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Effects of rotation and magnetic field on the onset of convective instability
in a liquid layer due to buoyancy and surface tension

Gabb‘ta Sundara Rama Sarma

Ingtitut fdr Theoretische Strdmungsmechanik,
Deutsche Forschungs- und Versuchsanstalt fir Luft- und Raumfahrt
Bunsenstrasse 1¢, D-3400 Gdttingen, Federal Republic of Germany

Abstract

Thermocapillary stability characteristics of a horizontal liquid layer heated from below
rotating about a vertical axis and subjected to a uniform vertical magnetic field are ana-
lyzed under a variety of thermal and electromagnetic boundary conditions. Results based on
analytical solutions to the pertinent eigyenvalue problems are discussed in the light of
earlier work on special cases of the more general problem considered here to show in parti-
cular the effects of the heat transfer, nonzero curvature and gravity waves at the two-fluid
inferface. Although the expected stabilizing action of the Coriolis and Lorentz force fields
in this configuratior are in evidence the optimal choice of an appropriate range for the
relevant parameters s shown to be critic-lly dependent on the interfacial effects mentioned
above.

Introduction

In recent years there has been a resurgence of interest in understanding the origins and
possible means of controlling convective instability,especially in configurations relevant to
material sciences in general and material processing in particular within the framework of
the current space programs. In this context some of the basic aspects of this problem area
have been under investigation®~" by the present author. The contribution to be presented here
is part of a continuing effort at the DFVLR to analyze some of the basic fluid dynamic
aspects relevant to the material science configurations, especially in the context of space
experiments under reduced gravity conditions and the related ground based research.

since references !~" give the general background and motivation for the particular problem
considered here and cite the relevant literature, we shall restrict ourselves here only to
a resport of some of the recent results obtained and discuss them in the light of those avail-
able in the literature. While references 1-4 deal exclusively with the zero gravity situa-
tion, we consider here specifically the simultaneous action of surface tension and gravity
in this classical Bénard ~ Marangoni configuration.

Formulation of the problem

We consider an infinite, horizontal, Boussinesq 1liquid layer of mean thickness d rotating
about a vertical axis at a constant angular speed 2 and subjected to a uniform magnetic induc-
tion field of strength By under various typical boundary conditions to be detailed later.
Figure 1 illustrates the configuration schematically and is followed by a list of the symbols
for dimensional quantities occurring in the later development. The details of the formulation
incorporate the features introduced by Scriven and Sternling * and Smith ®* extending the
pioneering work of Pearscn’,
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Figure 1. The Bénard - Marangoni configuration
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List of symbols

B8 = Coefficient of thermal

B

-1 3 = Magnetic induction field

volume expansion, o aT B, = Magnitude of the applied B-field
Y = Electrical conductivity K = Thermal conductivity
AT = Applied temperature difference (T;-T:) T = Temperature
t, = Amplitude of the disturbance wave at c, = specific heat

the two-fluid interface d = Mean thickness of the liquid layer
nm = Magnetic diffusivity (wm)'l g = Acceleration due to gravity
« = Thermal diffusivity, K/oc, h = heat transfer coefficient at the
A = Disturbance wavelength, Zmﬁﬁﬁ+k; disturbed interface
¥ = Dynamic viscosity kx+ky =Disturbance wave numbers in the
¥ = Magnetic permeability x-y-directions
v = Kinematic viscosity p = Time constant in the exponential
p = Density growth/decay factor of a disturbance
¢ = Interfacial energy at the two-fluid normal mode

interface

2 = Angular speed of rotation

The liquid layer has nominally constant temperatures T,, T, (T;>T;) respectively at its
lower =—d upper horizontal boundaries. For the sake of definiteness and simplicity the
characteristics of the adjoining media are somewhat idealized. They are specified for the
three cases (1), ' of the boundary conditions (b.c.) as follows.

