(NASA-CR-165562-Vol-1) YF 102 IN-DUCT COMBUSTOR NOISE MEASUREMENTS WITH A TURBINE NOZZLE, VOLUME 1 Final Report, Sep. 1979 -Mar. 1981 (Avco Lycoming Div.) 63 p HC A04/MF A01 CSCL 201

N82-21031

Unclas CSCL 20A G3/71 09375

FINAL REPORT

YF 102 IN-DUCT COMBUSTOR NOISE MEASUREMENTS WITH A TURBINE NOZZLE

by Craig A. Wilson and James M. O'Connell

550 South Main Street
Stratford. Connecticut 06497

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SEPTEMBER 1981

CONTRACT NAS 3-21974

NASA LEWIS RESEARCH CENTER Cleveland, Ohio

I			

			•		
1. Report No.	IASA CR-165562	2. Government Accession	on No.	3. Recipient's Catalog I	No.
4. Title and Subtil	lie .	- 		5. Report Date September 1981	
	OUCT COMBUSTOR NOIS		6. Performing Organiza	tion Code	
7. Author(s)				B. Performing Organizat	tion Report No.
Craig A. Wii	son and James M. O'Conn	ell		LYC 81-32	
9. Parforming Orga	inization Name and Address		' '	O. Wark Unit No.	
Avco Lycom	ing Division	1	1. Contract or Grant A	to.	
550 S. Main Stratford, Co	Street onnecticut 06497			NAS 3-21974	
			1	3. Type of Report and Final Report	Period Covered
	ncy Name and Address ronautics and Space Admir	vistration	_	Sept 1979 - Marc	
Lewis Resear Cleveland, O	rch Center] 1	4. Spaneoring Agency	Code
15. Supplementary					
	ager - Meyer Reshotko, V/ ris Research Center, Clevel		ision,		
generated by tested — one developed an ten locations acquisition of pressure leve		02 engine combustor ne first-stage turbine re used. Internal dyr his report describes t	installed in a test rig. Inozzle installed. Acoustinamic pressure level measthe combustor rig, the templots of narrow-band and	Two configurations to probes and accessor curements were madest procedures, and a	were ories e at data
Gas Turbine Internal Cor	egented by Author(s) : Engine Noise mbustor Noise Measuremen embustor Noise	uts	18. Distribution Statement Publicly Available		
19. Security Class	f. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
Unclassified		Unclassifie	ed		

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

FOREWORD

This program was conducted for the Lewis Research Center of the National Aeronautics and Space Administration under Contract NAS 3-21974. The scope of this effort follows closely the work conducted under NASA contract NAS 3-20052, as reported in "YF-102 In-Duct Combustor Noise Measurement - Final Report," NASA-CR-135404; the essential difference is the addition of a first-stage turbine nozzle guide vane. The period of performance was September 1979 through March 1981.

Technical direction was provided by the NASA Project Manager, Mr. Meyer Reshotko.

The Avco Lycoming Program Manager was Mr. Craig A. Wilson and Mr. James 0'Connell was the principal investigator.

TABLE OF CONTENTS

VOLUME I	Page
FOREWORD	. i
LIST OF ILLUSTRATIONS	. iii
LIST OF TABLES	. iv
INTRODUCTION	. 1
EQUIPMENT DESCRIPTION	. 2
Combustion Chamber Combustor Test Rig Combustor Test Facility Acoustic Probes Probe Locations Data Acquisition Equipment Combustor Rig Instrumentation	. 2 . 2 . 7
SUMMARY OF TEST PHASE	. 15
Background Noise Levels	. 18 . 18
DATA REDUCTION AND ANALYSIS	. 24
Description of Data and Reduction Instrument Reduction to One-Third Octave Band Spectra Reduction to Narrow Band Spectra	. 24
REFERENCES	. 26
APPEND IXES	
A. Tables of One-Third Octave Band Pressure Levels	
VOLUME II	
8. Plots of One-Third Octave Band Pressure Levels	
VOLUME III	
C. Plots of Narrow Band Pressure Level Spectra	

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Combustion Chamber	3
2	Combustor Test Rig	5
3	Combustor Test Facility Schematic	6
4	Dynamic Prime Level Probe	8
5	Acoustic Probe System Schematic	9
6	Probe Locations in Combustor	10
7	YF102 Combustor Installed in Test Rig	11
8	Acoustic Probes Installed in YF102 Combustor	12
9	Acoustic Probe Tubes Mounted in YF102 Combustor	13
10	NASA - Furnished Acoustic Probe Instrumentation Panel .	14
11	Acoustic Data Acquisition System Schematic	16
12	Data Acquisition Equipment Set-Up	17

LIST OF TABLES

<u>Table</u>		Page
I	Combustor and Test Rig Operating Parameters Group I - Operating Line With Turbine Nozzle	19
II	Combustor and Test Rig Operating Parameters Group II - Heat Release Rate Variations at High Pressure With Turbine Nozzle	20
III	Combustor and Test Rig Operating Parameters Group III - Heat Release Rate Variations at Low Pressure With Turbine Nozzle	21
IV	Combustor and Test Rig Operating Parameters Group IV - Operating Line without Turbine Nozzle	22
V	Combustor and Test Rig Operating Parameters - Group V - Zero Fuel Flow Point Without Turbine Nozzle	23
VI	One-Third Octave Band Pressure Level Correction Factors	25

INTRODUCTION

Recently, attention has been given to the contribution of core noise to overall turbofan engine acoustic emissions. As a result of considerable progress in the reduction of noise generated by the two largest contributors to turbofan engine noise, the fan and jet exhaust, a new acoustic threshold has been reached. This threshold has been attributed to noise generated by poorly understood sources within the engine core (Reference 1). The primary target of this core-noise investigation is the combustion process from which large amounts of thermochemical energy are released.

A program to define the characteristics of combustor noise and its propagation through the engine core to the far field is being conducted at the NASA Lewis Research Center (LeRC). Part of the experimental phase of this program was conducted using an Avco Lycoming YF102 turbofan engine (Reference 1). Results obtained from direct internal and external far-field measurements indicate that below certain engine power levels (60 percent fan speed for a YF-102 engine) low-frequency core noise tends to dominate the far-field noise.

Further research into the relationship between internal engine noise and combustor noise is now aimed at predicting the contribution of combustor-related noise from internal noise measurements. Because of the expense and difficulty of running engines to internally measure combustion noise, it would be advantageous if these data could be gathered from rig tests of the combustor alone. If such a relationship does exist between installed engine combustor noise and test rig combustor noise, then noise data gathered on developmental combustor designs could be used to predict engine noise levels.

Such a test had been previously performed at Avco Lycoming using a YF102 engine combustor installed in a test rig (Reference 3). Acoustic probes, developed by NASA, were used to internally measure the dynamic pressure levels generated within the combustor while operating in the rig. These same measurements have been recorded earlier by NASA using the same acoustic probes on the engine-installed combustor and reported in Reference 2. A comparison of these test conditions showed that single-point measurements (spectra) differed in the two tests, but the results of two-point signal analysis, such as cross-correlation, coherence and phase shift showed good agreement (Reference 4). The invariance of the pairwise measurements in the two types of tests indicates that certain aspects of source generation are preserved in component test facilities and that investigations of combustor noise generation based on two-point measurements can be properly conducted in component test facilities. The variance of the single-point data is thought to be due to differences in combustor end impedances in the two types of tests. The YF102 combustor rig of Reference 3 did not have a first-stage turbine nozzle in place. Consequently, this necessitated further YF102 combustor rig tests with a first-stage turbine nozzle installed.

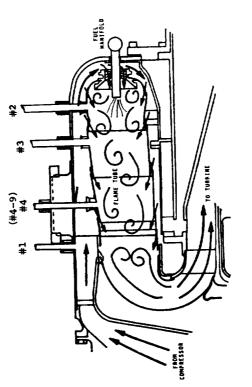
The objective of the combustor noise measurement program reported herein was to record, as in the previous test, the internal noise of an Avco Lycoming YF-102 engine combustor installed in a test rig. Two configurations were tested - one with and one without the first-stage turbine nozzle installed. The same operating parameters used in the previous test were used again. The same acoustic probes and accessories were also used with four additional probes. Thermocouples were included at the combustor exit plane. The measurements recorded on magnetic tape were reduced to narrow-band and 1/3-octave band pressure level spectra. These data and the tapes were forwarded to LeRC for additional analysis.

EQUIPMENT DESCRIPTION

An Avco Lycoming YF-102 combustion chamber that was similar to the one installed in the YF-102 turbofan engine and tested in conjunction with the NASA YF-102 test program was instrumented, assembled into a test rig, and installed in the combustor test facility at the Stratford, Connecticut plant. The combustor was operated at specific conditions of airflow, pressure and temperature, and fuel flow to simulate engine operating and off-point operating conditions. Two configurations were built - one with and one without the first-stage turbine nozzle installed.

Combustion Chamber

The YF-102 combustion chamber (Figure 1) is of the reverse-flow annular-type design. Air from the compressor enters the combustion chamber section through a set of diffuser vanes, then passes over the outer liner, after which it reverses direction where part of this air enters the flame tube to mix with the fuel, and burn. As the hot gas moves downstream, it is diluted and cooled by the remaining air entering through the holes and slots provided in the liner. The hot gas is then reversed and directed to the turbine inlet nozzles.


Combustor Test Rig

For this test program, the YF-102 combustor chamber was modified to accept nine semi-infinite acoustic probes and then installed in a test rig (Figure 2). A tenth probe was installed in the exit section of the rig. The rig served to substitute for the compressor normally located upstream of the combustor chamber and downstream of the turbine. The test rig also contained the necessary measurement probes and sensors to monitor the test and provide the necessary performance information. Air that is preset by the facility to the appropriate pressure and temperature is admitted to the test rig inlet plenum. This air is then diffused through the compressor discharge diffuser to the combustion chamber at which point the gas exhausts through the exhaust diffuser and finally out of the rig.

Combustor Test Facility

The combustor test rig was installed in the No. 1 testway of the combustor test facility (Figure 3). Butterfly valves, located immediately upstream and downstream of the testway, regulated the flow of air through the test rig. Hot gases passed through a downstream watercooled valve, exhausted to a muffler, and then exited to the atmosphere. The piping and valving installed upstream of the testway were provided to connect the rig with an in-line electric heater and the facility compressor. A T55-L-11 gas turbine compressor, driven by three gas turbine engines through a reduction gearbox, generated the compressed air for most of the tests. Electrically driven compressors were used for the low-pressure points where $P_{t3} = 186$ KPa (27 psi). A large Allis-Chalmer electric compressor supplied air to the combustor rig, while exhaustors

a. Schematic Diagram.

Probe Locations

Figure 1. Combustion Chamber.

I		

PRECEDING PAGE BLANK NOT FILMED

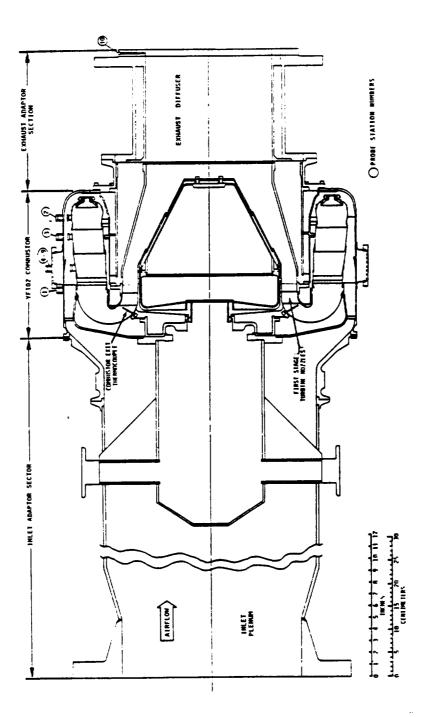


Figure 2. Combustor Test Rig.

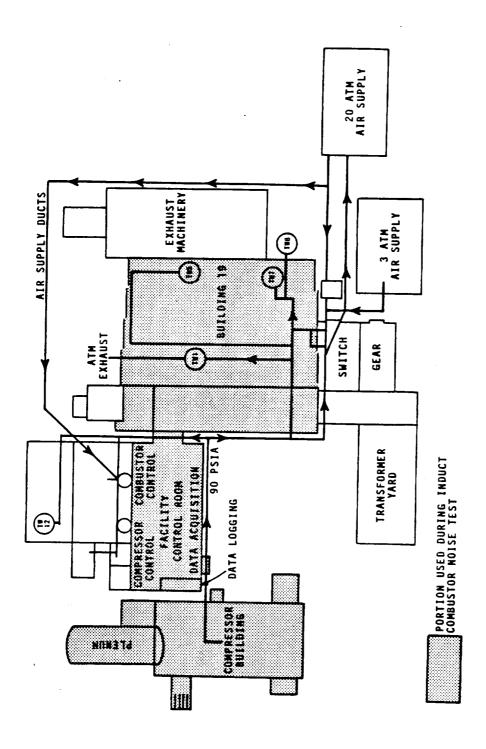


Figure 3. Combustor Test Facility Schematic.

(comprised of a series of roots-type compressors) lowered the rig exhaust pressure by means of air suction. This configuration allowed the required airflow through the combustor at low combustor pressures. Specific conditions of airflow, pressure, and temperature were set for each test from the control room, located adjacent to the testway.

Acoustic Probes

The dynamic pressure fluctuations in the combustion chamber and test rig were sensed by ten Government-furnished "semi-infinite wave guide" probes. These probes, depicted in Figure 4, were the same probes used by NASA during the YF-102 noise measurement program conducted at LeRC and at Lycoming. Each probe has a 6.35 millimeter (1/4-inch) condenser microphone mounted flush on the wave guide that passes through the probe block. The probe system (Figure 5) is fully described in Reference 2. A microphone was connected through a bulkhead fitting to a preamplifier and power supply, which, in turn, was connected to the signal amplifier and tape recorder.

A vent in the probe support block equalizes static pressure across the microphone and provides the back pressure needed to regulate the flow of nitrogen through the wave guide. The flow regulators were adjusted to provide sufficient nitrogen-purge to prevent hot gases from the combustion chamber from entering the wave guide but low enough not to affect the dynamic pressure level measurements made by the microphone.

Probe Locations

Locations of probes 1 through 9 are diagrammed in Figure 6. Once the combustor was installed in the testway (Figure 7), the acoustic probes were then attached to the combustor (Figure 8). A spare probe tube was used to record the pistonphone calibration signal. Gyrolock male connectors (GCM4-316) were used to attach the acoustic probe tubes to the combustor housing. Probe 1 was installed in the combustor inlet duct at the previously used number 2 location. The previously used number 1 location was plugged. Probe 2 was installed 25 mm (1 in.) downstream from the fuel nozzle. Probe 3 was installed 76.4 mm (3 in.) downstream from the fuel nozzles. The previously used number 3 location was plugged. Probes 4 through 9 were installed 133.35 mm (5.25 in.) downstream from the fuel nozzles. Probe 4 was in the same location as the previously used number 4 location. Probes 5 and 6 were installed at locations 30 and 60 degrees respectively, from the Probe 4 location and in the same plane normal to the axis. Probe 7 was in the previously used number 5 location. Probes 2 and 3 were aligned with Probe 4. Probes 8 and 9 were 115 and 270 degrees, respectively, from probe 4 and in the same plane. Probes 2 through 9 were flush with the inner surface of the combustor liner, and probe 1 was installed to be flush with the inner surface of the housing (Figure 9). The probes were then connected to the NASA-furnished control panel (Figure 10) containing nitrogen-flow regulators and power supplies. Probe 10 was installed at the rig's exit.

ORIGINAL PAGE IS OF POOR QUALITY

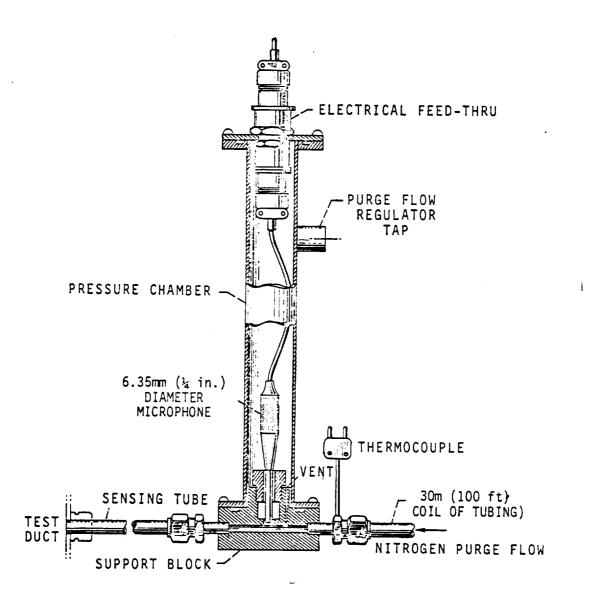


Figure 4. Dynamic Pressure Level Probe.

