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PASCO: STRUCTURAL PANEL ANALYSIS AND SIZING 

CODE , CAPABILITY AND ANALYTICAL FOUNDATIONS 

W. Jefferson Stroud and Melvin S. Anderson 

SUMMARY 

A computer code denoted PhSCO which can be used for analyz- 

i?g and sizing uniaxially-stiffened composite panels is described. 

Backling and vibrstion analyses are carried out with a linked- 

plate analysis computer code denoted VIPASA, which is incorporated 

in PASCO. Sizing is based on nonlinear mathemctical programming 

techniques and employs a computer code denoted CONMIN, also 

incorporated in PASCO. Design requirements considered are initial 

buckling, material strength, stiffness, and vibration frequency. 

The report describes the capability of the PASCO computer code 

and the approach used in the structural analysis and sizing. 

INTRODUCTION 

Stiffened panels made of metal and/or composite materials 

have wide application in aerospace structures. These panels are 

generally designed to have low mass arid must meet numerous design 

requirements involving, for example, buckling, stiffness, 

material st-rength, and limitations on panel geometry. In an 

effort to increase the structural efficiency of these panels, 

design concepts are being explored which exhibit complex 

buckling modes, requiring sophisticated stability analyses. In 



addition, composite panels may require relatively sophisticated 

stress analyses. 

To address these needs, a computer code denoted PASCO has 

been developed for analyzing and sizing stiffenzd composite panels. 

The code attempts to balance the user requirements of generality, 

simplicity, rigor, and modest computer resources. This report 

describes the analytical foundations of PASCO to the extent that 

it would Izlp a user understand the analysis and sizing procedures, 

select appropriate options, and interpret answers. Complex 

theoretical discussions are treated in the references. The users 

man-:a1 for PASCO, reference 1, includes an explanation of 

structural modeling for PASCO, a discussion of program input and 

output, and several illustrative exunples. Design studies 

carried out with PASCO are descrikled in references 2 and 3. 

Previous work dealing with the aralysis and sizing of stiffened 

composite panels is discussed in references 4 and 5 .  

The  resent report begins with a discussion of the program 

capability and approach. There follows a discussion of the 

stress and buckling analyses. Finally, the structural sizing 

strategy is discussed. 

SYMBOLS 

Values are given in both SI and U.S. Customary Units. The 

calculations were made in U.S. Customary Units. In many cases, 

the FORTRAN name of the variables used in PASCO is included in 

the definition. 



panel planform area shown in figure 25 

for closed section stiffeners, area enclosed by 
the closed section in one period 

2 
*1?. - (Al2) /A22 for plate element i 

laininate inplane stiffnesses and smeared ortho- 
tropic inplane stiffness defined by equation (1) 

aalue of laminate inplane stiffness A 
jk 

for 
plate element i 

lower and upper bounds on smeared orthotropic 
stiffnesses All and 

ALLOW allowables used in the material strength criteria 

plate element width 

,didt.h of plate element i 

\:.idth of one period of the stiffened panel 
(see figs. 6 and 8) 

q~antities defined by equation (18) 

quantities associated with temperature, defined in 
equations (1) and (5) 

CLAM ( h parameter used during sizing for prescribinc 
margin of safety on buckling load with half- 
wavelength h equal to L/m, defined in 
equation (47) 

convergence criteria for eigenvalue analysis 

laminate bending stiffnesses and smeared ortho- 
tropic bending stiffnesses defined by 
equation (35) 

value of laminate bending stiffness D 
jk 

for 
plate element i 

lower and upper bounds on smeared orthotropic 
bending stiffness Dll 

DVMOV parameters used to determine move limits during 
sizing, defined in equations (54) and (55) 

el ECC bow at panel midlength 



El, El Young's modulus of composite material in fiber 
direction 

E2, E2 Young's modulus of composite material in direction 
transverse to fiber direction 

E12, El2 Shear modulus of composite material in material 
coordinate system 

f, FREQ frequency 

F, FACTOR scale factor that relates the input or design 
load to the load that causes buckling or 
vibration, defin~d in equation (39) 

buckling displacement function, defined in 
equation ( 3 6) 

fl(y) , f2(y) re11 and imaginary parts of F(y), defined in 
equation (37) 

Fir F 2 1  Fllr functions that appear in Tsai-W.. material 
F121 F221 F66 strength criterion (see eq. (49)) 

G behavioral constraint (see eq. (46) ) 

GRANGE constraint deletion parameter 

ITHERM parameter used to indicate the manner in which a 
bending moment produced by temperature or 
transverse load is to be treated 

L panel length 

M bending moment, Per unit width 

applied bending moment per unit width (see figs. 
2 and 7) 

m half-wavelength number, L/ h 

MAXL maximum number of values of A for which buckling 
or frequency constraints are calculated 

MINLAM integer that specifies smallest value of X 
for which buckling loads are examined 
( A  = L/MINLAM) 

NEIG (m) number of eigenvalues determined at X = L/m 



Nx, N ~ ,  Nxy, inplane longitudinal, transverse, and shear loads 
NX, NY, NXY per unit width, applied to panel 

N value of Nx that corresponds to eigenvalue 
'cr 

Nx inp~t value of Nx; also value of Nx for 
input which panel is designed 

Nx Euler buckling load of panel 
E 

Nx. N t inplane longitudinal, transverse, and shear loads 
N 

1 Yi per unit width, applied to plate element i 
XY i 

N shear load applied to substructure 
X Y ~  

P I  PRESS uniform lateral. pressure 

lamina stiffnesses in material coordinate system, 
defined in equations ( 6 )  through (9) 

a' jTl Q j ~  lamina properties associated with thermal expan- 
sion; primed quantities indicate material 
coordinate system; unprimed quantities indicat? 
panel coordinate system 

RHO density 

S lamina stress or strain (see eq. (48)) 

Sallow allowable value of S (see eq. (48)) 

'i shear flexibility for plate element i (see 
eq. (30) 

SHEAR 

shear flexibility for substructure p (see 
eqs. (31) and (33)) 

parameter used to indicate whether the standard 
VIPASA analysis is to be used for the X = L 
buckling load (SHEAR = 0) or whether the 
adjusted analysis is to be used (SHEAR > 0); 
appropriate only for cases where the loading 
involves shear 

thickness 



UI V, w plate element displacements in local plate element 
coordinate system 

sizing variable 

value of Xi at initial point of Taylor series 
ex~ansion of constraints 

X,  Yt coordinate directions in local plate element 
coordinate system; axes defined in figure 6 

' j, distance from reference surface two centroid of 
plate element i 

Z .  
1 

distance from centroid of cross section to 
centroid of plate element i 

"11 "21 coefficient of thermal expansioi. of composite 
ALFA1, ALFA2 material in material coordinate system 

Y F/F ( A  = L) 

VT, TEM change in temperature 

E €xl y, Y x y  laminate strains in plate element coordinate 
system 

8, THET angle between material coordinate system and plate 
element coordinate system (see figure 6) 

vl, v2, ANUI Poisson's ratios of composite material in material 
coordinate system 

X buckling or vibration half-wavelength 

DESCRIPTION OF GENERAL APPROACH USED IN AND 

CAPABILITY OF PASCO COMPUTER CODE 

Overview 

PASCO has been developed to aid the engineer in the analysis 

and sizing of prismatic structures such as those shown in 

figure 1. Because of their wide application in aerospace 

structures, stiffened panels are given special emphasis in PASCO. 

For exa-ole, complex panel configurations can be built up from a 



Figure 1.- Examples of typical structures. 

a relatively small number of repeating elements, the loadings 

(figure 2 )  available in PASCO are the type usually associated 

with panels, and practical panel desigr~ considerations such as 

an overall tow-type initial imperfection (figure 3) can be 

accounted for. 

Figure 2 . -  Available loadings Figure 3 . -  Overall bow-type 
applied to hat-stiffened panel. initial imperfection. 

The panel cross section is composed of an arbitrary 

assemblage of thin, flat, rectangular plate elements that are 

connected together along their longitudinal edges. Each plate 

element consists of a balanced syrrunetric laminate of any number 

of layers of orthotropic material. Any group of element widths, 



layer thicknesses, and layer orientation angles can be selected 

as sizing variables. For example, in the blade-stiffened panel 

configuration shown in figure 4, the blade depth can be allowec 

to vary, the overall stiffener spacing can be held fixed, the 

thickness of the material at the 00 and +45O orientations can be 

allowed to vary, and the orientation angles themselves can be 

held fixed. 

Figure 4.- Blade-stiffened panel configuration. 

When used in the analysis mode, PASCO can be used to cal- 

culate laminate stiffnesses, lamina stresses and strains 

(including the effect of temperature), buckling loads, vikation 

frequencies, and overall panel stiffness. When used in the siz- 

ing mode, PASCO adjusts the sizing variables to provide a low- 

mass panel design that will carry a set of specified loadings 

without failure by buckling or material strenjth and that will 

meet other design requirements such as upper and lower bounds on 

sizing variables, upper and lower bounds on overall bending, 



extensional and shear stiffness, and lower bounds on vibration 

frequencies. 

Approach and Capability 

The approach used in and the capability of PASCO are sumrnar- 

ized in figure 5. The topics listed in fiaure 5 are discussed 

briefly here and are explained in greater detail in subseq:-ent 

portions of the report. 