In b.c. we take the hottom boundary as a thermally and electrically perfect solid
conductor. In b.c. the bottom boundary is a thermally and electrically perfect insulator.
In both cases the upper adjoining medium is taken as an electrically insulating gas extending
in the z-direction to infinity. The heat transfer to the gas from the liquid layer can be
simplified (without going into the details of the possible flow in the upper medium) in terms
of an effective heat transfer coefficient h(T)°’’ for the two-fluid interface. A detailed
discussion of this simplification was given by Pearson’. In b.c. we consider the situa-
tion where the same ambient gas is present cn both sides of the liquid layer.

The onset of convective instability in such a liguid layer with an initially uniform
linear temperature profile can be formulated as a linear eigenvalue problem for the distur-
bance amplitudes of the flow variables using the standard normal modes procedure®. We non-
dimensionalize the problem usinc %% d, d%/v, «/d, x/d?, dryxB,/d, AT respectively as the reference
quantities for length, time, velocity vorticity,electric current density and temperature.

The stability of the configuration with respect to an infinitasimal normal mode of distur-
bance may then be stated in terms of the following eigenvalue problems in dimensionless form.

(D2-a?) (D*~a’-p,) (D*~a?-p,)W - Ta(D2~a’~p,)DZ -~ Q(D?-a?)D?W = Ra - a’(D¥~a?-p,)s (1)
(DZ-a’-p,Jo+W = 0 (2)
{D’=a’-p,)Z+ Ta +DW + QDX = 0 (3)
(0D?-a’=p,)X+DZ = 0 (4)

where D = (1/d4) - d/dz and W, Z, X, & are respectively the dimensionless disturbance ampli-
tudes of the z-components of velocity, vorticity and electric current density and of tempe-
rature.

The boundary conditions are to distinguish not on.y between cases (:) C) C) specified
earlier but also as to whether the neutrally stable oscillatory (p, # 0) or otationary (p;= 0)
modes are considered while determining the stability boundary for the confiquration.

(a) Neutral modes oscillatory (p, #0)

B.c. () W(0) =0 = DW(C) = 8(0) = 2(0) = DX(0) (5)
B.c. (D W(0) =0 =DW(0) = D8(0) = 2(C) = X{(0) (6)
B.c. (:) W(0) = pyt, (Kinematic condition at the two-fluid interface) (7)
q
For Nu = %%% 2 0
C De (0
Toeky | (2-p-3a9oW(0) } - { 220460} ()
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(D?+a?)w(0) - 2HaDI0) . (9)
For Nu = 0
De(0) = 0 (10)
Cr
E’%’%TJ”T { D? -3a% =p, )DW(0) } - W(0) = O (11)
p, (D’ +a? )W(0) + Ma « a’ { p,0(0)-W(0) } =0 (12)

B.c. at z=d for cases (), @, (@ are of the same form as those for case (3) at z=0.
{b) Neutral modes stationary (p = 0)

The conditions (11),(12) <~ oove are to be replaced by

wW({0}) = 0 {which covers also (7) above) (13)
2 2 Ma:Cr 2 =
D'W(0) + a® +Map (0) + 7p3=t { -D'W(0) + 3a"DW(0) } = 0 (14)

Again the b.c. at z=d are of the same form for cases (), (@, (@ as those for case (3)
at z=0.

The dimensionless numbers occurring in the above formulation are Bo = pgd” /o (Bond),
Cr = xu/od (crispation), Ma= ! (30/aT)AT!/ux (Mara- -oni), Nu =dh/¥AT (Nusselt), Pr = v/«
(Prandtl), Pry = v/np (magnetic Prandtl), Q =Bjd’y/uw (Chandrasekhar), Ra = ggaTd' /vk (Rayleigh)
Ta = 20d° /v (Taylor), a= 2nd/) (disturbarce wave number), p, = pd?/v {frequency factor for
oscillatory disturbance mode), p, = Prp+p,, P; = Prepy . The ﬁast four parameters are characte-
ristics of a disturbance normal mode in the hydromagnetic thermocapillary stability discus-
sion of the configuration whereas the first nine describe the basic configuration.

