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NOMENCLATURE

C specific heat (Btu/lbOF)

h heat transfer coefficient (Btu/hr ft 2
oF)

k thermal conductivity (Btu/hr ft OF)

L

q

q"

slab thickness (ft)

volumetric heat source (Btu/hr ft 3)

heat source per unit area (Btu/hrft2 or Watts/in2)

T temperature (OF)

x space direction (in)

X dimensionless space direction

Greek Letters

ex

lit

liT

lix

p

thermal diffusivity (ft2/hr)

size of time step (sec)

temperature semi-interval across Tf (OF)

grid spacing in x direction (in)

dimensionless grid spacing in x direction

dimensionless temperature semi-interval across e
f

dimensionless temperature

latent heat of ice (Btu/ft 3)

density (lb/ft3)

Subscripts

j layer in the composite body

~ grid point

s solid or ice region
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w liquid or water region

f phase change

0 ambient at lower boundary of composite body

00 ambient at upper boundary of composite body

Superscripts

n time step

* ice-wa.ter "mushy" region
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I. INTRODUCTION

The formation of ice on aircraft components, a wing

section of which is shown in Figure 1, poses tremendous

difficulties in aircraft operation. Various anti-icing and

de-icing methods have been investigated and are reported in

Reference (1). Before these methods are considered, it is

necessary to differentiate between anti-icing and de-icing.

The anti-icing principle involves methods to prevent ice

formation on the blade surface. These methods usually

require an excessive amount of energy and are not frequently

applied. The de-icing principle involves shedding the ice

by heating the surface on which it is formed. In this case

the energy required is reduced significantly because heat

is needed only to form a thin water film between the air

craft structure and the ice, thereby decreasing the adhe

sion strength and allowing the aerodynamic forces to sweep

away the ice layer.

At present, for anti-icing and de-icing, thermal energy

is the most commonly used technique and is obtained in two

ways:

(i) Electrical resistance heating elements which are embedded

just below the surface being heated (as shown in Figure

1) ;
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(ii) Passing hot, engine compressed bleed air through pas

sages below the surface being heated.

A. TYPES OF DE-ICING AND ANTI-ICING SYSTEMS

Various de-icing and anti-icing techniques have been

developed over the years, some of which have been in use for

a long time and are listed below.

1. Inflatable Rubber Pneumatic Boots: This pneumati

cally operated mechanical de-icing system consists of a boot

which is made of a flexible rubber-like material, and which

is slipped over the wing of the aircraft such that the ice

forms on the boot-surface rather than on the wing structure.

The boots, when inflated with the cooled engine bleed air,

break the· ice surface, thus allowing the aerodynamic forces

to blow the ice away. A section of the aircraft wing fitted

with a boot is shown in Figure 2. This method is relatively

simple and uses a very small quantity of the cooled engine

bleed air and does not impose any fuel penalty on the engine.

However, because the surface of the boot is not as smooth

as the wing surface, the boot system increases the drag for

the aircraft. In addition, this pneumatic de-icer system

requires frequent maintenance and replacement. For the

pneumatic boots to show an operational weight advantage over

the thermal de-icing system technique, they must be vir

tually drag-free. Modern boots, carefully bonded to the

wing structure, do minimize the drag but are.expensive to

maintain.
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2. Chemical Systems: An anti-icing method used to

prevent the formation of ice on the abrasion shield surface

of the aircraft involves the use of freezing point depres

sants. The chemical depressants are spread in a thin film

over the abrasion shield, thus lowering the water freezing

point and preventing the formation of ice. Though relatively

simple in concept, their usefulness is restricted because

of the variable external pressure field, which makes it

difficult to obtain a uniform flow distribution of the de

pressants, and which therefore can result in the formation

of ice on the unprotected areas. Further drawbacks are that

the systems require frequent resupply and are sensitive to

clogging of the fluid distribution holes in dusty environ

ments. Chemical systems are therefore restricted in their

use to mainly windshield ice protection.

3. Thermal De-icing: Thermal de-icing remains the

most commonly used technique in removing the ice from the

abrasion shield surface. In this method the ice covered

regions are cyclically heated in sequence either by electric

heaters or by hot bleed air from the engine. The thermal

energy supplied is used to raise the temperature of the sur

face on which the ice is deposited to 32°F and to melt a

thin layer of ice. This thin film of water reduces the

adhesion strength of the ice to the surface and aerodynamic

forces then sweep the unmelted ice from the surface. Because

of the cyclical nature of the energy input, the energy
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requirement is very much less compared to the' other techni

ques. In addition, the use of this system is not restricted

due to change in weather conditions and is relatively easy

to maintain.

Of the above mentioned systems, the electro-thermal

de-icing technique is the most commonly used and will be the

one considered in this study.

B. DE-ICING PAD CONFIGURATION

The configuration of the electro-thermal de-icing pad

is shown in Figure 1. It is essentially a composite body

consisting of five layers in the case of a point heat source

and six layers in the presence of a finite heater. The

heating source is separated from the metal substrate, or

the aircraft blade, by the inner insulation which usually

consists of resin impregnated glass cloth. This insulation

serves to provide electrical insulation for the heating

element, and also directs the heat towards the ice layer.

It is advantageous to have a large ratio of inner to outer

insulation thickness so that more heat flows toward the

ice layer, thereby reducing the de-icing time. The heater

element usually consists either of a woven mat of wires and

glass fibers or of mUltiple strips of resistance ribbon.

In order to protect the de-ic~r pad from rain erosion

or sand and stone abrasion, which could be a problem while

flying at high speeds, an abrasion shield, frequently made

of stainless steel, is added to the outer insulation. The
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abrasion shield also serves to diffuse the heat from the

heater, thus providing more uniform heating and thereby

reducing cold spots where ice could form above the gaps in

the heater elements.

The material of construction of the substrate depends

on the type of aircraft and is most often an aluminum alloy •

. In this study, only the one-dimensional model of the

de-icing pad will be investigated. It is assumed that there

is perfect adhesion between each of the layers and therefore

no contact resistance to heat flow will be considered in

this analysis. This study will concern itself with both a

point heat source and a finite thickness heater, providing

either constant or time dependent heat output. In each of

these cases, the effects of the type and thickness of the

insulation layers and the nature of the blade structure on

the de-icing time will be observed. In the first section

of this study, the phase change at the ice-abrasion.shield

interface will not be considered and the ice layer will be

treated as a single phase. In the latter part, for the

ice-water phase change, a numerical method which approxi

mates the latent heat effect by a large heat capacity over

a small temperature interval will be applied.
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II. LITERATURE REVIEW

From the conducted literature review, it is evident

that the de-icing problem has either been ignored or that

information pertaining to it has not been published in the

open literature. Of the few attempts that have been made

to solve the specific problem, Wardlaw(2) and Campbell (3)

applied an analytical approach, while Stallabrass(4) has

made use of a numerical technique. However, several

methods have been proposed to solve the transient heat con

duction problem in a composite slab, without phase change

and with different boundary conditions, and these will be

reviewed below.

A. ANALYTICALI'TECHNIQUES FOR COMPOSITE BODY HEAT TRANSFER

The Laplace transformation technique was presented by

Carslaw and Jaeger(S), but this method becomes increasingly

tedious to apply to composite bodies with more than two

layers since it becomes more difficult to obtain the inverse

Laplace transform. Goodman (6) introduced the method of the

adjoint solution, which arises from consideration of an

auxiliary function. However, a disadvantage of the adjoint

method is that the solution provides just the interfacial

temperatures and not the temperature profile within each

slab layer. Further work on the adjoint solution method has
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been done by Bouchillon(7) in which transient cases have

been considered. The formulated integral equations have

been reduced to linear equations and then solved by matrix

inversion techniques. However, as before, only the inter-

. facial temperatures can be calculated.

The Orthogonal-Expansion technique proposed by Tittle

{8,9) is another method to solve the boundary-value heat

conduction problem in multilayer regions. The method is

basically an extension of the Sturm-Liouville problem to the

case of a one-dimensional multilayer region. Orthogonal sets

are constructed from the solution of each of the layers and

an orthogonality factor, called the discontinuous weighting

function, is used such that the resulting orthogonal set is

applicable to the entire composite media.

Bulavin and Kashcheev(lO) used the method of separation

of variables and of orthogonal expansion of functions over

a one-dimensional mUltilayer region to solve the transient

heat conduction problem involving heat sources in a multi

layer region. Campbell (3) applied a similar method in

solving the de-icer pad problem analytically.

The disadvantage of using an analytical technique is

that for each temperature desired, an excessive amount of

calculations have to be performed. Hence, as the number of

layers within the body increases, the calculations become

more tedious. This drawback can be overcome by using numer

ical techniques.
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B. NUMERICAL TECHNIQUES FOR COMPOSITE BODY HEAT TRANSFER

The most frequently used numerical method for solving

partial differential equations is the finite-difference

method. Using this method, the temperature at all the nodal

points within the composite slab can be calculated at each

time step. The finite-difference method involves the con

struction of a grid within the boundary over which the dif

ferential problem is to be solved. At each of the grid

points the differential operators are replaced by their

approximate values expressed in terms of functions. This

substitution reduces the problem to the solution of a set

of algebraic equations, which is mathematically easier to

solve. A finite-difference representation of the de-icer

pad is shown in Figure 3.

Two of the major considerations in using a finite-dif-

ference scheme are the establishment of both a convergence

criteria and a stability criteria. A number of finite-

differencing methods have been proposed and are discussed

in depth in References (11) and (12). In addition, Price

and Slack(13) have evaluated the accuracy and stability

criteria of various finite-differencing methods for. the

heat flow equation with convective boundary conditions.

