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SUMMARY

This paper describes an accurate economical
method for generating approximations to the kernel
of the integral equation relating unsteady
pressure to normalwash in nonplanar flow. ‘The
method is capable of generating approximations of
arbitrary accuracy. It is based on approximating
the algebraic part of the non elementary integrals
in the kernel by exponential: functions -and
then integrating termwise. The exponent spacing
in the approximation is a geometric sequence. The
coefficients and exponent multiplier of the expo-
nential approximation are computed by least
squares so the method is completely automated.
Exponential approximates generated in this manner
are two orders of magnitude more accurate than the
exponential approximation that is currently most
often used for this purpose, Coefficients for 8,
12, 24, and 72 term approximations are tabulated
in the report. Also, since the method is
automated, it can be used to generate approxi-
mations to attain any desired trade-off between
accuracy and computing cost.

NOMENCLATURE

ak coefficient in exponential
approximation

b exponent multiplier in exponential
approximation

by exponent in exponential
approximation

Cik element of matrix of least squares
normal equations

dy elements of right-hand-side vector
of normal equations

E(b) least squares penalty function

E(t) error in f(t), g(t) - f(t)

E(s,r) error in F(s,r),

o .irt
J e [g(t) - f(t)] dt

S

f(t) function to be approximated,
equation (12)

F(s,r) Computational form of incomplete
modified Struve function occuring in
planar part of kernel

F(s,r) Incomplete modified Struve function

occuring in planar part of kernel

g(t) an approximation to f(t)
G(s,r) Computational form of incomplete
modified Struve function occuring in
nonplanar part of kernel

G(s,r) Incomplete modified Struve function
occuring in nonplanar part of kernel

Pk exponent coefficient in equation
(A2). In this paper either py = k
or px = 2k/m

r Frequency term occuring in argument
of expgnential factor (r = (w/U)
. V(yol + 252) times the
variable of integration of equations
(6) and (7))

S Lower limit of integration
(s = s1/V(¥o? + 292))

t variable of integration in
definition of F(s,r) and G(s,r)

The "symbols ‘occuring in equations (1} thru (7) not
defined above are defined in the references. They
are not used elsewhere in the paper. Equations
(1) thru (7) merely illustrate a use for F(s,r)
and G(s,r).

INTRODUCTION

This paper describes a method for computing two
incomplete modified Struve functions that occur in
unsteady aerodynamics. These two functions are
the nonelementary part of the unsteady kernel of
the integral equation relating 11ft to downwash in
three dimensional potential flow.

The incomplete Struve functions approximated in
this report occur whenever one attempts to compute
the three dimensional velocity field induced by
unsteady doublet distributions. The most common
occurance is when evaluating the acceleration
potential kernel of the downwash integral equation
as in reference 1. However, the same Struve
functions occur even if the velocity potential is
used, although the kernel is very different. For
example, a 24 term approximation developed herein
is used to compute the wake contribution in a
velocity potential program called SOQUSSA
(reference 2).

The method developed in this paper is the
familiar technique of replacing the algebraic
factor in the defining integral by an exponential
approximation and then evaluating the integral in
closed form. The new exponential approximations
described in this paper have coefficients computed
by an easily automated least squares process and
hence can be used to approximate the incomplete
Struve functions to any desired accuracy.



The paper explains the reason for using
exponential approximations instead of series
expansions or direct numerical integration. It
also surveys several previously published
approximations and assesses their accuracy.

Coefficients for four new approximations are
tabulated in the paper. The least squares process
is explained in sufficient detail to enable the
reader to generate his own approximations to fit
the accuracy or computing time constraints of his
problem,

STATEMENT OF PROBLEM

Consider the integral equation relating
unsteady pressure to normalwash in three
dimensional potential flow

w(x,s) =

N
1/(8n) ( Zl ] K(x:&5 8,05 w/U,M)p(£,0)dedo) (1)
n= n .

A convenient representatidn_of the kernel; K,
above is the one given by Harder and Rodden
(reference 3)

K = exp(-iuxg/U) (K T, /r2 + K,T,/e%) (2)

where xo is the distance in the free stream
direction between the sending and receiving points
-and

T, = cos (v, - v) (3)

_ T2 = (z0 cosy, - ¥q smyr)(z0 cosy, - yosinys) (4)

2y1/2

r= (yyl + 2, (5)

where yg and zg are the distance from sending
to receiving points measured normal to the
freestream and yp, yg are dihedral angles.