Briefly®:®* the boundary conditions (5),(6) state the no-siip condition and the thermal and
electromagnetic properties associated with the boundaries whereas (8),(9) cover the require-
ments®® of stress balance along and normal to the two-fluid interface incorporating the
thermocapillary terms and also taking into account the nonzern interfacial curvature (Cr),
gravity waves (Bo) and heat transfer contribution a* the disturbed interface (Nu).

The existence of oscillatory modes in this configuration especially at large Ta 1s well-
known for the buoyancy-driven case ® and was also demonstrated in the surface tension-driven
case. The oscillatory modes become important at low Pr but it was found! that at least for
Bo =0 the incipfent instability is stationary rather than oscillatory since the correspond-
ing critical Marangoni number is higher than that for the stationary mode which is independ-
ent of Pr. It turns out that for small Bo# 0 the critical Ma, tends to decrease and a.~+ 0
with large Ta whereas the oscillatory modes were shown §¥_asymptotic analysis! to occur at
large Mag~ Ta>» 1, as a shert wave instability with a~ /Ta, Thus we have some plausible
evidence to suppose that in this configuration, where the effects of the magnetic field
(Q# 0) which inhibits the onset of buoyancy-driven oscillatory modes (for Pr> Prp) ° are
also included, the stationary modes precede the oscillatory ones at onset of instability

Since the practical interest in the present invesc.igaticn lies ultimately in the suppres-
sion of convective instability !™* . consider here the case p, = 0 in the following. Tt, -
however, the solution of the complete eigenvalue problem with p, # 0 posed above does lead
to oscillatory modes we have then only to compare the corresponding minimum critical
Marangoni number with Ma. computed here. Mac is in any case an upper bound for stability of
the configuration.

The stationary modes of convective instability are given by nontrivial solutions to the
homogeneous boundary value problems given by (1) - (10), (13), (14) for the different cases
@>, @D, . The secular conditions for the existence of nontrivial solutions to the
respective homogeneous boundary value problems have been obtained by using the exact enaly-
tical solutions (combinations of trigonometric and hyperbolic functions) of (1) - (4) in the
appropriate boundary conditions. The neutral stability characteristics of the configuration
are then analyzed from the resulting transcendental secular relationship in terms of the
dimensionless parameters of the problem. Zince we have a large number of dimensionless groups
here, we shall have to choose a suitable range of their values with some class of applications
in view. As indicated in references !”* the interface curvature effects are already in evi-
dence for such small values of Cr=10"7,10"" yielding stability characteristics quite differ~
ent from those for Cr = 0. Using the thermophysical property data available in the literature
°=1! {he parameter ratio Bo/Cr =gd’/vx at g=9.81m/s’ with d=mm has values of 0(10°)} as
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shown in Table 1 for some substances of interest

Table 1, Typical values for Bo/Cr
Silicone oil Cu-melt Al-Cu-melt CaAs-melt Si-melt
(Dow-Corning
200) —_
4.5x 10T 6.,07x 10¥ 5. 1x 10* 7.1x10¢ 1.82x 10!

The corresponding values for different levels of gravity and the opriate size of the
layer for experiments in space missions can be estimated from Table 1. We can also use them
for estimating parameters su~h as Ra and Bo say by choosing Cr: 10"?, 10~" to demonstrate
the effects of nonzero inter.acial curvature. It is found that Cr= 10-%, 10~ for Silicone
oil (Dow-Corniny 200) '°, used frequently for convection experiments, when d=mm, cm respec-
tively. Thus for experiments in a terrestrial laboratory in the mm size and in an orbital
laboratory in the cm range can be covered by considering Bo=0.05, 0.5 and Cr=10~*, 10"
to emphasize the effects of interfacial waves. Table 2 gives some representative values for
Q and Ta.

Table 2. Vvalues of Q at B, = 0.5 tesla and Ta at 0 =500 rpm for d=mm
Sllicone oIT Al-melt CyAs~ "S1i-melt CTu-mel¥
DC 200 melt
Q — 9.02x 10° 5.57 x10° 1.14 x 107 8.43 x 10’
Ta 0,524 1,95 x10% 3,37 x10% 2,98 x10% 2,48 x 10?