DESIGN CONDITIONS 

@ Nx' Ny' Nxy,Mx 
e L a t e r a l  p ressure  

BOW-type- imper fec t i on  
e Temperature 
e M u l t i p l e  s e t s  o f  des ign c o n d i t i o n s  

ANALYSIS 

e VIPASA f o r  e igenva lues 
Prebuckl i n g  s t resses  i n c l u d e  bending s t resses  :aused by agpl  i c d  

moment, l a t e r a l  pressure,  bow, temperature,  and t ransve rse  l o a d  
Lamina s t resses  and s t r a i n s  f o r  s t r e n g t h  c r i t e r i a  

PANEL CONFIGURATION AND MATERIAL 

e General c o n f i g u r a t i o n  
e M u l t i p l e  m a t e r i a l s  
e M a t e r i a l  s  o r t h o t r o p i c  a t  a r b i t r a r y  ang le  
e Balanced, symnet r ic  l am ina tes  
e Uni form a long panel l e n g t h  
e D e t a i l e d  model i n g  

SIZING, SIZING VARIABLES, AND CONSTRAINTS 

@ Nonl i n e a r  mathemat ical  p r o g r a m i n g  
e Min im ize  mass 
e S i z i n g  Var iab les :  element w id ths ,  p l y  th i ckness ,  and p l y  

o r i e n t a t i o n  ang le  
e S i z i n g  v a r i a b l e  l i n k i n g  
e Bounds on s i z i n g  v a r i a b l e s  
e C o n s t r a i n t s :  buck l i ng ,  m a t e r i a l  s t reng th ,  s t i f f n e s s ,  

v i b r a t i o n  frequency 

Figure 5 . -  PASCO capability and approach. 



Design condition&. - ne design co,lditions considered are a 

loading of Nx, N N 
Y' XY' 

and Mx, lateral pressure, an over- 

all bow-type imperfection, and temperature. Lateral pressure 

and the bow are treated using a beam-column approach. Thermal 

stresses are calculated assuming that the temperature (or, more 

precisely, the change in temperature) is specified in each plate 

element. Temperature does not vary with the sizing variables. 

Panels can be sized for multiple sets of design conditions. 

Analysis.- The eigenvalue analyses for buckling and 

vibration frequency are performed by a stiffened panel analysis 

code denoted VIPASA (refs. 6 and 7). The prebuckling stress 

state includes bending stresses caused by an applied bending 

noment, lateral pressure, an o era11 bow, temperature, and a 

transverse load. Resultant prebuckling lamina stresses and 

strains are calculated for the material strength criteria. 

Panel configuration and material.- The panel cross section 

can have a general configuration. Each plate clement can contain 

multiple orthotropic materials oriented at arbitrary angles. 

However, each plate element must be a balanced, symmetric . 
laminate and must be uniform along its length. Many unsymmetric 

laminates can be generated by stacking plate elements composed 

of symmetric laminates. (This approach is discussed in refer- 

ence 1.) Curved panels can be modeled using a se,ries of flat 

plate elements. Provision fsr offsets and a large - h e r  of 

distinct layers in each laminate allow relatively detailed 

modeling of the panel cross seption. 



Sizing, sizing variables, and constraints.- Sizing is 

carried out using a nonlinear mathematical programming approach 

in which the design requirements are treated as inequality 

co~straints. The objective function, the quantity that is 

minimized, is the panel mass per unit width. The panel length 

is fixed. 

Any s2t of plate element widths, layer thicknesses, and 

Layer orientztion angles can serve as the sizing v-riables. 

The other plate element widths, layer thicknesses, and layer 

orientation angles can be held fixed or linked linearly to those 

that serve as sizing variables. During panel sizing, linking 

can be used to provide practical proportions, calculate 

offsets that change as thicknesses change, and maintain overall 

panel width. 

The design requirements, or constraints, that can be 

specified are upper and lower bounds on sizing variables, lower 

bounds Qn buckling and material strength, upper and lower bounds 

on overall bending, extensional, and shear stiffnesses, and 

lower bounds on viSration frequsncy. Separate margins of 

safety can be placed on each buckling or vibration mode. Several 

mciterial strength criteria are included, and, if desired, the 

user can incorporate his own material strength criterion by 

writing an additional subroutine. 



STRUCTURAL ANALYSIS 

Analytical foundations for PASCO are discussed in terms of 

structural analysis and in terms of sizing. The focus of this 

section is structural analysis. Sizing is considered in a 

subsequent section. 

Prebuckling Stress Analysis 

The prebuckling load distribution on each plate elatlent is 

required for the buckling analysis and is used to compute 

lamina stresses and strains for the material strength criterion. 

The loads on each plate element are calculated using the follow- 

ing approach: The load distribution is first determined for a 

uniform longitudinal strain. Additional bending loads are then 

calculated and added to the load distribution determined for 

ur-iform longitudinal strain. Finally, the shear stress 

distribution is computed and added. Each of these steps is 

discussed in greater detail in subsequent sections of this 

report. 

Elastic relations.- The elastic relations are presented 

for a plate element with coordinate system, displacements, and 

loading as shown in figure 6. 

Wit" the assumption of balanced, symmetric laminates, the 

general plate constitutive equations uncouple. The equations 

for inplane loads for plate element i reduce to 



(a) Hat-stiffened panel with 

a~plied loading 

(b) Plate element coordinate system. 

displacements, and ply 

orientation angle 

(c) Plate element i with inolane loading. 

Directions shown are positive for 

prebuckling loads. 

Figure 6.- Plate element coordinate system, displacements, 
loading, and s i g n  conven t ion .  



in which N , N and N are the inplane loads on plate 
Xi Yi XY: L. 

element i (positive in compression); A 
jk 

are laminate 

E stiffnesses; E ~ ,  Y l  yXY are strains (positive in compression) 

given by 

u and v are prebuckling displacements; and C 
jT 

are the 

temperature terms given by 

in which VT is the change in temperature. The change in 



t empera tu re  VT i s  a l lowed t o  b e  p l y  dependent  and ,  t h e r e f o r e ,  

Ca l i  v a r y  wlch z. 

For  a n  o r t h o t r o ~ i c  lamina w i t h  m a t e r i a l  c o o r d i n a t e  system 

: . r - l i ned  a t  an a n g l e  0 t o  t h e  p l a t e  e lement  c o o r d i n a t e  system 

(.ig. 61, t h e  Q a r e  f i r s t  c a l c u l a t e d  i n  t h e  m a t e r i a l  
jT 

c ~ o r d i n a t e  system ( t h e  primed sys tem)  and t h e n  t r ans fo rmed  t o  

the p l a t e  e lement  c o o r d i n a t e  system a s  f o l l o w s :  



Q:, = (QtlT - PI2=) sin 0 cos 0 ( 1 4 )  

Uniform longitudinal strain.- With the assumption that the 

prebuckling longitudinal strain cx is uniform over the panel 

cross section, the strain cX is given by 

in which Nx is the applied longitudinal load per unit width, 

bs is the width of one period of the stiffened panel (fig. 6), 

the summation extends over all elements in a period, and 

- 
Ai = All - (Al2) 2/~22 for plate i (16) 

bi = width of plate i 

= A (N - C2T)/A22 + CIT for plate i 
12 Y 

The longitudinal loading Nx in plate i is then given by 



I n  t h e  e x p r e s s i o n  f o r  C i ,  t h e  t r a n s v e r s e  l o a d  N i n  
Y i  

p l a t e  i can be  de t e rmined  two ways. One way i s  t o  u s e  t h e  

PASCO model ing rules d i s c u s s e d  i n  r e f e r e n c e  1. The o t h e r  way i s  

t o  s p e c i f y  t h e  v a l u e s  o f  N w i t h  program i n p u t .  I n  g e n e r a l ,  
Y i  

t h e  model ing r u l e s  a r e  des igned  s o  t h a t  t h e  f u l l  N i s  c a r r i e d  
Y 

by t h e  s k i n ,  and n o  N i s  c a r r i e d  by t h e  s t i f f e n e r  e l e m e n t s .  
Y 

Note t h a t  even though t h e  l o n g i t u d i n a l  s t r a i n  E~ i s  

un i form,  t h e  t e r m  Ci i n  e q u a t i o n  (19)  may produce a  n e t  

bending moment abou t  t h e  c e n t r o i d  o f  t h e  p a n e l  c r o s s  s e c t i o n .  

Bending l o a d s .  - I n  t h i s  s e c t i o n ,  e x p r e s s i o n s  f o r  bending  

s t r a i n s  caused  by v a r i o u s  l o a d i n g s  a r e  deve loped .  These bending  

s t r a i n s  a r e  combined w i t h  t h e  uniform s t r a i n s  from e q u a t i o n  ( 15)  

t o  c a l c u l a t e  t h e  t o t a l  a x i a l  l o a d i n g  N x  i n  each  p l a t e  e l emen t .  
i 

Bending l o a d s  can  be caused  by an a p p l i e d  bending  moment, a  bow- 

type  i m p e r f e c t i o n ,  l a t e r a l  p r e s s u r e ,  t e m p e r a t u r e ,  and /or  an 

a p p l i e d  t r a n s v e r s e  l oad .  These bending  l o a d s  a r e  c a l c u l a t e d  by 

PASCO and ,  e x c e p t  f o r  t h o s e  bending  l o a d s  a l r e a d y  i n c l u d e d  i n  

Ci (eq.  ( 1 8 ) ) ,  a r e  added t o  t h e  l o n g i t u d i n a l  l o a d  d i s t r i b u t i o n  

g iven  by e q u a t i o n  ( 1 9 ) .  C e r t a i n  o p t i o n s  i n v o l v i n g  t h e  bend ing  

l o a d s  produced by t empera tu re  and/or  an  a p p l i e d  t r a n s v e r s e  l o a d  

a r e  d i s c u s s e d  l a t e r  i n  t h i s  s e c t i o n .  

