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Abstract 

The classical theory of capillarity is concerned largely vith size and shape estimates 
in symnetric asymptotic configurations. Recent developments have led to global results for 
all symmetric cases, and to new qualitative information on asymptotic properties. Also new 
stability criteria have been found. It has been discove~ed that asymmetric situat:ons can 
lead to behavior that differs strikingly from the symetric case. When gravity va..,shes, 
capillary surfaces in the accustomed sense may not appear. The question of characterizing 
those tubes in which surfaces can be found has partially been settled. New progress has 
been made toward determining the effects of contact angle hysteresis in cases of particular 
interest. 

In 1805, P. S. Laplace (Tr. mdc. c6l. , Suppl. au livre X) introduced the notion of the 
mean curvature H of a surface and derived for it, in the representation z = u(x,y), the 
expression 

2H = div Tu, with Tu " Vu 
J1 + lvull 

The context in which this basic contribution appeared was not an abstract study of the 
geometry of surfaces; it lay instead in his erfort to clarify conceptually and describe 
quantitatively the rise of liquid in a capillary tube. For that problem there holds 2H =KU, 
where K > 0 is a physical constant, and thus the physical problem is transformed by (1) 
into an analytical and geometrical one. 
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In the same year 1805, T. Young gave a formal 
reasoning supporting the view that the surface meets 
the bounding walls in an angle 7 depending only on 
the materials; thus, v*Tu = cos 7 on the boundary 
Z of a section S-2 of the tube (Figure 1). Thus one 
has to solve a nonlinear equation under a nonlinear 
boundary condition. 

For the problem considered, not a single nontriv- 
ial explicit solution is known. However, Laplye 
integrated (1) approximately in the case of a narrow" 
rircular tube of radius a to obtain the celebrated 
formula 

COS 7 uo - L(a;7) ' 2  r;a- - 
for the height uo on the axis of symmetry (Figure 2). 

Laplace did not prove ( 2 ) ,  nor did he indicate 
bow small a must be in order to achieve a pre- 
scribed accuracy. The first proof that (2) is cor- 
rect was given by D. Siege1 (Pacific J. Math., 1980). 
Later, Finn (ZAMM, 1981) gave a simpler proof with 
improved error estimates. The method derives from 
a discovery of Laplace, that the volume of flui 
lifted in the tube is given explicitly by 2wa~'m. 7 .  
Th. volume is compared with that lifted by certain 
spherical caps through uo. One is led to the re- 
lations 
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where u: i s  the unique non t r iv ia l  solution of the equation 

Thus, the Laplace formula provides a s t r i c t  lower bound for  uo. 

The method leads a lso  t o  a new bound f o r  the height ua a t  the contact l i n e  (Fig. 7' 

Also a lower bound analogous t o  the upper bound i n  (3) can be given 

The s i z e  of a capi l lary  tube i s  bes t  measured i n  terms of the nondimensional parameter 
2 B - Ka . (For a water-air  in ter face  on the  e a r t h ' s  surface,  K - 29.) I f  B < 1 ,  (3) and ( 5 )  

yie ld  qu i t e  precise estimates. For l a rge r  B ,  one writes the equation i n  the parametric 
f orm 

dr r cos $ a - K r U  - s i n  $ $ i ~ & + % &  
i n  terms of the incl inat ion angle $ of a v e r t i c a l  section of the solution surface.  (6) 
can be integrated approximately t o  obtain a hierarchy of est imates,  va l id  fo r  a l l  B and 
asymptotically exact both f o r  small and l a r  e B (Finn, Moscow Math. Soc., vol .  dedicated 
t o  Vekua, 1978; Siegel ,  Paci f ic  J .  Math. , 1880 ; Finn. Paci f ic  J .  Math. , 1980) . We mention 
the r e s u l t s  

K rL These (and otherre la ted)  formulas y ie ld  the f i r s t  general e s t i -  

mates val id  i n  the range 1 < B < 10. They a l s o  have remarkable monotonicity proper t ies ,  
which lead t o  precise estimates f o r  the meniscus height q = ua - uo. 

Brulois (Dissertat ion,  Stanford University, 1981) has given a formal i t e r a t i v e  procedure 
leading t o  an a r b i t r a r i l y  good upper bound f o r  u,. 