Results and discussion

The eigenvalue relationships giving the stability characteristics of the present configu-
ration under b.c. C), ' éb have been obtained by investigating vario.s special cases:
Ta=0, Q#0; “Ta#0, Qul; 'Ta, Q> 1;’Ta>»1, Q=0, p, # 0 ! all with Pa=0=Bo i.e., under
zero gravity bringing out the essential differences between Cxr =0 and Cr g 0.
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Figure 2. Neutral stability curves for the onset
of thermocapillary convective instability in a
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Figure 2 shows the neutral stability curves of the present configuration under the action
of (a) rotation alone and (b) magnetic ficld alone for different Nu, Cr at Bo=0-~ Ra for b.c.
C). We notice first of all the radical departure of the stability characteristics for Cr ¢ ¢C
from those of Cr = 0, namely, that there exists strictly speaking no minimum critical Maran-
goni number when Cr #0 as was first shown by Scriven and Sternling for Ta=0:=Q. Asymp-
totic analysis in the limit a+ 0 shows that Ma~ f(Ta,Q) (Nu+1)/a’?,a+ 0 for Cr =0 whereas
Ma~ g(Ta,Q) (Nu+1)a?/Cr , a+ 0 for Cr # 0 under b.c. C). The numericas; results shown coriirm
this limiting behaviour as well (note the linearity of the curves for small a). The akove
formulas incidentally include the factor (Nu+1) missirg in those of reference S (Table 1,
p.333) for Ta=0=Q.

For sufficiently small Cr/g(Ta,Q) we may spesak of 2 guasi-critical Marangoni number Mag
which is approximat:ly equal to that calculated using Cr =0 in earlier literature!® !’  since
the unstable long wave band increases in size with Ta and Q (for Ta » 1, Q<< 1; Ta<«1, Q»1
respectively the corresponding band widths are 0(Cr Ma) and 0(Cr/¥), Cr must indeed accord-
ingly be smaller for this approximation to hold at higher Ta. Q. As shown in Figure 2 the
effects of heat transfer (Nu# 0) at the two-fluid interface are stabilizing in that the
unstable domain is pushed upward along the Ma - axis with increasing Nu,

Figure 3 shows the monctonically increasing stabilization potcountially to be achieved by
increasing rotation (Ta) and magnetic €ield (Q) under the three typical b.c.() r (2 C@
which, it may be noted, are in decreasing order of stability amcngst themselves. The results
shown agree with those in references 12,14 for Cr = 0. Asymptotically Ma_ = 0(Q) for Q» 1,

Ta << 1 and Ma. =0(Ta) for Ta>» 1, Q << 1, Note that the asymptotic 'anqe is attained faster
by Ta than by Q due to the influence of rotation on the flow field in general and vorticity
in particular. The differences between the b.c. per°ist longer in the case of magnetic field.
The situation is analogous in the case of buoyancy®

Apart from their formal interest the results shown in Figures 2, - for Cr = 0 may also be
seen as useful approximations for sufficiently :tmall Cr anC at low levels of gravity provided
the long wave instabilities are considered relatively harmless. The relevant ranges of the
parameters will become apparent in the later discussi~on.
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Figure 4. 'Neutral stabil- Figure 5. Correlation of the critical Marangoni
ity curves for b.c. (1) with number Ma. with Bo/Cr for b.c. () with Nu=0,
Nu=0, Bo= 0.05 at low grav- Ra=0.1 at Cr=10"%, 10™*; Bo=0.01, 0.05

ity (Ra=0.1) for different
Ta (Q=0.1) and Q (Ta= 0.1)

