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Abstract: This report consists of 3 parts

" Part A: The polyimide resin, LARC-160, has been prepared from diethyl-3,

3',4,4'-benzophenone tetracarboxylate (BTDE), ethyl-5-norbornene-2,3-dicarboxylate

(NE) and Jeffamine AP-22. The imidization reactions of NE and BTDE have been

studied by HPLC, 13C-NMR and IR. NE imidizes slowly at 12°C; BTDE imidizes

when the resin is heated above 100°C. Both imidization reactions proceed

directly to the imide. Neither amic acid is present in significant quantities

at any stage of the imidization reactions. The monomer mixture has been stored

at 12°C for periods up to 14 months. The effects of resin aging at this

temperature on the chemical composition of the resein monomer mixture and

the imidized polymer formed on curing have been investigated. Aging the

resin monomer mixture has the effect of partially advancing the imidization

reaction. The average size of the cured polymer increases slightly with resin

age.

Part B: The stability of a series of BTDA-DABP and BTDA-MDA, polyimide

precursor resins in DMAC was investigated by measuring their molecular weight

measurements were made using a membrane osmometer. The dependence of the

rate of degradation on the chemical nature of the isomeric diamine and the

geometric structure about the amide linkage was examined and discussed in

terms of a previously proposed mechanism for degradation. The effect of the

presence of water, the concentration of the resin, and the temperature was

also investigated. The degradation rate was doubled by the addition of

0.5(v/v) % H20 to the anhydrous resin solution. Increasing the concentration

of the resin solution and the presence of an electron donating group between

the phthalic acid groups increased the stability.
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This work was published in the American Chemical Society Advances in

Chemistry Series No. 169 Stabilization and Degradation of Polymers (1978)

p. 198-204.

Part C: Glass transition temperature and the solubility of crosslinked

nadic polyimides were examined for two systems. The first was solventless

LARC-160, and the other was PMR. Both the PM_ and LARC-160 resins were

used as received from the NASA Langely Research Center. Both of these resin

systems consist of a mixture of the diethyl ester of benzophenone tetra-

carboxcylic acid (BTDE), and the ethyl ester of norbornene dicarboxylic

acid (NE) and metheylene dianaline (MDA). The LARC-160 differs from the

PMR resin in that LARC-160 contains, in addition to bifunctional MDA isomers,

trifunctional aromatic amines.
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Part A

Characterization of the Imidization of the

Aromatic Polyimide, LARC-160

By

S. E. Delos, R. K. Schellenberg, J. E. Smedley.and D. E. Kranbuehl

Department of Chemistry

College of William and Mary

Williamsburg, Virginia 23185

Introduction

Polyimides with aromatic Broups in their backbone have gene=ated considerable

interest as matrix resins for high performance composites because of their thermal

and thermooxidatiSe stability. 1 On the other hand, the high glass transition

temperatures of polyimides make processing difficult One processing approach

has been to make a predominately linear polyamic acid resin and then to imidize

the polymer chain in the cure cycle. A second and more promising approach is

2
to make relatively short imide chains which are encapped with a nadicjgroup.

These oligomeric chains are then crosslinked in the post-cure cycle through an

addition reaction of the end-capping groups at a higher temperature and pres-

sure. LARC-160 is prepared in this manner. Diethyl-3,3',4,4'-benzophenone-

tetracarboxylate, ethyl-5-norbornene-2,3-dicarboxylate (nadic ester) and a mixture

of amines composed primarily of p,pfmethylenedianiline are mixed and cured at

a temperature between 140 and 200°C, to form the imide. At higher temperatures

and pressures, these imide oligomers are crosslinked through an addition reac-

tion involving the nad ic end-capping group.

In a preliminary study, Young and Sykes reported that aging the resin at •

3
room temperature affected the mechanical properties of cured LARC-160. We
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have examined the effects of resin aging at 12°C on the chemical composition

of the resin monomer mixture and the imidized polymer formed on curing. Changes

in the chemistry of the monomer mixture with age have been observed and char-

13C NMRacterized by HPLC and - . The effect of resin age on the size of the

polyimide oligomers, which determines the distance between crosslinks, has been

determined by HPLC. The imidization reactions of the nadic and benzophenone

tetracarboxylate monomers have been studied using HPLC, 13C-NMR, and IR. A re-

vised reaction scheme for LARC-160 polymerization has been proposed.

Experimental

The solventless LARC-160 resin was prepared as prescribed by St. Clair and

Jewell using 3,3',4,4'-benzophenone tetracarboxylic anhydride (BTDA), 5-nor-

bornene-2;3-dicarboxylic anhydride (NA) and a commercially available mixture

of aromatic amines, Jeffamine AP-22, which is composed primarily of p,p-methyl-

2
enedianiline (MDA), (see Fig. i). BTDE, the diethylester of BTDA, was pre-

pared by dissolving the anhydride in a 5 M% excess of ethyl alcohol and

refluxing for one hour. NE, the monoethyl ester of NA was similarly prepared.

These mixtures were then cooled and mixed with the appropriate amine molar

equivalent of Jeffamine AP-22. The resulting resin mixture was stored in a

refrigerator at 12°C.

High Pressure Liquid-Gel Permeation Chromatography (HPLC-GPC) was performed

on a Waters' Associates Liquid Chromatograph equipped with a model M-6000A

chromatography pump, model U6K injector, and a Model E 401 differential refrac-

tometer.

Two column-solvent systems were used: (a) samples were dissolved in

tetrahydrofuran (THF), UV grade, from Burdick and Jackson, then eluted on a
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four column bank consisting of two 500 A° and two i00 A° _-styragel columns,

- or (b) samples were dissolved in UV grade chloroform, also from Burdick and

Jackson, and eluted on a five column bank consisting of a 103 A °, two 500 A =

and two i00 A ° _-styragel columns.

Carbon 13 Nuclear Magnetic Resonance (13C-NMR) studies were done on a Varian

FT-80A NMR Spectrometer. Samples of the resin were dissolved in DMSO-d 6, with

TMS as an internal standard. A spectral width of 5000 Hz was used.

