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Abstract 

Acoustic levitation and the response of fluid spheres to spherical harmonic projections 
of the radiation pressure are described. Simplified discussions of the = 1, 2 ,  and 3 
projections are given. A relationship between the tangential radiation stress and the 
Konstantinov effect is introduced and fundamental streaming patterns for drops are predic- 
ted. Experiments on the forced shape oscillation of drops are described and photographs of 
drop fission are displayed. Photographs of critical angle and glory scattering by bubbles 
and rainbow scattering by drops are displayed. 

Introduction 

This paper summarizes research into resonance, acoust-ical, and optical properties of 
drops and bubbles. In addition to reviewing earlier work, models concerning tangential 
stresses, streaming, and the hexapole projection of the radiation pressure are given. 
These may be applicable to the enhancer.1ent of circulation in containerless conditions. New 
experiments are described. The methodology and notation are simplified from that in 
earlier papers to manifest the essential results. A review of research into optical pro- 
perties of bubbles will be published separately1 so that research is only briefly sum- 
marized (near the end of this paper) in a section which may be read independently of the 
others. 

Acoustic Levitation 

Experiments on a single drop with a stationary (or nearly so) center-of-mass are pos- 
sible by counteracting gravitational buoyancy forces with forces due to acoustic radiation 
pressure. This technique has been particularly useful for obtaining physical properties of 
metastable liquids (for a review of this application see Ref. 2); however, the present 
paper is concerned with the mechanics of drops rather than the properties of the constit- 
uent fluid. The fluid in the drop is-fssumed to have a density pi, sound speed ci, and 
adiabatic compressibility Bi = (p.c.) . It is assumed to be immiscible in the surrounding 
host fluid which has correspondink Broperties co, p , and 8 . The i and o diacritics refer 
to the inner and outer fluids, respectively. In th8 diagr&s which follow, the z axis is 
chosen to be up, antiparallel to the acceleration of gravity. The incident acoustic wave 
(neglecting scattering) will usually be taken to have uniaxial flow parallel to the x axis. 
The time averaged stresses lf the incident and scattered haves not only levitate the drop, 
they also change its shape. These effects are roughly independent for small deformations 
and in this section the drop wili be assumed to be spherical with a mean radius a with a 
center at z = 0. 

To obtain sufficient radiation pressure forces to counteract buoyancy, the incident 
sound wave approximates a standing wave, which (for the case of uniaxial flow) has the fol- 
lowing pressure p(z,t) = p cos(kz + kh)sinwt where k = w/c = 2n/X and z = -h is the loca- 
tion ?f an adjacent velocity node. The average force vectop o the fluid sphere due to the 
acoustic radiation pressure (which is second-order in ps) is 4 3  

where 2 is the z axis unit vector, q is p /po, and the effects of the viscosities of the 
inner and outer fluids have been neglecteb. The derivation of Eq. (1) assumes that both 
X E ka c t  1 and X < <  Xm where X = aw /c and w is the lowest radial (or monopole) reso- 
nance frequency of the sphere. m ~ h e  lvttgr requTrement is due to the omission of the dynam- 
ical effects of resonance; in traveling waves these may be included by taking the appro- 
priate case of an expression derived for elastic spheres (see discussion in Ref. 6 of 
Eq. 24). [It can be shown that the lowest non-zero root of (l-q)tanX = Xi gives X = 
c.X /co. Drops in liquids with 1 l-qI << 1 have X. = n/2 and X = nc )2c Dro s is air 
hkvh q > >  1, Xi = n and X,,, = nc i /c 0' Gas bubbleslhave q < <  1 End xmi= (98,/~~)4 << 1.1 

The cause of the term proportional to B is illustrated in Fig. 1. Assume that 6. > >  Bo 
and pi i po so that Bi >>  BOD. For 0 < h 4 114, as in Fig. 1, <F> is directed downward 
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Fig. 1. The solid and dashed curves 
iliustrate p of the incident wave for Fig. 2. Local mean Fig. 3. Streamlines for 
wt = n/2 and 3n/2, respectively. stresses on a quad- inviscid low frequency 
Quasi-static responses of the sphere rant of the sphere's flow past a sphere and 
and the a~sociated instantaneous forces surface. (cashed) the favored 
due to Vp ;.re illustrated on the left. deformation. 

3 since the sphere's volume, V(t) = (4na /3)[1-8 p(O,t)], is largest during that part of the 
cycle when (-Vp) is downward; conversely, <F> fs upward if A/4 < h < A/2. In a gravita- 
tional field g, there is an equilibrium position where <F> = g4na3(p -p0)g/3 provided ps is 
sufficiently large. Equilibrium is slightly above a velocity node il p < p 2atd ~li~htly 
below one if p > pi, provided BOD is negligible. For bubbles, u = (3) 0 p % ) and if 
w > um the of the response is reversed from that shown in fl . 1. ih? direction of 
<F> is reversed so that the bubble is attracted to pressure nodes.? There are ordinarily 
transverse pressure gradients which make the equilibrium unstable in this case. 

