NASA TM-81370

NASA Technical Memorandum 81370

NASA-TM-81370 19820013301

AIRCRAFT INTERROGATION AND DISPLAY SYSTEM:

A GROUND SUPPORT EQUIPMENT FOR DIGITAL FLIGHT SYSTEMS

Richard D. Glover

.

April 1982

151

1

į

LIBANRY COPY

IAAR 3 0 1982

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA .

AIRCRAFT INTERROGATION AND DISPLAY SYSTEM:

A GROUND SUPPORT EQUIPMENT FOR DIGITAL FLIGHT SYSTEMS

Richard D. Glover Ames Research Center Dryden Flight Research Facility Edwards, California

1982

N82-21175#

• -. • • •

INTRODUCTION

The National Aeronautics and Space Administration (NASA) is conducting research in many areas involving advanced digital systems for both manned and unmanned aircraft, and in ground-based simulators. As these various types of digital flight systems have become more complex, the need has arisen for more sophisticated ground support equipment (GSE) for systems integration, software verification and validation, pre- and postflight testing, and system maintenance. Until recently, the approach taken was for each project to procure special purpose GSE, resulting in a multiplicity of different types of equipment of varying capability. These types of GSE generally were single purpose and were surplussed at the termination of the project. Usually, none of the GSE development investment could be recouped for the next project.

As an approach to a resolution of this problem, the NASA Dryden Flight Research Facility undertook the development of a microprocessor-based user-programmable general purpose GSE, termed aircraft interrogation and display system (AIDS). A prototype was constructed, interfaced with the F-8 digital fly-by-wire (F-8 DFBW) iron bird simulator, and used successfully to support F-8 flight software verification and validation. The general purpose utility of the AIDS was confirmed when applied to the highly maneuverable aircraft technology (HiMAT) project. Using new software, the prototype was easily interfaced with the HiMAT aircraft, and it quickly demonstrated its capability by providing a fortyfold increase in random access memory (RAM) data display bandwidth.

The utility of the AIDS during HiMAT flight control computer testing and systems integration validated the flexibility of the system and led to plans to apply it to other projects. Two AIDS systems are in service, and a third is under construction. The total number of present and planned users is five. This paper describes the AIDS design and mechanization, summarizes operational experience to date, and discusses plans for the future.

The use of trade names or names of manufacturers in this report does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

SYMBOLS AND ABBREVIATIONS

A/D	analog-to-digital converter
AFTI	advanced fighter technology integration
AIDS	aircraft interrogation and display system
ARW	advanced research wing
ASCII	American standard code for information interchange
ASEG	absolute segment
C&D	controls and displays
CPU	central processing unit

CRT	cathode ray tube (display)
CSEG	control segment
DAC	digital-to-analog converter
DAST	drones for aerodynamic and structural test
DFBW	digital fly-by-wire
DSEG	data segment
DSPM	dispersed sensor processing mesh
GSE	ground support equipment
HiMAT	highly maneuverable aircraft technology
HSMU	high speed math unit
I/F	interface
I/O	input/output
KB	keyboard
LED	light-emitting diode
MDS	microprocessor development system
PROM	programmable read-only memory
RAM	random access memory
RTMTX	real-time multitasking executive
STC	system test console
\mathbf{TTL}	transistor-transistor logic
USART	universal synchronous/asynchronous receiver-transmitter

EXPERIENCE WITH SPECIAL PURPOSE GSE

A significant amount of experience was gained during the F-8 DFBW program in the formulation and use of display and driver GSE devices for flight control design, development, verification and validation, troubleshooting, maintenance, preflight testing, and research experimentation (ref. 1). The ground display software was implemented in the F-8 DFBW flight computer itself and consisted of several dedicated and special purpose displays, including system redundancy management status, dynamic sensor data, aircraft system status, failure status, and preflight test and maintenance results.

Although the display system was highly refined and was a key element in the successful development of the fly-by-wire system, it had several drawbacks. First, the display system was designed to operate integrally with the triple-redundant digital fly-by-wire control system, and as such it had to be nonintrusive; that is, the display functions could not alter flight control system operation. This complicated the display system software. Second, the display system required a modest but not negligible share of the flight computer cycle time and memory resources. Third, the display software required a relatively high level of verification because it resided in the flight computer, even though it was never executed in flight. Finally, the system was not portable, and it could not be used on other aircraft programs.

The driver software used for verification and validation tests, such as triplex sensor fault detection, isolation, and recovery, was implemented in the mainframe computer used for aerodynamic simulation. Special purpose pulses, waveforms, and noise signature signals were generated by the driver software and interfaced to the flight computer sensor input processor. Although highly successful, this approach required substantial amounts of simulation computer time for relatively simple computational tasks at a time when the simulation computer served multiple users.

The experience, advantages, and disadvantages of the various approaches used on the F-8 DFBW program, as well as other flight system research projects, laid the foundation for the AIDS design.

DESIGN OBJECTIVES

The AIDS was originally conceived as a stand-alone general purpose ground support equipment device for aircraft digital flight control systems that had the display and driver capabilities of the GSE used for the F-8 DFBW. Early in the conceptual design it was determined that many other applications would be possible for this device. For that reason, design objectives were established that would guarantee the system's generality and flexibility. These design objectives included:

Mobility. The system should be capable of being moved between laboratories, iron bird, and aircraft.

Flexible input/output. The system should be easy to interface with digital and analog systems, be independent of the system-under-test architecture, and minimize that system's servicing burden.

Common core software support package. The system should provide a large share of commonly used display and driver functions for digital flight systems, including (a) number conversion to any desired format and engineering units calibration, (b) bit unpacking and display as event, (c) snapshot block data, (d) parameter trace, (e) data recording or plotting as stripchart or X-Y parameters, and (f) waveform drivers for redundant flight control sensors.

User-oriented displays. The displays should have dynamically refreshed display and provide for user formatting and labeling. Free-form display formats should be available that can be easily constructed in real time (during a test procedure) as new requirements develop. The operator should have the ability to interrupt a display at any time, make modifications to the format, and resume the display within a few seconds. In addition, the operator should have the ability to make display hard copies at any time. Such hard copies should be labeled with date, time, test title, and any other user-determined information.

Utilization of commercial components. Where possible, the system should use commercially available card-level microcomputer hardware and commercial software. This enhances long-term maintenance and minimizes development costs.

Speed. The system should be able to service flight control systems with cycle rates on the order of 50 to 100 samples per second.

Synchronization. The system should acquire and display snapshots of several data words occurring within one computer cycle frame (10 to 20 milliseconds).

Maintenance. The system should contain an integral diagnostic and maintenance support capability.

Operational modes. The system should be easily and quickly convertible between the operating modes shown in figure 1, including real-time data display, open-loop function generator, redundant sensor simulator, and simple closed-loop simulation (a simulation at a single flight condition with linear equations of motion).

FUNCTIONAL DESCRIPTION

The first AIDS device that was developed generally met the design objectives. The AIDS was designed around an 8085A microprocessor system. A diskette subsystem was incorporated which was fully compatible with the off-line support software used to create the AIDS software load modules. A commercially available real-time multitasking executive (RTMTX) was also incorporated, mainly for the management of the diskette drives and diskette directory services.

Figure 2 illustrates the functional arrangement of the AIDS. The particular operating mode is defined by the software modules contained on the system diskette. Any user displays that were previously created are stored on the scratch diskette. These two diskettes are accessed via the real-time multitasking executive software that is permanently recorded on programmable read-only memory (PROM) integrated circuits. The remaining system software is loaded from the system diskette by the RTMTX, and the display formats are loaded from the scratch diskette by the RTMTX as needed. The RTMTX then transfers control of the system to the software loaded, but remains available for subsequent diskette operations and other multitasking as required.

The AIDS supervisor module and companion operator input/output (I/O) modules are software that is common to all users. The supervisor provides command interpreting, software linking, a date register, an updated time-of-day register, and various system control functions. The I/O package provides the main operator interfaces to the control keyboard, the cathode ray tube (CRT) data display, and the hard copy peripherals. The operator enters system commands and display setup instructions via the control keyboard (KB). All displays are presented on the CRT display, which is refreshed at high speed on those areas of the screen which contain active (nonstatic) fields. Hard copies of any display may be made either by operator command or under supervisor control as desired.

User-unique software includes the user application supervisor, user timing control, and one or more user I/O modules. The user application supervisor provides servicing for user interrupts and interfaces with the RTMTX as required. The user timing control module provides basic timing for all user I/O and supporting computation. The user I/O servicing module services the data path to and from the system under test and provides for auxiliary analog outputs to nonAIDS peripheral devices as required.

Figure 2. AIDS functional overview.

HARDWARE DESCRIPTION

Figure 3 shows the mechanization of the current AIDS design. The entire system is mounted in a two-bay console that is mounted on wheels for mobility. The five major components are the computing subsystem, the I/O panel, the diskette drive subsystem, the operator terminal, and the line printer. The user must supply the appropriate cable (s) to mate the system under test to the I/O panel.

