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ABSTRACT

Applegate, Sheldon Lee.	 Ph.D., Purdue University, 	 August,
19d1. The Use of Intr_ractive Raster Graphics in the Display
and Manipulation of Multidimensional Data. Major Professor:
David C. Anderson.

Techniques for the review, display, and manipulation of

multidimensional data are developed and described. Multidi-

mensional data ie meant in this context to describe 	 scalar

data	 associated with it three dimensional geometry or other-

wise too complex to be well represented by traditional

graphs.	 Raster graphics techniques are used to display a

shaded image of a three dimensional geometry. 	 The use 'of

color	 to	 represent	 scalar data associated with the

geometries in shaded images is explored. Distinct hues are

associated with discrete data ranges, thus emulating the

traditional representation of data with isarithms, or lines

of constant numerical value. Data ranges are alternatively

associated with a continuous spectrum of hues to show

subtler data trends.	 The application of raster graphics

techniques to the display of bivariate 	 functions	 is

explored.

	

An experimental data display and review tool 	 is

described, and examples of displays of several types of

engineering data are shown. 	 The ability to access raw

numerical information associated with a complex data display
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is dersonst:ated as un integral	 pat.	 of	 the d931M ....ra-,

package. The utility of interact '. vex analyst controlled

alterations of erroneous or questionable data in the crea-

tion of meaningtul displays is also demonstrated.
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IINTRODUCTION

The advancement of science in recent decades has

changed not only mankind's view of his universe. it has

changed the techniques of scientific study. A few centuries

ago the "Renaissance" man contrived. often with fair suc-

cess, to be well acquainted with the who	 fq	 le o	 science and

the fine arts. Scientific discoveries were made by Indivi-

duals performing their own experiments with hand made equip-

ment. Much of thu work was qualitative, and a great deal of

effort was spent on "Will	 it work?" experiments testing

basic principles.

The ever increasing depth of scientific study has elim-

inatad the global expert, and the increasing cost and com-

plexity of highly Technical experimentation severely res-

tricts those attempting individual research. The applica-

tion of research teams to scientific studies has allowed
i

more extensive experimentation, and consequently more raw

r	 information becomes quickly available. 	 The	 historical

scientist	 used his insight into physical phenomena, before

or after tits experiments, to reach conclusions regarding his

research.	 Voluminous experimental results can overwhelm

those wishing to interpret them, but if large quantities of

r
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Information can be readily assimilated, it can give a

greater understanding of the problem and enhance the oppor-

tunity `or trsight.

Computers and Graphics

The advent of the digital computer has given tremendous

impetrs to the expansion of numerical results, both in

experimental and theoretical fields. Where an experimenter

formerly	 read individual meters, digitally controlled test

facilities can take over 100,000 samples	 per	 second

while storing data from hundreds of instruments. Copernicus

spent years making calculations to justify his theories on

the organization of our relatively simple solar system;

current cosmologists use a few hours of computer time juar

to verify when some of Copernicus' observations took place.

"he same computers can perform many times more extensive

calculations in order to examine complex and detailed

theo-ies on the evolution of the universe, a task Copernicus

could not have approached.

The automation of test control and the vast increase in

computational power have allowed experimenters and research-

ers to study much more detailed models, 	 but	 the resulting

profusion of numerical	 information it	 a mixed blessing.

Even if data	 verification	 and	 the	 elimination	 of

computational errors are assumed,	 the task of manually

1 40



Iinterpreting results may loom as large as the former task of

obtaining them. Copernicus had the advantage of knowing

when his calculations placed the planets where his telescope

showed	 them,	 but the voluminous, detailed results produced

by contemporary theoreticians and expertmentnlists may give

no concise indication of their overall significance. The

digital computer can be used to run extensive analyses

reducing results to a yes or no answer, but a pure yes or no

from a complex prog ► im tells a de{!ision maker almost 	 noth-

ing.

The impracticality of manually reviewing :.umerous 	 data

sheets	 has	 long	 led	 men	 to	 condense	 the	 available	 data	 by

graphical	 me-ins.	 Rene	 Descartes'	 use	 of	 orthogonal	 axes	 for

plotting	 was	 a	 major	 step	 Loward	 readily	 comprehendable

Informational	 display.	 A graphical	 presentation	 of	 informa-

tion	 allows	 the	 use	 of	 man's	 well	 developed	 visual	 abilities

to	 detect	 correlations.	 These	 correlations	 might	 often	 be

overlooked	 if	 a	 purely	 mental	 analysis	 of	 the	 raw numbers

were	 performed.	 Graphical	 displays	 can give	 an	 overview	 of

a	 great	 deal	 of	 information	 in	 a	 concise	 form.

The	 advent	 of	 the	 digital	 computer	 has	 given	 an	 addi-

tional,	 direct	 impulse	 to	 the	 expanding	 use	 of	 graphical

data	 presentation.	 The	 tedious	 chores	 of	 scaling,	 measur-

ing,	 and	 plotting	 data	 can	 make	 a	 tabular	 listing	 of	 -esults

acceptable	 to	 the	 person	 charged	 with	 making	 the	 graph,	 but

ao
computer	 automated	 plots	 eliminate	 the	 mechanical	 chores	 of

r
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plotting. The digital computer may have worsened the prob-

lem of voluminous data by automating data acquisition, but

it has helped to alleviate the problem by automating graphi-

cal data presentation.

The preponderant application of computer graphics has

been the presentation of simple Cartesian graphs. These

graphs are familiar to those analyzing the data, but

computer graphics is a powerful tool whose potential is not

realized by such mundane applications.	 It is hardly an

indictment to state that computer graphics is not always

used to its potential, for the radio, the airfoil, the

laser, and other inventions were used for straightforward

applications before their potentials were widely explor '.

The newness of computer graphics as a field of study

has allowed people from a wide variety of disciplines to

stumble into it and become leaders in its development. 	 The

heterogeneous backgrounds of those involved has given

computer graphics rese-,rch a haphazard appearance, but it

has also encouraged a wide spectrum of applications without

the strictures of uniform experience. 	 Major efforts in

computer graphics are being conducted by people in the

fields of mechanical engineering	 (Purdue	 University),

architecture	 (Cornell	 University),	 art	 (Ohio	 State

University), civil engineering (Brigham Young University),

communications	 (Bell	 Laboratories),	 motion	 pictures

(Lucasfilm), computer science (University of Utah), and

Aix,
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visualisation and simulation ( Jet Propulsion Laboratories).

The visually exotic results of current research in com-

puter graphicm	 techniques are self - ,justifying	 to	 those

interested in the	 research.	 Many engineers would con-

sider	 them pr,atty, but of little practical value. 	 The com-

putational power used to create much of	 the extensive

analytical data has largely been ignored in the creation of

straightforward apls, when it could have been used to

create more sophi^;ticated and more meaningful displays show-

ing more information. The use of advanced computer graphics

for informational display is becoming more a necessity than

a luxury as the amount of experimental, analytical, and sta-

tistical data continues to expand.	 The application of more

sopaisticated graphics will become ever more 	 important as

the information to be analyzed becomes ever more complex.

If computer graphics is to be a useful tool for the practic-

ing engineer, this computational power must be used to

create more meaningful informational displays.

A more flexible and usable means of information display

may be developed using current interactive capabilities.

Having the reviewer communicate with the display and the

controlling computer program during execution allows the

fine tuning of display options without the time and expense

of repeated runs. A still more powerful tool for the review

of data can be created by allowing the analyst not only to

interact with the parameters controlling the display, but to

r
r

I
I

r
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a
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operate on the data itself.	 An analyst reviewing data	 from

Whatever source will	 likely wish to know both the general

trends and certain specific values of his data.	 Interac-

tively controlled computer displays of data can show the

trends of the data. Interactive access to numerical infor-

mation allows the review of the raw numbers with which most

contemporary analysts are familiar.

Interactive computer graph,'^s can be a powerful tool in

data	 review if	 it	 is properly applied.	 The hardware and

software must be combined to create a data display package

with	 three	 important characteristics: visual clarity, usa-

bility, and versa ility.	 The representations of information

should	 bc	 lucid	 and,	 as	 possible, self documenting.	 An

Individual display should ideally require no external expla-

nations of	 its content.	 The analyst must be comfortable

with the display package and his interface to it so he is

not substituting a tedious ritual of artificial inputs for

the drudgery of plotting and interpreting pages of numerical

output.	 The commands available to the user should stress

functionality rather than formality and powerfulness.	 A

reasonably short sequence of simple, understandable commands

would for most users be preferable to a single, complex com-

mand	 that works by magic. The versatility necessary in a

data display package would depend on the variety of	 its

probable applicat;;,ns.	 A general purpose package intended

for use as a group resource would need to be much more



r versatile	 than	 a	 package used	 as	 a	 subsystem	 in a	 testing

facility,	 but	 both	 packages	 should be	 flexible	 in	 their han-

dling	 of	 information.	 If	 the	 interaction can	 be made	 "com-

fortable"	 and	 the	 graphics	 can	 be made	 comprehensive and

comprehendible,	 then	 the	 computer can	 be an	 invaluable tool

in	 the understanding of	 available information.

Research	 Objectives

r
The primary goal	 of	 this	 research	 is	 the	 development of

a	 tool	 whereby an	 engineer	 can	 more	 efficiently	 review	 large

quantities	 of numerical	 information.	 The	 effectiveness of

color,	 raster graphics	 in	 the	 display	 of	 complex data is

examined.	 The user	 interface,	 the	 engineer's	 control	 of his

display,	 is a	 primary	 consideration	 and	 includes	 both the

control	 of	 the data	 displays	 produced	 and	 access	 to	 the raw

numerical	 information used	 to	 create	 the	 displays.

i

9v
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The	 irregular development	 of	 computer graphics	 research
Y

In	 general	 is	 paralleled	 by	 the	 irregular development	 of

computer graphics	 equipment	 and	 applications.	 Computer	 gen-

erated	 displays	 of	 information	 have	 usually	 been	 created	 by

persons	 whose	 primary	 responsibilities	 were	 in	 the	 applica-

tions	 and	 not	 in	 computer	 graphics.	 The	 developmental	 goals

have	 generally	 been	 short	 range,	 to	 wit,	 the	 presentation	 of	 IT

specific	 information	 in	 more	 or	 less	 traditional	 format

using	 whatever	 output	 devices	 happened	 to	 be	 readily	 avail-

able.	 The	 emphasis	 has	 generally	 been	 on	 short	 development

times	 and	 the	 fast	 generation	 of	 acceptable	 displays	 rather

than	 on	 the	 creation	 of	 quality	 displays.	 Commercially

available	 graphics	 software	 reflects	 this;	 it	 is	 typically	 ss

tailored	 to	 the	 needs	 of	 inexpert	 users	 desiring	 simple,

business	 oriented	 graphs	 and	 charts.

displayThis	 research	 is	 primarily	 concerned	 with	 the

of	 technical	 data,	 either	 empirical	 or	 theoretical,	 and	 many

other	 types	 of	 data	 are	 tacitly	 ignored	 or	 lightly	 brushed

aside.	 This	 is	 not	 to	 imply	 that	 they	 are	 unimportant,	 but

r, they are	 not	 relevant	 to	 this	 research.	 Many	 types	 of

technical	 data	 are	 also	 Inappropriate	 for	 the	 display

w
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techniques developed and are consequently ignored.

The format of a data display is dependent on the type

of data being presented. 	 Informational displays typically

show the correspondence between a quantity of	 interest and

parameters affecting it. The style of display should

reflect the characteristics of the quantity of interest and

the parameters of which it is a function.

Functions of a Single Variable

Functions, discrete or continuous, of a single variable

have long been the primary subject of data presentation

graphics. Exotic displays of piping systems or space shut-

tles are useful and dramatic, but the day to day utility of

traditional graphs makes the Cartesian plot the most widely

used form of graphical data display.

Discrete functions of a single variable, such as popu-

lations of states or births in given weeks, can be shown as

Cartesian graphs, but they are often more useful if shown in

some other form. histograms are used when relative com-

parisons are more useful than actual numbers. The cost of

living in various cities is one example of information that

can be clearly presented with a histogram. Pie charts are

often used for financial or budgetary displays, as they

clearly show each "slice" in relation to the whole "pie."

Histograms,	 pie charts, and other pictorial representations

z^
a
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of discrete functions are quite popular	 in	 newspapers	 and

textbooks. Pictorial	 figures give the reader a break from

the text and help to koeF him entertained.	 The	 maintenance

of a reader's interest	 is a valid	 reason	 for using graphical

data presentation, but	 it is	 not	 the only	 reason.

Functions of Two Variables g

When the correlation between a function and more than

one parameter influencing it is to be shown, simple carte-

scan graphs are inadequate. Kaplan(1) and Benson and

Ktous[2) have demonstrated the use of computer graphics in

the display of discrete, tabular data. Both used tabular

forms but replaced the normal numerical entries with symbols

or shading. The size or pattern of the symbols give quali-

tative information, and strong trends showed up as definite

patterns. This technique is useful, but it relies on the

tabular format of its data and is consequently restricted in

Its applicability.

Y

	

	 Geographical data is a function of a two dimensional

area rather than of two distinct parameters, but the general

+ format for graphical display of geographical information is

often the same as used for tabular data. Brassel(3) used

the aforementioned symbols and shading to represent crime

statistics on political maps of the Buffalo, New York area.

Color raster graphics has been used to display topolog-

ical and topographical information. Tanimoto[4) and others
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have used color to verify the topology of 	 circuit designs.

McCleary ( 51 used color to represent oceanographic data. 	 All

parts of the Atlantic Ocean with a depth between 	 1000 and

2000 feet r► Ight be colored red, with other color.. represent-

ing other ranges of depth. 	 Dalton, et al. ( 61 have developed

the	 Domestic	 Information Display	 System	 for use by the

President .tnd Congress.	 This system shows domestic informa-

tion as a function of political boundaries within the United

States.	 The user of this	 interactive	 system	 has	 control

over	 how colors are used to represent the information of

interest to him.	 He might choose to show (counties with 	 low

unemployment	 In blue and counties with high unemployment in

red .

Many functions of two variables are functions over an
M.

area or are well represented as such. 	 For years researchers

have striven to efficiently draw isarithms, or lines of con-

stant	 numerical value, on sketches of two dimensional sur-

faces.	 Bengtsson and Nordbeck [ 71 had computerized the con-

struction of	 isarithms by 196 4. 	McLain[8] and Cold, Char-

tors, and Ramsden[91 developed techniques creating isarithms

from	 less	 regular	 input	 than Bengtsson and Nordbeck

required. Dot• n ( 101 and Fowler and Little [ III also

explored alternate means of creating or displaying contours

or isarithms.

Another popular means of displaying continuous func-

tions of two variables is the creation of a topography, or a
^t►

(

s
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three dimensional surface showing by its altitude the value

v	 of a function at a	 point	 on	 its	 two dimensional	 base.l

Fowler and Little(zlj, Kubert, Szabo, and Cuilierie(121, and

others have drawn wire frame terrain models of	 functions.

Siddell, et	 al.(13)	 used	 topographies	 to show biomedical

Information. This style of display is also available in

commercially marketed software graphics packages such as the

DISSPLA system developed by the Integrated Software System

Corporation.

Many functions of two parameters are not continuous

functions of both parameters, and the parameters may not be

continuously variable. The energy required to drive a pump

Is a function of the flow rate and the size of the pump; the

I	

latter is not normally considered to be a continuous func-

tion.	 Functions of two variables are sometimes shown as a

family of separately labeled curves on a standard Cartesian

graph. If the function of interest is f(r,$) the curves

might show f(r) for several separate, constant values of a.

