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Abstract 

On the basis of both a conventional relativistic nuclear fluid dynamical model and a 
two-fluid generalization that takes into account the interpenetration of the target and 
projectile upon contact, we calculate collisions between heavy nuclei moving at relativis- 
tic speeds. This is done by solving the relevant equations of motion numerically in three 
spatial dimensions by use of particle-in-cell finite-differer.:e computing techniques. We 
study the effect of incorporating a density isomer, or quasistable state, in the nuclear 
equation of state at three times normal nuclear density, as well as the effect of doubling 
rhe nuclear compressibility coefficient. For tke reaction 26Ne + faall at a laboratory boll- 
bar~ing energy per nucleon of 393 MeV, the calculated distributions in energy and angle of 
outgoing charged particles are compared with recent experimental data both integrated over 
all impact parameters and for nearly central collisiots. 

Our colloquium on drops and bubbles has hroura~t togtthei- people in such diverse disci- 
plines as astrophysics, fluid dynamics, and nuclear physics, working with physical systems 
ranging in size from stars through water drops to atomic nuclei. Having already heard 
from astrophysicists and fluid dynamiciscs, it ic time now to turn our attention from some 
of the largest objects in the universe to some of ?he smallest. 

An atomic nucleus, with diameter about lo-'' ui and mass about kg, is ,bout 10'' 
times as dense as water. Discovered irr 1911 by Sir Srnest Rutherford, it is to lowest or- 
der a collection of positively charged protons r;ilrf uncharged neutrons held tightly togeth- 
er by short-range nuclear forces. As first suggested by Yiels Bohr in 1936, a nucleus be- 
haves in some respects like a uniformly charged drop of liquid with surface tension. 

The liquid-drop model has been widely used to explain the breakup of a heavy nucleus 
into two smaller fragments in the process of nuclear fission, as well as to explain many 
features associated with collisions between two nuclei. Until recently, the bombarding 
energy in such collisions has been fairly low, with the result that the nuclear density 
remains close. to its equilibrium value and the excitazion energy is relatively low. How- 
ever, a few years ago acceierators were developed that can accelerate heavy nuclei to rel- 
ativistic speeds, and we are now beginning to explore what happens when nuclei become high- 
ly compressed and excited. 

The collision of heavy nuclei at high energy is extremely complicated, lying solrewhere 
in between two limiting possibilities that have been used to describe it. At one extreme, 
the process could be dominated by a series of collisions between individual particles mak- 
ing up the nuclei or prociidced in the reaction. This first limit, which would be realized 
if the particle m a n  free path were much longer than the nuclear force range, has been 
studied in terns of micrn~copic approaches such as the relativistic intranuclear cascade, 
where the ba,sic input is experimentally measured two-particle cross section~.l-~ 

At the other extreme, the process could be dominated by coherent collective-field ef- 
fects, resembling instead the collision of two drops of nuclear fluid. This second limit 
would be realized if there are mcny degrees of freedom, sufficient time during the colli- 
sion to establish local equilibrium, and a short mean free path for stopping a particle. 
In relativistic nuclear collisions of the type consifered here, the first two conditions 
are satisfied moderately well whereas the last condi'rion is more uncertain. Estimates 
based on collisions between two particles in free srace give relatively long mean free 
paths, but the mean free path could be reduced signsficantly inside a nuclear medium be- 
cause of many-body effects or a nuclear phase transition.' This second limit has been 
studied by several different groups around the world in terms of fluid dynamical models, 
where the basic input is the nuclear equation of state. We will be concentrating here on 
recent work perform,-.d at Los Alamos within this a p p r o a ~ h . ~ - ~  



Nuclear equation of state 

One reason for studying relativistic nuclear collisions is to learn about the nuclear 
equation of state, the fundamental relationship specifying how pressure depends upon den- 
sity and thermal energy. At present we have experimental information about this important 
functior, only in the vicinity of the equilibrium ground state. However, theoretical spec- 
ulations suggest that it may be extremely complicated, with nuclear matter undergoing on- 
or more phase transitions as its density is increasedas This is illustrated schematicaliy 
in Figure 1, which shows how the ground-state energy per nucleon E6(n:, or zero- tempera- 
ture compressional energy per nucleon, might depend upon nucleon number density n. We 
know experimentally that the equilibrium energy per nucleon E6(ns) = -16 MeV. that the 
equilibrium density nd = 1.5 x lo4* nucleons/m , and that the nuclear compressibility co- 
efficient K = 210 MeV. What happens away from equilibrium is currently unknown, but dou- 
bling the nuclear density from its normal value could lead to a pion condensate, or a 
state containing a large number of bound pions. Compression to several times normal densi- 
ty could result in a density iosmer, or a quasistable state existing at other than normal 
density. Still further compression could produce quark matter, in which the quarks that 
comprise nucleons become free. To determine whether or not any of these phase transitions 
actually exist in nuclei is the exciting challenge that we face! 