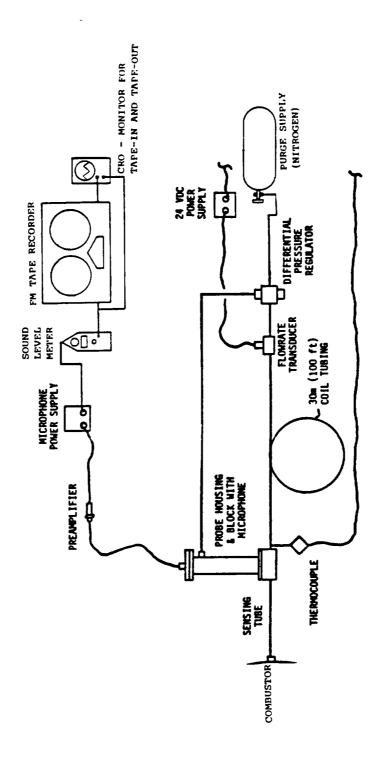


Figure 5. Acoustic Probe System Schematic.

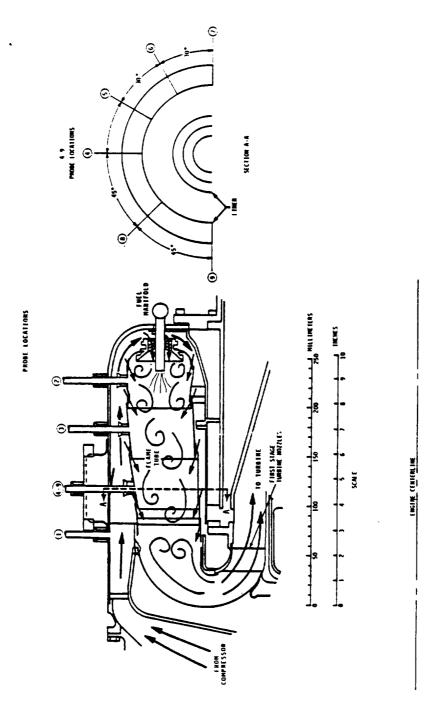
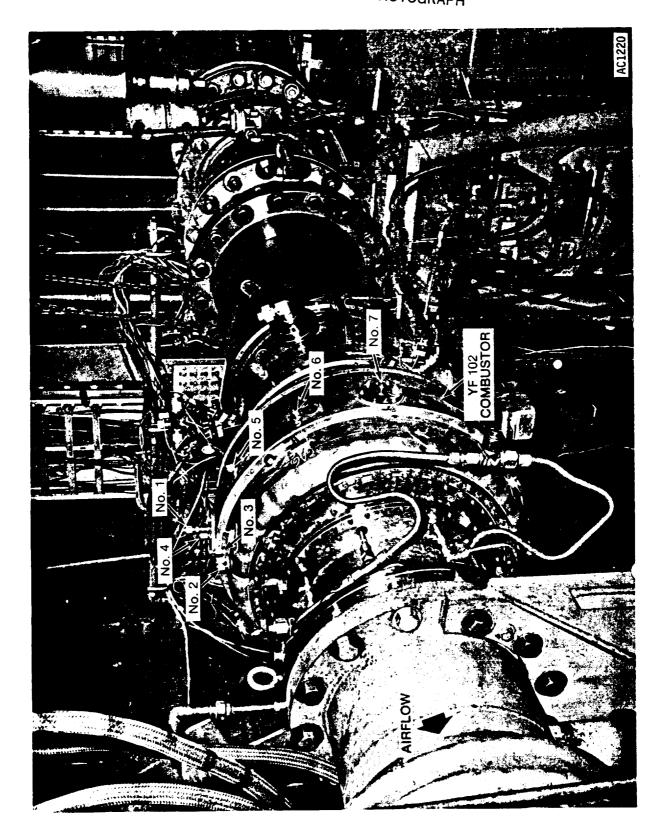



Figure 6. Probe Locations in Combustor.

ORIGINAL PAGE ELACK AND WHITE PHOTOGRAPH



ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 8. Acoustic Probes Installed in YF102 Combustor.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

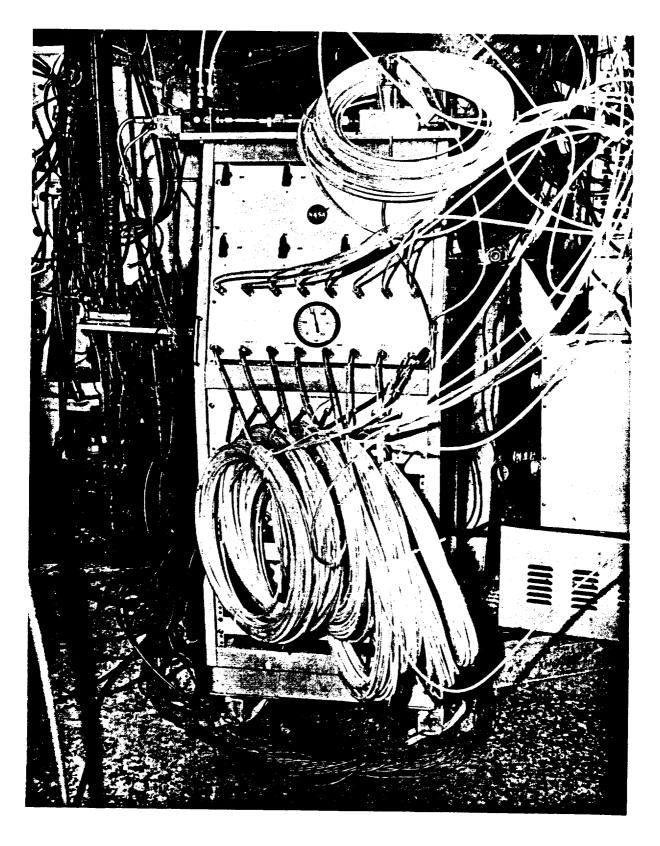


Figure 10. NASA-Furnished Acoustic Probe Instrumentation Panel.

Data Acquisition Equipment

A schematic of the acoustic data acquisition equipment setup is presented in Figure 11. The ten precision, sound-level meters (one for each probe) were used to condition the signals from the microphones so as to provide sufficient voltage to the FM tape-recorder amplifiers. The microphone signals were simultaneously recorded on 25.4 mm (1-in.)-wide magnetic tape using predetermined channels on the tape recorder. The set-up is shown in Figure 12. The probe signals were sampled prior to recording and afterwards by playing back the recorded signal. Narrow-band, pressure-level plots were generated from a selected channel during the recording phase to verify the quality of the recorded signal.

Combustion Rig Instrumentation

The combustor rig was instrumented and connected to the facility data acquisition system. Pressure sensors were connected to a scanning valve arrangement, whereby each of the pressure points could be sampled. The automatic data acquisition system then converts these signals into engineering units for instant readout, producing a preliminary hard copy listing, and then transmitted the data to an IBM 3033 computer for later analysis. An integration period was used to eliminate system electrical noise and input parameter periodic changes. The following parameters from the combustor rig were recorded:

- 1. Combustor inlet total (P_{t3}) and static (P_{s3}) pressure
- Combustor exit flange static (P_{sf1}) pressure
- 3. Combustor inlet temperature (T_{t3})
- 4. Combustor exit temperature $(T_{t3.8})$
- 5. Airflow rate (W_a) through combustor
- 6. Fuel flow rate (Wf)
- 7. Fuel-to-air ratio (W_f/W_a) .

The combustor rig exit temperature was calculated later by using the curves in Reference 5. The ideal exit temperatures, determined by applying the fuelair ratio and inlet temperature (T_{t3}) to these curves, were then multiplied by a burner efficiency factor to obtain the combustor exit total temperature.

SUMMARY OF TEST PHASE

The combustor rig was assembled, installed in the combustor test facility testway with the turbine nozzle in place, instrumented, and functionally checked. The acoustic probes were then installed and checked in preparation for running the test rig.

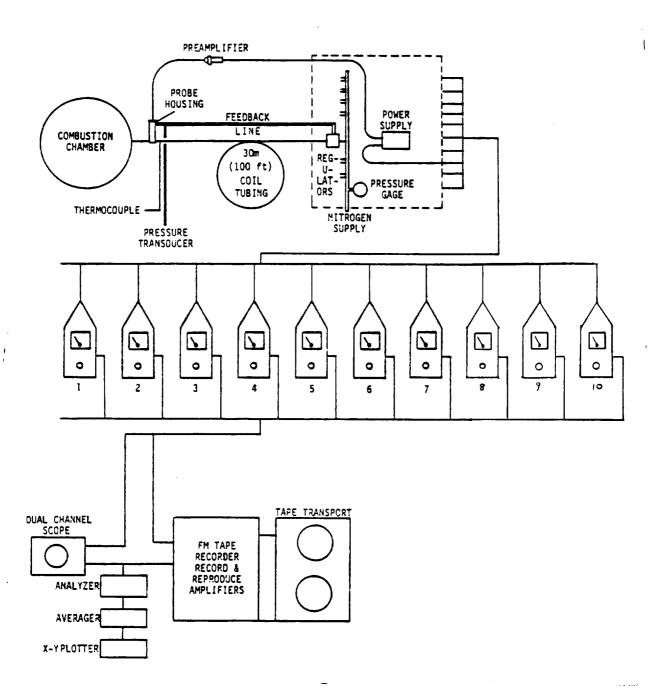


Figure 11. Acoustic Data Acquisition System Schematic.

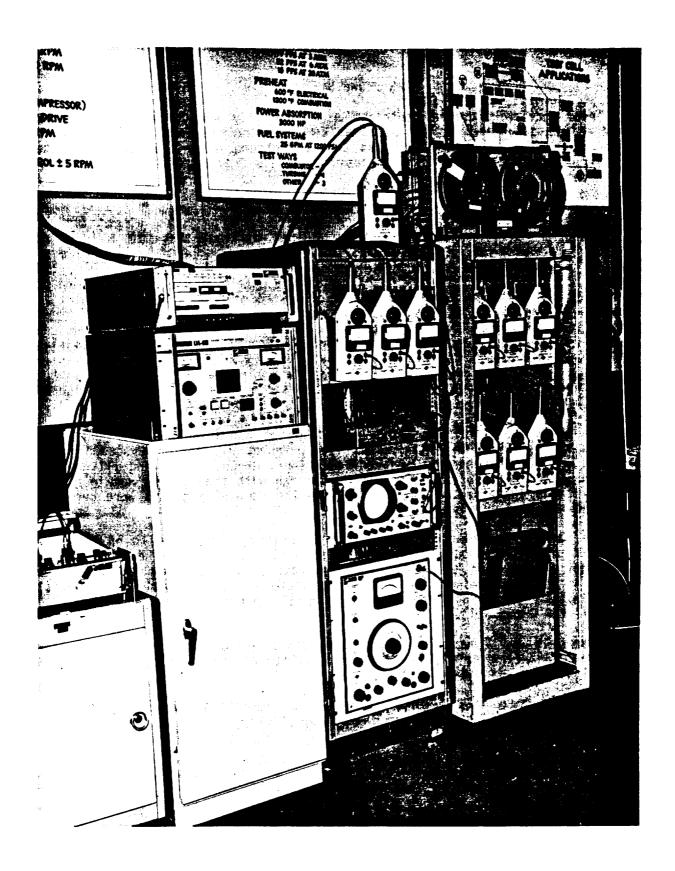


Figure 12. Data Acquisition Equipment Setup .

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Background Noise Levels

Investigation into the contribution of facility machinery and duct work flow noise, conducted in the previous combustor noise test, is described in Reference 3. It was determined that this background noise did not contribute significantly to the acoustic pressure levels recorded during combustor operation.

Combustor Operating Points

Upstream and downstream valves were opened to start the data acquisition phase. A sequence of testing was followed that required the least amount of system changes between test runs. After each test point was established, the system was allowed to stabilize before the acoustic signals were recorded. These dynamic pressure level recordings consisted of a single segment of tape for 200 seconds (500 ft of tape at 30 ips). Before proceeding to the next operating point, a narrow-band pressure level spectrum was generated from one channel of the just-recorded data to check the condition of the recorded signals.

Combustor rig temperature, pressure, and air and fuel flows were monitored to check system stability and recorded for later analysis.

The tests were divided into seven groups of operating points, though not necessarily recorded in that order. The grouping was designed according to various operating parameters and configurations. Groups I, II, and III contain the run points recorded while the combustor ran with the turbine nozzle guidevane assembly installed. The run points in the remaining groups were recorded with the nozzle removed.

The operating parameters of Group I (operating line) were to be the same as those of the previous YF-102 combustor noise test. Since these parameters could not be repeated as planned with the nozzle in place, new parameters had to be established and used. Heat-release rate variations were performed at high pressure (373 KPa) (54 psi) for Group II, and at low pressure (110 KPa) (16 psi) for Group III).

Groups IV and V are the comparative control group for the operating line and zero fuel-flow point, respectively, using the new operating parameters established for the nozzle configuration.

Tables I through V contain the combustor operating parameters monitored during each run for Groups I through V, respectively.

TABLE I. COMBUSTOR AND TEST RIG OPERATING PARAMETERS Group I - Operating Line with Turbine Nozzle

Wf Wf/Wa Valve: Kg/hr % Open (1b/hr)	78.06 0.0271 100.0 (172.10)	(293.57) 0.0279 100.0 (293.57)) (330.68) 0.0171 100.0	, 179.54 0.0144 100.0 (395.82)	220.77 0.0142 83.0 (486.72)	5 262.96 0.0144 70.0 (5) (579.72)	384.92 0.0166 64.0 (769.22)	5 427 68 0.0160 75.0
Calculated Tt3.8 Wa oC Kg/s (OF) (1b/s)	1052.5 0.801 (1926.5) (1.765)	1075.7 1.325 (1968.2) (2.922)	745.2 2.436 (1373.4) (5.371)	675.9 3.457 (1248.6) (7.621)	688.6 4.305 (1271.5) (9.490)	722.0 5.056 (1331.6) (11.146)	824.9 5.85 (1516.8) (12.896)	827.9 7.415
Calc Tt3.8 Tt oc (oF) (o	948.6 1 (1739.4) (1	1031.6 1 (1888.9) (1	728.7 (1343.7) (1	695.1 (1283.2) (1	700.8 (1293.4) (1	716.1 7 (1320.9) (1	776.6 (1429.9) (1	836.4 8
7t3 oc (°F)	59.2 (138.5)	72.2 (161.9)	100.8 (213.5)	125.9 (258.5)	145.3 (293.5)	169.5 (337.0)	198.2 (388.7)	230.4
P _S f1 KPa (psia)	98.90 (14.34)	110.75 (16.06)	128.63 (18.66)	180.34 (26.16)	201.16 (29.18)	236.18 (34.25)	273.69 (39.69)	338.07
P _{S3} KPa (psia)	110.24 (15.99)	138.15 (20.04)	185.57 (26.91)	254.70 (36.94)	309.19 (44.84)	371.80 (53.92)	439.62 (63.76)	550,75
Pt3 KPa (psia)	110.35 (16.0)	138.55 (20.09)	18 6. 31 (27.02)	256.04 (37.13)	310.92 (45.09)	374.18 (54.27)	442.61 (64.19)	554.81
RUN NO.	136	132	133	102	103	106	107	110

TABLE II. COMBUSTOR AND TEST RIG OPERATING PARAMETERS Group II - Heat Release Rate Variations at High Pressure with Turbine Nozzle

	C	0	0	_	_	
	Valve: % Open	53.0	62.0	70.0	100.0	100.0
	Wf/Wa	0.0	0.0073	0.0107	0.0178	0.0188
	Wf Kg/hr (1b/hr)	0.0	132.61 (292.58)	195.20 (430.33)	328.25 (723.66)	341.79 (753.51)
	Wa Kg/s (1b/s)	5.032 (11.104)	5.063 (11.161)	$\frac{5.080}{(11.199)}$	5.115 (11.277)	5.040 (11.111)
alculated	Tt3.8 oC (°F)	169.9 (337.8)	**	585.5 (1085.9)	867.1 (1592.7)	869.8 (1597.7)
_	Tt3.8 oc (°F)	123.2 (253.7)	324.1 (615.3)	557.2 (1034.9)	592.2 (1098.0)	844.9 (1552.7)
ļ	Tt3 oc (°F)	169.9 (337.8)	170.3 (338.5)	170.1 (338.1)	170.0 (338.1)	165.0 (329.0)
ı	Psf1 KPa (psia)	319.59 (46.35)	291.65 (42.30)	271.26 (39.34)	228.38 (33.12)	226.50 (32.85)
•	P _{S3} KPa (psia)	370.95 (53.80)	370.81 (53.78)	370.17 (53.69)	370.91 (53.79)	370.10 (53.68)
	Pt3 KPa (psia)	372.88 (54.08)	373.43 (54.16)	372.89 (54.08)	372.81 (54.07)	372.28 (53.99)
	RUN NO.	105	112	138	137	113

