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SUMMARY

This paper describes an accurate economical
method for generating approximations to the kernel
of the integral equation relating unsteady
pressure to normal wash in nonplanar flow. The
method is capable of generating approximations of
arbitrary accuracy. It is based on approximating
the algebraic part of the non elementary integrals
in the kernel by exponential functions and
then integrating termwise. The exponent spacing
in the approximation is a geometric sequence. The
coefficients and exponent multiplier of the expo­
nential approximation are computed by least
squares so the method is completely automated.
Exponential approximates generated in this manner
are two orders of magnitude more accurate than the
exponential approximation that is currently most
often used for this purpose. Coefficients for 8,
12, 24, and 72 term approximations are tabulated
in the report. Also, since the method is
automated, it can be used to generate approxi­
mations to attain any desired trade-off between
accuracy and computing cost.
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E(t)

E(s,r)

f(t)

F(s,r)

F( s, r)

coefficient in exponential
approximation

exponent multiplier in exponential
approximation

exponent in exponential
approximation

element of matrix of least squares
normal equations

elements of right-hand-side vector
of normal equations

least squares penalty function

error in f(t), get) f(t)

error in F(s,r),
.. -irt

J e [get) - f(t)] dt
s

function to be approximated,
equation (12)

Computational form of incomplete
mOdified Struve function occuring in
planar part of kernel

Incomplete modified Struve function
occuring in planar part of kernel

The symbols occuring in equations (1) thru (7) not
defined above are defined in the references. They
are not used elsewhere in the paper. Equations
(1) thru (7) merely illustrate a use for F(s,r)
and G(s,r).

INTRODUCTION

This paper describes a method for computing two
incomplete modified Struve functions that occur in
unsteady aerodynamics. These two functions are
the none1ementary part of the unsteady kernel of
the integral equation relating lift to downwash in
three dimensional potential flow.

The incomplete Struve functions approximated in
this report occur whenever one attempts to compute
the three dimensional velocity field induced by
unsteady doublet distributions. The most common
occurance is when evaluating the acceleration
potential kernel of the downwash integral equation
as in reference 1. However, the same Struve
functions occur even if the velocity potential is
used, although the kernel is very different. For
7xample, a 24 term approximation developed herein
1S used to compute the wake contribution in a
velocity potential program called SOUSSA
(reference 2).

The method developed in this paper is the
familiar technique of replacing the algebraic
factor in the defining integral by an exponential
approximation and then evaluating the integral in
closed form. The new exponential approximations
described in this paper have coefficients computed
by an easily automated least squares process and
hence can be used to approximate the incomplete
Struve functions to any desired accuracy.



The paper explains the reason for using
exponential approximations instead of series
expansions or direct numerical integration. It
al so surveys several previ ously publ i shed
approximations and assesses their accuracy.
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Coefficients for four new approximations are
tabulated in the paper. The least squares process
is explained in sufficient detail to enable the
reader to generate his own approximations to fit
the accuracy or computing time constraints of his
problem.

\.

STATEMENT OF PROBLEM

Consider the integral equation relating
unsteady pressure to normal wash in three
dimensional potential flow

w(x,s) =
N

1/(811) (I lis K(x,t;; s,a; w/U,M)p(t;,a)dt;da) (1)
n=1 n

A convenient representation nf the kernel, K"
above is the one gi ven by Harder and Rodden
(reference 3)

(7)

where Xo is the di stance in the free stream
direction between the sending and receiving points
and

(3)

The unit function, u(x), in equation (6) is one
if x > 0 and is zero is x < O. The only non
elementary terms,in the above expressions for
Xl and K2 are the integrals. They can be
rescaled to

where YO and zO are the distance from sending
to receiving points measured normal to the
freestream and Yr, Ys are dihedral angles.