Appendix A contains a bill of materials for the major components of the present AIDS mechanization. The fabrication of the computing subsystem was quickly achieved using an industrial chassis incorporating a 12-slot card cage and integral power supply. Minor modifications to the chassis control panel were required to provide for a PROM set select switch, a bus timeout monitor indicator, and several test points. These additions are interfaced to the computing subsystem via circuitry on the universal prototype board.

The various computing subsystem boards listed in appendix A are I/O mapped as shown in figure 4 and memory mapped as shown in figure 5. The central processor unit (CPU) board contains an 8085A microprocessor, which provides adequate computational capability for currently planned operating modes. Table 1 shows the assignment of system interrupts.

The floppy diskette drive unit is a dual-drive single density standard sized diskette system. It interfaces directly to the floppy diskette controller board in the computing subsystem. The single density format provides more than ample storage capability. One drive is used for system program modules, and the other is used for scratch file storage.

The operator terminal is a single unit with a full sized black and white CRT screen and full keyboard. The CRT and keyboard are interfaced to the computing subsystem via a full duplex serial port on system expansion board A. High speed refresh of the CRT display is performed in vectored cursor mode at 1920 characters per second. A minor terminal modification was necessary to provide software control over the cursor marker on the screen. This was achieved by rewiring the keyboard enable/disable flip-flop, which is under software control, to the cursor blanking circuit. This allows the cursor to be blanked during screen refresh operations, resulting in a flicker-free display. The keyboard has been wired permanently enabled.

The line printer is a 5 by 7 dot matrix printer with a dual channel vertical forms unit that allows the proper pagination of all system printouts. The interface to the computing subsystem is via a parallel discretes port on the central processor board.

The I/O panel is a NASA-designed and -constructed unit which provides the user an interface with the computing subsystem for analog and discrete signals. Figure 6 shows the signal paths within the I/O panel. The connectors for the user interface cable(s) are located on the rear of the AIDS cabinet. For each discrete, monitoring jacks and light-emitting diode (LED) indicator lamps are provided on the front of the I/O panel. Internal to the I/O panel are line drivers and receivers for the discretes, which provide the user with a balanced differential double-rail interface. The receivers interface to the computing subsystem via system expansion board A, and the drivers interface via system expansion board B. With regard to analog trunks, the I/O panel is passive and provides only breakout jacks on the front panel. The analog inputs interface with the computing subsystem via the analog input board, which scans the inputs using a ± 10 volt balanced multiplexer. The ± 10 volt unbalanced analog outputs from the computing subsystem are fed from the four analog output boards.

ECN 16415

Figure 3. Aircraft interrogation and display system.

Figure 4. AIDS I/O address map.

Figure 5. AIDS memory map.

Level	Assignment	Application
Trap A B C 0 1 2 3 4 5 6 7	Not used Bus timeout Not used Not used INTR pushbutton Timer no. 0 Disk controller Timer no. 1 External interrupt 1 Hz interrupt USART C receiver USART C transmitter	AIDS tally only User manual interrupt RTMTX task wait timer RTMTX diskette I/O User clock User sync AIDS time of day clock RTMTX terminal handler RTMTX terminal handler

TABLE 1.-AIDS INTERRUPT ALLOCATION

.

Figure 6. AIDS I/O paths.

SOFTWARE DESIGN

Two separate software systems are resident within the AIDS. They are alternately accessible to the operator via a PROM select switch on the front of the computing subsystem chassis. One system is the maintenance and diagnostic software system, which consists of a commercial monitor package designed for the central processor board plus a NASA-designed set of extension routines. This package, which is stored as firmware on two PROMs that are installed on the central processor board, is executed when the PROM select switch is in the "monitor" position. This software provides basic AIDS trouble-shooting services and diskette subsystem test routines.

The second software system is the main AIDS hierarchy, which consists of the components shown in figure 7. This software structure is shown from bottom to top in the order the four components become active in the system. The first component to execute is the RTMTX, which is a commercial package designed to be used with the central processor board and provides diskette subsystem services. This package is stored as firmware on eight PROMs installed on the system expansion boards and is executed when the PROM select switch is in the "disk" position. The remaining three software components are loaded into the AIDS memory from the system diskette in drive 0, and are mapped as shown in figure 8.

Embedded in the RTMTX firmware is a configuration module that defines the characteristics and mapping of the diskette subsystem hardware. It also specifies the tasks to be created when the system is initialized. The task list includes the diskette drive controller board handler, the diskette I/O handler, several diskette directory servicing routines, the full terminal handler, and the bootstrap loader. These routines and associated variables are accessible via PUBLIC labels, which can be linked to user code. Since the RTMTX code requires no maintenance, the PROM set never requires reprogramming and the integrity of the hardware is enhanced. Appendix B contains a listing of the configuration module and the SUBMIT file used to create the RTMTX firmware.

When the AIDS is powered up (or reset) with the PROM select switch in the "disk" position, the RTMTX begins executing and sets up the tasks specified by the configuration module. When the bootstrap loader becomes the active task, it seeks a file called RMXSYS on the system diskette, loads it into random access memory, and starts executing it. The file : F0: RMXSYS always contains the AIDS supervisor task module component of the AIDS software hierarchy. Once loaded, this module assumes central control of the system and is the point to which all other components return when execution is completed.

The AIDS supervisor contains an initialization routine followed by a looping command interpreter routine. It also contains many routines which are commonly needed by the different AIDS users. These include the CRT/KB handler, printer handler, analog I/O drivers, scratch diskette librarian, time-of-day clock, display data formatters, and utility routines. These can be accessed by a user via hard-mapped linkages in the common data area.

One of the functions performed by the AIDS supervisor during the initialization procedure is to request the RTMTX to load a module called USER from the system diskette. The file : F0: USER always contains the user main module component of the software hierarchy. Within it are contained the user interrupt servicing routines, user I/O packages, and an initialization subroutine. It also contains tables defining the syntax for user commands and user scratch file load control.

Figure 7. AIDS software hierarchy.

.

.

.

-

Figure 8. AIDS RAM allocation.

The fourth component of the AIDS software hierarchy are overlays. Overlay modules are generally loaded and executed in response to a keyboard command, and they always provide a specific function. They are linked to the remaining software via absolute entry addresses within the overlay area and, like the USER main module, have access to AIDS supervisor subroutines and variables via the common area. In general, each overlay has associated with it a unique display which is presented on the CRT. Overlays may be either system or user related. Most are operator interactive, and all must exit back to the AIDS supervisor when the KB escape key is pressed. System overlays provide functions such as interrupt control, printer moding, clock management, and I/O panel monitoring. User overlays are not restricted as to function but must conform to the mapping, linkage, and escape conventions required of all AIDS overlays.

Taken as a whole, the design of the AIDS software is intended to provide a multitasking environment within which the various system and user tasks can share a single CPU. The lowest priority task is always the servicing of the operator interface, which includes the CRT, KB, and printer. All higher priority tasks are invoked by interrupts, which require temporarily halting the operator I/O. A typical user application might involve responding to a sync interrupt from the system under test, inputting data, performing computations, outputting data, and setting up a data buffer for the current operator display. As the amount of time required to service such an interrupt increases, the most noticeable effect is the slowing of CRT screen refresh. Another variable that affects screen refresh is the amount of data being displayed, since there is computational overhead associated with formatting as well as screen write operations. The performance of the AIDS in various applications will be later quantified as a duty cycle or percentage of time which is devoted to interrupt-driven code execution as opposed to operator I/O.

USER EXPERIENCE

Since 1978, the AIDS has been employed in support of three research projects and is planned for use in at least two others. Two AIDS units are in active use, and a third unit is soon to enter service. The F-8 DFBW iron bird application (ref. 1) allows closed-loop aerodynamic simulation and redundant sensor fault emulation, providing valuable support in software verification and validation. The HiMAT remotely piloted research vehicle application (ref. 2) provides open-loop display of onboard computer memory data. It is used extensively in support of simulation, preflight testing, and system troubleshooting. Another user project is an experimental nodal network data bus breadboard (ref. 3). For this project the AIDS provides test set capability for the I/O processor in each node and monitors bus message traffic. A planned future application is support for the AFTI/F-111 project (ref. 4) where the AIDS will monitor the interchannel message traffic within the redundant flight system. Another future application is support for the DAST ARW-II project (ref. 5), where the AIDS will provide test set capability for a multiprocessor flight computer as well as provide the usual data display functions.

One measure of the performance of the AIDS is the loading or level of saturation of its central processor for each application. Loading may be defined as the duty cycle or percentage of time required to perform time-critical (interrupt-linked) computational tasks as opposed to operator I/O functions. The duty cycle ranges from 90 percent for the F-8 DFBW simulation to 10 percent for the HiMAT data display function. Screen refresh rates for the F-8 DFBW are very low (typically 0.5 per second). For a typical HiMAT display, however, the refresh rate is comfortably high (4 per second). The time required to perform a line printer hard copy of a display snapshot is roughly proportional to the refresh rate of the display and varies from 20 seconds to 5 seconds.

