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NOMENCLATURE

C specific heat (Btu/lb°F)

h heat transfer coefficient (Btu/hr'ft2°F)
k thermal conductivity (Btu/hr ft °F)

L slab thickness (ft)

q volumetric heat source (Btu/hrft3)

q" heat source per unit area (Btu/hrft2 or Watts/inz)
T temperature (°F)

X space direction (in)

X dimensionless space direction

Greek Letters

a thermal diffusivity (ftz/hr)

At size of time step (sec)

AT temperature semi-interval across T (°F)
Ax grid spacing in x direction (in)

AX dimensionless grid spacing in x direction
A8 dimensionless temperature semi-interval across ef
8 dimensionless temperature

A latent heat of ice (Btu/ft3)

0 density (lb/ft>)

Subscripts

j layer in the composite body

i grid point

s solid or ice region
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w liquid or water region

£ phase change

o ambient at lower boundary of composite body
© ambient at upper boundary of composite body
Superscripts

n time step

* ice-water "mushy" region



I. INTRODUCTION

The formation of ice on aircraft components, a wing
section of which is shown in Figure 1, éoses tremendous
difficulties in aircraft operation. Various anti-icing and
de~icing methods have been investigated and are reported in
Reference (l1). Before these methods are considered, it is
necessary to differentiate between anti-icing and de-icing.
The anti-icing principle involves methods to prevent ice
formation on the blade surface. These methods usually
require an excessive amount of energy and are not frequently
applied. The de-icing principle involves shedding the ice
by heating the surface on which it is formed. 1In this case
the energy required is reduced significantly because heat
is needed only to form a thin water film between the air-
craft structure and the ice, thereby decreasing the adhe-
sion strength and allowing the aerodynamic forces to sweep
away the ice layer.

At present, for anti-icing and de-icing, thermal energy
is the most commonly used technique and 1is obtaineavin two
ways:

(i) Electrical resistance heating elements which are embedded
just below the surface being heated (as shown in Figure

1):



(ii) Passing hot} engine compressed bleed air through pas-

sages below the surface being heated.

A. TYPES OF DE-ICING AND ANTI-ICING SYSTEMS

Various de-icing and anti-icing techniques have been
developed over the years, some of which have been in use for
a long time and are listed below.

1. Inflatable Rubber Pneumatic Boots: This pneumati-
cally operated mechanical de-icing system consists of a boot
which is made of a flexible rubber-like material, and which
is slipped over the wing of the aircraft such that the ice
forms on the boot-surface rather than on thevwing sfructure.
The boots, when inflated with the cooled engine bleed air,
break the ice surface, thus allowing the aerodynamic forces
to blow the ice away. A section of the aircraft wing fitted
with a boot is shown in Figure 2. This method is relatively
simple and uses a very small quantity of the cooled engine
bleed air and does not impose any fuel penalty on the engine.
However, because the surface of the boot is not as smooth
as the wing surface, the boot system increases the drag_for
the aircraft. In addition, this pneumatic de-icer system
requires frequent maintenance and replacement. For the
pneumatic boots to show an operational weight advantage over
the thermal de-icing system technique, they must be vir-
tually drag-free. Modern boots, carefully bonded to the
wing structure, do minimize the drag but are . expensive to

maintain.



2. Chemical Systems: An anti-icing method used to
prevent the formation of ice on the abrasion shield surface
of the aircraft involves the use of freezing point depres-
sants. The chemical depressants are spread in a thin film
over the abrasion shield, thus lowering the water freezing
point and preventing the formation of iée. Though relatively
simple in concept, their usefulness is restricted because
of the variable external pressure field, which makes it
difficult to obtain a uniform flow distribution of the de-
pressants, and which therefore can result in the formation
of ice on the unprotected areas. Further drawbacks are that
the systems require frequent resupply and are sensitive to
clogging of the fluid distribution holes in dusty environ-
ments. Chemical systems are therefore restricted in their
use to mainly windshield ice protection.

3. Thermal De-icing: Thermal de-icing remains the
most commonly used technique in removing the ice from the
abrasion shield surface. 1In this method the ice covered
regions are cyclically heated in sequence either by electric
heaters or by hot bleed air from the engine. The thermal
energy supplied is used to raise the temperature of the sur-
face on which the ice is deposited to 32°F and to melt a
thin layer of ice. This thin film of water reduces the
adhesion strength of the ice to the surface and aerodynamic
forces then sweep the unmelted icé from the surface. Because

of the cyclical nature of the energy input, the energy



- requirement is very much less compared to the other techni-
gues. In addition, the use of this system is not restricted
due to change in weather conditions and is relatively easy
to maintain. |

Of the above mentioned systems, the electro-thermal
de-icing technique is the most commonly.used and will be thé

one considered in this study.

B. DE-ICING PAD CONFIGURATION

The configurétion of the electro-thermal de-icing pad
is shown in Figure 1. It is essentially a composite body
consisting of five layers in the case of & point heat source
and six layers in the presence of a finite heater. Thé
heating source is separated from the metal substrate, or
the aircraft blade, by the inner insulation which usually-»
consists of resin impregnated glass cloth. This insulation
serves to provide electrical insulation for the heating
element, and also directs the heat towards the ice layer.
It is advantageous to have a large ratio of inner to outér
Insulation thickness so that more heat flows toward the
ice layer, thereby reducing the de-icing time. The heater
element usually consists either of a woven mat of wires and
glass fibers or of multiple strips of resistance ribbon. .

In order to protect the de-iéer pad from rain erosion
or sand and stone abrasion, which could be a problem while
flying at high speeds, an abrasion shield, frequently made

of stainless steel, is added to the outer insulation. The



abrasion shield also serves to diffusé the heat from the
heater, thus providing more uniform heating and thereby
reducing cold spots where ice could form above the gaps in
the heater elements.

The material of construction of the substrate depends
on the type of aircraft and is most oftén an aluminum alloy.

-In this study, only the one-dimensional model of the
de-icing pad will be investigated. It is assumed that there
is perfect adhesion between each of the layers and therefore
no contact resistance to heat flow will be considered in
this analysis. This study will concern itself with both a
point heat source and a finite thickness heater, providing
either constant or time dependent heat output. In each of
these cases, the effects of the type and thickness of the
insulation layers and the nature of the blade structure‘on
the de-icing time will be observed. In the first section
- of this study, the phase change at the iée—abrasion.shield
interface will not be considered and the ice layer will be
treated as a single phase. In the latter part, for the
ice-water phase change, a numerical method which apprbxi;
mates the latent heat effect by a large heat capacity over

a small temperature interval will be applied.




II. LITERATURE REVIEW

From the conducted literagure review, it is evident
that the de-icing problem has either been ignored or that
information pertaining to it has not been published in the
open literature. Of the few attempts that have been made
to solve the specific problem, Wardlaw(2) and Campbell (3)
applied an analytical approach, while Stallabrass(4) has
made use of a numerical technique. However, several
methods have been proposed to solve the transient heat con-
duction problem in a composite slab, without phase change
and with different boundary conditions, and these will be

reviewed below.

A, ANALYTICAL! TECHNIQUES FOR COMPOSITE BODY HEAT TRANSFER
The Laplace transformation technique was presented by
Carslaw and Jaeger(5), but this method becomes increasingly
tedious to apply to composite bodies with more than two
layers since it becomes more difficult to obtain the inverse
Laplace transform. Goodman(G)vintroduced the method of the
adjoint solution, which arises from consideration of an
auxiliary function. However, a disadvantage of the adjoint
method is that the éolution provides just the interfacial
temperatures and not the temperature profile within each

slab layer. Further work on the adjoint solution method has



been done by Bouchillon(7) in which transient cases
been considered. The formulated integral equations
been reduced to linear equations and then solved by
inversion techniques. However, as before, only the
"facial temperatures can be calcﬁlated.

The Orthogonal-Expansion technique“proposed by

(8,9) is another method to solve the boundary-value

have
have
matrix

inter-

Tittle

heat

conduction problem in multilayer regions. The method is

basically an extension of the Sturm-Liouville problem to the

case of a one-dimensional multilayer region. Orthogonal sets

are constructed from the solution of each‘of the layers and

an orthogonality factor, called the discontinuous weighting

function, is used such that the resulting orthogonal set is

applicable to the entire composite media.

Bulavin and Kashcheev(lO) used the method of separatidn

of variables and of orthogonal expansion of functions over

a one~dimensional multilayer region to solve the transient

heat conduction problem involving heat sources in a multi-

layer region. Campbell(3) applied a similar method

solving the de-icer pad problem analytically.

in

The disadvantage of using an analytical technique is

that for each temperature desired, an excessive amount of

calculations have to be performed. Hence, as the number of

layers within the body increases, the calculations become

more tedious. This drawback can be overcome by using numer-

ical techniques.



B. NUMERICAL TECHNIQUES FOR COMPOSITE BODY HEAT TRANSFER

The most frequently used numerical method for solving
partial differential equations is the finite-difference
method. Using this method, the temperature at all the nodal
points within the composite slab can be calculated at each
time step. The finite-difference method involves the con-
struction of a grid within the bounaary over which the dif-
ferential problem is to be solved. At each of the grid
points the differential operators are replaced by their
approximate values expressed in terms of functions. This
substitution reduces the problem to the solution of a set
of algebraic equations, which is mathematically easier to
solve. A finite~difference representation of the de-icer
pad is shown in Figure 3. |

Two of the major considerations in using a finite-dif-
ference scheme are the establishment of both a cdnvergence
criteria and a stability criteria. A number of finite-
differencing methods have been proposed and are discussed
in depth in References (11) and (12). In addition, Price
and Slack(13) have evaluated the accuracy and stability
criteria of various finite-differencing methods for the
heat flow equation with conQective boundary conditions.

The Crank-Nicolson implicit finite-difference scheme
is unconditionally stable for all time steps, and has been
used in the present study. For the corpesponding explicit

formulation, there exists a limitation on the ratio At/(Ax)2



to be 0 < At/(Ax)2 < 1/2; no such conditions are present for
the implicit scheme. However, the choice of the size of the
time and space steps has a direct effect on the accuracy of
the solution. The truncation error for the implicit Crank-
Nicolson scheme is of the order (Ax)2 for the space differ-
ential and (At)2 for the time differential. As stated by
Dusinberre (14), the accuracy of the solution can be increased
by initially choosing a very small time step and then sub-
sequently increasing it.

Stallabrass(4) employed the explicit finite-difference
scheme in his de-icer analysis. Though the scope of his
study covers most of the important aspects for the one-
dimensional de-icer design, its major drawback is that it
considers no phase change within the ice layexr and limits
the solution to the time at which the interfacial tempera-
ture between the ice and the abrasion shield reaches 32°F.
Also, Stallabrass(4) considers only a point source and a
finite thickness heater with constant heat output. The
present study will consider the phase change effect in the

ice~layer as well as time varying heat sources.