2 exp(-iws,/U)
Mr 2
K, = -u(x,-Br
1 o B (Z + )72

exp(-us) /U) L2 r2exp(ius/U
+ + ds} (6)
2 2,172 2 2,3
(r°+ 1 } ) (r® + s%)

Mr4exp(-1mszlu)

K, = -B ATy
» u(xo r) | s, )
82(r2 + sg) Ms,
e o

Wr3(ur/u) exp (1us,/0)
2172

Rz(r2 +s,

Mraexp(-imsl/u) Bz(r2 + sf) Ms1 ]
+ - —_— 4 =
R(r2 + sf) 3¢ R? R

'M2r3(wr/u)vexp (-iwsl/U)

+1 -
'Rz(r? + s%)I72

s 4 ;
+3J 2 r(expgms/ug2 d? ()

Sy rc + s%) :

The unit function, u(x), in equation {6) is one
if x > 0 and is zero is x < 0. The only .non
elementary terms in the above expressions for
K1 and K2 are the integrals. They can be
rescaled to

F(s,r) = fm e "Ity 4 t2)"3 2y (8)
S

and
Bsar) = [ e 4 £2)"5 2t (9)
S

These integrals are called incomplete modified
Struve functions. In subsonic flow the upper
limit of integration is infinity as in equations
(8) and (9) above., In supersonic flow the upper
1imit is variable so the integrals in equations
(6) and (7) are expressed as differences of
incomplete Struve functions. The algebraic part
of equations (8) or (9) could be approximated by
an exponential function. However, to facilitate
comparison with other exponential approximations
the exponential approximations were used in the
integrals

Flsar) = e ME0 - £ jar
s /(1+t2) (10)



and

Art . —t o)t

G(s,r) = IS e /(1+t2) (11)

that are related to F and G by integration by
parts (see reference 4 for details of the
integration by parts). The function to be
approximated by exponential approximations is

f(t) = 1 - t//(1 + t9) (12)

The exponential approximations are

g(t) =

x
e3>
fe

a, exp (-bk t) {13)

This reduces the evaluation of F and G to the
evaluation of elementary integrals. Equation
(13) can only be used if t is non-negative. If
t is negative then g(t) = 2 - g(ltl).

Replacing f(t) by an exponential approxi-
mation is not the only way to evaluate F(s,r)
and G(s,r). Before electing to use this method
several other techniques were investigated in
some detail, Direct numerical integration was
found to be too expensive., A series expansion
of one or the other integral factor followed by
a closed form integration is economical; but
every such expansion has a very limited area of
application in the s-r plane. To evaluate
F(s,r) by a combination of an asymptotic series
for large s (obtained by iterated integration by
parts) and closed form integration of various
series expansions of exp (-irt) and t/v(1+t2)
would take at least half a dozen different
algorithms. This would result in a computer
subprogram that, while inexpensive to use, would
be very expensive to develop, certify, and
maintain,

For the reasons stated above, exponential
approximations having the form shown in equation
(13) are the most commonly used method for
evaluating the integrals F(s,r) and G(s,r). In
the next section several currently used approxi-
mations are discussed.

A SURVEY OF PREVIQUS EXPONENTIAL APPROXIMATIONS

There are two reasons for surveying previous
exponential approximations to f(t). One, of
course, is to point out their deficiencies to
Jjustify developing a new family of
approximations. A more important reason is to
show how they contributed to the development of
the least squares method described herein and to
show which features of previous methods have
been retained.

The first use of an exponential approximation
to f(t) to evaluate the integral F(s,r) was by
Watkins, Woolston, and Cunningham (reference 1).
They used the approximation

4
9(t) =1 o exp (-byt) (14)

where the ak, bk are tabulated below:

aj = .101

as = .899

a3 = .0047404665 1

ag = -.0047404665 1

by = .329

by = 1.4067

b3 = 2.9 + 3.1415926 i

bg = 2.9 - 3.1415926 i (15)

This approximation will be referred to as
W4 (Watkins, 4 term). The error in this
approximation to f(t), that is e(t) = g(t) -
f(t), is plotted as short dashes in Figure 1.

