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PASCO: STRUCTURAL PANEL ANALYSIS AND SIZING

CODE , CAPABILITY AND ANALYTICAL FOUNDATIONS
W. Jefferson Stroud and Melvin S. Anderson

SUMMARY

A computer code denoted PASCO which can be used for analyz-
ing and sizing uniaxially-stiffened composite panels is describegd.
Buckling and vibration analyses are carried out with a linked-
plate analysis computer code denoted VIPASA, which is incorporated
in PASCO. Sizing is based on nonlinear mathemctical programming
techniques and employs a computer code denoted CONMIN, also
incorporated in PASCO. Design requirements considered are initial
buckling, material strength, stiffness, and vibration frequency.
The report describes the capability of the PASCO computer code

and the approach used in the structural analysis and sizing.

INTRODUCTION

Stiffened panels made of metal and/or composite materials
have wide application in aerospace structures. These panels are
generally designed to have low mass and must meet numerous design
requirements involving, for example, buckling, stiffness,
material strength, and limitations on panel geometry. In an
effort to increase the structural efficiency of these panels,
design concepts are being explored which exhibit complex

buckling modes, requiring sophisticated stability analyses. 1In
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addition, composite panels may require relatively sophisticated
stress analyses.

To address these needs, a computer code denoted PASCO has
been developed for analyzing and sizing stiffenad composite panels.
The code attempts to balance the user requirements of generality,
simplicity, rigor, and modest computer resources. This report
describes the analytical foundations of PASCO to the extent that
it would I :1p a user understand the analysis and sizing procedures,
select appropriate options, and interpret answers. Complex
theoretical discussions are treated in the references. The users
man:al for PASCO, reference 1, includes an explanation of
structural modeling for PASCO, a discussion of program input and
output, and several illustrative examples. Design studies
carried out with PASCO are descriled in references 2 and 3.
Previous work dealing with the aralysis and sizing of stiffened
composite panels is discussed in references 4 and 5.

The present report begins with a discussion of the program
capability and approach. There follows a discussion of the
stress and buckling analyses. Finally, the structural sizing

strategy is discussed.

SYMBOLS
Values are given in both SI and U.S. Customary Units. The
calculations were made in U.S. Customary Units. In many cases,
the FORTRAN name of the variables used in PASCO is included in

the definition.
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ECC

panel planform area shown in figure 25

for closed section stiffeners, area enclosed by
the closed section in one period

2 .
All (A12) /A22 for plate element 1

laminate inplane stiffnesses and smeared ortho-
tropic inplane stiffness defined by equation (1)

value of laminate inplane stiffness A. for
. jk
plate element i

lower and upper bounds on smeared orthotropic

stiffnesses All and A33

allowables used in the material strength criteria
plate element width

width of plate element i

width of one period of the stiffened panel
(see figs. 6 and 8)

qaantities defined by equation (18)

quantities associated with temperature, defined in
equations (1) and (5)

parameter used during sizing for prescribinc
margin of safety on buckling load with half-
wavelength A equal to L/m, defined in
equation (47)

convergence criteria for eigenvalue analysis

laminate bending stiffnesses and smeared ortho-
tropic bending stiffnesses defined by
equation (35)

value of laminate bending stiffness D. for
. ik
plate element i

lower and upper bounds on smeared orthotropic
bending stiffness Dll

parameters used to determine move limits during
sizing, defined in equations (54) and (55)

bow at panel midlength
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f, FREQ

F, FACTOR
F(y)

fl(y), fz(y)

Fi. Fo, F11,
Fi20 Foor Feg

G
GRANGE

ITHERM

MAXL

MINLAM

NEIG (m)

Young's modulus of composite material in fiber
direction

Young's modulus of composite material in direction
transverse to fiber direction

Shear modulus of composite material in material
coordinate system

frequency
scale factor that relates the input or design
load to the load that causes buckling or

vibration, defined in equation (39)

buckling displacement function, Adefined in
equation (36)

real and imaginary parts of F(y), defined in
equation (37)

functions that appear in Tsai-W. material
strength criterion (see eq. (49))

behavioral constraint (see eq. (46))

constraint deletion parameter

parameter used to indicate the manner in which a
bending moment produced by temperature or
transverse load is to be treated

panel length

bending moment, per unit width

applied bending moment per unit width (see figs.
2 and 7)

half-wavelength number, L/A

maximum number of values of ) for which buckling
or frequency constraints are calculated

integer that specifies smallest value of A
for which buckling loads are examined
(A = L/MINLAM)

number of eigenvalues determined at X = L/m
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Nx' NYI NXYI
NX, NY, NXY

P, PRESS
Q' 5x
Q' Q

3T TIT

SHEAR

T il
F 4

inplane longitudinal, transverse, and shear loads
per unit width, applied to panel

value of Nx that corresponds to eigenvalue

input value of Ny; also value of N, for
which panel is designed

Euler buckling load of panel

inplane longitudinal, transverse, and shear loads
per unit width, applied to plate element i

shear load applied to substructure

uniform lateral pressure

lamina stiffnesses in material coordinate system,
defined in equations (6) through (9)

lamina properties associated with thermal expan-
sion; primed quantities indicate material
coordinate system; unprimed quantities indicat-~
panel coordinate system

density
lamina stress or strain (see eq. (48))
allowable value of S (see eq. (48))

shear flexibility for plate element 1 (see
eq. (30))

shear flexibility for substructure p (see
egs. (31) and (33))

parameter used to indicate whether the standard
VIPASA analysis is to be used for the A =L
buckling load (SHEAR = 0) or whether the
adjusted analysis is to be used (SHEAR > 0);
appropriate only for cases where the loading
involves shear

thickness

P - -

g



alr azl
ALFAl, ALFA2

plate element displacements in local plate element
coordinate system

sizing variable

value of X. at initial point of Taylor series
expansion of constraints

coordinate directions in local plate element
coordinate system; axes defined in figure 6

distance from reference surface to centroid of
plate element i

distance from centroid of cross section to
centroid of plate element i

coefficient of thermal expansion of composite
material in material coordinate system

F/F(A = L)
change in temperature

laminate strains in plate element coordinate
system

angle between material coordinate system and plate
element coordinate system (see figure 6)

Poisson's ratios of composite material in material
coordinate system

buckling or vibration half-wavelength

DESCRIPTION OF GENERAL APPROACH USED IN AND

CAPABILITY OF PASCO COMPUTER CODE

Overview

PASCO has been developed to aid the engineer in the analysis

and sizing of prismatic structures such as those shown in

figure 1.

Because of their wide application in aerospace

structures, stiffened panels are given special emphasis in PASCO.

For exa~nle, complex panel configurations can be built up from a
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Figure 1l.- Examples of typical structures.
a relatively small number of repeating elements, the loadings
(figure 2) available in PASCO are the type usually associated
with panels, and practical panel design considerations such as
an overall bow-type initial imperfection (figure 3) can be

accounted for.

Figure 2.~ Available loadings Figure 3.~ Overall bow-type
applied to hat-stiffened panel. initial imperfection.

The panel cross section is composed of an arbitrary
assemblage of thin, flat, rectangular plate elements that are
connected together along their longitudinal edges. Each plate
element consists of a balanced symretric laminate of any number

of layers of orthotropic material. Any group of element widths,



layer thicknesses, and layer orientation angles can be selected
as sizing varialles. For example, in the blade-stiffened panel
configuration shown in figure 4, the blade depth can be allowec
to vary, the overall stiffener spacing can be held fixed, the
thickness of the material at the 0° and #45° orientations can be
allowed to vary, and the orientation angles themselves can be

held fixed.

T

0‘J filaments

+85° filaments

4
Figure 4.~ Blade-stiffened panel confiquration.

When used in the analysis mode, PASCO can be used to cal-
culate laminate stiffnesses, lamina stresses and strains
(including the effect of temperature), buckling loads, vibration
frequencies, and overall panel stiffness. When used in the siz-
ing mode, PASCO adjusts the sizing variables to provide a low-
mass panel design that will carry a set of specified loadings
without failure by buckling or material strenjgth and that will
meet other design requirements such as upper and lower bounds on

sizing variables, upper and lower bounds on overall bending,

b e e MBI i re s 3 -



extensional and shear stiffness, and lower bounds on vibration

frequencies.