13C chemical shift assignments of the carbonyl resonances of BTDE and NE

were made by comparison with the monomers and the following model compounds:

3-[(phenylamino)carbonyl]-Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid;

2-[°(phenylamino)carbonyl]-benzoic -acid; N-phenyl-5-Norbornene-2,3-dicarboximide;

N,N'-(methylenedi-p-phenylene)di-5-norbornene-2,3-dicarboximide (Bisnadimide

or BNI); and p,p'-methylenedianiline (MDA). These compounds were supplied by

NASA-Langley Research Center.

A Perkin-Elmer 337 Grating Infrared Spectrophotometer was used for IR

studies. Films of fresh resin were prepared on KBr plates and the same sample

was taken through a given cure cycle. IR spectra were taken of the fresh resin

and at selected points along the cure cycle.

Results

Effect of Age on the Resin Monomer Mixture

The freshly prepared monomer resin mixture was stored at 12°C in air.
°•

Aging of the resin was monitored by HPLC. (Fig. 2, Table I.) Peaks were

assigned according to the elution volumes of the respective monomeric species

and verified by spiking resin samples with the monomer. Weight %'s were cor-

rected for differences in the differential refractive index as a function of
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concentration for each monomer species. A composite value for the oligomers

_ was estimated based on the experimentally determined values for the monomers.

As can be seen in Table I, the nadic group reacted with time, even at

subambient storage temperatures. The major product of this low temperature

reaction was nadimide, the imides formed from the reaction of one MDA with one

NE (NI) and one MDA with two NE (BNI). The presence of nadimide was established

by comparison of the HPLC spectra of aged resin and a sample enriched with

NI + BNI. Nadimide was first observed in four week old resin and continued to

increase in quantity with resin age throughout the study until, after 377 days

at 12°C, all of the nadic groups had imidized. (Table I.) 13C-NMR data which

are presented below also show that after 14 months virtually all of the nadic

groups are imidized.

In contrast to NE, BTDE did not imidize at 12=C. An exact determination

of the change in the weight % of BTDE was made difficult because the trifunctional

amine in Jeffamine (peak 3.5) eluted as a shoulder on the BTDE peak (peak 4).

Complete separation of the two components was not possible on the four columns

used. Measurement of the relative contribution of each of these two components

was subject to error as shown by the variation in weight % reported for these

two species. Determining the area of the BTDE peak was further complicated by

the presence of the amic acid of the nadic monomer which eluted at about this

volume. Additionally, some of the lower molecular weight imides formed by the

reaction between one NE and the tri-(n=l) or tetra-(n=2) functional Jeffamine

overlap and increasingly contribute to this peak area with resin age.

A low molecular weight imide (peak 5) was formed when the resin monomer



7

mixture was prepared. Its weight percent increased with time. The low molecular

weight imide is thought to be a mixture of higher molecular weight reaction

products between the nadic ester and the tri- and tetrafunctional amines (for

example, NE2-Jef., n=2). Evidence will be presented later that these short

imides are incorporated into longer chains during curing.

The data presented above were obtained on monomers mixed at ~50°C, the

temperature at which Jeffamine is just fluid enough to ensure proper mixing with

the esters. When warmer mixing temperatures were used (>_80°C) a monomer resin

mixture resembling aged, "cold-mixed" resin was obtained (Fig. 3, Table III).

In fact, about the sameodegree of nadic imidization, as measured by nadimide

forma=i=n, was observed in the "warm-mixed,['day old monomer resin mixture as

in the aged "cold-mixed" resin which had been stored eight months. The warm

mixed resin also contained more of the low molecular weight imide (peak 5). The

weight % of BTDE remained at or above its originally formulated value of 33%

supporting the view that little if any of it had reacted. (The apparent increase

in the weight % of BTDE was likely due to formation of the amic acid of the nadic

group and nadic-jeffamine imides which elute at the same volume.)

These marked differences in the apparent extent of reaction of "warm-"

and "cold-" mixed resin show that the monomer resin mixture is sensitive to

preparation and storage conditions. For composite preparation, the resin is

warmed slightly to achieve proper impregnation of the composite fibers. The
°

actual time and temperature of this prepregging operation can apparently have

an effect on the extent of the reaction or "age" of the resin and on resin

properties in subsequent curing steps.

In order to examine the imidization reaction of the LARC-160 resin more
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13C NMRexplicitly, a - study of the carbonyl absorption peaks of the aging resin

was undertaken. A fresh batch of resin was prepared and mixed warm (with both

esters and amines at 80°C). Samples of this resin were dissolved in DMSO-d 6

at different ages for 13C-NMR analysis.

As can be seen in Fig. 4, examination of the nadic carbonyl resonances

indicates that nadimide (177 ppm), designated (a), was present even in this initial

sample. The nadic ester and acid peaks (173.3 and 172 ppm), (b and c) were also

present. No nadic amide (169.8 ppm), (d), could be observed. However, after

six days at 12°C (Fig. 5) a small but distinct amide peak (d) was observed.

The magnitude of this peak remained small and disappeared

after 14 months of storage at 12°C when nadimidization was complete

(Fig. 6). Thus, while some amic acid is observed as an intermediate, the reac-

tion clearly favors complete imidization. These findings are contrary to the

presumed reaction sequence for LARC-160 (Scheme 1)4 which shows the amic acid

forming at low temperatures, and the imide appearing only after heat is applied

in a dehydration step.

The extent of reaction of the nadic groups _rith monomer mixture age was

determined from the 13C-NMR data. Although 13C-NMR does not give quantitative-

results unless special techniques are employed, 5 an estimate of the amount of

nadic carbonyl groups in the acid, ester, amide and imide forms was made. This

analysis was possible because we we=e only comparing quaternary carbons at the

same position on the nadic moiety. In this case TI and NOE effects on these

carbons should be similar, and their relative intensities of about the same

magnitude. The extent of reaction was calculated as follows: All carbonyl

functional groups were assumed to have the same intensity. Therefore the
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fraction of reacted nadic groups was equa! to the imide intensity plus twice

the amide intensity (one amide carbonyl + one acid carbonyl per molecule in this

form) divided by the total intensity of all nadic carbonyl groups. The results

are shown in Table II.