*** indicates data not within range of efficiency curve

TABLE III. COMBUSTOR AND TEST RIG OPERATING PARAMETERS

Valve: % Open	100.0	100.0	100.0
Wf/Wa	0.0190	0.0134	0.0196
Wf Kg/hr (1b/hr)	57.38 (126.49)	38.52 (84.93)	5 6. 87 (125.38)
Wa Kg/s (1b/s)	0.837 (1.846)	0.799 (1.762)	0.806 (1.776)
	792.5 (1458.6)	606.9 (1124.4)	813.6 0.806 (1496.5) (1.776)
Tt3.8 oc (°F)		340.7 (645.2)	59.7 681.5 (139.5)
Tt3 oc (°F)	56.2 (133.1)	61.6 (142.9)	59.7 (139.5)
P _S f1 KPa (psia)	102.08 (14.81)	104.46 (15.15)	101.70 (14.75)
P _{S3} KPa (psia)	110.84 (16.08)	110.12 (15.97)	110.21 (15.98)
Pt3 KPa (psia)	110.75 (16.06)	110.27 (15.99)	110.28 (15.99)
RUN NO.	131	134	135
	Calculated Pt3 Ps3 Psf1 Tt3 Tt3.8 Tt3.8 Wa Wf Wf/Wa KPa KPa KPa OC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt3 Ps3 Psf1 Tt3 Tt3.8 Tt3.8 Tt3.8 Wa kg/s Kg/hr (lb/s) (lb/s) (lb/s) (lb/hr) Tt3.8 Tt3.8 Tt3.8 Wa kg/hr (lb/s) (lb/s) (lb/hr) (lb/s) (lb/s) (lb/s) (lb/s) (lb/hr) Tt3.1 (l175.8 (lb/s) (l.846) (l.846) (l26.49) Tt3.1 (l175.8 (l124.4) (l.762) (l5.99) (l5.97) (l5.15) (l42.9) (645.2 (l124.4) (l1762) (l124.9) (l1762) (l124.9) Tt3.1 (l124.4) (l1762) (l124.93) Tt3.1 (l124.4) (l124.4) (l1762) Tt3.1 (l124.4) (l124.4) (l1762) Tt3.1 (l124.4) (l124.4) (l124.4) (l124.4) (l124.4) (l124.4) Tt3.1 (l124.4) (l1

TABLE IV. COMBUSTOR AND TEST RIG OPERATING PARAMETERS Group IV - Operating Line without Turbine Nozzle

Valve: % Open	68.5	46.0	39.2	43.2	40.0	41.1	80.0	61.7
Wf/Wa	0.0274	0.0194	0.0171	0.0162	0.0144	0.0145	0.0138	0.0160
Wf Kg/hr (1b/hr)	78.58 (173.23)	13 4. 03 (295.48)	149.06 (328.61)	201.25 (443.67)	223.07 (491.78)	262.25 (578.15)	310.40 (684.31)	429.68 (947.27)
Wa Kg/s (1b/s)	0.798 (1.759)	1.914 (4.220)	2.415 (5.323)	3.449 (7.604)	4. 303 (9.487)	5.036 (11.103)	6.262 (13.806)	7.440 (16.403)
Calculated Tt3.8 oc (OF)	**	* *	743.4 (1370.0)	751.8 (1385.3)	698.5 (1289.4)	723.6 (1334.4)	725.2 (1337.4)	829.3 (1524.7)
Tt3.8 oc (°F)	869.3 (1596.8)	760.3 (1400.5)	721.8 (1331.3)	674.1 (1245.3)	682.4 (1260.4)	709.4 (1309.0)	716.2 (1321.1)	827.7 (1521.9)
Tt3 oc (°F)	53.6 (128.5)	82.9 (181.2)	95.9 (204.7)	131.7 (269.1)	147.0 (296.7)	169.7 (337.5)	199.2 (390.6)	229.9 (445.8)
P _s f1 KPa (psia)	107.68 (15.62)	131.79 (19.11)	178.73 (25.92)	244.45 (35.45)	29 4. 58 (42.72)	353.97 (51.34)	421.73 (61.17)	524.23 (76.03)
P _{S3} KPa (psia)	109.26 (15.85)	138.24 (20.05)	186.22 (27.01)	255.42 (37.04)	309.13 (44.83)	371.37 (53.86)	444.00 (64.39)	552.77 (80.17)
P _{t3} KPa (psia)	109.34 (15.86)	138.80 (20.13)	186.90 (27.11)	256.66 (37.22)	310.76 (45.07)	373.29 (54.14)	446.92 (64.82)	556.56 (80.72)
RUN NO.	236	232	233	202	203	506	207	210

*** indicates data not within range of efficiency curve

TABLE V. COMBUSTOR AND TEST RIG OPERATING PARAMETERS Group V - Zero Fuel Flow Point Without Turbine Nozzle

	Valve: % Open	37.7
	Wf/Wa	0.0
Nozzle	Wf Kg/hr (1b/hr)	0.0
t Turbine	Wa Kg/s (1b/s)	5.043 (11.118)
Group V - Zero Fuel Flow Point Without Turbine	Calculated Tt3.8 oC (OF)	170.6 (339.2)
el Flow Po	Tt3.8 oc (°F)	168.2 (334.8)
- Zero Fu	Tt3 oc (°F)	170.6 (339.2)
Group V .	P _{Sf1} KPa (psia)	360.65 (52.31)
	P _{S3} KPa (psia)	370.61 (53.75)
	P _{t3} KPa (psia)	372.60 (54.04)
	RUN NO.	205

DATA REDUCTION AND ANALYSIS

Description of Data and Reduction Instrument

Reduction to One-Third Octave Band Spectra

The recorded data were reproduced through a Bruel and Kjaer 2131 digital 1/3-octave band spectrum analyzer coupled with a Hewlett-Packard 9825 desktop calculator. The analyzer was programmed to generate 1-second sample averages. These data are then input to the calculator which then computes a logarithmic average of 50 such samples. The spectrum average is then punched out on a Hewlett-Packard 9884A high-speed paper-tape punch. The punched tape is subsequently transmitted to an IBM 3033 computer program that applies correction factors (Table VI) supplied by NASA and produces tabular listings (Appendix A) and graphical plots (Appendix B) of the 1/3 octave band spectra.

Reduction to Narrow Band Spectra

Recorded signals were played back through a Nicolet Scientific UA6B Spectrum Analyzer and Nicolet Scientific 1015 Spectrum Averager and plotted on grid paper by an X-Y recorder. The spectrum analyzer digitizes the input signal and computes the frequency domain transform in 500 discrete lines. The rate of sampling depends upon the duration setting of the band width/sampling. The spectrum averager computes a running average for each of the 500 discrete lines for each sample set; the number of samples is predetermined. After the spectrum averaging has been completed, the output feature of the averager is activated to produce an X-Y plot of the stored spectrum average values. Narrow-band spectra were obtained for each probe and run point. Narrow-band 0-2000 Hz data are contained in Appendix C. These X-Y plots represent the spectrum average of 128 samples of 500 4-Hz-wide bands. Plots of 0-10,000 Hz spectra were also obtained. These plots are the spectrum averages of 128 samples of 500 20-Hz-wide bands. These data were forwarded to NASA.

Allowance for Correlation Analysis

These data were recorded on 25.4 mm (1 inch) magnetic tape. A 1000 Hz signal was simultaneously placed on each channel to allow determination of any head-skew error between the recording and reproducing tape recorders.

TABLE VI. ONE-THIRD OCTAVE BAND PRESSURE LEVEL CORRECTION FACTORS

Combustion Chamber Inlet Pressure	257.9-312.3 kpa (37.4-45.3 psia)	373.6 kpa (54.2 psia)	447.5-555.0-620-5 kpa (64.9 - 80.5-90.0 psia)
Frequency, Hz	Correction Fact	•	re 20 micropascals
50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000	3.7 3.7 3.7 3.4 2.8 1.8 .9 .7 1.4 1.6 .5 2.3 2.9 2.8 3.7 4.0 3.2 2.9 3.5	4.2 4.2 4.2 3.9 3.3 1.4 1.2 1.9 2.1 1.0 2.8 3.4 3.7 3.7 3.9	4.7 4.7 4.7 4.4 3.8 2.8 1.9 1.7 2.4 2.6 1.5 3.3 3.9 3.8 4.7 5.0 4.2 3.9

REFERENCES

- Reshotko, M. and Karchmer, A., CORE NOISE MEASUREMENTS FROM A SMALL, GEN-ERAL AVIATION TURBOFAN ENGINE, NASA TM 81610, 1980
- Reshotko, M., et all, CORE NOISE MEASUREMENTS ON A YF 102 TURBOFAN ENGINE, American Institute of Astronautics and Aeronautics (AIAA) 77-21.
- 3. Wilson, C.A. "YF-102 IN-DUCT COMBUSTOR NOISE MEASUREMENTS" NASA CR-135404 Nov. 1977.
- Reshotko, M., and Karchmer, A., COMBUSTOR FLUCTUATING PRESSURE MEASUREMENTS IN-ENGINE AND IN A COMPONENT TEST FACILITY --- A PRELIMINARY COMPARISON, NASA TM-73845, 1977.
- 5. Huntly, S.C., IDEAL TEMPERATURE RISE DUE TO CONSTANT-PRESSURE COMBUSTION OF A JP-4 Fuel, NASA RME 55G27a (1955).

APPENDIX A

ONE-THIRD OCTAVE BAND PRESSURE LEVELS

	Group (Pt3 psia)	Run <u>Number</u>	Off-Design Wf/Wa (%)
I.	YF102 Operating Points with nozzle guidevanes	16 20 27 37 45 54 64 80	136 132 133 102 103 106 107	- - - - -
II.	YF102 High-Pressure Heat Release Rate Variation with nozzle guidevanes	65 54 54 54 54	105 112 138 137 113	0 50 75 125 150
III.	YF102 Low-Pressure Heat Release Rate Variation with nozzle guidevanes	16 16 16	131 134 135	50 75 125
IV.	YF102 Operating Points without nozzle guidevanes	16 20 27 37 45 54 64 80	236 232 233 202 203 206 207 210	- - - - -
٧.	YF102 Zero Fuel Flow without nozzle guidevanes	54	205	-

			·
			•
ı			

APPENDIX A

GROUP I

			,

Т

DATE: FEB. 22, 1981

RUN NO. 136 GROUP NO. I

YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES INSTALLED
INLET PRESS=110.4 KPA(16.0 PS1A), COMB EXIT TEMP=1052.5 DEG C(1926.5 DEG F)
AIR FLOW= 0.80 KG/SEC(1.765#/SEC), FUEL FLOW= 78.1 KG/HR(172.1 #/HR)

10		121.3*	119.4*	120.9*	121.8*	121.9*	122.2*	124.5*	124.1*	126.8*	123.7*	123.0*	130.6*	125.5*	126.6*	126.5*	126.4*	124.4*	122.8*	121.3*	119.1*	117.3*	115.9*	** OIL	7	106.8*
۰		113.5*	120.4*	122.4*	123.0*	120.5*	123.1*	121.5*	122.3*	127.2*	127.0*	121.4*	117.0*	114.0*	108.0*	103.2*	*0.901	101.8*	101.9*	105.4*	104.7*	100.1*	101.4*	×7 C0	×0.74	46.94
€0		114.3*	121.3*	123.1*	123.4*	120.7*	122.9*	121.2*	121.9*	127.3*	127.8*	123.0*	119.3*	115.1*	111.6*	110.7*	107.5*	102.4*	103.3*	107.3*	107.1*	102.1*	105.3*	× 0	¥0.001	*0.66
_	OPASCALS	115.2*	121.6*	123.4*	124.1*	121.4*	123.7*	122.1*	122.9*	127.8*	125.6*	123.2*	118.3*	114.8*	109.8*	109.3*	107.0*	102.0*	102.3*	107.3*	106.5*	*8.66	105	200	***	*9.86
2 9	3 RE 20 MICR	115.4*	121.5*	123.5*	124.0*	121.4*	123.7*	122.2*	122.9*	127.9*	128.8*	123.7*	119.5*	115.6*	110.7*	109.8*	107.6*	102.9*	103.5*	107.8*	106.6*	100.5*	105 0*		46.5*	99.1*
PROBE NO.	ME LEVEL, DE	115.3*	121.7*	123.5*	124.1*	121.4*	123.7*	122.0*	122.6*	127.7*	128.1*	124.1*	119.1*	114.8*	111.7*	111.8*	111.4*	108.9*	107.4*	107.9*	106.3*	102.4*	** 701	10.40T	100.1*	97.8*
PROBE NO.	YNAMIC PRESSU	115.6*	121.9*	123.7*	124.3*	121.8*	124.2*	122.5*	123.4*	128.7*	128.9*	124.9*	119.2*	115.7*	111.3*	*2 011	107.7*	103.5*	103.8*	108.3*	107.0*	*** 001	10.70	×2.001	46.64	99.3*
m		114.6*	121.4*	123.2*	123.7*	121.4*	123.7*	122.1*	122.9*	127.9*	128.6*	125.1*	110.5	116.2*	114 24	111 1*	*6 801	103.7*	101.2*	*6	101 2*	30.001	20.50	¥6.501	*8.66	*2.96
N		112 A*	110 2*	121.1*	121 7*	110.0*	122.6*	121.6*	122 4*	127.2*	107 14	126.64	118 54	170.71	110.4	114.04	107.04	*1. 101	102.6*	107 4*	*[701	×1.701	k 7	105.6*	*4.76	*6.86
		*0 111	117 74	*0.02r	*1.071	117.11	121 1*	11011	120.1	100.1	100.7x	107.5%	153.3x	× 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103.00	**************************************	100.04	109.7	*4 701	* C C C C	107.74	* / · / OT	*0.77	42.7*	¥2.76	95.3*
	FREG.	71.	0.00	0.00	9.00	0.001	160.0	0.00	0.00	0.007	0.010	0.00	0.005	0.000	0.000	0.0001	0.0671	1000.	0.0007	2000	0.0010	2000	0.000	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

11

I ...

