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"There is no use trying," she said: "One can't
believe impossible things." "I daresay you
haven't had much practice," said the Queen.
"When I was your age, I always did it for half-
an-hour a day. Why, sometimes I've believed as
many as six impossible things before breakfast."

--Lewis Carroll

Preface

For at least a decade it has been recognized that arbr truly effective

search of the radio frequency band for extraterrestrial signals would require

a signal detector system of unprecedented resolution and sensitivity. Unfor-

tunately, all searches to date have relied upon rather conventional detection

equipment, and thus have not been able to probe deeply into our stellar

neighborhood.

A great impetus for the search for extraterrestrial intelligence (SETI

effort carne in 1973 in the form of a NASA-Ames Summer Study design of a large

scale search system. This system, called Project Cyclops, gains sensitivity

through linking a great number of telescopes of moderate size. The study

demonstrated the feasibility of a full-scale SETI program to begin in the

near future.

In addition to Project Cyclops, the rapid advance of digital electronics

in the 70's also led to increased interest in SETI. For the first time,

through the development of innovative FFT algorithm and fast microprocessors,

an 8-million-channel spectrum analyzer (MCSA) was designed to meet the needs

of a SETI program. The MCSA puts out a very large database at very high rates.

The development of the device which follows the MCSA, called the Signal

Detector, represents a major design challenge in both data processing and

algorithm optimization. The design of this device is the subject of this

report.
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The study was sponsored by the American Society for Engineering

Educ sition (ASEE) and the National Aeronautics and Space Administration (NASA).

The host institutions were the University of Santa Clara and the NASA-Ames

Research. Center. The 1979 Summer Study brought together 22 professional

educators in the fields of physics, statistics, electrical engineering, and

radio astronomy. During this summer they designed an integrated system of 	 -_

a new and original type which can be built with today's technology.

As the study commenced the group was presented with taro very difficult

problems. They were: "Hoar does one process 1/2-terabits (10 12 bits) of	 ^

data in 1000 seconds," and "How does one detect a completely unspecified

signal with acceptable sensitivity?"

Fortunately, the study team rose to the challenge, and an intense period

of learning, groping, and imagining followed. Proposed solutions emerged,

each with its small camp of supporters. Adding fuel to ensuing debates

was the fact that for an algorithm to be acceptable it was required to be

both sensitive and feasible (implementable). This requirement brought

together hardrare specialists and mathematical theorists. Algorithm makers

conferred with data handlers. Outside specialists were frequently brought

in to determine if a product could truly be produced. All candidate algo-

rithms, such as Pattern Recognition, Analysis of Variance, and Coherence

Measure were subjected to a makeshift scientific forum, where the participants

learned to speak the language of signal-to-noise ratios and bit rates.

Concurrent with this debate was the search for technologies commensurate to

the massive quantities of processing required. New and exotic technologies

(inching optical laser storage, super computers, multiprocessing computer

arrays) were explored. Again concurrent with these studies was one by the

I
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psychologists of the group regarding the human brain as the most sophisti-

cated "algorithm processor" of all. It was a period of intense inter-

disciplinary learning with statisticians developing integrated circuits

and physicists studying human response to stimuli, and with each person

periodically staring into noise-dominated display screens attempting to

discern a hidden signal.

This period of open scientific query was ultimately channelled into a

period of determined engineering design and layout, where all chosen methods

were incorporated and integrated. It is somewhat sad that so many promising

and exciting areas of research had to be eventually constrained to definitive

dry statements and diagrams within this report, but it was felt that one

well-specified system was needed which served to incorporate this broad

scope of ideas into one.

We wish to say a word about the use of computers by the study

participants. Individuals within the group produced simulations which:

- determined optimal ways of integrating drifting carrier
waves*

- tested intelligent algorithms to follow drifting carrier
waves

- determined the sensitivity of coherence measure and shift
SNRs

- showed the effect of quantization on variance algorithms

- developed 3-D display techniques for human pattern
recognition

- demonstrated the ability of humans to recognize patterns

- demonstrated automated pattern and cluster recognition
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Such simulations with computers and with humans aided by computers

helped greatly in gaining an evaluation of beliefs. Simulation of the

various components of the system is an economical and effective way of

evaluating and expanding the ideas proposed in this report.

This study proposes a system that acts as a detector of intelligent

signals.	 It combines the thinking of physicists, statisticians, " 3

electrical engineers and radio astronomers into one integrated design

constructable with today's technology. 	 While we do not think that this

study is the final answer in terns of instrumentation and algorithms in

the search for extraterrestrial life, we do feel that many of these

proposals are rich with potential and should be exploited further.

A word about the choice of the name for the study--Project Oasis. 	 One

of the major candidate regions of the electromagnetic spectrum in which to

search is the range from 1400 MHz to 1700 MHz.	 Near the low end of this

band is the spectral line of hydrogen.	 Near the upper end is the line for

hydroxyl radical. 	 These two lines of the dissociation products of water

gave rise to the suggestion that this narrow band of frequencies, where
'i

nature passes signals with relative ease, be called the "water hole," and

indeed what better place might we search than that ancient 	 meeting ground

of so many disparate species of living creatures. 	 it was this allusion to

a water hole which suggested the word Oasis, a patch of green in a vast

expanse of and desert, with its water hole providing the source of life. 

We have each come from this summer project realizing the power of

collaboration and cooperation between differing disciplines and viewpoints.

This study is the product of a group of individuals who worked together and

reached beyond their limits to break new ground, just as man must search beyond

himself towards the limits of space if he is to reach the stars.
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GLOSSARY

A scan refers to one spectrum-4 MHz x I Hz, with 16' bits per channel
produced in one second.

'	 The entire array refers to 1000 seconds of the MCSA output and is a 1000
sec x 8	 matrix of raw data, (1000 scans).

i
A block is a 20 sec x 40 Hz section of the entire array, 800 points.

The compacted array is a 50 x 250,000 matrix of 9-bit numbers.

A pattern block is a 50 x 200 matrix of 9-bit numbers which is a vertical
strip of e compacted array.

A pattern  class is a set of 9-bit numbers with specified bits equal to 1
which —UFt—ermi ne the class and no constraint on the unspecified bits.
Thus, both (0, 1, 1, 1, 0, 1, 0, 1, 1) and (1, 1. 0 1, 1, 1, 0 1, 0)
belong to the class (*, 1, *, 1, *, *, *, 1) , and a)so to the cuss

(* , 1 1 *1 * 1 * , * 1 * , * *) , while (0, 0, 1, 1, 0, 1, 0, 1, 1) belongs
to neither of these classes.

A pattern point is any 9-bit number of the compacted array.

A cell is the time-frequency location of a pattern point. Note the one-to-
one correspondence between blocks and cells.

In addition, the following mnemonics are used widely throughout the report:

AC - Accumulator

ANOVA - Analysis of Variance

CD - Cluster Detector

CFSR - Con.-.,,i Frame of Semantic Reference

CWD - Carrier Wave Detector

ETI - The Extraterrestrial Intelligence

GCV - Generalized Coherence Value

MCSA - Multi-Channel Spectrum Analyzer

NBIT - Numerical Battery of Independent Tests

OSD - Oasis Signal Detector

PD - Pulse Detector

PROM - Programmable Read-Only Memory

RFI - Radio Frequency Interference

RAM - Random Access Memory
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R014 - Read-Only Memory

SETI - Search for Extraterrestrial Intelligence

SNR - Signal to Noise Ratio

Gbi t - Gigabit, 109 bits

Mbit - Megabit, 1
0  bits

Byte - 8 bits
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Chapter 1

Introduction

The Search for Extraterrestrial Intelligence (SETI)



You may seek it with thimbles--and seek it with care;
You may hunt it with forks and hope;
You may threaten its life with a railway share;
You may charm it with smiles and soap--

We have sailed many months, we have sailed marW weeks,
(Four weeks to the month you may mark),
But never as yet ('tis your captAin who speaks)
Have we had the least glimpse of a Snark!

--Lewis Carroll, The Hunting of the Snark

Because of continuing advances and discoveries made by astronomers in the

"outer" universe and by microbiologists in the "inner" universe, our estimates

of the probability of life being widespread in the universe are growing rapidly.

At the same time, technological advances are increasing the probability of our

being able to successfully communicate over the large interstellar distances

that might exist between adjacent intelligent civilizations. That this idea

has clearly merged from the realm of science fiction into that of science

fact may be seen from a statement made by the National Academy of Sciences in

their Recommendations for Astronomy in the 1970's.

"Our civilization is within reach of one of the greatest steps in its

evolution: knowledge of the existence, nature and activities of independent

civilizations in space. At this instant, through this very document, are

perhaps passing radio waves bearing the conversations of distant creatures--

conversations that we could record if we but pointed a telescope in the right

direction and tuned to the proper frequency.

"More and more scientists feel that contact with other civilizations is no

longer something beyond our dreams but a natural event in the history of.mankind

that will perhaps occur in the lifetime of many of us. The promise is now too

great, either to turn away from it or to wait much longer before devoting

major resources to a search for other intelligent beings.

-2-
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"In the long run this may be one of science's most important and

most profound contributions to mankind and to our civilization."

1.1 - The Evidence for life

Radio Astronomers have found increasingly large organic molecules

within gas and dust clouds distributed throughout our galaxy. Molecules

such as formaldehyde, ethyl alcohol, fotmw ide, and others with molecular

weights up to 123 have been found.

We have artificially created the building blocks of life--amino acids,

nucleic acids and primitive proteins--in our laboratories by supplying

energy to simple mixtures of water, ammonia, and methane. The energy has

been successfully supplied by a great variety of sources, such as electric

spark, ultraviolet radiation, heat, acoustic waves, x-rays, and nuclear

particle bombardment (Ponnamperuna, 1972). Since these simple substances

and energy sources are likely to be present on any newly formed planet, the

precursors of life probably are widespread, and although we have no direct

evidence that further development or evolution will necessarily occur, it is

certainly a possibility. These same building blocks have also been found

in moon dust and in meteorites that have landed on the Earth. This indicates

that Earth has no monopoly on the organic compounds necessary for life as

we know it.

In all our studies of nature, we have yet to encounter a truly unique

obJect or event. Nature tends to create things of many kinds, but each kind

is well-populated. We find the same elements in our Sun and in all the other

stars and in all the distant galaxies as we do right here on Earth. We

-3-



The Sun and the Earth are but average members of our galaxy. There is no

basis to believe the Earth is in any sense unique.

1.2 - Where Is Extraterrestrial Life to Be Found?

Our space probes to date have indicated little hope for life on the

Moon. Mars, or Venus, and conditions on the remaining plants of our solar

system seem hostile to any life. Moving out to the stars in our galaxy,

we can expect to find life-bearing planets associated with only certain

types of parent stars.

The parent star should not be too large, since such stars burn them-

selves out in too short a time for intelligent life to evolve. Nor should

it be too small, since the planet then has to be so close to get enough heat

that tidal effects tend to lock the planet with one side always facing the

star, similar to Mercury and the Moon. This causes all the atmosphere

to freeze out onto the cold side. The parent star should be a slow rotator,

indicating that it may have lost most of its initial angular momentum to a

planetary system. In our solar system, 98% of the total angular momentum

is carried by the planets, and the Sun is a very typical slow rotator.

The heavy elements necessary for life are formed only in the cores of

stars. They are not present in the very old first generation stars, but

rather are present in the younger second and subsequent generation stars that

have formed out of the debris of their exploded forefathers. Many stars are

part of small groups of two, three or more stars rotating about a common

center of gravity. Stable planetary orbits are less likely to occur in such

multiple star systems.

-4-
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All of the stellar characteristics described above can be measured

from the Earth, enabling us to choose which specific stars are most likely

to harbor life. The factor which takes very unlikely individual occurre ces,

and makes them likely in an overall sense, is the vast size of our universe.

Thus, if we eliminate from further consideration all stars not meeting all

of the above criteria, we are still left with around 20 million good

M
	

candidates in our own galaxy.

1.3 - How Should We look for Extraterrestrial Life?

Considering the time and energy involved, the possibility of actual

interstellar travel seems very remote. That leaves us with attempting to

converse from afar, probably by some form of electromagnetic radiation. We

will have to ignore for the present the fraction of civilizations that

might be sending out gravity waves or other signals as yet unknown to us.

The two obvious candidates for electromagnetic signalling are light

and radio waves. The advent of the laser adds considerably to the possibility

of light signalling, but one basic difficulty is that of trying to outshine

the parent star. Stars radiate most strongly in just those spectral regions

where light signalling is apt to occur. Another difficulty is that the

diffuse material between the stars tends to absorb light, making such

signals be rather short-range.

Radio waves, on the oilier hand, are not bothered appreciably by stellar

interference, and are regarded as being the most likely signals to look for,

by most workers in the field. Our own present capabilities are quite formi-

dable. If we took our most sensitive receiver, our most powerful transmitter

-5-
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and our biggest antenna and combined them in an interstellar communications

link, we could communicate with a twin of that system at a distance of

100,000 light years. That fact in itself goes a long way toward making

the whole idea of interstellar communications seem possible.

Our civilization is an "emerging" one from the standpoint of inter-

stellar communications. We have not yet matured to the point where we

consider it practicable to send out signals with no hope of reply for

hundreds of years. On the other hand, we could receive whatever signals

already exist with much less effort, and with the possibility of immediate

success. The value of such one-way communications should not be discounted.

Our own radio and television broadcasts, as well as books, are one-way

communications in the sense that we cannot immediately reply to the

sender. Our knowledge of early Earth civilization through archaeological

exploration comes through a communication system that is not only one-way,

but is also irreversible and highly unintentional. Yet it is of inestimable

value to us.