In addition to the above compressional energy, nuclear matter at rest can contain ther- 
mal energy, so that the total internal energy per nucleon is 

E(n.1) = Fo(n) + I , (1) 

where I is the chermal energy per nucleon, which is itself a function of n and either the 
entropy per ~ucleon S or the temperature T. The pressure p is then given by5-' 

containing separate contributions from the compressional energy and the thermal energy. 
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Figure 1. Compressional energy, illus- Figure 2. Compressional energy in three 
trating three conjectured nuclear phase of our nuclear equations of state. 
transitions. 



Fox the grcurld-state energy per nucleon Eo(n) we use both an old functional forma, 

with positive constants a. b, and c that yield a compressibility coefficient K = 294.8 
nev, and a new functiono! fotm7 producing the three curves shown in Figure 2. The solid 
line shows the result for compressibility coefficient K = 200 NeV, and the dashed line 
shows the effect of doubling the compressibility coefficient to 400 MeV. The dot-dashed 
curve shows the result for a density isomer at a density that is three times normal nu- 
clear density, with an energy 2 MeV higher than at normal density and with the same cur- 
vature. In each of these three cases we use the value b(no) = -8 NeV to sinulate the 
loss in binding energy for finite nuclei arising from surface and Coulomb energies. The 
new functianal form has the property that the speed of sound approaches the speed of light 
in the imit of infinite compression. This is achieved by parametrizing Eo(n) for n great- 
er than a critical value in terms of three smoothly joined parabolas in the square root 
of the density, so that in the limit of infinite compression it increases linearly with 
density. 

For the thermal contribution to the pressure we use the results-7 

which is derived from the nonrelativistic Femi-gas model. 

Relativistic nuclear fluid dynamics 

In a complete nuclear fluid dynamical calculation, we would need to take into account 
nuclear energy, Coulomb energy, nuclear viscosity, thermal conductivity, and single-par- 
ticle effects, as well a- the 2roduction of additional particles and the associated radia- 
tive loss of energy from the system. However, in nuclear collisions of the type consider- 
ed here, these effects are small compared to those caused by the dominant kinetic, compres- 
sional, and thermal energies, and are consequently neglected. 

The co-..ariant relativistic fluid dynamical equations that we solve express the conserva- 
tion of nucleon number, momentum, and energy, for a specified nuclear equation of state. 
In units in which the speed of light c = 1, these equations 

and 

where N, k, and E are respect~vely the nucleon number density, momentum dpsity, and ener- 
gy denslty (including rest energy) in the laboratory reference frame and v is the velocity 
of matter relative to the laboratory frame. The three laboratory-frame quantities are re- 
lated to rest-frame quantities by 

N = yn, (8)  

and 

2 
E = y ( c + p ) - p  , 

where y = (1 - v2)-* and E is the internal energy density in the rest frame, which is re- 
lated to the internal energy per nucleon of Eq. (1) by 

including the nucleon mass mo. 



I a 
For a given nuclear equation of state and for given iaitlal cond%tions, ue solve these 

equations numerically in three spatial dine~~sians by use of a particle-in-cell finite-dif- 

I ference computing wrhod.5-8 Ln th i s  technique, the f l u i d  is  represented by discrete La- 
grangian computational particles, which mve through e mesh consisting of fixed cubical 

i Eulerian ce l l s .  Proa finite-difference representations of E q s .  ( 5 ) - { 7 ) ,  the values of N, 
H, and E for sacb cell are calculated at later tires in terms of preceding values. The 
values of n, v ,  E ,  and p throughout the mesh are obtained by mans of a partial algebraic 

e . reduction followed by the iterative solution of a transcendental equation in one unknown. 