The Crank-Nicolson implicit finite-difference scheme

is unconditionally stable for all time steps, and has been

used in the present study. For the corresponding explicit

formulation, there exists a limitation on the ratio ~t/(~x)2
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to be 0 < ~t/(~x)2 < 1/2; no such conditions are present for- - ,

the implicit scheme. However, the choice of the size of the

time and space steps has a direct effect on the accuracy of

the solution. The truncation error for the implicit Crank

Nicolson scheme is of the order (~x)2 for the space differ

ential and (~t)2 for the time differential. As stated by

Dusinberre(14), the accuracy of the solution can be increased

by initially choosing a very small time step and then sub-

sequently increasing it.

Stallabrass (4) employed the explicit finite-difference

scheme in his de-icer analysis. Though the scope of his

study covers most of the important aspects for the one-

dimensional de-icer design, its major drawback is that it

considers no phase change within the ice layer and limits

the solution to the time at which the interfacial tempera-

ture between the ice and the abrasion shield reaches 32°F.

Also, Stallabrass (4) considers only a point source and a

finite thickness heater with constant heat output. The

present study will consider the phase change effect in the

ice-layer as well as time varying heat sources.

C. METHODS TO DESCRI\3E PHASE CHANGE

Phase change or moving boundary problems have been re1a-

tively difficult to solve because of the non-linear nature

of the boundary conditions arising from the boundary move-

ment. Various methods of analysis such as the Integral

method (15), Successive-Approximation technique (16) and
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Series Solution (17) have beon proposed for analytically

solving the one-dimensional phase change problem. Mori and

Araki(18) have reviewed some of the other methods that have

been proposed.

Numerical methods to solve the phase change problem

have been attempted and are described by Meuhlbauer and

Sunderland(19) and Rubinstein(20). Most of the numerical

methods solve the pertinent heat conduction equations and

determine the temperature distribution in both media, while

at the same time locating the position of the solid-liquid

interface by a predictor-corrector technique. However, this

requires a large number of iterations to locate the solid

liquid interface position at any given time. Mastanaiah(21)

used such an iterative scheme with a two time level implicit

method for the one-dimensional freezing and melting problem

with convective boundary conditions and variable thermal

properties. Lazaridis(22) used another iterative solution

for the two-dimensional solidification problem with constant

thermal properties and convective boundary conditions, and

also constant temperature conditions at the boundaries.

Crank(23) describes two additional ways to approach the

moving boundary problem. The first involves the rearranging

of variables such that the boundary is treated as stationary

and the problem is transformed into an eigenvalue problem

with fix~d boundaries. However, the equations to be solved

contain parameters associated with the moving boundary
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problem for which values have to be determined to satisfy

the boundary conditions. In the second method, Lagrangian

interpolation formulae for non-equal intervals are intro

duced along with the finite-difference formulae in order to

follow the movement of the boundary.

To avoid the problem of locating the interface posi

tion as in the above method, a second approach, the method

of weak solution, often called the Enthalpy Method, has been

used. In this method, the enthalpy is used as a dependent

variable along with the temperature. Thus the moving bound

ary problem can be solved in a fixed region and no modifi

cation is required to satisfy conditions at the moving

boundary. Much of the numerical work applying the enthalpy

approach to the phase change (Stefan) problems has been

done using the finite-difference scheme. Atthey(24) has

solved the welding problem in one-dimension, which is essen

tially a melting problem, using this approach. The conver

gence criteria for such a solution has also been clearly

indicated. The latent heat has, however, been assumed to

be evolved at the phase change temperature. In practice,

the latent heat is usually considered to be evolved over a

small temperature range, 6T.

Goodrich (25) and Bonacina et al. (26) have solved the

one-dimensional ice-water problem by associating the latent

heat effect with a finite temperature interval about the

phase change isotherm. However, it should be noted that
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within this "mushy" region, the grid spacing has to be sub

stantially reduced or else the isotherm may advance in an

oscillatory fashion and distort the temperature profile.

Goodrich(25) used the Crank-Nicolson implicit finite-differ

ence scheme for formulating the problem and the Gaussian

Elimination technique for solving the resulting set of equa

tions. Bonacina et ale (26) used a three-time level implicit

scheme for formulating the problem, which was then solved

as before. The formulation results in three governing equa

tions applicable to the three phase regions: solid, "mushy"

and liquid regions, respectively. The "mushy" region was

defined over a small finite temperature range, 26T, about

the phase change temperature, Tf • The phase change initially

starts occurring at temperature Tf - 6T, and the ice becomes

pure liquid at temperature Tf + 6T, where Tf equals 32 0 F.

The choice of the temperature interval, 26T, depends on the

physical nature of the problem. For the ice-water system

considered in Reference (26), a temperature interval of two

degrees Kelvin was assumed and good comparison to the ana

lytical solution was obtained. In the solid and liquid

regions the thermal properties were assumed constant. In

the "mushy" region, the thermal conductivity was assumed to

vary linearly with temperature and the latent heat effect

was approximated by a large heat capacity. Solutions to

phase change problems applying this method agree fairly

accurately with analytical results and this method will there

fore be used in the present stUdy.



13

The enthalpy method has also been employed for solving

two-dimensional phase change problems. Meyers (27) and

Shamsunder and Sparrow(28) have described a purely implicit

two-dimensional finite-difference scheme for solving such

problems. Shamsunder and Sparrow(28) have also considered

the effect of various parameters on the solidification rate.

A finite element approach has been proposed by Comini et al.

(29) for solution of the Stefan problem in two-dimensions

with non-linear radiation boundary conditions.

The complete numerical formulation of the de-~cer prob

lem is given in the next section.
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III. NUMERICAL FORMULATION

A. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

In the formulation for the one-dimensional, unsteady

state, mathematical model for the heat transfer analysis of

a composite aircraft blade with an ice layer, as shown in

Figure 1, the following assumptions were made:

(1) The thermal properties of the material composing each

layer of the blade are constant;

(2) Density variations are neglected, as are the effects of

the volume contraction experienced when the ice melts;

(3) The individual layers are in perfect contact with each

other, and there is no additional resistance present at

the interface; and

(4) The ambient temperature is constant.

With the above assumptions the governing equation is

(1)

where j represents the layer in question, p, C, k, T and q

are the density, heat capacity, thermal conductivity, temp

erature and volumetric. heat source of the jth layer, respec-

tively, and x and t are the distance coordinate and time

variable.
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The total blade is then characterized by:

j = 1 Blade or Substrate

j = 2 Lower or Inner Insulation

j = 3 Heater

j = 4 Upper or Outer Insulation

j = 5 Abrasion Shield

ql = 0

q2 = 0

q3 = f (t)

q4 = 0

qs = 0

(2)

For the ice layer (j=6), the governing equations to be

applied depend upon the temperature profile within the layer.

Applying the method discussed at the end of Chapter II,

References (25,26), the governing equations are:

For j = 6,

Ice:

Water:

1sCr d Tj "k 2. To
JlJ<~-~1- s~

;;Jl; ;) X"

iCw
d 1j )c d2-T;

J 7j > ~.,.l!1T
( 3)- w~

dt ~ X2.

Ice-Water:

where

c" ;; Tj = L~~.L1i]
d t ~X [ ;)'j..

_ -lL + -Iscs+lw ClfoJ

16.T 2

~J + A<i:;s(\} _(-r+_AT»
In the above equations, C and C , p and p and k ands wsw s

k are the specific heats, densities and thermal conductivi
w

ties of ice and water, respectively. The latent heat A, is

assumed to be evolved over the fictitious temperature inter-

val 2~T (2°F in this study). The phase change initially

starts occurring at temperature Tf - t.T and the ice becomes
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pure liquid at temperature T f +6T, where Tf equals 32°P.

Wi thin the temperature range 'I'f - 6T and Tf + 6T, a single

phase does not exist and the ice-water system is said to be

in the "mushy" region. As discussed previously, a large

heat capacity to account for the latent heat and a linear-

ized thermal conductivity are used to describe this "mushy"

region. The thermal properties in the ice and water regions

are assumed to remain constant.

The corresponding boundary conditions to be used are:

(i) The equality of the temperatures and heat fluxes at the

interfacial points:

j = 1, ...• ,5

(4 )

j = 1, .... ,5

where the subscript I denotes the interface;

(ii) Convective heat transfer at the lower and upper bound-

aries:

k· d-r~1 ~i (I~t.o- ~) j = 1 (Sa)
J. d X Xao

===

-J,. dT'1 J, (T~ -T.o) j = 6 (5b)
J. _r =:

d)(. )(.~L
2 ~.\.

where
~. = ...Rs ~o'r T~I)t.f= ~ -ATJ

,It. = -kw -5-0 .... 'i.1~.L:> T~+ ATJ

~. = ,k* -5-0'(' T~~'" ~ T~I1(~Tf + ATJ
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To formulate the above equations in terms of non-dimen-

siona1 temperature and distance, the following definitions

are made:

T8=-
-r;~

- X)(=-
L

(l' )

where Tref = the reference temperature (taken to be 32°P in

this study),

L = the total length of the composite slab, and

a. = the thermal diffusivity of the jth layer.
)

Substitution of the above dimensionless quantities into

equations (1) through (5) yields

+
For j = 6

j = 1, .... ,5
(2' )

Ice:

Water: 'de· ~ ;;)'1ej. ej ;> e~+Ae
( 3 ' )

at~ - L2. dX1.

Ice-water: CC4
dBJ == d ~'~J e.f~e ~ Gj ~ ~+6.9at cJ~ d)(.

where C~ =- /\ -Is Cs of-~ c....,
2T~Ae + 2

~ ... := ,As + ~A:$( 8j - (e;f-lie))
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At the interfacial points,

j = 1, .... ,5

( 4' )

- !~ d~ ~I = _ ,kJ+'1 d~j.+ll j = 1, ..•. ,5
'dX :t dX:t°

Finally, at the lower and upper boundaries:

at X = 0, j = 1

at X = 1, j = 6

(Sa' )

lj~il - 1"L (e'l_ - e...) (5b' )

"a X X=1 J 1.-1

where i- ..Its -toY' e-, < e -ASJ - ~ i c 1 f
-
~- - ,kw ~ Or e~'X~; ei+AeJ

~- - -It -5- 0,," 6;-A6 ~ BJI_ ~ a-S-+~e~
)(-1

The above equations can now be represented in finite-

difference form and solved numerically.