The HiMAT application best demonstrates the capabilities of the AIDS, and it has accumulated the most AIDS operating time, with over 2000 hours in a 3 year period. This application grew out of the need to augment the data display capability of the manufacturersupplied GSE, called the system test console (STC). The STC mates with the HiMAT aircraft umbilical connector, and one of its functions is to allow the contents of the onboard computer memory to be examined. However, the STC can only display a single byte as a bit pattern expressed in octal digits, severely limiting the visibility of the functioning of the onboard computer.

To provide the needed additional display capability, the AIDS was connected to the STC as shown in figure 9. The 16 address lines are tied in common to the STC thumbwheels used for manual RAM address selection. The 8 data lines are tied to the output from the onboard computer, which feeds the decoders driving the STC octal display. The AIDS sequentially outputs an address, waits for a sync pulse from the onboard computer, and then reads the RAM data byte output by the computer. This sequence is repeated every 20 milliseconds, which is the rate at which the onboard program services the test console interface.

The AIDS operator controls which addresses are to be read by creating with KB inputs a formatted CRT display (called a page) that specifies by data type and RAM memory location, which items are desired. Table 2 shows the different data display formats available to the operator. Of these, only codes VG and DG (specially scaled fixed-point formats for the vertical gyro and directional gyro, respectively) are unique to HiMAT. Note that a single data item causes from 1 to 15 successive RAM addresses to be read. The AIDS software builds an address table based on the display requirements and scans this table repetitively. As the data is returned, it is buffered, formatted for display, and presented on the CRT in a continuously refreshed mode.

Appendix C contains hard copies of representative HiMAT displays. Also shown is a typical scratch diskette directory page and a hard copy of the command interpreter display, which lists the system and user commands available. The HiMAT project uses these display pages and others to support software verification and validation, system maintenance, preflight and postflight tests, and closed-loop simulations. Over 100 display page formats of various types have been created and placed on scratch diskette. The AIDS has become an integral part of such critical testing as the preflight test, where AIDS data dumps are written into several procedure sequences. The ability to select a scratch diskette and quickly (in 1 to 3 seconds) load any of up to 45 display page files has been of great benefit to the HiMAT project. In addition, the inherent flexibility of the software system has been demonstrated repeatedly by the changes that have easily been implemented in response to project engineering request.

CONCLUDING REMARKS

General purpose user-programmable ground support equipment has been developed and placed in service in support of both aircraft and simulation facilities. Three years' experience involving several users has demonstrated the utility of the system concept and created a demand for additional systems to support future users. The flexibility of the concept has been demonstrated in a wide range of applications, including real-time data acquisition, software verification and validation, system integration testing, and real-time closed-loop simulation.

The major contribution of the system, known as the aircraft interrogation and display system (AIDS), has been its ability to make visible the functioning of a digital flight

Figure 9. AIDS to HiMAT interface.

Numb	er	Code	Number of bytes	Number of bits	Data type	Sign?	Number of columns	Display format
1 2		H1 H2	1 2	8 16	Any Any		24	нн ннни
3		H3	3	24	Any		6	ннинн
4	-	H4	4	32	Any		8	нннннннн
5		B1	1	8	Any		8	BBBBBBBB
6		B2	2	16	Any		16	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
7		F4	4	32	Floating point	Y	10	[-]DDDDD.DDD
8		I1	1	8	Integer	N	4	DDD
9		12	2	16	Integer	N	6	
10		D1	1	8	Integer	Y	4	[-]DDD
11		D2	2	16	Integer	Y	6	
12		DD	2	12	DAC value	Y	6	[-]DDDDD
13		DH	2	12	DAC value		3	ннн
14		DV	2	12	DAC value	Y	7	[-]DD.DDD
15		01	1	8	Any		3	000
16		O2	2	16	Any		6	000000
17		A1	1		ASCII string		1	Α
18		A2	2		ASCII string		2	AA
19		A3	3		ASCII string		3	ААА
20		A4	4		ASCII string		4	АААА
21		A5	5		ASCII string		5	ΑΛΑΑΑ
22		A6	6		ASCII string		6	АААААА
23		A7	7		ASCII string		7	АААААА
24	i	A8	8		ASCII string		8	ААААААА
25		A9	9		ASCII string		9	ΑΑΑΑΑΑΑΑ
26		AA	10		ASCII string		10	АААЛААААА
27		AB	11		ASCII string		11	ΑΑΑΑΑΑΑΑΑΑ
28		AC	12		ASCII string		12	ААААААААААА
29		AD	13		ASCII string		13	ААААААААААААА
30		AE	14		ASCII string		14	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
31		AF	15		ASCII string		15	АААААААААААААААА
32		E0	1	1	Event bit 0		4	" ONE" or "ZERO"
33		E1	1	1	Event bit 1		4	" ONE" or "ZERO"
34		E2	1	1	Event bit 2		4	" ONE" or "ZERO"
35		E3	1	1	Event bit 3		4	" ONE" or "ZERO"
36		E4	1	1	Event bit 4		4	" ONE" or "ZERO"
37		E5	1	1	Event bit 5		4	" ONE" or "ZERO"
38		E6	1	1	Event bit 6		4	" ONE" or "ZERO"
39		E7	1	1	Event bit 7		4	" ONE" or "ZERO"
40		F1	1	8	Fixed point	Y	10	[-]DDDDD.DDD
41		F2	2	16	Fixed point	Y	10	[-]DDDDD.DDD
42		DG	2	16	Directional gyro	Y	10	[-]DDD.DDD
43	1	VG	2	16	Vertical gyro	Y	10	[-]DDD.DDD
1								1

TABLE 2.-AIDS DATA DISPLAY FORMATS

Display format key: H = hexadecimal digit 0 to 9, A to F B = binary digit 0 or 1 D = decimal digit 0 to 9 O = octal digit 0 to 7 A = any ASCII character

system, thus enhancing test coverage, troubleshooting, and the efficiency with which experiments are conducted.

The use of off-the-shelf commercial hardware and operating system software greatly reduced the development effort and cost of ownership.

Because of the capabilities of AIDS and its user-oriented operational features, experience to date, which has involved a complex flight development and integration project, has been excellent, with extremely high acceptance.

National Aeronautics and Space Administration Ames Research Center Dryden Flight Research Facility February 3, 1982

APPENDIX A .—AIDS COMPONENTS

-

-

-

This appendix lists the components of AIDS.

The major computing subsystem components, which are from the Intel Corporation, are as follows:

- ICS-80 KIT 640 Chassis and Power Supply (1 each) Rack mount chassis, control panel, heavy duty power supply, four-slot card cage module, multibus backplane
- SBC 614 Card Cage Modules (2 each) Expands above kit to 12 slots capacity
- SBC 80/30 Central Processor Board (1 each) 8085A CPU, 16K bytes RAM, 4K bytes PROM, serial port, 24 discrete I/O lines, interval timer, interrupt controller
- SBC 116 Expansion Boards (2 each) 16K bytes RAM, 8K bytes PROM, 48 discretes I/O, serial port
- SBC 724 Analog Output Boards (4 each) Each board provides four 12-bit DAC channels, range ±10 volts
- SBC 711 Analog Input Board (1 each) Provides 16 balanced channels, range ±10 volts, 12-bit A/D
- SBC 204 Floppy Diskette Controller Board (1 each) Provides control of two single-density standard sized drives
- SBC 310 High Speed Math Unit Board (1 each) Provides 16-bit and 32-bit arithmetic, fixed and floating point
- SBC 905 Universal Prototype Board (1 each) 1 Hz clock circuitry, bus timeout monitor circuit, PROM switching control logic, external interrupt termination
- RMX80 Real-Time Multitasking Executive (1 each) RMX830.LIB, BOT830.LIB, BOTUNR.LIB, DFSDIR.LIB, DIO830.LIB, DFSUNR.LIB, THI830.LIB, THO830.LIB, PLM80.LIB

Additional components of the AIDS are as follows:

Floppy Diskette Drive Unit

Manufacturer:	Data Systems Design, Inc.
Type:	DSD-110-IN-2A drive unit (1 each)
	DSD-CM chassis mount for rack (1 each)
Interface:	Cable provided to mate with SBC-204 controller
Characteristics:	Dual drives, standard sized floppy diskettes, single density IBM soft-sectored
Operator Terminal	
- Manufacturer:	SOROC Technology

Type:IQ-120Interface:RS-232C serialCharacteristics:19,200 baud rate, 24 lines by 80 columns, vectored cur			
Interface:RS-232C serialCharacteristics:19,200 baud rate, 24 lines by 80 columns, vectored cur	Type:	IQ-120	
Characteristics: 19,200 baud rate, 24 lines by 80 columns, vectored cur	Interface:	RS-232C serial	
capability	Characteristics:	19,200 baud rate, 24 lines by 80 columns, vectored curso capability	r

Line Printer	
Manufacturer:	Centronics Data Computer Corp.
Type:	306C
Interface:	Standard Centronics parallel TTL interface
Characteristics:	5×7 dot matrix, tractor feed, $80/132$ character/line,
	120 character/second print rate, two-channel vertical forms unit

•

-

-

-

٩

-

APPENDIX B.-AIDS REAL-TIME MULTITASKING EXECUTIVE LISTINGS

Following are printer listings generated during the building of the AIDS real-time multitasking executive firmware.