The

Approach and Capability

approach used in and the capability of PASCO are summar-

ized in figure 5. The topics listed in figure 5 are discussed

briefly here and are explained in greater detail in subsegent

portions

OESIGN

of the report.

CONDITIONS

ANALYSI

N,N,N ,M
X’ Uy’ Xy’ x
Lateral pressure

Bow-type imperfection

Temperature

Multiple sets of design conditions

S

VIPASA for eigenvalues
Prebuckling stresses include bending stresses :aused by applied

moment, lateral pressure, bow, temperature, and transverse load
Lamina stresses and strains for strength criteria

PANEL CONFIGURATION AND MATERIAL

SIZING,

General configuration

Multiple materials

Materials orthotropic at arbitrary angle
Balanced, symmetric laminates

Uniform along panel length

Detailed modeling

SIZING VARIABLES, AND CONSTRAINTS

NonTlinear mathematical programming

Minimize mass

Sizing Variables: element widths, ply thickness, and ply
orientation angle

Sizing variable linking

Bounds on sizing variables

Constraints: buckling, material strength, stiffness,
vibration frequency

Figure 5.~ PASCO capability and approach.
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Design conditions.- ae design conditions considered are a

loading of Nx' N N and Mx' lateral pressure, an over-

y' “xy’
all bow-type imperfection, and temperature. Lateral pressure
and the bow are treated using a beam-column approach. Thermal
stresses are calculated assuming that the temperature (or, more
precisely, the change in temperature) is specified in each plate
element. Temperature does not vary with the sizing variables.
Panels can be sized for multiple sets of design conditions.
Analysis.~- The eigenvalue analyses for buckling and
vibration frequency are performed by a stiffened panel analysis
code denoted VIPASA (refs. 6 and 7). The prebuckling stress
state includes bending stresses caused by an applied bending
moment, lateral pressure, an o erall bow, temperature, and a
transverse load. Resultant prebuckling lamina stresses and

strains are calculated for the material strength criteria.

Panel configuration and material.- The panel cross section

can have a general configuration. Each plate «lement can contain
multiple orthotropic materials oriented at arbitrary angles.
However, each plate element must be a balanced, symmetric
laminate and must be uniform along it. length. Many unsymmetric
laminates can be generated by stacking plate elements composed
of symmetric laminates. (This approach is discussed in refer-
ence 1.) Curved panels can be modeled using a series of flat
plate elements. Provision for offscts and a large ~umber of
distinct layers in each laminate allow relatively detailed

modeling of the panel cross se~tion.

10



Sizing, sizing variables, and constraints.- Sizing is

carried out using a nonlinear mathematical programming approach
in which the design requirements are treated as inequality
constraints. The objective function, the quantity that is
minimized, is the panel mass per unit width. The panel length
is fixed.

Any sat of plate element widths, layer thicknesses, and
layer orientation angles can serve as the sizing v-riables.

The other plate element widths, layer thicknesses, and layer
orientation angles can be held fixed or linked linearly to those
that serve as sizing variables. During panel sizing, linking
can be used to provide practical proportions, calculate

offsets that change as thicknesses change, and maintain overall
panel width.

The design requirements, or constraints, that can be
specified are upper and lower bounds on sizing variables, lower
bounds on buckling and material strength, upper and lower bounds
on overall bending, extensional, and shear stiffnesses, and
lower pounds on vibration frequency. Separate margins of
safety can be placed on each buckling or vibration mode. Several
material strength criteria are included, and, if desired, the
user can incorporate his own material strength criterion by

writing an additional subroutine.

11
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STRUCTURAL ANALYSIS
Analytical foundations for PASCO are discussed in terms of
structural analysis and in terms of sizing. The focus of this
section is structural analysis. Sizing is considered in a

subsequent section.

Prebuckling Stress Analysis

The prebuckling load distribution on each plate element is
required for the buckling analysis and is used to compute
lamina stresses and strains for the material strength criterion,
The loads on each plate element are calculated using the follow-
ing approach: The load distribution is first determined for a
uniform longitudinal strain. Additional bending loads are then
calculated and added to the load distribution determined for
uniform longitudinal strain. Finally, the shear stress
distribution is computed and added. Each of these steps is
discussed in greater detail in subsequent sections of this
report.

Elastic relations.- The elastic relations are presented

for a plate element with coordinate system, displacements, and
loading as shown in figure 6.

Wit- the assumption of balanced, symmetric laminates, the
general plate constitutive equations uncouple. The equations

for inplane loads for plate element i reduce to

12



SEE BELOW

{a) Hat-stiffened pane! with
applied foading

(©) Plate element coordinate system. (@ Plate element i with inplane loading.
displacements, and ply Directions shown are positive for
orientation angle prebuckling loads.

Figure 6.~ Plate element coordinate system, displacements,
loading, and sign convention.

13



T T k1 e
in All Al2 0 €y ClT
Nyi = A12 A22 0 Ey + C2T
ny 0 v A33J ny C3T
— -] - i . J3 S
(1)
in which Nx ’ Ny . and ny are the inplane loads on plate
i i i

element 1 (positive in compression); Ajk are laminate

stiffnesses; €t ey, ny are strains (positive in compression)
given by
€, = - %% (2)
ey = - g_;' (3)
Yay = " (%-;- + %}‘g) (4)

u and v are prebuckling displacements; and CjT are the

temperature terms given by

CjT = _/QjT (VT) dz (5)

in which VT is the change in temperature. The change in

14
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temperature VT 1is allowed to be ply dependent and, therefore,
can vary wich z.

For an orthotroric lamina with material coordinate system
ir:lined at an angle 6 to the plate element coordinate system
(.ig. 6), the QjT are first calculated in the material

«Jordinate system (the primed system) and then transformed to

the plate element coordinate system as follows:

_ 1
Q'll B l - v.,v (6)
172
. VB By
Q 12 - - (7)
1 - ViV, 1l - v Vy
E
1l - ViVa
Q'33 = Eqy (9)

Q'1p = Q73707 + Q%50 (10)
Qlyp = Q'150p + Q7550 (11)
QlT = Q'lT cos2 g + Q'2T sin2 8 (12)

15
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. 2
= ' 1
QzT Q pp Sin 6 +Q op COS

) (13)

0
)
|

(Q'lT - Q'ZT) sin 6 cos 6 (14)

Uniform longitudinal strain.- With the assumption that the

prebuckling longitudinal strain €4 is uniform over the panel

cross section, the strain €y is given by

N, + b - C. b.
e = X s X¢ 1 (15)

in which N, is the applied longitudinal load per unit width,

bS is the width of one period of the stiffened panel (fig. 6),

the summation extends over all elements in a period, and

—_— _ _ 2 .

A; = Ay (Alz) /BA,, for plate i (16)
b, = width of plate i (17)
C, = Alz(Ny - CZT)/A22 + Cyp for plate i (18)

The longitudinal loading Nx in plate i 1is then given by
i

N = ¢ A, +C, (19)

16




In the expression for Ci' the transverse load Nyi in
plate 1 can be determined two ways. One way is to use the
PASCO modeling rules discussed in reference 1. The other way is
to specify the values of Ny. with program input. In general,
the modeling rules are desig;ed so that the full N is carried
by the skin, and no Ny is carried by the stiffener elements.

Note that even though the longitudinal strain €y is
uniform, the term Ci in equation (19) may produce a net

bending moment about the centroid of the panel cross section.

Bending loads.- In this section, expressions for bending

strains caused by various loadings are developed. These bending
strains are combined with the uniform styrains from equation (15)
to calculate the total axial loading Nx. in each plate element.
Bending loads can be caused by an applieé bending moment, a bow-
type imperfection, lateral pressure, temperature, and/or an
applied transverse load. These bending loads are calculated by
PASCO and, except for those bending loads already included in
Ci (eq. (18)), are added to the longitudinal load distribution
given by equation (19). Certain options involving the bending
loads produced by temperature and/or an applied transverse load
are discussed later in this section.