B. NUMERICAL TECHNIQUE

In the numerical solution of the above partial differ-

ential equations, a finite-difference scheme was adopted.

This is accomplished by constructing a system of grid points

which define a finite number of regularly spaced values of
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the dependent variable, in this case the temperature, over

the whole space domain at each time step. As illustrated

in Figure 3, the X-axis represents the length along the com-

posite body and the Y-axis represents the time variable.

The space axis is divided into increments of size ~x., where
J

the subscript j indicates the layer in question. Within

each layer, the space increment ~X. is constant, but it may
J

vary from one layer to the next. The time axis is divided

into equal time step intervals, ~t. However, the time incre-

ment may be increased as the solution progresses. The index

i denotes the position of the variable in the grid along the

space axis, and the superscript n indicates the value of
n

the variable at time n. Hence the quantity e.. represents
J ,1

the non-dimensional temperature in the jth layer, at posi-

tion i along the space axis, at time n.

C. FINITE-DIFFERENCING AND THE METHOD OF SOLUTION

The finite-difference approximation to a partial deriv-

ative can be derived using a Taylor Series expansion around

any grid point. In this study, the Crank-Nicolson Implicit

scheme was applied in order to maintain stability of the

solution. The finite-difference approximations for the

first and second-order space derivatives and first order

time derivative are second order correct and are given below.

Y'l+1 'Y\'" i Y\ '"

Bj ..i+l-B;',i.:-l +Bj,Ltl-ej.,i.-l

4hX~

(6a)
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"1\+1 ~+1 'f'\tJ. V\ "" '"

8j.,l.+1 l Biz\' +Oj~~-J.+Bi,L-H.-ZBj,i.+0et,L-t
Z.(bX~l

+
2-

-t- 0 (At)

(6b)

(6c)

In the above equations the superscripts represent the

time levels nand n+l, the subscript j represents the jth

layer and the subscript i represents the grid point under

consideration.

The Crank-Nicolson finite-difference equations are

obtained by substituting (6a,b,c) into equations (2')

through (5'). The governing equations in finite-difference

form reduce to:

(7)

For j = 1, .... ,5

where q" is the source per unit area and equals q .• L6i.
J

For j = 6,

(Sa)
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where

(8c)

The value of the temperature at the half level in time

is obtained from a truncated Taylor Series as follows:

( 8d)

The time derivative in the above analog is obtained

from the equation (3') as

(8e)
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where

A: - ..k, + ~-;::{ ei.,+;-e:L _(e~_A6)J

)..-j. - .its + ~;~~. [ e;, ~ ej\_, -(&~- 6.9)J
c~ _,\ + -I5 CS + IwCw

1 'Tyc-J Ae 2

Substituting (8e) into (8d) yields the finite-difference
n+~

analog for O· 1 as
J ,

For

e"Y\ t[ +Ce~. - ~.) -~ ~. ~ ~t,l.+~ .!1 i,l"'"' 8J-,\. _ k 1. e~,,, - B1,i..-1
• 2(,-1: 6.'1..). 6x.~

n+~ n+~

e .. land e.. 1 the finite-difference analogsJ,l+ J,l-

(8f)

are obtained in a similar manner and are given below.

where k: = Jzs+ Jz;;:,[e;LH; &i'L~' -(e~ - Ae)J
):-2 = --V.s + ~-te> [9,;·"t&1,t _(e~_l>~]
C'* = -.2_ + -/sC.l+ f",CN

2 T4Ae Z

(8h)



where ,k: ~ ,!l. + !l~:t[a1,.; eh, -(eJ - At))J

..k~ = Jts+ J2' ~~. [e;'-~+O~'-l - ( 9,1. -A e)]
C~ = A + Iscs+/wCw

1 Tl"~b.e 2.
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Equation (7) is valid for all grid points within each

of the jth layers except for the ice layer, within ~hich

equations(8a,b,c) are applicable. Equation (8c) was

obtained using the finite difference formulation suggested

by Von Rosenberg(12) and the temperatures at the half levels

in time were calculated applying the method devised by

Douglas(30).

The finite-difference equations for the interfacial

points, for the two boundary conditions and for the heater

are discussed below.

1. Finite-Difference Equations At Interfacial Points

Let i be the interfacial point between the slab layers

j and j+l as shown in Figure 4a. At this point, the temper

ature and the heat fluxes are equal and equation (4') is

valid. Substitution of the finite-difference equation (6a)

into equation (4') yields:

(9a)
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, h b d d 1 h ,th 'd 'S~nce t e oun ary exten s on y to t e ~ gr~ po~nt

n n+l
for the J,th 1 b th t t 8 d 8sa, e empera ures , '+1 an "+1 are

J,~ J,~

n n+l
fictitious. In the same manner, 8'+1 ' 1 and 8'+1 ' 1 are) ,~- J ,~-

fictitious. At the point i, the governing equation (7)

when applied for the layers j and j+l yields:

(lOa)

(lOb)

Eliminating the fictitious temperatures between equa-

tions (9b,lOa,b) and using equation (9a) yields the following

applicable finite-difference equation at the interfacial

nodes:
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(11)

The above equation (11) is applicable only if the

governing equation (7) holds for the layers on either side

of the interfacial node.

2. Finite-Difference Equation For The Ice-Abrasion

Shield Interface

If i is the interfacial boundary point at the ice and

abrasion shield interface, as shown in Figure 4b, it becomes

necessary to consider which of the governing equations

(Sa,b,c) are applicable along with equation (7) for the abra-

sion shield and the boundary conditions (9a,b). Initially,

the interface temperature is less than 6f -66 and, therefore,

equation (Sa) is used. For j = 5 at node i, equation (7)

becomes (with q" = 0),5

(l2a)
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For j = 6 at point i, equation (8a) reduces to

(121,»

and the boundary conditions (9a,b) give:

(12c)

(l2d)

n
The temperatures 0S,i+l'

are fictitious and have to be

tions (l2a,b,c,d) to give:

n+l n n+l
0S,i+l' 06,i-l and 8 6 ,i-l

eliminated between the equa-

(l3a)

n
If the temperature at node i, 06,i' is between 0f-~8

and 0f+~O, equation (8c) is used along with equati6n (l2a,c,d)
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n n+l
and, as before, the fictitious temperatures 8S,i+l' 8S,i+l'

n n+l
86 ,i-l and 86 ,i-l are eliminated to give:

If the temperature at the interface
n

i, 8
6

., is
,1

greater than 8f+~8, equation (8b) is applied along with

equations (12a,c,d). Again fictitious temperatures are

eliminated to yield the applicable equation:

3. Finite-Difference Equation For The Substrate-

Ambient Boundary

(13c)

The interface under consideration is shown in Figure

4c. At this grid point i equals 1. The point i equals 0
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is a fictitious point as it falls out of the composite

body boundary. At i equals 1, the governing equation (7)

is applicable along with the boundary condition (Sa').

The finite-difference representation of equation (Sa')

using equation (6a) gives, for j = i = 1,

Similarly, the governing equation (7) reduces to

(14b)

n
Eliminating the fictitious temperatures el,O' and

n+l
01,0 between equations (14a,b) yields:

4. Finite-Difference Equation Far The Ice-Ambient

Boundary

The interfacial point, as shown in Figure 4d, is the

grid point m. The point m+l falls outside the composite

body boundary and is therefore a fictitious point which has

to be eliminated. The governing equation (8a) for j = 6
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when applied to point m is of the form:

(16a)

As before, the boundary condition (Sb'), after using

the finite-difference representation (6a), becomes:

(lCb)

as:

n
Elimination of the fictitious temperatures 86 ,m+l and

(16a,b) gives the finite-difference
n+l

86 ,m+l between equations

~equation for the point m
lj/:'

\;i

(16c)

In deriving equation (16c), it has been assumed that at

the upper boundary, point m, ice is present and the governing

equation (8a) is applicable. However, if instead of ice a

"mushy" phase exists at this boundary, the governing equa-

tion (8c) is applied at point m to yield:

(l7a)
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Equation (5b') after rearranging and using equation (Ga)

(17b)

n
Elimination of the fictitious temperatures 8 6 ,m+l and

n+l
8 6 ,m+l between equation (17a,b) gives the finite-difference

equation for the point mas:

Finally, instead of ice or a "mushy" phase, water is'

present at the upper boundary, the governing equation (8b)

is applied at point m to give:

(lBa)

Applying the boundary condition (5b') in its finite-

difference form:
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(18b)

n
and eliminating the fictitious temperatures 86 ,m+1 and

n+l
8 6 ,m+1 between equations (18a,b) gives the finite-difference

equation for the point mas:

(18c)

5. Finite-Difference Equation For a Point Source Posi-

tioned At An Interface Between Two Layers

If the heater is not of finite thickness, but is

instead a point source at node i between slabs j and j+l,

the finite-difference equation is obtained by using the

governing equation (7) at point i for both the jth and j+lth

slab along with the boundary conditions:

8·· -e·~)\.. - J+l,l., For all n (19a)

For all n (19b)

The above equation in finite-difference form becomes:
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(19c)

Equation (7) for the jth and j+lth layers, when applied at

node i without the internal heat generation term gives:

"1\ -t,

Bj,L+'
(19d)

(lge)

n n+l n n+l
The temperatures 8 j ,i+l' Gj,i+l' 8 j + l ,i-l and 8 j + l ,i-l

are fictitious temperatures and are eliminated between the

equations (19a,c,d,e), giving the finite-difference equation

applicable for a point heat source as:

(20 )
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IV. METHOD OF SOLUTION AND

PROGRAM ALGORITHM

A. METHOD OF SOLUTION

The numerical formulation of the de-icer pad using the

finite difference scheme results in a set of linear equa-

tions which can be put in tridiagonal matrix form. The

equations are shown below and are readily solved using the

Gaussian Elimination method suggested in Reference (31) •

= d l

= d 2

= d 3
( 21)

= d.
1

= d
N

The complete algorithm for the solution of the tridiagonal

system is

ON = GN

O· = G. - (c,O'+l)/BE, , i = N-l,N-2, •••• ,1
1 111 1

BE, = b, - (a, c, 1) /BE, 1 ' i = 2, 3 , •••••• , N
1 1 1 1- 1-

G, = (d, - a, G, 1) /BE ' , i = 2, 3, •••••• , N
1 1 1 1- 1

33

( 22)
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In the present study, non-dimensional temperatures, e.,
1

at the time step, n+l, are calculated using the above

algorithm. The constants d l , d 2 , ••.. ,dN are initially

calculated using the temperatures, ei , at the previous time

step, n.