,

Configuration Module

This listing shows the software components which together comprise the software system create table. It defines the initial task table, the initial exchange table, several hardware definition tables, and miscellaneous data storage area declarations.

ASM80 :F1:CONFIG

ISIS-II B080/8085 MACRO ASSEMBLER, V3.0 CONFIG PAGE 1 AIDS RMX SYSTEM CONFIGURATION MODULE 12 DEC 1979 LOC OBJ LINE SOURCE STATEMENT TITLE ('AIDS RMX SYSTEM CONFIGURATION MODULE 12 DEC 1979') 1 \$ 2 3 NAME CONFIG ; R GLOVER PUBLIC ROCRTB 4 5 PUBLIC RQLOEX, RQL3EX, RQL4EX, RQL5EX, RQLAEX, RQLBEX, RQLCEX 6 7 CSEG 8 0000 0600 9 ROCRTB: DH III **FINITIAL TASK TABLE** C 0002 OA 10 BB 10 С 0003 B000 11 DH IET **FINITIAL EXCHANGE TABLE** 0005 12 12 DB 18 13 14 ITT: 15 16 j DISK CONTROLLER TASK 17 18 PUBLIC ROL2EX, CNTL1X 19 EXTRN ROHD4 20 0006 53424332 21 TASK1: DB 'SBC204' **; DISK CONTROLLER BOARD HANDLER** 000A 3034 22 23 RQHD4 0000 3000 Ε DH 000E 9600 D DH STK1 0010 5000 24 DN 80 0012 21 25 DB 33 **; INTERRUPT LEVEL 2 USED FOR 204 BOARD** 0013 7800 Ð 26 DH CNTL1X 27 0015 EA02 Ð DH TD1 28 29 ; TERMINAL HANDLER TASK 30 31 PUBLIC UREADX, UNRITX 32 EXTRN ROTHDI, ROINPX, ROOUTX, ROWAKE, RODBUG, ROALRH, ROL6EX, ROL7EX 33 0017 5445524D 34 TASK2: DB 'TERMIO' 001B 494F 001D 0000 ROTHDI Ε 35 DW 001F E600 36 DN ß STK2 0021 2400 37 BN 36 0023 70 38 DB 112 **FINTERRUPT LEVEL 6 USED FOR KEYBOARD INPUT** 0024 0000 £ 39 ROUTX DW 0026 FE02 40 DH D **TD2** 41 42 3 DISK I/O MAIN TASK 43 44 EXTRN ROPDSK/RODSKX 45 002B 4449534B 46 TASK3: DB 'DISKIO' 002C 494F 002E 0000 Ε 47 DH ROPDSK 0030 0A01 ₿ 48 STK3 DH 0032 3000 49 DH 48 0034 81 50 DB 129 Ε 0035 0000 51 DH RODSKX

ISIS-II 8080/8085 MACRO ASSEMBLER, V3.0 CONFIG PAGE 2 AIDS RMX SYSTEM CONFIGURATION MODULE 12 DEC 1979

-

4

^

-

LOC	OBJ		LINE		SOURCE S	TATEMENT	
0037	1203	D	52 53		DW	TD3	
			54 55	;	DISK SE	RVICES TASKS (6)	
			56		PUBLIC	RODBUF, ROBAB	
			57		EXTRN	ROPDIR, ROPATR, ROPD	EL, ROPFHT, ROPLD, ROPRNM
			58		EXTRN	RQDIRX, RQATRX, RQDE	LX,RQFMTX,RQLDX,RQRNMX
			59				
0039	44495253		60	TASK4:	DB	'DIRSVC'	; DIRECTORY SERVICES
003D	5643						
003F	0000	E	61		DW	ROPDIR	
0041	3A01	D	62		DW	STK4	
0043	3000		63		DH	48	
0045	82		- 64		DB	130	
0046	0000	E	65		DN	RODIRX	
0048	2603	D	66		DH	TD4	
			67				
004A	41545452		68	TASK5:	DB	'ATTRIB'	; ATTRIBUTES
004E	4942						
0050	0000	Ε	69		DH	ROPATR	
0052	6A01	D	70		BN	STK5	
0054	4000		71		DH	64	
0056	83	_	72		DB	131	
0057	0000	Ε	73		DW	ROATRX	
0059	3A03	B	74		DW	TD5	
			/5	TARV			
0028	44404640		/6	185401	08	INELE IE'	
1CVV	0440 0000	r	77		DI.	000000	
0001	4401	t n	7/		UN THI	KUPDEL CTK/	
0003	4000	ŋ	70		10M 1017	JINO	
VV0J	04		77 100		שע הס	172	
0010	0000	r	01		มม มน	PORELY	
0066	4503	n	82		กม	TA	
VVUN	1675	2	83		μn	190	
3800	464F524B		84	TASK7:	DB	'FORMAT'	
0070	4154						
0072	0000	Ε	85		DH	ROPFNT	
0074	EA01	D	86		DH	STK7	
0076	4000		87		DW	64	
0078	85		88		BB	133	
0079	0000	Ε	89		DH	RQFMTX	
007B	6203	D	90		DN	TD7	
			91				
007B	4C4F4144		92	TASK8:	D8	'LCAD '	
0081	2020	_					
0083	0000	Ε	93		DW	ROPLD	
0085	2A02	D	- 74		DW	STK8	
0087	4000		95		DW	64	
0089	50	-	96		DB	134	
A900	0000	Ł	9/		UW DU	KULUX	
0080	1903	n	78		ШM	מתו	
	52454641		100	TACKO	n R	PENAME!	
0000	4045		144	instri		1746 J ((1) 166	
AA17	1010						

.

ISIS-I AIDS R	I BOBO/BO Mx System	B5 M Con	ACRO ASSEMBLI FIGURATION M	ER, V3.0 ODULE) 12 DEC 19	CONFIG 79	PA	Έ 3
LOC	OBJ		LINE	SOURCE S	STATEMENT			
0094	0000	Ε	101	DH	ROPRNM			
0096	6A02	D	102	DH	STK9			
0078	4000	•	103	DH	64			
007A	87		104	DB	135			
0078	0000	Ε	105	DW	RORNMX			
009D	8A03	D	106	DN	TD9			
			107	ROOTSTR		TASK		
			109					
			110	FUBLIL EVTDN	PODOD			
			111	CAIRN	KUDUUI			
0000	10101001		112 117 TACKIA:	חס	/ DOOT			
0017	121010J1 2020		115 Makiv.	D D	DUUT			
0045	2020	c	114	ทม	POROGT			
0047	4400	E n	117	50 10	CTKIA			
0040	ANV2 4000	IJ	115	DMI	31KIV 44			
0047	FF		110	DR DR	254			
0000	0000		118	ກມ	0			
0045	9F03	D	119	DW	TD10			
AAUC	1643		120	211	1210			
			121 ;	INITIAL	EXCHANGE	TABLE		
			122					
00B0	0F00	D	123 IET:	DH	RQL2EX			
00B2	7800	D	124	DN	CNTL1X			
00B4	0000	ε	125	DH	RQINPX			
00B6	0000	Ε	126	DH	RQOUTX			
0088	0000	Ε	127	DN	RQWAKE			
OOBA	0000	Ε	128	DN	RODBUG			
OOBC	0000	Ε	129	DW	RDALRM			
00BE	0000	Ε	130	BM	RQL6EX			
0000	0000	Ε	131	DH	RQL7EX			
00C2	8200	D	132	DW	UREADX			
0004	BCOO	D	133	DW	UNRITX			
0006	0000	Ł	134	UH	RUUSKX			
0008	0000	E -	135	DN DU	KUUIKA			
0000	0000	Ł	136	UM DV	REATER			
0000	0000	F	137	את מא	RUDELA			
0000	0000	F	139	DW DW	ROITIX			
0002	0000	F	140	DW	RORNMX			
		-	141	•				
			142 ;	TABLES	FOR DISK	CONTROLL	ER 1	TASK
			143					
			144	PUBLIC	RQCST/RQ	NDEV;RQD	ICT / F	CDRC4
			145					
00D4	02		146 ROCST:	DB	2		1 00	INTROLLER SPECIFICATION TABLE
0005	70		147	DB	70H		i 20	A BUARD I/O ADDRESS
0006	02		148	DB	2		; 1	(IEKKUPT LEVEL 2
0007	OFOO	ĥ	147	UM DH	RUL2EX			
0009	1800	IJ	120	NM	LNILIX			
	A7		101	ΠĎ	2		• w	
00DB	V2		157 KUNULV:	08	2		/ NL	HIDER OF DRIVED
ለለክሮ	4430		154 RODOT!	na	'FO'		; 65	VICE CONFIGURATION TABLE
4400	1004		***	**				