For  combina t ions  o f  a p p l i e d  moment, l a t e r a l  p r e s s u r e ,  and 

i n i t i a l  bow, t h e  maximum bending  moment, which o c c u r s  a t  p a n e l  

mid l eng th ,  i s  g i v e n  a s  i n  r e f e r e n c e  8  ny 



and Nx i s  t h e  a p p l i e d  l o n g i t u d i n a l  l o a d ,  Nx is  t h e  E u l e r  
E 

buck l ing  l o a d  f o r  t h e  p a n e l ,  Mx is t h e  a p p l i e d  bending  moment 

on t h e  p a n e l ,  e i s  t h e  bow a t  p a n e l  mid leng th ,  P is  t h e  

l a t e r a l  p r e s s u r e  l o a d i n g ,  and L is  t h e  p a n e l  l e n g t h .  Most o f  

t h e s e  q u a n t i t i e s ,  t o g e t h e r  w i t h  t h e  o v e r a l l  p a n e l  c o o r d i n a t e  

system,  a r e  shown i n  f i g u r e  7 .  Note t h a t  t h e  bending  l o a d  

caused  by t h e  a p p l i e d  bending moment 
Mx i s  n o t  i n f l u e n c e d  by 

i n p l a n e  l o a d s .  

Because t h e  VIPASA b u c k l i n g  a n a l y s i s  r e q u i r e s  t h a t  t h e  stress 

d i s t r i b u t i o n  b e  c o n s t a n t  a long  t h e  p a n e l  l e n g t h ,  t h e  c o n s e r v a t i v e  

assumption i s  made t h a t  t h e  bending moment g iven  by e q u a t i o n  ( 2 0 )  

i s  t h e  bending moment over  t h e  e n t i r e  p a n e l  l e n g t h .  

For buck l ing  modes having  a  ha l f -wavelength  X e q u a l  t o  t h e  

pane l  l e n g t h  L,  t h e  bending moments caused by a bow and/or  

l a t e r a l  p r e s s u r e  a r e  o m i t t e d  from e q u a t i o n  ( 2 0 ) .  Only t h e  

a p p l i e d  bending moment Mx i s  r e t a i n e d .  



Figure 7.- Panel with applied bending moment, initial bow, 
and lateral pressure. 

Strictly speaking, equations (20) and (21) are appropriate 

only when Nx is the sole inplane loading: however, in PASCO, 

these equations are applied to problems with combined loads. 

For combined loads, the parameter y is defined as 

in which F is a scalar defined by 



The input vector on the left, which is the desjgn loading and 

frequency requirement, is scaled u~ or down with the parameter 

F to obtain that combination that causes buckling or vibration. 1 

Since there is a question about the validity of equation (20) 

in the case of combined loads, and since it would be inappropriate 

to use a frequency requirement to calculate Y for equation (201 ,  

a user should exercise cautioli in the application of equation (20) 

to calculate bending loads. For the latter reason, szbsequent 

discussions in this section will focus on buckling. 

During the buckl'ng analysis, the buckling load is calcu- 

lated for many values of buckling half-wavelength A ,  and 

more than one buckling load can be calculated at a given value 

of A .  There is a value of F associated with each of these 

buckling loads. In equation (22), F(h = L )  is the value of 

F associated with the lowest buckling load for h = L. The 

value used for F in the numerator of equation (22) depends upon 

whether the bending moment in equation (20) is to be used for 

material strength calculations or buckling calculations. 

For material strength calculations, the bending moment that 

is used to calculate lamina stresses and strains is based on one 

of two values of F for the numerator of equation (22). 

I A more c-aplete discussion of F is presented in a 
subsequent se~:tion entitled FACTOR and F. 



(1) If F(X = L) is  g r e a t e r  t h a n  1 . 0 ,  t h e n  F = 1 . 0 .  

(2) I f  F ( A  = L )  i s  e q u a l  t o  o r  less t h a n  1 . 0 ,  t h e n  F 

i s  t h e  v a l u e  o f  F f o r  t h e  minimum b u c k l i n g  l o a d  f o r  h 

c o n s i d e r e d .  

F o r  b u c k l i n g  c a l c u l a t i o n s ,  F t h a t  a p p e a r s  i n  t h e  numera to r  

o f  e q u a t i o n  ( 2 2 )  i s  t h e  v a l u e  o f  F a s s o c i a t e d  w i t h  t h e  e i g e n v a l u e  

number and  b u c k l i n g  h a l f  w a v e l e n g t h  b e i n g  examined.  The r e s u l t i n g  

b e n d i n g  moment i s  u s e d  t o  c a l c u l a t e  p r e b u c k l i n g  p l a t e  e l e m e n t  

l o a d s .  

I n  t h e  d i s c u s s i o n  f o l l o w i n g  e q u a t i o n  ( 1 9 1 ,  it was p o i n t e d  

o u t  t h a t  t h e  Ci t e r m ,  which  a c c o u n t s  f o r  t e m p e r a t u r e  and 

t r a n s v e r s e  l o a d s ,  c a n  p r o d u c e  a  b e n d i n g  moment i n  t h e  p a n e l .  

T h i s  b e n d i n g  moment i s  t r e a t e d  i n  PASCO i n  o n e  o f  two ways: 

(1) t h e  p a n e l  i s  a l l o ~ ~ l e d  t o  t a k e  on a bow (JTHERF1=1) , o r  ( 2 )  the 

p a n e l  i s  f o r c e d  t o  remain  f l a t  ( I T H E R M x O ) .  I f  t h e  p a n e l  is  

a l l o w e d  t o  take on a bow, t h e  magn i tude  o f  t h e  bow i s  c a l c u l a t e d  

t o  p roduce  z e r o  b e n d i n g  moment i n  a  p a n e l  l o a d e d  o n l y  by t cmpcra -  

t u r c  and t r a n s v e r s e  l o a d s .  T h i s  bow is  t h e n  added t o  any i - n i t i a l  

bow t h a t  e x i s t s  i n  t h e  p a n e l .  I f  t h e  p a n e l  i s  forced t o  remain  

f l a t ,  no additional bow 1s ad?.ed and any b e n d i n g  moment ~ ~ r o d u c e d  

by t h e  C i  t e r m s  ~ n  e q u a t i o n  ( 1 9 )  i s  retained. Thc u s e r  

s c l e c t s  t h e  d e s i r e d  approach  w i t h  t h e  I n p u t  p a r a m e t e r  ITIIEKM. 

D The t r e a t m e n t  o f  t h e  b e n d i n g  mcmcnt c a u s e d  t;y C .  car1 a l s o  
1 

bc d e s c r i b e d  111 t h e  f o l l o w i n g  way. L e t  a moment M bc def i n c d  



in which ec and Mc are the only terms that do not appear in 

equation ( 2 0 )  . The quantity ec is the magnitude of a bow 

calculated to produce zero bending moment in a panel loaded only 

by temperature and transverse loads, and Mc is the c~ment 

caused by Ci (eq. (18) ) . When ITHERM is set equal to 1 with 

program input, the bending moment that is added to the stress 

state associated with uniform strain is given by equation ( 2 4 ) .  

When ITHERM is set equal to 0  with program input, the bending 

moment that is added to the stress state associated with uniform 

strain is given by equation ( 2 0 ) .  

Bending loads are applied to the panel with an Nx loading 
i 

that varies by steps in the z direction. An example is shown in 

figure 8. In this example, a blade-stiffened panel is subjected 

to longitudinal compression and a bending moment that puts the 

skin in additional compression. The blade is modeled as three 

separate plate elements. The moment-induced Nx load in each 
i 

plate element, including the skin, is calculated by assuming 

that (1) the strain at the centroid of each plate element forins 

a "linear" strain distribution, ( 2 )  the net inplane load caused 

by the bending strain is zero, and (3) the net bending moment 

produced by bending strains is equal to the calculated moment. 

The resulting bending strain distribution is given by 
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(a) Blade-stiffened panel configuratior, (bl zX  for small bending m m n t  (c) E~ for larqe 

Figure 8.- Idealized longitudinal strain distributions 
on compression panels with bending moment. 

i.n which E is the bending strain in element i, Zi is the 
M : 

L 

distance from the reference surface to the centroid of plate 

element i (fig. 81, and 



- 2 xi - All - (Al7) /A22 for plate element i ( 2 8 )  

The summat.ions are over all elements in one of the styff- 

ened panel, and bs is the width of one period. 

The bending strains E~ from equation (25) are combined 
I 

with the uniform longitudj.na1 strain E from equation (15) 
X 

to produce the zsultant longitudinal loading in each element 

Shear stress.- The shear stress in each plate element is 

calculated using a generalization of the approach of reference 5 

in which equilibriwti and compatibility of displacement are 

employed. Define a shear flexibility Si "or a plate of width 

bi 

For plates or s~bstructures connected in series, 9 ) ,  

the shear flexibility S for the substructure is given by 
P 
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Figure 9.- Plate elements or substructures connected in series. 

and the shear in each plate or substructure is 

in which N is the shear load on the substructure. 
X Y ~  

For plates or substructures connected in parallel (fig. 101, 

the shear flexibility S is given by 
P 

@ PW clannt or substrudun number 

Figure 10.- Plate elements or substructures connected in parallel. 
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and 

In PASCO, the overall panel shear stiffness is calculated 

by VIPASA. However, the N and Si given above could be 
XY 

used to calculate a total shear angle which, in turn, could be 

used to define an overall panel shear stiffn~ss. Usually, the two 

approaches give results in close agreement. 