T(s,r) = I e -irt(l + t 2)-3/2dt
s

and

"G(s,r) = I e-irt(l + t 2 )-S/2dt '
s

(8)

(9)

exp (- i wS 2/U)

(r 2 + s/)172

(6)

These integrals are called incomplete modified
Struve funct ions. In subsonic flow the upper
limit of integration is infinity as in equations
(8) and (9) above. In supersonic flow the upper
limit is variable so the integrals in equations
(6) and (7) are expressed as differences of
incomplete Struve functions. The algebraic part
of equations (8) or (9) could be approximated by
an exponential function. However. to facilitate
comparison with other exponential approximations
the exponential approximations were used in the
integrals
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F(s,r) = I e-irt (l
s

t )dt
I( l+t 2) ( 10)



that are related to t and G by integration by
parts (see reference 4 for details of the
integration by parts). The function to be
approximated by exponential approximations is

•

and

G(s,r) ~ J~ e-irt t(l _ t ) dt
s /(1+t2)

f(t) = 1 - tll(l + t 2)

The exponential approximations are

(11)

(12)

where the ak, bk are tabulated below:

a1 .101
a2 = .899
a3 ~ .0047404665 i
a4 = -.0047404665 i
b1 ~ .329
b2 ~ 1.4067
b3 ~ 2.9 + 3.1415926 i
b4 = 2.9 - 3.1415926 i

(14)

(15)

n
get) = L ak exp (-bk t) (13)

k=l

This reduces the evaluation of F and G to the
evaluation of elementary integrals. Equation
(13) can only be used if t is non-negative. If
t is negative then get) = 2 - g(ltl)'

Replacing f(t) by an exponential approxi­
mation is not the only way to evaluate F(s,r)
and G(s,r). Before electing to use this method
several other techniques were investigated in
some detail. Direct numerical integration was
found to be too expensive. A series expansion
of one or the other integral factor followed by
a closed form integration is economical; but
every such expansion has a very limited area of
application in the s-r plane. To evaluate
F(s,r) by a combination of an asymptotic series
for large s (obtained by iterated integration by
parts) and closed form integration of various
series expansions of exp (-irt) and tl/(1+t2)
would take at least half a dozen different
algorithms. This would result in a computer
subprogram that, while inexpensive to use, would
be very expensive to develop, certify, and
maintain.

For the reasons stated above, exponential
approximations having the form shown in equation
(13) are the most commonly used method for
evaluating the integrals F(s,r) and G(s,r). In
the next section several currently used approxi­
mations are discussed.

This approximation will be referred to as
W4 (Watkins, 4 term). The error in this
approximation to f(t), that is e(t) = get) ­
f(t), is plotted as short dashes in Figure 1.

The approximation W4 was derived long before
the ready availability of high speed computing
machinery. The coefficients, a(k), and
exponents, b(k), were generated as follows:

1. A large scale plot of the function
f(t) = I-tll(1 + t 2) was constructed on
graph paper.

2. several plots of a exp(-bt) for different
values of a and b were drawn on the same
sheet of paper. Eventually, by trial and
and error, an a, b were found that appeared
to give a best fit.

3. The difference between the function being
fitted, f(t), and the approximation
a exp (-bt) was drawn on a large scale plot.

4. Steps 2 and 3 above were repeated several
times, using successive difference plots, to
give an exponential series with several
terms.

A more commonly used approximation to f(t) is
the 11 term exponential polynomial

11
get) = L ak e-kbt (16)

k=1

due to laschka (reference 5). The exponent, b,
and the coefficients, ak, appearing in this
approximation are tabulated below:•

•

A SURVEY OF PREVIOUS EXPONENTIAL APPROXIMATIONS

There are two reasons for surveying previous
exponential approximations to f(t). One, of
course, is to point out their deficiencies to
justify developing a new family of
approximations. A more important reason is to
show how they contributed to the development of
the least squares method described herein and to
show which features of previous methods have
been retai ned.

The first use of an exponential approximation
to f(t) to evaluate the integral F(s,r) was by
Watkins, WOolston, and Cunningham (reference 1).
They used the approximation
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b =.372
a1 ~ .24186198
a2 = -2.7918027
a3 = 24.991079
a4 = -111.59196
a5 = 271.43549
a6 = -305.75288
a7 = 41.1836
a8 = 545.98537
a9 = -644.78155

a10 = 328.72755
all = -64.279511 (1l)



The solution to this cancellation error
problem is suggested by an exponential
approxiation due to Jordan (ref. 6). The e(t)
vs. t plot for this approxiat10n, called JlO, is
shown as the solid curve in Figure 3.