B. NUMERICAL PROGRAM ALGORITHM

The flow diagram of the main program for the de-icer

pad is shown in Figure 5. The computer program is listed

in Appendix I.
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V. NUMERICAL RESULTS

In order to test the resulting program and algorithm,

an unsteady state heat conduction problem involving a two

layered gypsum board-steel composite body was solved applying

the procedure mentioned earlier in Chapters III and IV. The

results are shown in Figure 6 and are in excellent agreement

with the analytical solution given in Reference (31). The

above problem applied convective boundary conditions at

both boundaries; however, the computer model in this study

has been designed to also handle constant temperature or

mixed boundary conditions.

Initially, the de-icer pad problem was solved assuming

no phase change in the ice layer and uniform heat input for

both the point heat source and the finite thickness heaters.

For the de-icer pad configuration shown in Figure 7, the

temperature rise at the ice-abrasion shield interface in

order to raise the interface temperature to 0 0 C is compared

with the results obtained numerically by Stallabrass (4) and

analytically by Campbell (3). As shown in Figure 7, excel

lent agreement is achieved between the two numerical methods

and the analytical solution, up to 5 seconds. Beyond 5

seconds, the numerical solution of Stallabrass (4) gives a

slightly opt:t.mistic temperature rise, while the present
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method shows continued excellent agreement with the analy

tical solution.

To determine the effect of the various variables on the

de-icing time, a number of cases were investigated and,

whenever possible, compared with the results of Stallabrass

(4). In Figure 7, as well as in all of the following cases,

2values of hI = 1 Btu/ft hroF and h2 = 00 were used.

A. EFFECT OF POWER DENSITY

The de-icing time in the present study is assumed to be

the time interval beginning when power is applied to the

heater and extending up until the ice-abrasion shield inter-

face just reaches a temperature of 32 of. Figure 8 shows

the results of the effect of variation in the power density

on the de-icing time for various ambient temperatures. Good

agreement is obtained with the results of Stallabrass (4) .

The slight variation occurs because of the more optimistic

nature of Stallabrass' results as indicated in Figure 7.

Figure 8 does demonstrate what actual tests have indicated,

namely that the total energy required in order to shed the

ice increases with a decrease in ambient temperature and

with a decrease in the power density. Hence, lower power

densities on the order of 15 or 20 watts/in2 should not be. .
used for low ambient conditions because of the long de-icing

times that are needed. Tests have indicated that a power

density on the order of 25 watts/in2 is the practical minimum.
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B. EFFECT OF INSULATION THICKNESS RATIO AND INSULATION

MATERIAL

An insulation thickness of 0.010 inches has been

assumed for the outer epoxy/glass insulation for the pre

sent study. Since it is desired that a.maximum amount of

energy released from the heater be directed toward the ice

layer, the outer insulation should be thinner than the

inner insulation. Figure 9 shows the effect of varying

the insulation thickness ratio, inner insulation thickness/

outer insulation thickness, on the de-icing time. As the

ratio is increased from 1 through 5, the de-icing time

decreases appreciably. For an ambient temperature of -25°C,

a reduction of 20% in the de-icing time occurs as the ratio

is increased from 2 to 5. However, further increasing of

the insulation thickness ratio only affects the de-icing

time for lower ambient conditions. As shown in Figure 9

for an ambient temperature of -25°C, the de-icing time

does not change for an increase in thickness ratio from 5

to 10, although it does for lower ambient temperatures.

A decrease in the de-icing time may also be achieved

by changing the inner insulation material. Figure 10 shows

the effect on the de-icing time when the epoxy/glass insula

tion of 0.22 Btu/hrft OF thermal conductivity is replaced

by the same thickness of polytetrafluoroethylene (KEL-F)

having 0.04 Btu/hr ft OF thermal conductivity. For an ambi

ent temperature of -25°C, the de-icing time is reduced by
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approximately 36%. Hence it is advantageous to use an

insulation material of very low thermal conductivity if it

is also a good electrical insulator.

C. EFFECT OF SUBSTRATE MATERIAL

Figure 11 shows the effect on the de-icing time for

various types of substrate materials. It might be expected

that if the aluminum alloy is replaced by stainless steel,

which has a lower thermal conductivity and thermal diffusiv

ity, the de-icing time would be reduced; however, just the

opposite occurs. This result is attributed to the higher

thermal capacity per unit volume of the stainless steel.

Figure 11 also shows that if an insulation layer of 0.087

inch epoxy/glass is added to the aluminum alloy substrate,

thereby reducing the overall thermal conductivity of the

substrate, a decrease in the de-icing time is observed.

D. EFFECT OF VARIABLE HEAT INPUT

In the previous sections, the heat input was assumed

uniform and constant. In this section, a step-wise heat

input is applied and the temperature response at all the

interfacial nodes is determined. Figures 12 a and b show

the temperature response for a variable point heat source

(3 seconds on, 1 second off) as compared to a constant

point heat source for an ambient temperature of 5 OF (-15°C) .

As expected, the temperatures at the various interfacial

nodes drop as the heat is switched off, and begin to rise
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again as the heat is switched on. Figures 13 a and b show

the corresponding results for a 5 seconds on, 1 second off,

finite thickness heater for an ambient temperature of -22 of

(-30°C) . Thus, if heat is applied such that the heater

is on for a period until the ice-abrasion shield interface

reaches a temperature of 32 of, and then is switched off

until another layer of ice forms on the blade surface, the

total energy usage for de-icing would be reduced. The

computer program in this study has used an arbitrary periodic

step-wise heat input, but it can be modified to apply to any

other type of variable heat input.

E. EFFECT OF PHASE CHANGE

In the earlier part of this study, as in the work of

Stallabrass (4), the phase change in the ice layer has been

neglected. Hence, optimistic de-icing times were obtained

because the latent heat needed to melt the ice has been

ignored. To rectify this, a method used by Bonacina et ale

(26) is applied to account for the phase change in the ice

layer. In order to test the accuracy of this method, the

one-dimensional water-ice solidification problem was solved.

As mentioned in Chapter II, the selection of the phase

change temperature interval, 2~T,. depends upon the physical

problem and, in combination with the number of nodes in the

ice layer, affects the accuracy of the solution. Figure 14

shows that a phase change temperature interval of 2 of
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provides good agreement with the results of Bonacina et al.

(26). Figure 14 also indicates that increasing the number

of nodes from 81 to 126 for the temperature interval of

2 OF does not affect the results. For the ice layer in the

de-icer pad problem, various numbers of nodes were used to

determine what effect, if any, they would have on the accu

racy of the solution. It was observed that increasing the

number of nodes above 60 did not change the solution and,

therefore, for each of the solutions, 60 nodes were used

in the ice layer.

As in the earlier sections, the de-icing time is assumed

to be the time at which the interfacial temperature at the

ice-abrasion shield interface reaches 32 OF. Figure lSa is

a repetition of Figure 7, but with the phase change being

considered, and shows that the de-icing time is increased.

This is expected since the latent heat of the ice is now

accounted for, whereas in the previous cases the ice had

been treated as a single phase. Figure lSb parallels Figure

9 and Figure lSc parallels Figure 11 in illustrating the

same increasing time result. Thus, the results shown in

Figures 15 a, band c should therefore be more realistic.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The one-dimensional computer simulation model developed

in this study for the de-icer pad configuration accurately

predicts the temperature profiles for any type of boundary

conditions or thermal heat sources. The results agree well

with previous numerical calculations done by Stallabrass (4)

for cases when the phase change is not considered. The

method of Bonacina et ale (26) to describe the phase change

was incorporated into the model and adequately predicts the

thermal history of the de-icer pad when the latent heat

effect of the ice is taken into account.

The next study should concentrate on developing a two

dimensional de-icer pad model in order to investigate the

effects of blade shape, heater gap-width and heater geometry

on the de-icing time.

41
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TABI,E 1

THERMAL PROPERTIES OF SELECTED MATERIALS

45

Material Thermal Spec. Diffusivity Density
Conductivi ty Heat

2Btu cal Btu/lb.oF ft 2 em lb. ...L
hr.ft.oF sec. em.oC Cal/g·C hr. sec. ft3 em 3

Aluminum (soft) 124 0.51 0.23 3.20 0.820 169 2.71

Aluminum Alloy,
75ST6

Nichrome 80/20

Ice (pure) OoC

66.5

7.6

1. 293

0.275

0.031

-3
5.35xl0

0.23

0.107

0.5057

1.65

0.138

0.0445

0.427

0.035

0.01l5

175

515

57.2

2.80

8.25

0.9168

1.356

1. 416

-3
5.61xlO

-3
5.86xlO

0.5038 0.0469

0.5020 0.0492

0.0121

0.0127

57.3

57.4

0.9182

0.9196

Latent Heat of Fusion of Ice 143.4 Btu/lb. = 79.75 Cal/g.
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,Figure 1. One Dimensional De-icing Pad Model
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Figure 8. Effect Of Power Density On De-icer Performance
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APPENDIX I

CCM?LETE ProGRAM LIS['ING

NUMERICAL SIMULATION OF ONE-DIMENSIONAL HEAT TRANSFER
IN COMPOSITE BODIES WITH PHASE CHANGE.