This technique is widely used in engineering texts and

reference books.

a

1. The author implemented this technique at Lockheed
Missiles and Space Company. The data displayed was From
vibration tests.

f R
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Functions of Three or More Variables

The graphical techniques previously discussed are

widely applicable and handle many types of data. but more

complex information either presses the limits of these sim-

ple techniques or renders them all but uselerjs. Robots used

In manufacturing or other processes use five or six degrees

of freedom to go through well defined movements in three

dimensions. Control systems and manufacturing processes can

have numerous input parameters affecting the output and pro-

duct cost. Since functions of numerous variables cannot

often be well	 represented by graphical techniques, purely

numerical or analytical procedures	 are come.,only v a e d	 for

their investigation. Numerical analyses can find optimal

combinations of input variables or give the local effects of

individual parameters, but associated graphical output typi-

cally depicts a few degenerate cases.

In certain special cases functions of more than 	 two

R

	

`` xtl	 variables can be depicted with graphical techniques. 	 Func-

tions of two or three positional variables and time are

	

e	
often shown by videotapes ^r movies created on a frame-by-

frame basis, with each frame corresponding to a particular

r instant in time. Human vision is so acutely attuned to the

detection of motion and the perception of motion as a func-

tion of time that movies or other time dependenC output

forms are the best means of conveying complex, time depen-

dent information. 2 Software developed with an eye toward
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movies	 is	 common	 in	 computer	 graphics.	 SynthaVisionfl4l	 and

MOVIE.BYUf15,16,171	 nre	 two	 examples	 of	 software	 packages

facilities.with	 movie	 making

Functions	 of	 three	 dimensional	 apace	 are	 common	 but

difficult	 to	 display	 clearly.	 Stress,	 velocity,	 tempera-

4 tune,	 and	 many	 other	 quantities	 occur	 as	 functions	 of	 three

dimensional	 position,	 but	 graphical	 depictions	 of	 these

quantities	 must	 often	 depend	 on	 simple	 cases	 or	 displays	 of

only	 part	 of	 the	 available	 information.	 These	 functions	 are

generally	 shown	 by	 cross	 sectioning	 the	 volume	 and	 using
d

previously	 mentioned	 techniques.

One	 simple	 function	 of	 volume	 that	 tins	 received	 a	 great

deal	 of	 attention	 is	 the	 solid	 object.	 The	 function	 in	 this

case	 has	 only	 two	 possible	 values,	 for	 elther	 the	 solid

object	 occupies	 a	 location	 or	 it	 does	 not.	 The	 represents-

Lion	 of	 a	 solid	 object	 is	 of	 considerable	 import	 during

geometric	 modelling,	 or	 the	 computer	 aided	 design	 of	 three

dimensional	 solid	 ob'ects.	 When	 the	 definition	 of	 an	 object

is	 held	 only	 in	 the	 computer's	 memory,	 a	 means	 of	 accurately

3

i

N

5

representing the object to the designer is necessary.

T	 The problems in the display of a 	 three dimensional

object may be divided into two parts, the detection of the

surface and the depiction of the surface. The detection of

the surface, or the deciding of what part of the object goes

T'Fie— author implemented time dependent displays of
vibration data at Lockheed Missiles and Space Company.
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wher ,a	 on	 the	 display, depends	 on	 the	 orientation of	 the

f

object with	 respect to	 the	 viewer	 as	 well	 as	 the	 definition

of	 the	 object.	 Many algorithms	 for	 the	 display	 of an object

and	 the	 elimination of	 hidden	 surfaces	 demand	 the surfaces

be	 composed	 of	 flat polygonb.	 Newell,	 Newell, and	 San- 
T

Watkins(19),cha(181, Warnock(201and	 developed	 three basic,

If	 disparate,	 approaches to	 the	 display	 of	 surfaces composed

of	 flat,	 polygonal elements.	 Blinn,	 et	 P1.(21( further

developed	 the	 seem	 line procedure	 used	 by Watkins	 to display

parametrically	 defined surfaces.

't

The depletion of surfaces has been developed under the

term	 "lighting modr.l." 	 Thee computer	 representation of

reflectance and other surface characteristics of objects has
a

been	 researched	 by	 Pha ag(221,	 Blinn ( 231, and Whitted(24)

among others. Whitted accounted for multiple light sources,

shadows, reflections, and transparency.	 The lighting models

of Phong, Blinn, and Whitted are relatively complex. Sim-

plifted lighting models requiring less computational time

are often used when representation0 accuracy is not a prime

R	 consideration.
T

♦ a

The removal of hidden surfaces and the shading of sur-

faces can produce excellent images of solid objects, but

they are not always the best representation of a geometry.

The verification of three dimensional geometry definitions

for structural mechanics analyses is an excellent applica-

tion of computer graphics that does not need a refined
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lighting model. A wire frzue representation of a geometry

can show all parts of a three dimensional ob"i ect. which hid-

den surface representations cannot. Fraser and Ewald(25).

9iffle ( 26). and Potts ( 27) have shown various a.plications of

computer graphics to structural mechanics. The previously

mentioned MOVIE.BYU system was first developed as a struc-

tural analysis post processor.

Representations of solids by wire frame geometries can

show three dimensionality, 	 but	 they cannot show a ful:y

three dim p nslonal field of data. 	 Rodrigues	 and	 Simon(28)

have displayed three dimensional displacements at specific

points in structural mechanics models by arrows. Structural

displacements are also shown as exaggerated deformations of

wire frames or other displays, especially when the shape of

a vibrational mode is to be represented.3

Flow fields are another complex form of data whose

representation has received considerable attention. Two

dimensional and axisymetric flows have often been depicted

by velocity profiles, vector fields, and two dimensional

streamlines . 4 Nruch[29) demonstrated the use of interactive

computer graphics in the conformal mapping area, showing

streamlines of fluid flow before and af . er	 conformal

4 ^

E'

3. The author used this technique at Lockheed Missiles and
Space Company to display vibrational mode shapes.

4. The author lmrlemented a vector field jisplay of
calculated velocities in a nozzle at Lockheed Missiles
and Space Company.
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mappings. Three dimensional streamlines,	 successive cross

sections	 of	 trailing vortices,	 and other techniques were

used by Cozzolongo[30) and linoco et al.[31) 	 to	 show	 flow

patterns.	 The number of streamlines that can be meaning-

fully displayed is limited, for the viewer Must be able 	 to

follow the str•?amlinev and recognize their paths in relation

to obstructions and other streamlines. 	 Baden Fuller and dos

Santos[32)	 and	 N . .ssif and Silvester[33) demonstrated tech-

nique-:- for representing cross sections of three dimensional

flow fields. The former pair used three dimensional arrows

whose length and orientation indicated the magnitude and

direction of the flow at the tail of the arrow. 	 The latter

pair displayed flow with cones and cylinders instead of 	 the

arrows used by Baden Fuller and dos Santos.

Belie and Rapagnan![34[ used color to show both cross

sectional and fully three dimensional properties of flow

fields. Iwo dimensional cross sections were colored accord-

ing to data ranges, with specific colors associated with

specific data ranges: Belie and Rapagnani also used color

to provide additional magnitude inf-rmation in three dimen-

sional arrow displays of flow field =,. The use of color

instead of size for magnitude representation allowed the

presentation of fully three dimensional fields with reason-

able clarity.

The representation of three dimensional fields of data

has	 not	 been	 thoroughly	 researched.	 Wright	 and

r,,...

4
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Ilumbrecht f 351 developed techniques fay

surfaces in three dimensions, but their representation does

not allow the display of more than one such isosurface.

Future research may use the transparency and highlighting

facets of Whitted's lighting models in the display of multi-

ple isosurfaces. Three dimensional, semitransparent isosur-

faces may provide the three dimensional analogue to the

widely used two dimensional isarithm.

Restricted Functions of Three Variables

Numerous types of engineering data, both empirical and

analytical, are too comnlcx or too voluminous to be well

represented on graph paper, but are simple enough for com-

puter generated displays to be effective. Wind tunnel test

data, which may be distributed over a three dimensional sur-

face, are but one example. Temperatures on the surface of

nozzles or engine parts are another example. Finite element

analyses can produce sets of data, e.g. stresses, across and

through fairly complex objects. Just as in the display of

three dimensional flow fields, orth-gonal or cross sectioned

views of geometries are sometimes used to simplify the

presentation of data associated with complex shapes. An

analyst could feasibly draw isarithms across a perspective

sketch of an object as Chang[361 did for air pressure data,

but color raster graphics provides a more powerful display

medium.
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t Forrest ( 37] showed some techniques of surfac

with color graphics, but MOVIE . BYU and the GRAPE extension

of MOVIE.BYU developed by Brown[38] show the highest quality

results to be found in current literature. MOVIE.BYU and

GRAPE produce shaded images of three dimensional objects

with stress fringes superimposed with user defined colors.

MOVIE . BYU and GRAPE demonstrate tt.e use of color to

represent engineering; information across the surface of a

shaded, computer generated display of an object, 	 but	 they

are	 restricted	 in both scope and interactivity.	 MOVIE.BYU

was originally developed to display the 	 results of struc-

tural mechanics analyses and is accordingly biased.	 The

interactivity of MOVIE..BYU and GRAPE is geared toward the

production of a few selected views or the definition of a

sequence of views for the creation of movies. The displays

produced in the course of this research are in some cases

similar to those produced by CRAPE, but the crux of this

research is not the creation of high quality data displays

but rather the development of techniques for the manip!!ls-

tion of and interaction with displays of engineering dsLa.

The techniques mentioned and references cited cover

many disparate approaches to the computer aided, graphical

display of data. Given the newness of computer graphics and

' the wide variet y of data forms it is not surnrisina that

currently developed techniques do not comprise a thorough

research of the area. The possible uses of interaction and

^`	 i
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F color	 graphics	 as	 additional	 tools	 in the	 display	 of infor-

mation	 have	 barely	 been	 explored. The	 potential power of

4 interactive	 computer	 graphics	 shows it	 to	 be	 an obvious

solution	 to	 some	 of	 the	 problems	 of informational display,

a

and	 much	 research	 will	 be	 done	 in	 the future.

a^

a

a
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HARDWARE AND SOFTWARE ENVIRONMENT

The hardware used in this research consisted of a Digi-

t;,l Equipment Corporation PDP 11/40 minicomputer with 90,112

(88K) words of sixteen bit memory and a Ramtek 9351 color

raster cathode ray tube ( CRT), with direct memory access to

the PDP 11 / 40.	 The Ramtek has 262 , 144 (512x512) addressable

picture elements ( pixels).	 Each pixel may be any of 4096
i

colors, and up to 204E different colors can be shown on	 the

z
screen	 it	 any one	 time.	 This might be analogous to an

a	 artist having 4096 tubes of paint, but for any given canvas

using a palette with room for 2048 colors of paint. The

user must define in a video lookup table (VLT) all colors

that are to be used. The video lookup table has 2048 words

of 13 bit memory.	 The Ramtek has three four-bit digital	 to

^..	 analog	 converters	 controlling	 the	 red,	 green,	 and	 blue	 color

.,	 guns	 used	 to	 refresh	 the	 Ramtek	 screen.	 Each	 video	 lookup

table	 word	 has	 four	 bits	 allocated	 for	 the	 control	 of	 each

of	 the	 three	 color	 guns,	 so each VLT word	 defines	 a	 color

that	 may	 be	 used	 on	 the	 Ramtek	 screen.	 The	 thirteenth	 bits

in	 the	 video	 lookup	 table words	 are	 used	 to	 control	 blink-

ing.	 Each	 pixel	 on	 the	 Ramtek	 screen	 is	 associated	 with

eleven	 bits	 of	 memory	 that	 index	 the	 video	 lookup	 table.	 In

each	 refresh	 cycle	 the	 Ramtek	 checks	 each	 pixel's	 video

pp
F{

r°
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lookup table index, accesses the video lookup table memory,

and sends the appropriate analog voltages to the red, green,

:.nd blue suns as they intensify the pixel.

UNIX!, C, and CRAFIC

The PDP 11/40 in this research runs the UNIX operating

system, and all research and support software was written in

the C programming language. Although the power of the C

programming	 language	 and	 the friendly,	 user-oriented

environment provided by UNIX were	 great assets in the

development of a working model for the techniques investi-

gated, the PDP 11/40 is a small and (by today's standards)

relatively weak minicomputer. The slowness of the hardware

performing floating point calculations caused long delays in

the processing of large data sets. These long delays would

be unacceptable in a production environment, but they were

unavoidable during the development of a working model.

The 11/40's sixteen-bit words allow the addressing of

only 32,768 words of memory, severely limiting the size of

programs that run on the 11/40. UNIX and C do not support

the overlaying of programs. Since applying the techniques

researched required programs that were several times larger

than the addressable memory of the 11/40, UNIX system calls

were used to initiate the execution of five independent main

programs. The five main programs communicated via temporary

S. UNIX is a trademark of Bell Telephone Laboratories.
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files which held	 the parameters	 necessary for whatever

actions were	 requested.	 The delays caused by the rolling

into memory of these five main programs and the reading of

communication	 filer: would also be unacceptable in a produc-

tion environment.

The graphics support software used was a subset of the

GRAFIC multidevice computer graphics package developed in

the Purdue University School of Mechanical Engineering Com-

puter Aided Design and Graphics Laboratory(391. Only those

routines accessing the Ramtek 9351 were used. These rou-

tines give their user the power to draw lines or strings of

characters, to define the colors in the video lookup 	 table,

to access	 the Ramtek's keyboard and joystick, and to fill

polygonal areas of the Ramtek screen.

Figure 1

Polygon fill interpolations
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The GRAFIC polygon fill	 routine "paints"	 the area

enconpassed	 by	 a	 sequentially	 ordered	 set	 of	 vertices.	 Each

vertex	 has	 a	 screen	 location	 and	 an	 associated	 video	 lookup

table	 index.	 Figure	 1	 shows	 how	 the	 GRAFIC	 polygon	 fill

routine	 uses	 linear	 interpolations	 within	 the	 VLT	 to	 give	 an

appropriate	 VLT	 index	 for	 each	 pixel	 in	 a	 polveon.	 Each

scan	 line	 or	 raster	 is	 checked	 for	 intersections	 with	 the

a sides	 of	 the	 polygon.	 If	 an	 intersection	 is	 found.	 the	 VLT

^j indices	 of	 the	 side's	 end	 points	 are	 used	 to	 interpolate	 a

VLT	 index	 for	 the	 pixel	 of	 intersection.	 In	 Figure	 1	 these

i VLT	 indices	 are	 75	 and	 65.	 A	 closed	 polygon will,	 with	 only

€ degenerate	 exceptions,	 have	 an	 even	 number	 of	 intersections

with	 any	 given	 raster,	
a nd	 the	 polygon	 fill	 routine	 uses	 a

linear	 interpolation	 to	 calculate	 the	 VLT	 index	 for	 eachs°

VLTp ixel	 between	 airs	 of	 intersections.	 In	 Figureure	 I	 theP	 b

index	 at	 D was	 calculated	 to	 be	 71.	 The	 linear	 interpola-

tions	 can	 yield	 anomalous	 results	 for	 concave	 polygons,	 but

the	 restriction	 of	 polygons	 to	 convexity	 was	 not	 a	 serious

constrain[	 ir	 the	 cases	 considered.	 The	 standard	 GRAFIC

I` polygon	 fill	 routine	 performs	 linear	 interpolations	 among

f the	 VLT	 indices	 of	 the	 vertices,	 and	 it	 therefore	 depends	 on

the	 one	 dimensional	 organization of	 the	 colors	 defined	 in

the	 VLT.	 GRAFIC would	 normally	 be	 filling	 a	 polygon	 in

shades	 of,	 for	 example,	 blue,	 and	 the user would	 have	 a

linear sequence of	 blues defined	 in	 the VLT.	 GRAFIC	 would

interpolate	 within	 the	 linear	 sequence	 of	 blues	 to obtain a

shade	 of	 blue	 for	 each	 pixel	 in	 the	 polygon.
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Color Spaces

The Ramtek 9351 uses four-bit digital to analog con-

verters controlling red, green and blue intensities for each

pixel, but it is not necessary to define each color used in

terms of red, green, and blue components. GRAFIC software

allows the user to define colors in terms of red, green, and

blue components;	 cyan, magenta, and yellow components; or

hue,	 saturation,	 and intensity(401.	 All	 three means	 of

color definition, or color ^paces, 	 consider color to be a

continuous function of 	 three variables and capable of

depiction as a volume.	 In CRAFIC, as elsewhere, each color

component is constrained to range from zero to one.