-

-

28

ISIS-II 8080/8085 MACRO ASSEMBLER, V3.0 CONFIG PAGE 4 AIDS RMX SYSTEM CONFIGURATION MODULE 12 DEC 1979

~

-

-

LOC	OBJ		LINE	:	SOURCE	STATEMENT			
00DE 00DE	00		155		DB	0,0,0			
00E0	00								
00E1	4631		156		DB	'F1'			
00E3	00		157		DR	01011			
0064	01								
VVLJ	v.		158						-
00E6	01		159	RODRC4:	DB	1		1	DRIVE CHARACTERISTICS TABLE
00E7	70		160		ער מע	70H 0		1	204 BUAKU 170 ADDKESS CONTROLLED CHTP A
00E9	08		162		DB	8		;	TRACK STEP TIME = 8 MS
OOEA	08		163		DB	8		;	HEAD SETTLING TIME = 8 MS
OOEB	49		164		DB	49H		i	INDEX COUNT = 4 , LOAD TIME = 35 MS
			165		DUCCCO		PL OCK		
			167	,	DUFFER		DLUGK		
00EC	0000		168	RQBAB:	DW	0,0		;	STATIC MODE
00EE	0000								
00F0	02		169		DB			;	MAXIMUM OF 2 FILES CONCURRENTLY UPEN
00F1	6E07	ប	170		UN	DADKAN			
			171		DSEG				
			173						
0000			174	RQLOEX:	DS	15		;	EXCHANGE AREA
000F			175	ROLZEX:	DS DS	15 15			
0020			170	RDL4EX:	DS	15			
003C			178	RQL5EX:	DS	15			
004B			179	ROLAEX:	DS	15			
005A			180	RULBEX:	US ns	15			
0078			182	CNTL1X:	DS	10			
0082			183	UREADX:	DS	10			
008C			184	UNRITX:	DS	10			
1004			187	STK1:	חכ	80		:	STACK ARFA
00E6			187	STK2:	DS	36		'	Strick men
010A			188	STK3:	DS	48			
013A			189	STK4:	DS	48			
016A			190	STK5:	DS DC	64			
01FA			192	STK7:	BS	64			
022A			193	STK8:	DS	64			
026A			194	STK9:	DS	64			
02AA			195	STK10:	DS	64			
02FA			197	TD1:	DS	20		;	TASK DESCRIPTOR AREA
02FE			198	TD2:	DS	20			
0312			199	TD3:	DS	20			
0326			200	TD4:	DS	20			
074F			201	TRA:	us BS	20			
0362			203	TD7:	DS	20			
0376			204	TD8:	DS	20			

29

.

ISIS-I AIDS R	IE MX	3080/808 System	5 MACRO Configui	ASS Rati	SEMBL Ion M	ER, V Iodule	13.0 1	2 DE	C 19	CONFIG 779	PA	GE	5									
LOC	OB	IJ	LINE			SOURC	E ST	ATEM	ENT													
038A			205	TD9	:	DS		20														
039E			206	TD1	0:	DS		20														
A789			207	DOF		DC.					T.				1 51 J	reen						
0382			208	RUP	YOUL +	DO DC		230		,	g: n	001318 10000	ONCCCC	UEK	₿U	FFER						
0902 0745			207	ROL ROL	RAM:	100 100		ROD		,	R	AR RUE	FFR									
VIUL			211	PAL	Ann.	53				,			1 21									
			212			END																
PUBLIC	SY	MBOLS																				
CNTLIX	D	0078	RQBAB	0 0)0EC	RC	ICRTB	C 0	000	RECST	C	00D4	RQI	BUF	D	04B2	RODCT	C	OODC	RQDRC4	C	00E6
RQLOEX	Ð	0000	RQL2EX	DC)00F	RD	IL3EX	DO	01E	ROL 4EX	D	002D	RQL	.SEX	D	003C	RDLAEX	D	004B	RQLBEX	D	005A
ROLCEX	D	0069	RONDEV	0 0	ODB	RØ	POOL	ΒO	3B2	UREADX	D	0082	UWR	XTI	D	008C						
FXTERN	Al	SYMBOLS																				
ROALRM	Ε	0000	RQATRX	ΕC	0000	RØ	BOOT	E 0	000	RODBUG	£	0000	RQI	ELX	E	0000	RODIRX	Ε	0000	RODSKX	Ε	0000
ROFMIX	Ε	0000	RQHD4	EC	000	RØ	INPX	Ε0	000	RQL6EX	Ε	0000	RQL	.7EX	Ε	0000	RQLDX	Ε	0000	RQOUTX	ε	0000
ROPATR	Ε	0000	ROPDEL	ΕÇ	0000	RG	PDIR	ΕQ	000	ROPDSK	Ε	0000	RQP	FNT	Ε	0000	ROPLD	Ε	0000	ROPRNM	E	0000
RORNMX	Ε	0000	ROTHDI	ΕΟ	000	RG	NAKE	E 0	000													
NCEB C	үмт	2015																				
BABRAM	٦D.	076F	CNT) 1Y	τ 0	078	TE	т	c o	080	TTT	С	0006	RDA	I RM	F	0000	RDATRY	F	0000	ROBAB	C	OOFC
POROAT	ŗ	0000	ROCETR	r n	1000	20	DCST	00	014	RODRUF	'n	0482	ROI	IBUG	F	0000	RADCT	Ē	OODC	ROBELX	Ē	0000
RODIRX	F	0000	RODRC4	сõ	OF6	RO	DSKX	FO	000	ROFMIX	F	0000	ROH	184	Ē.	0000	ROINPX	F	0000	RDIOFX	ñ	0000
RQL2EX	D	000F	RQL3EX	ĐC	01E	RG	L4EX	D O	02D	RQLSEX	D	003C	RQL	6EX	Ē	0000	RQL7EX	Ē	0000	ROLAEX	D	004B
ROLBEX	Ð	005A	ROLCEX	D C	069	RD	LDX	ΕQ	000	RONDEV	3	OODB	RQO	UTX	Ε	0000	ROPATR	Ε	0000	ROPDEL	Ε	0000
ROPDIR	Ε	0000	ROPDSK	ΕC	000	RQ	IPFNT	Ε0	000	ROPLD	Ε	0000	RQP	100	D	03B2	ROPRNM	Ε	0000	RORNMX	Ε	0000
RQTHDI	Ε	0000	RONAKE	ΕQ	000	ST	K1	DO	096	STK10	D	02AA	STK	2	D	00E6	STK3	₿	010A	STK4	D	013A
STK5	D	016A	STK6	BO	144	ST	K7	DQ	1EA	STK8	D	022A	STK	.9	D	026A	TASK1	C	0006	TASK10	C	009F
TASK2	0	0017	TASK3	0 0	028	TA	SK4	C 0	039	TASK5	C	004A	TAS	K6	0	005B	TASK7	C	006C	TASK8	C	007D
TASK9	C	008E	TD1	DC	2EA	TB	10	DO	39E	TD2	D	02FE	TD3	\$ 	D	0312	TD4	D	0326	TDS	D	033A
TD6	D	034E	TD7	DQ	362	ΤŪ	8	DO	376	TD9	Ð	038A	URE	ADX	D	0082	UWRITX	D	008C			

-

ASSEMBLY COMPLETE, NO ERRORS

SUBMIT File Listing

This listing defines the sequence of operations performed by the MDS in building the firmware. The configuration module is linked with the other RTMTX modules, located at address 40H, and finally converted to a HEX file, which is used to program the PROMs.

```
Å
  :F1:RMX830.LIB(START);
                          &
  :F1:RMX830.LIB(SUSPND)RESUME/DLTASK/DLEXCH)/
                                                 â
  :F1:CONFIG.OBJ,
                   &
  :F1:B0T830.LIB;
                   ŝ.
  ;F1:DFSDIR.LIB(SEEK,DIRECTORY,ATTRIB,DELETE,RENAME,LOAD),
                                                              å
  :F1:DFSDIR.LIB(FORMAT/FORMAT201/FMTTABLE)/ &
  :F1:DI0830.LIB,
                   &
  :F1:DFSUNR.LIB;
                   &
  :F1:THI830.LIB,
                   ŝ.
  :F1:TH0830.LIB,
                   &
  :F1:RMX830.LIB,
                   $
  :F1:BOTUNR.LIB,
                   Â,
  :F1:PLM80.LIB &
      X0 &
  :F1:ROM.OBJ &
      MAP
          î.
      PRINT(:F1:ROMLNK.LST)
LOCATE
       $
  :F1:ROM.OBJ &
      XO &
  :F1:ROM.ABS
               å
      CODE(40H)
                 â
      STACKSIZE(0)
                    $
      DATA (ODCOOH)
                    &
      MAP
          å
      PUBLICS
               &
      SYMBOLS
               å
      LINES &
     PRINT(:F1:ROMLOC.LST)
ATTRIB :F1:ROM.HEX WO
DELETE :F1:ROM.HEX
OBJHEX :F1:ROM.ABS TO :F1:ROM.HEX
ATTRIB :F1:ROM.HEX W1
COPY :F1:ROMLNK.LST TO :LP:
COPY :F1:NAME TO :LP:
COPY :F1:DATE TO :LP:
COPY :F1:ROMLOC.LST TO :LP:
```