Figure 4 shows the further departure of the stability characteristics of the configuration
from those at Cr = 0 when we consider low Bond number and crispa*.un effects together. We no-
tice first of all the reinstatement of an absolute minimum ci.itical Ma, for the cnset of
convective instability as was first shown by Smith® for Ta= 0=Q . The neutral stability
curves for Cr = 10" "show two minima, one at a=0 and the oth.r at finite a. Even for Cr« 10~}
the same feature can be reproduced at Bo =0.5. This is due to the fact that the long wav:
stability characteristics depend on the ratio Bo/Cr and not individually on Bo,Cr. The
occurrence of double minima has been confirmed for Bo/Cr g 200. The lesser of the two minima
is then the critical Ma, for the onset of instability. For small Ta(<25.8) and small Q(<18)
we observe that the critical wavelength 1. corresponding to Ma. is finite whereas at higher
Ta and Q, )¢ is infinite at onset of instability. It may also be mentioned that when 1. is
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finite it does correspond to the value for Cr=0. Ma, clearly decyeases monotonically with
larger Ta,Q and the corresponding ). is then infinite. Thus, allowing for gravitational
waves and crispation effects leads to long wave instability at a low but finite Ma, for
large Ta and Q.

Figure 5 shows the correlation of Ma, with Bo/Cr for b.c. G) with Nu=0, Ra=0.1 at
Cr=10"% 10""; Bo=0.01,0.05. Along the continuous parts of the curves )\, is infinite and
along the broken ones \o is finite. The latt:r situation is found to occur at low Ta{<25.8)
and Q< Q* (Q* = 18, 12, 8.5 respectively for Ta=0.1, 15, 20) and large enough Bo/Cr. The last
provision is to be recognizel along the curves for Ta < 26 where the respective curves split
off at Q* into two branches applying separately for Bo=0.01 (A\.+ =) and Bo=0.05 (). finite)
eventhough both correspond to the same value of Cr = 10~*. For large enough T¢ and Q values
the correlation with Bo/Cr is universal and a. = 0. Furthermore we notice tuat at large
Q(~800) all the curves for Ta s 500 merge. This implies a certain "saturation effect" as far
as the influence of rotation is concerned while acting together with the magnetic field as
a stabilizing agent.
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Pigure 6. Variation of Ma_. with ro- Figure 7. Variation of Ma, with Bo,
tation (Ta) and magnetic field (Q) Cr, Nu for b.c.

for b.c. @ with Nu=20

Figure 6 shows the variation of Mac with Ta and Q (225) wherein the monotonic decrease of
Ma, is to be noted even for Bo/Cr = 500 in contrast to the initial increase observed in Fig-
ures 4, 5 for lower Ta, Q. (In Figures 6 - 8 the respective constant parameter values are
indicated in the inset.). The computations snow that Ma. bardly changes with Ra. In fact
for Cr=10"?, Bo= 0.05 the upper right quadrant of Figure 6 shows that even up to Ra= 1000,
Ma. is that given by the long wave limit (Ma)y-g . However for higher Bo/Cr (=500 shown) the
buoyancy effects become noticeabl~ from Ra > 300 for Ta=0.1, 10 at Q=25 since now Q* in-
creases for Ta=0.1, 10 from 18, 12 respectively at low Ra (=0.1) tc 47, 46 at moderate
Ra (=1000). This is indicated in the lower right hand quadrant of Figure 6. This latter
range, where buiaoyancy effects become noticeable,is distinguished by the broken curve along
which Ao is finite. (The curves for Ta=0.1, 10 are hardly to distinguish on the scale drawn
but they end, when extended, respectively at approximately Q, = 16.5 and 13.2 on the Q-axis.)

Figure 7 shows the correlation of Ma, with (Bo/Cr) (Nu+1) £ (Ta, Q) for different combina-
tions of Bo, Cr, Nu. The coefficient functions f (Ta, Q) shown have been confirmed numeri-
cally for various combinations of the parameters as long as the buoyancy effects are not
noticeable. The "universality" of these correlation functions depends slightly on the para-
metar range but is found to be within a few percent at a=0.02 chosen to represent the limit
a+ 0. Another feature to be noted from Figures 4-7 is that a.+ 0 as Ta,Q increase and
ac =0 for all Ta, Q greater than some not too large a value. This is in contrast to the
common finding of the earlier studies !2-!'“ (wherein Cr was set equai to zero a priori),
namely, that a. increases with Ta and Q. Fere we see that as long as the buoyancy effects
do not dominate, the stationary form of instability sets in only at ac =0 for sufficiently
large Ta and Q.

