his curved space- 
time. 
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( A s 1 2  = g l l (Ax l )  2 + g A X  A X  + e.. 

12 l 2  2 
= g Ax Ax (AX,)  + o s .  21 2 1 + 922 
= g Ax Ax + ... 

31 3 1 . . 
0 

IJnfortunately, w e  cannot go in to  the mathematics of d i f f e ren t i a l  
geometry f o r  lack of t i m e .  It is  highly in t e re s t ing  and enlightening 
and very powerful f o r  calculations,  but i n  many ways it has obscured the 
physics of General Relat ivi ty  . 

Einstein got t h  se ideas about including metric coeff ic ients  i n  the 
expression f o r  ( A s )  t o  describe gravi ty  around about 1911/1912. During 
t h e  years 1912-1914, he worked with h i s  long-time friend, t he  
mathematician Marcel Grossmann, t o  develop the General %eo- of 
Relat ivi ty .  They wanted to  a l l o w  curvature of space as w e l l  a s  
curvature of t i m e ,  and they proposed f i e l d  equations t o  describe how 
m a t t e r  w i l l  curve space and t i m e .  That is, how the metric coeff ic ients  
w i l l  be determined by the d is t r ibu t ion  of matter. Matter curves space- 
time. Einstein proposed t h a t  objects would move in  t h i s  curved space- 
t i m e  along geodesics: the  shor tes t  path or  the extrema1 path,  A 
geodesic between t w o  points on the  surface of the  ear th  is the shortest  
path -- t he  a r c  of a great circle. In  t h e  case of curved space-time, i f  
you imagine a clock attached t o  a pa r t i c l e  which is moving, the motion 
w i l l  be such t h a t  t he  elapsed proper t i m e  w i l l  be a maximum. Bertrand 
Russell w i t t i l y  cal led t h i s  the "Principle of C o s m i c  Laziness". 

9 

slow fast - There is the  prescription: - 
"Curved space-time te l ls  objects 

t i m e  how t o  curve." This  is the  Sun 
way Professor John Wheeler l i k e s  
t o  summarize General R e l a -  
t i v i t y  . %ere i s  no more -- 
Newtonian force. Objects move 
under the influence of gravi ty  
because of the way clocks 
behave. A clock w i l l  run f a s t e r  
the  higher it is, and it w i l l  run 
slower the  faster it moves. The 
primary curvature fo r  slow speeds Figure 2 1  
and w e a k  gravi ta t ional  f i e l d s  is the  curvature of t i m e ,  not the 
curvature of space, as you read i n  so many of the popular books. How 
can you represent t h i s  curvature of t i m e ?  W e  can do it i n  t e r m s  of the 
diagram i n  Figure 21.  Imagine the  sun on the  l e f t ,  and plot the  
gravi ta t ional  po ten t ia l  (b of the surp as  a function of the  distance r 
from its center (or, better, p lo t  (b/c since t h i s  combination occurs i n  
the  r e l a t ion  between proper t i m e  and coordinate t i m e ) .  

how to move; matter tells space- O O ~ O Q Q  
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-GM 
- = -  4 ( 9 ,  

R c  2 r  2 
C e 

Newtonian Grav i t a t iona l  Constant 
Mass of t h e  Sun 
Radius of t h e  sun 

where G = - - - - 

This p l o t  is o f t en  c a l l e d  
t h e  "po ten t i a l  w e l l "  of t h e  

Its "depth" is sun. 
GM /Re" = 2 x lo6 . The much 

smayler p o t e n t i a l  w e l l  of the 
earth is shown superimposed ( i n  
exaggerated form) on t h e  curve 

2 

for 

mass 

the  fun .  Itsml gepth  i s  
/ R c  IJ 7 x 1 0  (Ma - 
of t h e  earth; Re = rad ius  of 

t h e  e a r t h ) .  With respect t o  a 
clock a t  a great d is tance  ( a t  t h e  
"top" of t h e  p o t e n t i a l  w e l l ) ,  a 
clock w i l l  run slower as it is 
placed deeper i n  t h e  p o t e n t i a l  
w e l l .  

- 

To dramatize t h i s  e f f e c t ,  
consider Figure 22 which is a 
drawing made by Herblock, t h e  
g r e a t  ca r toon i s t  of t h e  
Washington Post, a t  t h e  t i m e  of 
E ins t e in ' s  death i n  1955. 
Imagine t h a t  an observer a t  a 
g rea t  d i s tance  from t h e  sun is 
observing events on ea r th .  One 
hundred years  on e a r t h  ( f o r  
example, t h e  t i m e  between 
E ins t e in ' s  b i r t h  and h i s  
centennia l  ce lebra t ion  on March 
14, 1979) would appear t o  t h i s  
observer as 100 years p lus  41 
seconds: 29 seconds from t h e  
ascent  from t h e  e a r t h  up t h e  

. 

Figure 22 

. Misner, Thorne, 
Wheeler 1 

p o t e n t i a l  w e l l  of t h e  sun; two 
seconds from the p o t e n t i a l  w e l l  
of t h e  e y t h s  and 15 seconds from 
t h e  Y /2c e f f e c t  of t h e  
e a r t h ' s  ve loc i ty  around t h e  sun. 