form is the only reason for tabulating the 011
coefficients because it will be shown later that
much more accurate approximations can be ob­
tained by changing the expression for the
exponents bk to somethtng other than k·b.
Before considering this, however, it's instruc­
tive to see what happens to an approximation
such as 011 when the number of terms, n is
increased.

where the exponent b and the coefficient ak
are chosen to minimize the integral E of
equation (18). Figure 2 shows the e(t) vs. t
plots for three of these approximations. For
the three approximations shown the maximum error
decreases with n as expected. The ragged
behavior of the 24 term approximation for t
near zero is due to cancellation errors. The

. coefficients ak are very large while both the
function being approximated fIt) and the approx­
imation functions exp(-kbt) are near unity. For
n slightly greater than 24 this cancellation

due to large coefficients becomes the main
source of error in these approximations and no
further gain 1n accuracy is attainable using
bk = k·b unless the computer word length is
increased.

This approximation will be referred to as'
Lll. In L11, instead of 11 unrelated exponents
bk, there is a single exponent, b, and its
multiples. This means that even though Lll has
many more terms than W4 the integral F(s,r) can
be evaluated almost as fast using Lll as using
W4 because only a single exponential function
has to be evaluated. Figure 1 (long dashes)
also shows that Lll is more accurate than W4.
The computer code to approximate the integral
F(s,r) is somewhat easier to write using the
approximation L11 than it is using the
approximation W4. This is probably why the
approximation L11 is so widely used.

Reference 5 does not state how the exponent,
b, Qr the coefficients, ak! in L11 were
computed. Inspection of Flgure 1 leads one to
suspect that they were computed in essentially
the same manner as the coefficients and
exponents of W4. There are 12 free parameters
in this approximation, 1 exponent and 11
coefficients. If they had been computed by some
sort of systematic optimization procedures such
as least squares or minimax then the number of
nodes (points where e(t) = 0) on the error plot,
Figure 1, would approximately equal the number
of free parameters.

The approximation 011 has been in use for
several years in a computer program based on
reference 1 but the coefficients have not been
publ ished. It has the same form as LU, namely
equation (16). However the coefficients and
exponent were computed to minimize the
integrated square error

E ~ f wet) (g(t) - f(t»2dt (18)
o

Consider the approximation

n
g(t) L ak e-kbt

k=l
( 20)

••

using the weight function wet) =t-1/ 2• The
reason for this choice will be discussed later.
The exponent and coeffi ci ents for 011 are
tabulated below:

This approximation is of the form

9 _2kbt
get) = a exp(-bot) + L ak e

o k=l
(21)

Figure 1 (solid curve) indicates that 011 is
much more accurate than L11. Since it has the
same form as Ll1 a program that uses L11 can be
converted to one using 011 by only changing one
or two data statements. This simi1iarity in

The least squares procedure used to generate
011 was very easy to implement because there is
only one non-linear parameter, b. The form of
the approximation Ll1 was chosen to minimize the
execution time of the computed approximation but
it also makes the coefficients in the
approximation easier to compute.

with exponents and coefficients·tabulated below:

Although the exponents bk in this
approximation are somewhat more complicated than
in L11 or 011, the sum in equation (21), when
substituted into the integral F(s.r), can still
be evaluated without repeated calls to the
exponentiation subprogram. This simplification
occurs because exp(-2Kbt) is equal to
(exp (_2(k-1).b.t)2 so that the exponential
functions can be computed recursively as in L11.

The approximation J10 is much more accurate
than Lll and is somewhat more accurate than

• t

,.
(22)

bO = 3
aO = .7048426
b .0625
a1 = .002907843
a2 .002591528
a3 .02667074
a4 .070971
a5 .347837
a6 .5556069
a7 -.776979
a8 = .07004561

. a9 = -.004557519

.1539

.0545
-.8049
6.3712
-10.8582
-130.6866
915.2209
-2793.8215
4800.8897
-4792.6556
2596.7163
-590.2260

b =
al =
a2 =
a3 =
a4 =
a5 =
a6 =
,a7 =
a8 =
a9

a10
all

4



•

011. It would take a 15 term approximation
similar to 011 to attain the accuracy of J10.
However it isn't the accuracy of J10 that is
important. It is the fact that the
coefficients. ak. in J10 are all bounded by
unity so cancellation errors are very small.