The red, green, and blue (rgb) and cyan, 	 magenta,	 and

yellow (cmy) color spaces offer linear correspondences to

the color guns of the Ramtek, but the hue, saturation, and

Intensity (hsi) color space was used because of its concep-

tual clarity and ease of manipulation. The hsi color space

is conceptually a pair of cones joined at their bases. The

top and bottom apexes of the joined cones are respectively

white and black, and the lightness of a color is a function

of its vertical position. A traversal of the circumference

passes through all hues, so if the traversal started at red,

it would pass through yellow, green, cyan, blue, and magenta

before returning to red. The saturation or vivacity of the

color is dependent on the radial distance from the central

axiz, which is a continuous spectrum of grays. A radial

i_
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traversal from the central axis to the surface would begin

with a neutral gray and, with constant hue and lightness,

show increasing vivacity until a fully brilliant color	 is

obtained. The brilliance is dependent on the display dev-

ice, but a color on the surface of the hsi color space would

be as brilliant as possible. The colors used in the course

of this research were either pure grays or	 of maximum

saturation. Since true was used as-an important cue to the

user, full saturation was employed to make the distinctions

among col ,.)rs as clear as possible.
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INTERACTIVE DATA DISPLAY

Many of the information display techniques described in

the previous chapter have been used to produce elegant and

dramatic displays, but attaining the highest possible output

quality is not always the objective of those displaying

tnformation. When the essential task is the rapid con-

veyance of information, superfluous reftnements of the

display that interfere with utility should 	 be eliminated.

In a batch environment	 the additional computational time

required for display refinements may have no noticeable

effect, but in an interactive environment the execution time

is a major concern.

A fast display algorithm 	 is	 beneficial	 in	 that	 it

reduces the necessary computer time, however in an interac-

tive situation this is not 	 the primary motive	 for	 rapid

display presentation.	 If the user is to maintain his con-

centration and interest, there can he no inordinately long

delays.	 Delays during interactive data display can dull the

impression of previous displays and make mental comparisons

more difficult.	 Excessive delays can also make the use of

an interactive data display tool tedious or in extreme cases

bore the user	 Into applying techniques with far less
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potential.	 The tradeoff between speed of display and qual-

ity	 of	 display	 must	 be	 closely	 examined,	 and	 in	 many	 cases

the	 speed	 of	 display	 must	 be	 given	 priority.	 A	 shoddy

presentation	 can	 be	 useful	 if	 it	 is	 fast,	 but	 in	 an
	 interac-

tive	 environment	 the	 highest	 quality	 display	 is	 virtually

j useless	 for	 data	 review	 if	 it	 is	 too	 slow.

The	 display	 of	 information	 associated	 with	 a	 geometry

Is	 dependent	 on	 the	 display	 of	 the	 geometry	 itself.	 People
s

can	 readily	 adjust	 to	 widely	 varied	 forms	 of	 data	 display,

_ but	 their	 demands	 on	 representations	 of	 geometries	 are	 more

` stringent.	 Techniques	 for	 the	 display	 of	 geometries	 were

therefore	 t11v	 first	 consideration	 ; n	 this	 research.	 The

representation	 of	 associated	 information,	 while	 hardly	 an

c^ afterthought,	 is	 treated	 as	 an	 addition	 to	 the	 display	 of

geometries.

Coo rdinate	 Transformations

The	 first	 step	 in	 displaying	 a	 geometry	 on	 a	 CRT	 is	 the

a
definition	 of	 a	 procedure	 whereby	 a	 point	 in	 three	 dimen-

atonal	 space	 can	 he	 associated	 with	 a	 point	 on	 the	 two

dimensional	 CRT.	 The	 relationship	 between	 the	 three	 dimen-

, sional	 location	 of	 a	 point	 on	 an	 object	 and	 the	 two	 dimes-

sional	 location	 of	 that	 point	 on	 the	 CRT depends	 on	 the

three	 dimensional	 locations	 of	 the	 viewer,	 the	 viewer's

focal	 point,	 and	 the	 point	 to	 be	 represented.	 The	 vector

from	 the	 viewer ' s	 position	 to	 his	 focal	 point	 is	 referred	 to
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as the viewing vector. Scaling factors and the coordinate

system used to address she CRT screen must also be taken

Into account when deriving this relationship.

The standard technique for transforming a three dimen-

sional	 location	 into	 the appropriate screen coordinates

involves treating the	 point's	 position as	 a vector and

describing any necessary rotations, translations, and scal-

ings as matrices by which	 the	 position	 vector	 is multi-

plied(41,42).	 The	 transformations	 used	 in this research

consist of two translations, three rotations, and one	 scal-

ing.	 In order	 to perform coordinate transformations with

matrix operations the three dimensional 	 coordinates of a

point	 In space are	 formed into a vector having four com-

ponents.	 The fourth element is set to unity. 	 The transfor-

mation matrices are square and of order four.

Multiplying the position vector	 by	 an	 identity

transformation matrix does not change the vector. If, how-

ever, elements of the transformation matrix are altered, the

effect on the transformed vector is changed in a predictable

manner. The physical significance of the change depends on

which elements of the matrix are altered. 	 Equation l shows

that the first three elements of	 the fourth	 row control

translations parallel to the X, Y, and 'L axes.

a

4
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I 1	 0	 0	 01

	

(x y z 11 10	 1	 0	 01

	

1 0	 0	 1	 01	
(x+tx y+ty z+tz l)	 (1)

Itx	 t 	 t 	 11

Changes in the first three elements of the matrix's diagonal

affect the vector's scaling as shown in Equation 2.

Isx	 0	 0	 01

	

(x y z 1) 10	 By	 0	 01 . ((x)sx (y)sy (z)sz 11 (2)

	

10	 0	 a 	 01

	

10	 0	 0	 11

The matrices that produce rotations of angle theta about the

X,	 Y,	 and Z axes of a right-handed coordinate system are

given by Equations 3, 4, and 5 respectively.

11	 tf	 0	 01
(R ( . to	 cos(e)	 sin(e)	 o1	 (3)x	 1up	 -sin(e)	 cos(8)	 01

10	 0	 0	 11

Icos(e)	 0	 -sin(0)	 01
(R1	 0	 1	 0	 01

y) Isin(9)	 0	 cos( 9)	 01	
(4)

1	 0	 0	 0	 11

I cos(9)	 sin(0)	 0	 01
(
R	

_ ( - sin(0)	 cos(e)	 0	 01	 (5)
z) 1	 0	 0	 1	 01

1	 0	 0	 0	 11

The popularity of this notation stems from both the

clarity of representation and the ease with which numerous

transformations may b2 combined.	 Matrix mosltiplication	 is

associative,	 so consecutive transformation mat r ices may be

multiplied to give a single, combined transformaelon matrix.

Multiplying a position vector by the combined transformation

t

5
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matrix	 yields the	 same	 vector

4

that	 would	 Ne	 produced	 by

ka^ sequentially multiplying	 the position	 vector	 by	 each	 indivi-

dual	 transformation matrix. If	 a	 complex	 transformation	 is

to	 be	 applied to a	 set	 of	 position vectors,	 most	 of	 the	 cal-

culations	 can be	 eliminated by	 multiplicatively	 combining

the	 component transformation matrices.

The scaling transformation in Equation 2 scales about

the origin, and the rotations defined in Equations 3, 4, and

S are rotations about the principal coordinate axes. 	 Rota-

tions about arbitrary axes and	 scalings about arbitrary

points require translations before and after the essential

1 transformation. In order to otale an object about some

point A, the object must be translated so the point on the

object corresponding to A is moved to the origin. The seal-

ing may then be performed as per Equation 2. 	 The object

must then be translated back to its original position.

Rotations abcut ­ rbitrary axes can be more involved, but

translations are still a necessary part of the transforma-

tion.

The viewing transformation used in this research con-

sists of: a translation of the geometry so the viewer's

focal point coincides with the origin, rotations about 	 the

r	 X, Y, and Z axes	 to align the viewing vector with the

s display device's screen coordinate system, a scaling to con-

!'	
1	

vert the geometry ' s coordinates into screen coordinates, and

}	 a translation to center the image of the geometry in the
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allocated portion of the Ramtek screen. The six elements of

the viewing transformation used are not combined into a sin-

gle transformation.	 Breaks on both sides of the rotation

transforms are maintained, 	 partly	 to allow	 the optional

incl l ► sion of a perspective transformation.

Raster Considerations

A raster display device such as the Ramtek 9351 gives

the user the power to draw complete images in addition to

wire frame outlines.	 For many applications, especially in

business data display, the use of a few solid colors to

enhance simple displays is adequate, and raster displays

showing perhaps eight colors are common. The Ramtek 9351's

2048 color palette gives the user a much better selection of

coA.ors,	 which is necessary for sophisticated displays. 	 The

four-bit digital to analog converters controlling the

Ramtek's color guns allow thirty-one intensities of any par-

ticular hue, and these intensity spectra are used to create

shaded imager.

The realistic depiction of scenes requires an elaborate

lighting	 model such as those developed by Phong[22),

Blinn[23), and Whitted[24]. 	 Cruder lighting models can pro-

duce	 depictions	 of three dimensional geometries, but

highlighting or reflectance anomalies are noticeable. The

display of a geometry and some associated data requires only

that the geometry be recognizable, so a simple lighting

x
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model can be used. The calculations required to depict a

scene with multiple light sources, shadows, variable surface

characteristics, reflections, transparency, and other

enhancements can he bypassed in the interests of time.

The lighting model used in this research accounts for a

single point light source and a certain amount of ambient

light. There is a limit on the reflectance of the surfaces

displayed and no shadowing is performed. The lightnesses

i	 and hues are calculated at the vertices of polygonal screen
9

areas,	 and the hues and lightnesses for the interior of the

polygon are determined by linear	 interpolations.	 This	 is

similar to the technique used by MOVIE. M .

f

f

i

f

f

S]3t

3

The lightness, or intensity, is calculated to fall into

the integer range from one to thirty-one and thus match the

hardware characteristics of the Ramtek 9351. The ambient

light level and reflectance limitations are compile-time

constants and further limited the range of	 allowable

lightnesses. A typical lightness range is six to twenty-

four. Experience with the Ramtek hardware showed that dif-

ferent hues were indistinguishable if both had very low or

very high intensities. The lightness limits, six and

twenty-four, have significance only in relat!on to the

thirty-one levels of intensity available on the Ramtek 9351.

They do suggest, however, that only the central sixty per-

cent of a device's intensity range is apt to be useful in

the color cuing of information.



z
e
n

i

3

y

34

The lightness value for a polygonal vertex is calcu -

lated using Equation 6, where L is the lightness level being

determined, A is the ambient light level, R is 	 the maximum

allowable	 lightness;	 level, and alpha is the angle in three

dimensional space between the vector from the vertex in

question to the	 light source and a vector normal to the

polygon being displayed.

L - A + (R—A)cos2(a)
	

(6)

T-

w ei►

d

E

4

Y	 ^ -

The power to which the cosine function is raised affects the

highlighting of the display. The typical range for this

exponent is from one to ten, and two and three are the most

common values. An exponent of two was chosen primarily

because the square of the cosine of alpha is easy to calcu -

late using vector algebra and does not require the extrac-

tion of any square roots.	 The lighting model produces

acceptable results and reasonable highlights. Although the

Ramtek hardware made a lightness range of six to twenty—four

convenient, Equation 6 or similar equations can be used for

any desired range of lightnesses.

Hidden Surface Algorithms

The display of geometries must generally account for

the obscuring of one surface by another, and there are

numerous approaches to the problem of hidden surface elimi -

.	 nation[43j.	 Warnock[201 proposed an area by area search of
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the	 screen.	 Watkins(191	 and	 others	 have	 developed	 raster	 or

r ; scan	 line	 techniques	 that	 examine	 the	 geometry	 to	 find	 the

^- arts	 that	 are	 visible	 on	 each	 of	 the	 displayP	 P	 Y	 device's	 ras-

a
tens.	 Whitted ( 241	 and	 SynthaVision ( 141	 mathematically	 fire

rays	 from	 the	 viewer ' s	 position	 toward	 each	 pixel ' s	 back-

transformed	 position	 in	 three	 space	 and	 calculate which	 por-

tion	 of	 the	 geometry	 is	 closest	 to	 the	 viewer	 along	 each

ray.	 a

:

This	 research	 uscs	 perhaps	 the	 simplest	 effective	 hid-

den	 surface	 removal	 algorithm,	 that	 developed	 by	 Newell,

Newell,	 and	 Sancha[181.	 The	 Newell,	 Newell,	 and	 Sancha

technique	 is	 based	 on	 depth	 prioritization	 of	 the	 elements

t
of	 the	 geometry.	 By	 displaying	 the	 elements	 in	 an	 order

determined	 by	 their	 distance	 from	 the	 viewer,	 the	 elements

further	 from	 the	 viewer	 will	 be	 obscured	 or	 painted	 over	 by

I. those	 elements	 of	 the	 geometry	 closer	 to	 the	 viewer.	 This

technique	 requires	 a	 complete	 sort	 of	 the	 elements	 and

maintenance	 of	 the	 sorted	 list,	 which	 for	 moderately	 sized

geometries	 is	 not	 an	 inordinate	 amount	 of	 overhead.	 A	 sim-

A^
plified	 form	 of	 the	 Franta-Maly[431	 bilevel	 data	 structure

was	 used	 to	 lessen	 the	 time	 required	 to	 insert	 an	 element

Into	 the	 sorted	 list.	 Although	 there	 are	 cases when	 this

' algorithm	 can	 be	 fooled	 into	 an	 incorrect	 display	 ordering,

these	 cases	 seldom	 occu-	 in	 simple	 geometries,	 and	 the

effect of their occurrences	 is minor.	 The data display

package	 developed	 as	 part	 of	 this research takes
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approximately	 three	 minutes	 to	 display	 a	 geometry	 with	 100

triangular	 elements.

Description	 of	 Geometries

The	 described	 transformation	 of	 a	 geometry	 from	 tradi-

tionaI	 three	 dimensional	 space	 to	 screen	 coordinates	 is

based	 on	 the	 successive	 transformations	 of	 individual

points.	 Most	 definitions	 of	 solid	 geometries	 used	 for	 com-

puter	 graphics	 consist	 of	 points	 in	 three	 dimensional	 space

and	 various	 connecting	 surfaces.	 When	 additional	 informa-

tion	 is	 to	 be	 displayed	 with	 the	 geometry,	 the	 points	 of	 the

geometry definition	 may	 readily	 be	 used	 as	 hooks	 on which	 tosy

q hang	 data	 values.	 In	 this	 research	 the	 points	 of	 the

N- geometry	 definition	 were	 assigned	 data	 values	 according	 to	 a

data	 file	 being	 represented	 with	 the	 geometry,	 and	 the	 terms

geometry	 point	 and	 data	 point	 are	 virtually	 synonymous.	 The

definition	 of	 the	 geometry	 and	 the	 set	 of	 data	 to	 be

displayed	 with	 the	 geometry	 are	 stored	 separately,	 so

several	 sets	 of	 data	 can	 be	 viewed	 without	 rereading	 the

geometry	 definition.

t

Many means	 of	 describing	 surfaces	 between	 points	 in

space	 are	 currently	 used.	 Flat	 plates,	 bicubic	 parametric

patches,	 Bezier	 patches,	 B-spline	 patches,	 Overhauser

patches,	 and	 others	 are	 used	 in	 various	 applications[411.