The above methods can be modified and extended t o  apply a l so  t o  the problem of the 
"sessi le" l iquid  drop, and they lead t o  general estimates f o r  the parameters describing 
i t s  shape (Figure 3 ) .  Here the "physical" prescribed data a re  i n  general the volume V 

and 7 ,  ra the r  than a and y as above. 
It turns out  there  i s  a "reciprocity" between 
the two problems, becoming a r b i t r a r i l y  exact 

I fo r  small and f o r  large  B (Finn, Paci f ic  J. 
Math. , 1980) . 

a 
I f  V + 0 the drop tends asymptotically .+=& t o  a spherical  cap; however, i ts  behavior 

near the wetted surface changes s t r ik ing ly ,  
depending on whether 7 - r or .r t' r . We 

6 I R  s e t  = e2 where P i s  the radius of a 
b a l l  of volume V ,  and wri te  
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Y 
h3(7) = 3 J sin30 d o  

G s i n  Y o 

Then i f  Y # r there holds 



while i f  7 - 6 we f i n d  

Thus, the  r a t e  of decrease of wetted sur face  i s  nonuniform i n  contac t  angle .  I f  7 = I the  
drop r e s t s - - f o r  small B --on a  neg l ig ib ly  small sur face  (Figure 4 ) .  It seems l i k e l y  t h a t  
t h i s  sur face  a c t s  a s  a  po in t  of support about which the  drop can r o t a t e  r i g i d l y  when d i s -  
turbed s l i g h t l y ,  thus e s t ab l i sh ing  new po in t s  of contact  wi th  t he  support ing plane and 
leading t o  a  kind of " ro l l ing"  i n s t a b i l i t y  (Finn, J .  Reine Angew. Math.,  t o  appear) .  
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The nonuniformity i s  i l l u s t r a t e d  i n  F i  ure 5 ,  which st,ows--on logari thmic scale--upper 
and lower bounds f o r  the  expression i n  (9f when 7 = r ,  and f o r  t en  times t h a t  expression 

5 when 7 = 5 I . 
For l a rge  drops,  one f i nds  the  exact  asymptotic r e l a t i o n  f o r  thewoverhang" 

l i m  f i ( ~  - a )  = fl - log(1  + J) - 2 cos 3- + log co t  
% + -  

I f  7 = I ,  t h i s  r e l a t i o n  simp1ific.s t o  

Also, R ,  a  can be est imated i n  terms of 8 . 

The behavior of l i q u i d  i n  a  c a p i l l a r y  tube with asymmetric s ec t ion  S l  can d i f f e r  i n  
s t r i k i n g  ways from what happens wi th  a  c i r c u l a r  s ec t ion .  For sur faces  of the  form z ( x , y )  
general  es t imates  can be obtained by comparison with symmetric s u r f a c e s ,  using maximum 
p r inc ip l e s  t h a t  a r e  i d io sync ra t i c  f o r  t he  equat ion.  An important d i s t i n c t i o n  between these 

p r inc ip l e s  and the  c l a s s i c a l  ones f o r  e l l i p t i c  
equations i s  t h a t  the  comparison on the  bound- 
ary need be prescr ibed  on1 up t o  a  s e t  of 
Hausdorf f  measure zero .  d e  d i s t i n c t i o n  has 
a s  consequence the  fcl lowing r e s u l t  (Concus 
and Finn, Acta Math. , 1974) : 

Let u(x ,y)  be a  c a p i l l a r y  sur face  o w r  a  
s ec t ion  a whsch contains t he  i n t e r s e c t i o n  

\ of a  b a l l  B6 of radius 6 and a wedge of 
opening 2a (FLgu-e 6) . Then i f  a +7 > n / 2 ,  .. 
there  holds u < & + 8 ; ;f r* + < n / 2 ,  then 

Figure 6 

u -. - a t  V .  Thus the  so lu t ions  de end 6:s - 

continuous 1 o n T e T o u n d a r y  d a t a .  F igu re  
shows a " h k  sink" experiment t h a t  e x h i l i t s  
the  disconti , .ui tv f o r  water i n  a  wedge formed 
by two p l a s t i c  p l a t e s .  



Figure 7 Figure 8 

The problem w a s  studied f u r t h e r  by L. Simon (Pacific J . Mnth. , 1980) who proved t h a t  if 
LM + 7  > n J 2 ,  u d -  r t / 2 ,  then u(x.y) is differentiable up KO V .  In independent work, 
N. Korevaar (Pacific J . Math. , 1980) found t h e  surprising result that i f  n > t / 2 ,  tP.ere 
e x i s t  soLutians that are bounded and dlscontinueus at '.'. 