Reference 6. like reference 1 and 5. does not
state how the exponents and coefficients were
computed. The coefficients in JIO were probably
computed in a manner similar to that used for
the W4 coefficients. This is indicated by the
fact that the number of nodes shown in figure 3
(eight) is much less than the number of free
parameters (twelve). By contrast, the .
approximations 08.1 and 012.1, developed uSlng
the methods of the next section, and also
plotted in figure 3, have the same number of
nodes as free parameters.

EXPONENTIAL APPROXIMATIONS OF ARBITRARY ACCURACY

In this section a family of new exponential
approximations of the form

n
g(t) = ~ a exp (2k/mbt) (23)

k=l k

will be investigated. For each of these
approximation the exponent b and the
coefficients ak were computed to minimize the
integral E of equation (18). The coefficients
ak enter into the error minimization process
1inearly and the exponent b enters
nonlinearly. As a consequence, for each value
of nand m there are several values of b for
which E is a relative minimum. Of these
relative minima the value of b chosen was not
the value which minimized E in the absolute
sense but rather, the values that minimized the
maximum values of!e(t)1 = Ig(t) - f(t)l·

Exponents and coefficients for four of these
approximations, designated 08.1, 012.1, 024.2,
and 072.3 (On.m) are tabulated in TABLE I. The
error e(t) in 08.1 and 012.1 is also plotte~ in
Figure 3. A summary of some of the propertles
of these approximations is listed in TABLE II.
Properties of the approximations discussed
previously are also included in TABLE II.

Approximations 08.1 and 012.1 can be used to
rapidly evaluate the integral F(s,r). The
execution times (TABLE II) are comparable to
those of approximations, W4, Lll/01l, and J10.
However DB.l and 012.1 are much more accurate.
The author knows of no study to determine how
accurately the integral F(s,r) has to be
computed for various aeroelastic applications.
Approximation 024.2 permits computing the
integral F(s,r) to about 3.5 more significant
figures than 012.1. This is about full register
accuracy on a short word length computer.
Approximation 072.2 is probably more accurate
than is needed for any engineering purpose.
These coefficients are included because they
were used to assess the error of the other
approximations.
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The form of the expression chosen for the
exponents, namely

bk = 2k/mb . (24)

was dictated to a large extent by the approx­
imations discussed in the previous section. In
Ll1 the form k·b was introduced to reduce the
number of exponential function evaluations that
occured when evaluating F(s,r). However this
choice also reduced the number of nonlinear
parameters in the least squares error mini­
mization process used to generate 011. This
made it possible to automate the process. The
choice, bk = 2k.b, suggested by J10, is
almost as good as that of 011 for convenience in
computing the integral F(s,r) and is better for
the least squares process. This is because the
matrix of the normal equations has a much lower
condition number when 2k.b is used than it has
when k·b is used.

The choice, bk = 2k.b, corresponding to
m = 1 in equation (23), was used to generate the
approximation 08.1 and 012.1. However when an
attempt was made to generate 024.1 this way the
result was only slightly more accurate than
012.1. The exponent, b enters into the least
squares process in a nonlinear manner so there
is more than one value of b for which E = E(b)
is a relative minimum. When n is 12 there are
eight of these relative minima and the lowest
value of E is 1.56E-9. Increasing n to 24
increases the number of relative minima to
twenty but only reduces the lowest value of E to
9.07E,.,10. In fact, whenn is 24 there are ten
relative minima with integrated square errors,
E, between 9.07E-10 and 9.9E-10. As n is
increases a value of n is reached for which
increasing n increases the number of relative
minima without decreasing the value of E at the
lowest relative minimum. This happens because
when n is increased from 12 to 24 the value of b
was rescaled so that effectively the additional
bk were all inserted ahead of bI' where
their effect was to reduce the e(t)1 for t near
zero, and they were also insert dafter b12'
where their effect was to reduce le(t)1 for t
very large. None of them were int~rpolated
between the bk to reduce le(t)1 in the middle
of its range. Changing bk fro~ 2k.b to
2k/2.b has the desired effect of reducing
le(t)1 in the middle of its range. When n is
$et t6 24 and m is set to 2 only seven relative
minima are obtained and the value of E at the
lowest is 1.78E-12, a significant improvement
over m = 1. One might think that since m = 2 is
an improvement when n = 24, that m = 3 would be
even better. When m was set to 3 the number of
relative minima was reduced to four but the
lowest value of E was increased to 1.9E-10.
Al so for n = 24 and m = 3 the coefficients ak
were very large so some cancelation errors can
occur. For most values of n there is a single
optimum value of m. If there are two optimum
values of m for a particular value of n then the
lower should be chosen because evaluating
F(s,r) requires m exponential function
evaluations.