For drops of hydrocarbon liquids in water, 0 .  > B D and the equilibrium position is close 
to a pressure antinode due to the phenomena illhstraved in Fig. 1. Levitation apparatus 
often have a dependence of2p4tgagsverse to the z direction which stabilizes the horizontal 
position. Typical designs ' ' at ultrasonic frequencies require p = 2 x 105pa. The 
neglect, implicit if the dgrivations of Eq. i(l), 06 viscous and thermal effects requires 
that the viscous (6 and 6 ) and thermal (6 and 6 ) penetration lengths be << a. These 
are given by 6 = ( $ / w ) *  aXd 6 = ( X / w ) &  whgre, for the inner or outer fluid, v is the kine- 
matic viscosit# and x is the tierma1 diffusivity. For macro~cog~p~drops the above condi- 
tions are satisfied and there is sohe experimental confirmation of Eq. For micro- 
scopic objects, e.g., red blood cells, viscous corrections bwome significant. 

For the levitation of liquid or solid spheres in air, - $ D) = -0 512 and'Eq. (1) 
reduces to the well known expression first derived by yin:!~~. ?he signoof <F> is reversed 
and equilibrium positions are near pressure nodes. Attraction to the velocity antinodes 
occurs because the average reduction in pressure due to the Bernoulli effzct is strongest 
on that side of the drop. Equation (1) neglects harmonics generated from the nonlineari- 
ties of the equfjions-of-state. Larmonic effects can be significant in gases unless they 
are suppressed. 

Multipole Projections of the Radiation Pressure 

The radiation pressure on the surfacv of a compressible sphere is distributed nonuni- 
formly. To describe tht: response. cf the sphere, it is convenient to use spherical harmonic 
(or "multipole") projections of the radial stress 

where 8 is the polar angle illustrated in Fig. 2; $ is the azimuthal angle; p ,v, and v 
aenote the total (incident + scattered) first-order pressure, velocity, and ridial veloEity; 
< >  aenotes an average over an acoustic period; and the Y are real-valued spherical har- 
monic functions described in Ref. 14.** Equation (2b) e&#luated for the conditions at the 
inner side of the sphere's surface gives the radially outward forcelarea; evaluated at the 
- - 

 he notatjon is simpler than in Ref. 14 and 15 since we first consider unmodulated 
incident waves. Correct prescriptions for the Y with t 2 jmjf0 are given n footnote 4 

printed incorrectly in Eq. (Y2). 
a of Ref. 14. Due to an error of transcription ingAef. 15, the sign of the <vr> t e n  was 



outer side, it gives the inward force/area. Hence Eq. (2a) 
is the projection of the second-order radially outward 
force/~rea. Derivations of the stress tensor for Eq. (2b) 
ure cited in Ref. 15. For incident waves characterized by 
uniaxial !lows along the z axis, R = 0 for m # 0 and the 
relevant yea tee ordinaryei = 0 s herical har- 
monics: yOD Y;4?Ysk Y = 3/4n)lcos~, f = ( ~ / l ~ n ) t  
(3cos26-1). and Y30 = ~ ( I ~ P B ~ ) ~ ( ~ c o s ~ B - ~ c o s ~ ? ~  We retain 
the m subscript to allow for other incident waves. PLATE A 

For incident waves with no dependence on I$ (e.g., the Fig. 4. Reflection of sound 
uniaxial case mentioned), the continuity of v and pl from a rigid plate produces 
(bothoscillateat f r e q u e n c y w ) a t t h e b o u n d a F y g i v e t h e 1 0  tangentialstresses. 
following local radiation stress on the sphere's surface 

where d = q-1, Q is the inner acoustic velocity potential and the derivatives are evalu- 
ated wiih the radial coordinate r = a; Eq. ( 3 )  neglects viscous effects. Expressions for 
y at r = a and the Q are derived in Ref. 5. If the incident wave is again the standing 
wive p(z, t) = cos(k& + kh)sinwt, then Eq. (3) is applicable. From Fig. (2) we expect that 
iF1 = (4n/3)haP~ . indeed. a laborious computation of R reproduces Ep. (1) for the same 
conditions on X Q8Ln though Eq.  ( 1) was originally derive8 by a slightly different method of 
averaging. 

To obtain those radiation stresses which favor the spheroiffl (or "quadrupole") deforma- 
tion of a compressible sphere, we used Zq. (3) and found that 

2 where d 1 d /d . d = 1 + 29, d = 2 + 38, and b = B /Ilo - c2/qc . It is assumed that 
X = ka annh that f << . A ranarkable feature of kq. (4) 9s that if q # 1 and the 
sphcre is not precisely cen 'h ered on a velocity node, then sinkh + 0 and R20 does not vanish 
as X + 0 (that is as A / &  * 0). The reason for this is illustrated in Fig. 3. Assume also 
that p i  ?' p (as for a drop in air) so that translational motion of the sphere is negli- 
gible. A t  tHe equator ( 0  = 90.) the mean pressure is less than at the poles since the poles 
are stagnation points. Consequently, there is an outward directed stress on the equator 
whicQ6will tend to deform a drop into a nearly oblate spheroidal shape as has been obser- 
ved. 'fQ~l$quilibriun shape is determined by a balance of R with stresses due to fyrface 
tension. The pressure distribution of oscillating incom6gessible potential flow has 
been used to give an independent derivation of Eq. (5a) which does not even require that 
oi >> P . This argument has also been extended to traveling waves, where as X + 0, 
R + with p equal to the pressure amplitude of the incident wave. The only Re, which 
d8'not ii8cessarify vanish as X + 0 have t = 2 or t = 0. 