For combinations of applied moment, lateral pressure, and

initial bow, the maximum bending moment, which occurs at panel

midlength, is given as in reference 8 by

17
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A gy

Nx « e PL™ 1 -
M=M 4+ - [%ec(E/T) - 1] (20)
1 -y ™y
wh.are
Nx
Yy = — (21)
Nx
E

and Nx is the applied longitudinal load, NxE is the Euler
buckling load for the panel, Mx is the applied bending moment
on the panel, e 1is the bow at panel midlength, P is the
lateral pressure loading, and L 1is the panel length. Most of
these quantities, together with the overall panel coordinate
system, are shown in figqure 7. ©Note that the bending load
caused by the applied bending moment Mx is not influenced by
inplane loads.

Because the VIPASA buckling analysis requires that the stress
distribution be constant along the panel length, the conservative
assumption is made that the bending moment given by equation (20)
is the bending moment over the entire panel length.

For buckling modes having a half-wavelength A equal to the
panel length L, the bending moments caused by a bow and/or

lateral pressure are omitted from equation (20). Only the

applied bending moment Mx is retained.

18
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(positive bow)

Figure 7.- Panel with applied bending moment, initial bow,
and lateral pressure.

Strictly speaking, equations (20) and (21) are appropriate
only when Nx is the sole inplane loading; however, in PASCO,
these equations are applied to problems with combined loads.

For combined loads, the parameter 7y 1is defined as

F

y = S (22)
F(A = L)

in which F is a scalar defined by

N, ] N 7]
N M
F [N = N (23)

Xy Xy

P

MX Mx

VT vT

£ . £ . . .

— - input - buckling or vibration

19
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The input vector on the left, which is the design loading and
frequency requirement, is scaled up or down with the parameter
F to obtain that combination that causes buckling or vibration.l
Since there is a question about the validity of equation (20)
in the case of combined loads, and since it would be inappropriate
to use a frequency requirement to calculate Yy for equation (20),
a user should exercise caution in the application of equation (20)
to calculate bending loads. For the latter reason, subsequent
discussions in this section will focus on buckling.

During the buckling analysis, the buckling load is calcu-
lated for many values of buckling half-wavelength A, and
more than one buckling load can be calculated at a given value
of X. There is a value of F associated with each of these
buckling loads. 1In equation (22), F(} = L) is the value of
F associated with the lowest buckling load for A = L. The
value used for F in the numerator of equation (22) depends upon
whether the bending moment in equation (20) is to be used for
material strength calculations or buckling calculations.
L For material strength calculations, the bending moment that
is used to calculate lamina stresses and strains is based on one

of two values of F for the numerator of equation (22).

lA more cnmplete discussion of F 1is presented in a
subsequent section entitled FACTOR and F.

20
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(1) If F(M = L) 1is greater than 1.0, then F = 1.0.

(2) If F(X = L) 1is equal to or less than 1.0, then F
is the value of F for the minimum buckling load for i
considered.
® For buckling calculations, F that appears in the numerator
of equation (22) is the value of F associated with the eigenvalue
number and buckling half wavelength being examined. The resulting
bending moment is used to calculate prebuckling plate element
loads.

In the discussion following equation (19), it was pointed
out that the Ci term, which accounts for temperature and
transverse loads, can produce a bending moment in the panel.

This bending moment is treated in PASCO in one of two ways:

(1) the panel is allowed to take on a bow (JTHERM=1), or (2) the
panel is forced to remain flat (ITHERM=0). If the panel is
allowed to take on a bow, the magnitude of the bow is calculated
to produce zero bending moment in a panel loaded only by tempera-
ture and transverse loads. This bow is then added to any initial
bow that exists in the pancl. If the panel is forced to remain
flat, no additional bow 1s added and any bending moment produced
by the C.l terms 1n equation (19) is retained. The user
sclects the desired approach with the i1nput paramcter TTHERM.

The trcatment of the bending moment caused by C.1 can also

be described in the following way. Let a moment M be defined

by

21
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Nx(e + ec) PL 0o
M= Mx + + 3 [sec(i/y) - l] - Mc (24)
l - v Ym

in which e and Mc are the only terms that do not appear in
equation (20). The quantity e, is the magnitude of a bow
calculated to produce zero bending moment in a panel loaded only
by temperature and transverse loads, and MC is the roment
caused by Ci (eq. (18)). When ITHERM is set equal to 1 with
program input, the bending moment that is added to the stress
state associated with uniform strain is given by equation (24).
When ITHERM is set equal to 0 with program input, the bending
moment that is added to the stress state associated with uniform
strain is given by equation (20).

Bending loads are applied to the panel with an N loading
that varies by steps in the z direction. An example islshown in
figure 8. 1In this example, a blade-stiffened panel is subjected
to longitudinal compression and a bcnding moment that puts the
skin in additional compression. The blade is modeled as three
separate plate elements. The moment-induced Nx. load in each
plate element, including the skin, is calculatedlby assuming
that (1) the strain at the centrcid of each plate element forms
a "linear" strain distribution, (2) the net inplane load caused
by the bending strain is zero, and (3) the net bending moment

produced by bending strains is equal to the calculata2d moment.

The resulting bending strain distribution is given by

22
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{a) Blade-stiffened panel configuratior: (b} £, for small bending moment (¢} €, for larce oment

Figure 8.- Idealized longitudinal strain distributicns
on compression panels with bending moment.

EMi (EA + eq Zi)M (25)

in which EMi

distance from the reference surface to the centroid of plate

is the bending strain in element 1, Zi is the

element i (fig. 8), and

2.Ab. 2,
£, = —g, —2 11 (26)
A B =
LA b,
bS
€, = (27)
B [YR,b.2.1°
YEb (2 - S22
111 A.b,
1l 1
23
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A, = A 2

i 11 " (Alz) /A22 for plate element i (28)

The summations are over all elements in one period of the st ff-
ened panel, and bs is the width of one period.

The bending strains ¢ from equation (25) are combined

M.
1

with the uniform longitudinal strain €, from equation (15)

to produce the =2sultant longitudinal loading in each element

N = (¢ t+E YJA. + C, (29)

Shear stress.- The shear stress in each plate element is

calculated using a generalization of the approach of reference 5
in which equilibriun and compatibility of displacement are
employed. Define a shear flexibility S, ‘or a plate of width

b,
i

§; = bi/A33i (30)

For plates or substructures connected in series, (fig. 9),

the shear flexibility Sp for the substructure is given by

S =S, +S8, 4+ ...+ 58 (31)
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“m

DO 9
@ Plate element or substructure number

Figure 9.- Plate elements or substructures connected in series.

and the shear in each plate or substructure is

N =N = .. .=N = N 32
Xy, Xy, Xy, Xy (32)

in which N is the shear load on the substructure.

P

For plates or substructures connected in parallel (fig. 10),

the shear flexibility Sp is given by

l/Sp = l/S1 + l/S2 + . .. + l/Sn (33)

®
7 N, Ny,

N ,v: %
G) xy} A b /]

N’%V«\ “, o

)

@ Plate element or substructure number

Figure 10.- Plate elements or substructures connected in parallel.
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and

Xy

U'll(n
o)

-

(34)

N
Xy

In PASCO, the overall panel shear stiffness is calculated
by VIPASA. However, the nyi and S; given above could be
used to calculate a total shear angle which, in turn, could be
used to define an overall panel shear stiffness. Usually, the two
approaches give results in close agreement.

The shear stress in any element can also be specified

by the user with program input.

VIPASA Buckling Analysis

Buckling and vibration analyses in PASCO are carried out
with a stiffened panel analysis code denoted VIPASA (Vibration
and Instability of Plate Assemblies including Shear and
Anisotropy) described in references 6 and 7. For simplicity,
only buckling terminology is used in the present discussion
of VIPASA. It is understood, however, that the discussion
also applies to the vibration analysis.