The shear stress in any element can also be specified 

by the user with program input. 

VIPASA Buckling Analysis 

Buckling and vibration analyses in PASCO are carried out 

with a stiffened panel analysis code denoted VIPASA (Vibration 

and Instability of Plate Assemblies including Shear and 

Anisotropy) described in references 6 and 7. For simplicity, 

only buckling terminology is used in the present discussion 

of VIPASA. It is understood, however, that the discussion 

also applies to the vibration analysis. 

The VIPASA analysis treats an arbitrary assemblage of plate 

elements with each plate element i loaded by Nx , N , and 
i Yi 

N . The buckling analysis connects these individual plate 
q i  
elements and maintains continuity of the buckle pattern across 

the intersection of neighboring plate elements. Several 



buckling modes are shown in figures 11 and 12. VIPASA considers 

only initial buckling. Postbuckling response is not considered 

by VIPASA or PASCO. 

OVERALL BUCKLING MOM 

.#-.<:: 1.: *-: . . :' > ,  /,' 
/ I  ' 
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- BUCKLING-MMK SHAPE 

----- UNMFCMtMD SHAPE 

Figure 11.- Typical buckling modes for hat-stiffened panel. 
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Figure 12.- Typical buckling mode for corrugated panel. 

Elastic relations.- In the VIPASA analysis, a local 

coordinate system is defined for each individual plate element. 

In the example shown in figure 6, the X, Y, 2 axes define 

the local coordinate system in the local longitudinal, transverse, 

and lateral directions, respectively. The buckling displacements 

u, v, and w are defined in this local coordinate system and 

are the same as those shown in figure 6. 

During buckling, the out-of-plane elastic deformations of 

each plate element are defined by 



where Mxs, M , and M are perturbation bending and 
1 Y i XY 

twisting moments per unit length on plate element i, D 
jk 

are 

the laminate stiffnesses, and w is the perturbation displacement 

in the z-direction. Because of the requirement that each plate 

element consist of a balanced, symmetric laminateP2 anisotropic 

effects are limited to those produced by the D13 and DZ3 

terms. Therefore, in subsequent discussions, anisotropy refers 

only to anisotropy in the bending stiffness. 

i 

'VIPASA does not require that plate element laminates be 
balanced and symmetric. However, as can be seen from equations (1) 
and (351 ,  VIPASA ignores extension-shcir coupling and membrane- 
bending coupling in each plate element. The resulting elastic 
relations are the same as those that are obtained for a laminate 
that is balanced and symmetric. Because of the elastic relations 
in VIPASA and because balanced and symmetric laminates are the 
most common laminates in aerospace applications, PASCO input 
provides only balanced, symmetric laminates for each plate element. 
By stacking symmetric laminates (ref. 1) , many unsymmetric 
laminates can be modeled and the coupling action in the 
elastic response for these unsymmetric laminates can be 
accounted for. 



Buckling displacements and boundary conditions.- The 

buckling displacement w assumed in VIPASA for each plate 

element is 

with sirnilar expressions assumed for the inplax Zisplaceme~.~~ 

u and v. For F(y) written as 

F(y) = fl(y) + if2(y) 

the buckling displacement w can be written as 

nx '* f 2 ( y )  sin w = fl(y) cos - - 
h ( 3 8 )  

Neglecting boundary conditions, the displacement shape assumed 

in equation ( 3 8 )  provides an exact solution to the governing 

differential equations if the panel and loading are uniform 

in the x-direction. The governing equations are based on the 

Kirchoff-Love hypothesis applied to each plate element. 

The functions fl(y) and f2(y) allow various boundary 

conditions to be prescribed on the lateral edges of the panel. 

These boundary conditions, which include free, simple support, 

clamped, and symmetry, are discussed in the users manual, 

reference 1. Boundary conditions cannot, however, be prescribed 

on the ends of the panel. 



Orthotropic panels with no shear loading.- For orthotropic 

panels with no shear loading, f2, the imaginary part of 

nx F (y) , is zero. The solution f (y) cos 7 provides a series 

of node lines that are straight, perpendicular to the longitudinal I 

panel axis, and spaced X apart as shown in figure 13. Along 

each of these node lines, the buckling displacements satisfy 

the following simple support boundary conditions: u is 

unrestrained, v = w = 0, and w is unrestrained. For 
t x  

values of X given by h = L, ~ / 2 ,  L/3, . . . L/m, where L 

is the panel length and m is an integer, the nodal pattern 

shown in figure 13 provides simple support boundary conditions 

at the ends of a finite, rectangular panel. An example in 

which h = L/2 is shown in figure 14. 

----- NODE LINES 

lrx 
Figure 13.- Node lines produced by w = fl(y) cos 

for orthotropic panels with no shear loading. 



VARIOUS BOUNDARY 

Figure 14.- Buckling of orthotropic panel under longitudinal 
loading. Mode shown is m = 2. 

Anisotropic panels and/or panels with a shear 1oadinp.- For 

anisotropic panels and/or panels with a shear loading, f2 # 0. 

The functions fl and f2 are such that node lines are skewed 

and not straight, but the node lines are still spaced A apart 

as shown in figure 15. In this case, the solution given by 

equation (38) is accurate only when many buckles form along the 

panel length, in which case boundary conditions at the ends are 

not important. An example in which X L/4 is shown in 

figure 16. 

As A approaches L, the VIPASA buckling analysis for a 

panel loaded by N can be quite conservative. One explanation 
XY 

is as follows: As can be seen in figure 16, the skewed nodal 

lines given by VIDASA in the case of shear and/or anisotropy do 

not coincide with the end edges. Forcing node lines to 



---- NODE LINES 

nx nx Figure 15.- Node l i n e s  produced by w = f l ( y )  cos  - f2 (y) s i n  
for  anisotropic panels .~nd/or panels with a loading that  
includes shear. 

Figure 16.- Buckling of panel under shear loading. 
Mode shown i n  m = 4 .  



I .  

coincide with the enl edges produces long-wavelength buckling 

loads that are, in many cases, appreciably higher than those 

determined by VIPASA. Calculations have shown that for long- 

wavelength buckling modes, the effect of anisotropy is minimal 

ior most practical cases. Anisotropy therefore, causes 

negligible conservatism in a VIPASA analysis. The presence of a 

shear loading can, however, lead to very conservative results 

for X equal to L. (See, for example, ref. 9 . )  

Because of VIPASA's conservatism in the case of long- 

wavelength buckling if a shear load is present, an adjusted 

shear analysis procedure can be used (at the user's option) 

for the case X = L. That adjusted analysis is discussed in a 

subsequent section entitled Adjusted Analysis for Shear 

Buckling. 

Example.- A buckling response diagram, such as that shown 

in figure 17, provides a convenient means of studying the 

buckling response of a panel and can be used to help explain 

some of the features of the buckling analysis and the computer 

code. The example shown in figure 17 is for a blade-stiffened 

panel having arbitrary but reasonable proportions. The panel 

has a length L of 0.76m (30 in.) and is modeled with 

16 stiffeners. The boundary conditions on the lateral edges of 

the panel are taken to be simple support. Anisotropy is ignored. 

The loading on the panel is pure longitudinal compression; 

transverse and shear loads are taken to be zero. In the diagram, 

the buckling load NXcr is given as a function of the 



Figure 17.- Longitudinal buckling load as a function of 
buckling half-wavelength for blade-stiffened panel. 

nondimensional half-wavelength X/L. The half-wavelengths 

examined by PASCO are X = L, L/2, ~ / 3 ,  L/4, ...., L/MINLAM 
in which MINLAM ;s program input. For this example, the lowest 

buckling load has a half-wavelength A = L. The buckling mode 

shape for this mode is shown in figure 18a. The next lowest 

buckling load is a relative minimum that occurs for X = L/8. 

The mode shape for this local mode is shown in figure 18b. 
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Figure 18.- Buckling mode shapes for blade-stiffened 
panel example. 

Although the program makes simple, explorltory calculations 

for many values of A (A = L, L/2, L/3,  . . ., L/MINLAM), it 

calculates the buckling load for only certain values of A .  The 

program always calculates the buckling load for X = L. The 

program also calculates the buckling load for specified values of 

X given by X = L/NLAM where the vector parameter NLAM is 

input. (In order to obtain the data for figure 17, the vector 
1 

NLAM was set equal to NLAM = 2, 3, 4, 5, . . ., 30.) In addition, 

the program calculates any buckling load which is a relative 

minimum (X = L/8 in figure 17) that is lower than the next 

preceding calculated buckling load. Wavelengths are considered 
! 

in order of decreasing length: L, L/2, L/3, . . . , L/MINLAM. 
Referring again to the example of figure 17, if no value of NLAM 

were input, the only buckling load calculated would be far 



X = L. The buckling load at the relative minimum X = L/8 

would not be calculated because that buckling load is greater 

than the next preceding calculated buckling load, which is at 

A = L. If, on the other hand, NLAM = 2 were input, then the 

buckling loads would be calculated for X = L, X = L/2, and 

h = L/8. The buckling load would be calculated for X = L/8 

because it is a relative minimum - and because it is lower than 

the next preceding calculated buckling load - the load for 
X = L/2. 