		01		107 1*	*0 901	126.8*	100.6	123.0*	*0.001	151.2*	******	*G : CE	*0.60	131.6%	131.2*	30 CO	134.7*	132.94	133.3*	132.2*	132.23	131,3%	103.5*	104.0%	***	*****	119.68
22, 1981		6		117 9*	121.0*	125.5*	126.9*	124.9*	125.9*	127.0*	127.4*	130.8*	131.0*	132.1*	127.9*	123.6*	117.9*	116.2*	114.2*	110.6%	111.3*	114.2*	112.9*	109.4*	111.3*	107.5*	104.3*
DATE: FEB. 2		0 0		120.0*	122.9*	127.6*	128.5*	125.9*	126.6*	127.2*	127.1*	130.7*	131.5*	134.3*	129.4*	124.0*	120.2*	118.8*	115.8*	111.2*	111.3*	116.0*	115.9*	110.8*	116.6*	110.6*	109.3*
	ı	7	UPASCALS	121.6*	123.5*	127.3*	127.8*	126.6*	127.0*	127.5*	123.1*	131.3*	132.4*	136.0*	130.4*	125.3*	122.2*	120.6*	119.0*	117.4*	117.7*	119.4*	115.5*	116.9*	118.5*	116.4*	116.1*
EG F)	,	9 6	UB RE ZU MICHOPASCALS	119.8*	122.6*	127.1*	128.0*	126.1*	126.8*	127.8*	128.5*	131.9*	132.1*	134.7*	130.2*	124.8*	122.1*	119.4*	116.2*	111.7*	112.4*	116.7*	115.6*	109.3*	116.1*	109.5*	108.8*
G C(1968.2 D /HR(293.7 #	PROBE NO.	ر 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	טאב רבעבו, ט	119.8*	122.7*	127.0*	127.7*	125.9*	126.7*	127.6*	128.5*	131.9*	131.8*	133.8*	129.1*	123.8*	121.6*	119.5*	116.8*	113.9*	113.6*	116.0*	114.6*	110.9*	114.9*	110.0*	108.2*
I JINTS INSTALLED EXIT TEMP=1076. DEG C(1968.2 DEG F FUEL FLOW=133.2 KG/HR(293.7 #/HR)	•	C +	וואוודר באב	120.9*	124.1*	128.4*	129.4*	127.2*	127.7*	128.2*	128.6*	132.1*	132.8*	134.9*	129.2*	124.6*	121.5*	120.5*	116.8*	112.1*	112.9*	117.1*	115.9*	109.6*	116.2*	109.3*	109.0*
GROUP NO. I OPERATING POINTS GUIDE VANES INSTALLED PSIA), COMB EXIT TEMP .92#/SEC), FUEL FLOM	٠	'n	3	119.2*	122.3*	126.6*	127.8*	125.6*	126.7*	127.6*	128.6*	132.0*	132.5*	134.6*	130.3*	126.2*	123.7*	121.9*	118.4*	113.4*	109.7*	*6.801	111.5*	113.9*	113.3*	108.9*	105.4*
_ ∾	·	J						•	125.4*	127.3*	128.4*	131.1*	131.1*	133.9*	129.3*	126.3*	125.2*	122.7*	*******	*1.5.1	111.2*	*T.011	115.6*	113.0*		106.1*	107.5*
RUN NO. 132 YF-102 TURBOFAN ENGINE FIRST STAGE TURBINE NOZZLE INLET PRESS=138.5 KPA(20.1 AIR FLO::= 1.32 KG/SEC(-	•		117.0*	117.9*	123.0*	100.0*	* ::	123.9*	104.5*	175.5*	100°1*	108.7*	131.9*	10.04	113.4*	*/ '/11	*5./11	114.7*	110.04	*1.71	11/.7*	110.9*	*9.50T	*5.90T	107.1*	165,5*
YF-102 FIRST STAG INLET PRES		PREG.	315	50.0	63.0	63.0	0.001	0.037	10.0	200.0	0.033	515.0	400.0	5.00.0	0.000	0.005 1000 0	1000.0	0.0001	2000	0.000	0.0007	0.000	0.005	0.000 0.000 0.000	0.000	0.0000	10000.0

*NO CORRECTIONS FACTORS APPLIED

;:

i

ORIGINAL PAGE ILL OF POOR QUALITY

	10	141 5*	141.0	121.74	131./*	152.4*	*3.47	135.5*	138.0*	137.6*	136.6*	135.5*	136.6*	138.5*	135.4*	138.6*	137.5*	140.3*	137.7*	137.7*	137.3*	135.1*	131.0*	131.2*	129.8*	128.3*	
22, 1981	٥	124 5*	*C 7C	**************************************	131.1*	128.94	127.8*	129.6*	130.5*	133.3*	133.0*	132.4*	132.3*	133.1*	131.6*	123.7*	123.6*	120.6*	117.9*	120.0*	122.1*	119.5*	116.7*	116.6*	115.4*	111.2*	
DATE: FEB. 22	s o	*7 761	*0.021	x4.071	155.4*	131.2*	129.8*	130.9*	131.1*	132.9*	132.7*	133.1*	133.9*	133.6*	132.4*	125.8*	125.9*	122.9*	119.5*	120.7*	123.4*	120.8*	118.2*	118.2*	118.8*	116.4*	
-	7 topascals	, t	175./*	#/'/ZT	132.4*	130.3*	129.5*	130.5*	131.5*	134.0*	133.8*	134.4*	137.4*	136.1*	133.9*	128.6*	126.6*	123.4*	118.9*	120.0*	123.1*	120.1*	115.0*	118.7*	115.0*	114.8*	
DEG F) #/HR)	6 B RE 20 MICR		126.2*	127.6*	132.2*	130.2*	129.5*	130.6*	131.8*	134.5*	134.2*	134.5*	136.4*	136.4*	134.4*	127.1*	126.1*	122.9*	118.7*	120.3*	123.5*	120.2*	115.2*	118.9*	115.2*	115.4*	
G C(1373.4 D	PROBE NO. 5 URE LEVEL, D		126.0*	127.6*	132.3*	130.2*	129.0*	130.5*	131.6*	134.1*	134.1*	133.8*	135.4*	135.4*	133.1*	126.8*	125.6*	124.1*	120.9*	121.3*	122.7*	119.3*	117.3*	117.8*	116.7*	114.6*	
=745.2 DE =150.0 KG	PROBE NO. 6 7 DYNAMIC PRESSURE LEVEL, DB RE 20 MICROPASCALS		127.6*	129.5*	134.0*	131.7*	130.5*	131.8*	132.4*	134.4*	134.2*	134.4*	135.5*	145 0*	133.7*	127.9*	127.9*	124.4*	120.2*	121.9*	123.8*	120.7*	115.3*	117 7#	115.5*	*0 11	
	'n		125.5*	127.2*	132.1*	129.9*	129.1*	130.6*	131.6*	134.2*	136.2*	134.3*	135 0*	#0 UFL	145.6*	130.5*	128.3*	124.8*	119.8*	117.4*	116.3*	118.0*	118.0*	*0.611	115.7*	110 48	17.311
~ ` ru	8		123.8*	125.0*	129.9*	127.9*	127.3*	129.3*	141.0*	111 8*	*7 11	140.4x	114 24	×3.461		141.64		125.4*	110.5*	118.6*	121.2*	101 14	114 08	77 011	110.04	116.C	114.54
YF-102 TURDGFAN ENGINE FIRST STAGE TURDGFAN ENGINE FIRST STAGE TURDINE NOZZLE INLET FRESS=186.3 KPA(27.0 AIR FLON= 2.94 KG/SEC(5	ч		123.9*	123.0*	128.5*	125.2*	125.0*	127.6*	*1.001	111 1*	111 8*	*0.151	XP 05.	**************************************	*2./21	127.0*	126 5	124.64	101.6*	122 6#	106 54	127.7*	101.02	10.121	118.4*	114.C×	114.34
YF-102 FIRST STAG INLET PRES	FREG.	HZ	50.0	63.0	80.0	100.0		0.031	0.00	0.007	0.007	0.616	0.00	0.004	0.000	0.000	1250	0.0045	0.000	0.0003	0.000	0.000	9,000	0.000	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

ı

DATE: FEB. 22, 1981

RUN NO. 102
YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES INSTALLED
INLET FRESS=256.0 KPA(37.1 PSIA), COMB EXIT TEMP=675.9 DEG C(1248.6 DEG F)
AIR FLOW= 3.46 KG/SEC(7.62#/SEC), FUEL FLOW=179.5 KG/HR(395.8 #/HR)

	5	3	136.8	137.2	137.4	137.6	139.5	139.1	140.0	139.9	143.8	139.2	138.5	140.5	140.9	143.0	144.4	150.3	145.4	144.0	143.4	141.8	135.3*	134.5*	133.2*	132.1*
	0		118.8	121.9	129.2	130.8	132.2	131.9	134.6	135.5	137.7	137.7	138.6	137.3	138.6	132.7	131.8	130.1	128.3	129.3	130.8	128.1	121.6*	120.3*	119.7*	117.1*
	«)	133.3	134.2	139.9	139.5	139.1	136.8	137.1	136.3	137.7	138.3	140.5	138.0	138.7	133.7	132.2	130.4	127.7	127.5	128.7	127.4	120.7*	121.3*	120.1*	119.1*
	7	OPASCALS	119.3	122.4	129.5	131.3	132.4	132.1	134.7	136.3	139.0	140.6	142.0	141.1	141.9	137.4	137.4	135.7	131.5	132.0	134.4	131.9	123.6*	127.2*	124.1*	123.8*
	•	B RE 20 MICR	131.5	132.2	137.6	137.4	137.2	135.2	136.2	136.3	138.0	138.8	138.5	137.7	138.1	132.5	132.2	130.1	126.4	126.7	129.2	127.2	118.4*	122.2*	119.5*	119.5*
PROBE NO.	ĸ	URE LEVEL, DI	131.3	131.9	137.4	137.3	137.0	135.2	136.1	136.4	137.9	138.1	138.6	137.2	136.8	132.2	132.0	132.2	129.5	128.9	129.9	127.9	121.7*	121.2*	120.5*	118.9*
	4	YNAMIC PRESSURE LEVEL,	132.9	133.6	138.7	138.2	137.9	135.9	136.9	136.9	138.4	138.9	139.8	138.1	139.0	134.2	134.3	132.5	128.9	128.6	130.4	127.7	119.3*	121.1*	119.8*	118.9*
	m	0	130.9	131.3	137.3	136.9	136.9	135.0	136.2	136.4	137.9	138.3	139.1	138.4	139.1	134.9	133.0	131.1	127.0	124.5	123.5	124.2	121.6*	121.4*	118.8*	115.4*
	~		129.9	130.1	136.1	135.8	136.2	134.7	136.9	137.3	138.4	137.9	139.3	138.1	139.3	137.3	134.8	133.0	127.5	126.2	128.2	128.2	121.3*	124.1*	117.8*	117.1*
	-		129.4	127.4	133.9	132.2	134.0	132.0	153.9	134.0	135.5	134.0	133.8	130.3	131.3	132.4	132.0	131.2	128.9	128.6	131.9	135.4	129.3*	127.1*	121.2*	120.9*
		FREQ. HZ	50.0	63.0	80.0a	100.0	125.0	160.0	200.0	250.0	315.0	400.0	200.0	630.0	800.0	1000.0	1250.0	1603.0	2000.0	2500.0	3150.0	4000.0	2000.0	6300.0	8000.0	100001

ORIGINAL TARE IS OF POOR QUALITY

*NO CORRECTIONS FACTORS APPLIED

7

11

1

ORIGINAL PACE IS OF POOR QUALITY

	10		138.8	139.6	140.2	140.3	143.4	166.0	142.0	141.	141.	141.5	144.1	144.	144.1	149.6	147.0	151.	741	146.	146.	145.	139.	137.	136.0	135.	
22, 1981	6		127.3	127.8	134.2	135.7	139.1	137.4	136.7	141.1	141.8	141.2	141.7	140.1	141.9	135.7	135.1	132.5	131.0	132.1	134.0	131.4	124.9*	123.8*	124.6*	121.7*	
DATE: FEB. 22	€		138.2	137.0	141.8	141.7	143.5	140.1	137.4	140.4	140.8	141.3	141.5	140.6	141.4	137.3	135.6	133.1	130.6	130.5	132.5	130.8	124.5*	125.1*	125.4*	124.3*	1
_	7	OPASCALS	142.7	141.0	145.7	145.7	147.5	144.7	143.6	147.2	147.6	147.5	150.0	146.9	147.9	142.3	141.8	139.2	135.7	135.6	137.8	135.8	128.7*	131.0*	129.4*	128.6*	,
DEG F) #/HR)		3 RE 20 MICROPASCALS	136.6	134.7	139.4	139.5	141.3	138.4	137.4	140.9	141.5	141.7	143.6	141.4	142.3	135.5	135.5	133.0	130.0	129.4	131.7	129.8	122.4*	124.9*	123.3*	122.0*	
; C(1271.5 DE HR(486.7 #/	PROBE NO.	RE LEVEL, DE	136.4	134.7	139.3	139.4	141.2	138.4	137.0	141.0	141.4	140.8	142.8	141.2	140.7	135.1	134.8	134.7	132.5	131.4	132.3	130.3	125.4*	124.8*	124.1*	100 0*	***************************************
.LLED TEMP=688.6 DEG C(1271.5 DEG F FLOW=220.8 KG/HR(486.7 #/HR)	4	DYNAMIC PRESSURE LEVEL, DB	137.0	135.5	140.0	139.9	141.8	138.8	137.4	141.3	141.7	141.7	142.4	141.4	142.4	137.1	137.5	135.1	132.4	131.3	132.9	130.3	123.0*	125.0*	124.7*	100 64	¥0.331
I INTS INSTA EXIT FUEL	M	۵	7 75 4	111.0	138.9	138.8	141.1	138.1	136.6	140.8	141.2	141.1	141.8	141.5	162.8	137.6	136.5	133.0	129.9	127.3	126.5	127.7	124.0*	125.6*	127.1*	***	*******
而而气气	N		1 321	130.1	178.0	117.0	4 091	137.7	117.0	7 (7)	141.7	760.5	142.0	141.4	177.0	140.9	138.4	135.2	8.07.	129.1	131.2	131.0	124.68	101101	10.121	70.00	120.9*
RUN NO. 103 YF-102 TURBOFAN ENGIN FIRST STAGE TURBIHE NOZZL INLET PRESS=310.9 KPA(45. AIR FLOW= 4.30 KG/SEC(-		*	135.7	175 1	1.001	127.6	3.46.6	1 7 7 1	77.	0.761	0.001	130.4	7 621	137.0	135.7	134.8	133.7	111 2	1.1.1	9 77 1	יייים דר	# 0 0 F	K7. + 7.	151.54	×1.621	124.8*
RL YF-102 FIRST STAGE INLET PRESS AIR FLO:		FREQ.	HZ	50.0	0.00	9 6	9.001	160.0	0.001	0.007	200.0	0.000	0.007	0.000	0.000	0.000	0.0001	1600.0	0.000	2000.0	2150.0	0.000	0.000	0.0004	6300.0	8000	10000.0

*NO CORRECTIONS FACTORS APPLIED

	10	6 7	5	2.5	4.2	3.9	3.3	2.3	1.4	1.2				, «	M T	, p.	6.2	4	3.7	3.4		*	**	*	
	٥	137 4	133.6	139.4	138.8	141.7	139.0	139.6	147.1	142.9	141.9	141.4	143.1	141.6	136.6	135.6	133.5	130.9	132.3	135.0	131.3	124.3*	126.0*	125.4*	11
	æ	140.0	137.5	143.0	142.3	144.8	141.0	140.3	147.0	142.8	143.3	145.2	146.0	144.2	140.0	138.4	136.4	132.9	132.5	135.3	132.8	125.8*	126.4*	126.2*	
	7 OPASCALS	139.5	136.0	141.6	140.7	143.4	140.6	141.7	149.2	144.9	145.4	145.5	143.3	146.3	139.8	139.3	136.7	133.1	132.5	134.6	132.4	124.8*	126.6*	125.3*	: 1
	6 B RE 20 MICR	139.6	136.8	141.7	141.4	143.9	141.1	141.7	149.7	145.3	145.8	145.8	144.1	147.0	140.5	140.1	137.4	134.2	133.0	134.6	132.5	124.9*	124.1*	125.7*	
	PROBE NO. 4 5 DYNAMIC PRESSURE LEVEL, DB RE 20 MICROPASCALS	139.3	135.8	141.4	140.7	143.1	140.2	141.0	149.0	144.9	144.7	145.9	145.2	144.9	138.7	137.9	137.5	135.0	133.7	134.8	132.3	126.9*	126.4*	126.3*	
	4 YNAMIC PRESS	140.5	137.6	142.7	141.8	144.2	140.7	141.1	148.6	144.6	144.9	146.4	146.1	146.1	139.9	140.1	137.8	135.4	134.3	136.4	133.0	125.3*	127.1*	126.3*	
	ĸ	138.0	134.7	140.4	139.9	142.6	139.7	140.3	148.6	144.4	144.4	1.941	146.3	147.5	142.8	140.7	136.9	133.1	129.9	129.4	130.1	127.0*	126.5*	124.8*	
	8	138.0	133.8	139.8	139.1	142.1	159.3	140.9	149.3	144.8	144.1	146.1	146.7	147.8	146.1	142.9	139.6	134.7	132.1	134.4	133.3	126.6*		124.7*	
		136.3	130.0	136.7	136.0	139.6	1.00.1	1.53.1	145.0	141.3	140.3	133.2	136.5	136.7	137.6	15/.8	136.4	155.6	133.5	136.2	140.3	137.2*	134.5*	127.4*	
ATR 1 COM - 3:00 NG/ 35C(11	FREG. HZ	50.0	63.0	80.0	100.0	125.0	0.00	200.0	250.0	0.416	400.0	500.0	630.0	800.0	0.0001	1250.0	1600.0	2000.0	2500.0	0.0416	4000.0	5000.0	6300.0	8000.0	0 0000