- 
t 

Soae examples of the solutions ate shown i n  Figure 3 for the reaction ~ O N C  + 2 S a ~  m t  a 
laboratory bombarding energy per nueltan of 250 MeV, corresponding to m incident speed 

,- that is 62% the speed of light. The nuclear equatior: of state is given by Eqs. (2)-(4). 
I t 

Each column presents a side v i w  of the matter distribution evolving in time for r differ- 
ent impact parameter. The i n i t i a l  frame i n  each case shovs a P38U target bombarded from 
above by a Lorentz-contracted 'ONe projectile. The projectile and target are represented I- by computational particles, which are initially aligned so that in the direction perptndic- 
ular to the page only a s ingle  point  i s  vis ible .  However, as the impulse resulting from 
the collison propagates throughout the system rhis alignment is destroyed and addit ional  
particles coae inro view. 

The charact-ristic features o f  the time evolution vary syscewtical ly  with impact param- 
eter. In nearly central collisions the target and projectile are substantiaLlp defomed, 
compressed, and excited, with curved shock waves produced. These are followed by rarefac- 
tion waves and an overall expansion of the matter into a d e r a t e l y  wide distribution of 
angles. A t  the other extreme, in peripheral collisions the p r o j e c t i l e  is framnted into 
a portion that proceeds roughly straight ahead at its original velocity and another por- 
tion that  deposits i t s  energy i n  the target. This disturbs the target much less vio lent ly  
than in nearly central collisions, and its deformation, compression, and excica~ion are 
therefore much less, 

We show in Figure 4 the effect of varying the nuclear equation of state on nearly cen- 
tral coll isions a t  the higher laboratory bombarding energy per nucleon of 393 HeV, corre- 
sponding to an incident speed that is 71% the speed of light. The results for the differ- 
ent equations of s t a t e  are very similar co one another, but  for our equation of s t a t e  with 
a density isomer the expansion starts somewhat Later because the matter i s  compressed to a 
higher density than for our two conventional equations of state. 

Figure 3. Time evolution of the matter Pfgurc 4. Tim evolution of the matter 
d is tr ibut ion  for three impact parameters. distribution for three nuclear equations 

of state .  
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For our conventional equation of state with compressibility coefficient K = 200 MeV, 
the matter is compressed to a maximum rest-frame density of 3.9 n and remains above 2 no 
for 1 .O x 10-22 s. For our stiffer equation of state with K = 408 MeV the matter is corn- 
pressed to a maximum rest-frame density of 3.4 no and remains above 2 no for 0.7 x lo-%' s. 
For our softer equation of state with a density isomer the matter is compressed to a maxi- 
mum rest-frame density of 5.1 no and remains above 3 no for 1.4 x s and above 2 no '. 

for 1.9 x S. 
! 

Comparison with experimental data 

For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, 
i ,. 

Sandoval et al.9 have recently measured at the Berkeley Bevalac the distributions in ener- 
gy and angle of outgoing charged particles, including contributions from protons, deuter- 
ons, tritons, =He particles, and *He particles. Also, by selecting only those events con- 
taining large numbers of associated charged particles, Stock et a1.I0 have measured for 
nearly central collisions the distributions in energy and angle of outgoing charged par- 
ticles, including contributions from protons, deuterons, and tritons. Unfortunately, this 
selection does not eliminate possible contributions from large impact parameters, for 
which the high-energy yield in forward directions is larger than for central collisions. 
These experimental data in the form of energy spectra at four laboratory angles ranging 
from 30° to 150° are shown by the solid circles in Figure 5, where they are compared with 
histograms calculated for our conventional equation of state with compressibility coeffi- 
cient K = 200 MeV. We have also made similar comparisons with results calculated for the 
other two equations of state illustrated in Figure 2. 

Our calculated distributions are obtained by constructing from the velocity vectors at 
some large time the energy and angular distributions for the expanding netter. The small 
amount of matter that already has passed through the top and side boundaries of the com- 
putational mesh is also included. By integrating over the appropriate ranges of impact 
parameter, we compute the double-differential cross section corresponding both to all im- 
pact parameters and to central collisions constituting 15% of the total cross section. 
The cross section for the outgoing matter distribution is then converted into the cross 
section dZo/dEdR for outgoing charged particles under the assumption of uniform charge den- 
sity. Some measure of the fairly large numerical inaccuracies inherent in fluid dynamical 
calculations can be determined from the fluctuations in the histograms, which are obtained 
using a~rgular bins of lo0 width. 