Our results on the imidization of the nadic group in aging LARC-160 monomer

mixtures substantiate the preliminary findings of Young and Sykes who first re-

3
ported observing BNI in aging LARC monomer mixtures. Imidization of the nadic

group in MeOH solutions of PMR monomers at ambient and 5°C storage temperatures

has also been reported. 6 (PMR is a sister resin to LARC in which all of the amine

is p,p'-MDA (Jef., n=0)).7 Neither of these groups were able to fully charac-

terize the nature of the imide nor observed and followed the increase in imidi-

zation over an extended period, as is reported here for LARC-160.

The BTDE monomer was monitored in these same 13C-NMR studies. Unlike NE,

BTDE does not imidize under storage conditions. In the warm-mixed LARC monomer

mixture, BTDE peaks were observed at 167.7, 167.1, 166.9 and 166.4 ppm, due to

the acid and diester in various combinations (Fig. 4 and 5). These resonances

neither shifted position nor grew in number with resin age. No peak

corresponding to the benzophenone tetracarboxylate imide at 166.2 ppm. was ob-

served at any age. BTDE appears to be stable over the six month storage period

of this study. These results are in contrast to the reported slow esterifica-

8-10
tion Of BTDE to tri- and tetra-esters reported for PMR. One should note,

however, that the cold-mixed resin produced spectra which all contained two

additional peaks in the benzophenone tetracarboxylate region (Fig. 6). Spectra

of a mixture of tri- and tetrafunctional esters prepared in our laboratory also

contained the two peaks in question. Quality control studies on the LARC
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monomers have shown that small amounts of these esters are often formed during

4
BTDA esterification.

The lack of additional esterification of BTDE in LARC-160 is not too

surprising when one compares the monomer mixture with that of PMR. PMR is stored

as an alcohol solution of monomers. The degree of tri and tetraester formation

8
has been shown to be a function of the amount of that solvent present. LARC,

however, is stored as a neat monomer mixture. Therefore, although a small amount

of EtOH should be present as a by-product of the nadic imidization reaction,

it is insufficient in quantity to cause BTDE esterification.

Our HPLC and 13C-NMR studies on the effects of age on the monomer mixture

indicate that changes in the monomer mixture with age are confined to reactions

involving the nadic group. This group slowly imidizes with time. The BTDE

group remains unchanged as indicated by both the HPLC and NMR data.

The Imidization of Diethyl-3,3',4,4'-Benzophenonetetracarboxylate

Since the nadic group formed an imide directly and BTDE did not react at

low temperatures, the imidization of BTDE_as then examined. Was there a dis-

: tinct polyamic acid stage, or did the BTDE monomer also react directly to form

the imide? At what temperature did these reactions take place?

Fresh, "warm-mixed" resin was cured at 180°C. The degree of imidization

as a function of cure time at 180 ° was monitored by both 13C-NMR to study the

cure reaction and by HPLC to monitor oligomer distribution (Fig. 7, Table IV).

Within 15 minutes at this temperature the monomers and the low molecular weight

imide (peaks i, 2, 4 and 5) appeared to have reacted. After 15 minutes, changes

continued to occur as the shorter oligomers (peaks 6 and 7) reacted to form

higher molecular weight polymers. Examination of Fig. 7 shows a gradual shift
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in the elution volume of peak 8 to lower values, corresponding to a higher

average molecular weight. After 30 minutes of exposure to this cure temperature,

material insoluble in THF began to be formed. The amount of this insoluble high

molecular weight polymer increased with cure time.

Since BTDE had already completely imidized after 15 minutes at 180°C, this

reaction was followed at several lower temperatures to look for the expected

amide intermediate in the imidization process. Table V is a summary of the

13C-NMR results for the carbonyl shifts. In the benzophenone carbonyl region

_ne first observes the disappearance of the e_ter/atid peaks _t 166.9 ppm, (g) and

167.6 ppm, (e), as the amide at 166.3 ppm, (i), and the imide at 166.2 ppm, (j),

form. Finally, all peaks in this region (e-i) collapse into the i_ide _eak, (j).

The amide peak, (i), is never observed without the simultaneous presence of the

imide peak, (j), suggesting that the amide is a transient intermediate in the

imidization reaction rather than an isolatable polymeric species.

The fact that imidization of the nadic and benzophenone tetracarboxylic

monomers occur at two widely different rates and temperatures was confirmed by

IR studies.

An infrared sample was prepared as a thin film between two salt plates.

Each sample was run without curing, then the plates were cured for measured

amounts of time and additional spectra taken. Once the imide IR absorbance had

become constant, the cure temperatur_ was raised on the same sample and the

effect of further curing on the sample was observed.

The imide IR absorption peak has been reported to occur between 1810 and

-I ii -I
1775 cm We observed the imide peak at 1790 cm in LARC-160. In the fresh

resin the amount of imidization, as measured by the intensity of this peak,
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was negligible. As the sample cured, the peak emerged as a shoulder on the

-i
broader 1730-1700 cm carbonyl stretch. (Fig. 8.)

12
The percentage of imidization was calculated using the equation:

A(1) (t) A(1)
Percentage Imidization = A(2----_ A(2) (t=0)

A(1)A(1) (t=0)
A(2) A(2)

-i
A(1) = Absorbance of Imide Peak at 1790 cm

-i
A(2) = Absorbance of Standard Reference Peak at 1490 cm

t = = was taken as the time beyond which no further changes in the

imide peak were observed at 220°C.

No imidization was observed in the resin before hemf_in_.When the sample -

was heated at 70°C for up to 660 minutes, the imide peak grew to approximately

40% of its final size. The sample was then heated at 180 ° for up to 360 minutes.

This second cure stage brought about a significant increase in the amount of

imidization, to approximately 85% of the final imidization. The sample was then

cured at 220°C for up to 330 minutes. The amount of imidization increased

slightly indicating that the imidization reaction was not quite complete after

curing at 180°C. (Table VI.) As shown in Table VI, slightly less than 1/2

of the imide is formed below 100=C, consistent with the hypothesis tha_ only

the nadic group, which represents 48% of the carbonyl carbon in the monomer i

mixture, is reacting at this lower (70°) temperature. The remainder of the

imidization, which involves BTDE, takes place at the higher temperature, (180°).