Figure 23  
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Wheeler l ikes  t o  demonstrate the motion along geodesics i n  space- 
time by considering an ts  on an apple. Figure 23 is a sketch from t h e  
cover of the great book, Gravitation, by Misner, Thorne and Wheeler, 
Suppose you imagine an ts  t h a t  t r y  t o  move as s t r a igh t  as they can 
local ly  ( t h i s  is one way t o  define a geodesic) , Since the surface of 
the  apple is curved, they tend t o  move i n  curved paths, and t h i s  i s  
analogous t o  the motion of objects i n  curved space-time. Locally, they 
t r y  t o  go as s t r a igh t  as possible and they end up going i n  curves, which 
manifests i t s e l f  i n  an acceleration, the acceleration of gravity. So 
h i s  Principle of EQuivalence gave the  clue t o  Einstein: gravity is t o  be 
described by the  metric coeff ic ients  i n  curved space-time, including not 
only the goo coeff ic ient ,  but a l l  the other coeff ic ients  t h a t  could come 
i n  from the d i f fe ren t  products of A t ,  Ax, by, and Az. . 

2 2 ( A s ) 2  = g c ( A t )  + golc A t  Ax + go2c A t  Ay + go3c A t  Az 

Ax Az Ax By + g 2 00 

+ gloc A t  AY + gll(Ax) + ql2 13 
+ 920 c A t  Ay + g21Ay Ax + Q ~ ~ ( A Y )  + 923 AY 

+ '30 c A t  Az + g31Az Ax + g32Az Ay + g33(hz)2 

A cer ta in  symmetry is imposed 

so t ha t  you end up with 
arrayed i n  t h i s  fashion. 

gl.lV 

only ten  metric coeff ic ients  which can be 

'00 '01 '02 '03 

' IO  '11 '12 '13 

'20 '21 '22 '23 

'30 '31 '32 '33 

- - 

This is the famous metric tensor; these g are functions of space and 
t i m e  i n  general. Einstein wanted t o  albw any coordinates, not j u s t  
i n e r t i a l  Coordinates ( i n e r t i a l  observers), but for an iner t ia l  observer 
( real izable  loca l ly  by a f ree ly  f a l l i n g  laboratory), t h i s  array of 
m e t r i c  coeff ic ients  reduces t o  a simple form 

1 0 0 0  

V 

- 0 - 1  0 0 
gW 0 0 - 1  0 

- 
0 0 0 - 1 .  

T h i s  represents the  Minkowski m e t r i c  t h a t  we have seen ea r l i e r :  
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When you make a change of coordinates, the m e t  i c  coef f ic ien ts  are going 
t o  have t o  change also i n  order to keep As invariant .  The m e t r i c  
coef f ic ien ts  play t h e  role of generalized gravi ta t ional  po ten t ia l s .  I 
wish there  w e r e  more t i m e  t o  elaborate on these things.  

5 

SUMMARY OF GENERAL RELATIVITY 

Einstein wrote the  quadratic form t h a t  implies summation on 
repeated indices: 1.1 and V run from 0 t o  3, 

Ax Ax . 
i ! v  

invariant  m e t r i c  
i n t e rva l  coeff ic ients  

The coef f ic ien ts  g are t o  be obtained by solving the  famous f i e l d  
equations which are %%own here i n  symbolic form. 

Contracted Curvature Stress 
Riemann Scalar Energy 
Curvature Wnsor 
Tensor 

These are t e n  second order p a r t i a l  d i f f e ren t i a l  equations. They are 
non-linear i n  t h a t  they involve products of the  f i r s t  der ivat ives  of t h e  

the general stress energy tensor of matter; it includes the  e f f e c t s  of 
matter, energy, and pressure, a l l  of which produce gravi ta t ional  
f ields.  On the left-hand side are  various curvatures from d i f f e r e n t i a l  
geometry involving f i r s t  and second order p a r t i a l  der ivat ives  w i t h  
respect t o  t i m e  and space of the  metric coef f ic ien ts  g R is  t h e  
contracted Riemann Curvature Wnsor and R is the  Curvature Scgyar. I n  
1917, Karl Schwarzschild solved these equations and got the famous 
Schwarzschild m e t r i c ,  which I display here. 

m e t r i c  coef f ic ien ts .  The source term on the right-hand side T is 
V V  

Y V  * 

Curvature Curvature 2 2 
c ( A T )  
f o r  moving of of 
ob jec ts  T i m e  Space 

T h i s  is the m e t r i c  t h a t  is t o  e x i s t  outside of a9 is0 ated spherical  
body of mass PI. %e coeff ic ient  goo of the c ( A t )  t e r m  involves 
-GM/r, which is  the  Newtonian poten t ia l  + . It describes the  curvature 
of t i m e  as w e  have seen earlierZ ?here’s a l so  a similar expression i n  
the denominator of the  ( A r )  term, when one uses spherical  
coordinates as here. This  describes the curvature of space. But, fo r  

3 
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ordinary motion ( t h a t  is, i n  weak gravi ta t ional  f i e lds ,  l i k e  on the 
earth,  and fo r  ve loc i t ies  much less than the  speed of l i g h t ) ,  you can 
neglect t h e  curvature of space. A l l  of Newtonian physics follows from 
the curvature of t i m e  alone. 