Compressible liquid drops (e.g., silicoqe oil or xylene) in water are attracted toward 
velocity nodes where the part of R = sin lih is small and R is dominated by RW0. For 
these drops R" , and hence R areOnegative numbers because2f2+q)b dominates thh other 
terms in the &entheses in id: (5b). The tendency is again to deform into an oblate spher- 
oid but for a different reason than that depicted in Fig. 3; it appears that the attraction 
depicted in Fig. 1 of compressible fluids to the velocity node can also deform a drop. If a 
drop with 6 > 0 is somehow constrained ( e . g . ,  with the r diation pressure of a secon 9 wave) to 114 neap a pressure node, the term of Eq. (4) X sln2kh may be dominant if 3 is 
not too small. Then R is positive and the drop will tend to elongate. This is apparently 
due to the repulsion o#Ohighly compressible fluids from pressure nodes by the mechanism 
depicted in Fig. 1. 

To obtain the hexapole projection, which favors a "pear" 8 aped deformation of a compres- P sible sphere, re used Elq. (3) and found that R -p%~~(n/7) X [(3qd /dzd3) + 0(~~)lsin2kh. 
It is aarumed that X << 1 and that X << X,,,. ~1: dependences on kh ani X differ from those 
of RaO but tbe periodicity in h may be argued from elementary considerations. 

Equat on (2) and these results for Hz and R3g neglect the previously mentioned harmonic 
e H e c t d l  which are known to alter the <#> exerted on npherss In air when the fuaduatal 
amplitude, p is large. Harmonic effects should bo negligible when the outer fluid is 
liquid or, i! 'it is a gas and pa is e~mall. 
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SPECTRUM 

Fig. 5 .  Streaming patterns driven by pro- Fig. 6. An appropriate modulation of 
jections of POT with (a) L = 2, m = 0, and p gives equal oscillating and static 
(b) L = 1, m = 0. terms in the Rem. 

Tangential Radiation Stresses, the Konstantinov Effect, and Streaming 

Let T = 8nor + $"r denote the time-averaged tangential force yector per area of an infib 
itesimal region of surface on a compressible sphere. Here 0 and $ denote the local unit 
vectors (at the surface point specified by 0 and 4 )  in the direction of increasing polar and 
azimuthal angles, respectively. The stress T is taken here to denote the total radiation 
stress due to the inner and outer (incident + scattered) acoustic waves. Marston has 
shown14 that T vanishes if the first-order (or acoustic) flow is assumed to be adiabatic- 
inviscid (or "potential") flow. Viscous or thermal dissipation near the sphere's surface 
produces tangential stresses. The purpose of this section is to comment on these stresses 
and on the associated acoustic streuaing. 

The oonnection between dissipation and tangential stress is illustrated by the "thought 
experiment" shown in Fig. 4 .  A sound beam with a mean energy density E and area A' is 
reflected off a rigid plate of area A = At/cosY. The reflected beam has mean energy den- 
sity TE where T < 1. The y coordinates at which these energy densities are specified are 
much greater than the viscous and thermal penetration lengths for the fluid, 6, and 62. 
Attenuation due to any absorption in the bulk fluid (which leads in part to "volume" acous- 
tic streaming) is neglected here so that T is associated with the losses locslized within 
the region extending a few penetration lengths from the plate. The incident and reflected 
waves have pseudomomentum densities17 of E/c and TE/c where c is the fluid's sound speed. 
Time rates-of-change of the incident and reflected pseudomomenta (in their respective direc- 
tions of propagation) are EA' and TEAf. The plate feels a tangential radiation force in the 
x direction equal t,o the rate of x-pseudomomentum loss, (1-T)EAqsinY. Consequently the tan- 
gential radiation stress Ilx = E(l-T)(A'/A)sinY = (E/2)fl-T)sinZY, For an inviscid fluid, 
T = 1 and n = 0 at a rigi8 plate. An equation similar in form to this expression was 
derived by ii8rgnis18 in a different context. He neglected the possibility of viscous and 
thermal boundary lnycrs but attributed (1-T) as due to refracted waves within the (now elas- 
tic) reflector in an inviscid fluid. That interpretation would require that the refracted 
waves are absorbed wirhin the plate. Also it neglects dissipatjon external to the plate. 

A theory for the dependence,of the intensity reflection coefficient T on the angle of 
incidence V was given by ~onstantinovl9 for a rigid plate maintained at a fixed temperature. 
For the purpose of estimating the dependence of nx on Y and its maximum value l l i  , our 
numerical tests show that the following approximatxon (Ref. 20, Eq. 1) to ~onstaneinov's 
T (see Ref. 19, Ey. 53) is applicable 

where Yl = (1112) - Y radians is frequently called the "grazing angle" and Y2 = 8, + PT 
where Y, = k6, and Y, = (y-l)k6 . Here 6, and 6, are the penetration lengths of the sur- 
rounding fluid as previously deiined and y i the at lo of specific heats at constant pres- 
sure and volume. There ie a minimum 7 of (2i - 111 = 0.176 which occurs for YI = Y2. 
Unless the acoustic frequency f = w/2n is quite large ( 2  1 GHz), most fluids have A ,> 6, 
and X >>  b T  so that the minimum in 7 usually occurs for Y near 90.. For most liquids 
Y, >> P, and the thermal boundary condition is not important. 