When geometries	 with	 complex	 patches	 are displayed	 on	 raster

devices,	 calculations	 are	 often	 performed	 for	 every	 pixel	 on

a

v
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the	 screen. The	 alternative is	 to	 divide	 and subdivide	 each

patch	 until the	 remaining portion	 of	 the patch	 is	 nearly

flat	 or	 until the	 limit	 of the	 device's resolution	 is

reached.	 The quality	 of the	 resultant display	 is	 thus a

dependent	 on device	 limits	 or on	 tolerance	 limits that	 are

set	 by	 the user.	 The	 research described here	 uses	 flat,

triangular	 plates as	 surface elements,	 thus gaining	 speed

and	 ease	 of display,	 but losing	 the	 ability to	 represent

curvature.

The geometry file	 format	 used	 in this	 research	 is

intended to be simple and easy to use. 	 It has four lines of

titling information and a group of 	 five	 counters	 at	 the

beginning of the file.	 All points used in the geometry are

then defined in a list of floating point triples	 represent-

ing	 locations	 in	 three dimensional space.	 The plate ele-

ments making up the surface of the geometry are defined by

sets of indices to the points at their vertices.	 For exam-

ple, the fourth plate might be described as 	 the triangular

area defined by points one, twelve, and eleven. Quadrila-

teral plates may be a part of the geometry description, 	 but

when the ? eometry file is read, they are broken into pairs

of triangular elements.	 The points describing each plate

are ordered (counterclockwise)	 to give a definite spatial

orientation to the plate.

The research implementatl-n of the Newell, Newell,	 and

Sancha hidden surface algorithm sorts the elements into a
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display sequence.	 As cacti element's turn to be displayed

comes,	 the vertices are transformed from three dimensional

coordinates to screen locations. 	 The	 GRAFIC	 support

software	 is	 then called	 on	 to	 fill	 the polygonal area

defined by the screen locations of the vertices. 	 If	 it	 is

assumed	 that	 the geometry described is a solid object, the

spatial orientation of the plates can be used to speed 	 the

display of the geometry.	 If the geometry to be displayed is

solid, then any plate facing away from the viewer will be on

the reverse side and will b y obscured by the obverse plates.

The display time can be cut,	 perhaps in half, by not

displaying plates with reverse orientation.

Displaying Data with a Geometry

The lighting model used in the research is independent

of the colors used, so data associated with portions of the

displayed geometry can be mapped into colors without prejud -

icing the shading of the geometry. Two principal means of

associating color with data were examined, continuous tone

and isarithmic.

The continuous tone technique, which is used 	 by

MOVIE.BYU[15,16,171 and CRAPE[381, associates the data range

of interest with a continuous spectrum of colors,	 perhaps

from blue through green to red. The viewer can see fairly

subtle data trends by noticing the	 patterns of	 the hues.

The data range represented by a spectrum is determined
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solely by the data levels corresponding to the two extremes

NO

	

	 of the spectrum, so if a restricted data range is of pirtic-

ular interest, it can easily be accentuated with a continu-

ous tone display.	 Figures 2 and 3 show theoretical tempera-

tures in metal during a welding process.

The spectrum _n Figure 2 covers the full range of	 tem-

peratures encountered.	 Figure 3 shows the same data with
r

the continuous tone spectrum limited to the temperature

range where melting is occurring, from 1500 0 K to 18000K.

(Figures 2 and 3 show no evidence of shading because they

are orthogonal views of a flat surface with a distant light

source.)

a

The	 isarithmic	 color-to-data	 correspondence	 scheme	 emu-

lates	 the	 graphical	 presentation	 of	 isarithms,	 or	 lines	 of

a
constant	 numerical	 value,	 by	 assigning	 a	 specific	 hue	 to	 the

data	 range	 between	 two	 isarithms.	 Although	 this	 display

technique	 does	 not	 bring	 out	 subtle	 data	 trends	 as	 well	 as

the	 continuous	 tone	 technique,	 it	 does	 give	 the	 analyst

definite	 bounds	 on	 the	 datum at	 any	 particular	 point.	 About

? eight	 easily distinguishable 	 colors	 can be	 extracted	 from	 a

normal	 range	 of	 hues,	 thus	 nominally	 limiting	 the	 isarithms

that	 can	 be	 displayed	 to	 seven.	 This	 restriction	 can	 be

circumvented	 by displaying more	 than one	 isarithmic	 band	 in

the	 same	 color.	 Although	 a	 particular display may be	 lim-

ited	 to	 eight	 or	 so	 colors,	 some	 fast	 and	 easy	 manipulation

of	 the	 VLT allows	 the	 accentuation of	 many more	 isarithms.
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Figure 2

Full Range Continuous Tune Display
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Rcstricted Range Continuous Tone Display
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Figures 4 and 5 show the same

data range correspondences.

Figure 5 required only altera

redrawing of the geometry.

the VLT takes a few seconds

required for a full redraw of

41

data with different	 color-to-

The change from Figure 4 to

tion of the VLT and not a full

The interactive alteration of

as opposed to the minutes

a geometry.

Color-to-data level correspondences for both the isa-

rithmic and continuous tone displays are user controlled,

although automatically determined correspondences are avail-

able. The user control extends to the definition of all

colors in an isarithmic display and the specification of the

hues at both ends of the continuous tone spectrum. The hues

representing; data above and below the continuous tone spec-

Lrum limits are also user controlled.

The continuous tone and isarithmic displays use dif-

ferently organized sets of colors in the VLT. The colors in

a VLT set up for a continuous tone display are organized as

a series of hue spectra, each with a distinct intensity.

The isarithmic display VLT has a series of monochromatic

intensity spectra. If the lighting model is slightly

degraded, an isarithmic display could be created using the

continuous tone VLT organization, but the converse procedure

would be difficult.

Both the continuous tore and isarithmic displays, 	 as

used	 in this research, rely on linear interpolations across
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Figure 4

Low Emphasis Isarithmic Display
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the area of cacti displayed element.	 To display nn element

the continuous tone algorithm calculates the intensity based

on the lighting model. The calculated intensity determines

which constant-intensity spectrum in the VLT is used to dep-

ict the element.	 Within the determined	 spectrum the VLT

locations	 (and	 [hue	 the	 hues)	 corresponding to the data

values at each vertex of the element 	 are	 then calculated.

The	 two dimensional, linear interpolation described in the

previous chapter is then used to determine a hue 	 for each

pixel In the area covered by the element.

:he isarithmic display algorithm must do more ealcula-

b o n s	 before calling on an area filling routine. 	 Each ele-

ment must be divided into the areas 	 covered	 by each	 isa-

rithmic	 band.	 This determines the hue for the screen area

corresponding to cacti portion of the element. 	 The subele-

mental area can be filled with a constant intensity, thus

saving some time, or the intensities at each corner of the

subelemental area can be calculated and the support software

called on to do monochromatic shading. The use of constant

intensities across all elements would, for flat elements,

correspond to an infinitely distant light source. There is

little degradation of display quality when using a constant

intensity across each element, although this is to a certain

extent a function of the gec ,ne ►:ry displayed.

y^
Y!>
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lnteract:ve Contr-1 of 4 Geometry Disr.lay

The real power of interactive data display lies in the

Immediate feedback	 it can give the user. To make full use

of int :eccivity, Immediacy of response should be maintained

7 _	 while	 flexible	 control	 of	 display options is granted the

user.	 A lenient_ attitude toward erroneous input bhould be

Inherent	 in a data display package ar all users, especially
a

those unfamiliar with the package, will occasionally make an

Incorrect	 entry.	 Default values for various options should

be available, thus allowing the casual 	 user	 to obtain an

nec:eptable	 display	 without	 fully learning the software or

using a set of "magic" inputs.

	

The refinement ut the viewing parameters should not 	 be

unnecessarily	 slowed	 by the presentation of a fully

developed display.	 The use of wire frames or other rapidly
L

generated views for the refinement of viewing parameters is

a practic ,il necessity. This necessity may be obviated by

the introduction of interpolative hardware area fill or

" LL other capabilities on forthcoming -aster devices. Contem-

porary area filling hardware uses a single color or pattern

for whatever area is being filled. The option of aborting

an inappropriate display is also desirable, especially when

the geometry is	 c ,, rl..x	 and	 takes	 considerable	 time	 to

display.	 Another alternative explored during this research

is the switching of display modes during the display of a

geometry.	 Figure 6 shows the result of changing from a

i
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i

display of the geometry with the associated data to a wire

frame display and shortly thereafter aborting the display

process.

The simplest means of determining viewing parameters,

allowing the user to input the three dimensional coordinates

of a viewpoint or eye position and a focal point, is effec-

tive and was used in this research, but it is not the ideal

means of view control. On vector devices it is possible to

draw a geometry from an arbitrary position and allow the

user to interactively rotate the geometry until a desirable

•v iew is obtained, but this is not now practical on full

color raster• devices. A raster display may consist of over

one million pixels, and the sheer number of pixel colors to

I

1

^i

.t

Figure 6

An Aborted Display

oot IGiN AL FACE
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be determined mak . h user-controlled, continuous 	 rotations

impractical. This constraint on rotations will probably be

eliminated by the advent of reasonably inexpensive hardware

for the elimination of hidden surfaces. Contemporary hidden

surface hardware is quite costly, and raster displays of

complex objects will remain essentially static until the

cost of hidden surface hardware comes down. 'i-he best avail-

able situation is probably the tandem application of vector

and raster devices. A vector device with hardware rotation,

translation, and scaling would be used to determine the

viewing parameters, which would then be used in the creation

A

	 of a rssCer display.

.1 .
The positional control of light sources should also be

under user control. Subtleties in the geometry may require

a specific lighting direction for the user to easily recog-

nize features. Figutt, 7 shows the input of %iewing and

lighting information.

The user should also have control over several subsidi-

ary display parameters. The scaling of the geometry in its

transformation to screen coordinates should be user con-

trolled, although the ability to automati.ally calculate an

appropriate scaling factor for the current view is an excel-

lent extension of the scaling control. The wing in Figure 8

was automatically scaled so that its width, being greater

than its height, crossed 90% of the viewing area. The use

of perspective is an option that can be helpful if the user

L
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Figure 7

Setting the Lighting and Viewing Parameters

is accustomed to perspective representations. The choice of

which axis is to be represented as verti^al is also given to

the user. In the aerospace industry it is common the have

the positive Z axis running from the nose of a missile

toward the exhaust nozzlen, but in other applications the

1

	

	
positive Y or positive Z axes rise from ground origins. The

user specification of the vertical axis is a practical

necessity for a widely used data display package. 	 in Figure

8 the negative X axis was chosen as vertical.

Focusing the Display on a Section of Interest

I

1

	

	 Numerous means can be given the user for focusing the

display on geometry sections of particular interest. The

C R,.,,•,^^L FADE.ia^^er^
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Figure 8

Automatically Scaled Display

previously mentioned choice of a focal point defines which

part of the geometry is to be centered in the display area.

The scaling factor can be used to control how much of the

geometry is displayed on the screen. The user could manipu-

late the focal point and scaling factor to concentrate on a

particular section, but it is hard to obtain an intuitive

feel for how far to shift the focal point in space and how

much to change the scale factor. Ten percent zooming func-

tions were installed as a means of controlling the scale

factor, but	 the display time,	 being a matter of minutes

rather than seconds, made this an intolerably slow means of

scale control. One straightforward approach would have the

user pick an area of a previously presented display and

request that the chosen area be enlarged to fill the entire

display area.
ORIGINAL PAGE
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The redisplay of a detail of an	 existent	 display	 is,
	 i

a	 unfortunately,	 much	 easier	 to describe functionally than

mathematically. A new scale factor can easily be calculated

from the previous scale factor and the size of the area of

Interest on the previous display, but the determination of a
3

r	 new focal	 point	 requires the definition of a three dimen-

sional position from two dimensional information. 	 The

inversion of the viewing 	 transformation is required to

determine a point in the geometry coordinates from a screen

+
	

lo( tion.
i

S

The reversal of the scaling and translation transforma-

tions performed on the geometry in the display process is

easily accomplished, but reversing 	 the	 rotations	 is more
I

invclved. The reversal of the rotations applied to the

geometry would nominally require either the re-creation of

the rotation transformation matrices or the inversion of the

a combined rotation transformation matrix, but if the transla-

tion and scal'ng transformation matrices are kept separately

from the rotation transformation matrix, these prod ezza can

be avoided.	 The rotation matrices are orthogonal, i.e.

their inverses are equal to their transposes. This property

holds for multiplicative combinations of these matrices.

The reversed rotations can be applied to a point by multi-

plying	 the point's position vector by the transpose of the

combined rotation transformation matrix. 	 The	 translation

and rotation transformation matrices are not orthogonal, and

 Ai
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if the described rotation reversal procedure is to be used,

thv rotation transformations must be kept separately.

The extraction of three dimensional information from a

two dimensional source requires the specification of an

additional constraint. The reversing, by matrix multiplica-

tion, of the display transformation requires a 1x4 vector in

the screen coordinate system. The first two entries are the

screen (X and Y) coordinates of the new focal point. The

fourth entry is unity by notational convention. It is con-

venient to set the third element, the Z position in the

screen coordinate system, to zero. The resultant focal

point in the geometry coordinate system will be in a plane

passing through the old focal point and perpendicular to the

I
viewing vector.	 When changing the	 focal point in this

manner, it is appropriate to translate the eye position by

the same amount	 that the focal point was translated. The

new -view of the geometry is from the same direction,	 but

from a different	 point in space.	 A detail of Figure S is

shown in Figure 9.

A new display of a geometry with a new focal point and

new eye position takes as long to produce as the original

display, but faster, if cruder, means of examining a portion

of a display are available. It is possible to "blo •.,► up" a

portion of a display by pixel replication, or the pixel by

pixel expansion of the area of interest. Pixel replication

gives a coarser display with increased "jaggies," 	 or



1•

i

t

i

--•w...., &&A AC

51

Figure 9

A Detail of Figure 8

stairstepped edges.	 The severity of	 the	 stairstepping	 is

linearly dependent on the extent of the replication. it

should be noted that the Ramtek 9351's 512x512 resolution is

mediocre by current standards, and the severity of the jag-

gies caused by pixel replication is accordingly more severe

on the 9351 than on raster devices with higher resolution.

A combination of hardware and software difficulties kept

pixel replication from being a useful tool during this

research. Newer raster display devices have pixel replica-

tion as a hardware feature, so efforts at software emulation

of this hardware feature were curtailed.

BLACK AND WHITE F&'•.GTCGRAPH
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Clipping Planes

The display of complex geometries may require the mani-

puletion of many more elements or plates than are of immedi-

ate interest, and Interior portions of a solid geometry are

In general obscured by the exterior. In both cases an

instrument for the removal of unwanted portions of the

geometry could increase the speed and utility of the data

display package. The use of clipping planes, defined in the

geometry's coordinate system, can be a powerful tool.	 Clip-

ping planes could be described as the path of a knife as	 it

cuts off	 portions	 of a geometry.	 By eliminating unwanted

plates from consideration early in the display process, much

time	 can	 he	 saved.	 Clipping	 planes can be used to give

cross sections or other interior views of solid geometries.

One implementation strategy is hither-yon or Z clip-

ping.	 This would entail the specification of two distances

in the geoir:!try coordinate system, Z 	 or Zhither, and Z 	 or

Z yon	 The clipping planes so specified are perpendicular to

the viewing vector and at distances Z  and Z  from the view-

ing;	 position.	 Any point in front of the Z  clipping plane

or beyond the Z  clipping plane is eliminated. Most users

can readily comprehend the concept of "anything too close to

the viewer or too far from him is clipped."

A point's position relative to 	 the	 viewer ' s	 position

can be construed as a vector with components parallel to the

i

i^
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r.
	 viewing vector and perpendicular to the viewing vector. 	 If

d i is the magnitude of the component parallel to the viewing

vector of the vector from the viewpoint to point P ig then Pi

r

	
would be clipped if d i < Z h or d i > Z y .	 In Figure 10 the

viewing vector is in the plane of the paper. P1 would be

clipped as too close to the viewing position and P ? would be

clipped as too far from the viewing position. The calcula -

tions are simple if performed after the first translation

and the rotation transformations but before the scaling and

second translation in the viewing transformation.