Linker Listing

This listing is generated by the object linker and provides a list of all modules included.

```
ISIS-II OBJECT LINKER V3.0 INVOKED BY:
-LINK &
    :F1:B0T830.LIB(VECRST); &
ж×
<del>16 16</del>
    :F1:RMX830.LIB(START);
                              8.
    :F1:RMX830.LIB(SUSPND/RESUME/DLTASK/DLEXCH)/
                                                      å
ж×
    :F1:CONFIG.08J/
                       å
    :F1:BOT830.LIB;
₩¥
                       å
    :F1:DFSDIR.LIB(SEEK, DIRECTORY, ATTRIB, DELETE, RENAME, LOAD),
                                                                     å
ж¥
    :F1:DFSDIR.LIB(FORMAT/FORMAT201/FMTTABLE)/ &
<del>){</del> <del>}{</del>
жж
    :F1:DI0830.LIB,
                       &
ж×
    :F1:DFSUNR.LIB;
                       å
¥ ¥
    :F1:TH1830.LIB;
                       &
    :F1:TH0830.LIB,
                       ê,
ж×
    :F1:RMX830.LIB;
                       å
¥ ¥
ж×
    :F1:BOTUNR.LIB;
                       &
<del>¥</del> ¥
    :F1:PLM80.LIB &
¥Ж
        3 TO &
    :F1:ROM.OBJ
¥ ¥
                  8,
        MAP &
ж×
        PRINT(:F1:ROMLNK.LST)
ж¥
LINK MAP OF MODULE ROM
WRITTEN TO FILE :F1:ROM.OBJ
MODULE IS A MAIN MODULE
SEGMENT INFORMATION:
START
        STOP LENGTH REL NAME
               3EFBH B
                          CODE
               1275H
                      B
                          DATA
                 60H
                      В
                          STACK
0000H
       0002H
                  3H
                       A
                          ABSOLUTE
0008H
       000AH
                  3H
                      A
                          ABSOLUTE
0010H
       0012H
                  3H
                      Α
                          ABSOLUTE
001.8H
       001AH
                  ЗH
                      Α
                          ABSOLUTE
                  3H
                          ABSOLUTE
0020H
       0022H
                      A
0024H
       002EH
                  BH
                      A
                          ABSOLUTE
                  3H
                          ABSOLUTE
0030H
       0032H
                      Α
0034H
       0036H
                  ЗH
                       A
                          ABSOLUTE
0038H
                          ABSOLUTE
                  3H
                      Α
       003AH
003CH
       003EH
                  ЗH
                       A
                          ABSOLUTE
INPUT MODULES INCLUDED:
 :F1:BOT830.LIB(VECRST)
 :F1:RMX830.LIB(START)
 :F1:RMX830.LIB(SUSPND)
 :F1:RMX830.LIB(RESUME)
 :F1:RMX830.LIB(DLTASK)
 :F1:RMX830.LIB(DLEXCH)
 :F1:CONFIG.OBJ(CONFIG)
 :F1:BOT830.LIB(IN830P)
 :F1:BOT830.LIB(RQBOOT)
 :F1:BOT830.LIB(FILNAM)
 :F1:B0T830.LIB(RDSECT)
 :F1:DFSDIR.LIB(SEEK)
 :F1:DFSDIR.LIB(DIRECTORY)
 :F1:DFSDIR.LIB(ATTRIB)
 :F1:DFSDIR.LIB(DELETE)
 :F1:DFSDIR.LIB(RENAME)
 :F1:DFSDIR.LIB(LOAD)
 :F1:DFSDIR.LIB(FORMAT)
 :F1:DFSDIR.LIB(FORMAT201)
```

:F1:DFSDIR.LIB(FMTTABLE) :F1:DI0830.LIB(DISKID) :F1:DI0830.LIB(HAN204) :F1:DFSUNR.LIB(NOFORMAT202) :F1:DFSUNR.LIB(NOFORMAT204) :F1:DFSUNR.LIB(NOFORMAT206) :F1:DFSUNR.LIB(DRIVETIMEOUTVAL) :F1:DFSUNR.LIB(MINISTARTUP) :F1:THI830.LIB(THDINI) :F1:TH1830.LIB(ECH0) :F1:THI830.LIB(STDINP) :F1:THI830.LIB(PRIINP) :F1:THI830.LIB(SCANBAUDRATE) :F1:TH1830.LIB(LNEDIT) :F1:TH0830.LIB(THDINO) :F1:TH0830.LIB(CONTROL) :F1:TH0830.LIB(USART8030) :F1:TH0830.LIB(CNTRLTABLE) :F1:TH0830,LIB(MERGER) :F1:RMX830.LIB(SYNCH) :F1:RMX830.LIB(RDYLST) :F1:RMX830.LIB(DLYLST) :F1:RMX830.LIB(OBJMAN) :F1:RMX830.LIB(SL) :F1:RMX830.LIB(RMVSLL) :F1:RMX830.LIB(ENTSLL) :F1:RMX830.LIB(TB8030) :F1:BOTUNR.LIB(THRATE) :F1:BOTUNR.LIB(RESETV) :F1:BOTUNR,LIB(NODBGR) :F1:BOTUNR.LIB(FILUNR) :F1:FLM80.LIB(@P0011) :F1:PLM80.LIB(@P0014) :F1:PLM80.LIB(@P0018) :F1:FLM80.LIB(@P0025) :F1:PLM80.LIB(@P0029) :F1:PLM80.LIB(@P0034) :F1:PLM80.LIB(@P0086) :F1:PLM80.LIB(@P0091) :F1:PLM80.LIB(@P0094) :F1:PLM80.LIB(@P0096) :F1:PLM80.LIB(@P0098) :F1:PLM80.LIB(@P0101)

:F1:PLM80.LIB(@P0103)

Locater Listing

This listing is generated by the object locater and provides a complete list of all PUBLIC symbols.

ISIS-II OBJECT LOCATER V3.0 INVOKED BY: -LOCATE & :F1:ROM.OBJ & ж× TO & F1:ROM.ABS 36 X ¥¥ **č**. CODE (40H) ж× & STACKSIZE(0) ¥ * & ж× DATA (ODCOOH) & ¥¥ MAP å PUBLICS ΧX å ₩ ₩ SYMBOLS ð. ж× LINES & PRINT(:F1:ROMLOC.LST) ж¥ SYMBOL TABLE OF MODULE ROM READ FROM FILE :F1:ROM.OBJ WRITTEN TO FILE :F1:ROM.ABS VALUE TYPE SYMBOL 0000H PUB R?VECRST 0040H PUB RQSTRT 00C1H PUB RQSUSP OOEFH PUB RORESM 011DH PUB RODISK 0166H PUB RODXCH 0271H PUB RQBAB 0185H PUB RRCRTB 0259H PUB RQCST 0261H PUB RODCT 026BH PUB RQDRC4 0260H PUB RONDEV R?INTDI 044EH PUB **03FFH PUB** R?INTEI 037FH PUB R?INTINI 03E7H PUB R?LMASK RODLVL 0463H PUB 0448H PUB RQELVL 0285H PUB ROENDI 0469H PUB RQSETV 02F3H PUB R?UDPRI 0483H PUB ROBOOT 0615H PUB R?BOTSTR 061EH PUB R?RDSECT 0674H PUB R?ISEEK 0A8AH PUB R?GETBLK 1095H PUB R?RLSMAP OABOH PUB R?MAPDBP R?FILEOPENCHECK R???DEL 159DH PUB **18BAH PUB** 1CE1H PUB ROPOPN 1071H PU8 R?OBTDIR 1382H PUB R?ADJEOF 109FH PUB R?OBTFCB 160BH FUB R?VALIDATEREQUEST 1282H PUB R?PBREAD R?FILENAMECHECK 149CH PUB 123BH PUB R?DPTTSK R?RLSDIR 107EH PUB 0E28H PUB R?DIRGET OC82H PUB R?IFREBK 1283H PUB **R?DBSAVE** OAODH PUB R?ABSI0

.