-i
An absorption band at 1850 cm at temperatures _ 120°C has been reported

and attributed to anhydride formation as an initial competing reaction to

imidization in the related PMR system. 13-15 We do not observe any absorbance
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in this region for the curing LARC resin. Furthermore_ the 13C-NMR experiments

- on samples cured at 180 ° did not detect any anhydride for either the nadic

(172.3 ppm) or benzophenone tetracarboxylate (162.4 ppm) carbonyl groups.

(Table V. )

The IR experiments substantiate the 13C-NMR and HPLC data which indicate

that imidization occurs in two stages: first, low-temperature imidization of

the nadic moiety forming the end-capped amines and bisnadimide, and second,

at temperatures over 100°C, imidization of the benzophenone tetra-

carboxyla_e mnnomer occurs.

In solution, polyimides are formed via the low temperature polymerization

to the _olyamic acid, which imidizes upon the npp!ication of heat. Poly-

merization of solventless LARC monomeric resin has been assumed to follow the

4
same reaction sequence. However, based on the above evidence for the formation

of bisnadimide, even at subambient temperatures, and the observation of the

benzophenonetetracarboxyl amic acid only as a transient intermediate, we believe

! Scheme II is m more accurate representation of the imidization reaction sequence

for LARC-160 polymerization.

The Effect of Resin Age on the Cured Polymer

The major effect of age on the LARC-160 monomer mixture appears to be the

preferential reaction of NE with the amine mixture. The consequences of this

partial advancement on the cured resin product will be considered next.°

The effect of resin aging on the length of the oligomeric chains was examined.

Curing reactions under constant conditions were performed at intervals as the

"cold-mixed" LARC-160 monomer resin mixture aged. Samples of the aging monomer

resin mixture were cured at either 140 ° or 180 ° for one hour on the same day that
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the monomer mixture was examined by HPLC.

As can be seen by Fig. 9 and Table VII, HPLC analysis of the polymeric

species formed at 180 ° shows a small but noticeable shift toward higher molecular

weight as the resin ages. The elution volumes of the three polymeric segments

designated Polymer l, 2 and 3 correspond to elution volumes for polystyrenes

of molecular weight i000, 3000-20,000 and >20,000 respectively. Peak 5, which

has been attributed to unfully endcapped imides (see discussion of monomer mix-

ture results) is not present in these cured samples, and the weight % of peak 3,

which was attributed to BNI + NI is reduced. During the curing process, the

unfully endcapped nadimides are incorporated into longer chains. BNI, capped

at both ends, is unable to react further, and remains as a low molecular weight

component in the polymer system. BNI is observed as a major reaction product

in the cured polymer regardless of resin age. Results for ages greater than

106 days are not shown because the amount of insoluble material increased with

age so that these polymers could not be examined by the solution methods available

to us.

A similar shift toward higher molecular weight of the cured product with

increasing monomer mixture age is observed at a 140 ° cure temperature. Changes

in the polymer cured at 140°C for one hour as a function of age cen _e seen in

the amounts of residual Jeffamine and BTDE and the higher molecular weight species

designated imide and polymer 3. The elution volume of the low molecular weight

imide corresponds to the elution volume of polystyrene of molecular weight 800;

polymers l, 2 and 3 correspond to polystyrene molecular weights of i000, 2500

and 5000, respectively. BNI is a major reaction product whose concentration

appears to be independent of resin age. LARC polymer is not completely cured

after one hour at 140°C, as shown by the existence of BTDE and Jeffamine peaks
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in the HPLC spectra (Fig. i0, Table VIII) and verified by the presence of

unreacted BTDE in the 13C-NMR spectra. She Jeffamine, BTDE and imide peak areas

all decrease and that of polymer 3 (the highest molecular weight species)

increases with the age of the resin. These results show that aging the resin

has the effect of partially advancing the reaction since more polymer and less

Jeffamine and BTDE are observed under identical cure conditions with increasing

age of the monomer mixture. Furthermore, aging the monomer resin mixture leads

to the formation of slightly higher molecular weight polyimide chains after

curing at 140 ° and 180 °.

The increase in degree of cure at a given cure time and temperature for

aged LARC monomer resin mixture is in contrast to effects of resin aging in the

PMR system. Lauver has found that PMR resims n_n_aininB the BTTE products formed

during storage of alcohol solutions of PMR prepolymer require longer and higher

8-10
temperatures to imidize. In the LARC-160 system, however, we have shown

that the nadic group reacts with time but that BTDE remains stable under the

conditions of our experiments. The partial preimidization of the nadic group

; produces an advanced reaction state for the aged r_sin and when identical cure

times are used for aged and fresh monomer mixtures, =he older mixture has a higher

average cured molecular weight.

Conclusions

The composition of LARC-160 resin monomer mixture changes during aging at

12°C. The major effect of resin age is the formation of BNI, and the advancement

of the nadimization reaction.

The NE and BTDE monomers imidize under different conditions. NE imidizes

at 12 ° over a period of weeks and is completely imidized in a few minutes at
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125 °. No BTDE imidization was observed at 12 °. Imidization of BTDE at 125 °

requires several hours, but is complete in i0 minutes at 180 °

Both NE and BTDE imidization reactions proceed directly to the imide. Neither

amide is present in significant quantities during any stage of the imidization

reaction, and is not a stable intermediate.

Aging the monomer resin mixture leads to the formation of slightly higher

molecular weight polyimide chains after curing a_ 140° _nd iB0 °.

BNI is a major product of polymerization of LARC-160, regardless of resin

age.
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Fig. i. LARC-160 monomers:

BTDE = benzophenone tetracarboxylate, diethyl ester.

NE = ethyl-5-norbornene-2,3-dicarboxylate.

MDA = p,p'-methylene dianiline = Jeffamine, n = 0,

Jef = Jeffamine, where n = 0, 1 or 2.