Examining first the results for all impact parameters given in left-hand side of Figure 
5, we see that at low energy the calculated results are for all angles higher than the ex- 
perimental results. This is because of our neglect of binding, which causes the entire 
system to completely disintegrate into slowly moving matter for an arbitrarily small im- 
pulse. A t  higher energy the calculaticns with all equations of state reproduce, to within 
numeric. uncertainties, the experimental data at all angles. We have found that the nu- 
clear equation of state has little effect on the single-pa-ti:le-inclusive cross section 
d20/dEdll integrated over all impact parameters. 

We turn now to the results for central collisions, which are given in the right-hand 
side oi Figure 5 for our conventional equation of state with K = 200 MeV. At intermediate 
angles the results calculated with the three equations of state are very similar to one 
another, to within numerical uncertainties. However, at 8 = 30° the slope of the energy 
epectrum decreases significantly as we go from a stiff equation of state with K = 400 HeV 
through an intsraediate one with K = 200 MeV to a soft one that contains a density isomer. 
Also, at t = 150° the results calculated for the density isomer are somewhat higher than 
those calc.~sted for the two conventional equations of state. These differences arise be- 
c.luse rh* softer density-isomer equation of state leads to higher initial density and ther- 
mal ent:gy per nucleon, which increases the thermal contribution to the cross section in 
reg- ... is where it would otherwise be small. 

Because of our neglect of binding, at low energy the calculated results for central col- 
lisions are also higher than the experimental results for all angles and equations of 
state except for 0 = 150° with the two convention~i equations of state, where the rapid 
expansion in the backward direction suppresses the cross section. At higher energy the 
calculations with all equations of state reproduce, to within numerical uncertainties, the 
cxperimenta? data at all angles except 8 = 30°, where the calculated energy spectra for 
~ ~ 1 1 1  three equations of state have significantly larger slopes than the experimental spec- 
trum. :his important discrepancy for central collisions in the forward direction could 
arise from several different possibilities, but the most likely is that upon contact the 
ra+?et and projectile interpenetrate substantially. This interpenetration can be taken 
,nto account, while retaining some degree of coherent collective flow, by means of a nu- 
clear two-fluid model, to which we now turn our attention. 



Nuclear two-fluid dynamics 

En the nuclear two-fluid model toupled relativistic equations of motion are ~olved for 
separate target and projectile nuclear f l ~ i d s . ~ ~ l ~  The terms in the equations that  couple 
the tw nuclear f l u i d s  are obtained from the cross section and mean longitudinal momentum 
transfer for free nucleon-nucleon collisions. A t  lou relative v e l o c i t i e s  the target and 
projectile fluids merge, in which cast: conventional relativistic nuclear f l u i d  dynamics 
(which we  alternatively refer to as o n e - f l u i d  dynamira) is recovered. 

The equations of retion for the target and projectile nuclear f l u i d s  express the con- 
servation of nucleon number, energy, and momentum, plus the transfer of energy and momen- 
tum between trle two f l u i d s .  For a given fluid, the relativistic equations o f  motion ere 
analogous to Eqs. ( 5 ) - ( 7 )  for conventional nuclear f l u i d  dynamics, but contain in addition 
coupling terms that describe che transfer of energy and momentum from one f l u i d  ta  the 
other as they interpenetrate. In particular, when rhe relative velocity of the two fluids 
is large compared to t h e  Femi velocity of the nucleons comprising each fluid, the sela- 
tivistic equations of motion for f l u i d  1 are5"" 

and 

those for fluid 2 are obtained by interchanging the subscripts 1 and 2 .  The drag function 
D involves the nucleon number densities and velocities of the two f l u i d s .  as well as the 

Compmmibililp toefficient K = 2C43 MrV - lo' 2 
% *2=u 

EhR01250 MeV 

Figure 5 .  Comparison of calculeted hisro- Figure 6. Time evolution of the matter 
grams w i t h  experimental points (Refs .  9 distriubtion calcvFated in t t e  two-fluid 
and 10). model . 



cross section and average longitudinal momentum transfer for free nucleon-nucleon colli- 
sions. For the nuclear equation of state specified by Eqs. (2)-(41, these equation of mo- 
tion are solved by use of a two-fluid generalization of the relativistic particle-in-cell 
technique. 5 9  l l 

We show in Figure 6 some examples of the two-fluid solutions for the reaction *ONe + 
P S 8 U  at a laboratory bombarding energy per nucleon of 250 MeV. These results are quali- 
tatively similar to those shown in Figure 3 for conventional nuclear fluid dynamics, es- 
pecially during the later stages of the process. However, because the target and projec- 
tile interpenetrate somewhat before they begin to respond to the presence of the other, 
the initial compression is less and the amount of matter emerging in the backward direc- 
tion is less in the two-fluid model than in conventional nuclear fluid dynamics. 