THIS PROGRAM CAN CALCULATE THE TEMPEF,A rimE ,IWFILE IN
A COMPOSITE SLAB WHICH HAS CONVEcrIVE,CUNsr~NT TEMP-
ERATURE OR MIXED BOUNDARY CONDITIONS.

THE PROGRAM CAN ALSO BE USED FOR COMPOSITE BODY PROBLEMS
WITH CONSTANT OR VARIABLE HEAT SOURCES.

65

A,B,C,D =
AK =
ALP =
AKL :::

~;LPL :::

CA .-
cr's, CPL .-
DTAUI -
DTAUM =
IHAUF =
[IX =
EL ._.
HEAD .-
Hl =
H2 -=
HLAM =
IDCl -
IBC1 =
IBC2 :::

IBC2 =
ICOUNT =
IFF~EQ :::

IG :::

TRIDIAGONAL MATRIX CONSTANTS.
THERMAL CONDUCTIVITIES OF LAYERS.
THERMAL DIFFUSIVlfIES OF LAYERS.
THERMAL CONlIUCT [IJl TY OF WATEf~.

THERMAL DIFFUSIVIfY OF WAIER.
CONSTANT.
SPECIFIC HEAT OF ICE AND WATER PER UNIT VOLUME.
INITIAL TIME STEP
INTERMEDIATE TIME STEP
r-- INAL TI ME STET'
SPACING BETWEEN NODES.
L.ENGTH OF EACH LAYEr~ •
HE·ADINGS.
HEAT TRANSFER COEFF. AT LOWER BOUNDARY.
HEAT TRANSFER COEFF. AT UPPER BOUNDARY.
LATENT HEAT OF ICE.
1, IMPLIES TEMPERATURE IS CONSTANT AT X=O.
2, IMPLIES CONVECTIVE HEAT TRANSFER AT X=O.
1, IMPLIES TEMPERATURE IS CONSTANT AT X=l.
2, IMPLIES CONVECTIVE HEAr TRANSFER AT X=l.
COUNTER ON fIME Sl·EP.
NUMBER OF TIME STEPS BETWEEN SUCCESSIVE

PRINTING OF THE TEMPERATURE PROFIL.E.
1, IMPLIES PHASE CHANGE IN ICE LAYER IS NOT

CONSIDU~J:::l.I.
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66

IG

IH
IH
IH
IHQ
II-IQ
IJ
INTIME

IMTIME

M
MM
N
Nl
N2
NO
N01
N02
NODE
Q

n2
OHEAT
QV
T
TDIFF
fC
TGl
TG2
TIN
TLEN
TMAX
for'F
lON
rr'HAS

= 2, IMPLIES PHASE CHANGE IN ICE LAYER IS
CONS I DD~ED

= 1, IMPLIES NO HEAT SOURCE.
= 2, IMPLIES POINT HEAT SOURCL.
= 3, IMPLIES HEAT GENEI:;;ATION WITHIN SLAB.
=: 1, IMPLIES CONS TAN r HEAT SOW~CE.

= 2, IMPLIES VARIABLE HEAr SOURCE.
- SLAB WITHIN WHICH HEAT GENERAfIUN OCCURS.
- NUMBER OF TIME STEPS FOR WHICH INITIAL rIME

STEP IB USED.
- NUMBER OF TIME STEPS FOR WHICH INTERMEDIATE

TIME STEP IS USED.
= NUMBER OF NODES IN SLAB.
,- INTD-;:FACE NOD!: NUMBEr,s.

NUMBER OF LAYERS IN SLAB.
= LOWER SLAB NUMnEf~ FOf~ PO un 'tLtd' E;OW'CE.
- UPPEI:;; SLAB NUMBEh: FOR POINT ilEA r ~:)()U1:~I.;[.

= NUMBER OF NODES IN EACH LAYER.
- LOWER NODE NUMBER FOR FINITE THICKNESS HEATER.
- UPPER NODE NUMBER FOR FINITE lHICKNESS HEATER.
- NODE AT WHICH POINT HEAT SOURCE IS APPLIED.
- POINT HEAr SOURCE WAfrS/IN*IN.
:: VOLUMETRIC HEAT SOURCE WAfTS/IN*lN*IN.
= FUNCTION PROGRAM FOR VARIABLE HEAT INPUT.
- STEP INPUT FOR VARIABLE HEAT SOURCE.
= NON-DIMENSIONAL TEMPERATURE.
- HALF PHASE CHANGEIEMPERA"rURE INTERVAL.
= TEMPERATUHE.
:: AMBIENT TEMPERATURE AT LOWER BOUNDARY OF SLAB.
= AMBIENTfEMPERAfURE A]" UPPER 00UNDARY OF SLAB.
- INITIAL TEMPERATURE IN SLAB.
= TOTAL LENGTH OF SLAB.
= ICE-ABRASION SHIELD INfERFACE TEMPERATURE.
= OFF TIME OF STEP HEAT INPUT.
= UN TIME or STEP HEAT INPUT.
- TEMPERATURE AT WHICH PHASE CHANGE OCCURS.
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TR =
TREF =
TRIDAG =
TXO =
TX1 =

NON-DIMENSIONAL TEMPERATURE AT PREVIOUS
REFERENCE TEMPERATURE.
SUBROUTINE TO SOLVE TRIDIAGNUL MATRIX.
CONSTANT TEMPERATUI:;:[ AT LOWLI;; SUi'n BOUt,mr.t1,Y.
CONSTANT TEMPERATURE AT UPPER SLAB BOUNDARY.

DATA IN/5/,I0/61
DIMENSION HEADC40,80)
DIMENSION ACI00),BC100),CC100),DC100),TC200,100),TRC100),TEC100)
DIMENSION AlP(6),CAC6),NOC6),MMC6),DXC6),AKC6),ELC6)

INPUT DATA

DO 300 1=1,18
READCIN,100)CHEADCI,j),j=1,80)

300 CONTINUE
READCIN,101)N,M,TLEN

DO 10 1=1,100
ACI)=O.
[lCI)=O.
CCI)=O.
DCI)=O.
TECI)=O.
TI=( CI )=0 •
DO 11 j=1,200
TCj,I)=O.

11 CONTINUE
10 CONTINUE

DO 12 K=l,N
ALP C1"\) =0.
AKCK)=O.
ElCK)=O.
DXCK)=O.
CACK)=O.
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NO(K)=Q
MMCK)=O

12 CONTINUE

INPUT DATA

no 30! 1=1(;,22
3 () 1 I::: EA[I ( IN, 100 ) ( IIEI·HI C1 , j ) , j == 1 , 80 )

DO 13 K=1,N
READCIN,102) NOCK),EL(K),AK(K),ALP(K)

13 CONTINUE
DO 302 1=23, :25

302 RLADCIN,1(0)CHEAD(I,j),j=I,80)
READt1N,10J)rH,NODE,N1,N~

READ(IN,104)IJ,N01,N02,IHQ
READCIN,lOS)Q,TUN.rOFF,QV
DO 303 I=26,2Cl

303 READCIN,100)CHEADCl,j),J=1,80)
F~EAD(IN,106)IBC1,[BC2
F:EA[I( IN, 116) rxo, n.l
F< EA[I CIN, 10 I' ) TG1 • H..... r G2 ,,j~ 2
Fo:LAD (IN, 108) rIN, rr,:LT'
DO 304 1=29 •.51

.3 () 4 1\ LAD ( IN, 100 ) I; rI[Pil) CI , J) , j:::: 1 , 13 () )
READ(IN,109)IG,HLAM,ALPL,AKL,CPL,CPS
REA[I(IN,110)TPHAS,TDIFF
00 305 1=32,34

305 REAO(1N,100)CHEADC1,j),J=1,80)
READCIN,111)DTAUI,INSTEP,DTAUM,lMSTCP
READCIN.112)DTAUF,IFREQ,fMAX
DU 315 1=35,40

31~ READCIN,100)(HEAD(I,J),j=l,80)

F'fU rH THE DATA

DO 306 [=1,18



306 WRITE<IO,900)<HEAD<I,j),j=I,80)
WRITE<IO,200)N,M,fLEN
DO 307 1=19,22

307 WRITE<IO,900)(HEAD(I,j),J=1,80)
DO 14 K=I,N
WRITECIO,102)NO(K),ELCK),AKCK),ALP(K)

14 CONTINUE
DO 308 1=23, ~.)5

308 WRITE<IO,900)CHEADCI,J),J=1,80)
IF(IH.EQ.IJ GO TO 60
IF(IH.EQ.2) GO TO 61
WRITECIO,201)IJ,NOl,N02
GO TO 62

60 WRITECIO,202)
GO TO 62

61 WRlfC(IO,203)NODE,Nl,N2
62 [ F ( I H0 • Ell • 1 ) WI:;: r TE ( I () , :'W 4 ) l:~

IF(IHQ.EQ.2)WRITE(10,224)TON,10FF,QV
DO 309 1=26,28

309 WRITE(IO,900)(HEADC1,J),J=1,80)
IFCIBCl.ECL2) GO 1063
WRITE(IO,205)fXO
GO TO 64

63 WRITECIO,206)TGl,Hl
64 IFCIBC2.[Q.2) 00 TO 65

WRITECIO,207HXl
GO fO 66

65 WRITECIO,208)fG2,H2
66 WRITECIO,209ITIN,fREF

WRITECIO,90Q)(HEAD(26,J),J=1,80)
IFCIG.EQ.l)GO fO 67
Wfnn::(IO,210)
WRITEC 10,9(0) (HEADC29,J) ,j==l ,no)
WRITECIO,900)(HEADC28,J),j=1,80)
WRITECIO,900)CHEAD(30.j),J=1,80)
WRlfC(IO,900)(HEADC31,J),j=1,UO)