The VIPASA analysis treats an arbitrary assemblage of plate
elements with each plate element i 1loaded by in, Nyi, and
N, - The buckling analysis cornects these individual plate
ele;ents and maintains continuity of the buckle pattern across

the intersection of neighboring plate elements. Several
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buckling modes are shown in figures 11 and 12. VIPASA considers

only initial buckling. Postbuckling response is not considered

by VIPASA or PASCO.

OVERALL BUCKLING MODE

/\\d‘i,"\ ——— BUCKLING-MODE SHAPE

g
[ S e UNDEFORMED SHAPE
LOCAL BUCKLING MODE

Figure 1l1l.- Typical buckling modes for hat-stifiened panel.

- [ rm=n Feas /’f\‘ﬂ P P P~z Pz 7 -
i !ty i . 1 ' 1. T . v /y v . s ,
\\ Br; | , K 5 \" ‘ \! ' \ ' \ ’ [N ’
e : ) - T L) [ ) AR/l

BUCKLING-MODE SHAPE
———— UNDEFORMED SHAPE

Figure 12.- Typical buckling mode for corrugated panel.

Elastic relations.- In the VIPASA analysis, a local

coordinate system is defined for each individual plate element.
In the example shown in figure 6, the X, Y, 2 axes define
the local coordinate system in the local longitudinal, transverse,
and lateral directions, respectively. The buckling displacements
u, v, and w are defined in this local coordinate system and
are the same as those shown in figure 6.

During buckling, the out-of-plane elastic deformations of

each plate element are defined by
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— 4 o - - 5
M D D D 3w
Xy 11 12 13 —
X
M = - D D D 82w
Yy 12 22 23 —
dy
M D D D 82w
_xyL 13 23 33 . zax—ay )
— —-i - =i
(35)
where M., M , and M are perturbation bending and
R £1 XYy
twisting moments per unit length on plate element i, D are

jk
the laminate stiffnesses, and w 1is the perturbation displacement
in the z-direction. Because of the requirement that each plate
element consist of a balanced, symmetric laminate,2 anisotropic
effects are limited to those produced by the D,3 and D23

terms. Therefore, in subsequent discussions, anisotropy refers

only to anisotropy in the bending stiffness.

2VIPASA does not require that plate element laminates be
balanced and symmetric. However, as can be seen from equations (1)
and (35), VIPASA ignores extension-sheir coupling and membrane-
bending coupling in each plate element. The resulting elastic
relations are the same as those that are obtained for a laminate
that is balanced and symmetric. Because of the elastic relations
in VIPASA and because balanced and symmetric laminates are the
most common laminates in aerospace applications, PASCO input
provides only balanced, symmetric laminates for each plate element.
By stacking symmetric laminates (ref. 1), many unsymmetric
laminates can be modeled and the coupling action in the
elastic response for these unsymmetric laminates can be
accounted for.
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Buckling displacements and boundary conditions.- The

buckling displacement w assumed in VIPASA for each plate

element is

w = Re [F(y) ei""/*] (36)

with similar expressions assumed for the inplane 2isplacemer..s

u and v. For F(y) written as
F(y) = £,(y) + if,(y) (37)

the buckling displacement w can be written as

w = fl(y) cos %? - fz(y) sin %? (38)
Neglecting boundary conditions, the displacement shape assumed
in equation (38) provides an exact solution to the governing
differential equations if the panel and loading are uniform
in the x-direction. The governing equations are based on the
Kirchoff-Love hypothesis applied to each plate element.

The functions fl(y) and fz(y) allow various boundary
conditions to be prescribed on the lateral edges of the panel.
These boundary conditions, which include free, simple support,
clamped, and symmetry, are discussed in the users manual,
reference 1. Boundary conditions cannot, however, be prescribed

on the ends of the panel.
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Orthotropic panels with no shear loading.- For orthotropic

panels with no shear loading, f the imaginary part of

2°
F(y), 1is zero. The solution fl(y) cos %F provides a series

of node lines that are straight, perpendicular to the longitudinal
panel axis, and spaced A apart as shown in figure 13. Along
each of these node lines, the buckling displacements satisfy

the following simple support boundary conditions: u is
unrestrained, v =w = 0, and w'x is unrestrained. For

values of A given by A =1L, L/2, L/3, .. . L/m, where L

is the panel length and m is an integer, the nodal pattern

shown in figure 13 provides simple support boundary conditions

at the ends of a finite, rectangular panel. An example in

which A = L/2 1is shown in figure 14.

————— NODE LINES

Ny
| | } t } | |
= 0 b g
- | ! : : | t —
Nx ! | A : | M
! t t } ¢ ¢ {
My

Figure 13.- Node lines produced by w = f3(y) cos %?
for orthotropic panels with no shear loading.
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VARIOUS BOUNDARY —
CONDITIONS \

VARIOUS BOUNDARY
CONDITIONS

Figure 14.- Buckling of orthotropic panel under longitudinal
loading. Mode shown is m = 2.

Anisotropic panels and/or panels with a shear loading.- For

anisotropic panels and/or panels with a shear loading, f2 # 0.
The functions f1 and f2 are such that node lines are skewed
and not straight, but the node lines are still spaced A apart
as shown in figure 15. In this case, the solution given by
equation (38) is accurate only when many buckles form along the
panel length, in which case boundary conditions at the ends are
not important. An example in which X = L/4 is shown in
figure 16.

As A approaches L, the VIPASA buckling analysis for a
panel loaded by ny can be quite conservative. One explanation
is as follows: As can be seen in figure 16, the skewed nodal
lines given by VIPASA in the case of shear and/or anisotropy do

not coincide with the end edges. Forcing node lines to
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-~ — — — NODE LINES

72
|
| -
!
!

—
-
-

Figure 15.- Node lines produced by w = fl(y) cos %? - fz(y) sin %?

for anisotropic panels .nd/or panels with a loading that
includes shear.

Figure 16.- Buckling of panel under shear loading.
Mode shown in m = 4.
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coincide with the en. edgeg produces long-wavelength buckling
loads that are, in many cases, appreciably higher than those
determined by VIPASA. Calculations have shown that for long-
wavelength buckling modes, the effect of anisotropy is minimal
Lor most practical cases. Anisotropy therefore, causes
negligible conservatism in a VIPASA analysis. The presence of a
shear loading can, however, lead to very conservative results
for X equal to L. (See, for example, ref. 9.)

Because of VIPASA's conservatism in the case of long-
wavelength buckling if a shear load is present, an adjusted
shear analysis procedure can be used (at the user's option)
for the case ) = L. That adjusted analysis is discussed in a
subsequent section entitled Adjusted Analysis for Shear
Buckling.

Example.- A buckling response diagram, such as that shown
in figure 17, provides a convenient means of studying the
buckling response of a panel and can be used to help explain
some of the features of the buckling analysis and the computer
code. The example shown in figure 17 is for a blade-stiffened
panel having arbitrary but reasonable proportions. The panel
has a length L of 0.76m (30 in.) and is modeled with

16 stiffeners. The boundary coanditions on the lateral edges of

i
4
]
1

the panel are taken to be simple support. Anisotropy is ignored.
The loading on the panel is pure longitudinal compression;
transverse and shear loads are taken to be zero. In the diagram,

the buckling load Nxc is given as a function of the

r
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Figure 17.- Longitudinal buckling load as a function of
buckling half-wavelength for blade-stiffened panel.

nondimensional half-wavelength A/L. The half-wavelengths

examined by PASCO are =1L, L/2, L/3, L/4, ...., L/MINLAM -
in which MINLAM ;s program input. For this example, the lowest
buckling load has a half-wavelength A = L. The buckling mode

shave for this mode is shown in figure 18a. The next lowest

buckling load is a relative minimum that occurs for A = L/8.

The mode shape for this local mode is shown in figure 18b.
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Figure 18.- Buckling mode shapes for blade-stiffened
panel example.