It is the Schwarzschild m e t r i c  
t h a t  leads t o  the famous concept of 
t he  black hole. Th i s  is a phrase 
coined by John Wheeler. Suppose you 
ask, can2 the  coef f ic ien t  of 
the  c ( A t )  t e r m ,  t he  g 
coeff ic ient ,  go t o  01 W e l l ,  it can: 

-- 

00 

- - 1 - -  2GM - 0  - Horizon 
2 rc go 0 

2GM fo r  r = - 2 
C Figure 24 

One c a l l s  t h i s  value of r the  Schwarzschild Radius and often denotes it 
by rS. You can ca lcu la te  i t s  value f o r  various masses. In  the  case of 
t h e  earth,  i t ' s  about nine millimeters. I n  the  case of the sun, i t 's 
three kilometers. N o w  suppose you could compress a l l  of t he  mass of the  
sun in to  a sphere with a radius of less than three kilometers? Then 
you would have a very s ingular  surface outside the mass, which is  shown 
as a dashed l i n e  i n  Figure 24 .  The surface, often called the event 
horizon, has remarkable properties,  because the  coeff ic ient  goo vanishes 
there .  I f  you imagine watching a clock moving i n  towards the event 
horizon from a great distance, i t s  t i m e  and motion would slow down and 
you would never see it get there.  For t h i s  reason, the  Russians call  an 
object of t h i s  s o r t  a frozen s t a r ,  j u s t  because of the property t h a t  
matter would f a l l  i n  and s e e m  t o  never get beyond the event horizon. 
You cannot get any information out from inside t h i s  event horizon. 
However, i f  you are r iding i n  with some of the f a l l i n g  matter, and 
recording things i n  your proper t i m e ,  it takes a f i n i t e  proper t i m e  t o  
get  i n  and through the event horizon. If there is a supernova explosion 
and subsequent collapse of the cent ra l  material t o  form a black hole, 
t h i s  can happen i n  a few milliseconds. Such collapses are, perhaps, 
potent sources of gravity waves, about which we w i l l  hear i n  the  next 
t a l k .  

I want t o  correct a widespread misconception about black holes: 
t h a t  they a re  a l l  very, very dense. This is  cer ta in ly  the  case for t he  
examples of black holes with a solar mass or an ear th  mass as discussed 
above. Note, however, t h a t  the Schwarzschild radius r is  proportional 
t o  the mass M, and t h a t  the  density varies as M/r;.' Therefore, the 
density depends on mass as 1/M . For a black hole with very large mass, 
the  density can be very small. Figure 25 shows the galaxy M87 i n  the 
Virgo c lus t e r .  T h i s  is a weak exposure so t h a t  you can see t h i s  br ight  

2 
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j e t  coming out of the center unobscured by 
outer pa r t s  of the galaxy. There is  some 
evidence, for  example the high veloci t ies  
of stars near the center  of t h i s  galaxy, 
t h a t  suggests t ha t  there  is a black hole of 
several  b i l l i ons  of so la r  masses present 
there.  The j e t  is probably associated with 
the rotat ion of t h a t  black hole; matter 
being converted in to  energy as it f a l l s  
in to  the black hole, and somehow propelling 
the jet  along the  axes of rotat ion.  There 
are many jets of t h i s  s o r t  i n  galaxies. 
There may be a black hole i n  the center of 
our own galaxy. mere's some evidence f o r  
it, but no time t o  discuss it here. Figure 25 

EXPERIMENTAL MEASUREMENTS O F  RELA!CIVIST€C CLOCK EFFECTS 

L e t  m e  now t a lk  some about experiments very quickly, W e  have done 
experiments with a i r c r a f t  and l a se r s  t o  i l l u s t r a t e ,  measure and 
demonstrate these e f f ec t s .  My chief collaborator w a s  Len Cutler who w a s  
the designer of the Hewlett-Packard 5061 C e s i u m  atomic beam standards 
which w e  used. Bob Reisse7 and Ralph Williams' did t h e i r  theses as part 
of these experiments. There w e r e  many other par t ic ipants  a t  t h e  
University of Maryland and the Naval Observatory. D r .  Gernot Winkler, 
Director of the Time Services Division, very kindly l e n t  the  clocks and 
gave much, much support t o  these ac t iv i t i e s .  

W e  w e r e  able t o  f l y  clocks i n  an airplane,  sui tably packaged so 
t h a t  they didn ' t  suffer  from environmental degradation of t h e i r  
performance. Figure 26 shows a schematic diagram of the f l i gh t s .  
W e  could send l i g h t  pulses up and get them reflected back from a lunar- 
type corner re f lec tor  on the plane, a l so  reg is te r ing  the t i m e  of t h e i r  
a r r i v a l  with the airplane clocks i n  j u s t  the way Einstein prescribed W e  
tracked the a i r  c r a f t  with radar beams i n  order t o  have an  independent 
knowledge of the posi t ion and velocity from which t o  calculate the 
proper t i m e  differences. W e  used minicomputers and event t i m e r s  both on 
the ground and on the plane. ahere's no time t o  go in to  de ta i l s ;  these 

1 have been discussed i n  other places . ?he plane would f l y  f o r  about 15 
hours over the Chesapeake Bay from the Patuxent Naval Air *st Center i n  
a racetrack pattern,  taking about 20 minutes t o  go around a path shown 

R, A. Reisse, "ahe Effects of Gravitational Potential  on Atomic 
Clocks as Observed with a Laser Pulse Time Transfer System," University 
of Maryland Ph .D . disser ta t ion  (May, 1976) e 

R. E. W i l l i a m s ,  "A Direct Measurement of the Rela t iv i s t ic  Effects of 
Gravitational Potential  on the  Rates of Atomic Clocks Flown i n  an 
Aircraft," University of Maryland Ph .D. d i sser ta t ion  (May, 1976) . 
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i n  Figure 27. W e  would accumulate, during one of these f l i gh t s ,  a 
typical t i m e  difference of about 50 nanoseconds. These measurements 
w e r e  i n  good agreement with the  proper t i m e  in tegral .  The t i m e  
difference between the  airborne and ground clocks would be given by 
in tegra ls  of t h i s  sort. 