*NO CORRECTIONS FACTORS APPLIED

ין

I

		2																											
22, 1981		o		1 30 5	7 721	134.0	140.4	140.3	143.3	140.9	140.2	144.7	145.3	143.2	141.9	146.0	144.2	139.6	138.4	134.9	133.5	134.2	137.4	134.2	126.1*	129.1*	127.4*	126.1*	
DATE: FEB. 22		80		7 67	7.01.	T 20.	143.6	143.4	145.9	142.6	140.7	144.7	145.4	145.3	145.2	149.0	147.7	143.2	141.2	130.5	135.8	135.1	137.9	135.6	127.7*	130.1*	128.3*	127,4*	i I
_		7	OPASCALS	0 171	1 1 1 1	13/.3	142.5	142.2	145.1	142.4	142.1	147.0	147.6	147.0	146.1	145.7	149.6	143.1	142.0	139.4	136.6	134.8	137.4	135.9	126.6*	129.1*	127.3*	126.5*) ;)
:G F)		•	3 RE 20 MICR	6 671	146.6	138.0	142.9	142.9	145.6	142.7	142.4	147.4	148.1	147.7	146.3	146.5	150.3	144.1	142.8	140.3	137.5	135.8	137.4	135.9	127.1*	127.1*	127.4*	124.4*	
. C(1516.8 DE HR(769.2 #/	PROBE NO.	ĸ	RE LEVEL, DE		7.141	137.1	142.4	142.2	144.9	141.9	141.5	146.9	147.6	146.4	145.8	147.5	147.5	142.0	140.1	139.9	137.5	136.1	137.3	135.3	128.8*	129.1*	128.0*	195 7*	
I INSTALLED EXIT TEMP=824.9 DEG C(1516.8 DEG F) FUEL FLC:4=348.9 KG/HR(769.2 #/HR)		4	DYNAMIC PRESSURE LEVEL, UB RE 20 MICROPASCALS	,	1.241	138.0	143.2	142.9	145.4	142.1	141.6	146.3	147.1	146.6	145.9	148.4	143.7	142.8	142.1	139.7	137.5	136.2	138.7	135.9	127.4*	130.7*	128.8*	197 9*	
RUN NO. 107 GROUP NO. I YF-102 TURBOFAN ENGINE OPERATING POINTS FIRST STAGE TURBINE NOZZLE GUIDE VANES INSTALLED INLET FRESS-442.6 KPA(64.2 PSIA), COHB EXIT TENP AIR FLOH= 5.85 KG/SEC(12.90#/SEC), FUEL FLOH		۳	, ,		139.0	134.8	140.9	141.0	144.0	141.0	140.5	145.7	146.6	145.9	145.4	148.6	150.3	145.9	143.2	139.5	136.1	132.4	131.8	132.8	129.7*	129.7*	127.8*	10/10	164.3*
RUN NO. 107 YF-102 TURBOFAN ENGINE OPERATING POINTS FIRST STAGE TURBINE NOZZLE GUIDE VANES INST INLET FRESS=442.6 KPA(64.2 PSIA), COHB EXIT AIR FLOH= 5.85 KG/SEC(12.90#/SEC), FUEL		•	1		139.8	134.5	140.3	140.2	143.5	161.0	141.2	146.7	147.4	145.7	145.4	149.0	150.5	149.3	145.5	142.4	138.2	134.5	136.8	136.3	129.3*	121 38	127.6*		123.9#
RUN NO. 107 YF-102 TURBOFAN ENGI T STAGE TURBINE NOZZ T FRESS-442.6 KPA(64 IR FLO:4= 5.85 KG/SEC			•		138.8	131.4	137.9	138.0	140.5	7 8 5	110.0	4 . F. J. L	0.54	162.3	140.5	139.5	139.6	139.9	140.2	139.0	136.2	135.6	133.3	142.3	117 6*	1 P	120.5*	10.00	129.6*
RF-102 FIRST STAGE INLET FRESS AIR FLOS			FREQ.	ZH	50.0	63.0	80.0	100	יייי ר	140.0	0.000	0.003	2000	0.007	0.00	6.026	0.000	0.0001	1250.0	1600.0	2000.0	2500.0	3150.0	0 0007	0.000	0.000	0.0000	0.000	10003.0

*NO CORRECTIONS FACTORS APPLIED

i,

	6		140.5	141.7	142.3	145.0	142.8	141.9	145.0	147.7	145.3	143.9	147.9	146.2	142.3	140.7	137.4	136.4	136.6	139.5	137.1	128.7*	131.6*	129.1*	128.8*	
	ಹ	0 17	170.0	145.5	145.7	147.8	144.7	142.7	144.9	148.2	147.4	146.7	150.2	149.6	146.0	143.7	141.2	138.6	137.4	140.2	138.3	130.4*	132.7*	131.1*	130.4*	
	6 20 MICROPASCALS	g 671	1 18 7	144.3	144.6	146.8	144.3	143.6	146.8	149.9	148.8	147.3	146.8	150.4	145.6	144.0	141.8	139.2	137.5	140.0	138.3	129.5*	132.2*	130.8*	130.1*	
#/HR)	2	16.9	139.5	144.7	145.1	147.3	144.9	144.1	147.3	150.6	149.9	148.0	147.9	151.1	147.0	146.0	143.8	141.2	139.2	140.2	138.9	130.1*	129.6*	130.3*	127.2*	
.2 KG/SEC(16.35#/SEC), FUEL FLOW=427.7 KG/HR(942.9 # PROBE NO.	5 URE LEVEL, D	142 4	138.3	143.9	144.2	146.5	144.0	143.1	146.8	150.2	148.2	147.3	148.6	148.8	144.2	142.6	142.6	140.7	138.6	139.7	138.1	131.3*	131.8*	130.9*	129.2*	
	4 5 DYNAMIC PRESSURE LEVEL, DB	142.7	138.9	144.1	144.5	146.9	144.2	143.3	146.8	150.3	148.8	147.5	149.6	150.7	145.3	144.7	142.4	140.2	138.6	141.0	139.2	129.8*	132.6*	130.3*	129.8*	
•	m	140.2	136.3	142.5	143.2	145.7	143.1	145.1	146.0	149.6	147.9	146.9	149.7	152.2	148.2	146.3	142.6	138.8	135.3	134.1	134.5	130.8*	131.8*	130.2*	126.7*	
•	7	141.5	137.1	142.6	143.2	145.9	143.7	143.6	147.5	151.2	148.1	147.4	150.3	153.2	152.1	149.2	145.8	140.9	137.1	139.6	139.2	131.3*	133.3*	130.8*	125.4*	
	-1	139.6	132.9	138.8	140.4	141.9	140.8	140.5	143.6	146.4	144.3	140.7	140.6	140.9	142.0	143.0	141.8	139.0	138.0	141.1	144.3	141.0*	•	133.9*		
AIR FL0:4= 7.4	FREG.	50.0 50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	5150.0	4000.0	2000.0	6300.0	8000.0	10000.0	

*NO CORRECTIONS FACTORS APPLIED

(

2

11

I

APPENDIX A

GROUP II

ORIGINAL PAGE IS OF POOR QUALITY

		5	7		A 101		123.6	123.9	127.3	136.0	127.3	122.9	125.5	124.4	125.3	107.	1.721	150.1	130.4	130.3	127.8	127.2	124.1	121.4	121.1	121.3	116.2*	112.1*	109.4*	106.0*	i
1981		o	•			7.77	124.4	131.5	131.7	139.7	136.4	131.8	135.0	139.0	1 30 1	1 1 1 1 1 1 1	167.5	127.4	128.8	129.7	131.8	132.4	132.1	132.5	133.1	131.9	124.6*	121.6*	120.9*	119.3*	i i
DATE: FEB. 22,		đ	0		•	D./CT	137.6	142.5	141.1	146.7	142.0	134.8	136.1	1 28 7	1 621	77.7	131.9	130.3	131.0	130.7	131.5	130.6	128.9	127.5	128.3	129.4	123.3*	122.8*	121.7*	121 4*	!
		•	•	DPASCALS	ì	1.4.1	135.0	140.0	139.4	143.8	140.4	134.0	135.7	1 07 1	120.1	1.26.1	131.5	129.4	130.2	130.2	132.1	130.1	127.0	125.0	126.5	128.4	123.0*	122.6*	120.6*	120 4*	
G F) HR)		,	0	RE 20 MICR	i	134.8	135.0	139.7	138.5	144.0	140.5	134.6	136.1	7 021	177.6	104.0	133.2	130.6	131.1	130.0	131.3	129.7	127.2	125.1	127.1	128.9	123.7*	123.2*	121.3*	191 68	
C(337.8 DEG F) HR(0.0 #/HR)	ğ	יאטטגר ייס	'n	RE LEVEL, DB	,	134.5	134.5	139.4	138.2	144.1	140.3	133.3	115 4	1.004	0.001	150.8	130.3	128.6	129.0	129.9	131.9	132.5	130.3	128.3	128.5	128.6	124.8*	122.5*	121.6*	1001	.t.031
GROUP NO. II -AIR RATIO VARIATIONS GUIDE VANES INSTALLED PSIA), COIMB EXIT TEMP=169.9 DEG CO			4	DYNAMIC PRESSURE LEVEL, DB RE 20 MICROPASCALS		135.6	135.6	140.4	139.1	144.8	140.8	134.5	3 721	130.0	154.0	134.3	134.2	133.4	134.7	132.9	133.8	131.7	129.2	127.3	128.6	129.3	122.9*	122.9*	121.1*	, F.	×2.121
GROUP NO. II -AIR RATIO VARIATIONS GUIDE VANES INSTALLED PSIA), COMB EXIT TEMP 1,104/SEC), FUEL FLOW) 		m	6		133.1	133.5	139.0	137.6	164.2	1601	110.1	1.00t	1.55.7	158.9	130.7	130.0	128.6	128.4	125.8	125.9	124.6	123.4	122.9	126.1	127.1	124.3*	121.2*	120.6*	2	114.6×
			~			132.7	132.4	137.9		•	٠	1110	133.4	130.3	139.6	130.6	130.7	129.6	130.1	129.2	129.9	126.7	123.2	122.8	125.6	126.9	121.6*	120.0*	117.2*		120./*
RUN NO. 105 YF-102 OFF-DESIGN FUEL-TO-/ FIRST STAGE TURBINE NOZZLE (INLET FRESS-372.9 KRAS54.1 I ATD F1043 5.03 KG/SEC(1)			-	ı		131.7	129.1	135.4	1.001		141.0	136.9	132.5	134.6	137.2	131.6	131.6	131.6	134.3	3.46.8	136.5	135.4	133.0	112 7	136.0	1601	1.76.7*	171 0*	*0 761	100.7	126.4*
RL YF-102 OFF FIRST STAGE INLET FRESS				FREG.	ZH	50.0	6 4 0	0.00	9.00	0 0	100.0	160.0	0.002	250.0	315.0	400.0	500.0	6.20.0	0.008	0.000	1250.0	1600 0	0.000	2500.0	3150.0	0.000	0.00	0.000		0.00.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

 $\mathbf{I}_{\mathbf{I}}$

126.8 126.9 126.9 128.1 128.1 128.1 128.1 120.6 134.7 134.7 134.7 134.7 134.7 134.7 134.7 131.6 127.6 127.6

10

RUN NO. 112
YF-102 OFF-DESIGN FUEL-TO-AIR RATIO VARIATIONS
FIRST STAGE TURBINE NOZZLE GUIDE VANES INSTALLED
INLET PRESS=373.4 KPA(54.2 PSIA), COMB EXIT TEMP=324.1 DEG C(615.3 DEG F)
AIR FLOW= 5.06 KG/SEC(11.16#/SEC), FUEL FLOW=132.6 KG/HR(292.6 #/HR)

																	_			_						_	
	0		125.1	124.1	130.4	131.7	135.7	136.7	147.7	139.2	141.1	141.5	138.2	137.4	138.3	134.8	134.2	133.1	132.2	133.1	134.1	132.0	124.6*	121.9*	121.3*	119.7*	
	≪	•	139.4	136.5	141.0	140.5	142.6	141.3	149.3	140.3	140.7	141.9	139.8	137.9	138.4	135.8	135.0	133.5	131.5	130.9	131.5	130.4	124.1*	123.7*	122.7*	122.5*	
	7	MICROPASCALS	137.5	134.3	138.6	138.1	140.5	139.9	148.9	140.4	141.0	141.6	139.5	137.9	138.7	135.6	135.4	133.2	130.4	129.5	130.3	129.1	122.2*	123.1*	121.4*	121.7*	
	•	B RE 20 MICR	137.2	134.0	138.4	137.9	140.3	139.8	148.6	140.3	141.2	142.3	139.5	138.0	138.8	135.4	134.7	132.4	130.1	129.3	130.5	129.1	121.5*	123.0*	121.7*	122.4*	
PROBE NO.	ıs	URE LEVEL, D	137.1	133.7	138.3	137.7	140.2	139.7	148.5	140.2	141.0	141.6	138.9	137.2	136.6	134.6	134.5	135.1	133.2	131.6	132.0	130.1	125.0*	123.2*	122.6*	121.6*	
	4	YNAMIC PRESSURE LEVEL,	137.8	135.3	139.2	138.4	140.8	139.9	148.8	140.5	141.5	142.6	140.3	138.8	140.0	137.3	137.4	135.1	132.7	131.5	132.1	130.2	122.7*	123.8*	122.1*	122.5*	
	M		135.6	132.5	137.5	136.9	139.8	139.0	148.3	140.2	140.9	141.5	139.2	138.1	138.1	136.0	134.0	131.5	129.5	128.0	127.4	127.4	123.0*	122.4*	120.4*	119.5*	
	~		135.9	131.6	136.6	136.1	139.1	139.1	149.1	141.0	141.4	141.2	139.1	138.4	138.4	138.8	136.1	133.6	130.2	128.6	130.3	129.7	122.5*	126.2*	122.7*	120.0*	
	 1		134.8	128.8	134.3	133.6	136.7	136.5	144.8	137.5	138.8	139.1	134.5	133.7	135.1	137.3	137.0	136.0	133.5	133.2	136.3	140.4	137.2*	134.5*	127.4*	126.9*	
		FREG. HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	0.004	200.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000.0	6300.0	8000.0	10000.0	

*NO CORRECTIONS FACTORS APPLIED

Ì

ORIGINAL PAGE IS OF POOR QUALITY

GROUP NO. II AIR RATIO VARIATIONS GUIDE VANES INSTALLED PSIA), COMB EXIT TEMP=585.5 DEG C(1085.9 DEG F 1.20#/SEC), FUEL FLOW=195.2 KG/HR(430.3 #/HR) 2

*NO CORRECTIONS FACTORS APPLIED

*NO CORRECTIONS FACTORS APPLIED

H

İ

ORIGINAL PAGE IS OF POOR QUALITY

	10		144 5	144.7	144.6	144.8	144.8	146.4	145.0	145.6	147.4	148.4	145.4	148.9	147.1	147.9	151.9	149.8	151.5	149.6	149.3	148.2	141.3*	138.0*	138 6	1 1 1
	٥		128.4	127.6	134.5	135.5	140.1	139.4	139.4	142.2	145.9	146.6	144.2	143.4	145.1	140.3	139.0	135.5	134.0	134.9	136.9	134.8	127.5*	128.9*	128.5*	1
	ω		140.8	138.1	143.4	142.8	145.5	142.9	140.8	142.0	145.4	147.1	144.4	145.3	145.5	141.0	139.4	136.6	134.2	133.9	136.1	134.5	127.7*	130.3*	128.5*) L
	7	CUPASCALS	145.2	142.2	147.2	146.6	149.6	147.6	146.6	143.4	151.4	153.0	150.6	150.4	150.7	146.6	145.4	142.7	139.4	138.9	141.5	139.7	131.6*	135.0*	132.9*	77.
		ID KE ZU MICKUPASCALS	138.9	136.0	140.9	140.3	143.3	141.3	140.5	142.2	145.6	147.5	143.9	144.1	145.1	140.5	139.1	136.4	133.4	132.7	135.5	133.9	125.1*	129.0*	126.3*	L
PROBE NO.	5	יסאב רבעבר, ני	138.8	135.6	140.7	140.1	143.0	141.0	140.0	142.1	145.6	146.7	143.5	144.1	142.9	139.1	137.8	137.6	135.5	134.3	135.8	134.2	127.8*	128.7*	126.7*	100.04
	A 5	ווארודה האבטה	139.6	136.4	141.4	140.5	143.5	141.3	140.4	142.4	146.0	147.7	144.2	144.8	144.8	140.7	140.7	138.2	135.8	134.4	136.7	134.6	126.3*	130.6*	127.1*	125 04
	m	•	137.3	134.6	140.0	139.5	142.7	140.6	139.7	141.9	145.5	147.1	143.7	145.0	145.8	142.2	140.7	137.0	133.4	130.7	130.0	131.1	128.7*	129.5*	126.3*	101 0#
	N		137.6	133.7	139.4	138.8	142.2	140.4	140.2	142.9	146.0	146.8	143.9	145.2	146.6	145.4	142.9	139.8	1.54.9	132.4	135.1	134.9	128.4*	130.5*	125.8*	123.8*
	~		136.1	130.1	136.4	135.5	139.5	137.5	137.5	139.3	141.9	142.8	137.4	156.0	136.6	137.6	137.8	136.6	7.5.7	133.5	1.36.2	140.3	138.2*	135.5*	127.8*	127.8*
	FREG.	HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	0.0001	0.0007	2500.0	0.0616	4300.0	5000.0	6300.0	8000.0	10000.0