A more flexible implementation of clipping planes would

allow arbitrarily located and oriented clipping planes. The

clipping plane definition used in this research consists of

Figure 10

Hither and Yon Clipping
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1. a point through which the clipping plane passes and a direc-

tion vector. The clipping plane is oriented perpendicular

to the direction vector, and any point on the side of the

clipping plane indicated by the direction vector is clipped.

In practice the point is clipped if the dot product of the

clipping plane's direction vector and the vector from the

plane location point to the point in question is greater

ethan zero.	 If this dot product is greater than zero,	 the

s angle between the normal vector and the vector from the

plane definition point to the point in question is less than

w/2 radians, indicating that the point is on the same side

of the clipping plane as the plane's normal vector.

t.

It is practical to use more than one clipping plane.

Interior slices of solid geometries can then be displayed in

minimal time. Quarter sections also become available. Fig-

ure 11 shows a slice of the geometry shown in Figure 69

The discussion of clipping plane usage has been limited

to points of the geometry and has ignored the clipping of

elements. It is mathematically possible to clip any plate

exactly where the clipping plane passes through it. It is

also possible to create new portions of the geometry lying

in the clipping plane and thus to display the geometry

exactly as clipped. If data values are to be displayed with

the geometry, much interpolation would be involved in gen-

erating values on the newly clipped face. In an interactive
a

environment the calculations required for exact clipping are
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Figure 11

Clipping Planes

apt to cause inordinate delays in display presentation.

Eliminatit ►g all of any plates that even partially cross a

clipping plane is faster and, for viewing interior nodal

data, more easily used.

User Orientation

A global view of a distinctive geometry leaves no doubt

in the viewer's mind about spatial orientation, but a detail

or a close up view of portions of the same geometry can give

the same user no clues as to what he is seeing. Viewer

orientation aids are desirable, especially in details or

other views of unclear orientation. One aid would be the

display of three dimensional coordinate axes, either at tLe

viewer's focal point or at the origin of the geometry's

coordinate system.
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The marking of the geometry points on the display and

the numbering of the elements or points of the geometry can

also be helpful. An analyst reviewing data should normally

1	 have acceso to hard copies of the geometry definition. 	 The
1

on-screen display of node numbers, as in Figure 12. can be

correlated with	 zhe geometry definition to find exactly

which part of the geometry is being shown. 	 Point or element

+	 numbering on a global view of a geometry is less apt to be

j	 useful.	 If many points are displayed,	 the	 labeling can

j	 become confused and less useful than when fewer points are

7	
lahe led .

Markin the screen location of theMarking	 geometry points can

be	 helpful	 both	 In	 orienting	 the	 viewer and in

► Ow wr	 1 +••
1 +•r
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Figure 12

Node Numbers and Axes
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distinguishing data trends from data anomalies. 	 If used

with node numbers, stars or other marks at geometry points

can gave the viewer solid reference points. If several data

points show similar results, it is apt to be a local trend,

but if a single datum is markedly different from the sur-

rounding data, the single datum might be questioned. The

marking of the data points can show whether a local trend is

caused by one or several data values. Further discussion of

anomalous data and the examination of local effects follows

-	 in the next chapter.

Screen Accoutrements

If an engineer were asked how large a display he wants,

his initial response might easily be "As large as possible."

There is, !iowever, much pertinent information that should be

presented with the geometry and data display. Figure 12 anO

other figures show some of the information that might be

deemed necessary accoutrements to a display. The self docc<<-

mentation of a display is of practical importance when

reviewing data, but it a virtaal necessity when hard copies

are made for later review. Photographic reproductions in

general seem to have a self-shuffling capability that makes

accompanying sheets of paper inadequate as documentation.

In Figure 12 less than half of the screen is devoted to

the geometry and data display. The header information from

the geometry and data files is displayed at the bottom of

A
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the screen. These might have information about the geometry

configuration, relevant dates, and test paramoters. The

left side of the screen is devoted to viewing parameter

Information. The viewpoint,	 focal point. and scale are

especially important if details or otherwise ambiguous views

are used. If clipping planes are used, their definition

should also be noted on the screen. The position of the

light source and the vertical axis are also listed to help

orient the viewer.

The right side of the screen is used to show the

color-to-date correspondence by a color bar. The color bars

for isarithmic nad continuous tone displays are similar in

both form and function. A color bar, as in Figure 12 9 shows

all hues currently used in the data display. The hues are

ordered by the data ranges that they represent, and the lim -

its of the data ranges are labeled beside the corresponding

hues. The higher data ranges are near the top of the screen

with the lower data ranges ordered below. The intensity, or

lightness, of the color bar changes across the width of the

bar, but the hue is constant. Since the intensity is used

for shading the display and not the representation of data,

a variety of intensities are given for each hue to assure

the user that all intensities of a hue do indeed represent

the same data level. In summary, =;)e vertical position on

the color bar defines a hue an is associated with data

range labels; the breadth of the color bar is used to show

some of the intensities used in shading.
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of the extensive calculations required. An interactive tool

for the review of data should not emphasize those functions

better done elsewhere.	 It should instead emphas i ze the

freedom to manipulate and experiment with parameters that it

gives the analyst. Using an interactive data display tool

an analyst can, with a minimal investment of time, malice

variety of seemingly minor alterations in the viewing param-

eters and possibly unco%ar p reviously nhscured information.

The manipulation of viewing parameters and individual ele-

ments or data values could be a tedious and time consuming

affair if done in a batch mode, but an analyst interactively

manipulating the same few quantities could see the results

in a few minutes. Fast and easy access to information and a

relatively short display generation time are the best

features that an interactive data display tool can offer.
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THE DISPLAY OF BIVAR TLAT£ DATA

A function over a three dimensional surface might be

c:.nsidered three-and-one-half dimensional information in

that it gives additional complexity to the three dimensional

surface,	 but	 it is less complex than an unrestricted func-

tion of three variables, which would have values throughout

a volume.	 Paired bivariate functions are another type of

information that could be classified as three-and-one-half

dimensional. Pairs of bivariate functions, or functions of

two independent variables, can be represented with tech-

niques developed for other types of information.

The Domestic Information Display System of Dalton et

al.[6] can show bivariate data but the information is

discretized by the political divisions basic to the purpose

of the systern, and the information displayed can in no way

be construed as pairs of continuous functions. Chung[451

and Friedman[46] have used interactive computer graphics for

the reviaw of multivariate statistical information.

The shading techniques used to give positional cues can

be used to convey other information, so pairs of bivariate

functions can be displayed using virtually the same raster

techniques applied to the display of functions across a
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three dimensional surface. Color conveyance of data range

information, the highlighting of data points, the massaging

of had data, and the saving and restoring of display parame-

ters can all be used in the display of bivariate data. The

geometry definition used in this research for bivariate

function display was two dimensional and was defined in a

Cartesian X-Y plane. It was composed of points and elements

just	 as	 the	 previously	 displayed three dimensional

geometries was.

The Topographical Display of Bivariate Data

Single functions over an area have often been displayed

as surfaces.	 Kubert, Szabo, and Guilierie1121 are just one

example.	 The addition of color to such topographical

displays allows the simultaneous display of a second bivari-

ate function over the same area. The display of a second

function via the addition of color to a three dimensional

surface is closely related to the display of a single func-

tion ever a three dimensional geometry. The lighting model,

the use of flat elements to define the surface, and the isa-

rithmic and continuous tone color -data correspondences used

to display surface data can be applied to bivariate data.

The display of surfaces over a two dimensional area

does have features that distinguish it from the display of a

three dimensional geometry, and changes are necessary in the

handling of the viewing parameters.	 Three dimensional

^qq
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clipping planes could be used with area-based displays, but
p

their complexity is not compensated for by the power they

give their user. The two dimensional analogue, an arbi-

trarily oriented clipping line, could be implemented, but

this is also more involved than is necessary.	 A better

application of the underlying principle might be thePP	 Y g ^	 P	 g	 Intro-
F

duction of user specified X and Y coordinate limits. X and

Y limits are simpler, easier to use, and little less flexi-

ble than arbitrary clipping lines.

The Z axis coordinates need special consideration since

their use in the topographical display of bivarir. te data is

dissimilar to their use in the display of a geometry.	 The

i4
definition of the base area in terms of traditional Carte-

j	 sian X and Y coordinates dictates that the Z axis be

displayed as vertical, and in virtually all cases the posi-

tive Z axis will be going up. The information represented

by the Z coordinate of a point on the displayed surface can,

however, differ from the X and Y coordinates of the point by

orders of magr_ itude; independent bcaling of the Z axis is a

practica: necessity. The scaling of the Z axis should be
a

1.	 under user control and should be listed on the display with

the other viewing parameters, but these concessions to the

user are insufficient aids in the extraction of Z axis

information from the display. 	 In Figure 22	 a	 grid

corresponding to the geometry was drewn in the X-Y plane
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vertical lines from the grid at Z - 0 to each datum point on

the surface. Tic marks along the pipes give the user

an indication of the value represented by a point's Z

coordinate.	 The change in value represented	 by each

piping tic is shown with the other viewing parameters, and

the familiar color bar is reta	 • d from geometry surface

data displays.

The viewing parameters controlling a bivariate data

display can be manipulated much as they are in the display

of three dimensional geometries. The Z coordinate of the

light source, eye position, and focal point should be given

in Z data units instead of geometry coordinates. The user's

dependence on automatic scaling will likely increase as the

transformation from geometry coordinates to screen coordi-

nates is further complicated by the requisite Z axis distor-

tion.

Both the isarithmic and the continuous tone color

representations of date! are practicable in a topographical

bivariate data display, as are the highlighting techniques

previously discussed. Figures 22 and 23 show the same data,

namely the maximum and minimum principal stresses in a quar-

ter section of a plate under tension. In Figure 22 the

minimum principal stresses are shown topographically and tLe

maximum principal stresses are shown by the color of the

surface. In Figure 23 the roles are reversed.

I
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lThe visual extraction of information from bivartate

function displays is harder than might be hoped. Topograph-

ical	 are displays	 t typically intended to convey qualitativeYP	 Y

Information.	 Attempts	 at	 topographical, quantitative

U

displays are hindered by the average person ' s inexpertise at

judging heights.	 Visual judgements of altitude - related

Information are further hindered by the uncertainties of an

unusual viewing angle and the change from a "real world"

context to a computer - controlled cathode ray tube. Although

topographical representations of information can be useful

whether used independently or in conjunction with a color

representation of a second function, both the viewer and the

creator of the topographical display should be aware of the

limits of topographical displays when quantitative informa-

tion is to be extracted.

	

p	 Hue and Intensity Displays of Bivariate Data

ry The hue, saturation, and intensity color space

described in the chapter on Hardware and Software Environ-

ment and in variius references, e.g. Joblove and Greenberg

(401, has three distinct components, but the use of the full

range of all three components i s both impractical and

undesirable.	 The colors with high or low intensity are

nearly indistinguishable, as are those with low saturation."

(As the saying goes,	 All cats are gray in the dark.")

The colors on the surface of the double cone and between

the extremes of intensity form a coherent, two dimensional

A

II{{
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surface in hue and intensity. The hue and intensity are

Independent coordinates on this surface, and is is possible

to use these independent coordinates to represent a pair of

bivariate functions. One of the bivariate functions can be

represented by changes in surface hues, and the other can be

Independently represented by changes in intensity or light-

ness.

Figures 24 and 25 show the same data represented in

rigures 22 and 23. Figures 24 and 25 use an orthogonal view

cf the same quarter plate, thus eliminating any considera-

tion of	 Z coordinates, whether from the geometry or from

the data.	 In Figure 24 the maximum principal	 stresses are

represented by changes in the hue of the plate, and the

minimum principal stresses are represented by changes in the

intensity of the plate. The roles are reversed in Figure

25.

A bivariate hue-intensity display requires two

simultaneous linear interpolations during the filling of a

polygonal area and a two dimensional arrangement of colors

in the VLT. The GRAFIC polygon fill routine was changed to

base ics interpolations on two sets of vertex data instead

of one set of vertex VLT indices. The modified polygon

filling subroutine uses linear interpolations among the data

at the vertices to obtain appropriate values of both

functions at the locations represented by each pixel. These

function values were then used to calculate a particular VLF

i
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Figure 24

Hue and Intensity Display with Isarithms
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Figure 25

Hue and Intensity Display of Bivariate Functions
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index for each pixel and therefore the color of the pixel in

question. The determination of a color from two function

values would be analogous to finding an entry in a table

with row and column indices. 	 The revised polygon fill

subroutine obviously requires a special sequencing of color

	

o	 definitions in the VLT. The sequence used was a series of

hue spectra, with a higher intensity level	 at	 each

succeeding spectrum.

. The modified	 color	 bars	 in	 Figures	 24 and	 25	 show	 the

ranges	 of	 hue	 and	 intensity.	 There	 are	 top and	 bottom data

range	 limits	 which,	 for	 both	 hue	 and intensity	 data,

function	 as	 the	 data	 range	 limits	 of continuous	 tone

displays.	 Figure	 24	 was	 citated	 with	 twenty hues	 and	 one

hundred	 intensity	 levels,	 while	 Figure 25 has	 ninety hues

and	 six	 intensity	 levels.

Figure	 24	 was	 defired	 in	 terms of	 one	 hundred

intensities	 in	 spite	 of	 the	 hardware limitations	 of	 the

Ramtek,	 which	 allow	 only	 thirty— one	 distinct levels	 of

r
intensity.	 The	 large	 number	 of	 intensity levels allows	 for

the	 fine	 resolution	 of	 data	 range	 boundaries by	 the

polygonal	 area	 filling	 subroutine. The	 surfeit	 of

1 calculated	 intensity	 levels	 is	 used	 to	 gain a	 traditional

end,	 i.e.	 isostress	 curves.	 Definitions of	 the color white

are	 placed	 in	 the	 VLT	 locations	 whose intensity	 index

l

l

correspond	 to	 the	 labeled	 stress	 values. As	 the	 intensity

interpolation	 crossed	 each	 labeled	 value, the use of	 the VLT

E

r	 ^
A
a

a
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entry that was defined an white left a distinct line across

the surface of the plate.

The hue and intensity display of bivariate data is

unfortunately a poor means of conveying information about

the bivariate functions. The human eye is insufficiently

sensitive to changes in intensity or brightness to allow a

viewer to determine the data level represented by the inten-

sity of a pixel. This is especially evident when the hue is

In the range between cyan and yellow. 	 In many cases the

falsely	 perceived	 intensity	 differences between hues

overshadow any actual intensity differences.	 This domina-

tion of the intensity information by the hue variations is

shown in Figure 24. What seem to be the obvious 	 intensity

variations in the blue portions of the display are virtually

perpendicular to the white lines indicating constant 	 inten-

sity.

In Figure 25 the number of distinct intcnsities was

decreased to six in an attempt to increase the distinctions

among intensity levels. Although reducing the number of

intensity levels helps the viewer to distinguish the inten-

sity levels, t'e clarity of the data representation is still

poor. Even when the viewer can distinguish between adjacent

intensity levels, the accurate matching of a specific color

in the midst of a display with its twin in the midst of a

continuous spectrum of colors is extremely difficult.
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The	 addition of	 approximate	 isarithms	 in	 helpful	 in the
^y

,w Interpretation	 of the data	 shown,	 but	 it	 shows	 the weakness

of	 the	 hue	 and	 intensity display	 of	 bivariate	 functions.

The	 computer	 can be	 made	 to	 create	 hue	 and	 intensity

displays,	 but	 the human eye	 cannot	 easily extract	 the	 Infor-

mation	 that	 was to	 have	 been made	 clear.	 If	 it	 becomes
a

necessary	 to add	 isarithms to hue	 and	 intensity	 displays,
9

then	 the	 analyst is	 better off	 using a	 faster and	 easier

continuous	 tone	 or isarithmic	 display	 for	 one	 function	 and

adding	 isarithms representing	 the	 second	 function	 as	 a

second	 step.

