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Abstract 

The assumptions of a region of slip near a moving contact line (to remove the force- 
singularity) and a constant contact -1e are used to obtain the equation for the shape of 
a thin drop of liquid resting on a .+ plane. Three asymptotic expansions are matched 
together to obtain an expression for : n ~  rate at which the drop spreads. Some cases of 
sliding motion are also examined. ALL: clgh the technique is presented here for thin drops 
only, it can also be applied to drops of arbitrary size. 

Introduction 

The chief difficulty that has to be overcome in an att+ntt to describe the motion of a 
drop in contact with a rigid surface is the determination of the correct boundary condi- 
tions to be applied at the contact line where the surface of the drop meets the rigid sur- 
face. If tho drop is spreading over the surface, or if it is sliding along it, or both, 
the contact line is moving and it is well known that in these circumstances application of 
the no-slip boundary condition leads to a solution containing an unacceptable singularity. 
For certain purposes this singularity can be ignored but if, for example, we wish to deter- 
mine the rzte at which the drop spreads or the speed at which it slides, a dynamical bal- 
ance of the forces acting must be achieved, which proves to be impossible in the presence 
of tka force-singularity. To circumvent this difficulty, the most widely used device is to 
replace the no-slip boundary condition in the vicinity of the contact line by one allowing 
a certain amount of slip there. The argument in favour of this proposal is that large 
stresses occur near the contact line, associated with the rapid change in direction of the 
fluid motion there, and the molecular forces which are usually sufficient to prevent s.ly 
slip between fluid and solid may be unable to control these large stresses. Of course, 
what is really required is a good molecular theory for the junction between drop, solid and 
surroundin? air. Failing such a theory, some model boundary condition may be proposed in 
the hope that its exact form is of little consequence and that it will at least enable 
finite answers to be produced in answer to questions involving the force balances associ- 
ated with the motion and that these answers can then be tested experimentally. The sim- 
plest model boundary condition is one which replaces the usual no-slip condition by one 
which allows a small amount of slip, proportional to the local velocity gradient. If u is 
the velocity parallel to the plane surface and z is measured normally away from it, the 
proposed boundary condition is 

- 
for a fluid in contact with a solid boundary at rest. The slip coefficient A is a measure 
of the length over which slip is significant. Although its value is unknown, if the slip 
is produced by molecular effects we might expect a value of the order of 10'~ m. Such 
slip is only expected to occur close to the contact line and the boundary condition should 
revert to its usual form elsewhere. However, the very sr,*all size suggested for X indicates 
that the slip condition can be used everywhere with negligibly small error. As ye shall 
see, allowing for slip near the contact line gives speeds proportional to l/ItnAl whi$h 
is of much greater significance than any erroneous inclusion of terms proportional to L . 

When we have decided to use a slip boundary condition for problems involving moving can- 
tact lines, the stresses near the contact line are still large and we may consequently 
expect that there will be a significant distortion of the shape of the free surface near 
the contact line. The large stresses will be balanced by capillary effects, which are pro- 
portional to the curvature of the surface. In order to provide sufficient boundary condi- 
tions for the shape of the free surface to be calculated, it is necessary to specify the 
angle at which the free surface meets the plane. Observations of contact angles seem to 
s h m  that the angle increases with the speed of advance of the contact line, and decreases 
w1.-n the contact line is retreating. For stationary drops, the contact angle is not 
uniquely defined but can take any value between certain limits. The evidence for the 
dynamic behaviour of the contact angle is based on observations which do not take account 
of any rapid change of slope in the very small distance from the edge of :he drop where, 
as we have seen, large stresses are present. It may well be that the contact angle 
measured at the edge itself does not change with speed and the dynamic behaviour refers 
only to an apparent contact angle, only relevant at some distance from the edge. Evidence 



in favour of this contention has been provided by Lowndesl who has produced numerical cal- 
culations for the motion of a meniscus along a tube uaing the slip hypothesis and kee ing P the actual contact angle fixed. He was able to show that apparent contact angles cou d 
be found from his calculated meniscus shapes which were in good agreement with observed 
values and that marked changes in slope occurred in the imediate vicinity of the edge. 