Fig. 2. LARC-160 monomer mixture, "cool-mix," 0.2% in THF, eluted from

a 2 x 500 A ° + 2 x i00 A° column bank _fter the resin was stored

a_!.2°C for the indicatedn_mber of _s.

Fig. 3. LARC-160 monomer mixture, '_arm-mix,"0.2% in THF, eluted from

a 2 x 500 A° + 2 x IOOA= column bank after resin was stored at

120C for the indi=mtednumber of days.

Fig. 4. 13C-NMK spectrum of LARCII60 monomer mixture immediatelyafter

mixing. Solvent = DMSO-d6; k = benzophenonetetracarboxylateketu

carbonyl; a = nadic imide carbonyl;b and c = nadic acid and ester

carbonyls;e-h = benzophenonetetracarboxy!itacid and ester
i

carbonyls.

Fig. 5. 13C-NMR spectrum of LARC-160 monomer mixture after storage for

six days at 12oc. d = nadic amide carbonyl; other assignments as

in Fig. 4.

Fig. 6. 13C-NMR spectrum of LARC-160 monomer mixture after storage for

14 months at 12°C. Assignmentsas in Fig. 4.
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Fig. 7. HPLC spectra of LARC-160 cured at 180°C for times up to

60 minutes, 0.2% in THF with polystyrene - 51,000 added as

an internal standard, eluted from a bank of 2 x 500 A ° + 2 i00 A °

_-styragel columns.

Fig. 8. Infrared spectrum of fully imidized LARC-160 after curing

ii hours at 70 °, 6 hours at 180 ° and 2 hours at 220 ° .

Fig. 9. HPLC spectra of LARC-160 cured at 180°C/I hour from aging monomer

; mixture; 0.2% in CHCI 3, eluted from_ five column bank consisting

of 1 x 103 A °, 2 x 500 A = and 2 x i00 A = _-styragel columns. The

monomer mixture _as stored at 12°C for the indicated number of

days before being ctrred.

Fig. i0. HPLC spectra of LARC-160 cured at 140°/1 hour from aging monomer

mixture, 0.2% in THF, eluted from a bank of 2 :: 500 A ° + 2 x i00 A °

_-styragel columns. The lnonDmer=ixture was stored at 12°C for

the indicated number of days before being cured.
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Table I HPLC Analysis of Aging LARC-160 Monomer Mixture, Cool Mix*

Weight % after n days at 12°C

Peak Species V (±0.i ml) n = i 7 14 28 53 106 287 377
e ......

1 NE 35.2 31 28 26 22 14 13 13 0

2 Jeffamine, 33.6 21 15 13 12 i0 12 9 4#

n=0

3 Nadim_de** 33.4 - - - 9 8 8 15 33_

3.5 Jeffamine, 31.3 9 5 9 8 9 9 6 1#
n=l

4 BTDE 30.3 33 38 J9 40 43 43 46 49

5 imide 28.9 6 13 13 i0 16 15 13 13

[o

0_

0.2% wt/wt in THF;

two 500 A ° + two i00 A°_-styragel columns.

Peaks 2,3 and 3.5 are inseparable. Jeffamine peaks are estimated based on the theoretical

amount of Jeffamine left, assuming no BTDE has reacted.

** In the unpolymerized mixture, both NI and BNI elute at this volume.



30

Table II Percentage of Nadic Groups Reacted

With Monomer Mixture Age as Determined

From 13C-NMR Data

_ge % reacted

i hr 22

7 hr 22

15 hr 26

6 da 36

13 da 34

40 da 34 _

- 6 mo 73

14 mo i00



Table III HPLC Analysis of Aging LARC-160 Monomer Mixture, Warm Mix*

Weight % after n days at 12°C

Peak Species V (!O.l ml) n = 1 6 13 19 34 40
e .... _ _

1 Nadic Ester 35.2 17 16 15 14 12 13

2 Jeffamine, 33.6 13 13 13 12 ii i0

n=0

3 Nadimide** 33.4 13 15 13 14 17 17

3.5 Jeffamine, 31.3 6 6 5 6 4 9
n=l

4 BDTE 30.3 31 32 35 36 37 34

5 imide 28.9 20 19 18 20 19 16

Samples were 0.2% wt/wt in THF;

two 500 A ° + two i00 A°_-styragel columns.

** In the unpolymerized mixture, both NI and BNI elute at this volume.
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Table IV HPLC Analysis of "Warm-Mixed" LARC-160 after various cure times at 180°C *

Weight % after x minutes at 180°C

Peak Species V (±0.i ml) x = 0 5 i0 15 20 30 60
e .......

I Nadic Ester 35.2 16 2 .....

2 Jeffamine, 33.6 13 5 4 3 3 2 i

n=0

3 Bisnadimide 33.4 15 i0 15 14 15 18 17

3.5 Jeffamine, 31.3 6 ......
n=l

4 BTDE 30.3 33 7 5 3 3 3 2

5 imide 28.7 17 21 8 6 4 5 5

6 Polymer i 27.8 20 14 16 14 13 14
t

7 " 2 25.5 19 !7 16 13 12 14

8 " 3 23.9 16 34 46 48 47 48
t.

,p

0.2% wt/wt in THF;

two 500 A ° + two i00 A = _-styragel columns.
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Table V !3C-NMR Shifts of Observed Carbonyl Carbons of

LARC-160 as a Function of Cure Time and Temperature

Cure

Temp Cure
°C Time

-- (min) a b c e f g h i j

12 0 176.73 173.16 171.96 167.72 167.15 166.94 166.44

105 60 176.70 167.64 167.12 166.87 166.39 166.26 166.22
i

105 120 176.64 167.04 166.40 166.32 166.19

f

125 15 176.74 173.12 171.94 167.65 167.11 166.88 166.38

' i

125 30 176.64 167.57 167.07 166.8i 166.42 166.34 166.23

180 5 176.70 167.59 167.04 166.40 166.33 166.19

180 I0 176.61 166.32 166.18

180 30 176.63 166.19
4.