69



70

WRITE(IO,211)HLAM,AKL,ALPL,CPl,CPS
WRITE(IO,212)TPHAS,TDIFF
GO fO 68

6"7 WR IT E <IO , :2 L3 )
68 WRITE(IO,900),HEAD(26,J),J=1,80)

DO 310 I=32r.J4
310 WklrE(IO,900)(HEAD(I,J),J=1,80)

Wfn TE( 10,21 n ) [I TAll I , INS TE: P , [I TAUM , It1S TEF'
WRITE(IO,214)DTAUF,IFREQ,TMAX
WRITE(IO,100)(HEAD(1,~),J=1,80)

Wfd TE ( 10,21/ )
WR I TE ( 10, 90() ) (HEAD ( 16 d) , J:: 1. , no)
WRITE(IO,900)(HEAD(1,J),J=1,80)

lNlfIAl CONDIfIONS

FD I S1".:1 I N/TF\EF
G1TIME=TG2/TREF
GOTIME= I"G11 rr~EF

Xl TIME=TX1/TI:;;EY
XOTIME=TXO/ rl<LF
flEN=TLEN/12.
DO 30 J=l,N

30 EL(J)=EL(J)/12.
TON=TON/3600.
TOFT:.:: rOFF /3600.
[lTAUI=[JTAUI;'~600.

DTAUM=DTAUM/J600.
DfAUF=DfAUF/3600.

INTERFACE NUDE NUMBERING

MM(l)=NO(l)
[10 l6 L:::2,N
MM(L)=MM(L-1)+N(J(L)-1

16 CONTINUE



PRINT THE INITIAL TEMPERATURE PROFILE

ICOUNT=1
DO 19 J=l,M
FLOAT J=.J

19 T(ICOUNT,J)=FDIST
TAU=O.
WRITE([0,21S) TAU
[10 31 I=l,M

31 TE(!)=f(ICOUNT,I)*TREF
WRITE(IO,216)( TE(I),I=l.M)

88 LCOUNT= I COLJtH
I CUUNT=:LCOLJN rH
I F ( I COUNT. L1~: • INS TEF' ) 1.I TAlJ :::: [I TAU I:
ITSTEP=INSTEP+IMSTEP
IF«ICOUN1.LE.ITSTLF',.AND.(ICOUNT.GT.INSTEP»UfAU=[lTAUM
IF(ICOUNT.GT.lfSTEP)[ll"ALJ=DTAUF
MCL=200
IF(ICOUNT.C)T.MCL_) liU III '/?'/
TAU~-;:TAU+DfAU

CALCULATION UF CONSfANTS

DO 15 I=I,N
DX(I)=EL( [)/(TLEN*(NU(I)-l»

15 CA(I)=(ALP(II*UTAUJ/(DX(I)*DX(I)*rLEN*rLLN)

CALCULATION OF THE TRIUIAGNUL CUNSrANfS

IFtN.NE.l) GO TO 32
DO 29 J=I,M
A(J)=1.
B(J)=-2.*(1.~1./CA(1»

29 C t ,J):: 1.
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GO TO 3-4
32 LIST=1

NEW=N-1
(10 17 K=1,NEW
NN=MM(K)
B(NN)=-1.*«1.+1./CA(K»+«AK(K+l)*DX(K»/
1(AK(K)*DX(K·~1»)*(1.t1./CA(K+l»)

C(NN)=(AK(K+l)*DX(K»/(AK(K)*DX(K~l»

A(NN)=l.
NNEW=NN-1
DO 18 J=LIST,NNEW
A(J)=l.
B(J)=-2.*(1.tl./CA(K»
C(J)=1.

18 CONTINUE
LIST=NN+l

17 CONTINUE

ACCOUNT ING FOR PHA!3E CHANGE IN ICE LAYER

34 IF(IG.EQ.l) GO TO 40
THETA=TDIFF/TREF
CSTAR=«CPS+CPL)/2.)fHLAM/(2.*TREF*THETA)
CONST 1=(TLEN*TL.EN*DX (N) *DX (N) ) / (I~,LF' (N) *DTALJ)
CONST2=(TLEN*TLEN*DX(N)*DX(N»/(ALPL*DTAU)
CONST3=2.*TLEN*TLEN*DX(N)*DX(N)*CSTAR/DTAU
THETA1=(TPHAS/TREF)+THETA
THETA2=(TPHAS/TREF)-THETA
TKK1=(AKL-AK(N»/(2.*THETA)

ACCOUNTING FOR PHASE CHANGE IN THE ICE LAYEI=<:

40 IF(N.EO.i) GO TO 35
IF(IG.EO.l)GO fO 42
LUST=LIST-1

•
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CALCULATION OF THERMAL CONDUCTIVITIES AND TEMPERATURES
AT INTERMEDIATE TIME STEPS FOR -MUSHY· REGION.

DO 20 j=LUST,M
IFCj.EQ.LUST) GO TO 401
IFCTCLCOtJNT"J).GT.THETAU GO TO 43
IFCTCLCOUNT,J).LT.fHETA2) GO TO 44

TEMPERATURE AND THERMAL CONDUCrIVITY AT NODE I FOR AN
INTERMEDIATE fIME STEP.

401 TKMIN1=AKCN)+TKK1*CC(TCLCOUNf,J)fT(LCOUNT,J-l»/2.)
l-C(TPHAS/TREF)-THETA»)

IF(TKMIN1.LT.AKL)TKMIN1=AKL
IFCfKMIN1.GT.AK(N»TKMINf=AK(N)
T(LCOUNT,M+l)=GlfIME
T(LCOUNT,Mt2)=G1TIME
PLUSK1=AKCN)+TKK1*«(T(LCOUNT,J)+T(LCOUNT,J+l;)12.)

l-«TPHAS/TREF)-THETA»
IF(PLUSK1.LT.AKL)PLUSK1=AKL
IF(PLUSK1.GT.AKCN»PLUSK1=AK(N)
TEMP1=TCLCOUNT,J)+(DTAU/(2.*CSfAR*TLEN*TLEr~*DX(N)*DX(N»)

1*«PLUSK1*(T(LCOUNT,J+l)-T(LCOUNT,J»-TKMlN1*(T(LCOUNr,J»
2-T(LCOUNT,j-l»)

TEMPERATURE AND THERMAL CONDUCTIVITY AT NODE I+l FOR
INTERMEDIATE TIME STEP.

TKMIN2=AK(N)tTKK1*«(f(LCOUNT,J)fT(LCOUNT,J+l»/2.)
l-C CTPHAS/TREF)-THETA»

IF<fKMIN2.LT.AKL)TKMIN2=AKL
IF(TKMIN2.GT.AKCN»TKMIN2=AKCN)
PLUSK2=AKCN)tTKK1*CC(T(LCOUNT,J+2)tT(LCOUNT,J+l»/2.)

l-«TPHAS/TREF)-THETA»
IF(PLUSK2.LT.AKL)PLUSK=AKL
IF(PLUSK2.GT.AKCN»PLUSK2=AK(N)
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TEMP2=TCLCOUNT,J+l)+CDTAU/<2.*CSTAR*TLEN*TLEN*DXCN)*DXCN»)
1*CCPLUSK2*CTCLCOUNT,Jt2)-TCLCOUNT,jtl»-TKMIN2*(TCLCOUNT,j'~l»

2-TCLCOUNT,J»)

TEMPERATURE AND THERMAL CONDUCTIVITY AT NODE 1-1 FOR
INTERMEDIATE TIME STEP.

fKMIN3=AKCN)tTKK1*CCCTCLCUUNT,J-2)tfCLCOUNT,j-l»/2.)
l-C(TPHAS/TREF)-THETA»

IFCTKMIN3.Lf.AKL)TKMIN3=AKL
IFCTKMIN3.GT.AKCN»TKMIN3=AKCN)
PLUSK3=AKCN)tTKK1*CCCTCLCOUNT,J)tf(LCOUNT,j-l»/2.)

l-«TPHAS/TREF)-THETA»
IF(plUSK3.LT.AKL>PLUSK3=AKl
IFCPLUSK3.GT.AK(N»PLUSK3=AK<N)
fEMP3=f(LCOUNf,J-l)f(DTAU/<2.*CSfAR*TLEN*TLEN*nX(N)*DXCN»)

1*C(PLUSK3*Cf(LCOUNT,J)-TCLCOUNT,j-l»-I'KMlN3*(I(LCOUNT,j-l»
2-T(LCOUNT,J-2»)

CALCULATION OF fHERMAL CONDUCTIVITY FOR "MUSHY" REGION.

TKMIN=AK(N)tTKK1*«(fEMPltrEMP3)/2.)
l-«TPHAs/'rREF)-THETA»

IF(TKMIN.LT.AKL)TKMIN=AKL
IF(TKMIN.GT.AKCN»TKMIN=AK(N)
PLUSK=AKCN)trKK1*CCCTEMP1.TEMP2)/2.)

l-«TPHAS/TREF)-THETA»
IF(PlUSK.lf.AKL)PLUSK=AKL
IF(PLUSK.GT.AK(N»PLUSK=AKCN)

THEF\MAL CWWUCTIVITY AT THE ICE-AMBIENT BOUiW(~F~,(

IF(j.NE.M)GO fO 403
PKB=AK(N)+TKK1*(TEMP1-«TPHAS/TREF)-fHETA»
IFCPKB.LT.AKL)PKB=AKL
IFCPKB.GT.AK(N»PKB=AK(N)



IF(J.EQ.M)GO TO 45

THERMAL CONDUCfIVITY OF "MUSHY" REGION AT IC:l-ABRASION
SHIELD INTEkFACE.·

403 IF(J.NE.LUST)GO ro 402
PKINC=AKCN)+TKK1*(TEMP1-C(TPHAS/TREF)-THETA»
IFCPKINC.LT.AKL)PKINC=AKL
IFCPKINC.GT.AK(N»PKINC=AKCN)
TKINC2=TKMIN

• PKINC2=PLUSK
GO TO 20

APPLYING .iEAT [QUATION FOR "MUSHY" REGION.