C. METHODS TO DESCRIBE PHASE CHANGE

Phase change or moving boundary problems have been rela-
tively difficult to solve because of the non-linear nature
of the boundary conditions arising from the boundary move-
ment. Various methods of analysis such as the Integral

method (15), Successive-Approximation technique (16) and
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Series Solution (17) have becn proposed for analytically
solving the one-dimensional phase change problem. Mori and
Araki (18) have reviewed some of the other methods that have
been proposed.

Numerical methods to solve the phase change problem
have been attempted and are described by Meuhlbauer and
Sunderland(19) and Rubinstein(20). Most of the numerical
methods solve the pertinent heat conduction equations and
determine the temperature distribution in both media, while
at the same time locating the position of the solid~liquid
interface by a predictor-corrector technique. However, this
requires a large number of iterations to locate the solid-
liquid interface position at any given time. Mastanaiah(21)
used such an iterative scheme with a two time level implicit
method for the one-dimensional freezing and melting problem
with convective boundary conditions and variable thermal
properties. Lazaridis(22) used another iterative solution
for the two-dimensional solidification problem with constant
thermal properties and convective boundary conditions, and
also constant temperature conditions at the boundaries.
Crank(23) describes two additional ways to approach the
moving boundary problem. The first involves the rearranging
of variables such that the boundary is treated as stationary
and the problem is transformed into an eigenvalue problem
with fixed boundaries. However, the equations to be solved

contain parameters associated with the moving boundary
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problem for which values have to be determined to satisfy
the boundary conditions. In the second method, Lagrangian
interpolation formulae for non-equal intervals are intro-
duced along with the finite-difference formulae in order to
follow the movement of the boundary.

To évoid the problém of locating the interface posi-
tion as in the above method, a second approach, the method
of weak solution, often called the Enthalpy Methdd, has been
used. In this method, the enthalpy is used as a dependent
variable along with the temperature. Thus the moving bound-
ary problem can be solved in a fixed region and no modifi-
cation is required to satisfy conditions at the moving
boundary. Much of the numerical work applying the enthalpy
approach to the phase change (Stefan) problems has been
done using the finite-difference scheme. Atthey(24) has
solved the welding problem in one-dimension, which is essen-
tially a melting problem, using this approach. The conver-
gence criterié for such a solution has also been clearly
indicated. The latent heat has, however, been assumed to
be evolved at the phase change temperature. In practice,-
the latent heat is usually considered to be evolved over a
small temperature range, AT.

Goodrich(25) and Bonacina et al.(26) have solved the
one-dimensional ice;water problem by associatingnthe latent
heat effect with a finite temperature interval about the

phase change isotherm. However, it should be noted that
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within this "mushy" region, the érid spacing has to be sub-
stantially reduced or else the isotherm may advance in an
oscillatory fashion and distort the temperature profile.
Goodrich(25) used the Crank-Nicolson implicit finite-differ-
ence scheme for formulating the problem and thé Gaussian
Elimination technique for solving the résulting set of equa-
tions. Bonacina et al.(26) used a three-time level implicit
scheme for formulating the problem, which was then solved

as before. The formulation results in three governing equa-
tions applicable to the three phase regions: solid, “mpéhy"
and liquid regions, reépectively. The "mushy" region was
defined over a small finite temperature range, 2AT, about
the phase change temperature, Tf. The phase change initially

starts occurring at temperature Tf-AT, and the ice becomes

pure liquid at temperature T+ AT, where T equals 32°F,

The choice of the temperature interval, 2AT, depénds on the
physical nature of the problem. For the ice-water system
considered in Reference (26), a temperature interval of two
degrees Kelvin was assumed and good comparison to the ana-
lytical solution was obtained. 1In the solid and liquid
regions the thermal properties were assumed constant. In
the "mushy" region, the thermal conductivity was assumed to
vary linearly with temperature and the latent heat effect
was approximated by a large heat capacity. Solutions to
phase change problems applying this method agree fairly
accurately with analytical‘results and this method will there-

fore be used in the present study.
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The enthalpy method has also been employed for solving
two-dimensional phase change problems. Meyers(27) and
Shamsunder and Sparrow(28) have described a purely implicit
two-dimensional finite-difference scheme for solving such
problems. Shamsunder and Sparrow(28) hgve also considered
the effect of various parameters on the solidification rate.
A finite element approach has been proposed by Comini et al.
(29) for solution of the Stefan problem in two-dimensions
with non-linear radiaﬁion boundarj conditions.,

The complete numerical formulation of the de-jcer prob-

lem is given in the next section.
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III. NUMERICAL FORMULATION

A. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
In the formulation for the one-dimensional, unsteady
state, mathematical model for the heat transfer analysis of
a composite aircraft blade with an ice layer, as shown in
Figure 1, the following assumptions were made:
(1) The thermal properties of the material composing each
layer of the blade are constant;
(2) Density variations are neglected, as are the effects of
the volume contraction experienced when the ice melts;
(3) The individual layers are in perfect contact with each
other, and there is no additional resistance present at
the interface; and
(4) The ambient temperature is constant.

With the above assumptions the governing equation is

2 :
? . ; e Ry ,
7G2G — /2T 4y o
2
Jt 2 X
where j represents the layer in question, p, C, k, T and gq
are the density, heat capacity, thermal conductivity, temp-
erature and volumetric heat source of the jth layer, respec-

tively, and x and t are the distance coordinate and time

variable.
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The total blade is then characterized by:
j = 1 Blade or Substrate q, = 0

j = 2 Lower or Inner Insulation q, = 0

"
Hh
c

j = 3 Heater d5 (2)
j = 4 Upper or Outer Insulation qy = 0

j = 5 Abrasion Shield ' dg = 0

For the ice layer (j=6), the governing equations to be
applied depend upon the temperature profile within the layer.
Applying the method discussed at the end of Chapter II,

References (25,26), the governing equations are:

For j = 6,
Ice: {S’Cg D T; _ /ks > ’T <_];_"AT
€ 2 x* ¢
Water: C 9Ty _ 3T : (3)
f‘;wb—e_ _—/&“';)_)2{ /7J- >7;+AT
Ice-Water: C" 27 =§_[&*£—J}] T“AT$T < T +0T
3t X[ 2% 5 ¢
where C* = _L -+ {'_‘C_St_/igﬁ .
20T 2
A = ke ket (T._aT)
S < . (* ) |

In the above equations, Cs and Cw’ Py and Py and kS and
kw are the specific heats, densities and thermal conductivi-
ties of ice and water, respectively. The latent heat ), is
assumed to be evolved over the fictitious temperature inter-

val 2AT (2°F in this study). The phase change initially

starts occurring at temperature Tf-AT and the ice becomes
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pure liquid at temperature T + AT, where T, equals 32°F.
Within the temperature range Tf-{AT and Tf-rAT, a single
phase does not exist and the ice-water system is said to be
in the "mushy" region. As discussed previously, a large
heat capacity to account for the latent heat and a linear-
ized thermal conductivity are used to déscribe this "mushy"
region. The thermal properties in the ice and water regions
"are assumed to remain constant.
The corresponding boundary conditions to be used are:

(i) The equality of the temperatures and heat fluxes at the

interfacial points:

T T

l,....,5

J-
]

? bl

- (4)
—_— )ﬁ ?;:S’ l =—-/Q€$,ﬂ3___}u
¥R g 2%

. j=1,....,5

where the subscript I denotes the interface;

(ii) Convective heat transfer at the lower and upper bound-

aries:
k. 37T; _h ('T. ..—r) , =1 (5a)
4 I X IX=o N e °

—-/kj CAY = h, (T:H - d,) » 3= 6 (5b)
3N Ix=i o

where
ki = k, §ov T}L_S T, —aT
ki =ha Ser T S TaaT

A
k*

ks Sor TATE T }I&Tﬁ AT
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To formulate the above equations in terms of non-dimen-

sional temperature and distance, the following definitions

are made:
o=-L '7=_.7.‘E *;m% (an
Tr i S
where Tref = the reference temperature (taken to be 32°F in
this study),
L = the total length of the composite slab, and
aj = the thermal diffusivity of the 5 jayer.

Substitution of the above dimensionless quantities into

equations (1) through (5) yields

’a 3 '
29 -—Q& + CI’J p 3= 1,000, (2D
Eor j =6
Ice: 30, . « 91@} : '-.
EXS o r O 6 < §-a0
Water: 20; _ o~ 2%6; , | (3)
ater at] = = 5_?(_5-1. GJ’ > 8_}“"&9
Ice-water: [°C. 36; = 9 *96;
-——-——-ab 3-1 [t& 53,(1-] 6_$-Ae SGJSG:‘MG

where
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At the interfacial points,

8}'17- 6}.\.{\'}__ j = 1,00..,5

(4')

20;
-4 Dx} 1 kJ’ﬂ QQ“‘I

T
Finally, at the lower and upper boundaries:

at X =0, j =

1
k.

206:
=3 = /‘\ L (6 —-eo> L
] 3% l5ms e (5a")
at X =1, j =6
- k; 2__‘ ~ hL (e | - .°) (5b*)
9% Raq K=l
where 1,

Lo e*l < 6-06
X=q

jo= ks
/k -S-Or 6& 2=1> 6§+A6

>

i

-
il

i = K 5o 6806 <640

Xay

The above equations can now be represented in finite-

difference form and solved numerically.

B. NUMERICAL TECHNIQUE

In the numerical solution of the above partial differ-
ential equations, a finite-difference scheme was adopted.
This is accomplished by constructing a system of grid points

which define a finite number of regularly spaced values of
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the dependent variable, in this case the temperature, over
the whole space domain at each time step. As illustrated

in Figure 3, the X-axis represents the length along the com-
posite body and the Y-axis represents the time variable.

The space axis 1is divided into incremen;s of size Aij, where
the subscript j indicates the layer in question. Within

each layer, the space increment Aij is constant, but it may
vary from one layer to the next. The time axis is divided
into equal time step intervals, At. However, the time incre-
ment may be increased as the solution progresses. The index
1 denotes the position of the variable in the grid along the
space axis, and the superscript n indicates the value of

n
j,i
layer, at posi-

the variable at time n. Hence the quantity 8 represents

the non-dimensional temperature in the jth

tion i along the space axis, at time n.

C. FINITE-DIFFERENCING AND THE METHOD OF SOLUTION

The finite-difference approximation to a partial deriv-
ative can be derived using a Taylor Series expansion around
any grid point. In this study, the Crank-Nicolson Implicit
scheme was applied in order to maintain stability of the
solution. The finite-difference approximations for the
first and second-order space derivatives and first order

time derivative are second order correct and are given below.

mal n+i Ml n n
36; * 6,47 Opict + 65i0a—=6; i1 +O(Aij)l (6a)

—

X L 4 b%;
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20" w2 et Ot O e 260,00
SRR Z(Axp ) (6b)
4 O(A'XJ)
N i M
30 - Oi,i - .e._.,u- +- O(AU (6c)
It ki At

In the above equations the superscripts represent the
time levels n and n+l, the subscript j represents the jth
layer and the subscript 1 represents the grid point under.
consideration.