There are two types of radio signals that we might search for. There

are those intended for the internal use of the sender, analogous to our own

radio, TV, radar, etc., transmissions whibh inevitably leak out into space.

Then there are those intended specifically to attract attention or serve

as a space beacon of some sort. Of the two, leakage signals are expected

to be much weaker, since they represent wasted power from the sender's

viewpoint. leakage signals are also more difficult to search for, since

we cannot make reasonable assumptions as to expected frequencies, modulation

methods, bandwidths, etc. We have only to consider the chaotic appearance

-6-
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Earth leakage signals would have to an outsider to appreciate the

magnitude of this problem (Sullivan, 1978 ). Beacon signals, on the

other hand, can be expected to be optimized in the sense of making it

easy for us to find them, since that is their purpose. To be sure, we

should not forget about leakage signals, but their discovery is more

likely to be accidental.

1.4 - Anti-Cryptography vs. Anthropocentrism

Since it is not possible to thoroughly search the entire dimensions

of frequency, time, space and signalling methods, it is necessary to

construct a search strategy that will reduce or eliminate as many of

these dimensions as possible. This involves making a number of

assumptions about the characteristics of the signals we are looking for.

Our search strategy is based, in so far as possible, on physical

laws or properties which are true throughout the universe. The radio

frequency spectrum can thus be limited on the lower end by galactic noise

at about 1 GHz, and on the high end by quantum noise at about 100 GHz.

Dispersion in the interstellar medium limits useable bandwidth to a few KHz.

These limitations should be recognized by any civilizations considering

interstellar communications. Further, communication theory suggests very

slow signalling rates and narrow bandwidths for maximum range.

The energy-conscious designer of an interstellar beacon will choose

all its operating characteristics in such a way as to maximize its

probability of detection. This means that if a search dimension can be

minimized or eliminated by a design choice, it will be. In example of this

-7-



is the dimension of time. If a beacon transmits in different directions

at different times, we would be lucky to be looking toward it at just

the time it was transmitting toward us. On the other hand, if a beacon

transmits continuously and omni-directionally, we need not concern our-

selves with the unknown of when to look at it, and the dimension of time

is effectively eliminated.

Thus, one approach in the design of a signal detector is to develop

an idea of what sort of signal would constitute an optimal interstellar

beacon, in terms of distinguishability from natural sources, as well

as providing ease of reception. On such grounds, one conclusion (Dixon,

1973) is that the signal is in the 1-3 GHz range, circularly polarized (with

binary left and right hand modulation), narrow band, and possibly Doppler

corrected. For the reasons above, the Oasis signal detector, as seen in

the next two chapters, is especially sensitive to narrowband polarized

signals.

In the event that such a signal is not the optimal beacon, or if the

transmitted signal is nonoptimal, the OSD is designed to be sensitive to a

broad class of signals, including those transmitted routinely and acciden-

tally from Earth into space.

e,

1.5 - Why Should We Look?	 g

Consider the continuum of possible development levels of civilizations,

and their corresponding communications capabilities. Our civilization has

only very recently achieved the technology necessary for interstellar

communications. We cannot communicate with less developed civilizations,



because they cannot construct their half of the circuit. We can communicate

(with difficulty) to other civilizations of equal development to our own,

and can do so with Increasing ease to civilizations more and more advanced

than ours. If we assume that we are midway along the infinite time line

of development, then we cannot reach all those other; in the less developed

half. The chances of finding another civilization of equal development

to our own is small, since that is analogous to finding a single point

on an infinitely long line. This leaves only the more advanced civilizations

as being those most likely to be found.

We know that our own civilization is capable of destroying itself

through wars, overpopulation, pollution and ether causes. It is possible

that all civilizations suffer such a fate at some critical point in their

development. Perhaps that is a general law of nature; we simply do not

know. If this were the case, we might never find another civilization.

Cn the other hand, if we were to find another civilization (that would very

likely be more advanced than we), this would be evidence that it is at least

possible for a civilization to attain maturity without destroying itself.

This might provide the impetus we need to redouble our efforts to eliminate

such possibilities. Perhaps the signals themselves would tell pus how to

solve these problems. This might be referred to as a cosmic feedback

effect, where the transfer of knowledge from one civilization to another

tends to stabilize, preserve and synchronize them.

Our sense of perspective would change if we realized we were not alme

in the universe. Perhaps some of our local problems would not seem quite

so important. looking at things from a larger viewpoint might reduce the

foolish, jealous and chauvinistic tendencies we have.

f -9-



Mankind needs a continuing challenge. Without it,, cultural

stagnation will set in and our civilization will decline. There must

always be new frontiers and adventures to face or we will sit back on

our laurels and let the universe go by.

1.6 - How Can We Understand Their Messages?

Whatever they say, it will be said in such a way as to make it as

easy as possible for us to understand it. Linguists say that a Common

Fr * of Semantic Reference (CFSR) must exist before meaningful communi-

cations can occur in any context. In other words, mutually common know-

edge or experiences must serve as the basis for initial understanding.

Once such a basis is established, knowledge which is known only to one

can be imparted to the other. We have successfully translated ancient

lost languages, but a large CFSR exists between any two races of humans.

Dolphins are apparently quite intelligent, and have complex speech, yet

we have been unable to communicate with them. The CFSR is less obvious

in that case.

An obvious CFSR that we must share with any intelligent technological

civilizations is that of counting and numbers. This has been exploited by

Hans Freudenthal (1960), a Dutch mathematician, who created Lingua Cosmica.

The basic idea a to send a repetitive message which begins with a

counting sequence and builds up logically by telling how to answer a

transmission or telling where other transmissions might be found. The first

message might be referred to as an entrance examination.

.	 ..	 ...	 ....	 0.000	 (etc.)

-10-



Each subsequent message or lesson introduces exactly one new idea or

symbol, using it in many different contexts with previously defined .

symbols, to make its meaning obvious. for example, the concept of

"greater than" can be introduced by using a new symbol "?" in context with

the numbers learned in the entrance examination, i.e.,

2?1 3?1 3?2 4?1 4?2 4?3	 (etc.)

Other schemes have also been created (see Arbib, 1979).

The important thing to note here is not that we really expect inter-

stellar signals to be exactly like Lingua Cosmica, but that at least

methods seem to exist for information to be sent, received, and under-

stood among different civilizations.

13 - What Is Being Done Now?

To date, we have only scratched the surface of what we are capable of

doing, in terms of actually looking. Contrary to popular belief, radio

observatories do not spend all their time searching for intelligent signals.

It would be closer to the truth to say that radio observatories never

search for intelligent signals. The actual situation is that most obser-

vatories never search at all, a few search for a tiny fraction of their time,

and only one searches all tie time. A long term search for pulsed signals

is being conducted in the USSR, using very small, non-directional antennas.

A full-time search for narrow-band signals using a large radio astronomy

antenna has been in operation since 1973 at Ohio State University. The

various searches to data are summarized in Table 1.1 (excerpted for data

provided by Jill Tarter of NASA-Ames Research Center.
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All of these searches basically employ previous ly-exi s ti ng radio-

astronomical equipment and techniques. No positively identified signals

from extraterrestrial civilizations have been found, although several

single-event unexplained cases have been noted (Kraus, 1979). Numerous

papers and books have been published on the subject, and many national

and international conferences have been held. A scientific journal

devoted exclusively to the subject (called Cosmic Search, Kraus et al.,

1979) is now being published.

To give proper perspective to what is being done now in comparison to

what cold be done, consider the search for earthquakes in the state of

California. An easy earthquake search experiment that can be performed

without specialized equipment is to simply stand outside somewhere in

California for 10 minutes and note carefully if you feel any vibrations.

The most likely outcome of this experiment is not indicative of the true

situation, simply because its scope is too small.

In 1971, NASA sponsored Project Cyclops (Oliver, 1971), a feasibility

study of what would be required in terms of time, money, and personnel to

mount a full-scale search for intelligent extraterrestrial radio signals.

The basic recommendations were to construct several 100 meter diameter dish

antennas, and search the nearby stars in great detail. If no signals were

found, additional dishes cold be constructed in stages, up to a limit of

about 1000, to search progressively more distant stars. If a signal were

found at an early stage, the entire array would not need to be constructed.

In 1975-76, NASA held a series of Science Workshops on Interstellar

Communications (Morrison, et al., 1977). A wide variety of well-known

-14-
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scientists in various fields were convened to re-examine the SfTI concept

in light of current knowledge and technology. The consensus of all those

attending was that it was both timely and feasible to begin a serious search

for extraterrestrial intelligence and that it can be done now at only modest

cost.

1.8 - Detection Techni ques Used in Previous SETI Projects

All current and previous SET I projects use equipment that is either

simple and inexpensive, or that has been adapted from some other original

purpose. The techniques may be broadly grouped into two categories--

those which search for wideband pulsed signals and those which search for

narrowband continuous signals. Refer to Table 1.1 for more details on

these various searches.

Wideband Pulsed Signal Techniques

Two projects in the USSR employ widely separated (thousands of miles)

receivers, with simple non-directional antennas, to make tape recordings

of pulsed signals. The tapes are later sent to a central location and

cross-correlated to determine if any time-coincident pulses were observed

among the various receivers. Typically each receiver observes many

random pulses due to RFI, lightning, and other phenomena local to each

receiver. Any such pulses would not be observed at the other receivers

however, so they are eliminated by the cross-correlation process. Pulses

which are received simultaneously at all or most of the receivers may be

inferred to have a common, most likely extraterrestrial, origin.

A second technique for finding pulses is the use of pulsar search

equipment, being done in Germany. Pulsars are natural astronomical objects

-,	 -15-



sweep downward in frequency with time. The apparent frequency sweep is

caused by the velocity of wave propagation in the interstellar medium

being a function of frequency (i.e., high frequenc y signals travel faster

than low frequency signals). Pulsar detection equipment typically uses

several receivers spaced in frequency, to observe both the pulsing and

sweeping phenomena.

Narrowband Continuous Signal Techniques

The great majority of projects search for narrowband signals, from

specific target objects. Their techniques differ from one another

principally in the method and degree of achieving narrow bandwidth, and

in the number of receiver channels in simultaneous operation. In

virtually all cases, the equipment used is adapted from radioastronomical

natural line detection apparatus.

Banks of analog filters are used to achieve moderate bandwidth

(10 kHz) and a moderate number of channels (50). To achieve a larger

number of channels (1000) autocorrelation receivers are used. These

receivers digitally compute the Fourier Transform of the autocorrelation

function of the incoming signal in real time, giving as output the power

spectrum of the signal. For extremely narrow bandwidths (10 Hz) and high

number of channels, the incoming signal is recorded on a high-speed tape

recorder for later (non-realtime) processing. The tapes have been

analyzed by a variety of techniques, inclining direct Fourier Transformation

in a large mainframe computer, optical Fourier Transformation using a laser

and lens system, and Fast Fourier Transformation using a mini-computer. In

all cases, the power spectrum is computed and inspected for peaks.

-16-



The project in Ohio employs a number of specialized SETI signal

detection algorithms. The sky is continuously swept, at the Earth's

rotation rate. In that mode of observation, the intensity of signals

which come from small-angular-extent objects appears to trace out the

antenna pattern, as a function of time. This fact is used by continuously

computing the normalized cross-correlation function of the received data

with the antenna pattern, in each channel. This procedure discriminates

against large diameter natural astronomical objects and short-time peaks.

In addition, adjacent channels are intercompared and if a detection occurs

simultaneously on two or more channels, it is ignored. This discriminates

against wide-band signals. When a signal is detected in one of the

channels, a narrowband tuneable filter is automatically activated and

swept slowly across the frequency range of the detection channel, to

provide a re-examination of the signal at 1110 the discovery bandwidth.

RFI is largely eliminated through use of a beam-switching technique, where

the receiver output is the difference between two closely-spaced beams on

the sky. Any real source appears in only one of the beams at a time, and

hence is observed normally. RFI in general is received in the si delobes

of the antenna, which are the same for both main beams. Thus RFI is

effectively subtracted out.

Several other programs make use of data and observations done for

other radi oas tronami cal purposes, which are then reanalyzed with SETI in

mind. This is the case for the projects in the Netherlands (examination

of radio sky maps at known star positions), in California (a parasitic

receiver that makes a separate recording of narrowband signals, from what-

ever the radio telescope happens to be looking  at) , and the recent one by

Cohen and Malkam (examination of data originally taken to find natural lasers).

-17-



F7_

i
P

I.9, The Next Step

The next quantum jump in signal sensitivity requires the use of

receiving equipment designed and constructed specifically for SETI. This

is analogous to building seismographs to detect earthquakes in California.

Exists radio teles cope antennas are quite adequate for the resent; only^ Existing	 {^	 q	 q	 P	 Y

their receivers need be changed. Fortunately, receivers are match cheaper9

than antennas.

Before such specialized receivers can be constructed, they must be

designed. Even before that, they must be conceptualized. Decisions must

be made as to what types of signals to expect, and optimum search algorithms

designed to detect them. Such signals might be from beacons. At the same

time, means must be devised to catch those signals which are unpredictable,

amorphous or strange. Such signals might be leakage. Careful searching

takes a long time, requiring full-time operation at several observations

around the earth, for many years. This is analogous to operating the seis-

mograph for ten years, instead of ten minutes.

Overlaying all extraterrestrial signals are the overwhelmingly powerful

signals being generated by our own radio and television stations. The SETI

receiver must operate in the presence of such interference constantly. Even

worse than the signals generated here on Earth are those transmitted by

artificial sate' 1 ites, for they look directly down the throat of the SETI

antennas. fie number of transmitters in operation, both on Earth and in

space, is growing rapidly with time. Eventually this will make it impossible

to conduct SETI programs anywhere on the surface of the Earth. The alterna-

tive is to construct SETI antennas in space or on the moon. This will be

much more expensive and could not occur for many decades. Thus there is

a great urgency to proceed now.
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1.10 - The Receiving ks tem

Figure 1.1 shows conceptually the components which make up the SETI

receiving system. A radiotelescope containing two orthogonally polarized

feed antennas is connected to two separate receivers. The output of each

receiver is fed to two separate Multi-Channel Spectrum Analyzers (MCSA's).