Now we turn to the effect of the boundary conditions on t?f>stability characteristics of

the configuration. In all the three cases of b.c. C), ’ the same trends in the varia-
tion of Ma. are observed for low Ra. Ma, is proportional to Bo/Cr and decreases monotonically

371

B R



g v >

.
\

%

S
PURPSIE

CRIGINAL

P
OF PGOR QUALITY

with Ta, Q for low Bo/Cr as demonstrated in figure 8(a) for Bo/Cr = 10, 100.
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Figure 8(a). Effect of boundary conditions on thevariation of Ma. at Bo/Cr =10, 100
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Figure 8(b). Effect of boundary conditions on thevariation of Mac at Bo/Cr = 500

Ve also note that at low Ta and Q, Ma. for b.c. () is higher that that for b.c. C) and the
latter in turn is higher than that for b.c. () . This indicates the decreasing degree of
stability imparted by the degrees of freedom allowed by the three types of boundary condi-
tions (:y, ' () in that order. This feature is similar to that for the buoyancy-drive,
convective ifistability ® alihough the boundary conditions there are different. For large Ta
and Q, however we notice (cf. Q >500, or Ta= 500) the boundary conditions can no longer be
distinguished from each other. In the present case the role of the b.c. is further enhanced
via the dependence on Bo/Cr. The lower Bo/Cr, the lesser is the influence of b.c. even at
low Ta,Q (cf. Ta=1,50 for Bo=0.01, Cr=10"" shown by dashed curves in the lower part of
Figure 8(a).)

Complementary to the results in Figure £(a) those in 8(b) demonstrate that for larger
Bo/Cr (=500 for three different combinations of BEo,Cr) a more pronounced effect of the
boundary conditions on the variation of Mac and in particular that Ma, can decrease as well
as increac~ with Ta and Q depending on the range of parameters. Again at large Ta, Q the
distinction between the boundary conditions decreases.

Conclusions

The onset of stationary convective instability driven by both density-and surface-tension-
gradierts in a horizontal liguid layer heated from be ow can be suppressed by means of rota-
tion about a transverse axis and by a transverse magratic field. But the stabilizing influ-
ence of these two agencies is subject to considerable qualifications in view of the effects
of curvature and gravity waves at the two-fluid interface. The larger the ratio Bo/Cr, the
greater the range of stabilizing action in terms of Ta, @ for all the boundary conditions
considered and relatively greater for b.c. and (;) than for b.c. C) . The influence of
the individual b.c. @, ’ @ becomes indistinguishable at larger Ta, Q and at lower
Bo/Cr. Since Ma. decreases with Ta, Q (for sufficiently large Ta, Q) and ao+ 0, an optimal
parameter range for the combined stabilizing action of rotation and magnetic field must be
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souaht appropriately. Allowance for heat transfer he ambient gas is generally stabilizing.

In the low gravity situation (small Bo and Ra < 100) the buoyancy effects do not percepti-
bly influence the onset of instability except at low Ta and Q. In this range the onset of
instability is at a finite wave number ac # 0 whi~h is independent of Bo, Cr as may be expect-
ed. (Ma. corresponds otherwise to a, =0 and as shown « Bo/Cr for Nu=0.) The general
problem of interaction between buoyancy and surface tension will be considered in a later
report but it seems legitimate to draw a partial conclusion on the basis of results shown
here, namely, that the buoyancy-dominated situation tends to prefer finite wave length in-
stability while the capillarity-dominated situation including the effects of interfacial
curvature and interfacial gravity waves tends to favour the infinitely long wave mode of
instability. This conclusion is qualitatively in constrast to that of earlier studies on this
configuration ignoring the interfacial effects altogether (Bo= 0=Cr). This stems only from
the nonﬁgfo Bo/Cr and does not explicitly depend on the (finite) value of the mean surface
tension 7.

The question of oscillatory modes of instability has been bypassed here on the basis of
asymptotic results indicating that the incipient instability is stationary for large Ta(Q =0).
The results for the finite range of Ta and Q need of course to be examined in order to
confirm whether Ma. calculated here is indeed the absolute minimum critical Marangont nurker
for the cnset of instability.
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