Although the program makes simple, exploratory calculations
for many values of A (A =1L, L/2, L/3, . . ., L/MINLAM), it
calculates the buckling load for only certain values of A. The
program always calculates the buckling load for A = L. The
program also calculates the buckling load for specified values of
A given by A = L/NLAM where the vector parameter NLAM is
input. (In order to obtain the data for figure 17, the vector
NLAM was set equal to NLAM = 2, 3, 4, 5, . . ., 30.) In addition,
the program calculates any buckling load which is a relative
minimum () = L/8 in figure 17) that is lower than the next
preceding calculated buckling load. Wavelengths are considered
in order of decreasing length: L, L/2, L/3, . . . , L/MINLAM.
Referring again to the example of figure 17, if no value of NLAM

were input, the only buckling load calculated would be for




A = L. The buckling load at the relative minimum X = L/8
would not be calculated because that buckling load is greater
than the next preceding calculated buckling load, which is at
A = L. If, on the other hand, NLAM = 2 were input, then the
buckling loads would be calculated for X =L, A = L/2, and
A = L/8. The buckling load would be calculated for A\ = L/8
because it is a relative minimum and because it is lower than
the next preceding calculated buckling load - the load for

A =L/2.

The program input parameter NEIG(m) can be used to calculate
more than one buckling eigenvalue at a given value of A.

Element m in vector NEIG(m) is the number of eigenvalues
requested at a half-wavelength of X = L/m. For example, for
two eigenvalues at A = L, the input is NEIG(l) = 2. 1In
figure 17, the second eigenvalue at A = L 1is indicated by the
square symbol at A = L.

As explained earlier, PASCO can also account for an overall
bow-type initial imperfectiun. The buckling response curves
shown in figure 19 are for the same blade-stiffened panel discussed
above, but with three different assumptions regarding an overall
bow: (1) a positive bow of e/L = +0.003, (2) a negative bow of
e/L = -0.003, and (3) a zero bow, e/L = 0.0. As in figure 17, the
only loading is longitudinal compression. The curve for
e/L = 0.0 1is the same as that shown in figure 17. The bow does
not directly affect the buckling load for A = L. For this

reason, the panel has the same buckling load at X = L for the
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Figure 19.- Longitudinal buckling load as a function of
buckling half-wavelength for blade-stiffened panel with
positive bow, negative bow, and zero bow.

potitive, negative, or zeroc bow. For a positive bow, which causes
additional compression in the skin, the lowest buckling load
occurs at A = L/30. For a negative bow, which causes additional

compression in the tip of the blade, the lowest buckling load

occurs for A = L/8.

FACTOR and F
In VIPASA, FACTOR is the unknown in the eigenvalue analysis.

The desired eigenvalue is identified by half-wavelengtii A and
37
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by the eigenvalue number at thac value of ).

A buckling analysis

in VIPASA is merely an eigenvalue analysis at zero frequency.

The eigenvalue solution technique in VIPASA can be summarized

as follows. For any set of values of FACTOR and hulf-wavelength

A, mathematical expressions in VIPASA provide the number of

eig~nvalues exceeded. Using this information, an iterative

scheme in VIPASA identifies two values of FACTIOR that bracket

the desired eigenvalue. The difference between these two values

of FACTOR can be made arbitrarily small, depending upon PASCO

convergence criteria input CONV1 and CONV2.

In this report, a quantity is introduced that has essentially

the same meaning as FACTOR.

That quantity is denoted F. The

quantities FACTOk and F differ in that whereas FACTOR is always

the solution of an eigenvalue analysis in VIPAS: 2v¢@ is identified

with the word FACTOR in the VIPASA printout,

.

F may not be the

solution of a VITWASA eigenvalue analysis if an adjusted shear

analysis is used in PASCO.

Otherwise, FACTOR and F are identical.

For all analyses in PASCO, the scaler F 1is defined by

input
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in which Nx. Ny' and ny are inplane loads, P is the lateral
pressure, M_ is a bending noment, VI is a change in temperature,
and f is a frequency. Whereas VIPASA can have a fixed load
system that is added to the left side of equation (39). PASCO
does not allow fixed loads. The entire input vector Nx to
in equation (39) is scaled up or down with the quantity F to
obtain the vector that provides the desired eigenvalue. The
change in temperature represented by VT in equation (39) is ply
dependent and can, therefore, be made to vary throughout the

structure. 1In equation (39), the product of F and VT

indicates the scaling of that distribution.

During the eigenvalue analysis, eigenvalues can be calculated
for many values of half-wavelengths A, and more than one
eigenvalue can be calculated at a given value of ). There is a
value of F associated with each of these eigenvalues.

As an example, assume that the only two nonzero elements in
the input vector on the left side of equation (39) are Nx and f£.
The response of a stiffened panel might be similar to that shown

in figure 20. The solid curve indicates combinations of Nx

and £ that give the lowest eigenvalue. The value of N,

that causes buckling is Nx ; the natural frequency of the
cr
unloaded panel is f . Let the input values of N and £ be ;

3
t
k
{
]
x

represented by the solid circular symbol. The dashed line that
passes through both the origin and the circular symbol indicates
the locus of values of Nx and f that are considered by

VIPASA as possible solutions to the eigenvalue problem. The
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o LOWEST EIGENVALUE

Figure 20.- Response of hypothetical stiffened panel showing

combinations of Ny

and f that provide the lowest

eigenvalue, and a geometric interpretation of F.

direction cosines of this line are defined by the input values

represented by the circular symbol.

The unknown is the di :ance

from the origin to the point at which the dashed line intersects

the solid curve.
of as the ratio of the distance AB from the origin to the solid

curve to the distance AC from the origin to the circular symbol.

This unknown is denoted F and can be thought

In this hypothetical example, F is approximately 0.75. Other

examples, involving combined loads with or without vibration

frequency, are treated in the same manner.

and are i.. 'luded in the output.
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Six smeared orthotropic stiffnesses are calculated by PASCO

A

A

A

11
22
33

Smeared Orthotropic Stiffnesses

longitudinal extensional stiffness
transverse extensional stiffness
shear stiffness

longitudinal bending stiffness

These stiffnesses are denoted

ke revay
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* D,, transverse bending stitffness

® Dy, effective twisting stiffness

The stiffnesses A22, A33, and D22 are calculated within
VIPASA using the VIPASA stiffness matrix, which relates forces
and moments along the edges of a repeating element to the
corresponding displacements and rotations. The stiffness matrix
is evaluated at F = 0, A = FSTIFF + L (where FSTIFF is input,
default = 10) to approach the result obtained for a uniform
edge loading. These stiffnesses are equivalent to the
corresponding stiffnesses in the laminate force - distortion
relationships given in equations (1) and (35).

The stiffnesses All' and D33 are not calculated

D1y’
within VIPASA, but are, instead, calculated with formulas as

follows:
The smeared extensional stiffness All is defined as an ET-
type stiffness given by
. (A, )°
_ 1 _ i
Ay, =5 & Ay, by (40)
s i i A
22i

in which the subscript i refers to plate element i, the Ajk
are laminate stiffnesses defined by equation (1), the summation
extends over all elements in one period of the stiffened panel,
and bs is the width of one period.

The smeared orthotropic bending stiffnesses Dyyr Dyye and

Dy; are appropriate to use in the following differential

41
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equation for lateral deflection of an orthotropic plate with

lateral loading q.

4 4
aw o w I w

D —— + 4D —_— + D — =q (41)
11 ax4 33 ax23y2 22 aY4

The smeared bending stiffness Dll is an EI-type stiffness

given by

+ bh. D cos2 0 (42)

in which z, is the distance from the centroid of the cross
section to the centroid of plate element i, and 8 1is the angle
plate element i makes with the horizontal.