The program input parameter NEIG(m) can be used to calculate 

more than one buckling eigenvalue at a given value of A. 

Element m in vector NEIG(m)  is the number of eigenvalues 

requested at a half-wavelength of X = L/m. For example, for 

two eigenvalues at h = L, the input is NEIG(1) = 2. In 

figure 17, the second eigenvalue at X = L is indicated by the 

square symbol at h = L. 

As explained earlier, PASCO can also account for an overall 

bow-type initial imperfect~un. The buckling response curves 

shown in figure 19 are for the same blade-stiffened panel discussed 

above, but with three different assumptions regarding an overall 

bow: (1) a positive bow of e/L = +O. 003, (2) a negative bow of 

e/L = -0.003, and (3) a zero bow, e/L = 0.0. As in figure 17, the 

only loading is longitudinal compression. The curve for 

e/L = 0.0 is the same as that shown in figure 17. The bow does 

not directly affect the buckling load for X = L. For this 

reason, the panel has the same buckling load at X = L for the 
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Fjgure 19.- Longitudinal buckling load as a function of 
buckling half-wavelength for blade-stiffened panel with 
positive bow, negative bow, and zero bow. 

positive, negative, or zero bow. For a positive bow, which causes 

additional compression in the skin, the lowest buckling load 

occurs at X = L/30. For a negative bow, which causes additional 

compression in the tip of the blade, the lowest buckling load 

occurs for X = L/8 .  

FACTOR and F ,I 
4 

In VIPASA, FACTOR is the unknown in the eigenvalue analysis. 

The desired eigenvalue is identified by half-wavelength X and 
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by the eigenvalue number at that value of A. A buckling ar~alyeis 

in VIPASA is merely an eigenvalue analysis at zero frequency. 

The eigenvalue solution technique in VIPASA can bo 8-marized 

as follows. For ar.y set of values of FACTOR and half-wavelength 

A ,  mathematical expressions in VIPASA provide the number of 

eig-nvalues exceeded. Using this information, an iterative 

scheme in VIPASA identifies two values of F9C7!OR tnat bracket 

the desired eigenvalue. The difference between these two values 

of FACTOR can be made arbitrarily small, depending upon PASCO 

convergence criteria input CONVl and CONV2. 

In this report, a quantity is introduced that has essentially 

the same meaning as FACTOR. That quantity is denoted F. The 

quantities FACTOR and F differ in that whereas FACTOR is always 

the solution of an eigenvalue cna1ysi.s in VIPr\Sl; .:r r' is identified 

with the word FACTOR in the VIPASA printout, F may not be the 

solution of a VI'IASA eigenvalue analysis if an adjusted shear 

analysis is used in PASCO. Oth~rwise, FACTOR and F are identical. 

For all analyses in PASCO, the scaler F is defined by 

input eigenvalue 



i n  which Nx,  N and N 
Y xy 

a r e  inp lane  loads, P is t h e  l a t e r a l  

p ressure ,  Mx is a bending homent, VT is a change i n  tempera ture ,  

and f is a frequency. Whereas VIPASA can have a f i x e d  load  

system t h a t  is  added t o  t h e  l e f t  s i d e  of  equa t ion  (39) .. PASCO 

does no t  al low f i x e d  loads.  The e n t i r e  i n p u t  v e c t o r  Nx t o  Z 

i n  equa t ioa  (39) is s c a l e d  up o r  down wi th  the q u a n t i t y  P t o  

o b t a i n  t h e  v e c t o r  t h a t  provides  t h e  desired e igenvalue .  The 

change i n  temperature r epresen ted  by VT i n  equaf ion  (39) is p l y  

dependent and can, t h e r e f o r e ,  be made t o  vary throughout  the 

s t r u c t u r e .  I n  equa t ion  (39) , t h e  product  of F and VT 

i n d i c a t e s  t h e  s c a l i n g  of t h a t  d i s t r i b u t i o n .  

During t h e  e igenvalue  a n a l y s i s ,  e igenvalues  can be  c a l c u l a t e d  

f o r  many v a l u e s  o f  half-wavelengths A ,  and more t h a n  one 

e igenvalue  can be c a l c u l a t e d  a t  a given va lue  of A .  There is  a 

va lue  o f  F a s s o c i a t e d  w i t h  each o f  t h e s e  e igenvalues .  

A s  an example, assume t h a t  t h e  on ly  t w o  nonzero elements  i n  

t h e  i n p u t  v e c t o r  on t h e  l e f t  s i d e  of equa t ion  (39) a r e  !+Ix and f .  

The response of a s t i f f e n e d  panel  might be  similar t o  t h a t  shown 

i n  f i g u r e  20. The s o l i d  curve  i n d i c a t e s  combinations of  Nx 

and f t h a t  g i v e  t h e  lowest  eigenvalue.  The va lue  of N, 

t h a t  causes  buckling i m  Nx ; t h e  n a t u r a l  frequency of t h e  
cr 

unloaded pane l  is fn. Let the  i n p u t  va lues  of  Nx and f be 

represented  by t h e  s o l i d  c i r c u l a r  symbol. The dashed l i n e  t h a t  

passes  through both  t h e  o r i g i n  and t h e  c i r c u l a r  symbol i n d i c a t e s  

t h e  locus  of va lues  of  Nx and f t h a t  are considered  by 

VIPASA as p o s s i b l e  s o l u t i o n s  t o  t h e  e igenvalue  problem. The 
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Figure 20.- Response of hypothetical stiffened panel showing 
combinations of Nx and f that provide the lowest 
eigenvalue, and a geometric interpretation of F. 

direction cosines of this line are defined by the input values 

represented by the circular symbol. The unknown is the di :ante 

from the origin to the point at which the dashed line intersects 

the solid curve. This unknown is denoted F and can be thought 

of as the ratio of the distance from the origin to the solid 

curve to the distance from the origin to the circular symbol. 

In this l~ypothetical example, F is approximately 0.75. Other 

examples, involving combined loads with or without vibration 

frequency, are treated in the same manner. 

Smeared Orthotropic Stiffnesses 

Six smeared orthotropic stiffnesses are calculated by PASCO 

and are iA. .luded in the output. These stiffnesses are denoted 

longitudinal extensional stiffness 

AZ2 transverse extensional stiffness 

*33 shear stiffness 

6 Dl: longitudinal bending stiffness 



DZ2 t ransverse  bending s t i f f n e s s  

Dj3 e f f e c t i v e  twis t ing  s t i f f n e s s  

The s t i f f n e s s e s  A 2 2 r  A33, and D2* are ca lcu la ted  within 

VIPASA using the  VIPASA s t i f f n e s s  matrix,  which r e l a t e s  fo rces  

and moments along the  edges of a repeat ing element t o  t h e  

corresponding displacements and ro ta t ions .  The s t i f f n e s s  matrix 

is evaluated a t  F = 0, h = FSTIFF L (where FSTIFF i s  input ,  

d e f a u l t  = 1 0 )  t o  approach t h e  r e s u l t  obta ined fox a uniform 

edge loading. These s t i f f n e s s e s  a r e  equivalent  t o  t he  

corresponding s t i f f n e s s e s  i n  t he  laminate force  - d i s t o r t i o n  

r e l a t i onsh ips  given i n  equations (1) and (35) . 
The s t i f f n e s s e s  All, D118 and Dj3  are not ca lcu la ted  

within VIPASA, but  are, ins tead ,  ca lcu la ted  wi th  formulas a s  

follows : 

The smeared extensional  s t i f f n e s s  All i s  defined as an ET- 

type s t i f f n e s s  given by 

i n  which the  subscr ip t  i r e f e r s  to p l a t e  element i, t h e  A 
jk 

a r e  laminate s t i f  fnesses  defined by equation (1) , the  summation 

extends over a l l  elements i n  one period of t h e  s t i f f e n e d  panel,  

and bs is t h e  width of one period. 

The smehred or tho t rop ic  bending s t i f f n e s s e s  Dll, D2*, and 

Dj3 a r e  appropr ia te  t o  use i n  the  following d i f f e r e n t i a l  



equation for lateral deflection of an orthotropic plate with 

lateral loading q. 

The smeared bending stiffness Dll is an EI-type stiffness 

given by 

in which zi is the distance from the centroid of the cross 

section to the centroid of plate element i, and 0 is the angle 

plate element i makes with the horizontal. 

The formula for calculating the effective twisting stiffness 

D33 depends upon whether the panel is an open-section panel, 

such as a blade-stiffened panel, or a closed-section panel, such 

as a hat-stiffened panel. For open-section panels Dg3 is 

given by 



in which the summation extends over all elements in one period of - 
the stiffened panel, and the D 

jk 
are laminate stiffnesses 

defined in equation (35) . The D12 term is included in 

equation (43) to make D33 correct for equation (41). For 

closed-section panels, 
D33 is given by 

in which is the area enclosed by the closed section in one 

period a d the summation extends only over those elements making 

up the closed section. 

Adjusted Analysis for Shear Buckling 

Rationale for adjusted analysis approach.- With the VIPASA 

analysis, the boundary conditions on the side edges (the edges 
I 

parallel to the stiffeners in figure 21) can be specified and 

modeled correctly. However, the boundary conditions on the end 

edges (the edges normal to the stiffeners in figure 21) cannot 

be specified. The boundary conditions on the ends arise from the 

displacement shape assumed in equation (38). In the case of 

43 



PANEL BOUNDARIES - STIFFENERS 
--- NODE LINES 

Figure 21.- Node lines determined by VIPASA in the case of a 
shear loading. 

of loadings involving shear, the displacement shape and resultant 

nodal pattern produce boundary conditions on the ends that are 

not compatible with a finite rectangular panel. This incompat- 

ibility causes VIPASA to underestimate Lhe X = L buckling 

load when the loading involves shear. 