In the following discussion of T and its influence on nxy,  it should be remembered that 
for a given fluid, Y2 a n. Consider the cases of air and water at a temperature of 2O.C 
and f = 1 YIz: for air, 6, = 1.5 urn, 6, = 1.8 pm, and \Y2  = 2.4.; for water, 6, = 0.4 ua, 
6,.= 0.15 pm, and Y2 0.10*. Numerical computations give lIiy o: Y2 with Jl;cy a 0.043Ewhen 
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Fig. 8. Far-field scattering for: (a) the rainbow 
region of a xylene drop (a-500 urn) levttated in water; 
and (b) the critical reg ion  of an air bubble (a=480 Urn) 
in water.  In both caaes the i n c i d e n t  l i g h t  had a wave- 
l e n ~ t h  {in water )  of 632.8 nm/n, where n , = 1 . 3 3 .  In 

0 4 [a) the scattering angle (denoted by b in Fig. T I  
increase8 from left to right; the angular width o f  the  
photograph 7.. The coarse structure (broad verticel 
banes) is described by Airy's diffraction integral. In 
(b) the scattering angle (9 in Fig. 11) decreaees from 

F i g .  7 .  Rays fpr a spherical drop left t o  r ight  (with $c near the left e d ~ e )  and t h e  
of xylene i n  water which  contribute width -14' .  The coarse s t r u c t u r e  in (b) is due to 
to rainbow scattering. The dashed critical d i f f r a c t i o n  and interference. The scattering 
profile is when x tm( t )  > 0, t = 2 ,  plane and the incident electric field are perpendicu- 
n~ = 0 .  lar in (a) and parallel in (b). 

Y - 1". The sin2Y factor in TIxy ckusea n; to occur with Y 1  > T 2 .  (The C1 associated w i t h  
mpproaches 6' as Y 2  - 0 ;  It Increases ~11th increasing Y 2  w i t h  a slope of roughly 8 until 

Y 2  = l0 and more slowly thereafter.) The maximum in n 1s broad: I7 ( I f  - 4 5 " ]  = 0.03 E 
when Y 2  = l o  and II, ( 4 5 ' )  is roughly T 2 .  For 1 s 70': Konstantlr~ XYs T depends rornewhat 
on QV/I, ; however, This dependence is not retained in Eq. ( 6 )  and in these estimates. 

l!erreyz1 has measured radiation stresses on a copper plate In water but did not d e t e c t  
tangential stresses for f = 1 MHz and P s 50".  I t  may be that for these P t h e  experiment 
was not able to discriminate between the Tixy and the nwch larger normal st:.ess whose magni- 
tude = 2 E w h e n  Y = 0 ,  Secon order acoustic torques  on a rigid s u r f k c e  caused by tangential 
etresaes have been observcd. $5 

It might appear that the expression for  ll does not allow for t h e  momentum o f  f l u i d  
streaming near the surface. If the extent oYYtht? plate is l e n g t h e n e d ,  however, so that V i s -  
cosity transfers the x-momentum of the second-order flow to  the plate, the apparcnt nxy on 
the  plate is st i l l  given by t h i s  expression. T h i ~  may also be shown by c o n s i d s r i n b  ?,he 
momentum flux across a control surface which e n c l o ~ e s  both t h e  p l a t e  and the confineu strea- 
ming. One procedure for describing how the first-order velocity Y iR coupled to the second- 
order ve loc i ty  u is to c o n s i d e r  the equation for the second-order vorticity: 2 3  

where SE is Eckart 's "volume" source of vortickty23 which is negligible near the surface in 
comparison to tlte "surface" sources SR and ST. This procedure i s  useful for the description 
of streaming near rigid surfaces provided t h e  Reynold" number (for u )  i s  vmall. 

An approximation for u wbich should be useful near the fluid-fluid interface of a drop or 
a bubble was introduced by marston .14 It is to neglect the source terms in Eq. (7a) and to 
so lve  the resulting homoge~eous vorticity equation subject to boundary conditions which 
include the tangential (TI arid radial ( R a m )  radiation stresses on the interface. As 
reviewed subs~quently, this procedure is particularly useful for describing the response t o  
oscillating R u m  due to modulated sound. In this section the sound has no modulation and u 
is driven only by the T. By inspection of Eq. (7) and extension o f  the previous momentum 
arguments, t h i s  procedure should be useful i f  the spatial e x t e n t  of  the region of signili- 
cant I v * v ~  Is c <  a; this will be so i f  6, c r  a which is usually the case of inteiest. The 
resulting u can be written in a w r i e s  which makes use of multipole projections  POT)^,,, of 
the tangential divergence of T (see Eq. ( 1 4 )  and Appendix B of Ref .  k4). As noted prs- 
viously , l 5  for steady flows the coup1 ing coefficients in Ref. 14 were illcorrect due to 
error8 in the assumed boundary condit ions (Ref .  1 4 ,  Eq. C6 and C10). Theee errors have been 
corrected in the result given beloc. For incident acodstic waves with no $ dependency 
R = 0 and llq, is independent o t  Q. This T ( S )  must be present because of the dissipation 
ofraound present ut interfaces separqt in. real fluids. Its descrlpt ion may be facilitated 
w i  t b  methods developed for torques. 2' 

Consider t h e  articular case of !Ig, = 82 ~ i n 2 8  where 82 is a constant. This IIBr has 
( P . T ) 1 0  = ~ ( n 3 5 1 0  B2/a rind a l l  other   TOT)^, - 0 as does the tnrque. The interface Is 