		10		144.1	143.7	144.1	144.1	144.1	145.9	144.6	144.9	147.1	149.5	145.5	149.4	147.5	147.9	151.8	2.041	152.1	149.7	149.6	148.5	141.6	139.2	138.4	136.1	
22, 1981		٥		128.9	127.8	135.1	135.9	140.4	139.9	139.5	142.1	145.9	147.4	144.3	143.9	144.8	140.9	139.4	135.5	134.0	134.9	136.9	135.0	127.6*	129.5*	128.9*	125.9*	
DATE: FEB. 22		•		140.5	137.8	143.3	142.5	145.2	142.9	140.6	141.5	145.0	147.8	144.5	145.5	145.3	141.6	139.3	136.8	134.3	134.0	136.2	134.8	128.2*	130.9*	129.1*	128.1*	
J		7	OPASCALS	144.9	141.7	147.1	146.3	149.4	147.6	146.4	148.1	151.2	153.6	150.5	150.3	150.4	147.0	145.4	142.7	139.5	139.0	141.9	140.2	131.9*	135.7*	133.3*	132.4*	
EG F)		•	DYNAMIC PRESSURE LEVEL, DB RE 20 MICROPASCALS	1 48 7	135.4	140.7	139.9	143.1	141.2	140.2	141.8	145.2	148.0	143.8	144.5	144.9	141.0	139.1	136.5	133.5	132.8	136.0	134.5	125.2*	129.9*	126.6*	125.9*	
; C(1597.7 DI	PROBE NO.	r	JRE LEVEL, DI	ላ ልነ የ	135.1	140.6	139.8	142.8	141.0	139.8	141.7	145.2	147.4	143.3	144.7	142.9	139.7	137.9	137.8	135.6	134.4	135.9	134.5	127.9*	129.0*	127.0*	124.5*	
II RIATIONS INSTALLED EXIT TEMP-869.8 DEG C(1597.7 DEG F) FUEL FLOW=341.8 KG/HR(753.5 #/HR)		4	NAMIC PRESSI	0 0 0 0	136.1	161	140.4	143.3	141.4	140.2	141.9	145.8	148.5	144.0	145.6	144.9	141.1	140.6	138.3	135.9	134.6	136.8	135.2	126.7*	131.2*	127.7*	126.2*	
.¥ w w		۳	, -	,	13/.2	1.461	7 01 0	142.6	140.7	139.4	141.5	145.1	147.8	143.7	145.6	145.9	142.9	140.5	137.2	133.6	130.7	130.0	131.7	129.4*	130.1*	126.9*	123.6*	,
4 m o II		¢	u	•	13/.3	133.3	33.65	162.2	140.5	139.8	142.4	145.6	147.5	143.8	145.8	146.8	146.2	142.8	139.9	135.2	132.6	135.2	135.3	120 1*	110.0*	126.2*	126.6*	-
RUN NO. 113 YF-102 OFF-DESIGN FUEL-TC FIRST STAGE TURBINE NOZZLE INLET FRESS=372.3 KPA(54.C AIR FLOU= 5.04 KG/SEC(1			-	1	136.0	1.00.1	170.0	140.5	147.4	117 1	4 87	141.5	164.4	137.2	136.2	136.8	138.0	137.8	136.4	133.9	133.5	1 36 1	140.2	11011	136.8*	127.6*	10.70	16/.77
RI YF-102 OFI FIRST STAGI INLET FRES: AIR FLO			FREQ.	HZ	20.05	63.0	0.00	0.001	260.0	0.004	2000	415.0	0.004	500.005	0.059	0.000	1000.0	1250.0	1600.0	2000	0.0002	1150.0	0000	0.000	0.0006	0.0000	0.000	Tonnor

*NO CORRECTIONS FACTORS APPLIED

11

I

·				
•				
1				

APPENDIX A

GROUP III

			٠

ORIGINAL PAGE IS OF POOR QUALITY

		10		117.3*	117.3*	•							121.9*						122.3*		3* 118.1*				** 103.6*		
22, 1981		0		113.8*	118.9*	122.4*	122.1*	121.6*	120.6*	119.2*	123.9*	123.6*	121.0*	115.6	111.6	111.6*	106.	106.1*	103.4*	*8.66	100.	102.8*	101.2*	46.7*	97.	*5.96	*9.46
DATE: FEB.		•		114.7*	119.5*	123.0*	122.4*	121.4*	120.5*	118.9*	123.3*	123.7*	121.7*	117.7*	112.9*	112.9*	109.0*	108.0*	104.2*	100.4*	101.7*	103.9*	103.1*	101.1*	100.3*	*8.8*	47.7
		7	ROPASCALS	115.1*	119.9*	123.4*	123.2*	122.5*	121.3*	120.2*	124.4*	124.0*	122.5*	115.6*	112.7*	112.6*	107.6*	107.2*	104.1*	100.1*	101.6*	104.2*	103.2*	98.7*	101.8*	98.2*	*6.76
DEG F) #/HR)		•	DB RE 20 MIC	115.1*	119.9*	123.4*	123.0*	122.2*	121.3*	120.2*	124.3*	124.5*	122.5*	115.9*	113.1*	112.6*	108.1*	106.9*	104.4*	100.6*	101.7*	104.6*	102.9*	*2.66	102.1*	*4.7*	98.8*
EG C(1458.6 5/HR(126.5	PROBE NO.	Ŋ	DYNAMIC PRESSURE LEVEL, OB RE 20 MICROPASCALS	115.8*	120.4*	123.5*	123.1*	122.6*	121.3*	119.8*	124.2*	124.4*	121.7*	116.5*	112.6*	112.1*	108.9*	109.1*	108.4*	105.7*	104.5*	104.5*	102.2*	100.3*	*8.66	98.1*	*2.96
DNS LLED FEMP=792.5 DI =LOW= 57.4 K(4	DYNAMIC PRES	***	120.2*	123.7*	123.1*	122.5*	121.5*	120.2*	124.5*	125.2*	122.2*	117.4*	113.3*	113.5*	108.2*	107.0*	104.3*	101.6*	102.5*	104.9*	102.6*	*9.86	100.4*	*6.76	44.76
GROUP NO. III AT RELEASE VARIATIONS GUIDE VANES INSTALLED PSIA), COMB EXIT TEMP=792.5 DEG C(1458.6 DEG F) .85 #/SEC), FUEL FLOW= 57.4 KG/HR(126.5 #/HR)		M		116 6*	110 64	123.2*	122.5*	121.9*	121.0*	119.8*	124.0*	124.3*	121.9*	117.4*	113.3*	113.8*	109.7*	106.6*	103.5*	100.3*	98.8*	*4.7*	100.6*	100.5*	100.1*	97.3*	95.3*
		2	1	110 04	117 7*	121.4*	120.9*	120.7*	120.2*	119.6*	123.9*	123.9*	121.0*	117.1*	112.7*	114.0*	111.4*	107.9*	103.6*	100.0*	100.3*	103.6*	103.4*	*4.7*	102.2*	*6.46	99.5*
FUNN NO. 131 YF-102 LON PRESSURE HE FIRST STAGE TURBINE NOZZLE INLET FRESS=110.8 KPA(16.1 AIR FLOW= 0.84 KG/SEC(1		_	ı	ă c	116.04	120 6*	119.2*	119.7*	118.4*	117.1*	121.7*	122.9*	118.5*	115.5*	109.9*	108.6*	108.8*	110.0*	109.4*	108.3*	107.1*	109.5*	107.0*	*9.86	*8.46	95.3*	93.5*
YF-102 FIRST STAG INLET PRES AIR FLG			FREG.	ZH	0.00	0.08	0.001	125	160.0	0.001	250.0	315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000.0	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

1'

ORIGINAL PAGE IS OF POOR QUALITY

		ç	:	115.4*	115.8*	115.9*	116.4*	114.7*	118.4*	118.4*	118.0*	123.9*	119.1*	119.4*	121.9*	119.8*	119.4*	116.9*	116.0*	114.0*	112.7*	111.3*	107.9*	103.8*	*0	42.74	*0.46
1961		•	•	115.4*	120.1*	119.7*	120.2*	117.5*	120.0*	117.7*	116.3*	121.4*	112.4*	109.1*	109.9*	107.5*	105.2*	104.5*	101.8*	98.2*	*5.76	98.1*	*6.96	96.3*	45.5*	*£.46	93.3*
DATE: FEB. 22, 1981		•	•	116.6*	120.9#	120.2*	120.6*	117.6*	119.7*	117.6*	115.4*	120.5*	113.3*	110.8*	110.3*	108.3*	106.3*	105.0*	102.1*	*8.8	*9.66	*7.66	101.8*	98.5*	100.6*	46.3*	99.5*
		7	ROPASCALS	117.1*	121.4*	120.6*	121.4*	118.3*	120.8*	118.6*	116.2*	121.9*	113.8*	110.8*	110.9*	103.0*	105.6*	104.3*	101.1*	41.86	*9.8 *	100.8*	*8.66	97.3*	100.0*	47.74	98.8*
EG F) /HR)		•	B RE 20 MICH	117.2*	121.2*	120.6*	121.3*	118.2*	120.8*	118.9*	116.6*	122.2*	114.2*	110.9*	111.1*	108.4*	106.3*	104.7*	101.9*	*0.66	99.3*	101.8*	100.5*	98.1*	101.2*	*8.66	102.2*
G C(1124.4 D /HR(84.9 #	PROBE NO.	ĸ	URE LEVEL, D	117.4*	121.5*	120.8*	121.3*	118.2*	120.8*	118.8*	116.4*	121.8*	113.8*	111.5*	111.1*	108.6*	107.9*	108.0*	107.2*	104.2*	102.4*	102.2*	100.3*	*5.06	*5.66	100.0*	100.9*
RUM NO. 134 GROUP NO. III YF-102 LOW PRESSURE HEAT RELEASE VARIATIONS FIRST STAGE TURBINE NOZZLE GUIDE VANES INSTALLED INLET PRESS=110.3 KPA(16.0 PS1A), COMB EXIT TEMP=606.9 DEG C(1)24.4 DEG F) AIR FLOW= 0.80 KG/SEC(1.76 #/SEC), FUEL FLOW= 38.5 KG/HR(84.9 #/HR)		4	DYNAMIC PRESSURE LEVEL, DB RE 20 MICROPASCALS	117.6*	121.9*	121.2*	121.5*	118.7*	121.0*	119.2*	116.9*	122.1*	114.4*	111.8*	111.7*	109.5*	106.6*	105.4*	102.9*	100.6*	100.7*	102.1*	101.1*	*4.76	100.5*	98.1*	*5*66
GROUP NO. III RELEASE VARIATIONS IDE VANES INSTALLEI 1A), COMB EXIT TEN #/SEC), FUEL FLO		M	۵	116.6*	121.2*	120.6*	121.1*	118.3*	120.7*	118.7*	116.4*	121.7*	113.7*	111.3*	111.6*	108.8*	107.0*	105.0*	101.7*	*9.86	97.3*	*9.76	100.2*	97.7*	98.3*	*5.96	*4.96
GRON E HEAT RELE/ ZZLE GUIDE (16.0 PS1A), EC(1.76 #/SE		~		114.9*	118.9*	118.4*	119.1*	116.6*	119.7*	118.3*	116.3*	120.9*	112.4*	111.0*	110.6*	108.7*	108.5*	105.4*	100.8*	*9.76	45.76	*7.66	86.3 *	97.1*	*6.96	45.26	97.3*
RUN NO. 134 YF-102 LOW PRESSURE HEAT I SIAGE TURBINE NOZZLE G T PRESS-110.3 KPA116.0 P IR FLOW= 0.80 KG/SEC(1.7		-		112.6*	116.7*	117.5*	116.8*	115.5*	118.4*	115.9*	114.4*	120.4*	112.1*	111.7*	110.4*	108.0*	108.6*	109.6*	109.6*	108.4*	107.4*	109.7*	107.3*	*/.86	95.1*	96.1*	*0.96
YF-102 FIRST STAGE INLET PRESS AIR FLOE			FREG. HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	200.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	5150.0	4000.0	2000.0	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

! '

i

ORIGINAL PAGE IS OF POOR QUALITY

		10		117.9*	117.8*	118.6*	119.5*	118.9*	121.4*	121.5*	124.1*	122.0*	121.9*	126.7*	125.6*	123.7*	124.7*	123.9*	122.9*	150.4*	113.8*	117.9*	116.3*	113.9*	109.5*	104.2*	101.6*
22, 1981		•		113.6*	119.9*	122.3*	121.4*	121.7*	120.8*	119.3*	123.7*	123.4*	120.9*	116.7*	111.7*	111.6*	106.3*	106.0*	103.3*	*9.66	100.5*	102.5*	101.0*	*9.86	*9.76	96.2 *	93.5*
DATE: FEB. 2;		60		114.6*	120.7*	122.9*	121.8*	121.8*	120.7*	118.9*	123.1*	123.7*	121.4*	118.2*	112.9*	112.9*	109.0*	108.0*	104.4*	100.4*	101.9*	104.1*	103.5*	101.5*	101.3*	*5.66	*4.86
		7	OPASCALS	115.4*	120.9*	123.1*	122.5*	122.5*	121.7*	120.0*	123.9*	123.8*	122.6*	115.9*	112.9*	112.6*	107.5*	107.0*	103.9*	*4.66	101.0*	104.0*	103.1*	88.3 *	101.7*	*8.76	97.5*
EG F)		•	B RE 20 MICROPASCALS	115.2*	121.0*	123.1*	122.5*	122.6*	121.6*	120.1*	123.9*	124.4*	122.6*	116.3*	113.4*	112.7*	108.2*	107.1*	104.5*	100.5*	101.6*	104.6*	103.0*	*8*66	102.4*	*8.84	46.1*
3 C(1496.5 D	PROBE NO.	ď	JRE LEVEL, D	115 7*	121 2*	123.4*	122.6*	122.6*	121.5*	119.8*	123.7*	124.3*	121.8*	116.9*	112.9*	112.2*	109.2*	109.5*	108.9*	106.5*	105.1*	105.0*	102.7*	100.7*	100.3*	98.3*	*8.96
III RIATIONS INSTALLED EXIT TEMP=813.6 DEG C(1496.5 DEG F) FUEL FLOW= 56.9 KG/HR(125.4 #/HR)		7	DYNAMIC PRESSURE LEVEL, DB	31.	101 64	123.6*	122.7*	123.0*	121.9*	120.4*	124.6*	125.4*	122.4*	118.0*	113.5*	113.6*	108.3*	107.1*	104.5*	101.9*	102.6*	105.3*	102.9*	*8.86	100.9*	98.5*	*0.86
		۳	,	75.	114./F	122 9*	122.2*	122.4*	121.5*	119.8*	124.0*	124.4*	121.9*	117.9*	113.3*	113.9*	109.5*	106.8*	103.9*	100.7*	*5.66	99.1*	100.9*	100.8*	100.4*	*9.76	95.5*
RUN NO. 135 GROUP NO YF-102 LOW PRESSURE HEAT RELEASE N ST STAGE TURBINE NOZZLE GUIDE VANES ET PRESS=110.3 KPA(16.0 PSIA), COME AIR FLOW= 0.81 KG/SEC(1.78 #/SEC),		•	J	,	*/- 711	121 1*	120.2*	121.0*	120.4*	119.5*	123.6*	123.7*	120.8*	117.3*	112.5*	113.9*	110.9*	107.8*	103.7*	*6.66	*6.66	103.8*	103.2*	*4.66	102.4*	*5.56	*8.8¢
RUN NO. 135 YF-102 LOW PRESSURE HEAT FIRST STAGE TURBINE NOZZLE G INLET PRESS=110.3 KPA(16.0 P AIR FLOM= 0.81 KG/SEC(1.7		•	-	,	111.1*	110.04	117.9*	119.8*	118 9*	117.1*	121.6*	104.0*	118.6*	116.2*	*1.011	108.7*	108.8*	110.0*	109.5*	108.3*	107.3*	109.5*	107.4*	*7 60	*6.56	95.1*	93.6*
R YF-102 FIRST STAG INLET PRES AIR FLO			FREQ.	HZ	0.04	0.00	0.00	0 1	160.0	0.000	0.023	315.0	0.004	2002	6.002	0.008	0.000	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000	6300.0	8000	10000.0