The approximation W4 was derived long before
the ready availability of high speed computing
machinery. The coefficients, a{k), and
exponents, b(k), were generated as follows:

1. A large scale plot of the function
f(t) = 1-t//(1 + t2) was constructed on
graph paper,

2. Several piots of a exp(-bt) for different
values of a and b were drawn on the same
sheet of paper. Eventually, by trial and
and error, an a, b were found that appeared
to give a best fit,

3. The difference between the function being
fitted, f(t), and the approximation
a exp (-bt) was drawn on a large scale plot.

4, Steps 2 and 3 above were repeated several
times, using successive difference plots, to
give an exponential series with several
terms.

A more commonly used approximation to f(t) is
the 11 term exponential polynomial

1 \
a(t) = et (16)

a

s

1

due to Laschka (reference 5). The exponent, b,
and the coefficients, ag, appearing in this
approximation are tabulated below:

b = .372

a] = .24186198
az = -2.7918027
a3 = 24.991079
ag = -111.59196
ag = 271.43549
ag = -305.75288
a7 = 41.1836

ag = 545.98537
ag = -644.78155
ajg = 328.72755
a]] = -64.279511 (17)
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This approximation will be referred to as
L11. In L11, instead of 11 unrelated exponents
bk, there is a single exponent, b, and its
multiples. This means that even though Lil has
many more terms than W4 the integral F(s,r) can
be evaluated almost as fast using L1l as using
W4 because only a single exponential function
has to be evaluated. Figure 1 (long dashes)
also shows that L11 is more accurate than W4.
The computer code to approximate the integral
F(s,r) is somewhat easier to write using the
approximation L1l than it is using the
approximation W4, This is probably why the
approximation L11 is so widely used.

Reference 5 does not state how the exponent,
b, qr the coefficients, ay, in L1l were
computed. Inspection of Figure 1 leads one to
suspect that they were computed in essentially
the same manner as the coefficients and
exponents of W4, There are 12 free parameters
in this approximation, 1 exponent and 11
coefficients. If they had been computed by some
sort of systematic optimization procedures such
as least squares or minimax then the number of
nodes (points where e(t) = 0) on the error plot,
Figure 1, would approximately equal the number
of free parameters.

The approximation D11 has been in use for
several years in a computer program based on
reference 1 but the coefficients have not been
published. It . has the same form as L11, namely
equation (16). However the coefficients and
exponent were computed to minimize the
integrated square error

/

E =/ w(t) (g(t) - £(£)) %t (18)
M

using the weight function w(t) = t-1/2, The
reason for this choice will be discussed later,
The exponent and coefficients for D11 are
~tabulated below:

b.= .1539

ai = .0545

ap = -.8049

aj = 6.3712

ag = -10.8582
ag = -130.6866
ag = 915.2209
ay = -2793.8215
ag = 4800.8897
ag = -4792.6556
ajg = 2596.7163
a1y = -590.2260

The least.squares procedure used to generate
D11 was very easy to implement because there is
only one non-linear parameter, b. The form of
the approximation L11 was chosen to minimize the
execution time of the computed approximation but
it also makes the coefficients in the

approximation easier to compute.

Figure 1 (solid curve) indicates that D11 is
much more accurate than L11. Since it has the
same form as L11 a program that uses L1l can be
converted to one using D11 by only changing one
or two data statements. This similiarity in

form is the only reason for tabulating the D11
coefficients because it will be shown later that
much more accurate approximations can be ob-
tained by changing the expression for the
exponents by to somethitng other than kb,

Before considering this, however, it's instruc-
tive to see what happens to an approximation
such as D11 when the number of terms, n is
increased.

Consider the approximation

-¥

e-kbt

o»

g9(t) = (20)

a
K k

1

n e~

where the exponent b and the coefficient ay

are chosen to minimize the integral E of
equation (18). Figure 2 shows the e(t) vs. t
plots for three of these approximations. For
the three approximations shown the maximum error
decreases with n as expected. The ragged
behavior of the 24 term approximation for t

“near zero is due to cancellation errors. The

coefficients ax are very large while both the
function being approximated f(t) and the approx-
imation functions exp{-kbt) are near unity. For
n slightly greater than 24 this cancellation
due to large coefficients becomes the main .
source of error in these approximations and no

" further gain in accuracy is attainable using

by = k+b unless the computer word length is

increased. - . .

The solution to this cancellation error
problem is suggested by an exponential
approxiation due to Jordan (ref. 6). The e(t)
vs. t plot for this approxiation, called J10, is
shown as the solid curve in Figure 3.