4

0



ORGANIZATIONAL OVERVIEW OF INTERACTION

The physical devices used in a human-computer interface

dictate the substance of the interface, but the form is

determined by the structure or organization of the Inter-

face.	 Identically organized interfaces could use different

devices, just as identically designed houses could be made

of straw, of sticks, or of bricks. 	 It is the structure of

an interface that dictates when a particular action is

allowed and what procedure or sequence of procedures must be

executed to initiate the desired action.

human-computer interfaces should generally be struc-

tured to give the human the power to command the available

resources and the flexibility to approach his problem In a

manner natural to him. The experience of the potential user
.9

must, however, be taken into account. Computer aided draft-

ing systems are used by experts for long hours at a stretch,

and the interfaces attempt to be as flexible as possible.

In some systems the user is even allowed to create his own

abbreviated commands that request the performance of an

often repeated instruction. Computer aided instruction pro-

grams are oi;jn seen but once by a user, and the interface

must lead the user carefully with what would, to an

0}
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experienced user, be unbearably sluggish interaction.

Computer aided review of data would probably be an

occasional duty of people whose primary responsibilities lie

in the acquisition or analysis of the data. Such users

would be neither experts nor novices, and an interface

designed for them should be structured accordingly. Minimal

instructions should suffice, but indications of status and

positive responses to inputs should be included.

Methods of Interaction

There are two basic methods of interaction available

for user interface, keyboard commands and menu selection.

There are a variety of supplemental inputs available to

enhance each technique, but most of the user's control must

generally b y channeled through one technique or the other.

Most computer users are familiar with keyboard control of a

computer, so a keyboard driven user interface provides a

familiar environment for the user. Even when most of the

Interface is menu based, keyboards are often used to input

numbers, file names, and other appropriate quantities. It

is possible to have all interaction performed at a standard

terminal, but using the keyboard associated with the display

device eliminates continual switching of attention between

devices,	 The Ramtek, like many other graphical output dev-

ices, has a set of function keys in addition to the standard

terminal keys.	 A template can be used to label the action



59

Saving Viewing Parameters

The experienced user of a data display package co!ild no

doubt obtain a good set of viewing parameters quickly, but

if the same geometry is to be viewed with several data files

it is ridiculous for the c,ser to reset the viewing parame-

ters for cacti data display. A means of saving and restoring

the display parameters as a unit should he available. The

data analysis package developed as part of this research

allows the user to store the current display parameters in a

temporary file. After viewing other sides or the interior

of the geometry, a single command can reset the viewpoint,

focal point, light source, clipping planes, and other view-

ing parameters. Included with what might be termed the

"pure" viewing parameters i, this temporary file is the

definition of the color bar with its hues and their

corresponding data levels. The parameters defining the

color bar affect any data display and therefore belong with

the other viewing parameters.

It is also appropriate to save viewing information for

use at later sessions. The three obvious places to store

viewing parameters are with the geometry file, with the data

file, and in a separate file. The last possibility could

lead to excessive viewing information files, which can be

cumbersome to store and to document. Storing parameters

with the geometry files would be appropriate for pure

viewing parameters, but any color bar information associated
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with the geometry would have at best limited applicability.

Different data sets associated with the same geometry might

have completely different levels of data or even different

types of data, as pressure and temperature. The color bar

definition could be saved separately from the the pure view-

ing parameters, but this would present the same problems

associated with separately saved display parameter files.

An alternative might be the storing of pure viewing parame-

ters with the geometry file and the color bar definition

with the data file.

The approach used in this research is the storage of

all displi parameters with the data file. At any time dur-

ing a data display session the user is allowed to store the

current display parameters with the current data file. This

is in addition to the temporary storage of a current set of

display parameters. Whenever the user requests that a new

data file be used, he can either keep the current display

parameters or access those parameters stored with the new

data file. This allows the viewing of several data files

with identical display parameters and facilitates the stor-

ing of reasonable display parameters with previously unac-

ceased data files.

4	 1

1
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Split Screen Viewing
i

In most cases a data analyst would want a large view of

the geometry and data under investi—cat i on, but comparisons

of displays suffer badly when performed sequentially or sub-

jected to lengthy delays. Splitting the display screen

allows the simultaneous viewing of separate data sets or the

viewing of a geometry from two viewpotntb. The latter might

g`	 be particularly useful in examining a local phenomenon and

its global significance, as seen in Figure 13.

Figure	 14 shows a	 comparison of	 two mach 0.79 wind	 tua-
1»

nel	 teats	 on a wing with a turboprop engine.	 The	 top view

shows	 the coefficients	 of	 pressure over	 the upper surface of

the	 wing	 with	 the engine	 rotating at 6703 RPM.	 The lower

view shows	 the same surface with	 the engine	 rotating at 8472

RPM.

An attempt was made	 to run	 pixel-by-pixel	 comparisons

of split	 screen views.	 If	 the two simultaneous views are of

the same geometry and use the same viewing parameters, 	 there

should be a simple	 relationship between the screen locations

of	 the two images.	 In Figure	 14 one	 image	 is	 100	 pixels

below	 the other.	 A comparison of	 the two images can reveal

if the VLT locations used	 to	 color	 the Yg eometr	 indicate

i
l:

higher,	 lowe • ,	 or	 nearly	 equal	 data values for the area

represented by individual 	 pixels	 of	 the	 upper	 or	 lower

display.	 Equality would be determinable to within the data

Y

i

s
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The code needed for generating a display on the Ramtek

leaves sufficient memory for descriptions of approximately

400 total points and elements if a geometry with 1000 total

elements and points is to be displayed. A division or

series of divisions of the geometry information is obviously

necessary.	 Arrays of flags describing the status of all

elements and paints are kept, and a common set of data

ram.::: ^....._^a	 .:.,-.^ ,..w. 	 : ^. _.u..	 _._	 .....	 . ^....:........	 .. ^..
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range represented by a single VLT index. The precision of
a

4`	 the equality determination is thus a function of the style
f

1	 d	 h	 d f	 f	 h	 d	 `'of disp ay an	 t o	 a inition	 o	 t o	 color-to- ata

r	 correspondence, both of which are user controlled. This

pixel-by-pixel comporison was performed for	 isarithmic

displays, but the results were at best difficult to inter-

pret. More direct comparisons of data sets, be they visual

or numerical, would produce more easily comprehensible

results.

r	 Handling Large Geometries

•~

Programs	 for engineering	 applications,	 especially those

employing	 iterative	 techniques,	 often analyze very large

models.	 It	 is	 therefore	 important	 for a data display pack-

age	 to	 handle	 reasonably large models. The size and speed

limitations	 of	 the	 PDP	 11/40	 made	 the handling f tru lyY

F
large geometries	 infeasible	 in	 the research model,	 but

geometries with approximately 900 total points and elements

Fwere displayed with associated	 data.
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F	
structure nodes is used to describe both elements and

points. The allocation of these common nodes is done during

execution to maximize the number of nodes available to the

F	 user.

The Newell,	 Newell,	 and	 Sancha	 algorithm	 creates	 a

C
strict	 ordering	 of	 all	 elements,	 which provides a useful

means of separating	 the geometry	 into	 manageable	 sections.
I

Since	 the	 elements	 furthest	 from	 the	 viewer	 are to be

ldisplayed first	 in the Newell,	 Newell,	 and Sancha algorithm,

a	 split	 of	 the geometry would save	 the	 further elements and

place	 the nearer elements back	 into theP ool	 of	 unexamined

i1
elements.	 The	 point	 nodes	 are	 examined	 for usage at	 this

is

time,	 since	 in	 certain	 cases	 more	 nodal	 space	 can	 be

recovered	 by	 reclamation of unused points	 than by reclama-

tion of	 eliminated or unexamined	 elements.	 When	 all	 ele-

ments	 have	 been examined and	 the	 largest	 practical	 list	 of

the	 furthest	 elements	 has	 been	 created,	 the	 list	 is

displayed.	 The	 displayed	 elements	 are	 appropriately

flagged,	 and	 the	 display	 procedure	 is	 restarted	 with	 a

f

smaller set	 of	 elements	 to be displayed.	 The geometry in

1 Figure	 15 has	 768 elements and	 125 points	 and	 took	 fifteen

minutes	 to	 display.	 It	 took five minutes	 to create	 Figure

14,	 a	 geometry with 318	 elements	 and	 184	 po i nts.	 The	 latter

geometry	 fit	 into	 the	 available memory,	 a ► .d	 no	 list	 split-

ting, or	 resorting of	 elements was	 required.	 The	 sorting,

splitting,	 and	 re-sorting of	 the	 elements	 shown in figure	 12P	 g.	 g

t
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took roughly five minutes of the fifteen minute display

time.

Figure 15

Display of a Large Geometry
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INTERACTIVE DATA MANIPULATION

The power to interactively review color displays of

complex data is certainly useful, but still more powerful

tools can be made available to the engineer. The previously

described interaction allows the analyst to control the

representation of data, but it does not allow him to access

the raw numerical data being displayed. This restriction is

like the placing of a glass cover over a work of art: it is

appropriate when the piece is out for public viewing, but it

tends to hinder the artist when he is trying to finish his

masterpiece.	 A data analyst should be able to extract

numerical information from the data being displayed.

The Ramtek 9351 has an overlay mode that allows writing

and drawing in white without corrupting any Information on

the Ramtek screen. The overlaid drawing and writing, or

highlighting, can be separately erased to leave the original

display unchanged.	 This hardware feature provides	 an

appropriate means of accessing information. The following

is an examp.Le of how and why an analyst might interact with

his data to obtain a better understanding of its signifi -

cance.
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Figure 16 shows wind tunnel test results displayed

using an automatic color bar generation routine. One point

in the center of the wing has an extremely high data value,

and this has distorted the automatically generated color bar

to the point that little useful information is conveyed to

the analyst. In Figure 17 the user has requested informa-

tion on node 20, the node with the high datum. The analyst

may access specific nodal information by entering the

appropriate node number, or he may also step sequentially

through the nodes and thus peruse information on several

consecutive nodes. The overlay mode of the Ramtek is used

to verify the location of the point in question and to show

the node number, the datum associated with the node, and a

flag indicating the current status of the datum. The datum

displayed in Figure 17 Is flagged as valid or "good," since

the analyst has not declared it otherwise.

The analyst can at this point request that the node

being examined be added to a list of bad data points. Any

further display of the geometry will show all elements

defined with node 20 in shades of gray to indicate that the

data for that portion of the geometry is uncertain.

Requests for highlighted information on node 20 will yield

the same data value, but a flag value of "bad" instead of

"good" will accompany the the printed value.

The analyst can alternately choose to massage or

specifically alter the datum at any particular node. When
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Figure 16

The Effect of a Bad Data Point

Figure 17

An Overlaid Display of Information
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this request is made, the data display package queries him

regarding the data value that he wishes to assign to the

node in question. This step is shown In Figure 18.	 Subse-

quent displays will. use the analyst ' s input value as the

datum in all references to a massaged node.	 Highlighted

Information on the node will show the massaged data value,

and the flag will indicate that the data has been altered.

Figure 19 shows the same data as Figures 16 through 18, but

it uses a different color bar. The upper view in Figure 19

shows the result of declaring node 610 to have a bad data

value, and the lower view shows the massaged data display.

Massaging a data point or declaring it to have a bad

data value should not destroy the original value. The above

example of data manipulation used separate lists of bad and

massaged nodes. These lists were stored with the data files

as trailing additions. Any manipulation of data points was

easily	 reversible, and the original data values were

automatically put back into full use.

It should be stressed that the lists of bad and mas-

saged data points were generated by the analyst and not by

the data display package. Computer evaluation of the via-

bility of individual data points within a data set would

require the addition of task-specific software and is beyond

the scope of the data display package described.

a

Y

i
3

p

^^f



Eye	 61%
,^. rur

g oo► wI •^^ !^^
I l• rJY

lliNi	
1• ^ YYJINr rur

IU/ 11, UI ► II+•
• n w. 1 • I.I

►► 11.• ► 1	 111i^I 11 ► 	 1 t1 •.•1N 111 , ► ,.1 ^ 1 .	 •.	 1	 1..1 N Y
l..	 .•	 11111.	 ^.i	 ^i

1 . 1	 1•

11..11	 ..111	 11 ^^11
11.^ 	 11	 .•	 1

_....... ► sa r+t .

70

ORIGINAL PACE

BLACK AND WHITE PHU fOG-lArH

Figure 18

Massaging a Data Point

Figure 19

The Effects of Bad and Massaged Data Points
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The WamteRk's overlay mode can slsu be u4A to highlight

Individual elements of a disr+layed geometry. Figure 20

1 shows a highlighted element outlined and labeled. The nodes

at the corners of the element and their associated data

values are listed in the upper right corner of the Ramtek

screen.	 The analyst can, as with nodes, step through

e
sequences of elements or request the highlighting 	 of

(4	 specific elements.

Some manipulation of the -Aements of the geometry was

implemented in the data display package developed. While

1

	

	 highlighting elements the anv,yst can add the element to a

list of suppressed plates. If the geometry is subsequently

CIO	
displayed,all elements on the suppression list are 	 urged PP	 purged

from the display list. The interior view in Figure 21 could

not be obtained with clipping planes alone. Information

concerning an element is not affected by the element's

suppression, and subsequent highlighting is possible, as

shown in Figure 21. It is, df course, possible to remove an

element from the suppression list.

The power of interaction lies in the flexibility it

C
gives its user. Few of the geometry or data display tech-

niques described in the previous chapter cannot be done in a

i

batch environment, and some things, such as the creation of

`	 high quality output, are better done in a batch mode because
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associated with each function key, thus avoiding both exten-

sive mnemonics for commands and subsidiary instruction

sheets listiiAg what keyboard entries will initiate what

actions.

A menu-driven interface generally lists on the screen

the set of commands available to the user and allows the

locational selection of actions to be performed. Menu-

driven interfaces can be quite powerful and are widely used,

but menu-driven interaction is dependent on the device used

to control the locational input. The Ramtek's joystick is

velocity controlled, and the cursor moves slowly' and is

often difficult to control. 	 It is a poor device for select-

ing small and widely separated items on the screen.	 Th's

makes menu-driven interfaces using the Ramtek joystick slow

and unwieldy. The addition of a substantial menu area would

further cramp the already crowded Ramtek screen. The menu

could be alternately displayed and erased as commands are

entered, but this would not affect the inadequacy of the

joystick-controlled cursor. The joystick can be an excel-

lent device for interaction, but the particular joystick

available was neither fast enough nor accurate enough to be

effective at menu selection.

An increasingly popular device is the tablet. Tablets

are flat surfaces with the ability to determine the location

of a stylus or pen. Tablets are normally rectangular and

give the cursor location in Cartesian coordinates. In
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general tablets are square and vary from eleven to thirty-

six inches on a side. Numerous means of determining the

stylus location are used in tablets. Grids of wires with

distinct signals and partially conductive tablet surfaces

giving voltage gradients have been used. Strip microphones

along the sides of a tablet are used to infer position from

acoustic delay timing. Other tablets determine stylus coor-

dinates from the time lag of electrically induced strain

waves propagating through magnetorestrictive materials.

Since the user is moving a pen or stylus around on a flat

surface, the tablet is natural to use. The effectiveness of

a tablet is not lessened by placing a piece of paper over

Its surface, so an electric stylus or pen can double as a

ball point pen for sketching purposes. Drawings may be

digitized with a tablet, or a menu of available commands may

be placed upon the face of tht tablet.

A tablet-based, menu-driven int-rface could	 quite

effectively service analysts with intermediate knowledge of

a data display package. A perwanent menu could and should

be placed on the surface of the tablet, but a corresponding

on-screen menu would be helpful for less experienced users.