The Crank-Nicolson finite-difference equations are
obtained by substituting (6a,b,c) into equations (2')
through (5'). The governing equations in finite-difference

form reduce to:

0 cam2 (14 (& Axk) i), B+ 0 = —0OF

}/L“L
—2Laxp o 9 2(1- LLMQ o . )
Tvq_,k} Cl/J' &L-H‘ + ( JL\t st
For j = 1,..44,5

where q" is the source per unit area and equals qjoLAi.

For :] = 6,
v\+1 Mmad n
L AX -
0, = (H (J.ZE?) =0 (8a)

42 (i (J:PJ_‘J_)Q — 9},\,"‘1— 9}< 64~Ae
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o \ML "
edz‘-”l ‘2 ’1+{-—H§Zt)® L }L""Lz "6})(__1_ (
8b)
+ % (1 - (—H—::t GJ)L GJ,uL 9&) 9&-\-58
M+4

kO o~ (Kr 2 cwxp)e + +OT,Z'+1—

“ c
-k ea g (R K- 2cA(tLAx,) (9 JM. (8c)

8,00 =<8/ < O a0
where /h*‘ J{S-}-sz /ks)[ nht:n'i‘ Gﬁ,lrh(e_&—Ae)]
Z

N
= kgt (Ruk) 62+:+©“Ly1 6 ~06)
Zne | (%
* T2
ATy 0.6 2

The value of the temperature at the half level in time

is obtained from a truncated Taylor Series as follows:
N+ify

6})~L = 9;L -+ At > A O(At) (84)

The time derivative in the above analog is obtained

from the equation (3') as

ch*(%%})L /k(etw 8,0) &(G ) ) (8e)..

A X)*
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where

J&i = kg )2\.. [ O it Bt __(e,,.. AB)J

280 Z
zae z
D\ £,Cs + frsCun
2 Tref MO + 2

Substituting (8e) into (8d) yields the finite-difference

n+%
analog for Oj 1 as
N4y
Gé,b - e +2At { (e} (£ e*,) *_ (6} L 6},‘_-)] (8fF)
n+ n+
For ej i+1 and ej i-1 the finite-difference analogs

are obtained in a similar manner and are given below.

n+'h n "
GJ)LN = J,¢+|+ —{/& ei.t'“*l_" 95!“) /k (6 Spin— Uy 6"9] (8g)
(NSh (Ax%)*

where k-: — ,ks -+ /kwA‘e)Q.&[er_., it 9':!(;»\ —-(9_5 - A B)]

2
/&_ =-_,3. & /& G L +9, (6 - D
p= ot Boste] St Bis (6 - 09) |
D 45C5+f’...Cw
2 Tvel AO 2

el

6. (o = e +At [/k e.hL Bﬁ_ -t
e b Lo ¢ S ) JTLH)‘L% (8h)
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where k; = ,ks + &f‘__‘b‘_é"_‘[e:,l, + e‘:‘ll'\"l _(9_!, - Ae)]
2

/E = /& w"*s eﬁr‘c-;'f‘ 6‘3‘[‘- 6, -n6
> ‘*%Ze—[~—-—-———-"’ iz = (& )

YA
oAy AGHCe
ZTrq_AO 2

Equatioh (7) is valid for all grid points within each
of the jth layers except for the ice layer, within which
equations(8a,b,c) are applicable. Equation (8c) was
obtained using the finite difference formulation suggested
by von Rosenberg(l2) and the temperatures at the half levels
in time were calculated applying the method devised by
Douglas (30).

The finite-difference equations for the interfacial
points, for the two boundary conditions and for the heater

are discussed below.

1. Finite-Difference Equations At Interfacial Péints

Let i be the interfacial point between the slab layers
j and j+1 as shown in Figure 4a. At this point, the temper-
ature and the heat fluxes are equal and equation (4') is
valid. Substitution of the finite-difference equ;tion (6a)

into equation (4') yields:

N m

e =6, (52)

Ht It
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Wt 1\+\
——/h“ L+\ J vﬂ*'g 3 b~> —

I3 i -
’+‘ 'n+t ef\ Ef\ 9
- J*\,m J-N - \+ 44,14 -, L~\> (90)
th

Since the boundary extends only to the i grid point
h n ) n+1 .

.t
for the j slab, the temperatures ej,i+l and ej,i+l are
. 4 n+l
fictitious. In the same manner, 8j+l,i—l and ej+l,i-l are

fictitious. At the point i, the governing equation (7)

when applied for the layers j and j+1 yields:

-“*. Y\‘\'\ N 4t “
O lr (LM )) B ivi = 6
h (10a)
._l_:_(él‘a_)_ﬂ'} + Z(_L _(:AX‘) ed J)w
—rk4 Xl} }bt
'“*‘ ~n+\
J'"\.\ 2<1+(—L—A—?—ﬂl) JHL }HL-H —.6&'\\\..
" (10b)
_2L@% 21 — {Lz:.x,“)
T"‘:{, *Jh oy T+ ( + At> J*b Jn,\.-n

Eliminating the fictitious temperatures between equa-
tions (9b,10a,b) and using equation (9a) yields the following
applicable finite-difference equation at the interfacial

nodes:
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ol e 2z
] }H JH
AX ARA!
- X“ Ax:~.> Pipin= ~ i +
[(1 (LAx,)_,_(i (_LAX,W) mé i ] .

dd’At Jﬂbt * DAY j

- _):‘_’:Zi*) e&-ﬂ L4 — [a"s b) —l—(ﬂqa-\ (8% n))( %“b%;)

(11)

The above equation (1ll) is applicable only if the
governing equation (7) holds for the layers on either side

of the interfacial node.

2. Finite-Difference Equation For The Ice-Abrasion
Shield Interface

If i is the interfacial boundary point at the ice and
abrasion shield interface, as shown in Figure 4b, it becomes
necessary to consider which of the governing equations
(8a,b,c) are applicable along with equation (7) for the abra-
sion shield and the boundary conditions (9a,b). Initially,
the interface temperature is less than ef-Ae and, therefore,
equation (8a) is used. For j = 5 at node i, equation (7)
becomes (with q"5= 0),

i 2 (o et ol -
s hE ’ (12a)

es;;+2(‘1‘”~———)—|‘&x e5, sw-

«“<5AL
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6 at point i, equation (8a) reduces to

For j =
N+ N+ “
eSL»“2(1+(—AL‘>)CL" c.+r‘"""a¢€.-t
o At_- )
K (12b)
-6, 4+ 2 1-(Lb7‘6))6
‘)L+| ( O(sAt ‘

and the boundary conditions (9a,b) give.:

ec L—_. 95 L (lZC)
)
)R, A " A “
-_—"8 66 N ""e R { 8 —
4-—-————A_i6[ y Ly ‘)L ' ‘ L+\ 6 H \ == (124)
Wwhi uXd) a4 " '
: 5 .
-— i}a—i‘ [GS;L‘H 85,1'. |+95 (4 651.:.,]

‘ n n+l ' n n+l
The temperatures 65,i+1’ 65,i+l' 86,i—1 and 66,1-1

are fictitious and have to be eliminated between the equa-

tions (l2a,b,c,d) to give:

"n-\-\
] L +(Lax )) ( +(Lax)
5" ,: -csbi: + Iszﬂ ! -<¢A::> SL

/k AX 'n.n —
'3 V) == 95- (| ’k’ AXf) GC,L-H (13a)

6, L+

AX
-+ (_1_ - ( LAX;‘) + »hs AXS A {Lb:‘k)
=<5t °<-cb-t‘ 6t

If the temperature at node i, 96 i’ is between ef-AB
’

and ef+Ae, ‘equation (8c) is used along with equatibn (l2a,c,d)
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n n+l
and, as before, the fictitious temperatures 95,i+1’ 65,i+l’

en d n+l limi i
6,i~1 an 66,i-l are eliminated to glve.

'Y\+|

J

oALs AL 2 bR Rsk

AX Kk V\-\-\ _ -—'G '
Zzsij;:&<f ‘> 6,x\ 5,1

+ [( L —(Loxs)), a%s R <,h+k 2C (LAXc>] (13b)

- zii%ihsk (R +2) 8, -
k= ke 4 Kok ‘.“"" (e -AO)J
206

62:" [1+(LAX -\—A)(szk hﬂwz__@_ax‘)}

n
If the temperature at the interface i, 66 i’ is
!
greater than 6f+A6, equation (8b) is applied along with
equations (l2a,c,d). Again fictitious temperatures are

eliminated to yield the applicable equation:

651*" [<1+<LAX5> +i Ax,(i_‘_ LAXJ] vn-.

oLs AL s O%¢ “ant
4 (R Ax)g“*‘ o KBRS\ O
= - R w D Xs . (13c)
&5 INA 6+ g, )_Q:r [
+ <i—(LA$‘<5) + Ruwbd¥s (41— (Lo 6 6L -
<5At ks AX¢ T LAE ’

3. Finite-Difference Equation For The Substrate-

Ambient Boundary

The 1nterface under con51derat10n is shown in Figure

- 4¢c, At this grid point i equals 1. The point i equals 0
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is a fictitious point as it falls out of the composite
body boundary. At i equals 1, the governing equation (7)
is applicable along with the boundary condition (5a').
The finite-difference representation of equation (5a')

using equation (6a) gives, for j =i = l,
. ne ‘n-u 'n+|
._./..k;.:‘.'_ <61 ""9 —'0 ) /‘\L[ell""‘en B 14
4 A%, 2 (14a)

Similarly, the governing equation (7) reduces to

00— 2 1 + (Lo 3)6]" 8 = -0

Zyat/ o M - (14b)

+2(1=(Loxy)er, — 87
“Lae/ M '

n
Eliminating the fictitious temperatures 61 0! and
n+l ’
81 o between equations (l4a,b) yields:
14

‘n+\ '
[l + (L°*1)>+ AXLALL] By = -6,
=<{4At k., ’ ’ (15)
+ [(1 —(Lorsf) o ax bt B, —28%sLh,6,
At k, &,

4. Finite-Difference Equation For The Ice-Ambient
Boundary
~The interfacial point, as shown in Figure 4d, is the
grid point m. The point m+1l falls outside the composite
body boundary and is therefore a fictitious point which has

to be eliminated. The governing equation (8a) for j = 6



29

when applied to point m is of the form:

na

+1 m
6‘:"—' — Z<i+__@_xz‘tl) +66 M = —"GC,H—t
+-Z<l ¢x$2?) ' @H+i

As before, the boundary condition (5b'), after using

the finite-difference representation (6a), becomes:
/k AN ‘Y‘\+|
— Kg -8 -
= eC,M-H G M- \+86N+| e‘n\ /l‘ L ‘H+e ) e (1¢€b)
4AXC

n
Elimination of the fictitious temperatures 6 and
nel ; 6,m+1

66 . between equations (l6a,b) gives the finite-difference
’

s equation for the point m as:

N4y "
BG,M\ [é-+ (LAX6> ha Lo B +‘: — 8,
SN N e (16¢)
4 |4 - (Laxy " __ 24, LA%.6
K st/ ‘Z‘I““] o ke

In deriving equation (l6c), it has been assumed that at

the upper boundary, point m, ice is present and the governing

equation (8a) is applicable. However, if instead of ice a

"mushy" phase exists at this'boundary, the governing equa-

tion (8c) is applied at point m to yield:

Lk
K, [£+k+2Lc<Axo 0 4 RO =
At M- (17a)

ke, +[k+k z._casxs)J _ kG
A

M
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Equation (5b') after rearranging and using equation (6a)

gives:

_ k. [8“”‘ -9 +g" -0 J _

— (AN TY) (M\ CH+‘ ¢ M- ——
4 DX%¢ ! ’ ’

" (17b)
AL (66 H+62,> ___8,6] -

n
Elimination of the fictitious temperatures ¢ and
n+l : 6,m+1
06 mtl between equation (17a,b) gives the finite-difference
14

equation for the point m as:

Qz+k) s — [k+k+2c’(LAx‘) 4+ 2h, LkAX{’GG’H.____

At 7
_Ahh LAzAxQ _Ke e — RO, (17¢)
[Gx-&k ~2c (LL\XO)\_ 2h, tkbxs—J BZH

Finally, instead of ice or a "mushy" phase, water is-
present at the upper boundary, the governing equation (8b)

is applied at point m to give:

’V\+l
N

N+
cw» Z(1+L—(Q(5))ecn+96,ﬂ+'~ — Y6,M-
n
+2<_j_____(___d><;) GH""GG,HH'

<, At

(18a)

Applying the boundary condition (5b') in its finite-

difference form:
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CHUHL 6 M-t G MR G Mo

Mo

and eliminating the fictitious temperatures 66

n+l !