402 ACJ)=TKMIN
B(J)=-1.*(TKMIN+PLU3K+CONST3)
CeJ)=PLUSK
D(J)=-T(LCOUNT,.J-l)*TKMIN-PLUSK*TeLCOUNT,J~l)+TeLCOUNT,J)

1*(TKMIN+PLUSK-CONST3)
GO TO 20

APPLYING HEAT EQUATION FOR LIQUID REGION.

43 IFeJ.EQ.M)GO TO 45
ACJ)=l.
B(J)=-2.*(1.+CONST2)
CCJ)=l.
DCJ)=-T(LCOUNT,J+l)-TCLCOUNT,J-l)+TCLCOUNT,J)
1*2.*Cl.-l.*CONST~)

GO TO 20

APPLYING .iEAT EQUATION FOR SOLID REGION.

44 IFCJ.EQ.M)GO TO 45
A(J)=l •

•
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B(J)=-2.*(1.t1./CA(N»
C(j)=1.
D(J)=-T(LCOUNT,J+1)-T(LCOUNT,J-l)+T(LCOUNT,J\

1*2.*(1.-1./CA(N»
20 CONTINUE

GO T'O 45

CALCULAT ION UF CONSTANT FOF, ~:;ItWLE SLAB.

42 A(M)=!.
C(M)::l.
MEW=M-l
DO 3~3 J=LIST,MEW
A(.J)::::t.
C<'j)=l.
[:(,,)=-2.*(1. H./CA(N»
D(..)=-r(LCOUNT',J~1)-T(LCOUNT,J-l)+T(LCOUNT,J.

1*2.*(1.-1./CA(N»
33 CONTINUE
45 LA=2

A(M):::l.
I>: M i -:::0.

CALCULA r I ClNS OF TilE .[ t~TLI:<FACL CClNST f~N T'S

NEW=N-l
[lU 21 K=l,NEW
NN=MM(K)
D(NN)=-TCLCUUNT,NN+l)*C(AK(K+l)*DX(K»/(AK(K)*DX(K+l»)

1 t ( ( 1 .- 1 • I CA ( 1\ ) ) +( ( At~ ( K+1 ) *DX ( K j ) " ( AI', ( K ) *[I X ( 1;:· ~.~. ) ) )
2*Cl.-1./CA(Ktl»)*T'(LCOUNT,NN)-rCLCUUNT,NN-l;

NNEW=NN-l
DO 22 J=LA,NNLW
[I (.J ) =.- T CL C0 UrH ,J t 1. ) -. T ( L C0 UtH , J ... 1 ) t· T ( L CUUN r , J )

1*(2.--2./CA(K) )
22 CONTINUE

..

..
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56 D(M)=-T(LCOUNf,M-l)-(2.*fLLN*H2*DX(N)/AK(N»*GlTlME
It((1.-1./CA(N))t(H2*TLEN*DX(N)/AK(N)))*f(LCOUNT,M)

B ( M) =- ( 1 • t 1 • / CA ( N) )- ( H2*TL E: N*[J X ( N) ) / ~':\ K ( N )
A(M)=1.
GO TO 49

413 MIN=M-l
DCMIN)=D(MIN)-X1TIME*CCMlN)
T(ICOUNT,M)=XIIIME

CALCULATION AT fHE ILE-ABRASION SHIELD INTERFACE

49 INC=MM(N-1)
IF(IG.EQ.l) GO fO 50
IFCTCLCOUNT,INC).Lf.1HETA2)GO fO 50
IFCTCLCOUNT,INC).Cf.THETA1) GO Te ~J1

DUCT=DXCN-l)*PKINC/(2.*TKINC2*DXCN)*AK(N-l»
A(INC)=1.
I-.it INC ) =- ( 1 • 1-1 • / C''1 ct~ -- 1 ) )- C[I UC1 * CT KIN C ::2 H'KIN C2+CDN~3T3) )
C(INC)=DUCT*CTKINC2tPKINC2)
DCINC)=-DUCT*crKINC2~~KINC2)*f(LCOUNT,INCtl)-TCLCOUNT,INC-I)

1 I· ~ ( 1 .- 1 • / CA CN - 1 ) ) I· ( I KIN C:! -I- P t:, INC :":-I~0 N~:iT:3 ) ,I( [I Ucn :I< T CLeo l.J NT, INC)
GO Tel 50

51 ACINC)=1.
BCINC)=-1.*CC1.~1./CACN-l»~«(AKL*DX~N-l»/(AK(N-l)*DXtN»)

t*(1.tCAlPCN)/CCA(N)*AlPl»»
CCINC)=(AKL*DXCN-l»/CAKCN-ll*DXCN»
D(INC)=-(AKL*DX(N-l)!(AK(N-1)*DX(N»I*TCLCOUNT,INC+l)

1- r ( LC0 UNT, INC·- 1 ) +r (LC() lJ NT, INC ) *CC1 •.- 1 • / CA( N·· 1 ) ) ..
2(1.-CALPCN)/(ALPL*CA(N»»*(AKl*DXCN-l)/(AK(N-l)*DX(N»»

HEAr fERM INCLUSION

50 IF(IHQ.EQ.l)Ql=Q
IF ( IHU. EL~. 2) Ql=QHEAT CTAU, TON, mFF, 01)
IFCIH.EQ.l) GO fO ~j.:'.

l r t l H • [(~ • 2) GOT 0 ~~j 3
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LA=NNtl
21 CONTINUE

ACCOUNTING FOR BOUNDARY CONDiTIONS

35 [F(N.NE.i) GO TO J6
MEW=M--l
DO 37 I=2,MEW

37 D(I)=-TCLCOUNT,Itl)-TCLCOUNT,l-l)tT(LCOUNT,I)
1*C2.-2./CA(1»

36 IFCIBC1.EU.l) GO TO 46
D(1)=-TCLCOUNl ,2)-C2.*Hl~TLEN*DXC1)/AKC1)*GOTIME

1+( C1 .-1 • / CA ( 1 ) ) t ( II 1*rL L N*UX ( 1 ) I A1< ( 1 ) ) ) *r ( l..CDU NT, 1 )
B(1)=-Cl.+l./CA(1»-CH1*TLEN*DX(1)/AK(1»
C(:l)=1.
GO TO 4"7

46 D(2)=DC2)-XOTIME
T(LCOUNT,!)=XOTIME

4"7 LFCIBC2.EU.l) GO TO 48
IFCIG.EQ.IJGO fO 56

ACCOUtH LNG f LH\ I'HA:;;L CHANGE AT UPPER (lOUNDAb:Y

IF(TCLCOUNT,M).Lf.fIlETA2)GOrO 56
IF(T(LCOUNr,M).Gr.rHETA1)UOrO 57
A(M) =TKMINH'LUSK
B(M)=-C(PLUSK+TKMINtCONST3)+(2.*H2*TLEN*PLUSK*DX(N)/PKB»
D(M)=-CTKMIN+PLUSK)*T(LCOUN1,M-l)-(4.*H2*TLEN*PLUSK*DXCN)*
IGITIME)/PKBtT(LCOUNT,M)*(PLUSKtTKMIN-CONSr3'~

2(2.*H2*TLEN*PLUS~*DX(N)/PKB))

UO ro 49
57 DCM)=-T(LCUUNT,M-l)-(2.*rLEN*H2*DXCN)/AKL)*GlTIME

It(Cl.-CTLEN*TLEN*DX(N)*DX(N)/(ALPL*DTAU»)tCH2*TLEN*DXCN)/AKL»
2*r(LCOUNl',M)

B(M)=-1.-(TLEN*TLEN*DX(N)*DXCN)/<ALPL*DTAUJ)-(H2*TLLN*DXCN)/AKL)
GO TO 49 ,

j
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FINITE THICKNESS HEATER

Q2=3.4121*144.*Ol/(TLEN*DX(IJ»
HEAT=(CDXCIJ)*rLENJ**2)*a2/(lREF*AKCIJ»
FACT1=AK(IJ)*DXCIJ-l)/(AKCIJ-IJ*DX<IJ»)
FACT2=AKCIJ+1)*DX(lJ)/CAKCIJ)*DX(IJ~lJ)

IFCCN02-N01).GT.l)GO TO 54
ACN01)=1.
C(N01)=FACTl
A(N02)=1.
C(N02)=FACT2
B( NO 1 ) =-1 • ~4C ( ( .l .... 1 • / CA( LJ- 1 ) H- F ACT 1*(1 • +1 • / CA( LJ ) ) )
BCN02)=-1.*«1.+1./CA(IJ»~FACT2*Cl.~1./CACIJ+l»)

54 D(N01)=-TCLCOUNT,N01-1)-FACT1*ltLCOUNT,N01+l)
1 +< ( 1 .-1 • " CA C[J- I ) >+ (1 •. t • / CA( LJ) )*F (~CT1 )*r CLen u t·n ~ NO I ) ···F AC T1*H EA T

DCN02)=-TCLCOUNf,N02-1)-FACT2*TCLCOUNT,N02+1j-hEAT
1f-< Cl.·-t./CAC LJ»H 1.-t./CAC IJ+l) )*F(.ICT2)*lCLCOUN1,N02)

IF ( CN02-·NO 1) • LE • 1) GO 1'0 52
NOW=N01+l
NNOW=N02"'1
DO ~:'j5 IL:::NUW, WWW

55 D(IL)=DCIL)-2.*HEAr
GO TO 52

POINT HEAT SOURCE

SOLVING THE fRIDIAGNOL MATRIX

52 IFCCIBC1.CQ.2).AND.(IBC2.EQ.2»(lO TO 94
IFC(IBC1.EQ.l).AND.(IBC2.EQ.l»GO TO 95
IFCCIBC1.EO.2).AND.(IDC2.EQ.l»GO TO 96
CALL TRIDAG<2,M,A,B,C,D,TR)
fR( 1 )=XOTIME
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GO TO 97
95 MIN=M-l