The adjusted shear analysis is an attempt to "rectangularize" 

the nodal pattern for the A = L buckling load and, thereby, 

provide a more accurate X = L buckling analysis for l~adings 

involving shear. It is assumed that node lines would be more 

compatible with a finite rectangular panel if boundary conditions 

were modeled correctly on edges normal to the stiffeners than if 

boundary conditions were modeled correctly on edges parallel to 

the stiffeners. This assumption follows from the belief that, 

in such an analysis, the stiffeners would tend to produce node 

lines that are generally parallel to the stiffeners, as shown in 



PANEL BOUNDARIES - S T I W R S  
--- NODE LINES 

Figure 22.- Node lines for hypothetical VIPASA shear buckling 
solution for stiffened panel rotated 900. 

figure 22. It might appear that such an analysis cocld be 

carried out with VIPASA if the stiffened panel were first simply 

rotated 90°. However, VIPASA cannot solve this analysis problem 

because the VIPASA solution (eq. (38) ) requires that the 

trigonometric solution be in the direction in which the panel is 

uniform, which, for a stiffened panel, is in the stiffener 

direction. Let the value of F for this target problem be 

denoted FdtgO, where F is defined in equation (39), d refers 

to discrete stiffeners, and 90 refers to the panel rotated by 

Calculation of adjusted buckling load.- Although VIPASA 

cannot calculate Fdrg0, VIPASA - can solve a similar, simplified 

problem. If the stiffened panel is replaced by an equivalent 

orthotropic panel with smeared stiffnesses, the resulting panel 

is uniform in both directions. For this case, the panel can be 



rctatea 900 and boundary conditions can be modeled correctly on 

the edges normal to the stiffeners. The result of such an 

analysis would be similar to that shown in figure 22. Let the 

value of F for this smeared orthotropic panel be denoted 

Fs190* 

In the adjusted analysis approach, it is assumed that FdtgO 

can be epproximated by 

where all three values of F on the right side of the equation 

are calculated with VIPASA, and the models used in the analyses 

are illustrated in figure 23. 

In equation ( 4 5 ) ,  both smeared solutions are based on the 

orthotropic stiffnesses discussed in the section entitled Smeared 

Orthotropic Stiffnesses. All other stiffnesses are assumed to be 

zero. The quantities Fd10 and F 
s f 0  

are calculated for A = L. 

The quantity Fs,90 is associated with the lowest of the buckling 

loads calculated for X = W, W/2, W/3. . . W/MINLAM, where W is 

the panel width. Multiplying 's,90 by the ratio of PdtO to 

Fs10 is an attempt to remove analysis inadequacies caused by 

representing the discretely stiffened panel by a smeared ortho- 

tropic panel. Note that F 
d,O 

is the standard VIPASA solution. 

The input 2arameter SHEAR is used to indicate whether the 

adjusted analysis is to be used for the X = L buckling load. 



BUCKLING LOAD 

ANALYSIS MODEL lDENTlFlCATlON 

Figure 23.- Analysis models used to obtain adjusted 
solution for shear buckling. 

If SHEAR = 0, the standard VIPASA analysis is used. If SHEAR > OI 

the adjusted analysis is used. When SHEAR > 0, the -1alue of the 

twisting stiffness used in calculating the smeared orthotropic 

plate buckling load is the product of SHEAR and the value of the 

twisting stiffness calculated by equations (43) and (44). A 

value of SHEAR less than 1 is generally appropriate for a panel 

composed of closed section stiffeners, such as a hat-stiffened 

panel. 

If the adjusted analysis is selected for the X = L buckling 

load, PASCO automatically carries out the three analyses on the 

right side of equation (45), and chooses for the adjusted 

solution the smaller of the following values of F: "' F d 1 9 ~  



calculated from equation ( 4 5 ) .  and (2) Fatgo calculated 

directly by VIPASA. 

To summarize the various possibilities for F: 

When the adjusted shear analysis is used (SHEAR # 0 

and X = L) , F is the smaller of Fdtg0 and Fs,90* 

For all other cases (SHEAR = 0 or - X # I), F is FdtO. 

The appropriate value of F is then used to calculate bending 

loads and constraints on buckling or vibration. 

The adjusted analysis is an engineering approximation, and 

engineering judgment should be used in its application. For 

example, the smeared stiffening approach must be compatible with 

the and Fs,90 buckle mode shapes. In both cases, the 

buckle length transverse to the stiffening must be greater than 

2.5 times the stiffener spacing. If the adjusted analysis is 

used and if it is appreciably greater than the starldard VIPASA 

analysis, then a factor of safety of 10 percent to 20 percent 

is recommended for the A = L buckling load. For sizing 

purposes, this factor of safety can be introduced with CLAM(1) = 

1.1 or 1.2. (See ref. 9 for additional discussion and examples.) 
4 

Example.- An example which illustrates the approach used in 

the adjusted shear analysis is presented in figure 24. In this 

figure, buckling interaction curves for shear and compression 

are shown for a 76.2 cm (30 in.) square, blade-stiffened panel 

having six stiffeners. The desired boundary conditions are 

simple support on all four edges, a condition that cannot be met 

with VIPASA if shear is present. The four curves represent the 



0 STAGS 

Figure 24.- Comparison of predicted buckling loads from 
various analysis models for blade-stiffened panel 
subjected to combined longitudinal compression and 
shear loadings. 

four solution approaches just discussed and are identified in the 

figure key. In particular, the solid curve represents the 

standard VIPASA analysis, and the highest curve represents the 

solution obtained using equation (45). The circular symbols 

indicate results obtained with the STAGS computer program (ref. 10). 

In the STAGS analysis, the panel was modeled in detail with 

discrete stiffeners, and the desired simple support boundary 

conditions were maintained on all four edges. For this problem, 

the standard VIPASA analysis greatly underestimates the shear 

buckling load. Either of the two upper curves provides a 

reasonably accurate estimate of the correct result obtained with 



the general two-dimensional STAGS analysis. As explained earlier, 

if an adjusted analysis were desired, PASCO would automatically 

choose the lower of the two upper curves. (See examples, ref 9 a )  

b 
SIZING 

The computerized structural sizing approach used in PASCO 

is based on nonlinear mathematical programming techniques. Sizing 

variables are automatically adjusted to obtain a design that 

minimizes an objective function subject to a set of inequality 

constraints. Approximate analysis techniques are used to improve 

computational efficiency. 

Problem Statement 

The general problem statement is: find values for the set 

of variables Xi to 

Minimize an obj ~tive function O B J ( X . )  
1 

Subject to 

Behavioral constraints: G. (Xi) ( 0 I 
Side constraints: VLBi - < Xi 5 W B i  

where 

are the sizing variables 

VLBi are the lower bounds on the sizing variables 

VUBi are the upper bounds on the sizing variables 

VIPASA and okber analyses are used to evaluate the constraints 

G 
j 

CONMItd (refs. 11 and 12) is used to solve the resulting 

mathematical programming problem. 



Sizing Variables 

In PASCO, the sizing var!.ables are the plate element widths, 

denoted b, the ply ?hicknesses, denoted t, and the ply 

orientation anqles, denoted 0 .  Any set of widths, thicknesses, 

1 and orientation angles can be selected as the active sizing 

variables. The remaining widths, thicknesses, and orientation 

- angles can be held fixed or linked linearly to the active sizing 

variables. Upper and lower bounds can be specified for the 

sizing variables. 

Objective Function 

The objective function is the panel mass index W/A 
L 

the panel mass per unit area divided by the panel length. This 

is the quantity denoted OBJ in CONMIIG. The area A is the panel 

planform area shown in figure 25. Since the panel length L is 

fixed, the quantity that is minimized becomes the panel mass per 

unit width. 

A 1ENGTH.W IDTH 

Figure 25.- Panel planfom area A. 



Constraints 

Constraints are inequality requirements that must be ~ilet 

durinq sizing to provide an acceptable design. In addition to 

uFper and lower bounds on the sizinq variables, denoted side 

constraints, there are behdvioral constraints on buckling, 

material strength, stiffness, and vibration frequency. CONMIN 

requires that these constraints be written in the form 

In PASCO, the conztraints ?re normalized in order that all 

constraints be of the same order of magnitude. The specific 

forms for the constraints are given ~n the following sections. 

Buckling or vibration.- Const~aints on the buckling load 

or vibratioi~ frequency can be written in the form 

in which F is defined in equation ( 3 9 ) ,  and CLAM can be used to 

specify a margin of safety at specific wavelengths. There can 

be simultaneous buckling or frequency constraints for many values 

of A ,  and there can be many buckling or frequency constraints 

for each value of A .  

In the coding within PASCO, F is replaced by Nx /Nx 
cr input 

which is equivalent to F. If the adjusted shear analj-sis is 



selected, the appropriate analysis is used to compute N . If 
Xcr 

N is zero, a small positive value of Nx is 
Xinput input 

automatically introduced within PASCO. 