The calculations of Lcwndeo' show that a self-consietent rational framework for dealing i 

with moving contact lines is provided by the assumptions of slip at the edge and a fixed 
contact angle. This framwork has been used to discuss the spreading and eliding of a drop 
which is thin enough for lubrication theory to be used2. These problems are time-dependent 
and an estimate of the speeds involved depends crucially on the slip hypothesis. Both the 
neniscus problem and the drop problems needed considerable numerical calculation, although 
the use of lubrication theory reduced the amount required to a large extent. The equations 
for t!le spreading and sliding drop problems involve a small parameter, the slip coefficient, 
wtrich suggests that matched asymptotic expansions could yield the desiree answers without 
recourse to extensive numerical calculation. An attempt at such a procedure was made 
before the numerical results were obtained, but was not successful. The present paper, 
however, shows that matched asymptotic expansions can be used to obtain the rate of spread 
of a thin drop and, with certain restrictions, the rate at which a drop slides down a plane. 
The key to success was the realisation that, as well as expected inner and outer expansions, 
an intermediate region was required across which the inner and outer regions could be 
matched. The method employed has some similarities to the one set out by ~ a c e y ~ ,  except 
that he used a multiple scale approach and did not carry the solution sufficiently far. 

Although the methods to be desiribed here can be applied to a variety of problems, for 
simplicity they are explained with reference to the problems examined before4. The drop is 
assumed to be thin and two-dimensional and it is also assumed that it is small enough for 
the Bond number to be small, that is, for gravity to be less significant than capillarity. 
In the first problem, the drop is placed on a horizontal plane and allowed to spread until 
its equilibrium position is reached. The quantity to be determined is the rats of spread 
of the drop as a function of its width. In the second problem, the drop is placed on an 
inclined plane, when both spreading and sliding may occur. The final width of the drop and 
the speed at which it slides are the quantities to be determined in this case. 

Formulation 

The application of lubrication theory to the problems to be solved is straightforward 
and has been described in detail before . The simplified forms of the Stokes equations 
enable the velocity components to be found in terms of the pressure and the application of 
the normal stress condition and the kinematic boundary cpndition at the free surface yields 
an equation for the height h(;,t) of the drop,-where x is measured parallel to the plane 
surface and 5 is the time. The equation for h is 

where u is the fluid viscosit.y, g gravity, a surface tension, the slip coefficient 
and 8 the inclination of the plane to the horizontal. Lubrication theory is only valid 
if the slope of the drop surface is everywhere snall, so the contact angles must be small. 
A non-dimensional form of (2) is 

and a is a length scale associated with the size of the drop and a, is a typical value 
of theo (small) contact angle. 

The extent of the plane covered by the drop can be fixed by two more unknowns, al(t) 
and a2(t), so that a2 r x r al and 

The volume of fluid in the drop remains constant throughout the motion and the length scale 
can be chosen 80 that 



The other conditions on h relate to the slope of the surface of the drop at its edges. 
The proposal indicated in tbe introducti~n shows that, when the~contact line is moving in a 
direction from th interior of the drop to the exterior (an advancing edge), the contact 
angle is fixed at its static value, which we can take to be the scaling factor o . For 
a retracting edge, when the motion is it, the opposite direction, the contact angle is equal 
to the minimum static angle a, . At a stationary edge the contact angle can lie anywhere 
between or and aa . The boundary conditions to be applied at the edges are, therefore, 

where 6 = a,/aa and 0 r B s 1 . 
The final information needed to specify the problem completely is the initial state, 

that is, the values of al(0), aZ(0) and h(x,O) . From arbitrary initial states, one 
expects a fairly rapid transient phase during which the shape of the drop changes without 
significant spreading taking place. This is because the rate of spread is controlled by 
conditicns at the contact line where large stresses resist the motion. No such restriction 
is placed on the distortion of the drop surface when the edges are fixed. Since the 
initial phase is of little significance to the general spreadiny problem it will be ignored 
here. The height of the drop is then a function of time only through its dependence on the 
positions of the edges. Thus the solutions to be obtained are of similarity type and the 
initial shape of the drop will be assumed to agree with these solutions for the given 
initial positions of the edges. 