Figure 26 shows a menu as it might be displayed. The white

plus sign to right of center is the Ramtek cursor, which

would nominally be controlled by the tablet stylus.	 The

analyst could select commands from either the screen menu or

the tablet menu; the position of the stylus an the tablet

r
r
I



ORIGINAL PAGE
89 WICK AND WHITE PHOTOGRAPH

Figure 26

A Menu Overlaying a Display

would correspond exactly to the position of the screen cur-

sor, and the locations of commands would be identical for

both mantis.

An on-screen menu as in Figure 26 would probably make

use of overlaying or nondestructive writeover capabilities.

Extensive menus and other information can be shown to the

anal.yct and separately erased when viewing of displayed

geometries and data is desired. An interactively controlled

on-screen menu can give the user more information than the

list of commands on a tablet menu. The status of display

options, geometry and data file information, lists of edited

points and elements, and other useful information are shown

in Figure 26.	 The menu in Figure 26 also has a command



90

controlling the display of the menu and its associated
a

information.	 Unfortunately, no tablet was available for,

this research, and the Ramtek keyboard was used as the pri-

mary means of interaction.

The interface implemented as part of this research is

doc cribed	 below. the limitations imposed by hardware,

+ software, and time left their marks on the interface, and to

characterize the resulting interface as ideal would be to

make a virtue of necessity. Most commands were entered via

the Ramtek's function keys, although the standard keyboard

was often used. The Ramtek joystick was used to control the

on-screen cursor in two special cases, and lights on the

Ramtek keyboard were used to indicate the current opera-

:	
tional mode.

r.

k

	

	 The implemented interface treats most of the available

commands as bit players used to set the stage for the stars

6	
of the show, the display creation commands. 	 The user can

=r•
w

set and reset whatever display parameters he wishes; the

entrances anLi exits of these bit players are quick and

1	 quiet.	 When the user is satisfied with his display parame-

ters, he can initiate the relatively lengthy display pro-

cess„

Because the limited size of the PDP 11/40 memory neces-

sitated the division of the developed software into several

distinct programs, separate command states were implemented.
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The main state or primary mode has the user access to rile

management and the initialization of display processes. The

saving and restoration of viewing parameters is controlled

from the primary mode. The primary mode also gives the user

access to the other command modes. The parameter modifica-

tion mode allows the user to modify the viewing parameters,

including the viewing vector, display styles and options,

color bars, the clipping planes, and other parameters. The

lists of massaged nodes, bad data points, and suppressed

elements can also be edited from the parameter modification

mode. The file and program input and output required for

the entry into parameter editing mode and the return to pri-

mary mode took approximately thirty seconds. This delay is

excessive if only one or two trivial changes are necessary,

so certain often-used commands involving the screen areas

and display styles are also available in the primary mode.

The highlighting mode is the other major command mode,

and it controls the user interaction with the data being

displayed. If elements are being highlighted, the current

element is outlived and numbered on the most recent display

of the geometry. The points at the vertices of the element

are listed with their associated data in the upper left

corner of the screen.	 If points are being; highlighted,	 the

geometry point is numbered and marked on the latest display,

and its associated datum is given in the upper left corner

of the screen.
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The analyst can choose which point or element is

highlighted by entering a specific number at the Ramtek key-

board, or he may step through a sequence of points or ele-

ments. Ramtek function keys with vertical arrows are used

to determine whether the highlighting goes up or down

through the numbered pints or elements. The carriage

return is used to initiate a step in a highlighting

sequence.

Elements may btu added to the list of suppressed ele-

ments by a keyboard request while the element is

highlighted. Elements may be similarly d eleted from the

suppression list. Points may have their associated value

declared invalid or massaged while the point is being

highlighted.

The interaction described is divided into several modes

by necessity and not by choice. The separation of the

highlighting features is reasonable, but the manipulation of

the viewing parameters should not be a major operation. Any

user, and especially an occasional user, will periodically

forget to make a minor adjustment or want to see a slightly

altered display. A small change in a viewing parameter

should not require two additional commands for mode changes.

A description of the commands available in each command mode

is given in Appendix A.
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PRACTICAL CONSIDERATIONS

The techniques and examples of data display, review,

and manipulat i on developed in this work are intended to be

of general utility and net restricted to any particular type

of data. A production application of interactive graphical

data review would likely have numerous changes in both the

Vaplay and the characteristics of its particular,applica-

tion. The display devices available, the computer used to

control the interaction, any links to other computers, the

type of data to be displayed, and the intended use of the

displays should all be conaidered when designing a produc-

tion data display package.

The most probable environment for a data display pack-

age would be a dedicated computer interfaced to a color ras-

ter display device. A means of transferring information to

the dedicated computer must be available. If the output of

large theoretical analysis programs is to be displayed, a

direct	 line to the mainframe computer performing the

analysis would be in order. Remote or mobile testing facil-

ities may require magnetic tape transfers. Regardless of

the source of the data and the geometries to be displayed,

the computer controlling the interaction must be large
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enough to handle fairly large programs and geometries. The

PDP 1;40 used in this research is too small and weak to be

considered practical as an implementation computer.

r

r.

i

i?

The problems encountered on the PDP 11/40 did manifest

those areas deserving attention. The definition of a

geometry and the associated data values requires large areas

of memory, so the compact and efficient handling of data

and geometry definitions should be a prime consideration in

the design of a data display package. The rolling of prn-

grams into memory and the reading and rereading of geometry

and data files slow the execution of a program much more

than any programming inefficiencies in interactive portions

of the code. Delays caused by slight inefficiencies in the

interactive sections of a program are generally short,

perhaps one fourth of a second. For a computer to read and

cursorily examine a geometry definition takes considerably

longer, perhaps thirty seconds on the PDP 11/40. Even if

the computer has features such as extended memory or special

provisions for swapping information in and out of disk

storage, the inefficient handling of information will cause

unnecessary delays in execution which waste the analyst's

time and tax his patience,, If the computer driving the data

display has several users, the effects of unnecessary delays

are magnified.

The Ramtek 9351 is an adequate output device, but newer

hardware	 capabilities would be welcome.	 The hardware
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capabilities	 of	 newer	 raster	 display	 devices	 arezooming

a sometimes	 coupled with panning capabilities, 	 which would	 be

quite useful.	 The	 effect	 of	 panning4	 P	 g	 around	 an	 enlarged

display	 would	 be	 like moving a magnifying glass	 over a	 pic-

ture;	 the user would	 choose which	 portion of	 a	 display	 to

see	 at	 the	 enlarged	 scale.	 Hardware zooming and panning

wou:,d	 thus	 replace	 the	 time consuming	 redisplay	 necessary	 in

the	 implemented	 detailing	 feature.	 The 512	 by	 512 pixel

resolution of	 the Ramtek 9351	 was acceptable,	 and	 unless	 the

display	 time	 is	 significantly	 lowered,	 a	 fourfold	 increase

In display	 times would	 be an exorbitant	 price	 to	 fors pay

doubled	 resolution.	 Most	 of	 the	 display	 time	 for	 simple

i geometries is	 spent	 interpolating	 VLT	 indices	 across	 the

interior	 of	 polygons,	 so	 interpolative	 polygon-filling

hardware could allow higher	 resolution display devise,	 to be

4 much	 better	 than	 the	 9351.

Possible Ex tensions of a Dat a Display Package

Many possible features of data display packages have

riot been discussed in previous chapters. 	 Indeed, for cer

tain purposes some of the described features or enhancement*

may be superfluous or undesirable. The removal from the

display list of elements facing away from the viewing post-P Y

tion appreciably reduces the time required to produce a

display, but in some cases the inclusion of rear facing ele-

ments may be desirable.

r	 ^;

^ r
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If presentation quality output to desired, as it oi`ht

be for photographic reproductions of particular displays. an

additional display style could be added. Many shortcuts

taken fc- the sake of interaction can be eliminated to pro-

duce a finer display. The lighting model described used no

shadowing and only crude reflectivity calculations. Greater

realism can be attained with a well -developed lighting model

accounting for diffuse and specular reflection. Different

reflectance characteristics on different parts of the

displayed jeometry could be used to enhance distinctions

between parts. The weaknesses in the Newell. Newell. and
•

Sancha hidden surface removal algorithm may also corrupt

certain portions of a display, brit a more sophisticated hid-

den surface removal algorithm, such as the Watkins algo-

rithm, could be used to eliminate these display anomalies.

The Watkins algorithm can also be used to show cross sec-

tions precisely at a clip p ing plane rather than at the nodes

just inside the clipping plane. A higher resolution display

device with finer control over hues and intensities would

also be desirable for presentation quality output.

A more

in the ge

the s 1.cin of

In terms of

dimensional

data these

sophisticated treatment of the surfaces defiled

ometry is also possible. Complex shapes, such as

an airplane, are often described mathematically

patches or curved surfaces among points in three

space. For the interactive review of surface

patches may be crudely reduced to a few large,

r
f -^
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flat, triangular plates,	 but	 for quality displays using

polygonal elements each patch mu •. t 	 be divided into many

small, flat plates that, taken its toto, closely approximate

the three dimensional patch. An airplane so represented

might consist of 30,000 plates, which makes such displays

inappropriate for normal interactive data review.

A more sophisticated approach to the filling	 of

polygons on the display screen can also be developed. The

linear interpolations discussed 1n the Interactive Data

Display chapter give relatively crude isarithms. Contouring

algorithms for two dimensional data exist and could be

extended to i hree dimensional surface. A traditional two

dimensional contouring algorithm could use the screen coor-

dinates of transformed data points to give Amoother Lea-

rithms, but this could riot easily be synchronized with the

described viewing algorithrim. Complex or partially obscured

parts of a three dimensional geometry would cause further

problems for a screen, coordinate-based contouring scheme.

An analyst might for a number of reasons wish to see a

particular sequence of displays and have the ability to

address a series of displays as a unit. The sequence might

he ordered by an angle of rotation, by the a.:qutsition chro-

nology, or by some other criterion. The designer of a com-

puter controlled presentation of sequential displays must

avoid both the Scylla of lengthy display times and the Cha-

rybdis of excessive storage requirements. The attempt at
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sequenced displays in this r.search emul a ted Odysseus and

fell prey to both Scylla and Charybdis. Although the size

limitations of the PbP 11/40 memory forced the elimination

of the developed sequencing code as nonessential, sequencing

code used in conjunction with some form of hardeopy device

could be quit:: effective.	 A video film recorder would be an

appropriate hardcopy devict for saving sequential displays.

Several minor extensionb or small changes of technique

for production systems are worthy of mention. The described

massaging of specific data values depends on user-input

replacement values. An alternative means of ascribing a

data value to a geometry point would be an averaging of cer-

tain other data. The user-specified points would likely be

nearby points on the Fame surface. 	 The highlighting of
E

individual points on the geometry and the display of the

associated data value was controlled by user requests of

e

specific node numbers.	 If the uncertainties reused by
M

points on hidden parts of the geometry could be circum-

vented, ch)osing points to be highlighted by a on -screen

cursor would be better than requesting specific point

anumbers. The highlighting of entire subassemblies could be

_	 used to help the analyst maintain hl.s orientation in magn'i-

4

fied views of complex structures. Highlighting could also

`	 be used to indicate which data are in a specific range, e.g.

the analyst might request that all data greater than some

specifies level be highlighted.

r	 ,,
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A production implementation of a data display and

review packages would be heavily influenced by the available

hardware. If system specifications for a system to be

developed by perhaps 1990 were listed, they would include

hardware for most of the operations that waste the asaer's

times. Virtual memory would allow fairly easy manipulation

of large geometry and data fi:-:s, although the implementa-

tion software should still condense, as possible, the infor-

mation from these auxiliary files. The desired view of the

geometry should be chosen by manipulating a wire frame or

other simple representation with hardware scaling,	 transla-

tion, and rotation.	 The longer, full color raster display

would be created a minimum number of times. Hardware for

the interpolative fill of polygons would be of considerable

benefit, but the hardware implementation of an inexpensive,

robust hidden surface algorithm would be better. Although

general purpose hidden surface hardware is not currently

available, it will probably be developed in the next few

years. The hardware for hidden surface removal may Dandle

onl y flat, polygonal elements, but if a large number of flat

elements could be handled this ­ )uld not be a major handicap

in the presentation of most engineering data.

Many other features of data display systems can be

listed. Application specific enhance% r  and the possibil-

sties of new hardware capabilities make an attempt at a com-

plete list absurd. The features implemented and suggested
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do, however, show some of the directions in which interac-

tive data review and manipulation may proceed. Many more

extensions and interactive features could be described, but

more important than a lint of features is the recognition of

their exIstence, their variety. and their utility.
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CONCLUSIONS

The interactive techniques developed in this research

give an engineer the power to quickly examine complex data

for trends, anomalies, and other significant facets.	 Shaded

displays of three dimensional geometries with color

representations of associated data have been shown as a

viable means of portraying complex information, even when

the display is degraded for the sake of interactivity.

Detail enlargement, node and element numberii,g, clipping

planes, and element suppression have proven to be promising

techniques for the isolation of particulars and the investi-

gation of data interior to a geometry. Split screen viewing

for comparisons either of different views or of distinct

data sets was also developed. Various features that might

be found in a production system were also implemented, such

as perspective, user choice of the geometry's spatial orien-

tation, and the efficient handling of relatively large

geometries.

Both the developed isarithmic color-to-data correspon-

dence and the applied continuous tone correspondence were

shown to be applicable to the interactive representation of

Y

complex information.	 The continuous tone technique is
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better for the illumination of trends and produces a more

visually pleasing display, but 	 the isarithmic technique

allows more positive Identification of data levels. The

user's control of the color-to-data correspondences in

either display style allows the user to interactively

emphasize those portions of the displayed data's range that

are of particular interest.

Interactive data review is a powerful tool, but it does

not fully utilize the capabilities of contemporary or future

Interactive computer graphics. This research has demon-

strated the power of interactive access to individual data

which are part of a complex display. The significance of

individual values can be determined, and the deleterious

effects of errant data can be eliminated by the highlighting

and data massaging techniques developed. Advances in

hardware design will speed computer displays, and many func-

tions may be performed in hardware, but access to displayed

numerical information will still be a powerful tool for the

Interactive review of information. The highlighting of

individual data and geometry elements will have continued

applicability and can be developed for use with intricate

geometries and complex data forms.	 Future work in data

display should make full use of hardware capabilities, but

Interactivity will still be the key to effective use of 	 x
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The attempted representations of bivariate functions

were	 unsuccessful	 in that	 the	 techniques developed	 produced

inadequate representations of 	 the	 functions.	 Topographical

displays	 of bivariate functions had many areas of uncertain

value caused by the hiding of height 	 cues and	 the	 obscuring

of	 rear areas	 of	 the	 surfaces	 Color,	 topographical	 displays

of	 pairs of bivariate•	functions could	 be useful	 If	 the view-

Ing	 were	 dynamic,	 but	 the static displays	 in	 this	 research

could	 not	 fully	 represent	 two	 bivariate	 functions.	 The

research	 on	 bivariate	 function display did, 	 however,	 point

out	 both	 strengths and	 limitations	 of	 interactive	 computer

graphics	 in data	 review.	 Highlighting of	 specific	 nodal	 and

elemental	 information was	 u3ed	 to	 extract	 specific	 data	 in

spite	 of	 the	 weaknesses	 of	 the	 display.

The	 hue and	 Intensity displays	 inadequately	 represent

pairs	 of	 bivariate	 functions,	 but	 they demonstrate	 one	 limi-

tation on computer displays	 of	 Information.	 Computer driven

displays	 can	 depict	 subtle	 information	 by variations	 In

intensity,	 but	 human	 vision	 is	 limited	 in	 its	 ability	 to

extract	 information	 thus	 displayed.	 Intensity variations

are	 better used	 to	 show	 the	 three	 dimensionality	 of	 a

geometry	 than	 to show	 independent	 functions.