The MCSA is a special purpose SETI device, capable of analyzing 8 MHz of

bandwidth with a resolution of 1 Hz. The 8 MHz input bandwidth is digi-

tized and then initially split into 120 bands using a digital bandpass

filter bank. These bands are then subdivided to a resolution of 1 Hz by

120 microprocessors that continuously compute the Discrete Fourier Transform

of the filter outputs. Both the input and output data is in complex form

(i.e., possessing both magnitude and phase).

Each word is 16 bits in length, but since we use only 4 as being of

sufficient accuracy, then the output data rate is 16 megabytes per second.

This data is fed to the Oasis Signal Detector, where it is searched for

possible intelligence. In actual operation, the radio telescope examines

a target star for up to 1000 seconds. All of the data for a given target is

to be available for computation at one time, and a total of 16 Gigabytes

of data is stored digitally.

To give perspective to the magnitude of this task, consider the

following analogy. 16 megabytes per second is about one encyclopedia set

per second. These encyclopedias do not contain words and sentences, but

are filled with random letters and numbers. As we read through these

encyclopedias (after having taken a speed reading course), we have no idea

when an intelligent message might begin (today or 5 years from now), or in

what language it will be. To make matters worse, each encyclopedia will

-19-
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only contain one ward of the message (average of 8 bytes). For example,

the first set of encyclopedias might contain "The", and the second set

j;	 "message", and the third "is", and the fourth "zk3ja". As usual, just when

you get to the good part, tha data got garbled by noise, but this serves

to illustrate the real fact that noise will always make the signal less

clear than it otherwise might be.

To make life simpler, we assume that the message will always occur in

a consistent volume and on a consistent page, once it gets started, for

example, it might always be in the J volume on page 258. Of course we don't

know which volume or page it's on, so we still have to search everything,

but this assumption allows us to reorganize our search. We use a special

device called an MCSA that rips all the pages out of each encyclopedia as

it appears, sorts them out by volume and page number, and rebinds them

again (ail in one second). Now we have a new set of encyclopedias to read,

but all the page 258's of all the J volumes now are bound together in

sequential order. We still have just as much reading to do, but now we

don't have to remember as much.

Occasionally the random letters and numbers will appear to say some

thing purely by accident. The analogy here is that enough monkeys at

enough typewriters must inevitably  produce strangely real phrases. We call

these false alarms. They are expensive because they force us to stop

everything and investigate their source. We try to avoid them if possible,

but we have to be careful that in doing so we don't miss the real signal.

We are also bothered by occasional pages from the Readers Digest that

are pasted right over some of our encyclopedia pages. They correspond to

our receiver picking up terrestrial radio and television stations. These

Fit

	 -21-



pages are usually easy to spot and skip over, but they are distracting and

they cover up an ency clopedia page that might have contained the message.

The last complication is the fact the data in reality comes from two

antennas of different polarizations. This is analogous to splitting the

encyclopedia in two, with all the letters in one half and all the numbers

in the other half. We don't know if the message will be all letters, or all 	 -'

numbers, or some combination of the two. We have to read both the letters

and numbers simultaneously, trying to intersperse them appropriately to

make up the entire message.

1 .11 - Purpose of This Study

This study is a design of that part of the specialized SETI receiver

discussed above that actually finds and recognizes the signals. The ideas

and designs incorporated in this system will undoubtedly be refined and

modified by future workers. Eventually a system will actually be constructed.

This is the beginning of the next step.

1.12 - The Oasis Signal Detection System

Three separate signal detection philosophies are embodied in the Oasis

system, illustrated conceptually in Figure 1.2. The Carrier Wave Signal

Detector seeks the extreme case of a signal that has nearly zero bandwidth,

and may be drifting slowly with time. The Pulse Signal Detector seeks the

other extreme case of a signal that has a broad bandwidth, and may be pulsed

in time. The Battery of Tests seeks all those signals in between the extreme
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signals and noise. Chapter 3 lays the detailed mathematical bases and

philosophies of the Oasis detection algorithms. Chapter 4 summarizes the

overall Oasis system in block form, and provides hardware implementation

Mails. Chapter 5 focuses on the unique capabilities of tine iiutlan being

to detect ^inexpected signals, as well as the role of the operator in the

Oasis system. Chapter 6 discusses the radio astronomy applications of

the system. Chapter 7 provides illustrations of non-astrophysical areas where

the Oasis system could be put to use in solving a variety of current scienti-

fic p rob 1 ems .

t
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Chapter 2

Signals and Noise
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Everything gets written down, formally, so that
you know at all times where you are, where you've
been, where you're going and where you want to get.
In scientific work and electronics technology this
is necessary because otherwise the problems get so
complex you get lost in them and confused and
forget what you know and what you don't knew and
have to give up.

--Robert M. Pirsig, Zen and the Art of Motorcycle

Maintenance

2.1 - Introduction

The primary purpose of the signal detector is to differentiate between

signals and noise. This separation process is based, of course, on the differing

characteristics of signals and noise. In this chapter we explore these charac-

teristics, and discuss how they can be used to distinguish one from the other.

The actual implementation of specific algorithms to accomplish this separation

is discussed in Chapter 3.

2.2 - Classifying Signals and Noise

In this section an arbitrary classification of inputs to the signal detector

is presented. The classification is based on the origin of the input. The input

will be cal l ed either signal or noise and the signal can have one of three forms

as shown in Table 2.1. It is the purpose of the signal detector to pick out any

of the three signals, saving it for subsequent identification, and reject noise.

Classification

Si gnats

1. Natural - Astronomical

2. Radio Frequency Interference (RFI)

3. Unidentified (Includes ETI)

Noise

Table 2.1 - Classifying Signals and Noise
of Astronomical Interest
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The first signal form cows from natural sources. These include, for

example, pulsars, spectral lines from interstellar clouds, the galactic 21 cm

line, radio continuum sources, etc. Such natural signals are to be identified

and saved as of interest to astronomers.

The second signal form is radio frequency interference (RFI) which is

any man-made electromagnetic radiation originating from sources such as

radio systems (both ground-based and orbiting satellites), radar, igniticn

systems, household appliances, etc. , depending on the observation frequency.

These signals are not usually of direct interest by themselves. However,

they are in general sufficiently different from noise that they will be

picked out by the signal detector. In many situations it will be desirable

to catalog such signals so that later inputs of the same form can be

recognized as RFI by the signal identification stage.

Unidentified signals are simply inputs which appear to be different from

noise but which cannot be confidently identified as either astronomical

or RFI. They may in fact be one of the two, or they may originate from an

intelligent source beyond the solar system.

Noise is defined in Section 2.4 below.

2.3 - A Global View

In this section we consider the environment in which signals are generated

and noise introduced, and how a system to distinguish between the two is

structured. Figure 2.1 shows a conceptual block diagram of a complete

communications system.
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The message source block may represent an ignition system in a nearby

automobile, a pulsar or hydrogen cloud Somewhere in the Milky Way, or

perhaps an intelligent civilization many light years from earth.

The channel represents the medium through which the signal is trans-

mitted. It may be a few miles of atmosphere for a nearby RFI, or scores

of light years with components such as atmospheres and ionospheres, inter-

stellar clouds, and nearly empty space. Some of these transmission media

can have important effects on the signal as it travels between message

source and receiver.

All the noise is assumed to be added to the signal at the receiver. In

fact the noise may have come from far out in space, or may have originated

in the receiver itself. It is assumed in this study that the receiver and

the MCSA already exist. They are not of direct interest to our design except

for some control functions associated with the best operation of the signal

detector.

The signal detector is the focus of this design project. It nas the

task of detecting any signals which exist in the expanse of noise which

permeates the electromagnetic environment. Its design is dictated by the

assumptions which are made about noise and about the various signals. In a

classic communication system it is usually assumed that the general character

and the statistics of signals and noise are known, and are used to determine 	 a.

the nature of the signal detector. In our case nothing is known about any

potential ETI signals, and there is uncertainty about the exact nature of the
t

other signals and the noise which will be received. For this reason the

lines er,iering the "assumptions" block are shown as dashed. Despite this
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uncertainty, assumptions must be made because they are an essential pre-

requisite to the design of the signal detector. These assumptions are

presented in Sections 2.4 and 2,5.

The output of the signal detector goes to a signal identifier which :ias

the task of determining whether the signal is natural, RFI, or unidentified.

This block is not a primary focus of the present study although it does

receive some attention. The signal identifier directs the signal to the

appropriate user.

Unidentified signals are stored temporarily or longer for attempted

identification by the operator, with the aid of a separate RFI detection

and identification systems and various other tools available to the operator.

Finally, of course, we shall want to decode or interpret any ETI

signals which are obtained. This problem has been addressed briefly else-

where (1), and is beyond the scope of this study. If an ETI signal was

ever found, resources far beyond those available for the search itself would

be brought to bear on its interpretation.

2.4 - What Is Noise?

The term "noise" is not uniquely or unambiguously defined. Sometimes it

refers to any undesired input. In our case such a definition could be ambi-

guous. For example, RFI is not of interest or desired for SETI purposes and

yet we must initially detect it as a potential ETI signal, since it has many

of the same characteristics. Once identified as RFI, we catalog such a signal

so as to reject recurrent similar RFI by means of comparison tests. Likewise,

astronomical signals are not desired for SETI purposes, but are sent to the

astronomical observer for other uses.
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For our purposes we define noise in terms of its statistical charac-

teristics. We then define a signal as any input whose characteristics

differ significantly from those of noise.

There are many sources of noise, with many different statistical

properties, in the electromagnetic environment. However, in the part of the

spectrum of interest to us here, the noise is primarily thermal noise

generated by the receiver and the Earth's atmosphere. We assume that the

noise in the system is Gaussian in distribution, with zero mean and

variance 0 2 . We further assume that the noise power is uniformly distri-

buted over the spectral range of interest, with a power spectral density

equal to kT, where k is Boltzman's constant and T is the equivalent system

noise temperature. Hence the noise power is kTB ( = Q 2 ) where B is the

bandwidth of the portion of the spectrum under study. Finally we assume

that the noise is unpolarized.

2.5 - Signal Characteristics

The distinguishing characteristics which are used to identify an input

as signal are its:

a. amplitude

b. periodicity

c. polarization

d. bandwidth

Tie amplitude of a signal might be used to distinguish it from noise in

two ways. First, the average power or amplitude of the signal might greatly

exceed that of the noise (a high signal to noise ratio). Then a threshold
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detector con indicate a signal whenever some arbitrary threshold is

exceeded. An alternative signaling scheme is one in which the average

signal power is not necessarily greater them the noise power but the signal

power is concentrated into a short time pulse. Such a signal could also be

detected by an amplitude threshold device. Of course, Gaussian noise,

since it has a theoretically infinite amplitude range, can also trigger

such an amplitude detector, although with low probability. The detection

process is inherently probabilistic. A detector output caused by noise

is a false detection of a "false alarm."

One of the most important characteristics of signals is periodicity, that

is their tendency to repeat their form over constant intervals of time.

Actually, this periodicity can manifest itself in a number of ways. Many

signals have a so-called "carrier" component which is a sinusoidal signal

with a well-defined period. Another possible periodicity is a sequence of

repeated pulses occu rringat some fixed spacing. While it is possible to

design a communication system with no periodicity whatsoever, such signals

begin to resemble noise and would be very difficult to detect without

considerable advance knowledge of their structure. One of the reasons that

periodicity is of such great interest to us is that few natural signals

exhibit a high degree of periodicity. (Pulsars are a counter-example. )

Signals can never be exactly periodic though they may be so close to

periodic that we have no interest in the deviations. We are also interested

in signals which have relatively small deviations from periodicity as is

true of slowly drifting sinusoids or carriers with very little modulation.

Such signals are often called narrowband in that they occupy not a single
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line in the spectrum, but rather a fairly small range of the spectrum,

There are a number of ways of detecting periodicity in an input. One

is by means of a filter, which might be mechanical, or electrical, or of

some other form. If the input is a sinusoid or has sinusoidal components

with a frequency near the resonant frequency of the filter, this input or

components of the input are passed through the filter. All other signals

and noise with frequency components not close to this resonant frequency

are "filtered out."

A mathematical approach to isolating or detecting sinusoids is the

Fourier Transform, which has the form:

t-j2nft
X(f) =	 x(t)e	 dt	 (2-1)

Suppose that the input x(t) is a simple periodic signal of the form:

x(t) = 
Ae

j2nflt
	

(2-2)

If f = f l in (2-1) the exponents cancel so that the only integrand is the

constant A, leading to an unbounded integral. If f # f l the exponential

function rotates, such that its integral is essentially zero. Hence the

effect of the Fourier Transform is to pick out the signal with frequency IF

and reject all other signals and noise. In our system the signal filtering

process is carried out by the MCSA which is programmed to execute a Discrete

Fourier Transform (DFT) of the form:

N-1
Xn =	 xk a 

j27rnkjN	
n = 091,29..9.,N-1

4	 k=0

where the x  are N samples of the time function x(t) over a total record

(sampling) period of T seconds.

-34-



The response of the DFT to both signals and noise is discussed in

I _	 Appendix A2.1 in some detail. As Equation (A2.1-20) and Figure A2.1.3 show, the

response of the DFT to a sinusoid across any one channel has a finite width,

following a sinc function law. Hence the MCSA acts like a set of very

narrowband filters, which reject signals or noise components outside of a

bandwidth of about one Hertz in our case.