Carbons a-h assigned as in Fig. 4; i = transient benzophenone tetracarboxylate amide;

j = benzophenone tetracarboxylate imide.
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VI Quantitative Analysis of Infrared Spectra of LARC-160 Resin

Percent Imidization versus Cure Time

Time (min.) Cure Temp (°C) __ Imidization

0 70 0

i0 70 -0.87

20 70 !.5

40 70 5.1

60 70 5.1

90 70 ]0

120 70 18

180 70 18

300 70 23

420 70 31_..
540 ' 70 46

660 70 37

840 180 85

960 180 83

1020 180 " 83

1.050 220 94
1110 220 89
1170 220 . 89

1290 220 99

1350 220 I00
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Table VII HPLC Analysis of Aging LARC-i60 Cured at 180 ° for i hr*

Weight % after n days at 12°C

Peak Species V (±0.i ml) n = 1 28 53 106
e ....

4 BTDE 40 2.9 4.7 2.7 2.6

3 Bisnadimide 37.7 22.1 22.9 21.3 19.9

6 Polymer i 34.i 17.9 19.8 16.8 16.7

7 " 2 30 48.4 44.4 48.2 48.0

8 " 3 25.5 8.7 8.1 ii.0 12.8

D

0.2% wt/wt in CHCI 3 ;

one 103 As + two 500 A ° + two i00 A°_-styragel col_ns.
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Table Vlll HPLC Analysis of Aging LARC-160 Cured at 140 ° for i hour*

r

Weight % after n days at 12°C

Peak Species V (±0.i ml) n = i 4 7 14 28 53 106
e .......

2 Jeffamine, 33.0 4 3 3 3 3 2 2

n=O

3 Bisnadimlde 32.3 19 18 17 16 16 17 17

4 BTDE 30.5 5 6 6 6 5 5 2
f

5 imide 28.7 8 8 8 7 8 6 5

6 Polymer i 27.8 18 16 17 15 15 15 16

7 " 2 , 25.5 13 16 17 15 17 14 17

8 " 3 24.3 33 34 34 38 38 43 41

0.2% wt/wt in THF

two 500 A = + two i00 A°_-styragel columns.
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Part B

Kinetic Studies on Degradation in Polymide

Precursor Resins

Aromatic polyimides, those with aromatic groups in their

backbone, have generated considerable interest in recent years

because of their thermal and thermooxidative stability. They

have considerable utility in air between 200-300"C and are

usable for short periods of time at 400-500"C 1,2. They are

therefore being considered for use as structural composites in

the National Aeronautics and Space Administration space shuttle
%

program. On the other hand, the high glass transition tempera-

ture of polyimides makes processing difficult. As a result, the

acid and amine monomers are'often polymerized in solution to

form a polyamic resin. This polyimide precursor resin solution

may be applied to a fiber backing and cured at a high tempera-

ture to form a thermally stable polyimide composite. While the

effect of chemical structure on the thermooxidative and thermo-

mechanical properties of the cured polyimide resin has been

studied 1-4, very limited kinetic information is available on the

stability of the polyamide resin5.
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Experimental

A series of 15% by weight isomeric polyimide precursor resin

solutions was prepared at the NASA Langley Research Center. The

polymerization procedure has been described previously I. The

polyamic resins were made from 3,3',4,4' benzophenone tetracar-

boxylic acid dianhydride (BTDA), 4,4' oxydiphthalic anhydride

(ODPA), diaminobenzophenone (DABP) and methylene dianiline (MDA)

monomers. The solvent dimethylacetamide was distilled from cal-

cium hydride under vacuum and stored over nitrogen. The resin

solutions were also stored under nitrogen. The water content of

the solvent was measured with a Porapak Q column in a Hewlett

Packard 5750 gas chromatograph. Unless otherwise stated, the water

concentration in the solvent was maintained below 0.05 volume per-

cent.

The number average molecular weight M--n was determined from

_ osmotic pressure measurements on a Hewlett Packard-Mech_olab 502

osmometer. ArRo Lab gel cellophane 600D membranes were used.
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Results and Discussion

The change in Mn due to degradation of the resin solution

was observed as a function of time for 22 to 52 day periods or

until Mn fell below 5000. Assuming degradation occurs by random

scission and that the initial fraction of functional groups

reacted, P0 undergoes little change,

1 1 kpot
Mn(t) - Mn(O) + MO

where Mo is the molecular weight of a monomer unit. The rate

constant k was determined from a least squares fit of 1/% (t)

versus time. The maximum deviation from the least squares fit

was 6% for Mn > i0,000 and 8% for i0,000 >Mn > 5,000. The uncer-

tainty in k, based on measurements of several different polymer-

ization batches, is estimated to be 20%.

Table I lists values of k for a series of polyimide precursor

resins. The data show that the DABP resin solutions are more

stable than their MDA counterparts. For both the DABP and the MDA

polymers, the para amide linkage was more stable than the meta or

ortho structure. It was anticipated that the stability would be

correlated with the basicity of the diamine. Indeed, methyl sub-

stituted anilines have a pKa which is two more than methyl car-

bonyl substituted anilines 6. -However, the pKa of methyl substi-

tuted anilines shows a small increase in basicity in going from

the ortho to the para isomer6. Thus, while the rate of degradation

may be affected by the basicity of the amine, Table I suggests

that k is more strongly dependent on the geometric linkage at the

amide bond.

The effect of the presence of water in the solvent on the
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stability of the resin is shown in Table I. The observed linear

relationship indicates that k is proportional to the water concen-

tration. From a plot of k versus %H20, the slope of the three

point line is 0.075 x 10-4 and the intercept k (anhydrous) is

0.031 x 10-4days-I, in good agreement with the nearly anhydrous

k(H20 <.05%) value of 0.032 x 10-4days-I.

Only limited data on the temperature dependence of k has

been obtained. The approximate values for the activation energy

fall within the range of 15 to 30 kcal normally observed in

amide hydrolysis.

Increasing the concentration of the resin solution from less

than 0.6 to 7.5 and 15 weight percent polymer decreased the rate

of degradation.

The hydrolysis rate of phthalamic acid is I05 times faster

than that of benzamide. Formation of a phthalic anhydride inter-

mediate has been demonstrated in C13 and 018 labeling experiments 6.