This abproximation,is of the form

k
a-2¢bt

. 9 :
g(t) = a, exp(-bot) + ) a, (21)

k=1

with exponents and coefficients tabulated below:

bg = 3

ap = .7048426

b "= .0625

a] = .002907843

az = .002591528

az = .02667074

aa = .070971

ag = ,347837

ag = .5556069

a7 = -.776979

ag = .07004561 ) ' e
ag = -.004557519 (22)

Although the exponents by in this

approximation are somewhat more complicated than
in L11 or D11, the sum in equation (21), when
substituted into the integral F(s,r), can stil}
be evaluated without repeated calls to the
exponentiation subprogram. This simplification
occurs because exp(-2Kbt) is equal to

(exp (-2(k-1).bit)2 so that the exponential
functions can be computed recursively as in Ll11.

The approximation J10 is much more accurate
than L11 and is somewhat more accurate than



D1l. It would take a 15 term approximation
similar to D11 to attain the accuracy of J10.
However it isn't the accuracy of J10 that is
important. It is the fact that the
coefficients, ax, in J10 are all bounded by
unity 'so cancellation errors are very small,

Reference 6, like reference 1 and 5, does not
state how the exponents and coefficients were
computed. The coefficients in J10 were probably
computed in a manner similar to that used for
the W4 coefficients. This is indicated by the
fact that the number of nodes shown in figure 3
(eight) is much less than the number of free
parameters (twelve). By contrast, the )
approximations D8.1 and DI12.1, developed using
the methods of the next section, and also
plotted in figure 3, have the same number of
nodes as free parameters.

EXPONENTIAL APPROXIMATIONS OF ARBITRARY ACCURACY

In this section a family of new exponential
approximations of the form

9(t) =k§ a exp (2k/mbt) (23)
=1

will be investigated. For each of these
approximation the exponent b and the
coefficients ax were computed to minimize the
integral E of equation (18). The coefficients
a, enter into the error minimization process
linearly and the exponent b enters
nonlinearly. As a consequence, for each value
of n and m there are several values of b for
which E is a relative minimum. Of these
relative minima the value of b chosen was not
the value which minimized E in the absolute
sense but rather, the values that minimized the
maximum values ofle(t)‘ = 'g(t) - f(t)‘.

Exponents and coefficients for four of these
approximations, designated D8.1, D12,1, D24.2,
and D72.3 (Dn.m) are tabulated in TABLE I. The
error e(t) in D8.1 and Di2.1 is also plotted in
Figure 3. A summary of some of the properties
of these approximations is listed in TABLE II.
Properties of the approximations discussed
previously are also included in TABLE II.

Approximations D8.1 and Di2.1 can be used to
rapidly evaluate the integral F(s,r). The
execution times (TABLE II) are comparable to
those of approximations, W4, L11/D11, and J10.
However D8.1 and D12.1 are much more accurate.
The author knows of no study to determine how
accurately the integral F(s,r) has to be
computed for various aeroelastic applications.
Approximation D24.2 permits computing the
integral F(s,r) to about 3.5 more significant
figures than D12.1. This is about full register
accuracy on a short word length computer.
Approximation D72.2 is probably more accurate
than is needed for any engineering purpose,
These coefficients are included because they
were used to assess the error of the other
approximations,

The form of the expression chosen for the
exponents, namely

b = 2™ . (24)

was dictated to a large extent by the approx-
imations discussed in the previous section., In
L11 the form k-b was introduced to reduce the
number of exponential function evaluations that
occured when evaluating F(s,r). However this
choice also reduced the number of nonlinear
parameters in the least squares error mini-
mization process used to generate Dil. This
made it possible to automate the process. The
choice, by = 2K<b, suggested by J10, is

almost as good as that of D11 for convenience in
computing the integral F(s,r) and is better for
the least squares process. This is because the
matrix of the normal equations has a much lTower
condition number when 2K.b is used than it has
when keb is used,