Concus and Finn (?lath. i ! .  . 19 7 6 )  showed t h e r e  e x i s t  sec t ions  S?. n' C a, such that  
raises more fluid over f l '  zhan R Y o e e s .  The problem w a s  studied further by Fin11 (Vekua 
volume, P . c . 3  who gave general conditions under which ChiF behavior w i l f i  or wiL1 not  occur. 
Siege1 (Pacific J .  >!.lath., 1 . c  ' Lave anoth*t condit-.jn under which the smaller" tube must 
raise a larger volume over its section. 

For a capillary trlbe in outer space (zero gravity), solutions of ehe problem as posed do 
not in general e x i s t .  A t  a corner, as  in Figure 6, there can be no solution whet, a + ~  < u / 2  
(Concus and Finn, Acca Y a t h .  , :9743 . P!~vsica!Z;r. the f L l i W w s  out alnr.;; the x r n e r ,  to 
i n f i n i t y  or t o  the  top of the  c o n t a i n e r ,  whii l~ever comes first. Fnr  a regular polygon the 
above condition i s  S c 3 t  wnssille: i f  a + y 2 r 1 2  a laver syh~rical cap yield!; an explicit 
bounded solution Figure 8 shows the  resul ts  of an exper iment  conducted in the NASA drop 
tower i n  Cleveland and v e r i f v i n ~  t h e  predicted behavior.  

For a general section S? it appears t n  be not  easy to f i n d  existencectiteria. The cese 
7 * 0 w a s  studied Sy Chen (Pacl'ic . l .  Math., 19801, who gave a simple geometr ic  sufficiency 
condition. For ~ e n c r a ;  r ,  Finn <;.:nnxsrripta Hath.. 1979) reduced t h e  q u e s t i o n  t o  that  of 
properties O F  vector f i e l d s  aver  II. AppZv~z i6  rhe results to polvgonel doma.~ns. he found 
t ha t  in a parallelograrr: of arbitrarv s i d e  ra tro  a su!rltican e x i s t s  if and clnlv i f  a+7  a . /2 
a t  L;IP smaller vertex angle TU . Thus ,  a soZultion ex is:^ i n  anv rec tangle  FT > n / 4 .  
however. r h c  c x l s t e n r W c  C-J? f a i l  f o r  any 7 + n / 2 ,  in t r d p e z e s  obta ined  from rectangles by -- ar~itrari!T small deiom;ition?. 

-;%is behavior was clarified recent l v  hv Finn (Indiana Univ. I lach.  J. , t.o appear) , who 
showed t h a t  a solution surface e x i s r s  if and only i f  there is no subarc of a semicircle 

of radius RT - il . meeting Z in a n ~ l e s  7 as i n d i c a t e d  in Fi~ule 9 ,  for which 1 us 1 

+(I-) rn I- - Z* cos 7 + !F G O .  (12) 

Here the lengths and ereas  Z, n.. . - are as 
I n d i c a t e d  i n  Fi~ures 1, 9 .  

Consider a situation I n  which $(r) - 0, and 
i n  Which there i s  no r f o r  w h i c h  ~ ( r )  < 0. 
L e t  r 1 7 ,  rhen there i s  a-B -l 
Feq1;'ence of solution surfaces w i t h  hrtunlarv 
anglr  - ' 3 '  tending to a 5olution wT t3 bo$'aarY 

a w e  7 on R I I ~ ,  to  
on I' a n d t h r o u  h s  Ct . The solution is - 
; ~ ~ ~ v m p t o t i ~  a t  7-8!0 a s v l i n d e r  of 

Figure Q r d i u s  K T .  The c x i n d e r  acrs  as a b a r ~ i ~ r  
srroqr which t h e  solution surface cennot he 



The behavior j u s t  described a c t u a l l y  occurs i n  a  t r apezo ida l  s ec t ion .  Also, l e t t i n 8  the 
smaller  base -, 0 while the  nonpara l le l  s i des  meet <st  V) i n  a c f i x e d  angle  2a,  r w i l l  I .  

tend t o  V while y + (n/2) - a ;  thus ,  the  above angle theorem appear8 a8 a l imi t i ng  case.  i 

Gerhardt (Pac i f i c  J .  Math., 1980) considered tubes ciosed a t  the  bottom and p a r t i a l l y  
f i l l e d  with l i q u i d .  He showed the re  always e x i s t  energy minimizing so lu t ions  (with o r  
wit:hcut grav i ty)  which may have the  value z - 0 on p a r t  o f  t he  base.  In  t h i s  reg ion ,  the i 
so lu t ions  appear t o  admit the physical  i n t e r p r e t a t i o n  of a  t h i n  f i lm  covering the  ba-e. 