Material strength.- Three material strength criteria are 
4 

built into PASCO: maximum lamina stress, maximum lamina 

rschanical strain, and Tsai-Wu (rsf. 13). In the maximum stress 

criterion, tension and compression limits are placed on ult a2, 

and T in each lamir . The maximum lamina mechanical strain 
12 

criterio~ is defined similarly, except that the thermal strain is 

subtracted from the total strain to provide the mechanical strain 

in each element. For the maximum lamina stress and maximum 

lamina mechanical strain criteria, the material strength 

constraint is written in the form 

in ~hich S is a lamina stress or mechanical strain, and Sallow 

is the corresponding maximum allowable value. The input quantity 

ALLOW is used to prescribe the allowable values used in the 

D material strength criteria. 

In the Tsai-Wu criterion, the stress state is defined by 



where Plf F2, Pllf P2*, and Pb6 are automatically calcu- 

lated from the allowable stresses that are included in the input 

ALLOW, and F12 is included in the input ALLOW. The Tsai-Wu 

strength constraint is defined as 

The user may incorporate his own material strength criteria 

by writing additional subroutines. 

Stiffness.- Stiffness constraints are written as 

G = Stiffness ' - Stiffness lower limit 
and 

G = Stiffness 
Stiffness upper limit - 

in which the stiffnesses that can be constrained are: 

extensional stiffness 

' A33 shear stiffness 

Dll bending stiffness 

These stiffnesses are "smearedn arthotropic stiffncszes fai- i iw 

overall panel, not individual plate element stiffnesses. 



Approximate Analysis 

The approximate analysis approach used in PASCO is depicted 

in figure 26. It is similar to the approach proposed in 

reference 14. The procedure consists, conceptually, of three 

modules: an analysis module, a Taylor series module, and a 

sizing module. 

ANALYSIS 
M O D U E  

TAYLOR SERIES 
MODULE 

RESIZING 
MODULE 

VIPASA 

STREtiCTti ANALYSIS 

ANALYSES FOR SMEARED 
ORTHOTROPIC STIFFNESSES 

I 
TAYLOR SERIES FOR 
APPROXIMATE ANALYSES 

A 

t 
0 CONMIN OPTIMIZER 

Figure 26.- General approach used in PASCO. 

Analysis - module.- In the analysis module, all constraints 

are calculated with VIPASA and supporting subroutines. The program 

identifies the critical constraints and, using a two-point forward 

diffexence approximation, calculates the derivatives of the 

critical constraints with respect to the sizing variables. The 

* values of the constraints and derivatives are then passed to the 

second module, the Taylor series module. The techniques used to 
I 

?ntFfy critical cccstr~ints are discussed ~ulseyuentiy. 

Taylor series module.- The Taylor series module generates a 

first order Taylor series expansion of each constraint. Expan- 

sions are of the form 

5 5  



- 
in which Xi are the sizing variables and Xi are the values of 

the sizing variables at the initial point of the expansion. The 

Taylor series approximations provide a reasonably accurate and 

simple representation of the constraints in the neighborhood of 

the initial point of the expansion. The Taylor series expansions 

are updated periodically to insure their adequacy. The second 

module also evaluates the objective function. 

Sizing module.- The third module contains the optimizer 

CONMIN. During sizing, the optimizer interacts only with the 

second module which contains approximate, explicit functions 

for the co~lstraints and a simple expression for the objective 

function, Such as approach greatly improves computational 

efficiency. 

Sizing strategy.- The overall sizing strategy is depicted in 

more detail in figure 27. The strategy consists of a series of 

sizing cycles in which the optimizer adjusts the values of the 

sizing variables based on approximate values of the constraints 

(eq. (53)). An upper limit is imposed on the c h a n ~ e  ef each 

sizing variable during each sizing cycle to insure the adequacy 

of both the list of constraints that are considered to be critical 

and the Taylor series expansions of those constraints. These 

limits to the changes in the sizing variables, referred to as 



SECOND 
S I Z I N G  

VARIABLE. 

x2 

I N I T I A L  
DES l C N  

I 
I , COMPETE A N A L Y S I S  
I 2' I 
I MOVE L I M I T S  FOR 
I 
I I 

nth S I Z I N G  CYCLE 

I m 

F I R S T  S I Z I N G  VARIABLE. X i  

F i g u r e  27.- S i z i n g  s t r a t e g y  f o r  approximate  a n a l y s i s ,  shown 
i n  two-s i z ing -va r i ab l e  space .  

move l i m i t s ,  are governed by i n p u t  and a r e  i n d i c a t e d  by t h e  

dashed r e c t a n g l e s  i n  f i g u r e  27. (Move l i m i t s  a r e  d i s c u s s e d  

i n  t h e  n e x t  s e c t i o n . )  The s o l i d  c i r c u l a r  symbol a t  t h e  c e n t e r  o f  

each  r e c t a n g l e  i n  f i g u r e  27 r e p r e s e n t s  t h e  p o i n t  a t  which t h e  

Tay lo r  series expans ions  a r e  c a r r i e d  o u t  f o r  each  s i z i n g  c y c l e .  

The end p o i n t  o f  one s i z i n g  c y c l e  becomes t h e  i n i t i a l  p o i n t  o f  t h e  

n e x t  s i z i n g  c y c l e .  Accura t e  v a l u e s  o f  t h e  c o n s t r a i n t s  and d e r i v a -  
? 

t i v e s  o f  t h e  c o n s t r a i n t s  a r e  t h e n  r e c a l c u l a t e d ,  and new Taylor  

series expans ions  a r e  gene ra t ed .  Ten s i z i n g  c y c l e s  a r e  u s u a l l y  

adequa te  t o  o b t a i n  convergence i f  t h e  i n i t i a l  d e s i g n  is reasonab ly  

w e l l  chosen.  The number o f  s i z i n g  c y c l e s  i s  c o n t r o l l e d  by t h e  

i n p u t  parameter  MAXJJJ and n o t  by any convergence c r i t e r i o n .  



Move limits.- The move limits that are generated internally 

for each sizing cycle are given by 

- DVMOVi (SFACTR) n-1 . VLBi = Xi *if init 

where 

VLB and VuBi are the sizing variable lower and upper i 

bounds used by CONMIN in a sizing cycle 

Zi are the values of the sizing variables at the 

beginning of a sizing cycle 

DVMOVi is an input vector 

SFACTR is an input scaler 

n is the sizing cycle number 

'if init are the initial (input) values of Xi 

One of the objectives of equations (54) and (55) is to reduce 

the move limits as the sizing progresses. Overall lower and 

upper bounds on the sizing variables override the lower and 

upper bounds for a sizing cycle calculated in equations (54)  

snd (55). Values of DVMOV = 0.2 and SFACTR = 0.8 generally 

provide reasonable answers. 

Identifying critical bucklinq and frequency constraints.- 

For simplicity, buckling terminology rather than eigenvalue 

terminology is used to describe the logic for identifying 

critical eigenvalue constraints for the Taylor series module. 

However, the discussion also applies to the frequency constraints. 

5 8 



The c r i t i c a l  buckling c o n s t r a i n t s  a r e  i d e n t i f i e d  by buckling 

ht lf-wavelength A .  S e l e c t i n g  t h e s e  c r i t i c a l  va lues  of A is  

a  m u l t i s t e p  p rocess  which begins by c o ~ s t r u c t i n g  a  t a b l e  of  

p o t e n t i a l l y  c r i t i c a l  va lues  of  A .  This  t a b l e  always c o n t a i n s  

X = L. The t a b l e  a l s o  c o n t a i n s  va lues  of A s p e c i f i e d  i n  t h e  

i n p u t  NLAM. Also added t o  t h e  t a b l e  is each value  of  X f o r  

which t h e  buckl ing  load meets both of  t h e  fo l lowing two requ i re -  

ments. 

The buckl ing  load i s  a  r e l a t i v e  minimum ( A  = L/8  i n  

f i g u r e  1 7 ) ,  and 

The buckl ing  load  is  lower than  t h e  buckling load f o r  t h e  

preceding value  of X i n  t h e  X t a b l e .  The X t a b l e  

i s  ordered  according t o  dec reas ing  va lues  of A .  

A s  t h e  s i z i n g  p rogresses ,  new va lues  of X meeting t h e s e  t w o  

requirements  a r e  i d e n t i f i e d  and added t o  t h e  t a b l e .  

Buckling c o n s t r a i n t s  a r e  r e t a i n e d  f o r  a  maximum of MAXL 

va lues  of A ,  i n  which MAXL i s  an  i n p u t  parameter.  I f  t h e r e  a r e  

more than MAXL va lues  of X i n  t h e  X t a b l e ,  l o g i c  i s  inc luded 

which d i v i d e s  t h e  range of m va lues  (m = 1, 2 ,  3 ,  ..., MINLAM) 
i n t o  reg ions  and r e t a i n s  t h e  most c r i t i c a l  c o n s t r a i n t ( s )  i n  each 

region.  The l a r g e r  MAXL, t h e  l a r g e r  t h e  number of  regions .  A t  

t h i s  s t a g e ,  X = L is  always r e t a i n e d  i n  t h e  t a b l e  of p o t e n t i a l l y  

c r i t i c a l  va lues  of A .  



The number of buckling constraints can be further reduced 

with the parameter GRANGE. All buckling constraints for which 

F/CLAM > GRANGE are eliminated. For example, for GRANGE = 2 

any buckliilg constraint for which G is less than -1.0 is 

eliminated. To insure computational efficiency, all buckling 

constraint elimination is based on the rough calculation of the 

buckling loads where the convergence criterion is CONV1. Fine 

calculations of the buckling loads and calculation af the 

derivatives of the buckling loads are not carried out for buckling 

constraints that are eliminated. 