The formula for calculating the effective twisting stiffness
D33 depends upon whether the panel is an open-section panel,
such as a blade-stiffened panel, or a closed-section panel, such
as a hat-stiffened panel. For open-section panels D33 is
given by
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prymenn

1 j} : 1
D = — b. ( + D ) (43)
33 bs - i 5[12i 33i

in which the summation extends over all elements in one period of
the stiffened panel, and the Djk are laminate stiffnesses

defined in equation (35). The D term is included in

12
equation (43) to make D33 correct for equation (41l). For

¢ losed-section panels, D33 i3 given by

Xz
1
PP

i

3

in which A is the area enclosed by the closed section in one
period a 4@ the summation extends only over those elements making

up the closed section.

Adjusted Analysis for Shear Buckling

Rationale for adjusted analysis approach.- With the VIPASA

analysis, the boundary conditions on the side edges (the edges
parallel to the stiffeners in figure 21) can be specified and
modeled correctly. However, the boundary conditions on the end
edges (the edges normal to the stiffeners in figure 21) cannot
be specified. The boundary conditions on the ends arise from the
displacement shape assumed in equation (38). 1In the case of
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Figure 21.- Node lines determined by VIPASA in *he case of a
shear loading.

of loadings involving shear, the displacement shape and resultant
nodal pattern produce boundary conditions on the ends that are
not compatible with a finite rectangular panel. This incompat-
ibility causes VIPASA to underestimate the A = L buckling

load when the loading involves shear.

The adjusted shear analysis is an attempt to "rectangularize"
the nodal pattern for the A = L buckling load and, thereby,
provide a more accurate )\ = L buckling analysis for lcadings
involving shear. It is assumed that node lines would be more
compatible with a finite rectangular panel if boundary conditions
were modeled correctly on edges normal to the stiffeners than if
boundary conditions were modeled correctly on edges parallel to
the stiffeners. This assumption follows from the belief that,
in such an analysis, the stiffeners would tend to produce node

lines that are generally parallel to the stiffeners, as shown in
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Figure 22.- Node lines for hypothetical VIPASA shear buckling
solution for stiffened panel rotated 900,

figure 22. It might appear that such an analysis could be
carried out with VIPASA if the stiffened panel were first simply
rotated 90°. However, VIPASA cannot solve this analysis problem
because the VIPASA solution (eq. (38)) requires that the
trigonometric solution be in the direction in which the panel is
uniform, which, for a stiffened panel, is in the stiffener
direction. Let the value of F for this target problem be

denoted F where F is defined in equation (39), d refers

4,90’
to discrete stiffeners, and 90 refers to the panel rotated by
90°.

Calculation of adjusted buckling load.- Although VIPASA

cannot calculate Fd 907 VIPASA can solve a similar, simplified
[4

problem. If the stiffened panel is replaced by an equivalent

orthotropic panel with smeared stiffnesses, the resulting panel

is uniform in both directions. For this case, the panel can be
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rotated 900 and boundary conditions can be modeled correctly on
the edges normal to the stiffeners. The result of such an
analysis would be similar to that shown in figure 22. Let the
value of F for this smeared orthotropic panel be denoted
Fs,90’

In the adjusted analysis approach, it is assumed that Fd,90

can be zpproximated by

(45)

where all three values of F on the right side of the equation
are calculated with VIPASA, and the models used in the analyses
are illustrated in figure 23.

In equation (45), both smeared solutions are based on the
orthotropic stiffnesses discussed in the section entitled Smeared
Orthotropic Stiffnesses. All other stiffnesses are assumed to be
zero. The quantities Fd,o and FS'0 are calculated for )\ = L.
The guantity 15‘5'90 is associated with the lowest of the buckling
loads calculated for A = W, W/2, W/3. . . W/MINLAM, where W is
the panel width. Multiplying Fs,90 by the ratio of Fd,0 to

F is an attempt to remove analysis inadequacies caused by

s,0

representing the discretely stiffened panel by a smeared ortho-

tropic panel. Note that Fd 0 is the standard VIPASA solution.
4

The input parameter SHEAR is used to indicate whether the

adjusted analysis is to be used for the A = L buckling load.
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Figure 23.~ Analysis models used to obtain adjusted
solution for shear buckling.

If SHEAR = 0, the standard VIPASA analysis is used. If SHEAR > 0,
the adjusted analysis is used. When SHEAR > 0, the alue of the
twisting stiffness used in calculating the smeared orthotropic
plate buckling load is the product of SHEAR and the value of the
twisting stiffness calculated by equations (43) and (44). A

) value of SHEAR less than 1 is generally appropriate for a panel
composed of closed section stiffeners, such as a hat-stiffened

* panel.

If the adjusted analysis is selected for the X : L buckling

load, PASCO automatically carries out the three analyses on the
right side of equation (45), and chooses for the adjusted

solution the smaller of the following values of F: (1) Fd 90
1
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calculated from equation (45), and (2) F calculated

8,90
directly by VIPASA.

To summarize the various possibilities for F:

® When the adjusted shear analysis is used (SHEAR # 0

and A = L), F is the smaller of F and FS

d,90 ,90°

¢ For all other cases (SHEAR =0 or A # L), F |is Fa,0°
The appropriate value of F is then used to calculate bending
loads and constraints on buckling or vibration.

The adjusted analysis is an engineering approximation, and
engineering judgment should be used in its application. For
example, the smeared stiffening approach must be compatible with
the F

and Fs buckle mode shapes. In both cases, the

s.0 950
buckle length transverse to the stiffening must be greater than
2.5 times the stiffener spacing. If the adjusted analysis is
used and if it is appreciably greater than the standard VIPASA
analysis, then a factor of safety of 10 percent to 20 percent
is recommended for the ) = L buckling load. For sizing
purposes, this factor of safety can be introduced with CLAM(l) =
1.1 or 1.2, (See ref. 9 for additional discussion and examples.)
Example.- An example which illustrates the approach used in
the adjusted shear analysis is presented in figure 24. 1In this
figure, buckling interaction curves for shear and compression
are shown for a 76.2 cm (30 in.) square, blade-stiffened panel
having six stiffeners. The desired boundary conditions are

simple support on all four edges, a condition that cannot be met

with VIPASA if shear is present. The four curves represent the
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Figure 24.- Comparison of predicted buckling loads from
various analysis models for blade-stiffened panel
subjected to combined longitudinal compression and
shear loadings.

four solution approaches just discussed and are identified in the
figure key. 1In particular, the so0lid curve represents the

standard VIPASA analysis, and the highest curve represents the
solution obtained using equation (45). The circular symbols
indicate results obtained with the STAGS computer program (ref. 10).
In the STAGS analysis, the panel was modeled in detail with
discrete stiffeners, and the desired simple support boundary
conditions were maintained on all four edges. For this problen,

the standard VIPASA analysis greatly underestimates the shear
buckling locad. Either of the two upper curves provides a

reasonably accurate estimate of the correct result obtained with
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the general two-dimensional STAGS analysis. As explained earlier,
if an adjusted analysis were desired, PASCO would automatically

choose the lower of the two upper curves. (See examples, ref. 9.)

SIZING
The computerized structural sizing approach used in PASCO
is based on nonlinear mathematical programming techniques. Sizing
variables are automatically adjusted to obtain a design that
minimizes an objective function subject to a set of inequality
constraints. Approximate analysis techniques are used to improve

computational efficiency.

Problem Statement
The general problem statement is: find values for the set
of variables xi to
® Minimize an obj _tive function OBJ(Xi)
® Subject to
¢ Behavioral constraints: Gj(xi) <0
® Side constraints: VLB, < X; < VUB,
where
xi are the sizing variables
VLBi are the lower bounds on the sizing variables
VUB;, are the upper bounds on the sizing variables
VIPASA and octher analyses are used to evaluate the constraints
G:. CONMIN (refs. 11 and 12) is used to solve the resulting

]
mathematical programming problem.

50



‘2‘{«‘

Sizing Variables

In PASCO, the sizing variables are the plate element widths,
denoted b, the ply “hicknesses, denoted t, and the ply
orientation ancles, denoted 6. Any set of widths, thicknesses,
and orientation angles can be selected as the active sizing
variables. The remaining widths, thicknesses, and orientation
angles can be held fixed or linked linearly to the active sizing
variables. Upper and lower bounds can be specified for the

sizing variables.