86 mel between equations (18a,b) gives the finite-difference
’

sz [87\‘*\ —.9"\4»\ +9‘v\ —O“ _
(4

(18b)

m+1l and

equation for the point m as:

“*' N4y n
Ou.— | +(Laxd), b Lag |6 _ -0
of + T2 - ¢ 6Mn §,M-y
w At kw (18¢c)

+ [1-— (L) 4 AL aRe :l 6: 2 AL AX 6,
NN ’kua M .*—-TE:T———-
5. Finite-Difference Equation 'or a Point Source Posi-
tioned At An Interface Between Two Layers
If the heater is not of finite thickness, but is
instead a point source at node i between slabs j and j+1,
the finite-difference equation is obtained by using the
governing equation (7) at point i for both the jth and j+lth

slab along with the boundary conditions:

6

}ﬁw ""'8j+5t For all n (19a)

—-—/‘l ____; -i-% L — .__/k ae)u

For all n (19b)
97( Ty ERS

The above equation in finite-difference form becomes:
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9L _—

———

Try  (19¢)

- d R

by (6™ g e o
4 JR}_ 6, +9J‘,‘L+\—«8,L-\-‘DJ,'\.—\J -+

_ /k ejﬂ'ﬂ e”‘ n4t "
Z'—ﬂ' H“;L*‘+ $V L4t GJM,L-‘- prage
e

Equation (7) for the jth and j+lth layers, when applied at

node i without the internal heat generation term gives

n

eJ (e 2_(.1 -+ (Axk ) 6‘*' + 6 L"‘ = -—e}'c_‘
(194)
n
+ Z'( (A__x_i_.. o, wo— e'[,'u-\
J\.
ei““ 2, . N+ \\H "
d""‘JL-H - 2’ <1 + E&M) e L + J‘H {1 = -"GJ'H(;H
Py At (196)
(AX
eJy'H e 2‘(“{' }'H :g e} 0
n+l n n+1l

n

The temperatures 63 i+l’ and ej+1,i—l

Oy, i+17 %5+1,1-1
are fictitious temperatures and are eliminated between the

equations (19a,c,d,e), giving the finite-difference equation

applicable for a point heat source as:

},(-1 —
} J}At /L A-ij,n dr\»)f)b
BJ‘HLH( Ai* ) J.,L‘“\ — /k)“ Jﬂ,w (20)
j AR }z INH “

[1 LeXidy 1;_»_3_&)@ e; "2 La%;
JAt *" Aﬁy} J""'At v TH* *)’



Iv. METHOD OF SOLUTION AND

PROGRAM ALGORITHM

A. METHOD OF SOLUTION

33

The numerical formulation of the de-icer pad using the

~finite difference scheme results in a set of linear equa-

tions which can be put in tridiagonal matrix form.

The

equations are shown below and are readily solved using the

Gaussian Elimination method suggested in Reference (31).

9, = d
by6, + c,0; = d,
aj0, + by0y + c30, = d,
alel-l + biel + Ci9i+1 = dl

ayby-1 * POy = dy

(21)

The complete algorithm for the solution of the tridiagonal

system 1is
N
03

where BEl
BEi

G,
i

i

Sn

G, -~ (c;0,,4)/BE; ,» i

N-1,N-2,....,1

b, and G, = dl/BEl
bl (aicl—l)/BEl"l’ 1 = 2'3, . oo-'N
(dl aiGi_l)/BEi, 1 = 2’3, ootoo’N

33

(22)
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In the present study, non-dimensional temperatures, ei,
at the time step, n+l, are calculated using the above

algorithm. The constants dl’ dz,....,d are initially

N
calculated using the temperatures, ei, at the previous time

step, n.

B. NUMERICAL PROGRAM ALGORITHM
The flow diagram of the main program for the de-icer
pad is shown in Figure 5. The computer program is listed

in Appendix I.
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V. NUMERICAL RESULTS

In order to test the resulting program and algorithm,
an unsteady state heat conduction problem involving a two
layered gypsum board-steel composite body was solved épplying
the procedure mentioned earlier in Chapters III and IV. The
results are shown in Figure 6 and are in excellent agreement
with the anélytical solution given in Reference (31). The
above problem applied convective boundary conditions at
both boundaries; however, the computer model in this study
has been designed to also handle constant temperature or
mixed boundary conditions.

Initially, the de~icer pad problem was solved'assuming
no phase change in the ice layer and uniform heat input for
both the point heat source and the finite thickness heaters.
For the de-icer pad configuration shown in Figure 7, the
temperature rise at the ice-abrasion shield interface in
order to raise the interface temperature to 0° C is compared
with the results obtained numerically by Stallabrass (4) and
analytically by Campbell (3). As shown in Figure 7, excel-
lent agreement is achieved between the two numerical methods
and the analytical solution, up to 5 seconds. Beyond 5
seconds, the numerical solution of Stallabrass (4) gives a

slightly optimistic temperature rise, while the present
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method shows continued excellent agreement with the analy-
tical solution.

To determine the effect of the various variables on the
de-icing time, a number of cases were investigated and,
whenever possible, compared with the re§ults of Stallabrass
(4). 1In Figure 7, as well as in all of the following cases,

values of hl = 1 Btu/ftzhr°F and h2 = o were used.

A. EFFECT OF POWER DENSITY

The de-icing time in the present study is assumed to be
the time interval beginning when power is applied to the
heater and extending up until the ice-abrasion shield inter-
face just reaches a temperature of 32 °F. Figure 8 shows
the results of the effect of variation in the power density
on the de-icing time for various ambient temperatures. Good
agreement is obtained with the results of Stallabrass (4).
The slight variation occurs because of the more optimistic
nature of Stallabrass' results as indicated in Figure 7.
Figure 8 does demonstrate what actual tests have indicated,
namely that the total energy required in order to shed the
ice increases with a decrease in ambient temperature and

with a decrease in the power density. Hence, lower power

~densities on the order of 15 or 20 watts/in2 should not be

used for low ambient conditions because of the long de-icing
times that are needed. Tests have indicated that a power

density on the order of 25 watts/in2 is the practical minimum.



37

B. EFFECT OF INSULATION THICKNESS RATIO AND INSULATION

MATERIAL

An insulation thickness of 0.010 inches has been
assumed for the outer epoxy/glass insulation for the pre-
sent study. Since it is desired that a maximum amount of
energy released from the heater be directed toward the ice
layer, the outer insulation should be thinner than the
inner insulation. Figure 9 shows the effect of varying
the insulation thickness ratio, inner insulation thickness/
outer insulation thickness, on the de-icing time. As the
ratio is increased from 1 through 5, the de-icing time
decreases appreciably. For an ambient temperature of -25 °C,
a reduction of 20% in the de-icing time occurs as the ratio
is increased from 2 to 5. However, further increasing of
the insulation thickness ratio only affects the de-icing
time for lower ambient conditions. As shown in Figure 9
for an ambient temperature of -25°C, the de-icing time
does not change for an increase in thickness ratio from 5
to 10, although it does for lower ambient temperatures.

A decrease in the de-icing time may also be achieved
by changing the inner insulation material. Figure 10 shows
the effect on the de-icing time when the epoxy/glass insula-
tion of 0.22 Btu/hr ft °F thermal conductivity is replaced
by the same thickness of polytetrafluoroethylene (KEL-F)
having 0.04 Btu/hr ft °F thermal conductivity. For an ambi-

ent temperature of =-25°C, the de-icing time is reduced by
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approximately 36%. Hence it is advantageous to use an
insulation material of very low thermal conductivity if it

is also a good electrical insulator.
C. EFFECT OF SUBSTRATE MATERIAL

Figure 11 shows the effect on the de-icing time for
various types of substrate materials. It might be expected
that if the aluminum alloy is replaced by stainless steel,
which has a lower thermal conductivity and thermal diffusiv-
ity, the de-icing time would be reduced; however, just the
opposite occurs. This result is attributed to the higher
thermal capacity per unit volume of the stainless steel.
Figure 11 also shows that if an insulation layer of 0.087
inch epoxy/glass is added to the aluminum alloy substrate,
thereby reducing the overall thermal conduétivity of the

substrate, a decrease in the de-icing time is observed.
D. EFFECT OF VARIABLE HEAT INPUT

In the previous sections, the heat input was assumed
uniform and constant. In this section, a step-wise heat
input is applied and the temperature response at all the
interfacial nodes is determined. Figures 12 a and b show
the temperature response for a variable point heat source
(3 seconds on, 1 second off) as compared to.a consiant
point heat source for an ambient temperature of 5 °F (-15 °C).
As expected, the temperatures at the various interfacial

nodes drop as the heat is switched off, and begin to rise
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again as the heat is switched on. Figures 13 a and b show
the corresponding results for a 5 seconds on, 1 second off,
finite thickness heater for an ambient temperature of -22 °F
(-30°C). Thus, if heat is applied such that the heater

is on for a period until the ice-abrasion shield interface
reaches a temperature of 32 °F, and then is switched off
until another layer of ice forms on the blade surface, the
total energy usage for de-icing would be reduced. The
computer program in this study has used an arbitrary periodic
step-wise heat input, but it can be modified to apply to any

other type of variable heat input.

E. EFFECT OF PHASE CHANGE

In the earlier part of this study, as in the work of
Stallabrass (4), the phase change in the ice layer has been,
neglected. Hence, optimistic de~icing times were obtained
because the latent heat needed to melt the ice has been
ignored. To rectify this, a method used by Bonacina et al.
(26) is applied to account for the phase change in the ice
layer. 1In order to test the accuracy of this method, the
one-dimensional water-ice solidification problem was solved.