Fig. 4. A 2 nun radius drop underp ing forced Fig. 10. A 1.7 tmn radius drop splitting 
quadrupole oscillations with  f = 18 Hz. Here into two drops as a consequence of forced 
and En Fig. 10, iime Increases fram left to quadrupole oscillations w b t h  f 24 Hz. 
r i g h t  and from top to battom. Here, and in Pig. 9, the z a x i s  is vertical. 

assumed to be ideal (free of surface v~ .scos i ty )  and t h e  boundary conditions are continuity 
nf normal and tangential velocities and the balance of forces. These give t h e  following 
velocities inside ( i ) ,  and outside (o), the sphere: u i  = (GF/2 (5?2-3)sin28, u$ = 
Gf(1-F2)(3 coa26-l), u sin28 and u: = GF-6 <l - r2 ) (5  cos 1 0-1) where F = r /a ,  G = 
B 2 a / 5 ( p i  * p o ) ,  and viscosity of the indicated fluid. Resulting streamlines 
are illustrated in Fig. 5(a) .  In addition t o  acoustic stresst:s, externally a p p l i e d  electric 
f i e l d ~ 2 ~  can cause tangential etresses with t h i s  dependence on 8, With an appropriate 
chnice of material parameters, and Bt, we f i n d  t h a t  u and the radial stresses caused by u 
(described i n  the next sectfon) agree w i t h  thase predicted by Taylor" specialized method 
after correcting his algebraic errors. 2 5  Tbr outcr f i u i d  is unbounded i n  this computation. 

Consider now the case of n A  sine where the only ( V m l ' j Q ,  # O has 1 = P and = 0 .  
This stress Is predicted to d r  e following velocity f i e l d :  uh - ~(2i~-l}sine, u i  
~ ( l - F ~ ) c o s ~ ,  u8 = ( ~ ~ 2 ) ~ - ~ ( 1 * ~ ~ ) s l a ~ ,  and u? = ~~-1(?-*-l)cos~ where G = BZa/B(u + u,). 
Interior atreamlines are shown in Pig. 5(b)  ; they are the same as those for emnlt Reynolda 
number flow past a drap calculated by Hadamard and obser,,ed by Far outside t h e  
drop,  the streamlines are those f o r  a stokeslet. which is the creeping motion generated by a 
force concentrated at a point (see Fig. 5 of Ref. 2 1 ) .  This t ype  o f  tangential stress will 
alter the net z directed force on a sphere from t h a t  given by Eq. (1). 

For a large drop with Bi c c  B, in an incident wave w i t h  K >> 1, Eq. (6) and t h e  consider- 
at ions  illustrated in Fig. 4 may be used ta o b t a i n  the signs of Dl and B2. Ef a traveling 
wave is i n c i d e n t  from above, i t  is clear that B1 > 0 due ta the Konstaotinov effect. I n  a 
s tanding  save it" is ta b e  expected tha t  B 3 0 due to stress concentrations between 13 2 45. 
t o  85' i n  opposition tu t b  those be ween 99' to 135' ; however B t  should also deppnd on h .  1 1 I n  e ~ t h e r  case, BI = p and B2 a ps unless the incident pressure amplitude ps Is large. IAa 

I w i t h  acoustic torques,q2 Il may contain a term = ps when t h e  f irst  order displacement ompli- 
tude ( p  /PC-)  1 6,. ) The aotal u will be the superposlrlon or rhoee driven by the individ- 
ual (P*?)~,,,. 

Deformations Induced by Steady Radiation Stresses 

Radiation stresses induce a mean displacement of t h e  interface of a drop or bubble ahieh 
is opposed by surface tension. The mean di~plaeement (averaged over a pcriad of the BCOU6- 
tic rave)  of t h e  interface from that  of a s p h e r e  of radius a will be denoted as x(O,&,; )  
and may be described using the ZolPowEnR spherical harmonic ~erkes: 

m F 

where is a time-independent projection and xe, is an orreillatiag one. The latter van- 
ishem 11 the wave is not modulated end i n i t i a l  t ransfents are n l  lowed to fecag. It will be 
agsumed I n  t h i s  section that i t )  < a so that for  drops the tern1 r o ( t ) /  I ~ m u c h  
smaller than the largest ( x t m  The P I terms represent translations of t h e  sphere's 
center which lead t o  t h e  balance between <F> and buoyancy. The terms repre~enting stmtic 



deformations, the Rp with L > 1, arz proportional to the radiation stres!es on a sph+.re 
given by Eq. (2) (whTch neglect the deformation) provided the-resulting IxL I <<  a. [Cor- 
rections to the first-order scattering when X < <  1 will be O(xp /a) or smalyer and will 
induce only small changes in the stresses. ] A balance of norma!! and tangential radiation 
stresses at an ideal interface with those due to the surface tension o and the second-order 
flow gives 

where ? = tyo+(t+l)pi. The magnitude of T can be estimated uaing Eq. ( 6 )  and the expres- 
' 

sion for nxy. Unless f is so high that 6 ,  + A ,  one expects to have IRp I>>la(V*T)p I for 
1 > 1 so that i should be largely determined by the radial stresses. !he deformat~yns 
x may-easily (xceedl4 the first-order particle displacements (ps/pcu); they are a pa pro- 
vfged Ixp I < <  a and (p /pew) ( <  5 , .  The most noticeable effect of the (P-T)ILm may be the 
second-orter flow descrfbed in the previous section. 