A drop hanging from a  ho r i zon ta l  plhne (Figure 10) behaves very d i f f e r e n t l y  from the  ses-  
s i l e  drop. The sol- . t ion s ec t ion  i s  uniquely determined by the  he ight  uo a t  the  ver tex  and 

1 
I 

cons i s t s ,  f o r  any uo, of a  curve t h a t  can be continued ana ly t i c - i l l y  t o  i n f i n i t y  without 

l i m i t  secs  or  double poin ts  (Concus and Finn, Phi los .  Trans. Roy. Soc . ,  1979). There e x i s t s  

a l s o  a s ingular  so tu t ion  v )  - - ( r (Concus and Finn, Invent .  Math. , 1975 ; Huh, 
Disser 'cation, Dept. Chem. Eng. ,  Universi ty of Minnesota, 1969). I t  i s  conjectured t h a t  a s  
u  -+ - - , the "drop" s o l ~ t i o n s  tend ,  uniformly i n  compacts, t o  v ( r ) .  A proof of a  some- 

0 
what weaker r e s u l t  appears i n  Concus and Finn (Philos . Trans. Roy. Soc. , 1. c .  ) . 

Conditions fo r  s t a b i l i t y  of the  pendent drop have been given by E .  P i t t s ,  by Michael and 
by o the r s .  Most r ecen t ly ,  t he  problem was t r ea t ed  i n  f u l l  gene ra l i t y  by Wente (Pac i f i c  J .  
Math., 1980). Wente showed i n  p a r t i c u l a r  t ha t  the  occurrence of an i n f l e c t i o n  i n  t he  merid- 
iona l  s ec t ion  need not preclude s t a b i l i t y .  

The reasoning of Young on the  constancy of 7 i s  based on a  hypothesis t h a t  a l l  ma te r i a l  
forces a r e  c e n t r a l .  In the  presence of r e s i s t i v e  forces the  behavior can be very d i f f e r e n t .  
Finn and Shinbrot consider a  drop of l i qu id  on a  ho r i zon ta l  su r f ace ,  with y i n i t i a l l y  de- 
termined as i n  tne  Young theory.  I f  l i qu id  i s  now slowly added, the  wetted sur face  may r e -  
main constant wt.ile the angle 7 increases .  I f  r e s i s t a n c e  i s  very l a r g e ,  then continued 
addi t ion  of l i qu id  w i l l  eventual ly lead t o  a  value y > r ,  which is  physical ly impossible 
as  then the drop would penet ra te  the  supporting plane.  It follows t h a t  %geometr ica l ly  im- 

oped i n s t e i l i t y  m u s t  occur when 1 incieases !I;; u ,  forc ing  the  wetted sur face  t o  i n -  
A t  can be shown Binn, 1. Keine ngew . , 1 .  c  .) t h a t  an upper bound f o r  the 
iFTEEal  B i s  determine6 as  the  unique so lu t ion  of the  r e l a t i a n  

Finn and Shinbrot i n t e r p r e t  the  above behavior by pos t i l l a t ing  a  r e s i s t ance  fo rce  whose 
a rea  densi ty F i s  p o t e n t i a l ,  F = - Vq, and which i s  formally equivalent  t o  a d i s t r i b u t i o n  
of i i n e a r  densi ty 9 d i r ec t ed  normally on Z. They then apply t h a t  i n t e r p r e t a t i o n  t o  t he  

more complicated s i t u a t i o n  of a  drop on an 
inc l ined  p lane ,  i n t i a l l y  under zero g rav i ty  
and meeting the  plane i n  the  (Young) angle 
701 and then subjected t o  slowly increas ing  

Figure 11 

gravi ty  (Figure 1 1 ) .  Under hypotheses, t h a t  
depends only on the  pressure a t  t he  i n t e r -  

f a c e ,  and t h a t  t he  e f f e c t  can be separated 
i n t o  a r a d i a l  "squishing" term as occurs f o r  
the  ho r i zon ta l  p l a t e  and a  "sl iding" term due 
t o  the  i n c l i n a t i o n ,  they a r e  led  t o  a  r e l a t i on  
of the form ( f o r  small B) 



2 cos 7 = cos 7, + .(I) + a s i n  I s i n  8 - p s i n  I sin2@ . (14) 

Here a ,  13 are constants ,  a f s  e x p l i c i t l y  known and of order 8 , and c i s  decreasing 
2 i n  . 0 has order B , r has order @ i f  I < r / 2  and order L~ i f  4 - r / 2 .  Again 

a geometrically imposed i n s t a b i l i t y  appears, and i n  fac t  does so for surpris ingly small 
values o f  B . 