Sinusoidal periodicities can also be detected by phase-lock loops which

act as a fi 1 ter with a variable resonant frequency. The loop attempts to

adjust its center frequency and remain locked to this frequency as long as

the input frequency remains fixed. The loop can follow drifts or shifts in

the input frequency, and also angular modulation of the input, as long as

the drift rate or modulation rate does not exceed the capacity of the loop.

The periodicity may also appear in the form of repeated pulses, such as

in Figure 2.2a. The Fourier series coefficients for such a signal vary as

shown in Figure 2.2b. The important point here is that there are strong

frequency components out to about 1JT Hz, where T is the pulse width. That

is, the narrower the pulse, the more frequency content there is in the signal.

If, for example, the pulse width were about 10 msec, the power in the signal

would be spread over about 100 Hz, that is over 100 channels of the MCSA

operating with 1 Hz channels. Hence such pulses can be sought by observing

many channels at once. In Figure 2.3 we show how a drifting carrier, a pulsed

drifting carrier, and a sinusoidal drifting carrier might appear in the noisy

output of the MCSA.

The final signal characteristic which we consider is the polarization.

We assume here that ETI signals are strongly polarized and noise unpolarized.

Hence the presence of unusually high power in an input which lacks polariza-

tion tends to suggest an unusually high noise peak. On the other hand, some
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Figure 2.3 — Simulated signals in noise. Each display below represents a set of
vertically stacked frequency spectre. Each spectrum has been taken at sequential
moments in time. Brightness indicatas detected power at a frequency. T.)e
displays are dominated by noise, while the linear features indicate the detection
of carrier waves.

(a) Carrier wave drifting in frequency
at a constant rate in time
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polarization in an input which does not have high power tends to suggest

the presence of a relatively weak signal in noise.

In this section we have considered three major characteristics of

signals; amplitude, frequency, and polarization. Next we use these

characteristics to define what kind of signals we will attempt to detect.

2.6 - Signal Type Assumptions

The signal detector is designed to detect five different general

classes of signals.

1. Monochromatic (Sinusoidal)

2. Drifting Sinusoid

3. Repeated Pulses

4. Narrowband Signals

6. Patterned Signals

These classes are not all mutually exclusive, but the classification

is valuable as a guide in setting up signal tests or algorithms. Some

tests may detect more than one class of signal.

Monochromatic or single-frequency sinusoidal signals are a very strong

possibility in the SETI environment. Such signals could be used as a beacon

to attract attention. Or they might be carriers from a radio signal,

observed in an eavesdropping mode (2). Finally, they might be very slowly

drifting signals with a frequency which appears to be constant over the

observation time. In any event such signals would be of great interest and

would require attention.

A drifting sinusoid could easily arise from any of the mechanisms In

the above paragraph with the added effect of a change in the suppler shift

due to planetary motion (ours and theirs). Because such an effect is
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expected, and because the sinusoid is relatively simple to transmit and

detect, this signal is given perhaps the highest a priori probability of

existence, and hence a substantial effort is made to detect it.

Repeated pulses, modulating a carrier in the spectral search range,

have the form shown in Figure 2.2a. They could arise for at least two

reasons. First, an ETI might reason that instead of transmitting a sinu-

soid at some given power level it might be better to transtait a higher

burst or pulse of power for a short time, and then turn the transmitter off

between pulse repetitions. A peak power detector would have an easier

time observing such a signal than a sinusoid. A second way in which this

signal might arise is from a sinusoidal-signal beacon which is swept across

the sky in an attempt to attract attention over a wider range than a

focused beam. Such a swept beacon would appear to any one observer as a

pulsed signal.

Narrowband signals have their power concentrated over a relatively

narrow rang of the frequency spectrum. They could arise from monochromatic

signals which drift, or which experience a small amount of dispersion, or

which have modulation with a very low index.

By "patterned signals" we mean those which possess some degree or

organization or pattern which might be recognized as too well-structured to

have com from a random process. Accordingly, one of the algorithms to b^

discussed later does search for clusters of signal characteristics, which

can be viewed as a kind of pattern. In addition one of the primary reasons

for introducing the human observer into the signal detection process is to

take advantage of the capacity of the human to detect or recognize certain

types of patterns.
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2.7 - Review of Signal Processing Steps

As we saw in Section 2.3 there are three steps or stages in the process

of searching for and understanding intelligent signals from space. These

are:

1. Signal Detection

2. Signal Identification

3. Signal Decoding

Signal detection, the central focus of this study, is the process of

distinguishing signals from background noise. In the next section we

explore some theoretical considerations relating to this step. In Chapter 3

we present some specific signal detection algorithms implemented in this

design.

Once we have detected a signal we turn to the problem of classifying

it as: astronomical, RFI, or unidentified (including ETI). If a signal is

identified as astronomical, it is sent to the observing astronomer for

further study. If a signal is known to be RFI, it can be classified and

cataloged, possibly to help with later identification of other RFI. If a

signal cannot be identified as either astronomical or RFI, it is stored until

such time as further identification efforts can be made. This recording or

archiving can be done automatically or under operator discretion.

If a signal is believed to originate from an ETI, it must be interpreted

or decoded by methods and algorithms yet to be devised.

2.8 - Signal Detection Algorithms

In this section we consider the general types of approaches or algorithms

which can be applied to the problem of detecting signals in noise. Specific
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algorithms selected for our designs are discussed in Chapter 3.	 We

consider six approaches.

1.	 Data aggregation

2.	 Data addition

3.	 Search for sinusoids

4.	 Search for drifting sinusoids

5.	 Search for polarization

6.	 Pattern recognition

Data aggregation is a process of combining in any one of a number of

ways the new data.	 A common reason for doing this is to reduce the amount

of data which must be processed in a given mount of time. 	 A second

reason for aggregating data is to include in one value the effects of more

than one signal property. 	 For example, one term might be used to measure

both power and polarization.	 If we wished only to pay attention to signals

in which both power and polarizations exist, then a multiplicative aggregate

term could be devised.	 A disadvantage of aggregation is that it sacrifices

data.	 This effect may be overcome by storing the raw data for some time.

Data addition is a form of aggregation which usually is implemented

with the special motivation of I ncreasing the signal to noise ratio. Data

values may be added over successive 14CSA bins, in which case we call this

coarse-binning. Data can also be added for the same bin or channel over a

number of successive time records. The addition can also be performed

over any other canbinations of data values.

Data addition increases the signal to noise ratio by taking advantage of

the fact that the data tends to add coherently while the noise adds incoher-

ently. Data addition can be done over the amplitudes of the signals or over
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the power (the sum of the squares of the real and imaginary components).

It may be undesirable in some cases to add amplitudes, if for example

these amplitudes are complex and the MCSA has introduced a phase shift

which permits amplitudes to subtract.

There are a number of ways to search for sinusoids by taking advantage

of their periodic nature. Most of these approaches are equivalent to

narrowband filtering, as discussed in Section 2.5 above. One basic approach

in our situation is to use the MCSA as a narrowband filter and then sun the

output of each bin over many time records.

If the sinusoid is drifting (changing frequency slowly) we cannot add

bin outputs since the signal will drift out of one bin into the next as

time goes on. Two approaches are possible. The first is to force the center

frequency of a channel or bin to track or follow a drifting input. Such a

system would be in essence a phase-locked loop. A second approach is to

add the signal over a set of channels which are different for each time

period, and in this way follow or track the signal. The latter approach

was implemented (see Chapter 3) in the Carrier Wave Detector.

The search for polarization must begin at the receiving antenna which

has two probes, each of which is sensitive to one of two orthogonal polari-

zations. The receiver/MCSA system carries the two resulting signals along

in parallel channels to the Signal Detector, where they are then used to

obtain a measure of the degree of polarization of the input. In our imple-

mentation this data is used in three of the nine NBIT tests.

Pattern recognition is a very general term which can mean many different

things. It refers to ways in which signals are grouped or organized in some

sense. In the design which follows, the Cluster Detector is a form of pattern

recognition device.

-42-



Refe antes

1. Shklovskii, I.S. and Sagan, C. 	 Intelli ent Life in the Universe,

New York; Dell, 1967.

2. Sullivan, W.T. 111, Brown, S., and Wetherill, C., "Eavesdropping: The
Radio Signature of the Earth, 11— Science, Vol. 199, January 27,1978,
pp•377-388.

-43-



Chapter 3

System Algorithms

-44-



Taking Three as the subject to reason about--
A convenient number to state--
We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.

The Result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two.
Then subtract Seventeen and the answer must be
Exactly and perfectly true.

The method employed I would gladly explain,
while I have it so clear in my head,
If I had but the time and you had but the brain
But much remains yet to be said.

--Lewis Carroll, The Hunting of the Snark

3.1 - Purpose of This ChF.pter

This chapter will introduce the Oasis Signal Detector (OSD), explain

its role in a search for intelligent signals, and develop, in some detail,

the algorithms that this device employs as it shifts and sorts through giga-

bits of data.

As mentioned in Chapter 2, the CSD examines the output of the multi-

channel spectrum analyzer, in order to recognize signals therein, and, subject

to the control of the operator, determines the nature of the signals as one

of	 a) RFI (radio frequency interference)

b) natural astronomical bodies

c) ETI (extraterrestrial transmissions).

The OSD also records interesting portions of the input data (selected by itself

and/or the operator, at the operator's discretion), and at all times, monitors

the entire SETI search system.

rr
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3.2 - Overview

Real Time Processing

The OSD is a real time instrument, that is, it recognizes a signal, if

any is present, during the time the antenna is pointed at a particular

target, or shortly (16 minutes) thereafter. Once a signal is detected,

identification tests are made with the aid of the operator and the OSD's

RFI detection system, as well as the radio astronomy observer at his own

output station, using a computerized catalog of radio sources. This rapid

performance of identification tests eliminates costly and time-consuming

reobservation of targets, and allows for the detection of transient types of

signals of any of the three types. Reobservation will therefore occur only

when there is a high probability that a detection was not a false alarm.

The length of observation of a target is nominally set At 1000 seconds

(16.6 minutes), but since thu desired length of time may vary appreciably,

the system is configured to handle observations of any multiple of 20

seconds in length.

Signal Recognition Procedure

The number of known signal modulation schemes is arbitrarily large.

While it was felt important to design the OSD to be able to detect as many

different signal forms as possible, we also felt that the OSD should be highly

sensitive to those types of signals deemed optimal as interstellar beacons, as

s	 well as to high power signals leaked into space from the Earth. The most

dominant components of these signals are very narrowband polarized carriers and

pulsed RF signals, which to a distant observer may appear to be drifting slowly

in frequency . To respond to these pulses and carrier waves, two special purpose

d-

-46-



detectors were designed. They are called the pulse detector (PD) and the

carrier wave detector (CWD). They are designed to be as sensitive as possible,

with an entering data point integrated into many different sums and products,

each of which represents a different type of possible drifting carrier or pulse.

Since artificially generated carrier waves are often constant in amplitude

from second to second, relatively stationary in frequency, and always 100%

polarized, a detection method highly sensitive to signals with such attributes

was developed. This method (or measure), called Generalized Coherence, is

described fully in the latter part of this chapter, and is employed within the

CWD algorithm. Thus the 0S0 is highly alert to the presence of polarized carrier

waves, even if they are Doppler-drifting.

Beyond providing signal-specific algorithms, the 0SD has the facility to

detect signals of an arbitrary and unknown nature. This is accomplished by a

two-stage processor called the Numerical Battery of Independent Tests (NBIT).

The first stage analyzes data from the MCSA in small parcels, and reports to

the second stage a summary of the attributes of the data in each parcel. To

this end, each parcel (called a block) undergoes a battery of tests. If any

block scores outstandingly in any of the tests (which examine total power,

polarization, and the presence of narrowband amplitude spikes, and more), the

operator is alerted. In addition, a second stage always examines the report

of the first stage (even in the absence of outstanding features). The second

stage looks for the presence of trends, or patterns, such as the existence of

blocks adjacent in time or frequency which possess similar attributes. This

second stage is called the Cluster Detector (CD).

The terms PD, CWD, NBIT, and CD represent both the algorithms and the

hardware processors that perform these operations. These four processors comprise

the computational part of the 0S0, called the realtime processing system, and are

d
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described mathematically in this chapter, and as hardware devices in the next

chapter. The realtime processing system is shown in Figure 3.1.

An "alarm" is the term used in this report to indicate an internal signal

or flag from a processor to the human interface system describing the detection

of a signal in noise. An alarm contains the information: What (how much), when,

and where (frequency).

Human Interface

The operator interface system consists of the operator, a central computer

(which allows the operator the access to converse rapidly with the system),

interactive graphic displays, a small archive in which either he or the central

computer may decide to retain data segments of special interest, and a package

of software routines which allow him to explore the data in his own way.

Most importantly, the operator is given access to the total observation

archive which contains temporarily all of the data collected on the current

target. He is shown the alarms as they come in, and is free to either let the

system decide that which is important enough to save or else to make the

decision himself. Providing aid in this task is the RFI detector, and the

Radio Astronomy System, since each unit is capable of automatically informing

the central computer that certain alarms are identifiable as non-ETI. Those

signals of astrophysical interes t_ will be processed and recorded independently

by the Radio Astronomy System. The Hunan Interface System and the Radio Astro-

nomy System are described in Chapters 5 and 6 respectively.
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3.3 - Generalized Coherence

Background

It is widely believed that intelligent signals will be coherent with

respect to both polarization and time. It is therefore desirable that the

receiving system measure these two signal characteristics and use them to

discriminate agar}st signa l s which are not coherent, resulting in a

decrease in sensitivity to incoherent signals. Since noise is incoherent,

the discrimination against noise results in a substantial increase in

sensitivity to coherent signals.