Shape Oscillation Resonances Forced by Modulated Radiation Stresses 

Second-order flows and deformations may be greatly enhanced by modulating the incident 
acoustic wave at a frequency so as to fofte fhape oscillation resonance. The purpose of 
this section is to summarize the theory. There is a slight change of notation from the 
previous sections: fc will denote the frequency of the incidet~t sound in the absence of 
modulation (typically fc > 100 kHz), and f (which is < <  fc) denotes the frequency of the 
shape osciliations. To drive the shape oscillations, the incident wave is a standing wave 
of the following form p(z,t) = -2pcsin(wct)cos(&wt)cos(kz+kh) where w = 2afc, k = wc/c 
u a 2nf. and z = -h is again the location of the adjacent velocity nose with z = 0 at tf; 
drop's center of mass. The factor (-2) is included only as a matter of convention.14m1 
That nonlinearities are essential to the generation of the low frequency shape oscillations 
is illustrated in Fig. 6. The upper part shows the modulation envelope and the spectrum of 
the incident sound which consists of two sidebands, each with an amplitude p located at 
fc-( 112) and f +(f/2). The wave at the carrier frequency fc is suppressed, B;e to the modu- 
lation. From Eq. (2) it can be shown15 that the radiation stresses vary in time such that 
RQm(t) = APm[l+cos(wt)~ and this has a time dependence and apectrum illustrated in the lower 
part of Fig. 6. The radiation stress contains a static term and one which oscillates at the 
difference f~equency of the sidebartds. The confitant 8 is given by the R associated with 
a steady incident wave of frequency fc and pressure amaPitude p = pea. &nsequen t ly 
Eq. (4) and the result for R may be used here but with a simpfe substitution. For small 
pC, the tangential stress T ?Pi1 also be proportional to p~[l+cos(ut)]. 

The theory for the response 14*15 is complicated by the nature of the boundary layer dam- 
ping. In the present treatment we simplify the results by omitting the small deformation 
and flow induced by the oscillating part of (V*T)Pm. For incident waves with no dependence 
on 4 ,  all projections with m # 0 vanish. Consequently the subscript m will be omitted. The 
oscillating parts of Eq. (8) are given by 

and the static parts, 9 , are given from Eq. (9) by omitting the (V*T). ferm. In Eq. (lla) 
wf is the natural frequ&ncy (neglecting viscosity) of the lth mode andLr = tpo+(P+l)zi. 
Here u and y are damping parameters (gikpn by Eqs. (22) and (23) of Ref. :41 which are 
functions of Q, a, ui, v0, pi, and po; a is due to the damping of the ~~~~~~~~y layer since 
it vanishes if either 0i1.1~ + 0 or popo + 0. For drops surrounded by a liquid, y is typi- 
cally c aw'h but it is similar in magnitude to a2. It was assumed in the theary for a and 
ythatthe interface was ideal and thus free of surfactants. 

From Eq. (lob), &Q depends both on the frequency end Pth projection of the stress. As 
quantified below, when w is slightly less than wk, lxel is maximized; depending on the 
stress distribution, other modes may be driven but at lower (nonresonant) amplitudes. An 
example of a pure O = 2 profile is shown in Fig. 7 .  It is convenient to omit the t sub- 
script when possible in the following discussion. The phase delay of oscillations E is 90' 
when w is chosen to be the uadrature frequency 3. The prediction is that V ( B )  = 0 which 
gives 3 = w* - (u/2)w44 + a9/4. D,e to the inertia of the boundary la I* t u*, unlike 
the case of ordinary damping. The mechanical Q of the Ltb mode is wXil;i(w*) provided ui 
and u0 are spll enough to make this ratio somewhat larger than unity. [Evidently 
3 1 w*(l-4Q ) for liquid-liquid systems.] The response amplitude 121 is maximized when 
w 1 G. At this m?ximum, i = Qx, so the oecillations should be enhanced by a factor of Q. 
As W / U *  + 0, i + X; however, as w/u* + a, i/k + 0. 

A matrix. Eq. (17) of Ref. 14, makes it possible to compute the oscillating part u. (The 



total u also contains a static part driven by the static part of T.) In this matrix and in 
Eqs. (7), (9), (lo), and (ll), convection of momentum by the second order flow was neglec- 
ted. This o~nission should have a negligible effect on the oscillations provided a Reynolds 
number R = wlfla/vo and the static part of u are small. 

Observations of Forced Shape Oscillations and Rainbow Scattering from Drops 

Three groups of experiments on forced resonan will now be sumaarized. The reader 1 .  
encouraged to refer to the original papers3*a*g.98 for details. The first and second ; .. . . 
made use of proper tie^ of scattered light,28 to detect quadrupole ( K  = 2) oscillatio!. In 
which f was a few um and smaller. A profile of a drop and the relevant light rays a shown 
in Fig. 7. Yost of the observations were done for drops of benzene and p-xylene in uis- 
tilled water. The drops were levitated by a continuous acoustic st~nding wave with a typi- 
cal frequency of 51 kHz which was c <  fc. Their radii were in the range 150 um to 1.2 mm and 
the corresponding natural frequencies w*/2r were predicted to be 1.1 kHz to 50 Hz. 