L 

TA = J o ( l  + - - -  2 1 d t  
T 'A VA 

c2 2c 

c2 2 c  

2 

" VG ) d t  T 
TG = J, ( 1  + - - - 2 

Corner 

10 PPS 

Van 

I Laser I 

Detector 

Monitor 

Chesapeake 
Test Range 

r 

% %  
X-Band C-Band 

Rador Rodor 

Theodolites for 
Angle Calibration 

3 Cesium Beam Clocks 

Trailer 

+ I  $3 
Transmit Receive 

Pulse Reflected 
Pulse 

Figure 26 
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W e  allowed for  higher t e r m s  i n  
the ear th  ' s gravitationa 1 
potent ia l  due t o  i t s  oblate  
shape, and for  the ro t a t iona l  
e f f ec t s  of the ear th .  W e  
evaluated the  proper t i m e  
in tegra l  i n  a reference frame 
centered on the ear th  which i s  
non-rotating with respect t o  
d is tan t  matter, a s  shown i n  
Figure 28. 

'Ihe clocks w e r e  modified i n  
order t o  give the performance 
needed. Following suggestions by 
Len Cutler and others a t  H e w l e t t -  
Packard, w e  increased the beam 
current by a fac tor  of 2, w e  
added an integrat ing loop in  the 
c rys ta l  control, and there  was a 
proprietary modification of the 
beam tube (now standard on a l l  
high performance tubes) .  A l l  i n  
a l l ,  w e  could achieve s tabi l i t ies  
over the 15 hours a t  a couple of 
pa r t s  i n  1 0 l 4  with standard 
commercial clocks, as shown i n  
Figure 29. W e  paid much 
a t ten t ion  t o  providing a s tab le  
environment for  the clocks. Let 
us look a t  some pictures  t o  show 
you the equipment and give you 
some fee l ing  for  the experiment. 

rPATUXENT NAVAL AIR TEST CENTER 

0 = THEODOLITE STATION 

SCALE 

Figure 27 

A +" = w r c o s e  

- rotating 

Figure 30 i s  the plane which 
w e  used. Figure 31 shows it on 
the ground; the clocks w e r e  i n  
the trailer, and the laser 
equipment w a s  i n  the bus. Figure 
- 32 is the detector on the plane 

Figure 28 

behind one of the observation windows. Figure 33 shows the corner 
re f lec tor  outside the observation window. Figure 34 is the beam 
di rec t ing  optics.  Figure 35 shows the laser, b e l o w  which is the 7.5 
inch telescope which receives the ref lected laser pulses.  Both the  
detector and a closed c i r c u i t  "57 camera for  guiding are  coupled t o  it 
with a beam s p l i t t e r .  Figure 36 shows Len Cutler adjusting some of the  
s i x  Cesium beam clocks. Figure 37 is  the clock box tha t  protected them 
from environmental changes. It contained magnetic shields,  vibrat ion 
i so l a to r s  with near c r i t i c a l  damping a t  a resonant frequency of several 
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Figure  30 Figure  31 

Figure  32 Figure  33 

Figure  34 Figure  35 
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Figure 36 Figure 37 

Figure 38 Figure 39 

Figure 40 Figure 41 
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Number of points of sample 

Confidence 

Hertz, and constant pressure and 

A i r  w a s  c i rculated through the 
boxes t o  get the heat out and t o  5 

constant temperature controls.  437 216 106 51 23 12 5 

4% 6% 8% 12% 18% 26% 41% 

keep the temperature constant, as For pure white frequency noise 

shown i n  Figure 38. Figure 39  
shows the l i d  which supported 
voltage and pressure 
regulators. Figure 40 shows the 
clock box mounted i n  the  P3C 
airplane.  Figure 41 is the  
electronic  equipment t o  measure 
and record the re l a  t ive 
performance of clocks on board 
and t o  record the epoch of the 
a r r iva l  of the laser pulse. On 
the r igh t  of Figure 41  is  a 
t rave 1 l i n g  clock, whose 
environment w a s  not controlled. 