CALL TRIDAG(~,MIN,A,B,C,D,TR)

TR(l)=XOTIME
TR(M)=XITIME
GO TO 97

94 CALL TRIDAG(l,M,A,B,C,D,TR)
GO TO 97

96 MIN=M-l
CALL TRIDAG(l,MIN,A,B,C,D,TR)
TR(M)=X1TIME

97 TMAX1=TMAX/TREF
DO 23 J=l,M
T(ICOUNT,J)=TR(J)
TE(J)=TR(J)*rF.:EF

~3 CONTINUE
IF«ICOUNT/IFREQ)*IFREQ.NE.ICOUNT)GO TO 88
MOVER2=INC
TITAU=TAU*3bOO.
WRITECIO,215)TITAU
WRITE(IO,21~)(TE(I),1=1,M)

WRITECIO,YOO)tHEADC1,J),J=l,HO)
WRITE(10,900,(HEAU(J5,J),J=1,80)
wr~ I TE ( 10,900) (HEAD ( 1 , ~J) , J= I. ,80)
JI=l
NEW=N-l
DO 24 L=l,NEW
I[I=35+L
INT==MM (L)
WRITE(IO,YOO)(HEAD(ID,JD),JD=1,80)
WRITE(IO,216)tfC(I),I=Jl,INT)
JI=INf

24 CONTINUE
IF(T(ICOUNT,MOVER2).LE.TMAX1) GO TO 88

100 FORMAT(80Al)
900 FOf,MATC / , ,SOAl)

•
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IFI3.6,'DEG.F'// ' THE REFERENCE TEMPERAfURE',20X,' TREF =',F13.6,
2 / DEG.F')

210 FORMAT(/I ' THE PHASE CHANGE IN THE ICE LAVER IS CONSIDERED ')
211 FOI:-':MAT(I ' LATENT HEAT OF ICE ',21X,' HLAM ='·r:U./l'),'B.T.U./Lfl ' /

l' THERMAL"CONDUCTIVITY OF WATER',12X,'AKL :::;/,F13.6,/B.T.U./HR.
2FT.DEG.F'1 ' THERMAL DIFFUSIVITY OF WATER ',12X.'AlPL =',F13.6,
3' FT.FT/HR.'/ ' SPECIFIC HEAT * DENSITY or WATER ',8X,'CPL =',
4F1J.6,'B.T.U./CU.FT.DEG.F'/ I SPECIFIC HEAT * DENSITV OF ICE I,

5,10X,'CPS :::;',FIJ.6,'B.T.U./CU.FT.DEG.F')
212 FORMAT(I ' PHASE C.~ANGE TEMPERATURE' ,24X,'TPHAS :::;',F13.6,'DEG.F ' 1

l' HALF PHASE CHAtH:JE T[MF'E1:;:ATUr~L I NTEJ~VAL HII FF=' , F13.6,
• 2 I [lEG. F ' )

213 Fm~MAT(j / ' THE PHASE CHANGE IN TIlE ICE LAYEf~ IS NOT C(JN~;Hll:r<l:::D')

218 FORMAT(/ ' INITIAL TIME STEP',26X,'DTAUI ~ .• F13.6,'SECS'/28X,
I'FOR TIME STEPS INSTEP :::;',13/ ' INTERMEDIATE TIME STEP',21X,
2 / DTAUM =',F13.6,'SECS'/28X,'FOR TIME STEPS IMSTEP :::;',13)

214 FORMAT(I ' F[NAL TIME SlEP',28X,'DTAUF :::;',Fl:.6,/SECS'/lX,
l' FREQUENCY OF TIME STEP/PRINT OF OUTPUT',8X,'lFREQ :::;',131
21X,' MAX. TEMP. AT ICE-ABRASION SHIELD INTERFACE / ,4X,
3'TMAX :::;',F13.6,'DEG.F')

2 17 F 0 I~ MAT ( / / 128 X " TL MPU~ (~ rU1\ F F' fW F [L E I N {) EGI:~ E [~:; F ')
~1~5 Fm~MAT(///:35X,' TJI'1E TAU ::::' ~I.I.:.i.6y' ~;ECS')

216 FORMAT(/15X,SF1J.S)
99? ~:;H)F'

END

SUBROUTINE TRIDAG(IF,L,A,ByC,D.V)
01 MEN S ION A( 1 ) , B ( l ) , C ( 1 ) yD( 1 ) , l) ( 1 ) , HE TAl 100 ) , GAM MA ( 10 () )
DO 10 1=1,100
BETPI([)=O.
GAMMA(I):=O.

10 CmHINUE
BETA(!F)=B(IF)
GAMMA( IF)=[I( rFUDETA( IF)
IFF'1::IF+l..
DO l I=IFP1,L

...
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101 FORMAT<54X,I3/54X,I3/54X,F12.6)
102 FORMATC7X,I2,7X,Fl0.5,9X,F13.6,14X,F13.6)
103 FORMAT(53X,I3/53X,I3/53X,I3/53X.I3)
104 FORMATC53X,I3/53X,I3/53X,I3/53X,13)
105 FORMATC53X,Fll.5/53X,Fl1.5/53X,Fl1.S/53X,Fl1.5)
106 FORMATC53X,I3/53X,I3)
116 FORMAT(46X,F13.6/46X,F13.6)
107 FORMAT(46X,~13.6/46X,Ft5.6/46X,F13.6/46X,F15.6)

108 FORMAr(46X,F13.6/46X,~13.6)

109 FORMAT(61X,I3/47X,FIJ.6/47X,F13.6/47X,F13.6/47X,F13.6147X,F13.6)
110 FORMAT(47X,F13.6/4IX,F13.6)
111 FORMAT<50x,rlJ.6/~OX,13/50X,F13.6/50X,I3)

112 FORMAfC50X,F13.6/5UX,13/S0X,f13.6)
200 FORMAf(1 ' TorAl NUMUER OF SlA8S' ,~tx,'N~' ,131 ' TOTAL NUMBER

1 0 F NO [I E ~3 ' , 3 1X , , M:::' d 3/ ' ro T{It. t. [tlG rH (J F I.; (J MV' U~j I , L SL. A {;l ' ,

21'7X,'TlEN=',F13.6,'INCHS')
201 FORMAf(' INTERNAL HEAT G[NEI~ATION IN SLAB NUt',:~L::f~' ,<tX,' LJ==',

1 I 3/33X, , BETWEEN tJOUE NO 1 =' , I 3/36X, , AND tmlil:. N02=' ,13)
202 FORMAT(1110X,'THERE IS NU HEAf SOURCE PRESENT ')
203 FORMAT(I ' POINT HEAT SOURCE IS PR[~ENT AT',17X,'NODE=',I31

133X,'BETWEEN SLAB Nl==',IJ/36x,'AND SLAB N2=',IJ)
204 FOf\MAT (/ , CONS I f~fiT H[.H INPUT Uf I , :28X, , U"" I , F LL6, , WttTT~:;/ :I:t-H<l N' )
224 FORMATCI ION-TIME FOR HEAT INPur',27x,'TON~',F13.6,'SECS'/

l' 0 FF - TIME F (J R HE A TIN F' UT ' , 25 X , ITOF F == ' , F 1.5. ,~ , l ~;ECS l I
l' VARIABLE HEAT HWUT UF',28X,'OV::::',F1.L6,'I..JArTS/HI*IN')

20~.:i FORMAT(I/ ' C()N~:;rANf ITMF'EJ~All.mE I~I X::::O' ,1/X,' TX()==' ,F13.b,
l' (IEG.F')

206 FORMAf(11 ' CONVECTION OCCURS AT X==0'/11X,'AMBIENT TEMPERAT
lURE/,5X,'TG1=',F1J.~,'DEG.F'/l1X,'HEAT TRANSFER COEFF. i ,5X,'Hl=',
2F15.6,'B.T.U/HR.FT.FT.DEG.F')

:2 0 7 F nf.: MAT ( I I ' CUNS TAN T TEMP E f~ A nil.: [ A T Xc::: 1 ' d ,.:::, , l X 1 = ' , F13 • 6 ,
1'DEG.F')

208 FORMAT(II ' CONVECTION OCCURS AT X=l'/11X,"AMBIENT TEMPERAT
lURE' ,5X, 'TG2::' ,F13.6, 'DEG.F' /11;<, 'HEAT n~At~SFER COEFF.' ,5X, '112::::',
2F 15. b, , It • T • UII~f~ • FT. FT. (lEG. F ' )

209 FORMAfel ' TilE INITIAL TEMPERAfLJRE IN THE COMPOSITE SLAB TIN ::::',

•
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BETA(I)=BCI)-ACI)*CCI-l)/BETACI~l)

1 GAHMACI)=CDCI)-A(I)*GAMMACI-l»/BETACI)
VCL)=GAHHACL)
LAST=L-IF
DO 2 t(=l,LAST
I=L-K' ,

2 VCI)=OAMMACI)-CCI)*VCI+l)/BETAlI)
RE::TURN
EtUl

FUNCTION QHEATCTAU,TON,TOFF,QV)
IN=IFIXCTAU/(TONtTOFF»
IP=IN+l
A =IN*<TONtTOFF)
B =IN*TOFF+IP*TON
C =IP*CTOtHTOFF)
UHEAT=(~

IF (CB.LT .TAU) •nND. <TAU. LT. C) ) QHEAT:::O.
IFCTAU.EQ.TON)QHEAT=QV
TTON=TON+TOFF
IF CTAU. EQ .TTON) CHiEiH=QV
RETURN
END
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