Exponential approximations of the form used
in equation (23) can be used to generate
approximations to f(t) that have arbitrary



DISCUSSION

The following recommendations regarding the
use of exponential approxiamtions are based on
the information in table II:

••

( 27)

(28)

CONCLUDING REMARKS

Occasionally it is necessary to compute F(s,r)
and G(s,r) for complex r. This occurs when the
frequency w in equation (1) has an imaginary
component. If Im{r} < 0 then the integrals
(10) and (11) exist and the sums (25) and (26)
are valid approximations. A minor problem is
that the error estimates given by the third
column of table II may be too low because they
are based on a search of the s-r plane for real
sand r. If Im{r} > 0 then the integrals (10)
and (11) do not exist. This is because the
oscillations are damped and the integrals (10)
and (11) usually represent i nteQrat i o.n ..over the
subsonic wake. Even ~ f 1m {r ] > 0 the sums (25) and
(26) exist. They are approximation' to Abel sums
of the di vergent integrals (10) and (11). The
Abel sum of an exponentially diverging integral
is obtained by inserting a factor exp(-e:t2)
into the integrand and taking the limit as t
approaches zero. If it can be shown on physical
grounds that the integrals should exist then
they are defined by their Abel sumS.

The exponential factor9 in equations (25) and
(26) should be computed from equation (27) only
if k < m. If k is greater than m then ek
shou1a be computed from the recursion

where

Several different methods for evaluating the
incomplete modified Struve functions that occur
in unsteady aerodynamics were investigated. Of
the methods. investigated it was found that ari
exponential approximation to the algebraic part
of the defining integral followed by a closed
form integration furnished the best compromise
among accuracy,· execution speed, and code
maintainability. If the exponent spacing of the
exponential approximation is either an
arithmetic sequence, as suggested by Laschka, or
a geometric sequence, as suggested by Jordan,
then the number of exponential function
evaluations required to evaluate the incomplete
Struve functions is reduced. This same sort of
spacing also simplifies the evaluation of the
coefficients of the approximation if least
squares are used. Of the two spacing
sequences the geometric is much better. For
either spacing sequence least squares provides
an easily automated way of computing the
coefficients, ak and the sequence multiplier
b. Approximations with coefficle.nts computed by
least squares are more accurate than those of

. the same. order wi th coeffi ci ents computed by
manual curve fitting.

In the paper a very 1imited class of
exponential approximations was investigated,
namely those with arithmetic and geometric
spacing exponent sequences and with coefficients
computed by least squares. It is possible that
other sequences and schemes for computing the
coefficients would give more accuracy. In
particular using a minimax algorithm to generate
the coefficients and exponent multiplier would

(25)
n

-irs ~ I( k/mb i )F(s,r) • e L akek 2 + r
k=l

1. If execut ion time is very important use
approximation D8.1.

2. Any programs for which execution time is not
critically important that currently use
approximations W4 or L11 should be changed to
use approximation D12.1. This will reduce the
error by two order of magnitude at the expense
of a negligible increase in execution time. In
fact it was found when converting a particular
prog;am from L11 to D12.1 that the execution
time was decreased. This was because during the
recoding some compiler generated complex .
arithmetic was replaced by separate eva1uatlon
of real and imaginary parts.

3. New programs should use approximation D24.2.
It gives full word length accuracy on short word
length computers and takes less than twice as
long to execute as D12.1.

4. Programs that currently use approximation
J10 should only be converted to D12.1 if a
considerable amount of future use of the program
is anticipated. Approximation D12.1 is no
faster than J10 and is only an order of
magnitude more accurate.