Ĩ,

4 / 4 4 11	D 1110	0000100
TOUAL	rub	K ? ? ? I KW
0A9CH	P08	R?MAPSAV
0D22H	PUB	R?ICLOSE
10ACH	PUB	R?RLSFCB
0493H	PHR	R2FRFRI K
AFTOU	DHD	PODLOOK
06000	rup	REDUCK
OFUOH	PUB	RSDIKOND
131FH	PUB	R?CHKEOF
1258H	PUB	R?DBREAD
1342H	PHR	R2CALL DC
1000	DID	DODDEALE
12001	r up	R FF BOHVE
18914	PUB	K???KW1
1088H	PUB	R?OBTMAP
0AA8H	PUB	R?MASKARRAY
124BH	PUB	R?CLRBUF
08834	PHR	RZIGETBK
10020	DID	POPTE
TOPOH	r up	NUT DIN DOMESTIC
141AH	FOR	RAFICHER
1.D9.DH	PUB	RQPATR
1E07H	PUB	ROPDEL
1E21H	PHR	ROPRNM
21000	0110	
21770	r up	
2943H	FUR	KUPPMI
294DH	PUB	R?FMT201
29A8H	PUB	R?FMTTABLE
2A9CH	PUB	R?REQXCH
0000U	DUD	00000CT
27660	r.u.r.	RTTTD01
2980H	PUB	RYYYIUW
2987H	PU8	R???IOR
2A13H	PUB	RQPDSK
2A6DH	PUB	R?SVCDIS
21199H	PUB	ROHD4
TUDAD	DUD	ROEMTOAD
20070	000	DOCHTOO4
20404	rup	R (PP) 204
20ADH	POR	R?FM1206
2DAFH	PUB	RQTOV
2081H	PUB	RQMOTM
2DC6H	PHR	R2TNPLTV
25084	PUP	POTHNT
20000	500	
ZFDCH	PUB	K??EUHU
2FFCH	PUR	R?STDINPUT
30E4H	PUB	R?PRIINPUT
320AH	PUB	R?SCANBAUDRATE
328FH	PHR	R2SETUPI NET
30044	pup	POCI EADANDREAD
77000	000	
33768	r U D	R (LINEEDI)
SOLFH	FUB	китниц
37A6H	PUB	R?TESTFORCONTROL
37D6H	PUB	R?PROGRAMTHEUSART
381AH	PUR	ROCTAR
70744	DUD	DOMEDGED
70554	000	DOCONNET
3756	rup	RECONNET
3806H	FUB	K / KMVXUH
3A65H	PUB	RQACPT
3A89H	PUB	RQISND
399CH	PHR	ROSEND
20021	ธมอ	POUATT
27625	r U.D. 6005	DODODTOU
SHEGH	r ub	N (100 / 100 DODUTODV
3827H	MUB	RZENTRUY
3B74H	PUB	R?RLINI
3863H	PUB	R?RMVRDY
3C2AH	PUB	R?CANDLY
30744	FILE	R2DI TNT
00/08	100	CALL AND A CAL

4

-

-

.

•

70400	0110	ODENTRI Y
ODHCH	rwp	NERTDET
3CA5H	PUB	R?STPDLY
3TI99H	PHR	R20R.ITNT
75/511	num	DOCTOR
SUCCH	r08	RULISN
3075H	PUB	RQCXCH
TUERH	PHR	R2SETHR
aucon		1. COL TOT
3DB8H	FOR	RYENISUS
30028	PUB	R?RMVSUS
70000	DHD	DODMIICH I
SUCCH	run	KYNNVALL
3E0FH	PUB	R?ENTSLL
35314	PHR	ROOTICK
	100	NO CONTROL M
3EDEH	FUR	RYSTRUEN
3E64H	PUB	R?STPCLK
TELAU	RHR	ROTOKINT
32.0711	1.0.0	DODATE
3E/7H	PUB	KUKATE
3E79H	PUB	R?RST5HD
TE 7CH	PHR	ROFTLE
	100	
3E85H	50B	@P0011
3E87H	PHR	@P0012
700411	600	000017
SE GHH	rub	er 0013
3E92H	PUB	@P0014
75974	PUR	020015
	500	000010
SEA0H	FUB	@F0016
3E97H	PUB	@P0017
70000	DID	000018
36761	1.00	00010
3LA2H	PUB	640018
3EA9H	FUB	@P0025
TEAAU	DUID	000024
JCHHN	100	00020
3EADH	80B	@P0027
3EAEH	PUB	0P0028
75544	DUD	000000
96000	rub	er ovan
SERRH	PUB	@P0030
3ED5H	PUB	@P0034
70074	OUD	000075
36.071	rup	er0035
3EE9H	PUB	@P0086
3FFCH	PHR	RP0087
	P.11P.	000000
35504	FUB	61.0088
3EF3H	PUB	@P0091
JEEAH	PHR	020092
7000	nun	000007
SEF / H	rub	er 0075
3F03H	PUB	0P0094
3F06H	PHR	020040
70000	THE	000004
3r Obri	r'up	er 0076
3F10H	FUB	@P0097
3F17H	PUR	@P0098
70100	DHD	000000
St 170	100	er 0077
3F1CH	PUB	0F0100
3F24H	PUB	@P0101
7071	num	000100
or 27 n	rup	eroloz
3F2FH	PUB	@P0103
3E32H	FHR	0P0104
DECAN	ritin.	DODOTH
DCOOH	rux	Nuno IV
UCE8H	PUB	CNTL1X
E122H	PUR	RODBUF
00700	DUD	ROLOEY
10701	1.00	
UC7FH	FUR	RULZEX
DC8FH	PUB	RQL3EX
neonu	010	DOLARY
10708	1 U.D.	
DCACH	PUB	RRLSEX
DCBBH	PUB	RQLAEX
TICCAU	DHD	ROLDEY
UCCHH.	r U.0	
UCD9H	PUB	RRLUEX
E022H	PUB	RQPOOL

DCF2H	PUB	UR	EAD	ĸ			
DCFCH	PUB	UWI	RIT	Χ			
E753H	PUB	- 8?1	ADR	ХСН			
E73EH	PUB	R 29	LNI RTM	JEC			
E769H	PUB	-R?I	RES	PEX			
E75FH	PUB	RQ	BOT	X			
E755H	PUB	RQI	-0D)	Х			
E775H	PUB	R?	SLPI	196			
E77EH	PUB	- RUI		n. Kara			
57500	00 n 0110	6.21		5 R H F	тусн		
E932H	PUB	RQ	OPN	X	AGU		
E7DCH	PUB	RQ	DIR	X			
E7F0H	PUB	R?	FBL	ORG			
E8EFH	PUB	R?	FCB	LIS	TLOCH	<	
E903H	PU8	- K 7.	BETI	MAFI	LUUN DHEVI	-u	
- E276UR - E276H	PUR	82	n T SI	PTS	SUP AU	-1	
E8F9H	PUB	R?	DIR	ЕСТ	JRYLO	эск	
E87AH	PUB	R?	ABS	IOM			
E99DH	PUB	RQ	ATR:	Х			
E9C0H	PUB	RΩ	DEL	X			
E9E1H	PUB	6.0	RNM	Х			
EA09H	PUB	- KU 201	СИХ ГМТ	¥			
FA7BH	PUB	R?	ENT	x1			
EA7CH	PUB	RQ	DSK	X			
EA7AH	PUB	R?	ENT	204			
EA95H	PUB	RQ	INF	X			
EA9FH	PUB	RQ	WAK	E			
EAA9H	PUB	RU	L6E	X C			
EAC2H	PUR	R 2	000 TN	5 5 5			
EACCH	PUB	R?	LIN	ESS			
EAD6H	PUB	R?	СНА	RSS			
EAEOH	PUB	<u>R?</u>	CHA	RIN	PEXC		
EAEAH	PUB	- 821	ECH	DEX	2		
EU00H	PU8 DUD	- K / I - D 7 I	АЦА РМТІ	NM33 D1	5		
ED81H	PUB	RQ	συτ	X			
ED8BH	PUB	RΩ	ALR	M			
ED95H	PUB	RΩ	L7E	Х			
EE08H	PUB	R?'	??RI	LR			
EE08H	PUB	RQ	ACT	<u>Y.</u> .			
EE24H	PUB	- K ? - R O	イイル) 1月	LH Y			
EE60H	PUB	- R?	??E	ĹR -			
EE4AH	PUB	R?	??T	LR			
EE6CH	PUB	R?	??S	LR			
		~ F		r.111 r			
REAU REAU	т пан Гром	이번 이번 기다	mu: F :	UULU F1:1	E KUR DAM A	י ז א ר	
WRITT	EN TO	FI	LE	:F1	ROM	ABS	
MODUL	E STA	RT	ADD	RES	5 00	40H	
AL					e		
START	SI	UP I	LEN	GIH	REL	NAME	
0000н	000	2H		зн	A	ABSOLUTE	
0008H	000	AH		ЗH	Α	ABSOLUTE	
0010H	001	2H		3H	Â	ABSOLUTE	
00188	001	лн Эн		. มห - วเบ	A A	ABOULUIE	
00200	002	EH		BH	A	ABS0LUTE	
0030H	003	2H		ЗH	A	ABSOLUTE	
0034H	003	6H		ЗH	A	ABSOLUTE	
0038H	003	AH		<u>3</u> H	Ą	ABSOLUTE	
003CH	2003	EH Au	75	HC UCT	A D	ABSULUTE	•
DC00H	EE7	4H	12	75H	B	DATA	
EE75H	F6B	FH	8	4BH	В	MEMORY	

-

...

~

-

37

APPENDIX C.-TYPICAL HIMAT DISPLAYS

~

~

This appendix describes some of the displays used in the HiMAT program.