Polarization coherence and time coherence are two independent

characteristics, and can be measured for any received signal. Polarization

coherence is a measure of the consistency of the amplitude and phase

between the signals received by two orthogonally polarized antennas. Time

coherence is a measure of the consistency of the amplitude and phase of a

single signal, with respect to a time-delayed version of itself. Although

these two types of coherence are determined in quite different ways, it

will be shown below that when both have been taken into account they lose

their individual identities and merge into an overall Generalized Coherence.
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Polarization Matching

The receiving system contains two independent receivers, connected

to orthogonally polarized feed antennas. Typically, the feed antennas

will have horizontal and vertical, or left and right circular polarizations.

It would be possible to process the data from each antenna separately, but

this is undesirable because it essentially doubles the cost of data

processing. A preferable procedure would be to combine the two antenna

outputs by some method, and then process the resulting single signal,

provided that this can be done without a significant decrease in

sensitivity. One might even suspect that if the two antenna outputs were

combined in some optimum way, the sensitivity would be further increased.

Measuring the Polarization 2f a Received Signal - In order to examine

various methods of handling the two output signals, some basic polarization

theory is required. Suppose the feed antennas are horizontall y and

vertically polarized, and denote their complex output voltages by x and y.

This notation will be used throughout this report. (The choices of horizontal

and vertical, as opposed to left and right circular, is arbitrary but generally

done in polarization discussions. It will make no difference in the final

result.) The type of polarization of the incoming wave is completely determined

by the ratio of the magnitudes of the two outputs, and by their phase angle

difference (Kraus, 1966, and Caen, 1958) and is commonly expressed as two angles:

d = LSc -	 -180°	 d < +180
0
	(3-1)

Y = tan-ll-
	

0	 < Y < 90°	 (3-2)

which can be plotted on a spherical surface known as the Poincare sphere

(see figure 3.2).

-51-

- smell



LEFT CIRCULAR
POLARIZATION
(NORTH POLE)

LINEAR VERTICAL
POLARIZATION

	

LINEAR
	

LINEAR

	

POLARIZATION
	

POLARIZATION

	

AT '135°
	 M	 „AT 45°

	

LINEAR
	 ALL LINEAR

	

HORIZONTAL	 POLARIZATIONS

	

POLARIZATION	 LIE ON THE

	

(?t=0, 6=0)
	

EQUATOR (b=0)
RIGHT
CIRCULAR
POLARIZATION
(SOUTH POLE)

Figure 3.2 - The Poincare Sphere

6

f-

-52-



r-,
(

}

Having measured 6 and y for any incoming signal, its polarizatior

may be plotted at the appropriate point M on the Poincar6 sphere. For

example, suppose the two outputs have equal magnitudes and differ in phase

by 90°. Then d = 90
0
 and Y = tan-1 1 = 45°. Plotting this on the

Poincarb sphere, we see that the received signal is left circularly

polarized.

Setting the Polarization of the Receiving Antenna to Match That of the

Signal - Given two orthogonally polarized antennas, it is oossible to combine

their outputs in such a way as to synthesize a single antenna of any

desired type of polarization. This is the inverse of the measurement

problem, and may be stated in this way: Given the desired type of

polarization, as specified by the angles & and y . what are the

weighting factors needed to combine the two antenna outputs in the form

Z = K i x + K2 y	 (3-3)

in such a way as to optimize reception for that type of polarization?

These weighting factors are derived in Appendix 3.1, giving the

relation

? = x cos y + y eja sin y	 (3-4)

When searching for signals whose polarization type is unknown, a

possible optimum method is to use the signal itself to control the x and

y combining process, thereby adaptively matching the polarization type of

the antenna to that of the incoming signal. This may be done by i:.,st

measuring the type of polarization (y and S), and then synthesizing the

antenna that matches that polarization. This combined operation can be

carried out in real time, using the single relation (developed in Appendix A3.2),
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Z =	 x	 x +(	 I ---—	
an-1

	

--	 Re ( xy* )	y	 (3-5)
1x(2 

+ IYI2	 IX12 
+ jyI

Comparison with Alternative Polarization-Handling Methods - One

simple method for dealing with signal polarization is to add the powers

coning out of the two antennas ignoring ai; polarization considerations. It

is a fact that the total signal power will always be otained by doing this,

regardless of the signal or receiving antenna polarization. However, the

fact that two independent noise powers are added always decreases the SNR by

a factor of V; where the polarization matching method weights the two so

that the loss ranges from 0 to vP. Another disadvantage is that the signal

cannot be test(d for time coherence at a later stage in the analysis, if

power is calculated at this point.

A second simple method is to add the amplitudes. This corresponds to

setting K1 = K2 = 1 in equation ( 3-3 ) above and means in reality that we are

receiving at a single polarization (linear at 450 , assuming x and y

antennas). Any other polarization will suffer some loss, ranging up to

infinite for the opposite case (linear at 1350 , for x and y antennas).

The two polarizations could also be processed completely independently.

This means that we now are receiving with two polarizations (corresponding

to whatever type of antennas are being used). Other polarizations suffer

some loss, up to 3 db for those halfway between the two in use. (e.g. - if

x and y antennas are used, then left and right hand circular both have

3 db loss.)
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By combining the antenna outputs in various wags (i.e., choosing
S `

KI and K2 ) , any number of specific receiving polarizations can be

synthesized. In Project Cyclops it was suggested that 4 or 6 cardinally

chosen polarizations be created in this wary, and processed separately. This

reduces the possible loss, since a signal polarization must then fall

closer on the average to one of the receiver polarizations. The disadvantage of

this is that the data processing requirements increase in direct

proportion to the number of polarizations.

All of these various methods are summarized in Table 3.1. The

average losses were calculated assuming the signal polarization types

are uniformly distributed around the Poincare sphere.

Relative
Number of	 Amount of

Polarizations Minimum	 Maximum Avera a	 Data Processing
Method	 Searched	 Loss (db) Loss db Loss db	 Required

;add Powers of
the 2 Antennas	 0	 1.5	 1.5	 1.5	 1

Add Amplitudes of
the 2 Antennas	 1	 0	 00	 5.1	 1

Process 2
Antennas
Separately	 2	 0	 3.0	 1.3	 2

Synthesize 4
Polarizations
and Process
Separately	 4	 0	 3.0	 0.7	 4

Synthesize 6
Polarizations
and Process
Separately	 6	 0	 1.0	 0.4	 6

Signal-Matching oo	 0	 0	 0	 1

Table 3.1 - Comparison of different polarization
processing methods
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It is important that the polarization synthesis not be done in the RF

or IF portions of the receivers, as is commonly done. To do so means that

all signals at any instant of time will be received with the same

polarization. On the other hand, if the polarization synthesis is done

?	 as part of the data processing (as in the signal-matching method), then

each signal can be received with a different polarization.

Polarization Coherence

Partial Polarization - It is not necessary for real-world signals to be

polarized at all. Most natural radio sources radiate unpolarized signals.

Some natural radio sources are partially polarized, radiating signals

containing both polarized and unpolarized components. Any signal radiated

from a single antenna, however, is always completely polarized. We use this

fact to great advantage.

The power received by an antenna of polarization type M in response

to a signal of polarization type M' is

Pr Ps [1/2 + m ( cos2 _ - 1/2] 	 ( 3-6)

where Ps is the signal power

m is the degree of polarization; 0 < m < 1

W1 is the polarization mismatch angle between the signal and antenna,

as plotted on the Poincare sphere; 0 < Tom' < Tr

When the signal is completely unpolarized (i.e., m = 0), the received power

is one-half that of the signal power, regardless of what receiving antenna

polarization is used. When the signal is completely polarized (i.e., m = 1),
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the received power lies between zero and the signal power, depending on

the polarization mismatch angle.

The degree of polarization is defined in Appendix 3.2 as

m =	 .1
(-X-XT 

+ 
-Xy"9 

2

The degree of polarization may be regarded as the radius of the

Poincare sphere. A completely polarized signal has radius of one (i.e., the

unit sphere), whereas a completely unpolarized signal has a radius of zero

(i.e., a dot at the center). This graphical representation serves to

illustrate the fact that the type of polarization (location on the surface

of the Poincare sphere) becomes less and less important as the degree of

polarization (radius of the Poincare sphere) becomes smaller and smaller.

In the extreme case of an unpolarized signal, the type of polarization

ceases to exist, as exemplified by the remaining dot at the center.

Polarized Signal Component Extraction - When the receiving antenna

polarization is matched to that of the signal (e.g., using the polarization

matching method described above), equation (3-6) becomes,

P r = Ps ( 1/2 + m/2 ) .

This may be rewritten as

Pr = Ps ( 1
2m	 + m ),	 (3-7)

i
	 Here the first term in the brackets is the unpolarized component of the

signal and the second term is the polarized component. Since only half of

the unpolarized component is received, a polarization-matched antenna acts

as a filter, leaving the polarized component unchanged. If the powers in
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2m
Prp Pr ( -T.;F—) (3-8)

two antennas were simply added, all of the unpolarized power would be

received thereby decreasing the SNR by a factor of 2, neglecting receiver

noise.

Since we are seeking signals which are polarized, only the second

term is of interest. We wish to extract that fraction of the received

power that is polarized, i.e.,

(
	

MP

Prp = P r Ps (--2 + m)

If we were concerned only with signal power at this point we would

Just compute the desired result according to equation (3-8). To do so,

however, would prevent later examination of the time coherence properties

of the signal. Instead, we multiply the complex signal z of equation (3-5)

by the square root of the fraction given in (3-8) (since z is an

amplitude, as opposed to power). This extracts the polarized component of

the composite signal z, i.e.,

zp = z—	 (3-9)

The effects of noise on this calculation are given in Appendix A3.3.

An alternative to extracting the polarized signal component is to

ignore the degreee of polarization. The disadvantage of this is that no

discrimination is made against unpolarized signals. Two signals of equal

power, one polarized and the other unpolarized, would give the same receiver

output. If the degree of polarization is used as described above, the

polarized signal would be unaffected, whereas the unpolarized signal would

be eliminated from the receiver output.
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Time Coherence

--	 The complex degree of self-coherence of a signal z(t) is defined as

U( T ) -	
Z 

t + T Z(t)
Z Ft T Z t*	 Z t+ T Z t+ T

This is in fact the same as the complex normalized autocorrelation function

of the signal. The magnitude of this quantity is known as the Degree of

Self Coherence, and 0 < iu( r)l < 1. The denominator of u( T) is the

power of the signal, so Znat

'u( T)I _	 ^ Z t + T)
Pz

It should be noted that the magnitude of u depends cn both the phase

and amplitude of the original signal. It is not correct to say that the

magnitude of u depends only on the amplitude of the original signal, or

that the phase angle of u depends only on the phase angle of the signal.

Thus IuI is a measure of both amplitude coherence and phase coherence in

the signal.

We are interested in only that part of the received signal and noise

combination that has time coherence. That component may be extracted by

multiplying the received power by the degree of self-coherence, i.e.,

Pc = Coherent Power - ju(T) (	 Pz = i z t + T z t * I

The time lag T used above may be regarded as the coherence time of

the power measurement. It must be sufficiently long that the noise

component shows no coherence, but no longer than necessary, to allow for

slow signal variations. The MCSA provides independent outputs at one
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second intervals, so T must be an integral number of seconds. A lag of

zero will cause the noise to appear coherent, and is therefore too small.

A lag of one or more will make the noise independent from point to point.

Therefore we choose a lag of one, as being long enough to discriminate

against noise, yet short enough to allow slow signal variations. Thus,

Pc = Coherent Power -I z t+ Z -17  1	 (3-10)

Coherent power has the useful property that it is unaffected by any

phase shifts that are linear functions of time (see Appendix AM). This is

crucial for the current application because the MCSA introduces a linear

phase shift into the signal that is a function of the unknown position of

the signal frequency within a frequency bin. Another wady of saying this is

that the complex output voltage of an MCSA channel that contains a non-

drifting sinusoidal signal, is another sinusoidal signal. The frequency

of that output signal is the difference between the center frequency of

the bin and the original signal frequency. Thus for 1 Hz bins, the output

frequency lies in the range of ±1j2 Hz. Then if the amplitude of this

sinusoid is A, we have from Appendix A3.4 that

1	
N-1	

_ zP = -T ' 1E Ai Ai+1	 - A = Ps

so that for a sinusoidal signal, the coherent power is identical to the signal

power.

Consider now an incoherent signal (such as a natural radio source), whose

power is equal to that of the above sinusoidal signal. The MCSA output will

be a voltage whose amplitude and phase are random variables, and whose spectrum

is band limited (±112 Hz) white noise. The coherent power will be the same
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as the signal- power for the first data point, and will decrease as 1 as

additional data points are Ancluded in the measurement. Thus coherent power

has an advantage over signal power in that it distinguishes between coherent

and incoherent signals.