L These results and the degradation data are consistent _ith the

previously proposed mechanism of intramolecular displacement by

the carboxylate anion on the protonated amide5,7,8.

•. 9

0

Electron donating groups between the phthalic acid groups such as
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in ODPA m,m_ MDA move the equilibrium (i) to the left. The forma-

tion of a tetrahedral intermediate is also consistent with the

dependence of k on the geometric structure of the amide linkage.

The basis for the polymer and the water concentration dependence

is not as clear. Attack by water on the protonated amide (A)

may compete with the proposed intramolecular degradation process.

Water would also hydrolyse phthalic anhydride, making it less

likely to recombine with the amine in step (3).
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Conclusions

The number average molecular weight of the polyimide pre-

cursor resins dropped to half the original value in 14 to 90

days when stored under anhydrous conditions at room temperature.

The rate of degradation was sensitive to the presence of water

and was dependent on the geometric nature of the amide linkage.

Increasing the concentration of the resin solution and the pre-

sence of an electron donating group between the phthalic acid

groups increased the stability. Those factors which affect Tg

and the T_a_ti_ity of the monomersl, 2 were not directly related

to the stability of the resin solution, suggesting that the

properties of polyimides maybe _ptimized by varying their chem-

ical structure.
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TABLE I Rates of Degradation
k.-_.(xlO4days)

Compound v/v%H20 Wt.%Polymer Temp. _o

BTDA m,m' DABP <.05 <0.6 27 .032
BTDA p,p' DABP <.05 <0.6 27 .0096
BTDA o,p' MDA <.05 <0.6 27 .057
BTDA m,m' MDA <.05 <0.6 27 .044
BTDA p,p' MDA <.05 <0.6 27 .021
ODPA m,m' MDA <.05 <0.6 27 .0081

BTDA p,p' DABP <.05 <0.6 40 .060
BTDA m,m' MDA <.05 <0.6 35 .092
BTDA p,p' MDA <.05 <0.6 40 .102

BTDA m,m' DABP 0.10 <0.6 27 .038
BTDA m,m' DABP 0.30 <0.6 27 .053
BTDA m,m' DABP 0.50 <0.6 27 .068

BTDA m,m' MDA <.05 7.5- 27 .028
BTDA m,m' MDA <.05 15.0 27 .021

*The value of Po was .95 to .96 for the BTDA - DABP polymers and
.97 to .98 for the BTDA - MDA and ODPA - MDA polymers.
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Part C

• Relationship of Cure Conditions to Solubility and

Glass Transition Temperature

Polyimides with aromati_ groups in their backbone have

generated considerable interest as matrix reslns for high per-

formance composites because of their thermal and thermooxidative

stability. On the other hand, the high glass transition tempera-

tures of polyimides make processing difficult. Therefore, the

polyimides are processed by either (i) making a linear poly(amic-

acid) resin and then imidizing to form a predominantly linear

polymer or by (9) making short imide chains which are end capped

with nadic groups and then crosslinking the nadic groups in an
-

addition reaction. With the second processlng approach, the

cure conditions are the major factor which determines the glass

transition temperature. The relationship of the cure conditions
1

- on the glass transition temperature of crossli_iked nadic polyimides,
/

process (2), has been examined.

Glass transition temperature and the solubility of crosslinked

nadic polyimides were examined for two systems. The first was

solventless LARC-160, and the other was PMR. Both the PMR and

LARC-160 resins were used as received from the NASA Langely

Research Center. Both of these resin systems consist of a mixture

of the diethyl ester of benzophenone tetracarboxcylic acid (BTDE),

and the ethyl ester of norbornene dicarboxylic acid (NE) and

metheylene dianaline (MDA). The LARC-160 differs from the PMR

resin in that LARC-160 contains, in addition to bifunctional MDA

isomers, trifunctional aromatic amines.
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The LARC-160 and PMR resins are processed in'general in two

steps as shown in figures 1 and 2. The first step is a conden-

sation reaction to form a polyimide in which the oligomers are

end-capped with the nadic group. In the second step, which is

conducted at a higher temperature and under pressu_-r_i_ch_s_-_hort

chain polyimides undergo an addition reaction of the nadic group

which ties the chains together to form a cross-linked structure.

Table 1 shows the relationship of the cure temperature on

the percent solubility and the glass transition temperature of

the cured polymer for both the PMR and LARC-160 systems. In both

systems, after having cured the polymer at 200 degrees for an

hour or more, the resin formed an amorphous rubbery solid, almost

all of which would dissolve in dimethylacetamide after stirring

at 50 degrees for one hour. The fact that the material softened

as it was heated and that the polymer was slightly soluble supports

the view that curing up to 200 degrees results in a condensation

reaction in which short chain predominantly linear oligomers are

formed. For both systems subsequent cures at 240, 280 and 325

degrees have a marked effect on the solubility and the glass transi-

tion temperature. After curing at 280 degrees little of the polymer

dissolved and a moderately high glass transition temperature was

measured. When the polymer was cured at 325 degrees, virtually

all of the polymer was insoluble and the glass transition tempera-

ture was over 300 degrees. The insolubility of the polymer and

and the high glass transition temperature suggest that a cross-

linking reaction has taken place. The information in Table 1

suggests that the precise temperature at which the addition reaction
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takes place is different in the LARC-160 and PMR systems. The

solubility data suggest that in the PMR system the addition

reaction has occurred at 280 degrees. For the LARC-160, after

curing at 280 degrees, the higher percent solubility and a lower

glass transition temperature suggest that the crosslinking density

is lower. It is interesting to note that for the PMR and LARC-160

systems after hhe 325 degree cure, both systems have a glass

transition temperature which is close to the temperature of the

final cure process; that is the 332 and 318 degree values for the

glass transition temperature are quite close to the 325 degree

temperature at which both systems were cured.