?he kinds of data t h a t  one 
could get are shown i n  Figure 42 
fo r  a f l i g h t  on November 22, 
1975. W e  flew for  f ive  hours a t  
25,000 fee t ,  and fo r  another f i v e  

\ 

L System resolution \, '. 
I I  I I I I\, I I 
2040 4080 8160 16320 32640 65280 130560 

Seconds 

hours a t  30,000 f e e t  t o  burn off 
fuel ,  concluding with another Figure 29 
f ive  hours a t  35,000 f ee t .  So 
there w e r e  s teps  i n  the  poten t ia l  
difference. ?here w e r e  changes of 
velocity due t o  wind as the  a i r c r a f t  circled,  shown i n  the lower p a r t  of 
Figure 42 ( t h e  v /c e f f e c t ) .  The integral  of these curves is shown i n  
Figure 43. The potent ia l  e f f e c t  integrates out t o  about 53 nanoseconds, 
t h e  velocity e f fec t  t o  about -6 nanoseconds, with the n e t  e f f ec t  being 
about 47 nanoseconds. The er ror  bar points are the l a se r  pulse t i m e  
comparisons. The actual  data before f l i g h t  and a f t e r  f l i g h t  can be seen 
i n  Figure 44 with the d i r ec t  side-by-side clock comparison represented 
by the so l id  l i n e ,  the laser  comparison shown again by er ror  bar 
points.  The agreement between the prediction and the  measurements is 
qui te  good. The r e l a t ive  rate of the airborne and ground clocks 
ensembles is represented by the  slope and is seen t o  be the  same both 
before and after f l i g h t .  m e r e  w a s  a s i m i l a r  e f f ec t  fo r  each of the 
individual clocks. Figure 45 i l lustrates the e f f ec t s  of the s teps  i n  
a l t i t ude .  They proGuced changes i n  re la t ive  clock rates which were 
measured by the laser pulse t i m e  comparison. The technique can serve as 
a crude altimeter! Figure 46 shows the  t i m e  of an on-board clock with 
respect t o  the average of a l l  on-board clocks. You can ' t  even t e l l  
where the f l i g h t  occurred! I f  tha t  same clock is compared with the 
ground ensemble as shown i n  Figure 47, there  is a s tep of some 47  

The ve r t i ca l  scale  i s  par t s  i n  1 0 l 2 .  

2 2  
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nanoseconds o r  so, as expected. Five 
separate 15-hour f l i g h t s  of t h i s  type w e r e  +pole 
car r ied  out, each yielding similar resu l t s .  

W e  have done other a i r c r a f t  clock 
experiments on a global scale.  You w i l l  
recall Einstein 's  "error" t h a t  w e  referred 
t o  earlier, the equator t o  the pole clock +pole < +eq 
comparison. The surface velocity, i f  w e  
consider only tha t ,  gives a prediction of 
102 nanoseconds a day fo r  the r e l a t ive  
clock rates. But t h i s  is wrong, because Figure 48 
you must a l so  consider the gravi ta t ional  
po ten t ia l  difference. I n  going from the equator t o  the pole on an 
oblate ear th  there  is  a change i n  potential ,  as shown i n  Figure 48. The 
ear th  is an oblate  y h e r o i d  and the mean ocean surface is an 
equipotential  of 4 - v /2, the  so-called geopotential. You remember 
t h a t ' s  exactly what comes in to  the re la t ion  between proper t i m e  and 

Q -e----. +eq 

coordinate t i m e :  

surface. Thus, one would expect a 

2 4 - v /2 i s  
earth.  So the 

1 dr = 11 + -  2 
C 

constant along the 
proper t i m e  is going 

2 
( 4  - 11 d t  

2 

mean ocean surface on the oblate  
t o  be constant along the mean ocean 

t i m e  difference t o  be produced only 
by f l i g h t  conditions, the a l t i t ude  above the ocean surface and the 
velocity contributing t o  the proper t i m e  in tegral ,  as w e  have 
discussed. W e  flew clocks t o  mule,  Greenland, l e f t  them four days, and 
brought them back. W e  measured a t i m e  difference of 38 f 5 nanoseconds, 
and w e  calculated 35 f 2 nanoseconds from i n e r t i a l  navigation and a i r  t o  
ground data.  There is no anomalous l a t i t ude  e f f ec t .  'Jhe "Einstein 
error",  i f  t ha t  prediction w e r e  calculated for  Washington t o  mule,  
would have been 224 nanoseconds over four days from a predicted rate o f  
56ns/day. The experiment provides another demonstration, from t h i s  
point of view, of the  e f f ec t  of the gravi ta t ional  po ten t ia l  difference 
which j u s t  compensates the velocity e f fec t .  

23.5 at time of summer solstice 
W e  have a l so  done 

experiments with Einstein 's  
f ree ly  f a l l i n g  laboratory i n  
which we've used the ear th  i t s e l f  
as the f a l l i n g  laboratory,  me , / i o r + h  I Free F~II 

ear th  is always f a l l i n g  f ree ly  
towards the sun, but it moves i n  
o rb i t  around the sun and never 
falls i n .  Its spin ax is  i s  Figure 49 
t i l t e d  23.5 degrees w i t h  respect 