The choice, by = 2K.b, corresponding to
m =1 in equation (23), was used to generate the
approximation D8.1 and D12.1. However when an
attempt was made to generate D24.1 this way the
result was only slightly more accurate than
D12.1. The exponent, b enters into the least
squares process in a nonlinear manner so there
is more than one value of b for which E = E(b)
is a relative minimum. When n is 12 there are
eight of these relative minima and the lowest
value of E is 1,56E-9, Increasing n to 24
increases the number of relative minima to
twenty but only reduces the lowest value of E to
9.07E-10. In fact, when n.is 24 there are ten ..
relative minima with integrated square errors,
E, between 9.07E-10 and 9.9E-10. As n is
increases a value of n is reached for which
increasing n increases the number of relative

minima without decreasing the value of E at the

lowest relative minimum. This happens because
when n is increased from 12 to 24 the value of b
was rescaled so that effectively the additional
by were all inserted ahead of by, where
their effect was to reduce the le(t)l for t near
zero, and they were also inserted after bjo,
where their effect was to reduce Le(t) for t
very large. None of them were interpolated
between the by to reduce le(t){ in the middle

of its range, Changing bgx from 2K.b to

2k/2.b has the desired effect of reducing

le(t)L in the middle of its range, When n is

et to 24 and m is set to 2 only seven relative
minima are obtained and the value of E at the
Towest is 1.78E-12, a significant improvement
over m = 1. One might think that since m = 2 is
an improvement when n = 24, that m = 3 would be
even better, When m was set to 3 the number of
relative minima was reduced to four but the
lowest value of E was increased to 1.9E-10.

Also for n = 24 and m = 3 the coefficients ag

were very large so some cancelation errors can
occur. For most values of n there is a single
optimum value of m, If there are two optimum
values of m for a particular value of n then the
lower should be chosen because evaluating

F(s,r) requires m exponential function
evaluations.

Exponential approximations of the form used
in equation (23) can be used to generate
approximations to f(t) that have arbitrary



accuracy. All that has to be done is to keep
increasing the number of terms n and whenever
this fails to increase the accuracy, then
increase the separation parameter m. There are
no cancelation problems due to the ag becoming
extremely large as happens when by = keb, The
normal equations of the least squares process
have matrices whose condition number increases
with n but the rate of increase is very slow.

DISCUSSION

The following recommendations regarding the
use of exponential approxiamtions are based on
the information in table II:

1. If execution time is very important use
approximation D8.1.

2. Any programs for which execution time is not
critically important that currently use
approximations W4 or L11 should be changed to
use approximation D12.1. This will reduce the
error by two order of magnitude at the expense
of a negligible increase in execution time. In
fact, it was found when converting a particular
program from L11 to D12.1 that the execution
time was decreased. This was because during the
recoding some compiler generated compiex
arithmetic was replaced by separate evaluation
of real and imaginary parts. ’

3. New programs should use approximation D24.2,
It gives full word length accuracy on short word
length computers and takes less than twice as
long to execute as D12.1. :

4, Progfams that currently use approximation
J10 should only be converted to D12.1 if a

considerable amount of future use of the program.

is anticipated. Approximation D12.1 is no
faster than J10 and is only an order of
magnitude more accurate.

In non-planar flow twe incomplete modified
Struve functions are required. They both use
the same exponential approximation but the
non-planar term has an extra variable of
integration factor. This acts as a weight
function on the error. As a consequence the
exponential approximations described in this
report introduce more error into the non-planar
part of the kernel than into the planar part,
This was not investigated in any detail. It is
. felt that it is not very important because all
successful non-planar programs, such as the
various doublet lattice programs, use very large
panels so the kernel is either planar or is
attenuated by distance. ‘

The integrais F(s,r) and G(s,r) are integrated
by merely substituting g(t), defined by equation
(23), for f(t), in equations (10) or (11) and
then integrating termwise. Thus, if s > 0

n

F(s,r) = e"rskZ] age /(2 Msir) (25)

.o
G(s,r) ~ sF(s,r) -e "> 3 akek/(Zk/mb+iP)2(25)
k=1

where
e = exp(-2*/Mbs) (27)

The exponential factors in equations (25) and
(26) should be computed from equation (27) only
if k <m. If k 1s greater than m then ey
should be computed from the recursion
e = (e )’ (28)
k k -m
Occasionally it is necessary to compute F(s,r)
and G{s,r) for complex r. This occurs when the
frequency w 1in equation (1) has an imaginary
component, If Im{r} < 0 then the integrals
(10) and {11) exist and the sums (25) and (26)
are valid approximations. A minor problem is
that the error estimates given by the third
column of table II may be too low because they
are based on a search of the s-r plane for real
s and r. If Im{r} > 0 then the integrals (10)
and (11) do not exist. This is because the
oscillations are damped and the integrals (10)
and (11) usually represent integration over the

subsonic wake. ' Even if Im{r] > 0 'the sums (25) and
(26) exist. They are approximation” to Abel sums

of the divergent integrals (10} and (11). The
Abel sum of an exponentially diverging integral
is obtained by inserting a factor exp(-et2)

into the integrand and taking the limit as ¢
approaches zero. 'If it can be shown on physical
grounds that the integrals should exist then
they are defined by their Abel sums.