As mentioned in Chapter II, the selection of the phase
change temperature interval, 2AT,.depends upon the physical
problem and, in combination with the number of nodes in the
ice layer, affects the accuracy of the solution. Figure 14

shows that a phase change temperature interval of 2 °F
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provides good agreement with the results of Bonacina et al.
(26)., Figure 14 also indicates that indreasing the number
of nodes from 81 to 126 for the temperature interval of

2 °F does not affect the results. For the ice layer in the
de-icer pad problem, various numbers of‘nodes were used to
determine what effect, if any, they would have on the accu-
racy of the solution. It was observed that increasing the
number of nodes above 60 did not change the solution and,
therefore, for each of the solutions, 60 nodes were used

in the ice layer.

As in the earlier sections, the de-icing time is assumed
to be the time at which the interfacial temperature at the
ice-abrasion shield interface reaches 32 °F. Figure 15a is
a repetition of Figure 7, but with the phase change being
considered, and shows that the de-icing time is increased.
This is expected since the latent heat of the ice is now
accounted for, whereas in the previous cases the ice had
been treated as a single phase. Figure 15b parallels Figure
9 and Figure 15 c parallels Figure 11 in illustrating the
same increasing time result. Thus, the results shown in

Figures 15 a, b and ¢ should therefore be more realistic.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The one-dimensional computer simulation model developed
in this study for the de-icer pad configuration accurately
predicts the temperature profiles for any type of boundary
conditions or thermal heat sources. The results agree well
with previous numerical calculations done by Stallabrass (4)
for cases when the phase change is not considered. The
method of Bonacina et al. (26) to describe the phase change
was incorporated into the model and adequately predicts the
thermal history of the de~icer pad when the latent heat
effect of the ice is téken into account.

The next study should concentrate on developing a two-
dimensional de-icer pad model in order to investigaté the
effects of blade shape, heater gap-width and heater geometry

on the de-icing time.

41
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Material Thermal Spec. Diffusivity Density
Conductivity Heat 5
Btu cal Btu/lb.°F £t cm ib. g
hr. ft.°F sec. cm.°C  Cal/g’C hr. sec £t3 cm3
Aluminum (soft) 124 0.51 0.23 3.20 0.820 169 2,71
Aluminum Alloy, 66.5 0.275 0.23 1.65 0.427 175 2.80
75ST6
Nichrome 80/20 7.6 0.031 0.107 0.138 0.035 515 8.25
Stainless Steel 8.7 0.036 0.118 0.150 0.0385 495 7.93
304
Epoxy/Glass 0.22  9x10°%  0.23  0.0087 2.2x107°> 110  1.82
filled 32» '
Polytrifluoro- 0.04 1.7x10°% o0.216 0.0014 0.38x10°° 130  2.08
chloroethylene .
(KEL~F)
Water (0°C) 0.320 l.32x10-3 0.997 0.0051 0.00132 62.4 1.0
Ice (pure) 0°C 1.293 5.35x10n3 0.5057 0.0445 0.0115 57.2 0.9168
-10°C 1.356 5.61x10”3 0.5038 0.0469 0.0121 57.3 0.9182
-20°C 1.416 5.86x10_3 0.5020 0.0492 0.0127 57.4 0.9196
Latent Heat of Fusion of Ice 143.4 Btu/1b. 79.75 cal/g.
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Figure 2. Section Of Wing Fitted With Pneumatic Boot
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Figure 3. One Dimensional Finite-Difference De-icer
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START
¥

INPUT DATA ON SIAB A!ID INITIAL AND
BOUNDARY CONDITIONS

.

SPECIFY GPACE AlD TIME INCREMENTS
CALCULATE CONSTANTS

CHECK IF PHASE

A ' CHANGE IS CONSIDERED

YES ¢

CALCULATE CONSTANTS FOR THE
ICE-WATER SYSTEM

l

CHECK INTERFACE TEMPERATURE AT THE
ICE-ABRASION SHIELD INTERFACE
APPLY APPROPRIATE EQUATIONS

v

CHECK TYPE OF HEAT SOURCE AND BOUNDARY CONDI-
TIONS AND USE APPROPRIATE EQUATIONS

'

USE GAUSSIAN ELIMINATION TECHNIQUE TO
CALCULATE TEMPERATURE AT GRID POINTS

:

GO TO NEXT TIME STEP

Fipure 5.Flow Diagram Of Main Program
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Figure 6. Comparsion Of Finite-Difference And Analytical Results For Composite Slab
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Figure 7. Comparison Of Finite-Difference And Analytical Results For De-icer Pad
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CURVE POWER DENSITY
WATTS/SQ.IN.
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Investigation
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Figure 8. Effect Of Power Density On De-icer Performance
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Figure 9. Comparison Of De-icing Time For Various Ratios Of

Inner To Outer Insulation Thickness
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Figure 10. Effect Of Insulation Thickness Ratio And Material On

De-icing Time
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Figure 11 Comparison Of De-icing Time For Various Substrate Materials
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2 INNER INSULATION-SUBSTPRATE ,
4 OUTER INSULATION-ABRASION SHIELD
5 ABRASION SHIELD-ICE
| 6 ICE-AMBIENT
40‘
—s—  VARIABLE HEAT INPUT
————  CONSTANT HEAT INPUT
J'"
b~ A
30, 5
/ -
e o
201 1’2 \/,/ ///
e
10.
6
O ) § 2 4 v 'R
0 1 2 5

3 4
TIME IN SECONDS..

Figure 12a. Interfacial Temperature Response To Constant
And Variable Point Heat Source
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Figure 12b. Interfacial Temperature Response To Constant
And Variable Point Heat Source
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Figure 13a. Interfacial Temperature Response To Constant
And Variable Finite Thickness Heat Source
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Figure 13b. Interfacial Temperature Response To Constant

And Variable Finite Thickness Heat Source
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Figure 15a. Effect Of Phase Change On De-icing Time
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APPENDIX I
COMPLETE PROGRAM LISTING

NUMERICAL SIMULATION OF ONE-DIMENSIONAL HEAT TRANSFER
IN COMFOSITE RODIES WITH FHASE CHANGE.

THIS PROGRAM CAN CALCULATE THE TEMPERATURE ROFILE IN
A COMFOSITE SLAB WHICH HAS CONVECTIVE»CONSTANT TEMP-
ERATURE OR MIXED RBOUNDARY CONDITIONS.

THE FROGRAM CaAN ALSO RE USED FOR COMFOSITE RBOOY PROBLEMS
WITH CONSTANT OR VARIARLE HEAT SOURCES.

ArR,CHy D = TRIDLAGONAL MATRIX CONSTANTS. ,

AK = THERMAL CONDUCTIVITIES OF LAYERS.

ALF = THERMAL DIFFUSIVITIES OF LAYERS,

AKL = THERMAL CONDUCTIVITY OF WATER.

AL = THERMAL DIFFUSIVITY OF WATER.

cA = CONSTANT, :

CrSyCPL = GPECIFIC HEAT OF ICE AND WATLR FER UNIT LVOLUME,

DTAUIL = INITIAL TIME STEFR

DTAUM = INTERMEDIATE TIME STEPR

NTAUF = FINAL TIME STER

nx = SPACING BETWEEN NOLES.

EL = LENGTH OF EACH LAYER.

HEAID = HEADINGS.

H1 = HEAT TRANSFER COEFF. AT LOWER BOUNIIARY .

H2 = HEAT TRANSFER COEFF . AT UPPFER BOUNDARY.

HLLAM = LATENT HEAT OF ICE.

IRC1 = 1y IMFLIES TEMPERATURE IS CONSTANT AT X=0,.

IRC1 = 2y IMFLIES CONVECTIVE HEAT TRANSFER AT X=0.

IRC2 = 1y IMPLIES TEMFERATURE IS CONSTANT AT X=1.

IRC2 = 2y IMPLIES CONVECTIVE HEAT THRANSFER AT X=1.

ICOUNT = COUNTER ON TIME STEF.

IFREQ = NUMRBER OF TIME STEFS RBETWEEN SUCCESSIVE
PRINTING OF THE TEMPERATURE PFROFILE.

16 = 1y IMPLLIES FHASE CHANGE IN ICE LAYER I8 NOT

CONSIDREREL .
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IG

IH

IH

IH

IHA
IHA

IJ
INTIME

IMTIME

M

MM

N

N1

N2

NO
NO1
NO2
NOLE
R

(2
QHEAT
Qv

T
TODIFF
TC
TG1
TG2
TIN
TLEN
TMAX
TOFF
TON
TFHAS

woitououon i

it 8

li

S S L I | TR T 1}

K

[ I

A N | N U [ I 1A A H

[H

2y IMPLIES FHASE CHANGE IN ICE LAYER IS
CONSIDERED

1, IMFPLIES NO HEAT SOURCE.

2y IMPLIES FOINT HEAT SOURCL.. ¢

Iy IMPLIES HEAT GENERATION WITHIN SLAER,

1y IMPLIES CONSTANT HEAT SOURCE,

2y IMPLIES VARIABLE HEAT SOURCLE .

SLAR WITHIN WHICH HEAT GENERATION QCCURS.

NUMEBER OF TIME STEFS FOR WHICH INITIAL TIME

STEF 18 USED,

HUMBER OF TIME STEFS FOR WHICH I[NTERMEDIATE
TIME STEP IS USED.

NUMEER OF NOLES IN SLAR,

INTERFACE NODI NUMRERS,

NUMERER OF LAYERS IN SLAR,

LOWER SLAR NUMBRER FOR FOINT MEAT SOURCE.

UFFER SLAR NUMBER FOR FOINT (AT SOURCE.

NUMEER OF NODES IN EACH LAYER,

LOWER NODE NUMBER "OR FINITE THICKNESS HEATER.,

UFFER NODE NUMBER FOR FINITE THICKNESS HEATER.

NODE AT WHLCH FOINT HEAT GOURCE L8 APPLIEO.

FOINT HEAT S50URCE WATTS/ LN¥IN,

VOLUMETRIC HEAT SOURCE WATTS/ZIMNKLNKIN,

FUNCTION FROGRAM FOR VARIABRLE HEAT INFUT.

STEF INFUT FOR VARIARLLE HEAT SOURCE.

NON~-DIMENS LONAL TEMFERATURE .

HALF PHASE CHANGE TEMPFERATURE INTERVAL.

TEMFERATURE .,

AMBIENT TEMPFERATURE AT LOWER ROUNDARY OF SLAR.

AMEBIENT TEMPERATURE A1 UPFER EOUNDARY OF SLAR.

INITIAL TEMFERATURE IN SLAR.

TOTAL LENGTH OF SLaR.

ICE-ARRASION SHIELD INTERFACE TEMFERATURE.

OFF TIME OF STEF HEAT [NPFUT.

ON TIME OF STEF HEAT INFUT.