Spreading 

The simplest problem of the type being considered is when the drop spreads on a 
horizontal surface. If we suppose that the drop starts from a position wherr the 3pparent 
contact angles are greater than the static value, the edges of the drop will move outwards. 
If the drop is initially symmetric about its mid-position, it will remain so and we may 
write a (t) = -a2(t) = a(t) and consider the interval 0 b x s a  only. The problem then 
takes th& form 

where = da/dt and h is a function of x and a , in line with the intention to ignore 
any initial transient phase. As already explained, the rate of spread is expected to be 
small so that we cah expand in powers of some small parameter c(1) , where X < <  c < <  1 
but the dependence of c on X is yet to be determined. Hence we can write 

and, in the outer region where x is 0(1), h = ho + thl + ... From equation (9) the 
equations satisfied by ho and hl are 

and these have to be solved subject to the conditions (10) , ( I , ] )  and (12) , except that the 
condition on the slope at the edge of the drop is not to be applied in this outer region. 
The solutions are 
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hl = u1a4 [ (a  + X) Enla + x) + (a - x)  in(a - x)  - Pa tn 2a + =!a2 - XZ) 1 (17) 

so that, near the edge of the drop where a - x is small, 

h %  a - x  a - x  
7 + r ula4(a + x) [tn + 2 ] . 

The inner region is close to the edge of the drop and is where slip is important. In 
this region we write 

x = a - AX, h(x,a) = AH(X,a), H = Ho + cH1 + . . . (19) 

The equation satisfied by H witn a term O(X) omitted is 

and the boundary conditions are 

and aH/aX is not more than logarithmically infinite as X . The solution is 

so that, for X- , 

Although (18) and (23) both contain logarithmic terms, it is not possible to match these 
two expansions together and an intermediate expansion is required. This region is of width 
0 (c) , and the match can be achieved if we choose 

The variables to be used in this region are defined by 

and the governing equation (20) becomes, after one integration, 

Neglecting the exponentially small term, the solution is 

which matches with the inner solution (23) if we choose co = 1, cl = 0 . To match with 
the outer solution (18) we write 

and obtain 

Comparing this with the outer solution, we can see that the logarithmic term and the 
constant term both match if 

- 6 1 + 3u1 = a , u2 = u1 ( 2  - Ln 2ai , (30) 

so that the rate of spread of the drop is given approximately by 

c f l  + c(2 - Ln 2a)) a - 1) , 



or, to the same order of accuracy, 

The objective of determining the rate of spread of the drop as a frlnction of its width 
has thus been achieved. If the leading term only in the outer expansion is included an 
apparent contact angle is given by the value of am2, from (18). With variables in their 
dimensional forms, equation (32) yields the expression 

for the apparent contact angle at the edge of a drop of width 2a advancing with speed U 
when the static contact angle is small. But the inclusion of the second term in the outer 
expansion destroys the validity of the concept of an apparent contact angle as a directly 
measurable quantity since, with the extra term included, the slope does not tend to a 
conotant at the edge of the drop within the outer region. It is, however, still possible 
to define the quantity (33) as a derived contact angle as it could be measured by finding 
the curvature of the dr;p =t its mid-point, for example, thus taking into account the outer 
solution but not requiring any measurement to be made in the vicinity of the edge. 