Objective Function

W/A
L 14
the panel mass per unit area divided by the panel length. This

The objective function is the panel mass index

is the quantity denoted OBJ in CONMInN. The area A is the panel
planform area shown in figure 25. Since the panel length L is
fixed, the quantity that is minimized becomes the panel mass per

unit width.

WlDﬂ+———T7/

LENGTH

A = LENGTH-WIDTH

Figure 25.- Panel planform area A.
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Constraints
Constraints are ineguality requirements that must be wet
during sizing to provide an acceptable design. In addition to
upper and lower bounds on the sizinc variables, denoted side
constraints, there are behuvioral constraints on buckling,
material strength, stiffness, and vibration frequency. CONMIN

requires that these constraints be written in the form

G, < 0 (46)

In PASCO, the concstraints =re normalized in order that all
constraints be of the same order of magnitude. The specific
forms for the constraints are given .n the following sections.

Buckling or vibration.- Constraints on the buckling load

or vibration frequency can be written in the form

F()r.)
-
CLAM(A]-)

(9]
[
i

(47)

in which F is defined in equation (32), and CLAM can be used to
specify a margin of safety at specific wavelengths. There can
be simultaneous buckling or frequency constraints for many values
of A, and there can be many buckling or frequency constraints

for each value of .

/N '

In the coding within PASCO, F 1is replaced by N X
cr input

X

which is equivalent to F. If the adjusted shear analysis is
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selected, the appropriate analysis is used to compute N . If
cr

N is zero, a small positive value of N, is
input input

automatically introduced within PASCO.

Material strength.- Three material strength criteria are

built into PASCO: maximum lamina stress, maximum lamina
m2chanical strain, and Tsai-Wu (ref. 13). In the maximum stress
criterion, tension and compression limits are placed on Oye Oy
and Tyo in each lamir . The maximum lamina mechanical strain
criterior is defined similarly, except that the thermal strain is
subtracted from the total strain to provide the mechanical strain
in each element. For the maximum lamina stress and maximum

lamina mechanical strain criteria, the material strength

constraint is written in the form

G=§——S——-l '48)
allow

in which S is a lamina stress or mechanical strain, and Sallow

is the corresponding maximum allowable value. The input quantity
ALLOW is used to prescribe the allowable values used in the
material strength criteria.

In the Tsai-Wu criterion, the stress state is defined by

2 2

F + F.o, + F..C + F2202

11 292 11%1

©
]

2
t FgeTyp + 2F15010, (49)
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where Fl' Fy, Fll' Foos and F66 are automatically calcu-
lated from the allowable stresses that are included in the input

ALLOW, and F is included in the input ALLOW. The Tsai-Wu

12
strength constraint is defined as

G=¢ -1 (50)
The user may incorporate his own material strength criteria

by writing additional subroutines.

Stiffness.- Stiffness constraints are written as

- _ Stiffness
G=1 Stiffness lower limit (51)
and
G = Stiffness 1 (52)

~ Stiffness upper limit

in which the stiffnesses that can be constrained are:
° All extensional stiffness

] A33 shear stiffness

® D bending stiffness

11
These stiffnesses are "smeared" orthotropic stiffncsses for ithe

overall panel, not individual plate element stiffnesses.
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Approximate Analysis
The approximate analysis approach used in PASCO is depicted
in figure 26. It is similar to the approach proposed in
reference 14. The procedure consists, conceptually, of three
modules: an analysis module, a Taylor series module, and a

sizing module.

® VIPASA
ANALYSIS ® STRENGTH ANALYSIS

MODULE | g ANALYSES FOR SMEARED
ORTHOTROPIC STIFFNESSES

TAYLOR SERLES ® TAYLOR SERIES FOR
MODULE APPROX IMATE ANALYSES

)

1

RESIZING

MODULE @ CONMIN OPTIMIZER

Figure 26.- General approach used in PASCO.

Analysis module.- In the analysis module, all constraints

are calculated with VIPASA and supporting subroutines. The program

identifies the critical constraints and, using a two-point forward

difference approximation, calculates the derivatives of the

critical constraints with respect to the sizing variables. The

values of the constraints and derivatives are then passed to the

second module, the Taylor series module. The techniques used to
antify critical ccnciraints are discussed subseyguently.

Taylor series module.- The Taylor series module generates a

first order Taylor series expansion of each constraint. Expan-
sions are of the form
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G(Xi) = G(fi) 1—2()(i - )_(i) (%(G:) (53)
i Xi Xi

in which x.l are the sizing variables and ii are the values of
the sizing variables at the initial point of the expansion. The
Taylor series approximations provide a reasonably accurate and
simple representation of the constraints in the neighborhood of
the initial point of the expansion. The Taylor series expansions
are updated periodically to insure their adequacy. The second

module also evaluates the objective function.

Sizing module.- The third module contains the optimizer

CONMIN. During sizing, the optimizer interacts only with the
second module which contains approximate, explicit functions
for the coustraints and a simple expression for the objective
function. Such as approach greatly improves computational
efficiency.

Sizing strategy.- The overall sizing strategy is depicted in

more detail in figure 27. The strategy consists of a series of

sizing cycles in which the optimizer adjusts the values of the t
sizing variables based on approximate values of the constraints

(eq. (53)). An upper limit is imposed on the change of each

sizing variable during each sizing cycle to insure the adequacy

of both the list of constraints that are considered to be critical

and the Taylor series expansions of those constraints. These

limits to the changes in the sizing variables, referred to as
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INITIAL
DESIGN

SECOND
SIZING
VARIABLE,

X

FINAL DESIGN

-y
]
! L COMPLETE ANALYSIS
! n_-
I A

MOVE LIMITS FOR
: nth SIZING CYCLE

FIRST SIZING VARIABLE, X)

Figure 27.- Sizing strategy for approximate analysis, shown
in two-sizing-variable space.

move limits, are governed by input and are indicated by the
dashed rectangles in figure 27. (Move limits are discussed

in the next section.) The solid circular symbol at the center of
each rectangle in figure 27 represents the point at which the
Taylor series expansions are carried out for each sizing cycle.
The end point of one sizing cycle becomes the initial point of the
next sizing cycle. Accurate values of the constraints and deriva-
tives of the constraints are then recalculated, and new Taylor
series expansions are generated. Ten sizing cycles are usually
adequate to obtain convergence if the initial design is reasonably
well chosen. The number of s=izing cycles is controlled by the

input parameter MAXJJJ and not by any convergence criterion.
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Move limits.- The move limits that are generated internally

for each sizing cycle are given by

(54)

3

n-1
Xi - DVMOVi (SFACTR) xi,init

VUB. = Xi + DVMOVi . (SFACTR)n-l - X (55)

i,init
where

° VLB.1 and VUBi are the sizing variable lower and upper
bounds used by CONMIN in a sizing cycle

® ii are the values of the sizing variables at the
beginning of a sizing cycle

. DVMOVi is an input vector

® SFACTR 1is an input scaler

® n is the sizing cycle number

LD ¢ are the initial (input) values of xi

i,init
One of the objectives of equations (54) and (55) is to reduce

the move limits as the sizing progresses. Overall lower and

upper bounds on the sizing variables override the lower and

upper bounds for a sizing cycle calculated in equations (54)

and (55). Values of DVMOV = 0.2 and SFACTR = 0.8 generally

provide reasonable answers.

Identifying critical buckling and frequency constraints.-

For simplicity, buckling terminology rather than eigenvalue
terminology is used to describe the logic for identifying
critical eigenvalue constraints for the Taylor series module.
However, the discussion also applies to the frequency constraints.
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The critical buckling constraints are identified by buckling
helf-wavelength A. Selecting these critical values of ) is
a multistep process which begins by conrstructing a table of
potentially critical values of ). This table always contains
A = L. The table also contains values of A specified in the
input NLAM. Also added to the table is each value of ) for
which the buckling load meets both of the following two require-
ments.