CONCLUDING REMARKS

Several different methods for evaluating the
incomplete modified Struve functions that occur
in unsteady aerodynamics were investigated, Of
the methods investigated it was found that an
exponential approximation to the algebraic part
of the defining integral followed by a closed
form integration furnished the best compromise
among accuracy, execution speed, and code
maintainability. If the exponent spacing of the
exponential approximation is either an
arithmetic sequence, as suggested by Laschka, or
a geometric sequence, as suggested by dJordan,
then the number of exponential function
evaluations required to evaluate the incomplete
Struve functions is reduced. This same sort of
spacing also simplifies the evaluation of the
coefficients of the approximation if Teast
squares are used. Of the two spacing
sequences the geometric is much better. For
either spacing sequence least squares provides
an easily automated way of computing the
coefficients, ax and the sequence multiplier
b.. Approximations with coefficients computed by
least squares are more accurate than those of

" the same order with coefficients computed by

manual curve fitting.

In the paper a very limited class of
exponential approximatiqns was investigated,
namely those with arithmetic and geometric
spacing exponent sequences and with coefficients
computed by least squares. It is possible that
other sequences and schemes for computing the
coefficients would give more accuracy. In
particular using a minimax algorithm to generate
the coefficients and exponent multiplier would

1



certainly give a small increase in accuracy. A
program to implement a minimax algorithm is much
harder to write and is much more expensive to
execute than a least squares program,
Furthermore the increase in accuracy would only
be very slight. However if a minimax program
were available it could be used to generate
exponential approximations over subintervals of
the positive real axis with no greater effort
than is required to fit the whole axis. This is
not true for least squares because of the
integrals that have to be computed (the ones
that contained quarter order Bessel functions).
Splitting the interval into subintervals can
lead to a large increase in accuracy with no
increase in computing time. The only penalty is
in program maintenance and development cost.
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TABLE I

Exponent muitiplier, b and coefficients,
ax, for several approximations to
1-t/v/ (1+4t2) of the form indicated by equation
(23).
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Approximation D8.1

m=1

.004329519485
.033195062769
.376739860841
-.380262739620

Approximation D12

m=1

.000319759140
.002726074362
,031455895072
.406838011567
.417749229098
.012677284771

aj2

Approximation D24

m= 2

.000305311497
.003845227615
.011385147609
.018969114027
.025618710871
.036575115249
.069407344423
.177803740980
.433959048197
.104676453558
.407542943867
.015398943987

az4

#o0 om0 wonounonoa

Approximation D72

m=3

.000000487572
.000015710073
.000096360019
.000276395746
.000511902333
.000725938341
.000872553959
.000947455433
.000968885391
.000960418999
.000943838490
.000939494732
.000971868480
.001082186979
.001357091273
.001997471929
.003487618691
.007010443761
.015440810290
.035536908427
.081594062558
.174138343702
.288676153073
.143795607125
-.414538285804
.562053915950
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.035003907466

.001601370746
.098682301170
.822464185014
.043400039240

.1

.009054814793

-.000055461471
.005749551566
.106031126212
.798112357155
.077480713894
.001787032960

2
.005209230865

-.001412280807
-.007196572664
-.014763498650
-.019842326360
-.020313397232
-.010202806435

.037308217964

.198282197469

.354218469431
-.715978991168
-.104393578248
~.001192670868

.3

.000065986269

-.000003844799
-.000044143564
-.000174937155
-.000392188471
-.000625480027
-.000808476891
-.000917456689
-.000961741082
-.000962841735
-.000941494817
-.000912640747
-.000883200418
-.000847331705
-.000771912330
-.000556797879
.000067960260
.001801105035
006406650025
.018199043007
.047032188464
.111356164158
.222492227365
.263088797407
-.194655408459
-.093514761246
-.395454683729



agy = .132558644137 aggq = -.010481139795
agg = -.022964836837 ase = .027218864137
ag7 = -.024548039318 asg = .020804555835
agg = -.017250863224 agp = .014078375164
ag] = -.011265419745 agp = .008772771052
ag3 = -.006583208288 agq = .004702560648
agr = -.003149336650 ags = .001939706215
agy = -.001071671331 agg = .000513691017
agg = -.000203826307 ayp = .000062322287
ay] = -.000012950446 a2 = .000001360075
TABLE II
Properties of various ag roximations
to 1 - t/v(1 + t ?.