In non-planar flow two incomplete modified
Struve functions are requ~red. They both use
the same exponential approximation but the
non-planar term has an extra variable of
integration factor. This acts as a weight
function on the error. As a consequence the
exponential approximations described in this
report introduce more error into the non-planar
part of the kernel than into the planar part.
This was not investigated in any detail. It is
felt that it is not very important because all
successful non-planar programs, such as the
various doublet lattice programs, use very large
panels so the kernel is either planar or is
attenuated by distance.

The integrals F(s,r) and G(s,r) are integrated
by merely substituting g(t), defined by equation
(23), for f(t), in equations (10) or (11) and
then integrating ·termwise. Thus, if s > 0

accuracy. All that has to be done is to keep
increasing the number of terms n and whenever
this fails to increase the accuracy, then
increase the separation parameter m. There.are
no cancelation problems due to the ak becomlng
extremely large as happens when bk = k·b. The
normal equations of the least squares process
have matrices whose condition number increases
with n but the rate of increase is very slow.

6



Approximation 08.1

n " 8 m " 1 b .035003907466

a1 .004329519485 a2 .001601370746
a3 .033195062769 a4 .098682301170
a5 .376739860841 a6 .822464185014
a7 -.380262739620 a8 .043400039240

Approximation 012.1

n " 12 m " 1 b .009054814793

Approximation 024.2

Approximation D72.3

n = 72 m " 3

.005209230865

-.000055461471
.005749551566
.106031126212
.798112357155
.077480713894
.001787032960

b

a2
a4
a6
a8
alO "
a12 "

a2 -.001412280807
a4 -.007196572664
a6 -.014763498650
a8 -.019842326360
a10 = -.020313397232
a12 = -.010202806435
a14 = .037308217964
a16 = .198282197469
a18 = .354218469431
a20 = -.715978991168
a22 = -.104393578248
a24 = -.001192670868

b = .000065986269

a2 -.000003844799
a4 -.000044143564
a6 -.000174937155
a8 -.000392188471
a10 = -.000625480027
a12 = -.000808476891
a14 = -.000917456689
a16 = -.000961741082
a18 = -.000962841735
a20 = -.000941494817
a22 = -.000912640747
a24 = -.000883200418
a26 = -.000847331705
a28 " -.000771912330
a30 = -.000556797879
a32" .000067960260
a34 = .001801105035
a36 = .006406650025
a38 = .018199043007
a40 = .047032188464
a42 = .111356164158
a44 = .222492227365
a46 = .263088797407
a48 = -.194655408459
a50 = -.093514761246
a52 " -.395454683729

m " 2

.000305311497

.003845227615

.011385147609

.018969114027

.025618710871

.036575115249

.069407344423

.177803740980

.433959048197

.104676453558

.407542943867

.015398943987

n = 24

a1 .000319759140
a3 .002726074362
a5 .031455895072
a7 .406838011567
a9 -.417749229098
all = -.012677284771

a1
a3
a5
a7
a9
all =
al3 =
a15 "
all =
a19 =
a21 =
a23 "

a1 .000000487572
a3 .000015710073
a5 .000096360019
a7 .000276395746
a9 .000511902333
all = .000725938341
a13 = .000872553959
a15 = .000947455433
a17 = .000968885391
a19 = .000960418999
a21 = .000943838490
a23 = .000939494732
a25 = .000971868480
a27" .001082186979
a29 = .001357091273
a31" .001997471929
a33 = .003487618691
a35 = .007010443761
a37" .015440810290
a39 = .035536908427
a41 = .081594062558
a43 = .174138343702
a45" .288676153073
a47" .143795607125
a49 = -.414538285804
a51 = .562053915950

3Harder, R. L.; and Rodden, W. P.: Kernel
Function for Nonplanar Oscillating Surfaces in
Supersonic Flow. Journal of Aircraft, Vol. 8,
Aug. 1971, pp. 677-679.
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certainly give a small increase in accuracy. A
program to implement a minimax algorithm is much
harder to write and is much more expensive to
execute than a 1east squares program,.
Furthermore the increase in accuracy would only
be very slight. However if a minimax program
were available it could be used to generate
exponential approximations over subintervals of
the positive real axis with no greater effort
than is required to fit the whole axis. This is
not true for least squares because of the
integrals that have to be computed (the ones
that contained quarter order Bessel functions).
Splitting the interval into subintervals can
lead to a large increase in accuracy with no
increase in computing time. The only penalty is
in program maintenance and development cost.