*NO CORRECTIONS FACTORS APPLIED

	·			
ı				

APPENDIX A

GROUP IV

			•
			S
I			

RUN NO. 236 GROUP NO. IV
YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES REHOVED
INLET FRESS=109.3 KPA(15.9 PSIA), COMB EXIT TEMP=869.3 DEG C(1596.8 DEG F)
AIR FLOW= 0.80 KG/SEC(1.76#/SEC), FUEL FLOW= 78.6 KG/HR(173.2 #/HR)

10		112.8*	114.9*	114.4*	113.2*	110.9*	112.9*	116.5*	117.7*	114.5*	115.9*	109.1*	115.4*	111 18	27.644	*0.411	123.8*	124.8*	118.6*	112.6*	110.6*	111.1*	* 10.	×1.001	43.54	93.5*	*1.86	
o		109.6*	113.1*	114.6*	116.5*	116.8*	116.2*	115.1*	117.8*	118.3*	121.1*	118.0*	113.5*	77.	*0.C11	107.9*	111.7*	108.2*	103.4*	101.9*	103.6*	101	*****	× 0.0×	98.3*	*6.96	*0.56	
æ		112.2*	115.4*	116.4*	118.0*	118.0*	117.4*	116.2*	118.4*	119.5*	123.0*	121.7*	115.6*	***	¥0.C11	112.5*	114.1*	109.9*	104.7*	103.9*	105.3*	*0 9UL		***	101.2*	48.76	*8.96) ,
7	PASCALS	111.7*	114.7*	116.2*	118.1*	118.2*	117.4*	116.2*	118.5*	119.4*	122.9*	*8 011	115.1*		114.6*	110.2*	112.7*	113.6*	103.7*	103.4*	105.3*	× 0 × 0 ×	TO+.07	48·1*	100.4*	*5.96	*42.96	
2 9	RE 20 MICRO	111.5*	114.9*	116.1*	117.9*	118.0*	117.3*	116.3*	118.5*	119.5*	100.6*	120 0*	110.04	10.CTT	114.4*	109.9*	112.5*	113.7*	103.9*	103.4*	105.5*	× 0 0 0	KO . COT	48.7*	101.4*	97.1*	*0 90	
PROBE NO.	RE LEVEL, DB	112.6*	115.4*	116.6*	118.4*	118.2*	117.7*	116.4*	118.3*	119.2*	121 6*	301.05	17.1.5	×/·+11	113.9*	111.2*	113.3*	114.1*	109.5*	107.8*	*8 YUL		*0.+0T	101.2*	100.7*	*2.76	*0 70	۲۵.0۲
PROBE NO	YNAMIC PRESSU	112.5*	115.0*	117 1*	118.7*	118.7*	117.9*	116.2*	118.4*	*7 611	122 1*	100r	×1.221	*1.C11	114.6*	109.7*	111.4*	*9.601	103.2*	101	* 70 C	×6.001	104.2*	*6.86	101.0*	97.1*	27	×4.14
141	0	*	116.24	115.24	112.14	117.7*	117.1	115 7*	*[811	***************************************	10.617	161.7	122.2*	114.6*	114.6*	110.6*	112.1*	110.5*	** 40.	101	0 F	KO. 64	101.1*	101.6*	100.0*	*0.76		75.C*
~	1	×	114.0*	110. XX	115.0%	110.71	117.0*	×7./11	110.01	* 7 . C	119.54	122.0*	123.0*	174.9*	115.9*	113.1*	114.7*	110 011	104 14	100 · Fx	×7.601	106.9*	106.5*	104.3*	105.8*	***	::	102.3*
-	•	,	* ?	* O · O	* 0.0	*	*	*0.0	* o	* 0.0	*0.0	*0.0	*0.0	*0.0	*0	*		, ×	* * *	* ;	*	*0.0	*0.0	*0.0	*	*		*0.0
	FREQ.	ZH	50.0	63.0	80.0	100.0	125.0	160.0	200.0	0.062	315.0	400.0	500.0	630.0	0 008	000	9 6	0.0071	0.000	2000.0	2500.0	3150.0	4000.0	2000	0.0007	0.000	0.000	100001

*NO CORRECTIONS FACTORS APPLIED

I

FUN NO. 232 GROUP NO. IV

YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES REMOVED
INLET FRESS-138.8 KPAR20.1 PS1A), COMB EXIT TEMP=760.3 DEG C(1400.5 DEG)

	٥		117.1*	118.9*	123.3*	127.0*	126.5*	123.9*	123.7*	125.7*	127.1*	127.9*	130.4*	126.2*	128.7*	120.5*	119.6*	117.4*	113.4*	115.1*	117.3*	113.3*	108.6*	107.3*	106.7*	102.9*
	€0		120.5*	121.7*	125.6*	129.2*	128.5*	125.8*	125.0*	126.3*	128.6*	130.1*	134.7*	128.5*	131.1*	123.6*	122.6*	120.8*	117.1*	118.1*	118.5*	116.2*	111.1*	112.5*	109.9*	108.6*
	7	OPASCALS	119.6*	121.4*	125.4*	128.9*	128.3*	125.6*	125.3*	126.7*	128.5*	129.9*	133.4*	128.5*	129.9*	123.5*	123.3*	120.5*	116.1*	117.7*	118.3*	115.4*	109.2*	111.9*	103.7*	108.1*
DEG F) #/HR)		IB RE 20 MICROPASCALS	119.9*	121.4*	125.2*	128.7*	128.0*	125.8*	125.6*	126.9*	128.8*	130.2*	133.2*	128.4*	130.4*	123.2*	122.8*	120.5*	116.3*	117.1*	118.4*	115.4*	109.2*	112.2*	108.7*	108.2*
G C(1400.5 D	PROBE NO.	URE LEVEL, D	119.6*	121.2*	125.1*	128.5*	127.9*	125.4*	125.1*	126.6*	128.6*	129.7*	134.2*	127.7*	129.6*	123.0*	122.5*	120.9*	118.1*	116.9*	118.3*	115.4*	112.0*	111.5*	109.7*	107.7*
TEMP=760.3 DEG C(1400.5 FLOW=134.0 KG/HR(295.5	4	DYNAMIC PRESSURE LEVEL, DB	121.0*	122.6*	126.6*	130.0*	129.5*	126.6*	125.7*	126.8*	128.5*	130.0*	135.3*	128.6*	130.1*	123.0*	122.2*	119.5*	115.8*	117.3*	118.8*	115.1*	109.6*	111.8*	108.7*	108.0*
EXIT	m	0	118.9*	120.6*	124.7*	128.1*	127.6*	125.1*	124.7*	126.5*	128.6*	129.9*	134.9*	127.8*	130.6*	123.5*	122.5*	121.1*	116.2*	114.1*	112.3*	112.0*	110.3*	110.6*	108.5*	106.8*
INLET FRES=138.8 KPA(20.1 PSIA), COMB AIR FLOW= 1.91 KG/SEC(4.22#/SEC),	N		117.9*	119.5*	123.7*	127.1*	126.8*	124.9*	125.1*	127.2*	128.8*	129.4*	134.9*	127.4*	131.2*	125.1*	123.9*	122.7*	116.7*	115.9*	117.6*	116.2*	112.2*	114.1*	108.5*	111.1*
=138.8 KPA = 1.91 KG/	-		*0.0	*0.0	*0.0	*0.0	* 0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0	*0.0
INLET FRESS=138.8 AIR FLOW= 1.91	9	FREG. HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	0.0062	5150.0	4000.0	2000.0	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

ORIGINAL PAGE IS OF POOR QUALITY

122.9**
123.9**
123.9**
123.9**
123.9**
123.9**
124.125.13**
125.9**
126.12**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**
127.9**

ı

FUN NO. 233 GROUP NO. IV
YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES REMOVED
INLET PRESS=186.9 KPA(27.1 PSIA), COMB EXIT TEMP=743.4 DEG C(1370.0 DEG F)
AIR FLOW= 2.42 KG/SEC(5.3 #/SEC), FUEL FLOW=149.1 KG/HR(328.6 #/HR)

	10		123.5*	107 44	163.04	124.9*	123.9*	125.1*	127.4*	130.9*	127.5*	127.6*	127.9*	125.4*	128.0*	123.6*	123.4*	123.3*	120.5*	122.4*	119.9*	118.6*	123.3*	123.5*	108.9*	105.6*	*7 701
	•		118.2*	** 011	±0.411	126.7*	129.1*	129.8*	127.1*	125.5*	127.4*	129.3*	130.0*	131.1*	128.1*	130.8*	122.4*	121.2*	117.2*	115.0*	116.1*	116.9*	114.4*	110.7*	109.1*	108.9*	305
	€0		122.1*	X P C P	163.34	129.6*	131.9*	132.3*	129.3*	126.6*	128.1*	130.2*	131.7*	135.1*	130.5*	133.5*	125.4*	123.9*	120.7*	118.3*	118.6*	118.5*	117.1*	113.6*	114.2*	112.0*	30 011
	7	PASCALS	120.9*) (121.9*	128.4*	131.0*	131.4*	128.5*	127.2*	128.3*	130.2*	131.5*	134.4*	130.2*	132.1*	125.3*	124.4*	120.9*	117.8*	117.4*	118.3*	116.3*	111.5*	114.2*	110.9*	XO
	6 7	RE	127.0*		122.0*	128.2*	130.8*	131.2*	128.6*	127.4*	128.6*	130.8*	132.0*	133.9*	130.1*	132.6*	124.8*	123.8*	120.7*	117.1*	117.1*	118.2*	116.0*	111.4*	114.3*	111.3*	***************************************
PROBE NO.	ĸ	RE LEVEL, DE	120 8*		121.8*	127.9*	130.4*	131.0*	128.5*	126.9*	128.4*	130.5*	131.4*	134.4*	129.3*	131.9*	124.8*	123.8*	122.2*	119.9*	119.4*	118.7*	116.4*	114.0*	113.4*	111.8*	
	4	DYNAMIC PRESSURE LEVEL, DB	100 6*		123.9*	130.3*	132.9*	133.3*	130.4*	127.7*	128.6*	130,1*	131.6*	135.8*	130.0*	132.1*	125.0*	123.7*	119.0*	117.0*	118.2*	118.3*	116.5*	112.1*	113.6*	110.6*	, ,
	м		** 011	VO-6 TT	120.9*	127.6*	129.9*	131.0*	128.4*	126.6*	128.5*	130.7*	143 6*	******	******	142.4*	*6 721	124 1*	110 7*	117.6*	116.1*	114.4*	114.1*	114 7*	112.5*	110.6*	
	8	1	0	×0.011	119.6*	126.6*	129.2*	130.2*	128.1*	127.1*	120 2*	110 0*	121 1*	146 1*	198 7*	140.7	126.24	104 94	121 14	117 4*	*2.911	117 6*	119 14	114 04	117 14	111.4*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	- -	•	•	k 0.0	*0.0	*0.0	*	*	*	*	*	***	, *	***			; *	, X	, d		*	***	*	; ;	* * * * * * * * * * * * * * * * * * *	**	. >
		FREQ.	2H.2	0.00	63.0	80.0	0.001	25.0	140.0	0.000	200.0	115.0	0.000		0.000	0.00	0.000	0.001	1,000	2000.0	2500.0	0.000	0.0000	0.000	0.0006	0.000	0.000

*NO CORRECTIONS FACTORS APPLIED

Į

RUN NO. 202 GROUP NO. IV YF-102 TURBOFAN ENGINE OPERATING POINTS FIRST STAGE TURBINE NOZZLE GUIDE VANES REMOVED

	£	AIR FLOH= 3.45 KG/SEC(7.60 #/SEC), FUEL FLOW=201.3 KG/HR(443.7 #/HR)
	DEG	₹#
	m	7
	1385	44
	ວ	Æ
	DEG	Ķ6,
	89:	۳:
	=75	=20]
,	EMP	S S
2	1	
į	Ä	2
֭֚֭֭֭֭֚֚֓֝֝֜֜֝֜֜֜֝֜֜֝֓֓֓֓֜֝֓֜֝֓֡֓֜֝֓֜֝֓֡֓֜֝֡֡֡֝	SMS	á
֡		/SEC
2	SIA	# 0
į	2 Р	7.6
1	37.	SEC (
É	KPA(86 8.
		45
5	:256	m.
1	:523	Ë01
,	3	E.
THE PROPERTY WAS THE WOLL WANTED REHOVED	ZE1	A1
•	Ħ	

	9.	2	125.0	125.1	126.5	126.6	129.1	131.5	134.4	129.4	130.2	130.9	128.7	130.3	128.5	123.5	128.6	127.1	128.6	125.1	124.0	129.0	124.3*	111.9*	110.0*	108.1*
	o	•	114.5	116.5	124.3	128.0	129.7	124.9	123.8	124.9	127.2	128.3	127.2	124.2	129.1	122.3	121.6	117.7	116.0	116.4	116.9	115.1	108.1*	106.8*	107.1*	103.3*
	œ)	125.7	127.5	134.7	138.1	139.6	134.1	131.6	132.4	134.8	136.9	137.5	133.3	138.2	132.2	131.0	128.1	126.3	125.4	125.2	124.5	117.6*	118.4*	116.7*	115.6*
	7	MICROPASCALS	124.5	126.1	133.5	137.0	138.2	133.5	132.5	133.2	135.7	137.3	137.3	133.6	137.6	132.7	132.0	129.3	126.4	125.3	125.6	124.7	116.6*	119.0*	116.3*	115.2*
	•	3 RE 20 MICR	125.1	126.5	133.3	136.8	138.2	133.8	132.7	133.4	135.7	137.5	137.0	133.8	138.5	131.9	131.2	128.6	125.5	124.8	124.7	123.9	115.9*	118.7*	116.7*	116.2*
PROBE NO.	S	JRE LEVEL, DE	124.1	125.6	132.9	136.7	138.1	133.4	131.8	133.1	134.9	136.4	137.1	132.9	136.8	131.5	130.4	129.3	127.4	126.1	125.1	123.4	118.4*	117.9*	116.7*	115.0*
	4	YNAMIC PRESSURE LEVEL	124.8	126.2	133.4	137.1	138.6	133.9	132.3	133.7	135.6	137.3	138.3	133.8	138.1	132.1	131.5	128.3	125.7	125.6	125.7	124.6	116.6*	118.2*	116.0*	115.3*
	m	a	122.7	124.5	132.8	136.4	138.3	133.3	131.5	133.0	135.0	136.7	137.4	132.7	138.0	131.9	130.8	127.7	126.0	124.1	122.6	122.0	116.6*	116.4*	115.4*	113.2*
	~		121.6	123.3	131.4	135.3	137.3	132.8	132.0	133.5	135.2	135.9	137.0	132.2	137.8	133.0	131.4	129.2	125.9	124.6	124.9	125.5	118.6*	121.8*	116.5*	114.7*
	-1		3.7	3.7	3.7	3.7	3.4	2.8	1.8	6.0	0.7	1.4	1.6	0.5	2.3	5.9	2.8	3.7	4.0	3.2	2.9	3.5	*0.0	*0.0	*0.0	*0.0
		FREQ. HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000.0	6300.0	3.0008	10000.0