® The buckling load is a relative minimum (A = L/8 in

figure 17), and

e The buckling load is lower than the buckling load for the

preceding value of X 1in the ) table. The X table
is ordered according to decreasing values of .
As the sizing progresses, new values of )\ meeting these two
requirements are identified and added to the table.

Buckling constraints are retained for a maximum of MAXL
values of A, in which MAXL is an input parameter. If there are
more than MAXL values of A in the A table, logic is included
which divides the range of m values (m =1, 2, 3,..., MINLAM)
into regions and retains the most critical constraint(s) in each
region. The larger MAXL, the larger the number of regions. At

this stage, A = L 1is always retained in the table of potentially

critical values of .
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The number of buckling constraints can be further reduced
with the parameter GRANGE. All buckling constraints for which
F/CLAM > GRANGE are eliminated. For example, for GRANGE = 2
any buckling constraint for which G 1is less than -1.0 is
eliminated. To insure computational efficiency, all buckling
constraint elimination is based on the rough calculation of the
buckling loads where the convergence criterion is CONVl1. Fine
calculations of the buckling loads and calculation Of the
derivatives of the buckling loads are not carried out for buckling
constraints that are eliminated.

Identifying other critical constraints.- For constraints

other than buckling, GRANGE is the sole constraint deletion
mechanism. For constraints involving a lower bound (buckling,

stiffness, frequency) the minimum value of G retained is

G = 1 - GRANGE (56)

For cc .straints involving an upper bound, (stiffness, material

strength) the minimum value of G retained is

G = -1 (57)

Calculation of Derivatives of Buckling Loads
The derivatives of the buckling loads with reSpéct to sizing
variable X, are calculated using the following numerical

approximation
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aF F(Xi + AXi) - F(Xi)

ax. ® (58)
1l

AX.
1

Derivatives are calculated only for those values of the half-
wavelength ) identified as being critical. Two methods are
available in PASCO for calculating the perturbed solution

F(Xi + Axi). One method uses the same general approach as that
used to calculate the nominal solution F(xi). The other method
uses a much faster approximate technique. The user can select
the method with the input parameter JDER.

In the first method, F(xi + Axi) is calculated using an
iterative technique that is the same as that used to obtain the
nominal solution F(Xi). The number of iterations required to
obtain the perturbed solution is, however, reduced somewhat by
restricting the solution for F(xi + AXi) to a narrow band
centered on the nominal solution F(Xi) as shown in figure 28.
The solid curve indicates the value of the buckling determinant
as a function of F for the nominal case. The dashed curve
gives the game information for the perturbed case. The nominal
solution, the band width, and the perturbed solution are
indicated in the figure.

In the second method, the perturbed solution F(Xi + Axi) is

estimated using an approximate technique illustrated in
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Figure 28.- Buckling determinant as a function of F for
nominal values of the sizing variables and for a perturbed
sizing variable.

figure 29. The approximate method3 consists of the folloying
steps:
® Using the value of F obtained from the nominal solution
shown at point 1, the value of the determinant is
calculated for the perturbed case shown at point 2.
¢ The slope of the dashed curve at point 2 is assumed to be
the same as the slope of the solid curve at point 1.

® The perturbed solution at point 3 is estimated using a

linear approximation from point 2.

3The authors are indebted to Prof. Fred W. Williams,
University of Wales, Institute of Science and Technology, for
suggesting this technique.
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Figure 29.- Approximate method for calculating perturbed
buckling load.

In all cases, the iteration scheme used to converge on an eigen-
value at point 1 involves an interval halving strategy. If
certain numerical conditions are met during iteration, a linear
interpolation strategy is introduced. Consider the two values
of F that bracket the desired eigenvalue when the linear
interpolation strategy is introduced. If these two values of F
differ by at least five percent, then the second method can be
used to calculate F(xi + Axi). In this case, the slope at
point 1 is taken to be the last slope calculated in the linear
interpolation strateqy. If the numerical characteristics of the
problem are such that interpolation is not used, or if, when

interpolation is introduced, the two values of F that bracket
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the solution differ by less than five percent, the first method is
automatically used to calculate F(xi + Axi).
In the case of the adjusted analysis for shear buckling, the

derivative of the adjusted buckling load for A = 1. is taken to be

ax. F ax. Fq,0 (59)

where the derivative of Fd 0 is calculated using the numerical
’
approximation in equation (58), and F is the smaller of Fd 90
r

and Fs,90'

Multiple Load Conditions

PASCO can treat sizing problems with multiple loading
conditions. This means that panels are sized to meet the design
requirements (constraints) for load condition 1 and load condi~
tion 2 and load condition 3, etc. The number of allowable load
conditions is large. For limitations, see reference 1.

Using PASCO notation, quantities that can depend upon the
load condition are the inplane design loads NX, NY, and NXY;
the lateral pressure PRESS; the bow ECC; the change in temperature
TEM; the bending moment MX; the design frequency FREQ; the
material properties El, E2, El2, ANUi, RHO, ALFAl, and
ALFA2; the stiffness requirements AllL, AllU, A33L, A33U,
D11L, and D1l1lU; and the allowables ALLOW used for the material

strength criteria.
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Sizing Example
An example which focuses on the buckling constr .-t aspects
of the sizing code is presented in figures 30 through 32. 1In
this example, the panel whose buckling response was shown in
figure 17 is sized to meet a buckling requirement of Nx = 700 kN/m
(4000 1bf/in). No other constraints or loadings are imposed. The

panel is assumed to be perfect.

1600 n
r —— —Q— —— INITIAL .FSIGN

/R —————{———— FiNAL DESIGN

Ibf
N"cr T

Figure 30.- Longitudinal buckling load as a function of
buckling half-wavelength for two blade-stiffened panels:
the initial design and the final design.
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Figure 31.- Buckling loads as a function of sizing cycle number.
The buckling response for the initial design and the buckling
response for the final design are both shown in figure 30. As
can be seen in the figure, the initial design bucklas at about
70 percent of the design load at buckling half-wa“elengths of
A=1L and X = L/8. The final design meets the buckling
requirement for all values of ).
The buckling load history for this sizing example is shown
in figure 31. For the initial design, %the critical buckling half-
wavelength identified by the analysis module is ) = L. The half-
wavelength X = L/8 is not identified because the buckling load
for ) = L/8 is slightly higher than the buckling lo:.d for

A = L. As the sizing progresses, cther values of A are
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Figure 32.- Panel mass index as a function of sizing cycle number.
identified and ar~ added to the ) table. For example, at the
second sizing cycle, X = L/7 1is identified, and at the third
sizing cycle L/8 is identified.

The manner in which the mass index varies during the sizing
is shown in figure 32. During the first cycle, the only buckling
constraint available to PASCO was for the A = L mode. The code
increased that buckling load while decreasing the panel mass. At
the beginning of the second sizing cycle, PASCO identified the
A = L/7 mode and, during that cycle, added materi-! to the panel
to increase that buckling 1load. the beginning of the fourth

sizing cycle, all buckling constraints were satisfied. During
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fourth and subsequent sizing cycles, the mass was reduced while
the buckling strength of the panel was maintained.

In the above example, the first sizing cycle was counter-
productive because the only buckling constraint available to
PASCO was for the XA = L mode. Convergence would have been
improved if a local buckling constraint had been made available
with the input NLAM. In this case, a good choice would have been

NLAM = 7 or 8.

CONCLUDING REMARKS

This report has discussed certain aspects of the computer
code denoted PASCO, which can be used for analyzing and sizing
uniaxially-stiffened composite structural panels having a general
configuration.

In PASCO, buckling loads, lamina stresses and strains, smeared
orthotropic stiffnesses, and vibration frequencies can be calcu-
lated for a variety of typical loading conditions. These same
quantities can also be used as design requirements during sizing.
Sizing is based on nonlinear mathematical programming techniques
ir. which the mass of the panel is minimized subject to satisfaction

of the design requirements.
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