TEMFERATURE AT WHICH PHASE CHAMNGE OCCURS.,



300

11
10

TR
TREF
TRIDAG
TX0
TX1

0o H

DATA IN/S/»10/76/
DIMENSION HEAL(A40,80)

DIMENSION ACLOO) yBC100)+C(100) (100X T(2005100)y TRCLOO) yTECLOO)
OIMENSION ALF(6)yCACSE) yNOCE)Y s MM IO vy BX(E) s AK(H) s ELL ()

INFUT DATA

0o 300 I=1,18

67

NON-TIMENSIONAL TEMFERATURE AT FREVIOUS
REFERENCE TEMFERATURE,

SUBRDUTINE TO SOLYE TRIDIAGHUL MATRIX.
CONSTANT TEMFERATURE AT LLOWET SLAR BOUNDARY.
CONSTANT TEMFERATURE AT UFFER SLAE ROUNDARY .

READCINY100) (HEADCT »J) » J=1+80)

CONTINUE

READCINY1O1)NeMy TLLEN

[0 10 I=1+100
A(T)=0,
RCI)=0,
C(I»=0.
Nery=0.
TEC(IY=0,.
TR(I)=0.

00 11 J=1,200
T(drI)=0.
CONTINUE
CONTINUE

N0 12 K=1ysN
ALP(K) =0,

AR (K) =0,
EL(K)=0,

DX (K)=0.
CA(K)Y=0.



9]
(e}
&)

304

303

31y

68

NO (K)=0
MM(K)=0
CONTINUE

INFUT DATA

Nnog 301 I=19,22

READCIN, LOO) (HEAD(LyJ) v J=1480)

0N 13 K=1sN

READCINY LO2) NOK)JEL(K) v AR (KD rALF(K)
CONTINUE

0o 302 I=23%,25
REALDCINS 100) CHEADCT » J) v J=1580)
REALCINS 1O3) IHyNODE »y 41 » N
READCINS104) [J,NOLyNO2y LHAQ
READCINS LOSHYQy TOUN TOFF »y QU

[0 303 [=26y2¢
REAUDCINY 100 (HEALIC Ly J) v J=1+80)
READCINY 10&6) IRCLy LBC2
READCINS116)TXO»TX1

REAOCINY LOV)TGL ML TG2 2
READCINS108) TINy THLIF

DO 304 [=29.,31

READCIN LOO) CHEANCTI »J) v J=1 980
READCINY LOY) [GyHLAMy DLy ARL Yy CPLYyCFS
READCINY 110 TEFHAS» TONIFTF

0o 308 1=32,34
READCINY100) (HEALI(TLy J) » J=1580)
READCINy LLIDUTAULy INSTEF»UTAUM Yy IMSTEF
READCIN1I2)OTAUF Yy [FREQy TMAX

D0 318 1=35,40
READCINYy100) (HEADC(TI s J) v Jd=1s80)

FRINT THE DATA

N0 306 1=1,18



3046

307

14

308

63
654

63

66

WRITE(IO,?200) (HEAD(Iy ) » J=1+80)
WRITECIO» 200Nyt TLEN

D0 307 I=19,22
WRITE(IO»900)(HEALC(TIYyJ) ¥y J=1,80)
[0 14 K=1yN
WRITECIOy102)NOCK)Y sEL (K) s AKCK) y ALF (KD
CONTINUE

o 308 [=23,25
WRITECIO»200) CHEADCT »yJ) vy J=1580)
[F(IH.EQ. 1) GO TO 40

IF(IH.EQ.2) GO TO 61
WRITE(IO,201)IJyNOLyNO2

GO TO 62

WRITEC(IU,202)

GO TO 42

WRITECIOy 2C3)NODE y N1y N2
[FOIHQRLEQO D WRITE(IO, 2040
IFCIHQLEQ 2IWRITECLO» 224) TONY TOFF y OV
D0 309 I=26+28
WRITECIO»200) (HEADCTL» J) v U=1+80)
TFCIBCLEQ.2) GO 10 63
WRITECLO»20%) TXO

GO 1O 44

WRITEC(IO»206)TGLyHL
TFCIRC2.EQ.2) GO TO 6%
WRITE(TIOs207)TX1

GO 1O 46

WRITE(IOY»208)TG2yH2
WRITECIO»209) TINy TREF
WRITECIOy200) (HEANI (269 J) » U= 1 80)
IFCIGWEQ.1HGO TO &7
WHRITEC(IO,210)

WRITECTIO,200) (HEADC29y 1)y J=1y80)
WRITECIO» YOO (HEADRC28, ) »J=1580)
WRITECIO»R00) (HEALC3O+4) v J=1+80)
WRITECLIOy200) (HEAUC31yJ) vy d=1530)

69



70

WRITE(IO»211)HLAMyARL s ALFLyCFL»CPS
WRITECIO»212)TPHASy TOIFF
GO TO 648
7 WRITECIOY213)

68 WRITECIO»?00) (HEAD(26yJ) vy i=1,80)
Do 310 1=32,34

310 WRITECIO»?00) (HEADCLyJ)y J=1+80)
WRITECIO» 218 DTAUT » INSTEF, UTAUM» IMSTER
WRITECIOP214)DITAUF, [FREQ, TMAX
WRITECIOYy?00) CHEATI(LJ) » J=1+80)
WRITE(IOY217)
WRITECIO»200) (HEALIC(169 )y J=1980)
WRITECIOy 200 (HEADCL vy J) y J=1,80)

IRLTIAL CONDITIONS

FOOST=TIN/ TREF
GLTIME=TG2/TREF
GOTIME=[G1/ TREF
X1TIME=TX1/TREF
XOTIME=TXO/ [ REF
TLEN=TLEN,/12,

IO 30 J=1,N

30 EL(D=EL( /12,
TON=TON/3600.
TOFF=TOFF /3600,
OTAUT=0TAUL, 3600,
DTAUM=DTAUM, 3600,
DTAUF=DTAUF /3400,

INTERFACE  NOUE  NUMBERING

MMOL)Y=NOCL)

GO 16 L=24N

MMCLY =MM(L-1)+NO (L) -1
16 CONTINUE



19

88

FRINT THE INITIAL TEMFERATURE FROFILE

ICOUNT=1

00 192 J=1,M

LOAT J=.
TCICOUNT » J)=FDIGT

TAU=0,

WRITECIG,21%) TAU

Do 31 I=1sM
TECL)=T(ICOUNT y I)XTREF
WRITECIO» 2165 (TECTY s I=14M)

LCOUNT=ICOUNT

LCOUNT=LCOUNT+1
IFCICOUNT JLE . INSTEPYUTAU=DTAUL
ITSTER=INSTEF+IMOTER

IFCCICOUNT GLE CITSTER Y AND CTCOUNT WGTVINSTEP)Y ) U AU=ITAUM

IFCICOUNT .GY . ITSTEP) DITAU=0TAUF
MCL=200

IFCICOUNT.GT.MCL)Y 60 Ty 279
TAU=TAU+DTAU

CALCULATION OF CONSTANTS

D0 15 I=1,yN
UXCO=ELCD) /7 CTLENXCNO (LY -1))

CACI=CALPC D) XUTAU) Z/CUXCTIKOX CL K TLENKTLEN)

CALCULATION UF THE TRIDIAGNOL

[F(NJNE.L) GO 70 32
DO 29 J=1+M

ACIY=1.

BC=-2.%(L, +1./7CACL))
Ccdr=1.

CUNBTANTS

71
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17

34

40

72

GO TO 34

LIST=1

NEW=N-1

00 17 K=1/,NEW

NN=MM (K)

B(NN)==1 K¢ (1o t1./CACKI I+ CCAR (KH1) XKOXCK) )/
1 CAK (K)XKDX (K+1) )k (1. +1 . /CACK+L) )
CONN)=CAK (K+1)KDX(K) )/ CAK (KD RKDX (K F1))
ACNN) =1,

NNEW=NN-1

D0 18 J=LIST,NNEW

Al =1,

B(J)==2.%(1, +1.,/CACK))

Cedr=1,

CONTINUE

LIST=NN+1

CONTINUE

ACCOUNTING FOR FHASE CHANGE IN ICE LAYER

IF(IG.EQ.1) ©O TO 40

THETA=TDIFF/TREF
CSTAR=((CFS+LIFL) /72 ) FHLAM/ (2 X TREFXTHETA)
CONSTI=(TLENKTLENXIX (NI XOX(N) ) /ALP (N XKBTAL)
CONST2=(TLENXTLENXIX(N) XKIX(N)Y )/ (ALFPLAXDTAU)
CONST3I=2 . XTLENXTLENXIX (N)XOX(N)XC5TAR/DTAU
THETAL1=(TFHAS/TREF)+THETA
THETAR=(TFHAS/TREF)-THETA
TRR1=(AKL-AK(N) )/ (2. XTHETA)

ACCOUNTING FOR PHASE CHANGE IN THE ICE LAYER
IF(N.EQ.1) GO TO 35

IFCIG.EQ.1)GO TO 42
LUST=LIST-1 "



CALCULATION OF THERMAL CONDUCTIVITIES AND TEMPERATURES
AT INTERMEDNIATE TIME STEPS FOR °"MUSHY®* REGION.

DO 20 J=LUST M .
IF(J.EQ.LUST) GO TO 401

IF(T(LCOUNT s J) .GT.THETAL) GO TO 43
IF(TCLCOUNT» ) W LT ITHETAZ) GO TO 44

TEMPERATURE AND THERﬂAL.CONDUCFIVITY AT NODE T FOR AN
INTERMEDIATE TIME STEF.

401 TRMINI=AK(N)+TKK1X(((TC(LCOUNTy D +TC(LCOUNT »Jd-1))/2,)

1-¢C(TFHAS/TREF)-THETA))

IFCTRMINL LT ARL)Y TRMINL=AKL
IFCTRMINL.GT AR (N ) TRMINI=AK(N)

T(LCOUNT yM+1)=G1TIME

TCLCOUNT yM+2)=G1TIME

FLUSKLI=AK (N) +TEK1IX C C(TCLCOUNT y DD+ TC(LCOUNTyJ+155/724)
1-C(TFHAS/TREF) -THETA))

IF(PLUSKL LT . AKL) FLUSK1=AKL

IF (FPLUSKL1 . GT AR (N) Y PLUSKTI=AK (H)

TEMF1=T(LCOUNT » D+ (OTAU/ (2o RCSTARKTLENKTLENKICCHY RKOX (NY Y )
IXCCPLUSKIX (T CLCOUNT y JH L) ~TCLCOUNT » )= TRMINLIXCT ULCOUNT s J))
2-TCLCOUNT »d-10))

TEMFERATURE AND THERMAL CONDUCTIVITY AT NODE I+1 FOR
INTERMELTATE TIME STEF,

TRMINZ2=AK(N) +TRK1XCCCTCLCOUNT » D +TCLCOUNT 2 J+1)) /724
1-C(TPHAS/TREF) -THETA))

LFCTRMINZ2 . LT.ARL) TRMIN2=AKL
CAFCTRMINZ2.GT ARCNDI D) TRMIN2=AK (N)

PLUSK2=ARK(N) + TRKIXCCCTCLCOUNT y J+2)+T(LCOUNT y J+1) ) /724
1-((TFHAS/TREF)-THETA)Y)

IF(PLUSK2 LT AR PLUSK=ARL
TF(FLUSK2 . GT AR (N ) PLUSRKR2=aK(N)
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TEMP2=T(LCOUNTyJ+1) +(DTAU/ (2, XCSTATOKTLENXTLENXDX (N)XDX(N)Y))
1X((PLUSK2X(T(LCOUNT » J+2) =T (LCOUNT» J+1) ) -TRKMIN2X(T(LCOUNTy J+1))

2-T(LCOUNT»J)))

TEMFERATURE AND THERMAL CONDUCTIVITY AT NOLE [-1 FOR

INTERMEDIATE TIME STEP.