Orbital Plane 0 - - - -  

sun 

715 



t o  the plane of i t s  orbi t ,  so t ha t  a t  the t i m e  of the summer solstice, 
clocks i n  the Northern Hemisphere are closer  t o  t h e  sun than clocks i n  
the Southern Bmisphere, as shown, with an exaggerated tilt, i n  Pigure 
- 49. There's been a long-standing puzzle, or  confusion, on the  pa r t  of 
some people: on the  earth, should the high clocks i n  the sun's po ten t ia l  
run f a s t  with respect t o  the low clocks i n  the sun's potent ia l?  
The answer is no, by the  
Principle of Equivalence. You 
w i l l  remember t h a t  gravity is 
cancelled local ly  i n  a f r ee ly  
f a l l i n g  laboratory. W e  actual ly  
did the experiment by f ly ing  
clocks from Washington t o  
Christchurch, New Zealand and 23.5 
back again. The disagreement and 
the confusion i n  the  l i t e r a t u r e ,  
r e su l t s  from people wanting t o  sun 
r e t a i n  the l i nea r  term in. the  
expansion of the poten t ia l  about 
the center of the  earth,  as 
sketched i n  Figure 5 0 .  There is 
an  excel lent  paper by J.B. Thomas from JPL , which does t h i s  
calculation correct ly .  There are remaining second order terms i n  t h e  
expression of the poten t ia l  which cause t i d a l  e f fec ts ,  but these can be 
neglected i n  t h e i r  e f f ec t s  on currently available clocks. In our 
experiments w e  found agreement between the calculated proper t i m e  
difference and the measured proper time difference.  The re su l t s  are 
shown i n  t he  following Table. 

9,10,11 

Edrth 

Figure 50 
12 
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F L I G H T  1 FLIGHT 2 
( I O  - 17 (23 - 30 

July 1977) July 1977) 

- 
(TA T G )  measured 

- 
(TA calculated (ns)  

115 f 10 

129 f 2 

131 f 10 

122 f 2 

(Measured - Calculated) (ns)  -14 f 12 11 f 12 

of Linear l k r m  (ns  1 80 f 2 70 f 2 
Calculated Effect 

Note t h a t  there  is no evidence fo r  the alleged e f f e c t  of the l i nea r  
term. 

These f l i g h t s  a l so  point up the e f fec t  on proper t i m e  of clock 
transport  by a i r c r a f t .  Ihe following table  displays the calculated 
proper times using data from the  on-board iner t ia l  navigation uni t s  and 
plane-to-ground radar f o r  t h e  d i f fe ren t  legs  of the t r i p s .  

EFFECT OF EARTH'S fOTA!PION 

F L I G H T  1 (ns )  

Andrews AFB t o  Travis AFB ( E  - W )  35 

Travis AFB t o  Hickam AFB ( E  - W) 35 

Hickam A m  t o  Christchurch (E - W )  47 

Christchurch t o  Hickam AFB (W - E) 16 

Hickam AFB t o  Andrews  AFB (W - E)  -1 

Dwell Time on Ground -3 

F L I G H T  2 (ns) 

31 

31 

52 

16 

-4 

-3 

Note the large difference between East-West and West-East  legs  caused by 
the  ear th 's  rotation: In  the West-East  direction the  surface velocity 
of the ear th  adds t o  the surface velocity of the a i r c ra f t ,  giving a 
large velocity i n  the i n e r t i a l  frame attached t o  the center of the ear th  
where the  calcu at ions are best made. ?he large v /2c2 very nearly 
cancels the +/c i n  the proper t i m e  in tegral .  The ent r ies  i n  the table  
are typica l  of the e f f ec t s  t o  be expected for  an a i r  speed of 500 knots 
and an a l t i t u d e  of 35,000 f ee t ,  charac te r i s t ic  of jet a i r c r a f t .  

2 3 

L e t  m e  show you a few pictures  of our global f l i gh t s .  Figure 51 is 
a polar view of a National Geographic globe on which is  marked the  path 
of the f l i g h t  from Washington t o  mule  and back. You can see there is a 
large change i n  distance from the  ear th 's  spin axis,  producing a large 

717 



Figure  51 Figure  52 

change i n  surface velocity.  Figure 52 shows the t i l t e d  earth, the sun 
being off t o  the r igh t  a t  the time of the summer so ls t ice .  The path 
from Andrews AFB i n  Washington t o  the Travis AFB i n  California t o  Hickam 
Field i n  Hawaii, and down t o  Christ Church is  marked. Figure 53 shows 
the repackaged equipment for  f ly ing  on an Air mrce  C141 transport  
plane. Figure 54 shows the  equipment mounted on a cargo p a l l e t  with the  
surrounding thermal protection enclosure. Figure 55 shows the pa l l e t  
carrying the equipment being loaded in to  the (2141. Figure 56 shows a 
l a t e r  s tep  i n  the loading process. Figure 57 is  a picture  taken during 
one of the f l i gh t s .  The equipment for  recording the i n e r t i a l  navigation 
systems and air-to-ground radar information from which t o  calculate  the 
proper t i m e  in tegra l  is on the tab le  on the l e f t .  