The observation that the glass transition temperature for

a crosslinked system may be directly dependent upon the temperature

of the final cure has been fully developed in a series of papers

by J. K. Gillham. Figure 3, which has been taken from Gillham's

work, is a plot of the time to gelation and to vitrification versus

the cure temperature. This graph can be conveniently used to

describe the conditions under which one would expect the glass

transition temperature to be dependent upon the final cure tempera-

ture. Figure 3 is divided into three regions. In the first region,

designated by the letter A, the resin is cured at a temperature

which is below the temperature at which the resin would gel, Tgg"

A knowledge of Tgg is important because the polymer resin should

be stored at a temperature below Tgg to prevent crosslinking.

In region B, the polymer is cured at a final cure temperature

which is greater than the temperature at which gelation occurs.
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For polymers cured at a temperature greater than Tgg, the polymer

goes from a fluid resin to a rubbery state and then finally

vitrifies. Region C represents a cure condition in which the

" final cure temperature exceeds the maximum value of the glass

transition temperature Tg_ for the polymer. In this region the

polymer resin goes from the fluid state to a rubbery state, but

never vitrifies.

Region B is characterized by two phenomena. First the time

to gel_tion decays exponentially as the cure temperature increases.

Thi_i!s_dqe to the Arrhenius dependence of the rail9of the

- reaction on temperature. Second, the functional dependence of

the time to vitrification versus cure temperature decreases, goes

through a minimum, and _hen increases rapidly up to an exponential

limit which is characterized by Tg_. The minimum in the plot of

temperature versus time for vitrification reflects the competition

between the increase in the reaction ratewith temperature as

opposed to the increased degree of Crosslinking needed to form a

glass at higher temperatures. The final point to be noted in

region B is that once vitrification occurs the reaction is

essentially quenched. Since as a glass the polymer molecdles have no

translational mobility and limited mobility about segments within

the polymer chain.

When the resin is cured at a temperature between T and
gg

Tg_, region B, the oligomeric chains join together until one

reaches the gel point. At this point thepolymer becomes

rubbery; the crosslinking reaction is nevertheless not 100%

complete, The degree of crosslinking continues to increase



51

until it reaches a sufficient degree for the polymer to form a

glass. If this process is repeated at a higher cure temperature,

but nevertheless at a temperature between Tgg and Tg_, a higher

crosslinking density is needed before vitrification occurs,

because the temperature is higher. Once the crosslink

density becomes sufficiently high, higher than in the first case,

the polymer a_ain forms a •glass. Thus, when a polymer is cured

at a cure temperature between Tgg and Tg_ the value of the cure

temperature determines the glass transition temperature. If one

wants to increase the glass transition temperature, one need

only take the polymer a!idpost cure it at a higher temperature.

The higher post cure temperature turns the polymer from a glass

into a rubbery state, the crosslinking reaction continues, the

crosslink density continues to rise until the crosslink density

becomes sufficiently high to form a glass at the higher post cure

temperature. As a result the glass transition temperature

should be linearly dependent on the cure temperature.

Table 2 lists the value of the glass transition temperature

for LARC-160 as a function of the final cure temperature over a

range of values from 240 degrees to 440 degrees Centigrade. As

shown on Table 21once the final cure temperature reaches 325

degrees, the final cure temperature is equal to the value of the

glass transition temperature within experimental error. Figure 4

shows a plot of the glass transition temperature versus the cure



52

temperature. A linear relationship between the cure temperature

and glass transition temperature for LARC-160 at cure temperatures

greater than 325 degrees Centigrade is observed.

The percent solubility data and the glass transition temperature

data suggest that for PMR the value of T is between 200 and
gg

250 degrees. For the LARC-160 system the value of Tgg appears to

be slightly higher. The value of T could not be determined
g_

because the polymers decomposed when post cured at temperatures

exceeding 440 degrees. The _lata suggest that for structures made

out of LARC-160 or PMR the value of the glass transition tempera-

ture will be linearly dependent on the final temperature used in

the post cure operation. Thus, if an exceptionally high glass

transition temperature is required, the LARC-160 or PMR structures

should be post cured at a temperature greater than the glass

transition _temperaturerequired.

1
The value of the glass transition temperatures was determined at

NASA Langely using a mechanical probe. The phrase "glass transition

temperature" is used loosely, since a measurement was actually made on

the softening temperature, that is, the temperature at which a probe

with a nominal weight penetrated the material.
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Table i

Effect of Cure Conditions on % SolubilitY and Tg

_ m--.

I.ARC-160

(_OLVENTLESS)

% ..,

" CURE CONDITIONS :. _ SOLUBILITY T
g

3 HRS D 2OO'C : 97

3 HRS @ 200"C,2 HR 8 240"C AT 100 PSI 98 13_'C

3 HRS @ 200"C, 1 HR _ 280"CAT 100 PSl 23 196"C

3 HRS @ 200"C,1 HR 8 325"CAT 100 PSl ",'1 332"C

i

PI%R

CURE CONDITIONS % SOLUBILITY Tg

1 HR8 190",140",170",200" 97

1 HR8 190",140",170",200"_240"+100PSZ 45 224"

1 HRa 100",140",170",209",280"+100PSi 1 279"
• .2 318"

I HR8 100",_40",170",=00, 325"'+100PSl
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Table 2

POSTCUREDATA

•.._- _,RC- 160

CURE CONDITION_ . T _
• g

n o"2 HRS@ 240° + 100PSI 136°3 HRS8 2,.0,
• " O

3 HRS @ 200°, 2 HRS @ 28_° + 100 PSI 183

3 HRS@ 200°,2 HRS@ 325° + 100PSl 313°

3 HRS @ 200°, 2 HRS @ 280°.+ Z00 PSl, 1 HR @ 350° 352°

1 HR @ 200°, 1 HR@325° + 100PSI,1 HR@ 390° 375°

• 1 HR@ 200°, 1 HR@ 325° + 100PSl, 1 HR@ 41D° 437°
• " O O

1 HR@ 200°, 1 HR@ 325°+ 100PSI, 1 HR @ 430 - 433
• " O O

3 HRS @ 200°, 2 HRS @ 280° + 100 PSI, 1 HR @ 4LI0 460

o
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Figure 1

LARC-160 PREPARATION
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• Figure 2

..... PMR APPROACH
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Figure 3
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Figure 4

LARC- 160
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