In the first e~~eriments,~ fc was typically 679 kHz. When f = 0, the interference of 
rays labeled 0 and 2 in Fig. 7 produces a fine structure in the scattering visible to the 
eye via a telescope. This structure gives the closely spaced vertical fringes in Fig. 8(a). 
Conditions on the modulation leading to shape oscillations were mapped by making use of a 
blurring of the fringes induced by small f. The conditions on w were consistent with the 
forcing of qundrupole resonance. Large f leading to drop breakup were also observed. 

The second group of experiments gave quantitative resonance properties. These made 
use of photometric aspects of the coarse structure in the monochromatic rainbow scattering 
shown in Fig. 8(a). The "rainbow hotometry" technique gave absolute measurements of E and 
relative measurements of 1 with I ~ P  < 25 rn and 0.5 mm < a < 1.2 mm. Here fc = 217.5 kHz 
and pc 5 70 kPa. The results are summarized as follows. (i) The dependence of 5 on w is 
consistent with Eq. (IOc) except that o is larger than calculated and the inferred o is 4% 
lower than expected. (ii) With the empirical o and a, the data give a dependence of 0 on 
radius consistent wi h predictions. (iii) f is maximized when w Q. (iv) Provided h is 
held constant, f a pi aa expected. (v) The empirical o gave 2 values which were 70% of the 
modeled values; however they are consistent with the presence of a film of impurities at the 
interface. (It is unfortunate that the drops were xylenea and ben~ene.~ We have recently 
learned that these liquids almost always form nonideal interfaces with water.) (vt) Uncer- 
tainty in a conversion factor precluded the absolute measurement of % ;  however, the estima- 
ted 121 are consistent with the R20 from Eq. ( 4 ) .  (vii) Empirical Q were typically = 7.  

In the third group of experiments, Cioosby9 and Yarston made hi-speed motion-picture 
photographs of drops undergoing forced shape oscillations. The drops consisted of a dyed 
silicone oil with v = 2 CS and pi = 0.88 gm/cm3. They were levitated by a 55 kHz wave in a 
water-filled resonator consisting of 50 mm x 75 mn glass microscope slides cemented along 
their long sides. A PZT disc (38 mn dia., 13 mn thick) drove both the 55 kHz wave and a 
modulated wave with f, = 170 kHz. Drops were levitated and f was adjusted to maximize ):I 
for quadrupole oscillations apparent to the unaided eye. Figure 9 is taken from a sequence 
in which every third frame was printed giving a time interval between printed frames of 
5.7 ms. Timink marks on the film revealed that 5 = 90. ? 9' rshich agret with predictions. 
This is noteworthy because here Ikl/a = 0.4 and the Reynolds number R = LEO. For this mea- 
surement kh < <  l and Eqs. ( 4 )  and (9) p~edict that 2 < 0. The photographs and timing marks 
when combined with Eq. (lob) also give x < O.with K - 2 and m = 0. 

As in Ref. 3, it was observed that oscillation amplitudes could be made large enough to 
fission the drop. Figure 10 shows the details of the fission process. The time interval 
between frames was 1.2 ms. This is a new acoustic technique for splitting drops since it 
relies on the modulation of the radiation pressure. Previous acoustic methods ty ically 
depended on transient cavitat icm f o generate shock rnves which could split drops .49 

The Physical Optics of Light Scattering from Bubbles 

Unlike the cas- of scattering from drop-like objects, the physical optics of scattering 
from bubbles (where the refractive index of the scatterer ni is less than that of the sur- 
roundings no) has been explored only recently. This study has emphasized those angular 
regions of the scattering where diffraction corrects for divergences predicted by geometric 
optics. 1 Th Lie include glory or backscattering, 30 forward scattering , l  and critic111 angle 
scattering. 3r* l2 The follo*ing is only a brief surmnary, the interested reader should consult 
Ref. 30-32 and papers cited therein. In this section, Q denotes the scattering angle 
(Fig. 111, X denotes the wavelength of light within the outer fluid, 0 denotes the local 
angle of incidence at the bubble's surface for a ray with p internal cRords, and m I ni/n,. 
Far-field scattering will be described which is that observed by a camera focumed on -. 

The critical scattering angle, 0. : 2 arccos(m), is where the surface reflected ray has 
an angle of incidence 80 = arcsin(my. 'or 6 5 Oc, geometric optics predicts that reflection 
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will be total ,  however models31 and Hie theory32 show 
that i a  not t h e  case a t  &, due to diffraction. For 
@ -= &,(=R3" f o r  bubblea i n  water) there is a coarse 
structure to the acntterinu due to  this diiiraction 
and to the interference w i t h  t h e  p = 1 ray .  Thin  
structure { v i s i b l e  in Fig. I Bb) ) h s an an~ular 
spacing which La typically 5 ( \ / a ) f  n d .  Physie.1 
o p t i c s  m d ~ l s  o f  this ~ t r u e t u r e 3 ~  agree with Mie 
theory when a > 41. For a bubble and drop of the 
same size, each w i t h  a >, I, the bubble's Coarse 
structure Is broadrr than the rainbow" since thp 
latter's quasi-perlod can be ~bown from Eq. 5 af Ref. 
28 to  be 5 ( ~ / a ) 2 / 3  rad. Other p h o t u ~ r a p h s  a? scat- 
tering by bubbleslr jl reveal a f ~ n r  s t r u c t u r e  dup 
primari ly  to tho iriterfrrencp of p = O and 2 '  rays. 
Its spacing is typically 5 0 . R  X/a radians. Back- 
scattering from bubblea i n  our model can emf ly 
exceed that  lrom a perfectly reflecting ~ p h e r e  of tho f -  
shme size. I t  has a quasi-periodic structure which 
1s especially rr~ular for  t h e  cross-polnrlzed scat- 
tering. Observations of t h i s  ~ t r u c t u r ~  affrei? well 
w i t h  thcnry.l0 T h i s  structure is evident I n  Fig. 12 
as the concentric rings centered in the $ 180" P i u .  11. Rags for a b u b b l ~  i n  water. 
direction and spaced st 0.05' intervals. 