max 'e(t)| max ’E(s,r)l time
W4 1.6E-3 2.3E-2 355
L11 1.3£-3 1.8E-2 382
D11 3.5E-4 2.6E-3 382
J10 1.3E-4 1.7€-3 407
D8.1 1.6E-4 1.1E-3 293
D12.1 2.5E-5 1.9€-4 411
D24.2 3.5E-7 2.1E-6 768
D72.3 3.0E-10  —eeee- 2250

The first column of the table is the
approximation designator.

The second column is the maximum error in the
integrand approximation. It is very easy to
compute but not too closely related to the error
in the integral, '

The third column is the maximum error in the
integral for the planar component only. It is
extremely expensive to compute, :

The fourth column is the computer execution
time for a single evaluation of the planar
integral with positive lYower limit and infinite
upper limit, It is expressed as a multiple of
the computer's add time.

APPENDIX

THE LEAST SQUARES PROCEDURE FOR COMPUTING
COEFFICIENTS AND EXPONENTS

The function .
t
f(t)y =1 - — (A1)
Y1 +t°)

is to be approximated by an exponential sum

n
g{t) =kzl a eXp('bPkt) (A2)

The number of terms, n, is preassigned as are
the exponent coefficients py. Although the
only px arrays for which calculations have
been performed are px = k and pg = 2Kk/m

the least squares procedure is valid for any
preassigned py array. The only restriction is
that all the pk be distinct.

In the Teast squares procedure the coef-
ficients ax and the exponent b in equation
(A2) are chosen to minimize the integral

E=f w(t) [a(t) - F(8)]2 at (A3)
0

There is no reason to suppose that this is an
optimum choice for the ag and b. In fact,

there is some evidence the minimizing the
maximum error lg(t) - f(t)l would be a better
choice. Howeveér, minimizing E certainly gives a
good set of coefficients and exponent and the
process is very easy to automate., If the weight
function w(t) in equation (A3) is set to 1 then
the absolute value of the error function

|e(t)] = [s(t) - f(t)] (A4)

takes on its maximum values near the ends of the

approximation interval. The weight function -
W(t) = (t-a)"H2(pt)1/2 (A5)

is frequently used to make a least squares
approximation over a finite interval (a,b)
closely resemble a minimax approximation. In
equation (A3) b = = and a = 0 so the (b-t)-1/2
factor is undefined and the (t-a)-1/2 factor
is

w(t) = t71/2 (A6)

Use of this weight function also makes some
required integrals easier to evaluate.

The coefficients ag and the exponent
multiplier b are computed by setting aE/3ay to

zero for any value of b and by setting dE/db to

zero where the ax are functions of b defined
by the condition 3E/3ak = 0.

]

m

Let ’12532 =0 (A7)
Then

® L -1/2
fo t [9(t) - f(t)] exp(-bp,t) qt»= 0 (ng)

That is

? ~ 2
kZI a J t7 % exp[-b(p, + p)t] dt
= (1]

. V2 exp(-bp,t) f(t) dt - (A9)
0

The Laplace transform of t-1/2 is

[ e Pt V2 gt o gy p-1/2 (A10)
0

so equation (A9) can be written

-



kgo Cul = 4, (A11)
where
cpp = (0, + p) M2 (A12)
d, = /(b/x) H(bp,/2) ' (A13)
and

Hy) = /(5) - S et 12 (144212 4t (A1)

A closed form expression for H(y) is obtained by
differentiating the Laptace transform pair
4,3(32) of ref, 7 and then exploiting some
relationships between parabolic cylinder
functions and Bessel functions, equations 19.3.7
and 19.15.9 of ref, 8. The expression is

Hy) = n ()2 [94(0) 93,49

- J_1/4(y) J3/4(y) + V2 J1/4(y) J3/4(y)]
' (A15)

After the ay are compute then E can be
evaluated as a function of b,

° 0 (A16)