*NO CORRECTIONS FACTORS APPLIED

ORIGINAL PAGE IS OF POOR QUALITY

		10			124.	124.	126.	127.	130.	133.	136.	131.	132.	133.	131.	132.	131.	131.	131.	129.	130.	127.	125.	132.	131.	117.	111.	111.
22, 1981		•			123.2	125.3	132.8	135.6	139.5	135.3	133.4	134.9	137.3	139.2	136.5	133.9	138.3	132.4	132.0	127.7	126.0	126.4	127.1	125.5	119.5*	117.5*	117.9*	113.9*
DATE: FEB. 2		80			127.4	129.3	135.9	138.6	141.8	137.0	133.7	134.6	137.1	139.2	139.2	135.8	139.9	134.9	133.9	130.8	128.9	128.1	128.0	127.3	121.2*	121.6*	119.9*	118.7*
		7	OPASCALS		125.9	127.3	134.3	137.2	140.7	136.3	134.5	135.6	138.0	140.0	139.1	136.0	139.5	135.2	134.7	131.9	128.9	128.1	128.3	127.6	119.8*	121.8*	119.3*	118.4*
EG F) /HR)		•	B RE 20 MICROPASCALS		127.0	128.1	134.3	137.3	140.7	136.3	134.7	135.8	138.2	140.3	138.8	136.2	140.1	134.9	134.3	131.4	128.4	127.6	127.7	126.9	119.3*	121.9*	119.9*	119.4*
. C(1289.4 DI	PROBE NO.	ស	JRE LEVEL, DI		125.4	127.1	133.8	136.8	140.7	136.1	134.0	135.4	137.7	139.2	138.8	135.3	138.1	134.0	133.1	132.0	129.8	128.6	127.7	126.2	121.4*	120.7*	119.8*	117.9*
IV NINTS REMOVED EXIT TEMP-698.5 DEG C(1289.4 DEG F FUEL FLOW-223.1 KG/HR(491.8 #/HR)		4	DYNAMIC PRESSURE LEVEL, DB		126.3	127.8	134.7	137.5	140.9	136.5	134.4	136.0	138.2	140.2	139.9	136.1	140.0	134.9	134.4	131.1	128.2	128.0	128.1	127.3	120.2*	121.7*	119.7*	118.4*
GROUP NO. IV OPERATING POINTS GUIDE VANES REMOVED PSIA), COMB EXIT TE '.5 #/SEC), FUEL FL		ĿŶ	6		124.1	126.0	133.8	136.7	140.4	135.7	133.7	135.5	137.8	139.4	139.0	134.9	139.7	134.5	133.7	130.3	128.5	126.7	125.3	125.0	121.6*	120.4*	119.1*	116.4*
•		7			123.2	124.9	132.4	135.4	139.5	135.2	134.2	136.0	137.9	138.8	138.7	134.5	139.5	135.8	134.4	131.9	129.0	127.6	127.9	128.2	122.6*	124.9*	119.9*	117.8*
RUN NO. 203 YF-102 TURBOFAN ENGINE FIRST STAGE TURBIHE HOZZLE INLET PRESS=310.8 KPA(45.1 AIR FLOW= 4.30 KG/SEC(-			3.7	3.7	3.7	3.7	3.4	2.8	1.8	6.0	0.7	1.4	1.6	0.5	2.3	2.9	2.8	3.7	4.0	3.2	5.9	3.5	*0.0	*0.0	*0.0	*0.0
RL YF-102 FIRST STAGE INLET FRESS AIR FLOW			FREQ.	ZH	50.0	63.0	30.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000.0	6300.0	8000.0	100001

*NO CORRECTIONS FACTORS APPLIED

I

RUN NO. 206 GROUP NO. IV
YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES REMOVED
INLET PRESS=373.3 KPA(54.1 PSIA), COMB EXIT TEMP=723.6 DEG C(1334.4 DEG F)
AIR FLOW= 5.04 KG/SEC(11.1 #/SEC), FUEL FLOW=262.3 KG/HR(578.2 #/HR)

	10	;	7 301	1 0 0 0 0	154.9	126.0	1.921	131.1	133.8	137.4	132.1	132 1	134.2	131.2	133.5	131.9	142.4	332.6	131.4	131.0	127.1	127.4	129.9	** 001	120.3*	112 7*	110.04
	•	•	1 361	7 70 0	0.071	1.4.1	13/./	142.0	137.6	135.6	137.0	139.3	140.5	138.2	136.0	139.7	134.8	134.9	130.1	128.4	128.9	129.6	127.8	121.0*	119.6*	120.2*	116.4*
	•	,	7 061	7 021	130.0	100	7.0.7	144.2	139.2	135.8	136.6	138.8	141.4	140.8	138.1	141.3	137.3	136.8	133.2	131.2	130.5	130.5	129.6	122.7*	123.6*	122.2*	121 1*
1	_	HICROPASCALS	126.0	127 4	127. 7	7.04.	120.0	8.24T	138.4	136.2	137.4	139.7	142.0	140.6	138.2	141.1	137.6	137.4	134.2	131.1	129.9	130.0	128.8	120.4*	121.8*	118.8*	116.4*
	٥	B RE 20 MICR	128.8	1001	136 4	0.02.0	127.6	142.9	138.5	136.6	137.6	140.0	142.4	140.5	138.4	141.7	137.3	136.9	133.6	130.8	129.9	130.1	129.3	121.3*	123.9*	122.3*	121.8*
PROBE NO.	ņ	JRE LEVEL, DI	127.1	128 4	135 1	9 9 1	1,000	146.7	138.1	135.9	137.3	139.4	141.3	140.3	137.5	139.5	136.3	135.6	134.5	132.3	130.9	130.2	128.6	123.0*	122.6*	122.0*	119.8*
•	*	YNAMIC PRESSURE	128.1	129.2	135 9	130.4	7 296	1.01.	138.6	136.3	137.8	140.1	142.3	141.5	138.3	141.6	137.2	137.3	133.7	131.0	130.3	130.6	129.5	122.1*	124.1*	122.4*	121.0*
,	า	_	125.7	127.4	134.9	1 48 6	142.7	112.	7.7.4 	135.7	137.2	139.5	141.6	140.5	137.0	141.0	136.8	136.4	132.6	130.8	129.1	127.9	126.8	122.1*	122.6*	121.4*	118.8*
¢	u		125.1	126.2	133.6	137.3	141	117.1	10/17	136.0	137.9	139.8	141.0	140.1	136.7	140.9	138.2	137.0	134.3	131.5	129.7	130.4	130.2	123.4*	127.1*	122.5*	119.7*
,	•		4.2	4.2	4.2	6.2	, p	, ,	ń ,	 	1.4	1.2	1.9	2.1	٥٠٢	2.8	4.6	и. В	4.2	4.5	3.7	3.4	3.9	*0.0	*0.0	*0.0	*0.0
		FREG.	50.0	63.0	80.0	100.0	125.0	0.031	0.00	200.0	250.0	315.0	400.0	200.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000.0	6300.0	8000.0	10000.0

ORIGINAL PAGE IS OF POOR QUALITY

*NO CORRECTIONS FACTORS APPLIED

11

ı

ORIGINAL PAGE IS OF POOR QUALITY

		10	¦	134.4	132.4	132.9	132.8	135.8	137.4	140.3	135.2	134.2	136.2	133.2	135.1	133.8	134.8	135.3	134.3	129.8	127.3	127.3	123.1	123.0*	113.6*	110.6*	113.2*
22, 1981		۰		127.5	128.2	135.0	139.8	143.5	139.4	137.4	139.0	141.1	143.0	139.5	137.8	140.5	137.1	138.0	133.0	131.0	131.5	132.7	131.2	123.4*	121.9*	122.7*	119.0*
DATE: FEB. 2		0		132.2	133.1	139.1	143.5	146.4	141.7	138.1	138.7	141.0	144.4	142.5	140.6	142.8	140.2	140.3	136.8	134.7	133.9	134.2	133.5	126.0*	126.9*	125.6*	124.6*
		7	20 MICROPASCALS	130.5	130.9	137.1	141.7	145.2	140.8	138.7	139.6	141.8	144.6	142.4	140.4	142.4	140.4	140.8	137.2	134.3	133.2	133.8	133.1	124.4*	126.8*	124.5*	123.9*
DEG F) #/HR)		•	R	131.3	131.8	137.1	141.6	145.0	140.6	138.8	139.8	141.9	144.9	142.2	140.6	143.0	140.1	140.2	136.5	133.6	132.7	133.1	132.5	123.9*	126.6*	124.9*	124.7*
	PROBE NO.	ស	RE LEVEL, DE	129.7	130.2	136.4	141.2	144.7	140.2	137.6	139.4	141.2	143.6	141.7	139.6	140.6	138.8	138.7	137.9	135.8	134.2	133.6	132.5	126.3*	126.1*	125.2*	123.2*
MP=725.2 OW=310.4		4	DYNAMIC PRESSURE LEVEL, DB	131.6	132.3	138.0	142.3	145.5	140.8	138.1	139.6	141.7	144.6	142.7	140.6	143.0	140.2	140.6	136.9	134.6	133.4	133.9	133.0	124.9*	127.0*	125.3*	124.1*
GROUP NO. IV RATING POINTS DE VANES REMOVED A), COMB EXIT TE #/SEC), FUEL FL		m	Ò	128.5	129.4	136.4	141.1	144.6	140.2	137.8	139.3	141.3	143.9	141.8	139.1	141.9	139.2	139.5	135.5	133.8	132.1	131.0	129.9	123.5*	125.4*	124.1*	121.9*
		8		127.9	128.7	135.2	139.9	143.8	139.7	138.2	140.0	141.8	143.5	141.8	138.9	141.9	141.0	140.1	137.4	134.8	132.8	133.7	133.3	125.4*	130.1*	126.1*	122.6*
RUN NO. 207 YF-102 TURBOFAN ENGINE OPER FIRST STAGE TURBIHE NOZZLE GUID INLET PRESS=446.9 KPA(64.8 PSIA AIR FLOW= 6.26 KG/SEC(13.8 #		-		4.7	4.7	4.7	4.7	4.4	3.8	2.8	1.9	1.7	2.4	5.6	1.5	3.3	3.9	3.8	4.7	5.0	4.2	3.9	4.5	*0.0	*0.0	*0.0	*0.0
RL YF-102 FIRST STAGE INLET PRESS AIR FLOW			FREG. HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	500.0	630.0	830.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	5000.0	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

1.

RUN NO. 210

YF-102 TURBOFAN ENGINE OPERATING POINTS
FIRST STAGE TURBINE NOZZLE GUIDE VANES REMOVED
INLET PRESS-556.6 KPA(80.7 PSIA), COMB EXIT TEMP=829.3 DEG C(1524.7 DEG F)
AIR FLOW= 7.44 KG/SEC(16.4 #/SEC), FUEL FLOW=429.7 KG/HR(947.3 #/HR)

	9.	2	135.9	135.1	134.4	134.6	136.7	138.9	141.7	138.7	135.6	138.3	135.3	137.5	136.2	135.8	137.0	136.9	132.0	129.2	129.8	129.3	124.8*	119.1*	115.6*	115.3*
	o		130.4	129.6	135.6	141.6	145.2	142.3	138.9	140.7	141.8	144.0	141.3	140.1	141.5	139.8	140.3	135.2	133.0	133.5	134.9	133.6	125.3*	124.1*	125.1*	122.1*
	€0	•	134.7	134.5	139.8	145.3	148.1	144.4	139.8	140.6	141.7	145.4	144.1	143.0	143.8	142.8	142.3	138.9	336.6	135.9	136.5	135.9	128.0*	129.5*	128.2*	127.4*
	7	MICROPASCALS	133.1	132.6	137.6	143.4	146.8	143.2	139.9	141.5	142.4	145.7	144.0	142.5	143.2	142.8	142.9	139.2	136.3	135.1	136.1	135.5	126.5*	129.3*	127.2*	126.9*
	•	B RE 20 MICR	133.4	133.1	137.6	143.2	146.6	143.2	140.0	141.4	142.6	146.2	144.0	142.7	144.2	142.5	142.2	138.5	135.6	134.5	135.4	134.9	125.9*	129.4*	127.6*	127.7*
PROBE NO.	Ŋ	URE LEVEL, DI	132.2	131.3	137.1	143.0	146.5	142.7	139.2	141.2	142.0	145.0	143.3	141.9	141.6	141.0	140.5	140.0	137.8	136.2	135.6	134.6	128.5*	128.3*	127.8*	126.2*
	4	DYNAMIC PRESSURE LEVEL,	133.9	133.9	138.7	144.1	147.2	143.5	139.7	141.4	142.8	146.0	144.5	143.2	144.1	142.7	142.9	139.4	137.2	136.0	136.7	135.8	127.4*	129.8*	128.4*	127.0*
	m	٥	130.9	130.4	136.8	142.9	146.4	142.7	139.2	141.1	142.1	145.4	143.6	141.7	142.5	141.8	141.5	137.5	135.8	134.5	133.3	132.2	126.1*	128.1*	127.3*	125.2*
	~		134.1	133.5	137.3	142.1	145.7	142.7	140.4	142.4	143.3	145.1	143.8	145.1	143.0	144.1	142.6	139.7	137.3	134.9	136.3	136.1	128.5*	133.1*	129.7*	126.3*
	-		4.7	4.7	4.7	4.7	4.4	3.8	2.8	1.9	1.7	5.4	5.6	1.5	3.3	3.9	3.8	4.7	5.0	4.5	3.9	4.5	*0.0	*0.0	*0.0	*0.0
		FREQ. HZ	50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0	315.0	400.0	200.0	630.0	800.0	1000.0	1250.0	1600.0	2000.0	2500.0	3150.0	4000.0	2000.0	6300.0	8000.0	10000.0

*NO CORRECTIONS FACTORS APPLIED

ORIGINAL PAGE IS OF POOR QUALITY

11

ı

APPENDIX A

GROUP V

• .

NA.	RUN NO. 205	i	GROUP NO. V					DATE: FEB. 22	22, 1981	
YF-102 AST STAGE LET FRESS AIR FLOW	YF-102 ZEPO FUEL FLUM V SST STACE TURBINE NOZZLE LET FRESS-372.6 KPA(54.0 AIR FLOW- 5.04 KG/SEC(1)	LOW CONDITION 22LE GUIDE VANES 54.0 PSIA), COMB EC(11.12#/SEC),	VES OMB	REMOVED EXIT TEMP=170.6 DEG C(339.2 DEG F) FUEL FLOW= 0.0 KG/HR(0.0 #/HR)	C(339.2 DE R(0.0 #/	DEG F) #/HR)				
					PROBE NO.					
	-	~	**	4	150	•	7	80	٥	2
FREG.	•	ı	<u>.</u>	DYNAMIC PRESSURE LEVEL.	E LEVEL, DB	RE 20 MICROPASCALS	PASCALS			
ZH						,			•	,
50.0	4.2	117.7	120.2	124.9	123.4	126.8	123.6	127.8	2.411	0.111
63.0	4.2	116.3	119.7	124.3	122.4	126.6	123.2	127.7	118.1	110.6
80.0	5.5	119.8	122.5	126.1	124.6	128.2	125.2	129.1	121.1	111.5
0.001	2.5	118.5	121.6	125.5	124.5	128.6	125.1	128.7	119.7	112.2
105.0	0	119.1	121.8	126.2	125.0	128.9	125.9	128.4	119.9	119.2
160.0	, pr	121.2	122.6	126.5	125.5	129.5	126.9	128.2	121.1	119.2
0.000	, ,	121.5	122.5	126.4	125.6	129.9	127.3	127.3	121.3	113.2
260.0		123.6	123.1	127.4	126.5	130.8	128.3	126.8	122.9	118.0
315.0		124.8	124.6	128.7	127.7	132.4	129.7	127.8	124.6	115.4
0.005	100	122.8	123.5	129.1	127.3	133.4	129.6	128.6	123.3	118.8
200.0		123.5	123.6	128.4	127.2	132.5	128.9	128.5	122.7	121.7
630.0	1.0	122.8	122.9	127.3	126.8	130.8	128.6	127.8	122.7	121.5
800.0	e e :	123.3	123.8	128.8	127.7	131.1	130.0	129.2	124.9	119.4
1000.0	4.6	123.9	123.2	127.6	128.6	129.2	129.5	128.6	124.1	123.4
1250.0	3,3	124.1	124.0	128.7	129.8	129.5	130.0	129.0	126.1	132.0
1600.0	4.2	123.4	123.5	128.3	131.2	128.4	128.9	129.1	127.0	134.9
2000.0	4.5	122.1	122.4	126.4	129.2	125.9	126.7	128.1	126.6	131.7
2500.0	3.7	122.0	122.3	125.3	127.5	124.6	125.0	126.7	127.1	130.6
3150.0	4.6	127.5	130.6	129.2	128.6	129.4	128.8	128.6	128.7	141.5
4000.0	3.9	127.9	130.3	130.5	131.0	132.2	131.5	131.9	130.2	149.5
5000.0	*0.0	120.7*	123.0*	123.1*	124.0*	122.4*	121.6*	122.7*	122.0*	129.3
6300.0	*0.0	119.6*	121.4*	123.2*	122.8*	124.5*	123.8*	124.0*	120.2*	128.9
8000.0	*0.0	117.2*	121.8*	123.8*	123.2*	123.4*	122.1*	123.7*	120.0*	130.1
0.0000	*0.0	120.6*	119.6*	121.2*	120.4*	122.1*	120.4*	121.2*	116.8*	124.9

*NO CORRECTIONS FACTORS APPLIED

1'

			•
			•
			,
			-
			•
1			