Identifying other critical constraints.- For constraints 

other than buckling, GRANGE is the sole constraint deletion 

mechanism. For constraints involving a lower bound (buckling, 

stiffness, frequency) the minimum value of G retained is 

G = 1 - GRANGE 

For cc .straints involving an upper bound, (stiffness, material 

strength) the minimum value of G retained is 

L G = GRANGE - 1 

Calculation of Derivatives of Buckling Loads 

The derivatives of the buckiing loads with respect to sizing 

variable Xi are calculated using the following numerical 

approximation 



Derivatives are calculated only for those values of the half- 

wavelength A identified as being critical. Two methods are 

available in PASCO for calculating the perturbed solution 

F(Xi + AXi). One method uses the same general approach as that 

used to calculate the nominal solution F(Xi). The other method 

uses a much faster approximate technique. The user can select 

the method with the input parameter JDER. 

In the first method, F(Xi + AXi) is calculated using an 

iterative technique that is the same as that used to obtain the 

nominal solution F(Xi). The number of iterations required to 

obtain the perturbed solution is, however, reduced somewhat by 

restricting the solution for ??(Xi + AXi) to a narrow band 

centered* on the nominal solution F(Xi) as shown in figure 28. 

The solid curve indicates the value of the buckling determinant 

as a function of F for the nominal case. The dashed curve 

gives ths same information for the perturbed case. The nominal 

solution, the band width, and the perturbed solution are 

indicated in the figure. 

In the second method, the perturbed solution F(Xi + AXi) is 

estimated using an approximate technique illustrated in 



1-- NOMINAL CASE 
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BUCKLI:JC 
DETERMINANT 
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PERTURBED 
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Figure  28.- Buckling determinant  a s  a  f u n c t i o n  of  F f o r  
nominal v a l u e s  of  t h e  s i z i n g  v a r i a b l e s  and f o r  a  pe r tu rbed  
s i z i n g  v a r i a b l e .  

f i g u r e  29. The approximate method3 c o n s i s t s  of t h e  fo l lowing 

s t e p s  : 

Using t h e  va lue  of F ob ta ined  from t h e  nominal s o l u t i o n  

shown a t  p o i n t  1, t h e  va lue  o f  t h e  de terminant  is  

c a l c u l a t e d  f o r  t h e  per turbed c a s e  shown a t  p o i n t  2. 

The s l o p e  of t h e  dashed curve a t  p o i n t  2 i s  assumed to  be  1 

t h e  same as t h e  s l o p e  of t h e  s o l i d  curve  a t  p o i n t  1. 

The pe r tu rbed  s o l u t i o n  a t  p o i n t  3 is  es t ima ted  us ing  a 

l i n e a r  approximation from p o i n t  2.  

3 ~ h e  a u t h o r s  a r e  indebted t o  Prof .  Fred W. W i l l i a m s ,  
Un ive r s i ty  of  Wales, I n s t i t u t e  of  Science  and Technology, f o r  
sugges t ing  t h i s  technique.  



BUCKLING 
DETERkfl'YANT 

PERTURBED CASE 

Figure 2 9 . -  Approximate method for calculating perturbed 
buckling load. 

In all cases, the iteration scheme used to converge on an eigen- 

value at point 1 involves an interval halving strategy. If 

certain numerical conditions are met during iteration, a linear 

interpolation strategy is introduced. Consider the two values 

of F that bracket the desired eigenvalue when the linear 

interpolation strategy is introduced. If these two values of F 

differ by at least five percent, then the second method can be 

used to calculate F(Xi + AXi). In this case, the slope at 

point 1 is taken to be the last slope calculated in the linear 

interpolation strategy. If the numerical characteristics of the 

problem are such that interpolation is not used, or if, when 

interpolation is introduced, the two values of F that bracket 



the solution differ by less than five percent, the firat method is 

automatically used to calculate F(Xi + AXi). 

In the case of the adjusted analysis for shear buckling, the 

derivative of the adjusted buckling load for A = 1 is taken to be 
) 

where the derivative of F 
d,O 

is calculated usicg the numerical 

approximation in equation ( 5 8 ) ,  and F is the smaller of FdPg0 

Multiple Load Conditions 

PASCO can treat sizing problems with multiple loading 

conditions. This means that panels are sized to meet the design 

requirements (constraints) for load candition 1 - and load condi- 

tion 2 - and load condition 3, etc. The number of allowable load 

conditions is large. For limitations, see reference 1. 

Using PASCO notation, quantities that can depend upon the 

load condition are the inplane design loads NX, NY, and NXY; 

the lateral pressure PRESS; the bow ECC; the change in temperature 

TEM; the bending moment MX; the design frequency FREQ; the 

material properties El, E2, El2, ANUi, RHO, ALFAl, and 

ALFA2; the stiffness requirements AllL, AllU, A33L, A33U8 

DllL, and D11U; and the allowables ALLOW used for the material 

strength criteria. 



Sizing Example 

An example which focuses on the buckling constr :,.t aspects 

of the sizing code is presented in figures 30 through 37. In 

this example, the panel whose buckling response was shown in 

figure 17 is sized to meet a buckling requirement of Nx = 700 kN/m 
I 

(4000 lbf/in). No other constraints or loadin~s are imposed. The 

panel is assumed to be perfect. 

Figure 30.- Longitudinal buckling load as a function of 
buckling half-wavnlencjth for two blade-stiffened panels: 
the initial design and the final design. 
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Figure  31.- Buckling loads  a s  a  func t ion  of  s i z i n g  c y c l e  number. 

The buckl ing  response f o r  t h e  i l . i t i a 1  des ign  and t h e  buckling 

response f o r  t h e  f i n a l  des ign  a r e  both  shown i n  f i g u r e  30. A s  

. 1  

can be seen i n  t h e  f i g u r e ,  t h e  i n i t i a l  des ign  b u c k l t s  a t  about  

70 pe rcen t  of t h e  des ign  load a t  buckling half-way.ciengths o f  

X = L and X = L/8. The f i n a l  des ign  meets t h e  buckling 

- 
1 I I I I I I I 

requirement f o r  a l l  va lues  of  ).. I 

0 1 2 3 4 5 6 7 8 9 10 
u 

SIZING CYCLE NUMBER 

The buckling load h i s t o r y  f o r  t h i s  s i z i n g  example is shown 

i n  f i g u r e  31. For t h e  i n i t i a l  des ign ,  t h e  c r i t i c a l  buckling h a l f -  

wavelength i d e n t i f i e d  by t h e  a n a l y s i s  module is  X = L. The h a l f -  

wavelength X = L/8 is n o t  i d e n t i f i e d  because t h e  buckling load 

f o r  X = L/8 is  s l i g h t l y  h igher  than  t h e  buckl ing  1o;;d f o r  

X = L. A s  t h e  s i z i n g  p rogresses ,  c t h e r  va lues  o f  X a r e  



SIZING CYCLE NUMBER 

Figure  32.- Panel  mass index  as  a  f u n c t i o n  o f  s i z i n g  c y c l e  number. 

i d e n t i f i e d  and a r n  added t o  t h e  A t a b l e .  ?or  example, a t  t h e  

second s i z i n g  c y c l e ,  X = 5/7 i s  i d e n t i f i e d ,  and a t  t h e  t h i r d  

s i z i n g  c y c l e  L/8 i s  i d e n t i f i e d .  

The manner i n  which t h e  mass index  v a r i e s  d u r i n g  t h e  s i z i n g  

is  s n o ~ m  i n  f i g u r e  32. During t h e  f i r s t  c y c l e ,  t h e  o n l y  buck l ing  

c o n s t r a i n t  a v a i l a b l e  t o  PASCO w a s  f o r  t h e  X = L mode. The code 
? 

i n c r e a s e d  t h a t  buck l ing  load  wh i l e  d e c r e a s i n g  t h e  p a n e l  mass. A t  

h t h e  beginning  of t h e  second s i z i n g  c y c l e ,  PASCO i d e n t i f i e d  t h e  

X - L/7 mode and, d u r i n g  t h a t  c y c l e ,  added materi-1 t o  t h e  panel  

t o  i n c r e a s e  t h a t  buck l ing  load .  t h e  beg inn ing  of t h e  f o u r t h  

s i z i n g  c y c l e ,  a l l  buck l ing  c o n s t r a i n t s  were s a t i s f i e d .  During 

67 



fourth and subsequent sizing cycles, the mass was reduced while 

the buckling strength of the panel was maintained. 

In the above example, the first sizing cycle was counter- 

productive because the only buckling constraint available to 

PASCO was for the A = L mode. Convergence would have been 

improved if a local buckling constraint had been made available 

with the input NLAM. In this case, a good choice would have been 

NLAM = 7 or 8. 

CONCLUDING REMARKS 

This report has discussed certain aspects of the computer 

code denoted PASCO, which can be used for analyzing and sizing 

uniaxially-stiffened composite structural panels having a general 

configuration. 

In PASCO, buckling loads, lamina stresses and strains, smeared 

orthotropic stiffnesses, and vibration frequencies can be calcu- 

lated for a variety of typical loading conditions. These same 

quantities can also be used as design requirements during sizing. 

Sizing is based on nonlinear mathematical programming techniques 

iz which the mass of the panel is minimized subject to satisfaction 
2 

of the design requirements. 
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