TRMIN3= Ah(N)fTKhl*(((T(LLUUNF;J~‘)+T(LLUUNT7J“1))/2.)

1-((TFHAS/TREF)-THETA))
IFCTRMINI LT AKL) TRMINS=ARL

IFCTRMINS.GT.ARCN) ) TRMIN3I=AK(N)

FLUSK3=AK(N)+TRKIXCC(T(LCOUNT » D HT(LCOUNT » J-1)) /72

1-C(TFHAS/TREF) ~-THETA))
IF(PILUSK3 LT AKL) PLUSK3=AKL
IF(FLUSK3.GT.AK (MDD PLUGKI=AK (N)

e

TEMF3=T(LCOUNTy J-1)+(OTAU/ (2 KCETARKTLENKTLENKDX (NI XIX(N)))
11X (CFLUSKIX(TCLCOUNT s D) =T (LCOUNTy J=-1 ) )~ IKRMLIMI¥ CT LLCOUNT y -1

2-T(LCOUNT» J-2)))
CALCULATION OF THERMAL CONDUCTIVITY FOR *MUSHY*

TEMIN=AK(N) + TRKKL1 X (CCTEMP LY TEMPS) /2,
1-((TFHAS/TREF)~-THETA))
IFCTRMINGLT ARL) TRMIN=AKL
IFCTRMINGGT AR (N) ) TRMIN=ARK(N)
FPLUSK=AK(N) + TRRIX CCCTEMPLIHTEMF2) /724)
L-{CTPHAS/TREF)-THETA) )

ITFPLUSK LT ARKL)Y FLUSK=AKL
IF(FLUSKGT AR (M ) FLUSK=AR(N)

THERMAL CONDUCTIVITY AT THE ICE-AMBIENT BOUNTHARY

IF(J.NE.M)GO TO 403

FREB=AK(N) + TRKR1X(TEMF1 - ((TPHAS/TREF)-THETA))
IF(FREB.LT AKL) PR E=AKL
IFCFRB.GT.AK (N ) FRE=AK(N)

REGLON ..



IF(J.EQ.M)GO TO 4S

THERMAL CONDUCTIVITY OF *HUSHY® REGION AT ICE-ABRRASION
SHIELD INTERTACZE.®

403 IF(J.NE.LUSTIGO TO 402
FRINC=AR(N) +TRRIX(TEMPL1-((TFHAS/TREF) ~THETA) )
IF(FKINC.LT . AKL)FRINC=AKIL
IF(PRINC.GT.ARK(NIIPRINC=AK(N)
TRINC2=TKMIN
FRINC2=FLUSK
GO0 TO 20

AFFLYING HEAT LQUATION FOR *MUSHY* REGION,

402 A(J)=TKMIN
BCJ)==1 X (TKHIN+FLUSK+CONST3)
C(H=FLUSK ’
DCH)==TCLCOUNT » S~ 1) XTRMIN-FLUSKKTC(LCOUNT » JE1)+TC(LCOUNT 5 J)
1IXKCTRMINFPLUSK-~CONST3)
GO TO 20

AFFLYING HEAT EQUATION FOR LIQUID REGION.

43 [F(J.EQ.MGO0 TO 4%
ACdr=1,
BCJ)=~-2.%C1,+CONST2)
Ccdr=1.,
DO =-TCLCOUNT » S+ 1) =T CLCOUNT » J~1)+T(LCOUNT » J)
1*20*(10“10*CUNST2)
GO 1O 20

AFFLYING HEAT EQUATION FOR SOLID REGION.

44 IF(JL.EQ.M)GO TO 4%
ACh)=1.
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R(D)=-2.%(1.,+1./CACN))

cahr=1.

DC==T(LCOUNTy S+ 1) ~TCLCOUNT y J=1D)+TCLCOUNT » J >

1201, -1./7CACNDY) .
20 CONTINUE

GO TO 49

CALCULATION UF CONSTANT FOR SINGLE SLAR.

42 A(MI=L,
C(MY=1,
MEW=M-1
Nng 33 J=LI5TMEW
Al =1,
Cey=1,
EC)=-2.%C1,+1./7CAMN))
DCHD==T(LCOUNT » JF1) ~TCLUOUNT s J-1) +TCLCOUNT » J-
1X20%(1e—-1,7CACND)

J CONTINUE

4% LA=2
AlM)=1,
CiMi =0,

CALCULATIONS OF THE INTERFACKE CONSTANTS

NEW=N~1

DO U1 K=1yNEW

NN=MM(K)

LECNMD) ==T CLCOUNT y NN+ 1) X CCAR R LY XX (KD D/ CAR () KOX(R+13))
THCCL =10 ZCACKR) D)+ CCARMRA LD XDX (K ) /AR CKD X DX (R L))
XL e -1o /ZCAMKEL) I RTCLCOUNT y NND) =T (LCOUNT y NH-1 ;

NNEW=NN-1

L0 22 Jd=LAsNNEW ‘

DCH=-TLCOUNT y J+1) -TCLCOUNT » J- 1)+ TCLCOUNT » 1)
1¥(2, -2, /7CACK)Y)

22 CONTINUE



S6 DM ==T(LCOUNT yM=1) = (2 K TLENXH2XDX (N) /AK (N) Y XG1TIME
1HCCL. =1 /CAMND )+ CH2XKTLENXDX CN) ZAK(N) ) ) XTCLCOUNT s M)
B(M)==(1.4+1./CAMND )~ CH2XTLENKOX (N)) /AR (ND)
A(M)=1, ¢
GO TO 49

48 MIN=M-1
DMIN)I=D(MIN) - XITIMEXC (M IND
TCECOUNT »M) =xX1 1 INE

CALCULATION AT THE ICE-ABRASION SHIELD INTERFACE

49 INC=MM(N-1)
[FCIG.EQ.1) GO TO $0
IFCTCLCOUNTy INC) JLTWTHETAZY GO TO G0
IFCTCLCOUNTy INE) LOT L THETALY GO TG 91
LUCT=0X(N=-1) KPR INC/ (2 RKTRINC2XOX (N XAK (N=-1))
ACINC)=1,
BOINC)==(1.F1,/CAMH-~1)) ~(OUCTXCIRINC24FRKINC2HCONST3))
COINC) =DUCTR(TRINC2HFKINCG2)
DOINC) =-QUUCTRCTRINC2 FRRINC2DR T (LUDUNT » TNCH1) =T CLCOUNT » INC~1)
THCCL e =10 /CAMHN-1)) FOMRINC2HPR INCL ~CONSTI) 2 DUCTIXT CLCOUNT » ITNC)
GO TO SO
51 ACINCG) =1,
BOINC)Y ==L k(Lo b1 7CACN= L)Y S F COARLFMX =17 )/ CAR (N~ 1) KOX (M) 1)
1KLL+ AL N Z(CACGD XALFL Y)Y )
COING)Y =CARLXKDX (N1 )/ (AK (N-1 7 KDX(N))
CINC) == CARLRDX CH=- 1) Z CAR (= LY RUX DD O RT CLOOUNT » INCH L)
L-TCOLCOUNTyINC-1) 4T U_COUNT y INC R (Lo ~1 . /CACN-1) )+
201~ CALF (N /7 CALFLXCANI D) DR CARLKDX (N=1) / CAR (N~1 3 KIIK(N)Y 3 )

HEAT TERM INCLUSION

30 [FOIHQ.EQ.1)R1=Q
LFOIHRWEQ.2)YR1=uHEAT(TAU, TONY TOFF»QV)
IFC(IH.EQ. 1) 530 TO $2
[FCIH.EQ.2) w0 TO 33
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LA=NN+1
21 CONTINUE

ACCOUNTING FOR BOUNDARY CONDLTIONS *

35 IF(N.NE.L) GO 1O 36
MEW=M-1
DO 37 I=2yMEW

37 DD =-TOLCOUNT» T+ -TCOLCOUNT» L ~-1)+T(LCOUNT » 1)
1X(2,-2,/CA01))

36 IF(IRCL.EQ.1) GO TO 46
DCL)==T(LCOUNY »y ) = (2 KHLRTLENKDX (1) ZAK (L) XGOT IHME
1HCCL =10 /ZCACL) YR CHIXTLENROX LY ZARCID DD X T CLCOUNT » 1)
BO1)==(1.,+1 . /CACL) )~ (HLXTLENXDX (1) 7AKC(L1) )
Cily=1.
GO TO 47

46 DC2)=N(2)~-XOTIME
TCOCICOUNT » 1)=X0TIME

47 IF(IRC2.EQ.1) GU TO 48
IF(IG.EQ.1)GU 10 56

ACCOUNTING FOR FHALGE CHAMGE AT UFFER RBOUNDARY

IFCTCLCOUNT » M) L LT THETAZDIGO TO 54

IF(TOLCOUNT M) L GTL.THETALYGO TO 87

ACM)=TRMIN+FLUSK

RBOM)=— C(PLUSKATRMIMPCONSTI) + (2 KH2XTLENXKFLUSKXDX (N) /FRER) )

DM =—(TRMINFFLUSK) KT CLCOUNT y M=) =4 0 KH2KRTLENKFILUSKKDX (N) %
1G1TIME) /PREHTCLCOUNT » M) R (FPLUSKETRMIN-CONSTI
22 XH2KTLENXFLUSKRAKDX (N) /FKE) )

G0 TO 49

57 DM =~T(LCOUNT yM-1) = (2 K TLENKH2XDX (N) /AKL )Y XG L TIME

THOCL L~ (TLENXTLENKDX ONIXDX (ND / CALFLEXOTAUY D) F(H2KTLENXLOX(N) Z/7AKL.))
2X T (LCOUNT y M)

BOMY=—~1 o= CTLENXTILENKDX (N XDX(N) / CALFPLXDNTAU) ) = (CH2XTLEMNXIOX (N) Z/AKL)
GO TO 49 '