Generalized Coherence

Formulation - In the preceding sections, specific operations were carried

out on the received signal, taking into account successively the type of polar-

ization, the degree of polarization, and the time coherence. These operations

are shown schematically in Figure 3.3. If we now combine these three

operations into a single expression, and label the resulting quantity as

Generalized Coherence Value (GCV), we obtain (conceptually) (see Appendix A3.5

for details)

GCV = F tP xn 
Rxn (1) + Pxyn[Ryx (1) a-Jd + RXY (1) a+j6j + Pyn yy (1)

where

I^	
tand _	

-1 Im( RM (0) )
 

Re( Rxy (0) )

CR
xx (0) - RYy (0]2 + 4 Rxy(0)

F=
Rxx(0) + Ryy(0)

P in is

P,
jn

 i!
^

Ri j is

In essence,

time shifted and

the normalized power in antenna i

i the normalized cross power between antennas

the correlation function between the i th and

all the possible auto- and cross-correlation

unshifted, appear in the GCV expression, in

i and j

jth antenna outputs.

functions, both

a symmetrical way.
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Polarization 1 Polarization 2

Si anal- Directed
Polarization Type

Matching

Extraction of
Polarization-Coherent

Signal Component

Extraction of
Time-Coherent

Power Component

Generalized Coherence Value

Figure 3.3- Operations Involved in Calculation of the C,eneralized
Coherence Value

T1
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It has been demonstrated previously (Born and Wolfe, 1970) that the

coherence of a signal obeys the electromagnetic wave equation, and propagates

signal itself. This fact lends adds-through space in the sane manner as the si.	 9

tional support to the idea of coherence being in some sense a fundamental

quality of the signal.

Real-Time Evaluation - Calculation of generalized coherence involves cal-

culating the correlation functions described above. All these quantities are

summations of combinations of the instantaneous outputs of the two antennas.

In a realtime computing situation, the summations can be calculated continuously

as the data points become available, providing the partial results of the auto-

correlation function are accumulated. When the desired amount of data has been

accumulated, the summations may be combined by relatively simple computations to

give the generalized coherence value.

When very many outputs (channels) are monitored for generalized coherence

concurrently, the retention of the partial results may require substantial over-

head in terms of storage. An alternative scheme developed in Chapter 4 enables

the serial evaluation of channel outputs, and thus eliminates the need for

partial result accumulations.

Performance - Noise causes the computed values of the correlation func-

tions described above to have statistical fluctuations. In addition, if the

correlation functions are calculated using too few data points, they

will be biased toward the high side (as are all correlation functions).

In order to quantify the statistical characteristics of GCV, computer

simulations were run for a number of signal-to-noise ratios.

Figure 3.4 is a typical example of the simulations made to investigate

GCV. The data from all such simulations is gathered together in Figure 3.5.

Details are given in Appendix A3.6.



It is possible that GCV should be squared for optimum detection. This is

suggested by the fact that its probability density is similar to that of a sinu-

soidal signal in noise, Just prior to square law detection in a normal receiver,

and because GCV is fundamentally the magnitude of a vector even though it has

units of power. GCV is the sum of many vectors, analogously to the way that a

traditional coherent detector adds up many vectors prior to squaring their sun.

Inspection of Figure 3.5 reveals that below a SNR of 0.6, the power calcu-

lation is more sensitive, and above 0.6 GCV is more sensitive, and becomes

increasingly more so as SNR increases. This advantage will be manifested as

higher detection probabilities and lower false alarm rates. The small mount of

data shown for the square of GCV reveals an even greater advantage. The power

sensitivity crossover is then 0.4, and the output SNR curve climbs more rapidly.

Actually, the relative performance of GCV vs. power is significantly better

than the curves indicate since the power curves assume the signal polarization

is known beforehand and exactly matched to a single chosen antenna, with the

other antenna and its accompanying receptiver noise being ignored. The GCV

curves, in contrast, assume no prior knowledge of the signal polarization and

include the effects of noise from both receivers. It is believed that future

studies comparing randomly mismatched total power detection schemes to GCV

detection will show GCV the favored approach to even lower SNR signals.

This can be summarized by saying that the generalized coherence technique

achieves its goal of using the signal polarization type information in a useful

way, and of discriminating against unpolarized and incoherent signals, without

significantly sacrificing sensitivity, and in fact provides a significant

enhancement to sensitivity.
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3.4  Analysis of Variance (ANOVA) Algorithm

Background

A shortcoming of most detection algorithms is the degree to which they

have been designed to detect specific types of signals. While this philosophy

serves to maximize sensitivity to these particular signals, many are blind t,

even strong signals out:ide this range. One algorithm that demands a minimum

of prior assumptions is an analysis of variance (ANOVA). On the time-frequency

matrix of the MCSA's output, ANOVA can perform three tests of the null hypothesis

(that noise alone is present) to search for significant differences between

means of rows, columns, and interaction terms. If the null hypothesis is not

once rejected, ANOVA concludes that no signal is present. But if rejected

even once, not only has ANOVA addressed the primary question of signal detection,

but valuable information about the type of signal present is provided--with only

a simple thresholding of the three results of a single standardized calculation.

For example, if a monochromatic signal is present, it will

manifest itself in the ANOVA matrix by increasing the power i n the column

that corresponds to its frequency. The presence of this type of signal

would be detected in the ANOVA by a rejection of the null hypothesis of

column effects. Reflecting the difference between the column means

associated with the signal and those column means associated only with

noise, the value for the sun of squares of column sums would increase,

resulting in an increased variance ratio for co'.umns. If the variance

ratio for columns exceeds a present critical variance ratio, the null

hypothesis is rejected.
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Similarly, a broad band signal would increase the power in all

the matrix columns within the signal's bandwidth. This would result in

higher column means for those columns containing the signal, producing

a proportionately more significant variance ratio for the columns.

Row means and the associated row variance ratios are affected by

pulsed broadband signals which distribute power across many frequencies

within one second. As with the column variance ratio, the effect on the

row variance ratio of more than one pulse within the matrix is cumulative,

the optimum algorithm response occurring when the signal fills one row

of the cells of the ANOVA matrix.

Rapidly drifting signals are detected primari'_• -°y the interaction

term of ANOVA, though significant row and column effects can result as

well, depending upon the slope of the path of signal as it moves through

the matrix. Drift rates greater than one Hz/set being detected in rows,

while rates that are less than one Hz/sec are detected by the column

hypothesis.

Because ANOVA makes no assumptions about the signal to be received

and demands only standardized calculations, it serves as an important

global signal detector for the SETI problem. Though further analysis is

required after detection, the results of the three tests of null

hypothesis (ice, Column, and Interaction) greatly reduce the problem of

signal type identification.
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} ,E

ILj

The concepts of ANWA calculations will be illustrated here by word

equationsons and examples, and the detailed mathemat i cal theory is explained^r y 	 l aip

in Appendix A3.8. We wiII assume here that the time-frequency array output

from the MESA has a zero mean (i.e., that the noise goes equally above and

below zero, as will be shown is provided by baseline removal, a standard

procedure of radio as trononW . )
Colin -... .. .............._..._. Column

I
Row 1

T

RoM I

a small portion of the MESA
output array, for which AN01A
calculations are to be
performed

TimeI
Free uency --

The three ANOVA calculations are:

^
averaee of -all ^ 2 average of all 2 	 javerage of all 2
points in -Row 1 + points in Row 2 + . •. poi nts in Row J)

ROW EFFECT
I • (average of the square of all points in the array)

average of all	 2average of all 2	 average of all 2

COLUMN	 ( points in Col umn 11 + { points in all 	 +" " points in Col JI

EFFECT -	 J .
( average of the square of all the points in the array)

EINTERACTION	
average of all	 - average of all }

EFFECT	 -	 all i ,i (paint .	 - hints in Row i	 points in Cola
I J (averagc of the square of all	 nts in., t* array)

All three calculations involve-the averages of averages, and are power rati os .

All are normalized to the average power:

The 
__-Wlowt4

1tt illes# te_ ##e sbatitivities of the three calcula-

tions, to various types of data structure. For simplicity, data values are

limited to t1 and O. Note that the number of +1 values equals the number of -1
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values, so that the Zero-mean assumption is valid.

ExyWle 1	 1

0

Row-Effect = {11'	 ..^.	 1

--

Colin Effect =
2+`02+ 0 2 	

= 0

Interaction Effect =
},g + ( 1_1^ I + 0-0-0) 2 -+(t}-0-0)

( 0_0_0 ) 2 + (_ 1+1_012 + ( _ 1+1_0) 2 + (_1+1_0 )2
03 - 3 - (6/9) ` 

This example illustrates how the Row Effect' detects long horizontal data

structures.

Example 2:	 1 0 -1

1 0 -1

1 0 -1

Row Effect = 
( 0)^ 

JO)2 + °)2	
= o

Column Effect - ,.._. 	 + - 
(0 1 2  

+.(:̂ 2	 = 1

Interaction Effect = 
(
1-0-1) 2 + J0.0-0 . z J -1-0+1) ,   +_(1-0-1)2 ± (0-U 2̂+

(_1_0+1)2
+ ^ (6/9)' (

0-0-0)2 +(_1_0+1
1!. 0

This exaole illustrates how the Column effect detects long vertical data structures.
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Exile 3;1	 -1

Row Effect *4^t1 	 (-1/3

Cohn Effect = (	 # (012 +	
2	

= Q
r,

1-O-t}	 + (0-0-0) 2 + (-1-0-0 2 + (0_1/34)2_ -Interaction Effect = ---^—-

+. (0-1/3-0) 2 +	 1^3-Q)2- (1-1/3-0) 2
	+3	 (6/9)

(_13_0)2 + (1+1/3-01 2 	 88
3 = `3—• (6/9)

This example illustrates haw the Interaction Effect detects long diagonal

data structures.	 Note that although all the samples use square arrays, this

is of course not necessary for ANOVA calculations.	 These examples have also

used infinitely high SNR's--to clearly illustrate the calculation. Evaluation

of the technique was, of course,conducted on low SNR signals, and the detection

sensitivity was thus explored as shown in Appendix A3.9.
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Performance

The potential of Analysis of Variance as a signal detector has

been evaluated by means of computer simulations in a series of

systematic experiments. The computer simulation involves modeling the

noise field as a (10 x 40 x 2) matrix of exponentially distributed

random variables. 40 represents the number of frequency channels

(columns), 14 represents the number of independent time samples (rows),

and 2 represents the number of observations (data values) per cell. This size

matrix is that used in the NB IT algorithm for reasons to bd described later in

this chapter. At least 2 values per cell are necessary for the calculation

of the interaction term in ANOVA. This term is important for the detection

of certain signal types and for the reduction in the size of the residual

variance. Since the residual variance is the denominator of the variance

ratio which is used for tests of hypothesis, a reduction in it increases

the overall sensitivity of detection. Although ideally, replication should

be obtained from the simultaneous observation of the event of interest,

the simulations are carried out in the more realistic fashion of letting

the first row consist of data taken during the first and second seconds

of observation and each subsequent pair of scans fill the remaining rows.

r	 Thus a total of 20 independent time samples are used. Superimposed upon

the noise field is a signal of given specification.

The data, obtained in this fashion, are then analyzed by ANOVA

technique. The end product of the ANOVA algorithm is the calculation of

the variance ratio for rows, columns, and interactions. When the variance

ratio exceeds a preset critical value or threshold, the null hypothesis is

rejected and the signal is detected. By examining the values of the variance
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ratio under systematically varying conditions. an  understanding of 	 tA's

effectiveness as a detector unfolds.

The simulation experiments and detailed results are scribed in

Appendix A3.9.

Conn l us i one

The simulation studies indicate the passible strengths and weaknesses of

ANOVA as a signal detector. For the matrix dimensions presently being considered,

it seems ideally suited to the detection of a broadband pulse. Narrowband non-

drifting and slowly drifting signals are also handled well. The one real

failure occurs with the rapidly drifting signal (slope -1). It is notable that

changing the matrix dimensions to a square would certainly improve ANOVA's

capability to detect this type of signal, while not degrading the performance of

detecting the previously mentioned types.

Based on the simulation results involving bit quantization, a reasonable

bit size for the data processing using ANOVA has been determined to be N = 8,

as is used in the implementation. Thus, in all, ANOVA presents itself as a

significant global signal detector for the SETT problem. No assumptions need

be matte about the type of signal. Once one is detected, further analysis is in

order. By retaining information on which of the three hypotheses (Row, Columns,

and Interactions) are significant, the problem of identification of signal type

is significantly reduced.

3.5 - Oasis System Algorithms

rvi ew

The Oasis Signal Detector is a Real-Time Processing System containing four

basic components:- the Pulse Detector (PD), the Carrier Wave Detector (CHID)
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which is meant to detect narra band carrier signals that may be drifting slowly

in frequency, the Numerical Battery of Independent Tests (NBIT), which consists

of a collection of statistical tests followed by a pattern monition algo-

rithm, the Cluster Detector (CD), that is designed to detect non-random

associations among the signal parameters in N-space. This system is shown

conceptually in Figure 3.6.

Data Stream Preparation

We are assuming in this study that two of the functions performed by the

MCSA are;

- Quantization level preparation

- Baseline removal

Data within the MCSA is clipped at times both by truncating low order and

high order bits. This process has been given much consideration by the

designers of the MCSA via simulations, and, that the quantization levels be

renormalized linearly, is a requirement of the MCSA implantation. Based on

the simulation studies it is felt that each quantization level corresponds to

.30 of the signal power. Implementation design for this is given in Chapter s.

Baseline removal is accomplished within the MCSA through the use of its

low resolution 57 kHz output channel. A region of the sky slightly offset from

the target to record the broadband spectral responses of the receiver, R(f); and

this function is then used to normalize true spectra of the target T(f). Nor-

malization is accomplished in the following manner. The coarse resolution values

are used to compute

R'{f) = R f - T(f)

yielding a zero mean normalized (except for local power excesses) spectrum, R'(f).

I
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This practice is common and essential in Radio Astronomy to remove receiver

gain effects before observation of their source.

Pulse Detector (PD)

The coarse binning stage of the system examines each spectral scan under

a wide range of resolutions, to search for excess total power that might

signify a signal of interest. Although it can be argued that very narrowband

signals are optimal for interstellar communication, to neglect the possibility

of detecting broadband signals or pulses within the data, when such information

is easily accessible, would be a mistake. Such a wideband signal may occur

in the eavesdropping or the pulse-beacon cases of signal transmission.