Other experiments were done recently by Bob Vessot and Marty 
Levine13, with a hydrogen maser i n  a rocket probe, i n  which the  r a t i o  of 
the measured t o  predicted value was 1 + ( 2 . 5  f 70) x This  is 
be t te r  than a hundredth of a percent confirmation. They measured 
frequency rather  than t i m e  d i r e c t l y ,  but the same basic equation tha t  
we've been working with had t o  be used. The great thing about t h e i r  
experiment w a s  the a b i l i t y  t o  essent ia l ly  cancel out the  Doppler effect ,  
and ionospheric, which is two p a r t s  i n  10 , su f f i c i en t ly  w e l l  t o  measure 5 

l3 R. F. C. Vessot and M. W. Levine, "A lbst of the Esuivalence - 
Principle Using a Spaceborne Clock," General Relat ivi ty  and Gravitation, 
Vol. - 10, NO. 3, pp 181 -204 (179) . 
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Figure  53 

Figure  55 

F igure  54 

Figure  56 

Figure  57 
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Left:  
Figure 58 

Right : 
Figure 59 

GEOMETRY OF ACCELERATIONS, 
VELOCITY AN0 SIGNAL 
PROPAGATION VECTORS 

t o  IOm4 t h e  e f f e c t  of t h e  p o t e n t i a l ,  which is only four  y l0 lo ,  by a very 
clever three-f requency cance l l a t ion  scheme. Figure 58 shows t h e  Scout 
rocket t h a t  w a s  used i n  t h a t  experiment, and Figure 59 shows its 
t r a j e c t o r y  r i s i n g  t o  several e a r t h  rad i i  and f a l l i n g  back i n t o  t h e  
At l an t i c  Ocean. Unfortunately, t h e r e ' s  no t i m e  t o  go i n t o  more details. 

SOME APPLICATIONS 

L e t  us now consider some practical engineering appl ica t ions .  
Figure 60 is  an artist's v i e w  of t h e  GPS/NAVSTAR system, which I th ink  
now has only 18 satell i tes planned r a the r  than t h e  24 shown here.  They 
are i n  12 hour period orbits, and they carry very good atomic c locks .  
The circular orbits are about 14,000 kilometers above the  e a r t h ' s  
surface.  Figure 61 i l l u s t r a t e s  t h e  way i n  which t h e  system works. A 

Below:  Figure 60 

Right: 

Figure 6 1  
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user receives L-band s ignals  from each of several satellites, consisting 
of a coded b i t  stream whose rate is set by the  onboard atomic clock a t  
10.23 M H z .  The user 's  receiver is equipped with the same code, which is 
sh i f ted  i n  t i m e  t o  lock on t o  the s a t e l l i t e  b i t  stream. By doing 
microprocessor calculations from four satellites, the user 's  eqyfpment 
f inds out where he is and a l s o  what the t i m e  is. But f o r  a l l  of t h i s  t o  
work, the  satel l i te  clocks must be synchronized with the GPS master 
s ta t ion .  You have t o  allow f o r  the  gravi ta t ional  po ten t ia l  and motional 
e f f ec t s  of General Relat ivi ty ,  which w e  have been discussing. 

I n  the Global Positioning System, the calculations can be made i n  
the  way w e  have demonstrated. 

2 
V 

1 d t  
- 'sat sat - ( I + -  2 - - 2 

2c drsat  
C 

A 

4 
V 

1 dt = ( 1  + 'gmlnd - ground 
2 2c 2 d T  ground 

C 

Dividing the equations, and retaining only the constant and f i r s t  order 
terms, 

n .\ 
4 4 

V - v  'sat - 'ground - sat ground d T  

2 
2c 2 

= I +  sat  
dr ground C 

hraluating t h i s  expression for  the  NAVSTAR c i rcu lar  orb i t ,  one finds, 

-10 dr 

dr 
= 5.1 x 10 = 44,000 ns/day NAVSTAR 

ground 

This r e su l t  means t h a t  i f  a NAVSTAR atomic clock has a cer ta in  r e l a t ive  
rate t o  the GPS master clock when they are side by side a t  an elevation 
corresponding t o  the mean ocean surface ( the surface used for  reference 
i n  the GPS system as w e l l  as fo r  U T )  -- say 20 ns/day -- t h i s  rate w i l l  
be increased by 44,000 ns/day when the clock is placed i n  orb i t .  %is 
w a s  observed i n  1977 by the  Naval Research Laboratory with the NTS-2 
sa te l l i t e .14  But before that ,  there  had been some doubt on the par t  of 
some people associated with the GPS program whether these e f f e c t s  w e r e  
actual ly  there. I remember w e l l  a meeting a t  the GPS of f ices  i n  the 
Spring of 1976, when Gernot Winkler, Len Cutler and I presented the  

l4  T. McCaskill, J.  White, S. Stebbins, and J. Buisson, "NTS-2 
Frequency S tab i l i t y  Results," Proceedings of the  32nd Ffequency Control 
Symposium (1978) .  
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r e su l t s  of out P3C a i r c r a f t  clock experiments when such questions w e r e  
ra ised . 

I f  there  is some eccent r ic i ty  t o  the orbi t ,  there  w i l l  be a 
periodic change i n  the distance of t he  satell i te from the center of t h e  
earth.  For an eccentr ic i ty  5 x the  change i n  gravi ta t ional  
potent ia l  i s  anough t o  produce an amplitude of 12 nanoseconds (peak t o  
peak of 24ns) with a 12 hour periodic i n  the onboard clock reading. 
This would produce an e r r o r  i n  posit ion of 24 fee t ,  i f  not allowed for. 