FINITE THICKNESS HEATER

A2=3.4121%144,xQ1,/ (TLENXDX(1U))
HEAT=C((DX (T RTLEN) XX2)XKQ2/ (TREFXANKCLY))
FACT1=AK(TI W XDX(IJ-1) /7 (ARCT -1 XDXCTU))
FACT2=AK(IJ+DOXOX (L) /(AR CT D XKBXCT US4+ 1))
IFC(NO2-NO1) .GT.1)60 TO 54
A(NDL)=1.
C(NO1L)Y=FACT1
AINDZ2) =1,
CINO2Y=FACT2
BNOL)=-1,.K((Le+1 . /CACLU-1I)+FACTLIXRC(L 41 . /CACT D))
BONO2)Y=-1.%C(LoH1 . /CACTUNY FFACT2XCL FL . Z7CACTU+LY D)
94 DINO1)=-TC(LCOUNT»NDL~1)~FACTLXT (L.COUNTyNOL+HL)
141 ~1./CALI-1)+ (1 -1 /CACTI DD XRFACT L)X T CLCOUNT » NOL ) ~FACTLRHEAT
DONO2)Y=-T(LCOUNT »NO2-1) -FACT2XT(LCOUNT s NO2+ 1) ~HEAT
1HCCL =1 o /7CACLUNIH L o= 1 L /7CACTIHIDDIXFACT2) X T CLCOUNT » NO2)D
IFCINO2-NO1) LLEL.1)G0 10 32
NOW=NO1+1
NNOW=NO2-1
N0 53 IL=NUW,HNNOW
DCIL)=D(IL) -2 XHEAT
GO TO 352

en
n

FOINT HEAT SOURCE

&1
€3}

LONODE) =0 (NOUE) - (2, XTLENXDOX (N1)XQ1%3,4121%144,)/(TREFXKAK(NL))

SOLVING THE TRIDIAGNOL MATRIX

8]

IFCCIBC1I.EQ.2) JANDL (IRC2,EQR.2))6G0 TO 94
IFCCIRBCL.EQ.1) AND, (IRC2.EQ.1))C0 TO 95
IFCCIBCL.EQ.2) JANDL (TRC2.EQ.1))GO TO 96
CALL TRIDAG(2sMsAYByCoLry TR
TR(1)=XOTIME

4]
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GO 10 97

93 MIN=M~-1 ‘
CALL TRIDAG(2yMINyAsERCyIyTR)
TRO1L)=XOT [ME
TR(M)=X1TIME
G0 70 97

94 CALL TRIDAG(1yMyAyByCyIy TR)
GO TO 97

26 MIN=M-1
CALL TRIDAG(1sMINs>AsEByCrII»TR)
TR(M)=X1TIME

?7 TMAX1I=TMAX/TREF
0o 23 J=1-M
TCICOUNT»J)=TR(J)
TE(DH=TR{J)XTREF

22 CONTINUE
IFCCICOUNT/ZIFREQXIFREQ.NE.ICOUNTIGO TO 38
MOVERZ2=INC
TITAU=TAUX34600.,
WRITEC(IO» 21S5)TITAU
WRITEC(IOQy 216 (TECI) »I=1+M)
WRITEC(IOQs20C0) (HEAD (L J) v Jd=1,80)
WRITECIO»200) (HEAL(35%y 1)y d=1980)
WRITEC(IOQYy200) (HEADC(Ls v J=1+80)
Ji=1
NEW=N~-1
[0 24 L=1sNEW
LDh=35+L
INT=MM(L)
WRITECIO»Y00) (HEADCIDY JID » JI=1,80)
WRITECIOry216) (TECL) yI=JLs INT)
JI=INT

24 CONTINUE
IF(TCICOUNTyMOVER2) JLLE.TMAX1)Y GO TO 88

100 FORMAT(80AL1) '

200 FORMAT(’ ‘y80A1)




8l

1F13.6 ‘DEG.F'// * THE REFERENCE TEMFERATURE  »20Xy " TREF =/yF13.6y
2NEG.F*)

210 FORMAT(// ‘ THE FHASE CHANGE IN THE 1CE LAYER 1S CONSIDERED )

211 FORMAT(/ * LATENT HEAT OF ICE “»21X» HLAM =" ¢ 13.8y ‘ReT Us /LR’ /
1/ THERMAL -CONLUCTIVITY OF WATER’»12Xy’AKL =" yF13.6r "BeT Us/HE,
RFTCOEG.F/ ¢ THERMAL DIFFUSIVITY OF WATER “s12%v ALFL =/ yF13.,6y
3 FT.FT/7HR. "/ © SFECIFIC HEAT X DENSITY OF WATER “y8Xy 'CPIL =’y
AF13.69 BT UG /CUFTLLEG.F’/ ¢ SPFECIFIC HEAT X OENSITY OF 1LCE “y
5910Xs CFS =/ 9FL13.69 BeT UG/CUFTLOEG.F)

212 FORMAT(/ * FHASE CHANGE TEMFERATURE’ y24Xs  TFHAS = yF13.6y ' DEG.F’/
17 HALF FHASE CHANGE TEMPERATURE INTERVAL TOIFF=/3F13.6y
2NEG.F’) '

213 FORMAT(// 7 THE FHASE CHAMGE IN THE ICE LAYER IS5 NOT CONSIDEREL )

218 FORMAT(/ ¢ INITIAL TIME STEP’ 26Xy "OTAUL =/ vF13.6y SECS’ /28Xy
L/FOR TIME STEPS INSTER =/,13/ / INTERMEDIATE TIME STEF‘ 21Xy
2OTAUM = yF13.69 " GECS /28Xy "IFOR TIME STERS IMSTEF =7513)

214 FORMATC(/ ¢ PINAL TIME STEF 28Xy “NTAUF =/3F15 .69 SECS /71Xy
1/ FREQUENCY OF TIME STEF/FRINT OF QUTFUT +8Xy - LFREQ =’ +13/
21Xy’ MAX. TEMF., AT ICE-ABRASTON SHIELD INTERFACE’ »4Xy
ITHAX =/ yF 13,6y "DEG.F)

217 FORMAT(///728Xy 7 TEMPFERATURE PROFILE IN  DEGREES F /)

215 FORMATC///735Xy 7 TIME  TAU =/ yFl5.6y° SECS)

216 FORMAT(/159Xy5F13.5)

999 STOR
END

SUKROUTINE TRIDAGC(IFyLsAsBsCrLrV)
DIMENSION ACL) BCL) »CC(1)y0CL) »YCL) y BETACLO0) » GAMMA(100)
D0 10 I=1,100
BETACI) =0,
GAMMACL) =0,
10 CONTINUE
BETACIF) =K (1)
GAMMA (IF)=[C1F) / RETACLF)
IFF1=[F+1
00 L I=IFF1,0.
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101 FORMAT(S54Xy [3/54X»[3/34XsF12.6)

102 FORMAT(7XsI2»7XsF10.5»9XsF13,6714X5F13.6)

103 FORMAT (53X I3/93XyI13/G3X»I3/53Xs13)

104 FORMAT (53X, I3/53Xs13/53Xs13/53Xy13) .

105 FORMAT(S3X,F11.5/753X,F11.5/53XyF11,5/53XyF11.5)

106 FORMAT(53X»13/53X,13)

116 FORMAT (46X y1F13.6/46X+F13.6)

107 FORMAT (46XyH13.06/46X9F15.6/746X9F13.6/786XyF15,58)

108 FORMAT(46XrF13.6/736X9F 13,8

109 FORMAT(S1Xy [3/747XyF13.6/A47K9FL3.86/47XyF1306747X9yF13.6/747X9F13,6)

110 FORMAT(AXyF13.6/747%XsF132.6)

111 FORMAT(S0Xy 136,/ 50Xy LE/SOXFL13.6/50XI3)

112 FORMAT(SOX»F13.6/50X e L3/750X 171308

200 FORMAT(/ 7 TOTAL NUMBER OF SLARS 351Xy "N="3 13/ 7 TOTAL NUMRBER
1 OF NOLES ¢31Xs 'M="» 13/ 7 TOTAL LEMGTH OF COMFOSTIIE SLag’y
219Xy " TLEN=»yF13.6y " INCHS )

201 FORMAT (7 INTERNAL HEAT GENERATIOM IN SLAR NUMGUR 99Xy LTd=7,
1I13/733Xy " BETWLEN NOLE NOL="y L3/36Xy 7AND NOLC. NO2="+ [3)

202 FORMAT(//10XsTHERE IS NUO  HEAT SOURCE  FRESENT 7)

203 FORMAT(/ ¢ FOINT HEAT SOURCE [S FREGENT AT 217Xy "NODE="y 13/
133Xy "BETWEEN SLAR N1="913/36Xy’AND  SLAR N2=79y13%)

204 FORMAT (S 7 CONSTANT HEAT INPUT OF 7 228Xy Q = vFFL3.6y "WATTS, THEIN D

224 FOEMAT(/ 7 ON-TIME FOR MHEAT INFUT 27Xy "TON='yF13.6y "SECS /
17 OFF~-TIME FOR HEAT INFUT 225Xy " TOFF=/9F L3,y "SECS /
1 VARIARLE HEAT INFUT OF 7 »28Xy QU= F1346y "WATTS/LIMNKINY)

209 FORMAT(/7 7 CONSTANT TOMPERATURE Al X=07917Xs’ TXRO="9F13.40
17 DEG.F’) :
206 FORMATC(//7 ¢ CONVECTION OCCURS AT X=0'/11Xy ' AMBLENT TEMPERAT

LURE ySX» "TG1="9F13.5s "UEGF /11Xy “HEAT TRANSFER COEFF./yS5Ky Hi="y
AFLG 6y "B TOU/MHRGFTWFTLOESF )

207 FORMAYTC(// 7 CONSTANT TEMPERaTURL AT X=17 51l 75y 7TXL= 9y F 13,6y
1/DEG.F )

208 FORMAT(// / CONVECTION OCCURS AT X=17/11Xy "AMRBIENT TEMFERAT
LURE »SXy " TE2:=9F 13069 "NEGF /11Xy "HEAT TRANSFER COEFF ./ 95Xy H2=7y
2F150({)! IBoToU/HRoFToFTODEGOF/)

209 FORMAT(/ 7 THE INITIAL TEMPERATURE [N THE COMPOSITE SLAR  TIN =/,



]

BETACI)=B(I) A(i)*C(I“l)/BETA(I ~-1)

GAMMACII=(D(I)-A(I)XGAMMA(I~ 1))/BETA(I)
V(L) =GAMMA (L)

LAST=L-IF

ng 2 K=1,LAST

I=L-K "~

VD) =0AMMACT) -C{IIXV(I+1) /RETACI) -
RETURN

END

FUNCTION QHEAT{(TAU» TON, TOFF»QVY)
IN=IFIX(TAU/ (TON+TOFF))

IP=IN+1

A =INX(TON+TOFF)

B =INKTOFF+IFXTON

C =IFXK(TONFTOFF ) .

QHEAT=Q

IFC(R.LT. TAU).nND.\IAU LT CYIAHEAT=0.
IF(TAU.EQ.TON)QHEAT =0\
TTON=TON+TOFF ‘

- IF(TAU.EQ. TTON)GHEAT Qu
~ RETURN .

END
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