7 Interactive computer graphics must	 provide	 the engineer

with	 lucid	 representations	 of	 a	 variety of	 functions or

types of Information without	 completely	 removing	 him	 from

familiar	 data	 handling	 techniques.	 Interactive computer
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graphics is better applied as an extension of an engineer's

data reviewing capabilities than as a complete replacement

of procedures familiar to the engineer. If the engineer is

not comfortable with a display format and cognizant of its

implications, he is apt to set too much or too little store

by the graphical output. In either case the primary func-

tion of graphical display, the accurate representation of

Information, is not performed.

r
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Appendix At Command Descriptions

Commands are titled by acronyms, which are used to
label the Ramtek function keys. The same key may have dif-
ferent meanings in different command modes, as may be seen
In Figure A27.

The following commands can be executed from the primary
mode. Ramtek keyboard light 0 is lit while the user is in
the primary command mode.

SCRC	 Screen cycle

Step through the cycle of	 available	 screen
options. An on-screen message tells the usdr
which screen area will be used for subsequent
displays. The cycle is:

Full screen : Top half screen : Bottom half screen

STYC	 Style cycle

Step through the cycle of	 available	 screen
options.	 A short messagu tells the user what
style is currently in force. Regardless of
whether bivariate or three dimensional geometry
displays are being created the cycle is:

Wire frame : learith:nic : Continuous tone

OPTS	 Options cycle

Step -through the cycle of	 available	 screen
options. The cycle is:

Stare and element numbers	 Element numbers s
Stars and point numbers : Point numbers : Stars
No stare or numbering

PRSP	 Perspective

Toggle the use of perspective in 	 subsequent
displays.
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DISP	 Display

_ Display the geometry using the current set of
display options and parameters. The associated
data from the current data file are used as
needed.

DETL	 Detail

Enlarge a detail of the last display. The user
defines via the joystick driven cursor a rectangu-
lar portion of the latest display an area of par-
ticular interest.	 The user is cued for opposite
corners of a rectangular screen area. 	 He is to
enter these by moving the cursor to a corner and
toggling the joystick's enter switch. New scal-
Ing, focal point. and viewpoint parameters are
calculated and the geometry is displayed as in
DISP.

AUTO	 Automatically scaled display

YUsing the current viewpoint and focal paint	 cal-
culate a new scale factor making a display of the
geometry "fit nicely" in the display area. 	 The
geometry is then displayed as in DISP.

ATVU	 Automatic viewpoint

CL,ose an arbitrary viewpoint from which to view
the geometry. Use AUTO for scaling, and display
the geometry as in DISP.

w	
STMP	 Save viewing parameters. temporary

Save the current geometry file and data file names
alc.ng with all current viewing parameters in a
temp:arary file.

GETP	 Cet temporarily st. ed viewing parameters

Restore the viewing parameters, geometry file
name, and data file name eu the state extant when
the ATMP rnmmanA wan laat avarrntad_
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SAVU	 Save viewing parameters

Save the current viewing parameters with the
information in the current data file. The user is
queried for the name of the new data file. The
default file is the current data file.

DATA	 Data file

Access a new data file. The user is queried for
the name of a new data file. The new file
replaces the old data file in all subsequent
displays. The user may elect to keep the old
display parameters or to replace them by the
parameters associated with the new data file.

CIEOM	 Geometry file

Access a new geometry file. The user is queried
for a new geometry file name. When the new
geometry file has been chosen, a new data file
must be selected as in the DATA command.

UPTB	 Isarithmic color bar alteration

If the current style is isarithmic and the cursor
Is on the t-..lor bar, the data range in which the
cursor lies has a change in the color representing
it. The new color used to represent the cursor
chosen data range is the next higher color in the
list of defined colors.

DNTB	 Isarithmic color bar alteration

The cursor chosen data range gets a new color as
In UPTB. In DNTB the new color is the next lower
color in the list of user defined colors.

XPOS,XNEG Which axis is up
YPOS,YNEG
ZPOS,ZNE:G Set the current vertical axis to whichever axis is

Indicated. This command is not relevant to bivari-
ate displays.

PARM	 Parameter editing mode

Switch control of interaction to the parameter
editing node. On completion of parameter editing,
control returns to the primary mode.

HIPT	 Highlight points

Initiate the highlighting of data points. 	 Any
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- geometry	 point	 requested is numbered and starred
on the	 latest display,	 and the	 associated data
value	 is displayed	 in the upper left corner of	 the

P

Ramtek screen. A flag is also displayed stating
whether the data value is considered to be valid,
considered to be bad, or has been massaged.

HIF.L	 Highlight elements

Initiate the highlighting of elements of the
geometry. The element is outlined and numbered on
the last display, and the corner points are listed
with their associated data values. If the plate
Is on the list of suppressed elements, this fact
is mentioned.

The DISP, DETL, AUTO, ATVU, PARM, HIPT, and HIEL com-

mands require the rolling into memory of completely new main

programs. Information is passed to these new programs via

temporary files that describe the current display options,

files, and parameters. The programs executed because of the

PARM, HIPT, and HIEL commands send altered display parame-

ters back to the original (main) program via other temporary

files.

The following commands can be executed from the parame-

ter editing mode. Ramtek keyboard light 1 is lit while the

user is in parameter editing mode.

SCRC	 Screen cycle

Functions as from primary mode.

STYC	 Style cycle

Functions as from primary mode.

OPTS	 Options cycle

Functions as from primary mode.
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PRSP	 Perspective

Functions as from primary mode.

UPTB	 Isarithmic color bar alteration

Functions as from primary mode.

©NTB	 Isarithmic color bar alteration

Functions as from primary mode.

XPOS,XNEG Which axis is up
YPOS,YNEG
ZPOS,ZNEG Functions as from primary mode.

AXES	 Axes displayed

Toggles the display of X, Y, and Z axes at the
origin of subsequent displays.

PIPS	 Pipes display

Toggles the display of Z axis pipes from the Z-0
level to each point in the geometry. This is
relevant only to bivariate displays.

NUVU	 New viewing parameters

Query the user for new viewing parameters includ-
ing the viewpoint, focal point, and scale factor.
If the user declines to enter values for any of
the above, the current values of that parameter
are kept.

CLIP	 Clipping planes

Ask the user if clipping planes are to be used.
If the answer is yes, the user must define the
clipping planes. If bivariate data are being
displayed the user is asked about X and Y bounds
instead of three dimensional clipping planes.

ECTB	 Edit continuous tone color bar

The user is queried for new parameters to define a
continuous tone color bar and its relationship to
the displayed data.

ESTB	 Edit isarLthmic color bar

The user is allowed to edit the isarithmic color
bar.	 Changes may be made in the colors defined,

n
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In tho data range boundaries (the isarithms dep-
leted), and in the correlation between colors and
data	 ranges.

SHOW Show the color bar

Display	 the color bar	 of	 the	 current style	 as
currently defined.

EBAD Edit	 the	 list	 of	 "Bad" data values

Edit	 the	 list	 of data values designated as	 "Bad."
Points may be added	 to or deleted	 from the	 list.

EMAS Edit	 the	 list	 of	 "massaged" data	 values

Edit	 the	 list	 of massaged	 data values. Points may
be	 deleted	 from or added	 to	 the	 list. If	 a	 point
is	 to	 be	 added	 to	 the	 list	 a	 new,	 or massaged,
data	 value must	 also	 be	 entered.

EPLK Edit	 suppressed	 plates	 list

Edit	 the	 list	 of	 suppressed	 plates	 by adding	 and
deleting	 entries.

RTRN Return

Return control	 of	 user	 interaction	 to	 the primary
mode.

The following options are open to the user when

highlighting points or elements.

1-N	 Numerical entries

Any number entered and terminated by a carriage
return is taken as a request to highlight that
point or element.

UPTB	 Step up

Highlight the next point or element as determined
by the numbering of the points or elements.

DNTB	 Step down

Highlight the previous point or element as deter-
mined by the numbering of the points or elements.
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<CR>	 Carriage return

A carriage return without a preceding number
requests highlighting of the next or previous
point or element. The direction of traversal is
determined by the last UPTB or DNTB request.

EPLK	 Edit suppressed plates list

If elements are being highlighted, the currently
highlighted element is added to or deleted from
the list of suppressed elements.

EBAD	 Edit the list of "Bad" data values

If points are being highlighted, the currently
highlighted point is added to or deleted from the
list of bad points.

EMAS	 Edit the list of "Massaged" data values

If points are being highlighted, 	 the currently
highlighted point is added to or deleted from the
list of massaged points. If the point is being
added to the list the user is queried for a mas-
saged data value.

RTRN	 Return

Return control of interaction to the primary mode.

e

it
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Appendix B: Geometry File Format

Blanks and carriage returns are equally valid separators for
numeric entries. Blanks may he embedded in the header lines or
character strings.

Abbreviations

term
---------------------------------------------------------

meaning

F floating	 point

I integer

C character	 string

U Nob,js	 controlled.	 The sequence of entries
prefixed	 by	 "0"	 should occur	 Nob ,js times.

G NgrpR	 controlled.	 The sequence of entries
prefixed	 by	 "G"	 should occur Ngrps times.

E Elcnt	 controlled.	 The sequence of entries
prefixed	 by "E" should occur Elcnt times.

Geometry
------------------------

file format

lieader line one (C) Up to 20 characters
Header line two (C) Up to 20 characters
Header line three (C) Up to 20 characters
Header line four (C) Up to 20 characters

Npnts (1) The number of	 points	 in the
geometry definition.

Coors (I) The number of significant
coordinates	 for each point.
If	 Coors -	 3	 the geometry

is	 three	 dimensional.	 If
Coors a	2	 the geometry is
for	 bivariate	 functions.
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Nelmts (I) The number of plates or
elements	 in the geometry
definition.	 This	 includes
all	 elements	 that may be	 in
the display	 list,	 so	 those
elements defined with 	 four
vertices must	 be counted
twice.	 The software will
break all	 four-vertex plates
Into	 two	 three-vertex	 plates.

Nedges (1) The number of edges	 in the
geometry definition.	 Not
used.

Nobjs (1) The number of objects	 in the
geometry definition.

0 ObjID (C) A	 five	 character	 identifier
0 for	 the current	 object.
0 This is for the use's con-
0 venience	 in constructing
0 and debugging geometries
0 and	 is	 not	 used.
0
0 Objnun (1) The object	 number.	 also
0 inserted	 for user debugging
0 only.	 Read	 but	 not	 used.
0
0 Ngrps (I) The number of groups	 in the
0 current	 object.
0
0 G CrpID (C) A five	 character	 identifier
0 G for	 the current	 group.	 This
0 C Is	 for	 the user's	 convenience
0 G in constructing and debugging
0 G geometries	 and	 is	 not	 used.`
0 C
0 G
0 G Grpnum (I) The group number, also
0 G ir,erted	 for user debugging
0 G ot.iy.	 Read	 but	 not	 used.
0 G
0 G Elcnt (I) The number of element defin-
0 G itions	 in	 the current	 group.
0 G
0 G E	 Nsides (I) either 3 or 4.	 The number
0 G E of vertices of	 the element
0 G E being defined.
0 G E
0 G E	 Vert (1) Nsides	 vertex	 indices.	 All
0 C E Vert entries should be	 in

r- 0 G E the	 range	 from	 1	 to Npnts.

i
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Nplkl

Plkl
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Appendix C: Data File Format

Blanks and carriage returns are equally valid separators for
numeric entries. Blanks may be embedded in the header lines or
character strings. Indented entries are conditionally present.
A leading zero in an integer indicates that the number is octal.

Abbreviations

term	 meaning
---------------------------------

LOR	 logical or

>	 greater than

F	 floating point

I	 integer

'	 C	 character string

0	 octal number

Data
---------------

file	 format
---- --

Header line one (C) Up to 20 characters
Header line two (C) Up to 20 characters
Header line three (C) Up to 20 characters
Header line four (C) Up to 20 characters

Data	 entries (F) NPNTS entries	 (NPNTS	 read
from geometry file)

Number of data points flagged
as "bad."

Nbad indices to geometry
points flagging them as bad.

Number of elements in the
suppression list.

Nplkl indices to geometr
elements to be suppresse
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Nmas (1) Number of data	 points	 flagged
as	 "massaged."

Has	 Dval (I	 F) Nmas	 pairs	 of	 entries.	 Has
is an	 index to a massaged
data	 poLot.	 Dval	 is	 the
value assigned	 to	 point	 Has.

Disps (0) Octal	 flag	 indicating which
of	 the	 following are	 present.

Rye (t) Present	 if	 (Disps	 LOR 010000)
Floating point	 triple giving
location of	 viewer	 in space.

' Lookat (E) Present	 if	 (Disps	 LOR 010000)
Floating	 point	 triple giving

n location	 of	 viewer's	 focal
point.

Ltght (F) Present	 if	 (Disps	 LOR 010000)
Floating	 point	 triple	 giving
location	 of	 light	 source.

r
Scale (F) Present	 if	 (Dispe	 LOR 010000)

Scale	 factor	 to	 be	 used	 in
display	 creation.

a

Clipl (I) Present	 if	 (Disps	 LOR 010000)
Flag	 indicating	 use	 of	 clip-

`; ping	 plane	 one.

C1iF2 (I) Present	 if	 (Disps	 LOR	 010000)
Flag	 indicating	 use	 of	 clip-
ping	 plane	 two.

Clpatl (F) Present	 if	 (Clipl	 >	 0)
Floating	 point	 triple giving
the	 location of	 clipping	 plane
one	 in space.

a
Clpnr2 (F) Present	 if	 (Clip2	 >	 0)

Floating point	 triple giving
a vector normal	 to clipping

+ plane	 two.

Clpat2 (F) Present	 if	 (Clip2	 >	 0)
R..i

Floating point	 triple giving
the location of clipping plane

E

two	 in	 space.

Clpnr2 (F) Present	 if	 (Clip2	 >	 0)
G Floating	 point	 triple giving

a	 vector normal	 to clipping
plane	 two.

i



Ncolors	 (I) Present	 if	 (Disps	 LOR 0202)
Number	 of	 colors	 present	 in
the	 isarithmic	 color bar
being described.

Nsects	 (I) Present	 if	 (Disps	 LOR 0202)
Number of	 sections	 in	 the
isarithmic	 color	 bar being
described.

Udata	 b	 Col	 (F	 I) Present	 if	 (Disps	 LOR 0202)
Nsects	 pairs.	 The	 first	 is
the upper	 limit	 of	 the data
range,	 and	 the	 second	 is	 the
color with which	 that	 data
range	 is	 associated.

Color	 (F) Present	 if	 (Disps	 LOR 0202)
Ncolors	 entries	 giving	 the
hues	 of	 the	 colors	 in	 the
color	 bar.	 Red	 is	 0.00.
green	 is	 0.33,	 blue

0
in	 0.66.

and	 other	 colors	 fill	 the
spectrum.

Ndlin	 (I) Present	 if	 (Disps	 LOR 02020)
The number	 of data	 level
labels	 beside	 the	 continuous
tone	 color	 bar	 being
described.

Lohue	 (F) Present	 if	 (Disps	 LOR 02020)
The hue at	 the	 low end of	 the
..ontinuous	 tone	 representing
data values	 below the limits
of	 the	 spectral	 represenation.

Ilihue	 (F) Present	 if	 (Disps	 LOR 02020)
The hue at	 the high end of
the continuous	 tone	 repre-
senting data values above	 the
limits	 of	 the	 spectral
representation.

Botsp	 (F) Present	 if	 (Disps	 LOR 02020)
The hue at	 the	 bottom of	 the
continuous	 tone spectrum.

Topsp	 (F) Present	 if	 (Disps	 LOR 02020)
The hue at	 the	 top of	 the
continuous	 tone	 spectrum.

w
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Botdv

Topdv

(1')	 Present i f (Disps LOR 02020
The lower lima: of the data
range represented by the
continuous tone spectrum.

(P)	 Present if (Disps LOR 02020
The upper limit of the data
range represented by the
continuous tone spectrum.
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graduate program.
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