The first integral in (Al6) is zero because of
equation {A8) so

n
E=Ey -1 a H(bpk/z) (A17)

k=1
where

£, =] tM2ee)]2 ot (A18)
v}

This can also be integrated in closed form

m 8/(2n

E, = 75 [ -1] ~ 1.16741087

(r(1/4)) _ (A19)

The exponent b is obtained by solving dE/db = 0

(3 H(BP/2) + 3 (P, /2) H (bp,/2)
(A20)

e~
—

dE _
L

where a'y = dag/db 1is obtained by
differentiating equation (All) and solving

n da, 1 bp, Py « by
Ly S d T et ) e (R (=)

(A21)
and where

W (y) = - %y H(y) + 7 (ny/2) {J§3/4(y) B 061/4(y)
* 957a0) = 937400 4 72 [_3419) Iyyg)

+ 9y 3y N1 | (A22)

A detailed description of the algorithms used to
implement the above equations follows:

I. Since E, is independent of n and b it
only has to be computed once. The quantity
r(1/4) appearing in equation (A19) was computed
by first using equations 6.1.48 of ref. 8 to
compute r(145+1/4) and then using the functional
equation for r(z), equation 6.,1.15 of ref, 8, to
compute T'{1/4).

I1. The number of terms, n is read into the
program. The elements of the matrix C =[cgk],
which are independent of b, are computed from
equation (A12). Since C is symmetric only the
diagonal and upper triangle of C are stored.
The C matrix, which is positive definite, s~
factored without pivoting

C= LU £A23)

where L is a unit (2kx = 1) lower triangular
matrix, D is a diagonal matrix, and U is a unit
upper triangular matrix. Since L is the

" transpose of U only D and U are stored. They

are overwritten onto C in memory. The algorithm
dependent spectral norm condition number of C,
max ,dkk'/min 'dkk|» is also computed.

111, For each value of b both E{b) and
E'(b) = dE/db are computed from equations (Al7)
and (A20). The ak and a‘'k are obtained by
solving equations {All) and (A20) using the LDU
factorization described in step II above. The
quantities H(y) and H'(y) for y = bepg, k=1 to
n, are computed from the four Bessel functions
J.3/4, J-1/4s J1/4, and J3s4. These
Bessel functions are computed using the
Miller-Abramowitz algorithm described in example
1 of section 9,12 of ref, 7. The example is for
integer order and uses equation 9.1.46 for
normalization. Since Jy/4, etc. are of
non-integer order equation 9.1.87 of ref., 7 has
to be used for normalization. The highest
argument gamma function in eq. 9.1.87 is
computed as in Step 1 and the rest of the gamma
functions are computed recursively from eq.
6.1.15.

IV. Finding a value of b for which E(b) is a
minimum is performed in two steps.



A. A plot of logygE vs. logygb is
constructed in order to determine the number of

minima and their approximate locations,

B. Each approximate minimum is identified by
three consequtive b values, by, bp, and
b3, for which the central value of E(b), Ep
is lower than either of the two adjacent values,
Ey, and E3. These three values of b and the
associated values of E'(b), E'y, E'p, and
E'3 are used as starters for Muller iteration
which is used to solve the equation E'(b) = O.

V. Step IV above determines many values of b
for which E(b) is a relative minimum. For each
of these values of b the maximum value of |e(t)
was obtained from a plot of e{t) vs t. The plo
for which max|e(t)| was a minimum gave the
optimum value'of b. .

The program to implement the least squares
process was originally written for py = k.
For this choice of py array the C-matrix
(cgk = (& + k)=1/2) is extremely 111
conditioned so all calculations were performed
in double precison. Double precision is not
needed for px = 2 /M but was used because
the program had already been written,

10
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Error e(t) = g(t) - f(t)
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Figure 1. - Comparison of error in the_eXponentlal approximations W4, L11, and

D11 to the function 1-t/v(1+t2),

The nonlinear t-scale on the plot results

from mapping the (0, =) t-interval into a (-1,1) u-interval by the bilinear

transformation u = (t+10)/(t-10).
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Flgure 2. - Errors in least squares approximations for three values of n
using Laschka’s form for the exponents, Notice that the vertical scale is
different from that of figure 1,




Error e(t) = g(t) - f(t)
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Flgure 3. - Errors In least squares approximation using geometric exponent
sequences, Even though max |e(t)]| 1s less for J10 than for D8,1 the latter

is a better approximation because it has more nodes.

=

(See E(s,r) in table II),
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