Under the most ideal condition, when the bin width corresponds to a

transmitted signal's bandwidth, coarse binning serves as a matched signal for

signal detection. However, since the signal bandwidth and central frequency

are not known, a wide range of bandwidths is used. The algorithm first suns

the 8 x 10 6 adjacent frequency bins pairwise in non-overlapping pairs to pro-

duce 4 x 106 channels times 2 Hz/channel resolutions which are compared to a

threshold. This procedure is repeated again and again until every set of

2k (0 < k < 23) adjacent bins has been combined and tested. Any coarse bin

which has a total power above the predetermined threshold causes an alarm to

be sent to the central computer. It should be noted that one scan (one second

of MCSA output) can be analyzed at all 23 resolutions within one second.

Simultaneously, an integrated scan, the sum of all previous 8 MHz x 1 Hz

resolution scans is similarly binned and tested for excesses due to repeatedly

detected pulses.
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Carrier Wave Detector (CWD)

Overview - The Carrier Wave Detector (CWD) is designed to search for

narrow band signals which may be drifting slowly in frequency due to the

Doppler shifts. The CWD works on the 2-dimensional array, having dimensions

of frequency and time, in which a drifting carrier would appear as a straight

line whose angle of inclination with respect to the vertical is less than Aso,

i.e., a drift rate -1 Hz/sec < r < 1 Hz/sec.

In principle, the CWD evaluates the data by overlaying the array with

a "mask" which consists of 20 rays, each of which has a different slope. The

rays all intersect at a single time-frequency element of the array and form a

double fan (Figure 3.7). A column of 20 consecutively observed spectral

elements (20 seconds of data arranged one below the other) is passed under

the mask so that each of the 8 million single Hertz channels acts as the center

point of the mask exactly once. For each ray of the mask, the CWD weights each

kth row entry (Figure 3.8) of the incoming  data for the way in which the ray

intercepts the array, and then a Generalized Coherence Value (GCV) is computed

which reflects the intensity and coherence of the weighted data overlayed by

the ray. The results from each new 20 seconds of data analysis are tested

against a threshold. If any GCV exceeds the threshold, the detector sends an

alarm to the central processor. In addition, all GCV's are accumulated for the

entire 1000 seconds of observation time. At the end of the total observation

time, the accumulated GCV's are also compared to a threshold. These accumulated

values are also evaluated with the coarse binning technique, to search for

extended drifting features.

In order to take advantage of the fact that polarization and phase

information are provided by the pair of MCSA's, the CWD operates on the
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Generalized Coherence Values (GCV's) described above. For each angle and

each center frequency, one GCV is computed using 20 values, each of which

5	

is a weighted entry for that ray (Figure 3.8). The weighting process

involves both amplitude and phase, and is discussed in detail in Appendix A3.10.

Numerical Battery of Independent Tests (NBIT)

Introduction - Since there are numerous possibilities for the forms of

extra-terrestrial intelligent signals, the signal detection problem can be

approached in two ways: (a) a set of tests each of which has a very high

probability of detecting signals of a very specific type; or (b) a set of

tests that have a lesser probability of recognizing a much more general

class of signals.

The Pulse Detector, which searches for pulses of various widths, and

the Carrier Wave Detector, which searches for narrowband signals at various

drift rates, are examples of the first approach. However, because the

characteristics of an ETI signal are purely conjectural, to search even a

significant portion of the possibilities within the general class would require

a prohibitive amount of memory and/or processing.

The second approach is exemplified by the numerical battery of

independent tests (NBIT). The NBIT signal detection system is

a two stage technique which reduces the data to a set of 9-bit values in

the first stage, and employs a pattern recognition algorithm on the

compacted array in the second stage to detect signals.
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Figure 3.8 - Weighted Contribution to GCV of Each Time-Frequency Measurement
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In the first stage the entire array is subdivided into blocks, each

of which is 40 Hz by 20 seconds in frequency-time space. Each block has

an 8 Hz overlap with adjacent blocks in order to ameliorate the aliasing

problem between blocks. Nine statistical hypothesis tests are applied to

each block of incoming data. One bit of the 9-bit number is assigned for

_	 each test, and the bit is set when the null hypothesis is rejected. The

first stage tests include: total power in the two polarizations; degree

of polarization; complex amplitude coherence detection; broadband

coherent pulse detection for each polarization using generalized

coherent values; 8-hertz pulse detection for each polarization; NNOVA

analysis of variance for rows (frequency), NNOVA columns (time) and

NOVA interaction, for each polarization; and goodness of fit for each

polarization.

For each of the tests, the null hypothesis is rejected at one of the

two thresholds (atelevels). The first level (law-level) threshold is set to

trigger relatively easily (a = .5, which means that 50% of the time the bit

for a particular test under conditions of noise alone will be "on"). The

second level (high-level) threshold, on the other hand, corresponds to a very

low a-level in order to ensure a very low false alarm rate for immediate

central computer processing (the threshold values are adjusted to reflect the

results of simulation or actual operation). The first level threshold is set

so that the difference between the false alarm rate under noise (a) and the

probability of detection (1-8) for the signal type for which the test is

designed is maximized for each algorithm. This criterion is developed further



The 9-bit number for each block in the first stage is stored in a

"pattern block" which is passed on to a taro-step cluster detection processor.

The first step of the processor tabulates a histogram on the occurrence of

various 9-bit values and sets an alarm for the central computer if a statis-

tically high number of specific "pattern points" occurs. The second step,

a single linkage cluster seeking algorithm, searches the entire pattern block

for subtle signal patterns and sets an alarm if a pattern merges.

The two-step cluster detection algorithm which analyzes the array is a

non-deterministic signal detection scheme, and as such has a great deal of

flexibility.

In general the entire iiBIT system has several advantages over more

traditional si gnal detection systems. The two-stage nature of the system

allows a "second look" at the data in real time and it employs two independent

and distinct methods. The meaningful compaction of the data in the first

stage makes it possible to store information for the entire search duration at

a reasonable cost, which is vitally necessary to detect a weak signal of pro-

longed duration. The NBIT signal deteLcion system is also versatile because

it is not signal-type specific.

Figure 3.9 provides an overview of the tB IT and Cluster Detection

Algorithms.

For the sake of conceptual clarity, Figure 3.9 intentionally omits the

following details:

I. A BLOCK overlaps its neighbors by 4 points on each side, so its

width is actually 40 points, and total content is 800 points. All

other quantitative nuters are correct as shown.
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Figure 3.9
An Overview of the NBIT and Cluster Detection Algorithms
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2. There are additional signal detection decisions made at two inter-

mediate levels:

a. The 9 tests each have two thresholds. If the high-level

threshold is exceeded, a detection is immediately indicated.

The law-level threshold is set such that it is exceeded by

noise 50% of the time, and is used to create the 9-bit

PATTERN POINT.

b. If any HISTOGRAM has an extremely high point, a detection is

immediately indicated, regardless of the presence or absence

of clustering.

3. The 9 tests are actually histogramed with regard to on bits "I"

and don't care bits "*", not the on and off 'b" bits. This allows

3
	

for additional useful test combinations like total power and

degree of polarization and ignores everything else. Thus there

are actually 29 = 512 PATTERN CLASSES.

4. HISTOGRAM points are not actually chosen for cluster searching on the

basis of their absolute level. Rather, the available data processing

power and time are optimized by choosing the highest HISTOGRAM bin excesses

globally over all PATTERN BLOCKS.

5. The cluster search algorithm detects not only "blobs" as illustrated,

but also finds and follows long linear features.
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The Individual NBIT Tests

1. Total Power - The purpose of this test is to determine whether the total

power accumulated over a 20-second by 40-Hz block is significantly different

from that expected from white noise alone. As the input to the MCSA

is Fourier Transformed, the power of any pulse or wide-band signal is

spread across the frequency domain. Summing the power over a range of

frequencies and time may accumulate the power to a detectable level.

800
Total Power = PT = E
	

(IX i 1 2 + lyil2)
i=1

This value is then compared with previously determined first and

second level threshold values.

If this power exceeds either of the two pre-determined thresholds, a

bit is set and sent to the CPU for further processing. Because the white

noise is thought to be fairly constant, and this test sets a bit approxi-

mately fifty percent of the time, the first power threshold will only be

slightly above the noise level (la). The second threshold, if exceeded,

immediately notifies the operator, and all information from that scan is

recorded. This threshold is adjusted as discussed in Chapter 5.

The type of signal that is most easily detected by this method is a

wideband signal. The rationale for this argument is that the algorithm is

an integration technique and since the threshold is rather low, any amount of

signal in the 40 Hz block will cause the 1-bit to be set. Since most wide-

band signals are translated into the frequency domain as a set of sine
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functions, a relatively large number of points in the block will

contain the signal. When these points are summed together the power

in the block will be above the threshold level. Narrowband signals on
r

the other hand, appear as approximate delta functions, and as such,

i

	
the signal will be in relatively few points in the block. If the

power of the signal is low enough, a narrowband signal may go un-

detected by this test. However, this algorithm is not specifically

sensitive to any signal type, but rather the elevation in power, over

the noise level, that comes with having a signal present in the block.

2. Degree of Polarization - A signal emanating from any single antenna

will be completely polarized. Even when degraded by noise, a sufficiently

strong signal will have a resulting degree of polarization significantly

greater than that of noise alone.

In this test degree-of-polarization is calculated along each,row

of the 20 sec x 40 Hz block, and compared to a threshold value. Degree-

of-polarization is calculated along rows in order to maximize sensitivity

to pulses and other signal types that lack the time coherence required

for detection by the CWD.

The results of this test can also be applied to the signal recognition

problem. Signals of high power but low degree of polarization are unlikely

to be ETI signals, while a high degree of polarization is a hallmark of

artificial signals.

-	 a

Procedure - A general discussion of degree of polarization can be

-_	 found in Section 3.3. For the purposes of this test, the following
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calculation is performed for each row of the .current block:

m =	 1	 3
(TX7 _-ry(,2+ 4 1i5;WI2

T7+ry('
40	

40

where TxT _	 E x i xi *,	 ^ = 40	 yiyi*
i=1	 i=1

40
and xy = 40 E xiy i *. Each calculated value of m is compared to

i=1
stored thresholds.

Sensitivity - If an overall false alarm rate of oo is desired for

each block, then per row the false alarm rate is a - 1-(1-a o ) 11'O . (Then

if % = .5, a = .034.)

The behavior of the degree of polarization under noise was determined

empirically. For an integration length of 40, noise has mean degree of

polarization .176 and standard deviation .078 (based on a sample size of

200). This is apparently independent of noise power.

If ao = .5 is chosen, then the threshold value for bit setting is .32,

either by determination of the 93rd percentile of the data or by assumption

of normality.

Signals of various strengths and durations were simulated, and their

degrees of polarization calculated. Figure 3.10 summarizes the results,

with each point representing an average of 50 values. (Note: signal

width is the number of bins in a given row actually containing the

signal, even if they are not contiguous.)

Examination of Figure 3.10 indicates that if degree of polarization

m results from width = A and SNR = B. then for any d the same value of m
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Number of Rays Containing a Signal of Bandwidth 40 Hz

SNR 1 2 3	 4 5	 6 7 8 9 10

.16 .12 .23 .32	 .40 .47	 .54 .59 .64 .68 .72

.25 .34 .56. .71	 .81 .87	 .92 .95 .96 .98 .98

.50 .72 .92 .98	 .98 1.00	 1.00 1.00 1.00 1.00 1.00

.75 .93 .99 1.00	 1.00 1.00	 1.00 1.00 1.00 1.00 1.00

1 .98 1.00 1.00	 1.00 1.00	 1.00 1.00 1.00 1.00 1.00

>1 1.00 1.00 1.00	 1.00 1.00	 1.00 1.00 1.001 1.00 1.00

Table 3.2 - Probability of Signal Detection by i:the Degree
of Polarization Test, as a Function of Signal
Time Duration (number of rows) and SNR



will result from width - dA and SNR - B/d. In other words, degree of

polarization is proportional to 	
SNR

si gnal width

Table 3.2 indicates detection probabilities for a signal of width

40 occurring in r rows of the block. This table can be applied to signals

of width less than 40 by using the appropriately factored SNR. (Notc;

There is close agreement between the probabilities obtained from the

samples and those derived from normality assumptions.)

3. Complex Amplitude Coherence - This test is designed to detect any

polarized signal which may be continuous, pulsed, sporadic, or amorphous.

Tie amplitudes need not be particularly large, as we are looking for

persistent coherent signals.

For each 40 Hz by 20 sec. block of data, we compute

Al = I-^

where xy* refers to the average cross power in the two MCSA's, x and y

refer to the power in the x- and y-MCSA respectively. The magnitude of

JAI is an indication of the correlation (or coherence) between the two

polarizations; for example, if the two outputs are linearly related,

JAI - 1, while if there is no correlation whatever between the two,

JAI - 0. At the end of processing for each block JAI is compared with the

predetermined first and second level thresholds.
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4. Generalized Coherence M Raw (A Broadband Coherent Pulse Detector)

Wideband pulses will appear in a string of contiguous frequenc y bins simulta-
neously, for only one time period. They may then repeat at some later time.

Such a signal could be generated at the transmitter by a sinc time variation.

This would cause the received signal phase to have a linearly increasing

variation with frequency, at a slope inversely proportional to the bandwidth

of the put se.

As shown in Appendix A2.1, the MCSA does not introduce any more than a

linear relative phase shift between adjacent frequency bins. Therefore, the
original linear phase variation with frequency is maintained at the MCSA out-

put. The generalized coherence value may be computed across frequency rows,

since it is insensitive to linear phase variations.