Exponent multiplier, b and coefficients,
ak, for several approximations to
1-t//(1+t2) of the form indicated by equation
(23) •

•

•
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w(t) = (t_a)-1/2(b_t)-1/2 (A5)

takes on its maximum values near the ends of the
approximation interval. The weight function·

is frequently used to make a least squares
approximation over a finite interval (a,b)
closely resemble a minimax approximation. In
equation (A3) b = '" and a = Oso the (b_t)-1/2
factor is undefined and the (t_a)-1/2 factor
is

In the least squares procedure the coef­
f i ci ent s ak and the exponentb in equat ion
(A2) are chosen to minimize the integral

E = /' w(t) [g(~) - f(t)]2 dt (A3)
o

There is no reason to suppose that this is an
opt imum choi ce for the ak and b. In fact,
there is some evidence the minimizing the
maximum error 19(t) - f(t)/ would be a better
choice. However, minimizi~g E certainly gives a
good set of coefficients and exponent and the
process is very easy to automate. If the weight
function w(t) in equation (A3) is set to 1 then
the absolute value of the error function

.
•

(M)le(t) I = Ig(t) - f(t) I

a53 = .132558644137 a54 = -.010481139795
a55 = -.022964836837 a56 = .027218864137
a57 = -.024548039318 a58 = .020804555835
a59 = -.017250853224 a60 = .014078375164
a61 = -.011265419745 a62 = .008772771052
a63 = -.006583208288 a64 = .004702560548
a65 = -.003149336650 a66 = .001939706215
a67 = -.001071671331 a68 = .000513691017
a69 = -.000203826307 a70 = .000062322287
a71 = -.000012950446 an = .000001360075

TABLE II
Propert i es of various a~~roximations

to 1 - tN (1 + t •

max le(t) I max !E(s,r) I time

W4 1.6E-3 2.3E-2 355
Lll 1.3E-3 1.8E-2 382
011 3.5E-4 2.6E-3 382
JI0 1.3E-4 1.7E-3 407
08.1 1.6E-4 l.lE -3 293
012.1 2.5E-5 1.9E-4 411
024.2 3.5E-7 2.1E-6 768
072.3 3.0E-IO 2250

The first column of the table is the
approximation designator.

Use of this weight function also makes some
required integrals .easier to evaluate.

The coefficients ak and the exponent
multiplier b are computed by setting aE/aak to
zero for any value of b and by sett i ng dE/db to
zero where the ak are functions of b defined
by the condition aE/aak = O.

That is

Then

f'" t-1/ 2 [g(t) - f(t)] exp(-bp~t) dt
o

The second column is the maximum error in the
integrand approximation. It is very easy to
compute but not too closely related to the error
in the integral.

The third column is the maximum error in the
integral for the planar component only. It is
extremely expensive to compute.

The fourth column is the computer execution
time for a single evaluation of the planar
integral with positive lower limit and infinite
upper limit. It is expressed as a multiple of
the computer's add time.

APPENDIX

THE LEAST SQUARES PROCEDURE FOR COMPUTING
COEFFICIENTS AND EXPONENTS

Let

w(t) = t-1/ 2

1 ~ = 0
"2" aa~

o

(A6)

(A7)

(A8)

(A2)

(A10)

The funct i on

f(t) = 1 - 1(1 +tt 2) (AI)

is to be approximated by an exponential sum
n

g(t) = L ak exp(-bpkt)
k=1

The number of terms, n, is preassigned as are
the exponent coefficients Pk. Although the
only Pk arrays for which calculations have
been performed are Pk = k and Pk = 2k/ m
the least squares procedure is valid for any
preassigned Pk array. The only restriction is
that all the Pk be distinct.

I ak f'" t-1/ 2 exp[-b(p~ + pk)t] dt
k=I 0

= /' t-I/ 2 exp(-bp t) f(t) dt . (A9)
o R.