Figure 7 shows the resulting energy spectra calculated for central collisions in both 
the one-fluid and two-fluid models with the same equation of state, along with the experi- 
mental data of Stock et al. l o  For the three angles 0 = 70°, 110°, and 150°, the two mod- 
els reproduce equally well, to within numerical uncertainties, the experimental data at 
high energy and are both larger than the experimental data at 1ow.energy because of our 
neglect of binding. For 0 = 30°, the two-fluid model agrees with the experimental data 
substantially better than does the one-fluid model, although the slope calculated from the 
two-fluid model is still somewhat larger than the experimental slope. However, as shown 
earlier for the one-fluid model, a softer nuclear equation of state than the one used here 
would increase slightly the calculated high-energy yield in forward directions. 

An alternative and perhaps more illuminating way of making the comparisons for central 
collisions is in the form of angular distributions for fixed outgoing laboratory momentum 
per nucleon, as shown in Figure 8. The experimental angular distributions for low out- 
going momenta contain a small peak that shifts to smaller angles and finally disappears 
for higher outgoing momenta Unfortunately, this peak could be the result of either the 
neglect of 3He, 'He, and heavier composite particles, whose yields are concentrated at low 
energies and forward directions, or the Coulomb interaction, which provides a transverse 
driving force for slow-moving charged particles. 

I %e + *U a t  Ebom/20 = 393 MeV 

Central collisions (157.) I I %e + 9 a t  Eh/20 = 393 MeV 

Central Collisions (15%) 

4. m , , , I  model 
, . 1 . . 1 . . 1 . . 1 . . ! . . '  

l o ,  , , , 1,150 0 , , , 1201501m 

Labwatory Kinetic Energy per Nucleon (MeV) laboratory A n ~ l e  19 (dell 

Figure 7. Comparison of calculated histo- Figure 8. Comparison of calculated histo- 
grams with experimental points (Ref. 10). grams with experimental points (Ref. 10). 



The histograms are calculated with energy bins of 20 MeV. Because of our neglect of 
binding, the results for the lowest outgoing momentum calculated in both the one-fluid and 
two-fluid models are much larger than the experimental data. With increasing outgoing mo-. 
mentum, the one-fluid model predicts angular distributions that are narrower than the ex- 
perimental distributions and that are peaked at increasingly larger angles, which is op- 
posite to the experimental trend. However, as shown by Stacker et al. ,a the agreement be- 
tween the one-fluid model and experiment would be improved by superimposing the remaining 
thermal energy at a freezeout density at which fluid dynamics ceases to be valid. The t w -  
fluid model predicts angular distributions with peaks that shift to smaller angles with 
increasing outgoing momentum, as is observed experimentally. For intermediate outgoing 
momenta the experimental data are lower in absolute value than the two-fluid calculations, 
but for the two highest outgoing momenta the experimental data agree with the two-fluid 
calculations to within their numerical uncertainities. By comparison, microscopic models 
based on independent two-particle collisions yield for central collisions angular distribu- 
tions that are esseartially forward peaked at all outgoing 

With some qualifications, we conclude that in relativistic nuclear collisions the tar- 
get and projectile interpenetrate substantially upon contact, but that some degree of co- 
herent collective flow is involved. Although conventional relativistic nuclear fluid dy- 
namics is deficient in several respects, relativisitic nuclear two-fluid dy~tamics satis- 
factorily describes many aspects of relativistic nuclear collisions. Because the calculat- 
ed results are not very sensitive to the input nuclear equation of state, we do not yet 
know whether or not there are any phase transitions as the nuclear density is increased. 
The answer to this question is relevant not only to atomic nuclei but also to neutron stars, 
illustrating once again how drops and bubbles help unify our understanding of physical sys- 
tems differing in size by twenty orders of magnitude. 
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