Sliding 

The second problem is when the drop is placed on an inclined plane. The drop is no 
longer symmetric and both edges have to be treated. As before, the Bond number is small, 
and gravity enters the problem only through the positive paramet.er K defined in ( 4 ) ,  
which measures the component of qravity down the plane. Any transient behaviour is again 
ignored, so that we suppose the height of the drop to depend on the co-ordinate x 
measured along the plane and on the positions of the two edges, but not directly on the 
time. The same three regions encountered in the spreading ~roblem are present, but 
because both edges have to be treated, it is convenient to introduce a change of variable. 
If we write h(x,t) = f(s,al,a2), where 

x = f (al + a*) + +(a1 - a2) s , (34) 

the range covered by the independent variable s is from -1 t.o 1. In the outer region, 
we c:n write f = fo + fl + ... , and the equation for fo is 

and the solution which vanishes at the edges and which satisfies the volume condition (6) is 

Since fo must be non-negative for s in [-1,1] , this solution is only acceptable if 
0 < b 6 1 , where 

This condition may be broken either in the initial stage or during the spreading of the 
drop. In either case, a different appr-sch from that used here must then be employed. 
The failure of the condition implies that regions are developing where the drop becomes 
very thin and although this is an interesting possible behaviour, this aopect of the prob- 
lem is not investigated here, and we assume that b < 1 throughout the motion. 

The ~econd term in the expansion in the outer region satisfies the equation 

16 a3i1 il (l+s) (l+b) + i2(l-s) (1-b) 
- =  

(a1-a2) 5 as3 (1-s2)2(1 + bs13 

The bc..ndary conditions on fl are 
r 1 

fl = 0 at s = -1 and at s = 1, f ,  d~ = 0 , J- 1 



and the solution can be found in closed form after a great deal of algebra. The only 
quantities of interest are the asymptotic values for the height of the drop near the two 
edges and these are given by 

The solutions in the inner and intermediate regions are similar to those found in the 
spreading problem, except that the edges may be moving in either direction or be station- 
ary. The conditions ( 7 )  apply at the lower edge x = a, and when they are applied, and 
the resulting inner expansions matched via the intermediate expansion to the outer solu- 
tions, we obtain the equation 

where S is a step function, defined by 

S(x) = 1 for x > 0, S(x) = 0 for x < 0 , (4 3 

When the edge is at rest, (42) i8 replaced by i ,  = 0 . The corresponding results for the 
upper edge x = a2 , where the conditions ( 8 )  apply, are 

when the edge is moving, and a2 = 0 when it is at rest. 

These equations are sufficient to determine the future behaviour of the drop from any 
given initial position of the edges. The drop may not move at all, or one or both edges 
may move in either direction as the drop spreads or contracts. The most interesting 
possitility is when the drop spreads and slides, approaching a final state in which the 
width of the drop and its-speed down the plane attain constant values. This final state 
can be found by setting al = i2 = U and -a2 = 2a . From (42) and (441, with b re- 
placed by its value in terms of K and a 'irom ( 3 7 1 ,  we obtain the equations 

There are too many parameters for it to be uasy to make general statements about the 
motion. An approximate set of criteria can be found by retaining only the dominant terms 
on the left-hand sides of (42) and (44), that is, the logarithmic terms. Then it follows 
that a = 0 if 0 < a'2(1 + abK/3) < 1 , 1 (47) 

i2 = 0 if 6 < a-2(1 - a4~/3) < 1 . 
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A static final state is only possible if these two conditions qn the width of the drop 
overlap, which they do if 0 s K c Kc , where 

while for K > Kc the drop will slide. If there is no contact angle hysteresis, that is, 
if ar aa , the drop will slide however small the inclination of the plane . 

Extensions and concl~sionr 

Although only thin two-dimenrional drops have been considered here, the method is 
applicable to many other cases. The spreading of a thin drop by both capillarity and 
gravity and without the restriction to two-dimensionality has boen examined4. The 
capillary spreading of a drop which i r  not thin, so that the simplifications of lubrication 
theory are not availabla, has alro been examined and the results compared with those 
obtained experimentallys. Further work on the sliding problem, with the extension to 
three-dimenrio!ality and the lifting of the restriction on the gravity parameter K is 
planned. 

The aim of this paper has been to show that the moving contact line problem can, in 
certain circumstances, be solved in a satisfactory manner. The solutions for which 
experimental corroboration is available1'5 indicate that the proposed boundary conditionr 
can ba used with some confidence. The results cbtained here and elrewherebC5 show that the 
ap~iication of these conditions need not involve a large amount of refined numerical 
~nalysis to resolve the solution near the contact lj-~e. 
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