The Laplace transform of t- l / 2 is

f'" e-pt t-1/ 2 dt = In p-l/2
o

so equation (A9) can be written

8



where

(All)

(A12)

where a'k = dak/db is obtained by
differentiatin~ equation (All) and solving

p , bp
~ I(b/'II)H (~)

(A2l)
and where

(A13)
'1 2 2H (y) = - 2y H(y) + 1('IIY/2) {J_3/ 4(y) - J_ l / 4(y)

and

H(Y) = I(~) _ J"" e-2yt t 1/ 2 (1+t 2)-1/2 dt (A14)
c.y 0

A closed form expression for H(y) is obtained by
differentiating the Laplace transform pair
4.3(32) of ref. 7 and then exploiting some
relationships between parabolic cylinder
functions and Bessel functions, equations 19.3.7
and 19.15.9 of ref. 8. The expression is

'II 1/2 [H(y) = 'II (IY) J1/ 4(y) J_3/ 4(Y)

- J_ l / 4(Y) J3/ 4(Y) + 12 J1/ 4(Y) J3/ 4(Y)]

(A15)

After the ak are compute then E can be
evaluated as a function of b.

E" J"" Cl/2 (g-f)gdt - { t-l / 2. (g"'f) fdt
o 0 (A16)

(A22)

A detailed description of the algorithms used to
implement the above equations follows:

I. Since Eo is independent of nand b it
only has to be computed once. The quantity
r(1/4) appearing in equation (A19) was computed
by first using equations 6.1.48 of ref. 8 to
compute r(14S+l/4) and then using the functional
equation for r(z), equation 6.l.1S of ref. 8, to
compute r(1/4).

II. The number of terms, n is read into the
program. The elements of the matrix C =[CtkJ.
which are independent of b. are computed from
equation (A12). Since C is symmetric only the
diagonal and upper triangle of C are stored.
The C matrix. which is positive definite,is -­
factored without pivoting

The first integral in (A16) is zero because of
equation (A8) so C = LOU (A23)

The exponent b is obtained by solving dE/db = 0

n
E = EO - L ak H(bPk/2) (A17)

k=l

This can also be integrated in closed form

E = 11 [8/(211) -1] ~ 1.16741087
o 72 (r(l/4))2 (A19)

where L is a unit (tkk = 1) lower triangular
matrix. 0 is a diagonal matrix. and U is a unit
upper triangular matrix. Since L is the
transpose of U only 0 and U are stored. They
are overwritten onto C in memory. The algorithm
dependent spectral norm condition number of C.
max Idkkl/min Idkkl. is also computed.

III. For each value of b both E(b) and
E'{b) = dE/db are computed from equations (A17)
and (A20). The ak and a'k are obtained by
solving equations (All) and (A20) using the LOU
factorization described in step II above. The
quantities H(y) and H'(y) for y = b·Pk. k=l to
n, are computed from the four Bessel functions
J-3/4. J-l/4. J1/4. and J3/4. These
Bessel functions are computed using the
Miller-Abramowitz algorithm described in example
1 of section 9.12 of ref. 7. The example is for
integer order and uses equation 9.1.46 for
normalization. Since Jl/4. etc. are of
non-integer order equation 9.1.87 of ref. 7 has
to be used for normalization. The highest
argument gamma function in eq. 9.1.87 is
computed as in Step I and the rest of the gamma
functions are computed recursively from eq.
6.1.15.

(A18)Eo = J"" t-1/ 2 [f(t)]2 dt
o

where

IV. Finding J value of b for which E(b) is a
minimum is performed in two steps.

9



A. A plot of lo910E vs. lo910b is
constructed in order to determine the number of
minima and their approximate locations.

B. Each approximate minimum is identified by
three consequtive b values. b1. b2. and
b3. for which the central value of E(b). EZ
is lower than either of the two adjacent values.
E1. and E3. These three values of b and the
associated values of E'(b). E'l. E'Z. and
E'3 are used as starters for Muller iteration
which is used to solve the equation E'(b) = O.

V. Step IV above determines many values of b
for which E(b) is a relative minimum. For each
of these values of b the maximum value of le(t)1
was obtained from a plot of e(t) vs t. Th~ plot
for which maxle(t)1 was a minimum gave the
optimum value of b.

The program to implement the least squares
process' was originally written for Pk = k.
For this choice of Pk array the C~atrix

(C~k = (~ + k)-l/Z) is extremely ill
conditioned so all calculations were performed
in double precison. Double precision is not
nee~ed for Pk = Zk/m but was used because
the program had already been written~

10
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