Acknowledgments 

We are grntsrul to  R. E, A p i c l  for collaborating in the 
original studies3rg o f  s h a p ~  oncillations. This work was sup- 
parted by the Petroleum Research Fund (adminis terpd by t h e  
American Chemical Society), an M. . I .  Yusdock Chart table 'l'ru~t 
Grant of Research Corpnration, and the  Office o f  Naval Researc 
Marston i s  an Al frrd  P. Sloan R~search Fr*l low.  

References 

P.L. Marston, D.S. Langley, and D.L. Kingsbury. in Pro- izcd bnckscnt  t ~ r l  ng 
ce~dings o l  the IVTAYI :  Symposl urn on the Mrchrnics ax- f rom a bu11t)I~ i n  R' 
Physics o f  Bubhlps in Fluids ( n t  p r e s s ) .  icone o i l  with aT . s 

R . E .  A 1 1 f v 1 ,  - 1 .  Acnust. S o c .  A n .  70, 1336-639 (1981). 
P . L .  Marston and R . E .  A p i r - 1 ,  J. C o l l ~ ) l d  Interface Sci. E, 280-286 (1979). 
L.A. ('rum, J. bcou3t.  Sos.  Am. 50, 157-163 (1971). 
K.  Yosioka and Y .  Lawasima, Acustiea 5 ,  187-173 (1955), 
T. Hasegawa, , I .  Atoust.  Sor. Am. 51, 1445-144R (1977). 
A.I. E l l e r .  J. Acoust. Soc. dm. 1J. 173-271 ( 1 9 6 B ) .  
P.L. Marston and R . E .  ApPel, J. Acoust. Soc. Am. AT, 27-37 11980). 
S . G .  Goosby. Photographs of B ~ e a k u p  of Drops Induced by Modulat~d Radiation P r e s ~ u r e ,  
M.S. dls~crtatlon, H'nshlngton S t i i t r  Unzverwity (19Fll) .  
H. E . ApIt-I , J . Acousl . Soc . Am. 3. 339- 343 ( 1976 ) . 
I . A .  Mels~r and R . E .  d p f c l ,  J. Acuust. Sor. Am. IbubmIttrd for publication). 
L . Y .  K l a ~ ,  Proc.  Roy.  Soc. m. 212-24C 11934>.  
E. L e u n ~ .  N. Jacobi, and T. Wang, .I. Acou~t. Soc. Am. (at press). 
P.L. Marston, J .  A c ~ u s t .  Soc. Am. 67, 15-26 (1980); lerrxtum at press) .  
P.L. Marston, S . E .  Laporto, and G . L .  Pull~n, J. Acoust. Soc.  Am. 69, 149~-1501 11981). 
R . A .  Khymark, Cfltrasonlca 13, 251-261 (1975) :  E. Trinh (private comunicatlon, 1981).  
Y.E. 'McIntyre, J. Fluid M ~ r h .  Js, 331-317 (1BR1). 
F . E  . Harqn i s ,  J . Acoun t . Soc . Am. 24, 48R-469 1 1952). 
B.F. Konstantlnov, Zhusnal Tekhnichc~kal P l z i k i  2, 229-238 (1939). 
A . Y .  SaveEev.  Sov. P h y ~ .  Acouat. 11. 154-158 (1973). 
E . M .  H r s t r g ,  3 .  dcoust. Soc. Am. E, 891-896 11955). 
F.H.  Dusse and T,G.  wan^. *I, kcoust. S o c .  Am. E, 1634-1638 (1981). 
H .  Wedwin and I .  Rudnick, J. Acoust. Soc. Am. 3, 538-540 (1953) .  
G.Z. Taylor, Proc, R.>y. Soc. b n d .  m, 159-166 (1966) .  
J.U. M ~ l c h c r  and G.I. Taylor, Annu. R1.v. F lu id  Mech. 1. 231-146 (1969). 
K.E. S p ~ l l s  Proc. Fhys, Soc. BR5 ,  541-546 ( 1 9 5 2 1 .  
J ,  Lighthill. * I .  Soi~tId V l b .  1;91-41R (1978). 
P.L. Zurnton,  Appl. O p t .  g, kAO-GAS (1980). 
Y.K.  LI and H.S. F u l l ~ r .  , I .  Fluid He&. HH, 513-528 (1978). 
U.S. Lan~ley and F. L. Y a r ~ t o n ,  Phys. ~ e v - h t t .  4 7 .  913-916 11981 1. 
P .L.  Yarstnn, J .  O p * .  Soc. Am. E, 1205-1211 (19-1: 70, J53(E)  11980). 
~ J . L .  Kin~sbury and P.L. Marston, Appl . Opt . 3, 2348-2:tSO ( 1981 ). 