One must understand and include these e f f ec t s  correctly,  as the GPS 
now does. For the large r e l a t i v i s t i c  o f f se t  i n  clock rate i n  o r b i t  of 
C44,OOO ns/day, one adjusts  the clock so tha t  on the ground it would 
have a r a t e  of -44,000 ns/day with respect t o  the reference GPS clock. 
This  compensates for  the r e l a t i v i s t i c  e f f ec t  when it is put i n to  
o rb i t .  Once t h i s  i s  done, there  is  no longer a "gravitational red 
(blue) sh i f t "  on transmitted frequencies from the s a t e l l i t e  to the 
ground, even though the radiation passes through a difference of 
gravi ta t ional  po ten t ia l  A $ .  This miseake w a s  made by one of the GPS 
contractors during the development of the system. It is a natural  
mistake following from an often presented derivation of the blue s h i f t  
i n  terms of the energy of  a photon2 E = hv, a t  the satell i te;  the mass 
equivalent of the photon, m = hV/c ; and the gravi ta t ional  energy 
change mA$ . I f  hv' is the energy of the photon a t  the ground, energy 
conservation gives the  equation 

2 hv' = hv + (hv/c ) A +  

o r  = A + / c 2  v '  - v  
V 

This argument does not hold i f  the clocks have been adjusted as 
described above. 

There is  an upcoming experiment called LASS, Laser e c h r o n i z a t i o n  
from Stationary Orbit ,  being done by the European Space Agency15 with 
the first operational launch of the ARIANE rockets, currently scheduled 
for  April 1982. The experiment is  on the S i r io  2 satellite, as shown i n  
Figure 62. There w i l l  be corner ref lectors ,  an avalanche photodiode 
detector, an event timer and a c rys t a l  clock on the satellite. Laser 
pulses w i l l  be f i r ed  a t  t h i s  synchronous s a t e l l i t e  from the 1.2m 
telescope a t  the Goddard Optical Research F a c i l i t y  i n  a cooperative 
undertaking by the U. S. Naval Observatory, the University of Maryland, 
and NASA; and from several  laser s t a t ions  i n  Europe. The technique is 

l5  B.  E. H. Serene, "Progress of the LASS ESrperiment," Proceedings of 
- the  Twelfth Annual Precise T i m e  and Time In te rva l  (PTTI) Applicat ioG 
- and Planning Meeting; NASA Conference Publication 2175, pp 307 - 327, 
December 2 - 4, 1980. 
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Figure 62 Figure 63  

essent ia l ly  the s a m e  as tha t  used i n  the P3C a i r c r a f t  experiments. Ime 
goal fo r  the f irst  experiments is one nanosecond synchronization between 
the United States  and Europe. It is hoped tha t  t h i s  w i l l  be the f i r s t  
of a series of satell i te experiments w i t h  the goal of one tenth of a 
nanosecond synchronization l a t e r  on. Since the comparisons on the 
s a t e l l i t e  w i l l  be made rather  close i n  t i m e ,  we don't have t o  worry too 
much about the r e l a t i v i s t i c  e f fec t ,  but w e  j u s t  note tha t  it is on the 
order of 50,000 nanoseconds per day, o r  about 6/lOths of a nanosecond 
per second. So i f  one has a goal of one nanosecond and one lets the 
reception between pulses spread over a few seconds, you may have t o  
worry a b i t  about t h i s  e f fec t .  

There is a th i rd  space experiment which I wish t o  discuss t h i s  
afternoon. %is is  the proposed Shuttle =me and Frequency s a n s f e r  
experiment which we  c a l l  STIFT. %e plan has been developed by D. W. 
Allan of the  National Bureau of Standards, Rudolf Decher of t he  Marshall 
Space Flight Center, Gernot Winkler of the U.S. Naval Observatory, and 
the speaker. l6 The idea is shown i n  Figure 63. There would be a 
hydrogen maser and other clocks on the shut t le ,  along with microwave 
frequency comparison equipment of the type developed by Vessot, e t  al . ,  
f o r  the rocket probe r e l a t i v i t y  experiment, and laser pulse t i m e  
comparison equipment of the type developed by Alley, e t  al., f o r  the  P3C 

l6 R. Decher, D. W. Allan, C. 0. Alley, R. F. C. Vessot, and G. M. R. 
Winkler, " A Space System for  High-Accuracy Global Time and Frequency 
Comparison of CLocks," Proceedings of the  Welf th  Annual Precise T i m e  
-- and Time In te rva l  (PTTI) Applications - and Planning Meeting; NASA 
Conference Publication 2175, pp 99 - 111, December 2 - 4, 1980. 
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a i r c r a f t  r e l a t i v i t y  experiments. It now appears t h a t  the p r i n c i p a l  
uncer ta in ty  i n  t h e  STIFT technique w i l l  be t h a t  imposed on t h e  
ca l cu la t ion  of t h e  proper t i m e  i n t e g r a l  by lack of knowledge of the 
ve loc i ty  of t h e  space s h u t t l e .  

2 - V I  

1 d t  
4s - +G - [vS G 

2 2c 2 T - T  = J [  
C 

S G 

For a seve ra l  hundred kilometer orbit,  

-14 
I f  we  wish t o  maintain a f r a c t i o n a l  t i m e  uncertainty AT/T = 10 which 
the  hydrogen maser i s  capable o f ,  one must have 

This  requires t h a t  Av = 10cm/sec. This  may be very d i f f i c u l t  t o  know 
without spec ia l  instrumentation such as high q u a l i t y  i n e r t i a l  navigation 
systems. For t h i s  technique, t h e  l i m i t i n g  performance f o r  t i m e  t r a n s f e r  
may be set by r e l a t i v i t y  r a t h e r  than by clock performance! 
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