Command Interpreter Display

This is the display to which the AIDS executive returns when the user has terminated the previous operation. This display provides the operator with the following information: (1) the version of the AIDS executive, (2) the name and version number of the user module, (3) a list of the available user commands, and (4) a list of the available system commands. The operator enters the desired command, and the corresponding overlay is loaded and executed. A special case is the command "LD" which is used to activate the displays stored on the scratch diskette: (1) the scratch diskette directory is examined to determine the page number of the file specified, (2) the corresponding overlay is loaded, (3) the display templates are copied from the scratch diskette file into the overlay, and (4) the display is activated in refreshed mode.

Hard copy of the HiMAT command interpreter display:

AIRCRAFT INTERROGATION & DISPLAY SYSTEM AIDS-II SYSTEM EXECUTIVE 16 SEPT 1980 R GLOVER USER LOAD MODULE NAME : HIMAT 8.15.80 USER COMMANDS : FF MP MC MD MT TX A1 A2 A3 SYSTEM COMMANDS : IC TC PC DK LD FD SIO SMP SMS SMD SMT

Scratch Diskette Directory Display

This display is generated by the AIDS executive in response to a "DK" command. It shows the name of the scratch diskette currently in drive number 1 and lists the contents of each of the 45 available files. The operator has a menu of commands to choose from:

LD	= load a file and present the display in refreshed mode
SAVE	= write the current overlay display into a selected file
INIT	= initialize a new scratch diskette with selected name
DEL	= delete a selected file
NAME	= rename a selected file

Hard copy of typical HiMAT scratch diskette directory:

reset Himat	* 8. 1 5.	80						08:18:02 7. 27. 81
		PAGE 201	DIRECTO	ry for	SCRATCH DISK	HIMAT G	. P. 1	
FILE	PAGE	DESCRIPTION	FILE	PAGE	DESCRIPTION	FILE	PAGE	DESCRIPTION
1	3	RATE GYROS	16	3	d/l. st. Hds	31	1	eng panel
2	3	ACCELS	17	1	DLSW'S	32	3	ENG FAILS
3	3	PRESSURES	18	3	Kempel 3A	33	3	STC THR
4	3	SURFACES	19	3	P. IN DISCS	34	3	THR. TEST
5	3	Radar Alt	20	3	Kempel 38	35	3	Thr. Cal.
6	3	ATTITUDES	21	3	STRIPCHART	36	3	CAL NOZZLE
7	3	KEMPEL 1	22	3	D/L TEST	37		
8	3	DUPACTS LC	23	3	ENG TEST	38	3	IPCS SENS
9	3	LIMCY/B	24			39	4	p mem CHK
10	3	SURF CALIB	25	3	pla test	40	4	b mem chk
11	3	DIV COMB	26			41	3	Poher Sups
12	3	ran u/l	27			42	5	C FAIL 1
13	3	KEMPEL 2	28			43	3	C FAIL 2
14	3	DL ACT FLS	29			44	3	C FAIL 3
15	3	dup act fl	30	1	TRUTH	45	5	C FAIL 4

COMMAND LIST : LD SAVE INIT DEL NAME

Tabular Data Display

This display is accessed by the user command "MP" and allows the user to define a display of up to 20 data items. For each item the user must specify item number, data type, hexadecimal address, description, and units. In addition, if the data type is either F1 or F2, the operator must also enter the zero and maximum scaling of the parameter in engineering units. Once created, the display may be saved on the scratch diskette if desired.

Hard copy of typical HiMAT page 3 display:

OPERA	TE		PAGE 3	USI	ER-DEFINED	DATA	DISPLAY		Ø8:19:44
HIMAT	8, 15,	68							7. 27. 81
ITEM	TYPE	addr	ZERO	(EU)	MAX (EU)	DESCRIPTION	VALUE	UNITS
1									
2	¥G	6125					PITCH	159.798	DEGREES
3									
4	¥G	6131					ROLL	148. 776	DEGREES
5									
6	DG	61BA					YAN	331, 260	DEGREES
7									
8	E0	6131					90 d Roll	ZERO	
9									
10	DY	6290					SPECIAL OP	-0. 020	VOLT5
11									
12	E1	€1DB					umb not se	ONE	
13	E3	61DC					lan not se	ONE	
14									
15	F2	6094	e	1. 00 0	100.000		MIDV PR	0. 098	DEG/SEC
16	F2	60%	£	. 680	100.000		MIDY YR	-0. 049	DEG/SEC
17									
18	E0	61D7					FAST ERECT	ZERO	
19									
20	E4	6108					PRI MODE	ZERO	
	DISK	: HIMF	nt G. F	2.1	FILE NO.	6	FILE NAME	: ATTITUDES	

Block Memory Dump Data Display

This page format is accessed by command "MD" and allows the operator to display in hexadecimal format up to 304 bytes in a single block. The operator must specify the beginning and ending addresses of the block. The display may be saved on scratch diskette file if desired.

Hard copy of typical HiMAT block memory dump display:

OPERATE HIMAT 8.1	5.89																	08:23:00 7. 27. 81
						PAGE	E 5	l	MEMO)ry dl	mp							
	61D7	40	0 0	00	6 9	33	0 8	90	C7	30	00	01	00	00	00	80	0 0	
	61E7	92	0 4	00	00	88	80	01	00	0 0	0 0	0 0	49	48	0 0	00	80	
	61F7	80	4D	11	60	80	99	EØ	88	40	0 0	0 6	0 8	10	4D	80		

DISK : HIMAT G. P. 1 FILE NO. 42 FILE NAME : C FAIL 1

Free-Form Data Display

This display mode is accessed by the user command "FF" and allows the operator to create unstructured displays in any format desired. Separate commands are available to allow creating the static or background portion of the display, followed by the insertion of data items in any desired format at any location of the screen. Once created, the display may be saved on scratch diskette if desired.

Hard copy of typical HiMAT free-form data display:

OPERATE	PAGE 1								
ninni 6. 13. 89	E	7. 27. 81							
. COMPRESSOR .			plad =	15. 000 DEG					
PRESSURE			PLAC =	0.000 DEG					
18.000 (%)	9. 009 (C) .	99, 996 (%)	• . Ø.(800 (DEG) .					
. RPM . 	exh r ust . Gas . Temperature .	exhaust Nozzle Area	. Throt . Posit	TLE . Ion .					
	IGNITI	. Control . . Mode . . On . Combat .	ENGINE . STABILITY . HIGH .	NOZZLE . Control . Override .					
DISK : HIMA	ZERO		Zero . Name : eng i	Zero . Panel					

REFERENCES

- 1. Szalai, Kenneth J.; Felleman, Philip G.; Gera, Joseph; and Glover, Richard D.: Design and Test Experience With a Triply Redundant Digital Fly-by-Wire Control System. AIAA Paper No. 76-1911, Aug. 1976.
- 2. Myers, Albert F.; Earls, Michael R.; and Callizo, Larry A.: HiMAT Onboard Flight Computer System Architecture and Qualification. AIAA Paper No. 81-2107, Oct. 1981.
- 3. Megna, Vincent A.: Dispersed Sensor Processing Mesh Project. AGARD Tactical Airborne Distributed Computing and Networks Conference, Roros, Norway, June 1980.
- 4. DeCamp, R. W.; and Hardy, R.: Mission Adaptive Wing research programme. Aircraft Eng., vol. 53, Jan. 1981, pp. 10, 11.
- 5. Murrow, H. N.; and Eckstrom, C. V.: Drones for Aerodynamic and Structural Testing (DAST)—A Status Report. J. Aircraft, vol. 16, no. 8, Aug. 1979, pp. 521-526.

•

. N

~

1. Report No. NASA TM-81370	2. Government Access	ion No.	3. Recipient's Catalog	No.					
4. Title and Subtitle AIRCRAFT INTERROGATION AND	DISPLAY SYSTEM	:	5. Report Date April 1982						
A GROUND SUPPORT EQUIPMENT	FOR DIGITAL FLIC	GHT SYSTEMS	ation Code 14						
7. Author(s) Richard D. Glover			8. Performing Organiza	ation Report No.					
Performing Organization Name and Address			10. Work Unit No.	· · · · ·					
NASA Ames Research Center Dryden Flight Research Facility P.O. Box 273			11. Contract or Grant No.						
Edwards, CA 93523			13. Type of Report an Technical Mem	d Period Covered Iorandum					
National Aeronautics and Space A Washington, D.C. 20546	dministration		14. Sponsoring Agency	Code					
15. Supplementary Notes									
16. Abstract									
A microprocessor-based general purpose ground support equipment for electronic systems has been developed and placed in service at the NASA Dryden Flight Research Facility. The hardware and software are designed to permit diverse applications in sup- port of aircraft flight systems and simulation facilities. This paper describes the imple- mentation of the hardware and the structure of the software and describes the application of the system to an ongoing research aircraft project.									
17. Key Words (Suggested by Author(s)) Ground support equipment Digital flight systems Automatic checkout equipment		18. Distribution Statement Unclassified—Unl	limited	Cotogony, 05					
19. Security Classif. (of this report) Unclassified	20. Security Classif. (o Unclassified	of this page)	21. No. of Pages 46	22. Price* A03					
			L	L					

:

۸ .

.