Specifically, the GCV is calculated across all 40 frequenc y bins,
separately for each row. If the GCV for any row exceeds the predetermined

threshold(s) , the appropriate bit(s) for this test will be set.

5. 8-Hertz Pulse Detector - This test provides a means for detecting

infrequently occurring pulses whose widths are a few Hertz. It computes the

average power P in an 8-Hz span across each frequenc y row for each
7	 7

Px = $ i E0 I xi 1 2	 Py = I i EO lyi I2
where xi and yi are row outputs for the x-and y-MCSA's respectively. If

any of these results exceeds the first level threshold, the 1-bit is set.

Likewise, if the results surpass the second level threshold, such an alarm

is set as well.

i
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1	 6,7 8^ysis of Variance ( NOVA) - ANNA can be used to detect several

different types of signals. For example, assume that a narrowband monochro-

matic signal is present. This signal will manifest itself in the ANOVA matrix

j	 by increasing the power in the column that corresponds to its frequenc y . The

presence of this type of signal we-uld be detected in the ANOVA by a rejection

of the null hypothesis of column effects. That is,  the col umn mean associated

with the signal would be higher than the column means associated with

the noise. This difference in mean values is reflected accordingly in

the column sun-of-squares, which in turn results in an increased F-ratio

for columns. If the F-ratio for columns exceeds a preset critical F-value,

the null hypothesis is rejected. Similarly, a broadband signal would

increase the power in all the matrix cells associated with its frequency

bandwidth	 This again would result in an increase of column totals for

those columns containing the signal, and ANOVA would pick this up by

producing a significant F-ratio for the columns. In the event that a

broadband continuous signal completely covers the number of columns in

the ANOVA, this would be detected by comparing the total power (which is

calculated as one of the steps in ANOVA) with the total power in the

previously established noise matrix. Thus, narrowband and broadband

continuous signals would be detected by a rejection of the hypothesis

associated with columns.

A pulsed signal which is broadband and periodic would result in

higher power reading in the wow totals (for those rows where it appeared)

and would result in a rejection of the hypothesis associated with row

effects. It is apparent that the signal to noise ratio is a critical
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€-	 parameter in any detection scheme. Simulation studies of SNR and AMNAE

sensitivity are discussed above in Section 3.4.

A drifting signal (or a broadbdnd signal that has higher frequencies

arriving at regularly spaced intervals of time) would be detected primarily

by the interaction term of ANOVA. Significant row and column effects can

result as well, depending upon the slope of the path of the signal as it

moves through the matrix. Slopes greater than minus 1 are detected by

the row hypothesis. A tall spiked signal that appears somewhere in the

matrix would be detected by row and column hypothesis and possibly even

the interaction.

The ANOVA tests are conducted for each polarization using the power

contained in each bin of the 20 second by 40 Hz block. The F-ratios for

each of the three tests are compared with the thresholds and the appropriate

action taken.

9. Goodness of Fit -This test compares the actual probability distri-

bution of the MCSA output, treated as a quantized variable, with its expected

distribution in the presence of Gaussian white noise. It is a particularly

useful test since it makes no assumptions about the nature of the signal to

be detected.

For this test the complex output of the MCSA is treated as a pair of

real numhers for each 1 Hz frequency bin every second. Each block contains

800 pairs, so, for the two polarizations, there are a total of 1600 pairs.

The set of output values for each member of the pair is compared with a

Gaussian distribution, representing the expected outcome for white noise

alone: For any possible output value k, let T  be the theoretically

s^

-g4-

S



expected number of occurrences of k and let Nk be the observed number of

1

occurrences.
N - Tk)#

Then	 T = E -----^----
k	 k

is nearly a x2 (chi-squared)

E

random variable with M - 1 degrees of freedom, where M is the nor of

possible output values for k. This value of T is compared against stoned

thresholds.

Pattern Recognition - The Stage II NBIT Algorithm

1. Introduction - A pattern is simply the description of an object.

Pattern recognition is considered one of the most common of activities of

man, as well as all other living organisms. For extraterrestrial life to

survive, it too must be able to produce and recognize patterns in order to

communicate about and react to the dangers inherent in its environment. Once

life--be it terrestrial or extraterrestrial--develops communication capabilities,

the signals used for communication must contain patterns distinguishable from

randomness. At the interstellar communication level, energy radiated acres

interstellar space must have, if nothing else, distinctive patterns that can

be recognized as an artifact against the background of natural radiation. It

is a primary function of the Oasis Signal Detector to recognize these patterns.

In the past, every SETT experiment began with the assumption that the

hypothetical extraterrestrial radio signal would take some particular form.

The appropriate signal analysis and detection scheme was implemented,

the experiment was run, and the negative finding could be expressed in

a single sentence: "No signal of the particular form and exceeding x

flux density was found."
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These restricted searches had the advantage of being relatively

easy to mount, but their narrowly defined negative results were never

very satisfying. Designing the signal detector as a mathematical pattern

recognition system broadens the constraints on the search immeasurably.

In particular, a mathematical pattern recognition system can take the

parallel outputs of a number of analytic procedures applied to incoming

signals and make a single decision based on the location of the point

in feature space which they represent.

2. General Considerations - Since the MCSA provides a multidimensional

output (frequency, amplitude, polarization, phase, and time), a generalized

pattern recognition algorithm has been deemed a more useful tool than any

pattern-specific signal search method, such as a matched filter. Furthermore,

given the fact that planetary rotation would cause a transmitted pattern to

drift across frequencies at an unpredictable rate, the need for a general

spatial search for patterns is further accentuated. The pattern clearly visible

in Figure 2.3a can not be recognized in any frequency scan. In the figure

imagine frequency increasing to the right and time downward. If we added

signal power vertically in time, the signal would a(lain be lost in noise. The

only cue as to its artificiality is its spatial structure in frequency-time

space.

Although the human brain with eyes and ears as its input recei vers , is

the most powerful and versatile pattern recognition system we know of and could

easily recognize a pattern such as the onesshown in Figure 2.3 , it is also

subject to fatigue and hallucinations, it is selective and imprecise, and for

i
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our purposes, too costly. The pattern or spatial non-homogeneity shown

in Figure 3.11 (a) could be interpreted in many ways by the mind, or not be

recognized as a "pattern" but instead be classified as a random phenomenon

such as shown in Figure 3.11 (b).

ri{ ^!'• ^ Id: •{,..
a DO
^^.-Me 

P;d; r!{.i {^^
U^

J	 ^.-Mee _ • •

(a)
	

(b)

Figure 3.11

Furthermore, the enormous data rate provided by the MCSA eliminates the

human operator from consideration as a preliminary realtime pattern recognizer.

If the raw data were to be displayed in real-time and in standard TV display

densities, the latest 1000 seconds of accumulated spectra would require a

console 43 miles long! (See section 4.1)

Powerful algorithms exist for recognizing well-defined prototype signal

categories and for clustering (grouping) unknown categories sharing similar

properties (Andenburg, 1973, Fu, 1976, and Ton and Gonzales, 1974). Some of

these algorithms have been modified to suit different objectives in a detection

and recognition scheme. In view of the implementation limits set by research

time available in this study, we developed the simple yet extremely general

algorithm described in this section. We fell that more sophisticated algorithms

could easily be applied to the problem, and suggest study of their implementation,

-97-

him

T	 ^



3. Definitions - For sake of clarity and preciseness in the ensuing

discussion we need to make the following definitions:

a) A scan refers to one spectrum - 8 MHz x 1 Hz, with 1.6 bits

per channel.

b) The entire array refers to 1000 seconds of the MCSA output and

is a 1000 sec. x 8 MHz matrix of raw data.

C ) A block is a 20 sec. x 40 Hz section of the entire array.
.3

d) The compacted array is a 50 x 250000 matrix of 9-bit numbers.

e) A pattern block is a 50 x 200 matrix of 9-bit numbers which is

a vertical strip of the compacted array.

f) Aatp tern class is a set of 9-bit numbers with specified bits

equal to 1 which determine the class and no constraint on the

unspecified bits. Thus, both (0, 1, 1, 1, 0, 1, 0, 1, 1) and

(1, 1, 0, 1, 1, 1, 0, 1, 0) belong to the class (*, 1 9 *, 1,

* * * 1 *) and also to the class (* 1, * * * * * * *)

while (0, 0, 1, 1, 0, 1, 0, 1, 1) belongs to neither of these

classes.

g) Aatp ternpoint is any 9-bit number of the compacted array.

h) A cell is the time-frequency location of a pattern point. Note

the one-to-one correspondence between blocks and cells.

Figure 3.12 should further clarify the above definitions.

{

4. The Rationale for Cluster Analysis - Cluster analysis is a pattern

recognition technique which encompasses many diverse methods for discovering

structure within complex bodies of data. The common characteristic of the

algorithms of cluster analysis is the attempted grouping of data units into
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Figure 3.12 - Definitions of the Terms used for Cluster Analysis
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E- 	clusters such that the elements within a cluster have a high degree of

°natural" association. The two ways we define this natural association in

our application is continuity in time and/or frequency of similar pattern

points.

We view a pattern point as a point in the compacted data array which

has associated with it the time and frequency coordinates of the cell it

corresponds to. Each bit of a pattern point is set by one of the tests

described in stage I and has value either zero or one. If a signal is

present which sets some particular bits for some length of time and/or

across some frequency width, then the pattern points which have these

bits set will lie along meandering lines or be grouped in other types of

clusters in the compacted frequency-time domain. Hence, we need algorithms

which will discover various spatial relationships between similar pattern

points. In order to obtain this objective, we use a two step cluster

algorithm which consists of a "smart" histogram and a modified single

linkage cluster algorithm.

5. Overview - The method by which a pattern block is examined for the

presence of a cluster is straightforward and will be described briefly in this

section, with more detail being given in Appendix A3.11.

We recall that a cluster is defined as a close spatial association of a

number of pattern points belonging to the same pattern class. As an example

of a cluster consider Figure 3.13 which shows a portion of one pattern block

indicating all pattern points having bits 1 through 5 ; i.e., members of

class (1, 1 2 i s l,il, *, *, *, *). Since there is a probability of 1/2 that

any	 of these bits will be on due to the fluctuation of the noise background,

the probability of them all . being on in the same pattern point is 1/32 due
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to the background alone. The algorithm searches for deviations from the

statistical noise field by specifically searching for a group of N

"on cells" each being within a spatial distance d of at least one other

member of the cluster. The algorithm detects such a pattern in two

stages.

The first stage is called the histogram stage. Here a dedicated

hardware processor looks at a pattern block and determines if any pattern

class has an "excess" of members within the block. Classes having a large

excess will then be selected for stage II analysis. Furthermore, an

extremely high excess will alert the central computer.

In the second stage analysis, a dedicated software processor first

"cleans" the pattern block of all pattern points not in the class of

interest. The result of this cleaning procedure is a 2-dimensional binary

representation as shown in Figure 3.13. The binary representation, whose

constituents are also called "cells", is then combed through and a list

is kept in the software processors memory of all closest pairs of "on" cells.

These pairs are deemed to be the likeliest centers of clustering, and are

used as seeds around which clusters may be recognized. The algorithm that is

then performed is a variant of the single linkage algorithm (Andenburg, 1973,

and Ton and Gonzales, 1974), which collects adjacent points, that is, points

within a predetermined distance d, into clusters. If the processor finds

itself able to extend the cluster spatially in a particular direction or in

all directions such that a highly significant number of points are amassed,

then a cluster has been discovered. At this point, the central computer is

alerted and the data pertinent to the cluster, which includes both the raw
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data and the cell representation, is archived and available for display.

Simulations were conducted with A high-level languages software that were very

effective. These are shown in Figures 3.14 - 3.16.

The great advantage of this algorithm is that it is able to search for

structure across any entire pattern block, which is effectively a 6.4 kHz by

1000 second record. The compactification scheme has bought us the real-time

ability to do such extensive spatial searches. This capability is far in excess of

what is possible through the use of dedicated processing of an equivalent

8 billion pixel image. In ade 4 tion the dimensions of phase, polarization,

and several types of coherence (temporal, spatial, phase) are included in

the pattern point compaction scheme.
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The centipede was happy quite,
Until the Toad in fun
Said, "Pray which leg goes after which?"
And worked her mind to such a pitch,
She lay distracted in the ditch

Considering how to run.
--Mrs. Edmund Craster

4.1 - Introduction

Purpose of the System

The purpose of the Oasis Signal Detector is to recognize signals in noise

and to identify them in so far as is possible. In addition, the system:

- Archives interesting data.

- Allows the operator to become involved in decision-making and to

introduce signal identification tests of his own.

- Provides the operator with visual and audio feedback.

- Oversees the operation of the entire receiving system, including

the sequence of events, such as changing to a new target.

The system has been described in the previous chapter as a set of algorithms

(Pulse Detector, Carrier Wave Detector, Numerical Battery of Independent Tests,

Cluster Detector). These algorithms comprise the Real-time Processing System;

there are, in addition, three other systems in the detector: the Total Obser-

vation Archive, the Operator Interface, and the Radio Astronomy System, as shown

in Figure 4.1. Now we will describe the digital hardware implementation of

these systems. First there will be an overview of the architecture and data

flow within the entire detector, followed by a more detailed examination of the

processors, with schematics presented wherever necessary. The chapter ends with

a summary of the speed, capacity, and cost of the planned equipment.

The system employs both conventional digitial computers and special

purpose digital processors to implement the algorithms. The reasons for the
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particular choice of technology is discussed in detail in Appendix A4.1.

While the selection of algorithms was somewhat constrained by the availability

of compatible technology, the hardware feasibility study which accompanied

this design project had its largest impact in placing limitations on the

sizes of the random access memories available to each processor.

Architectural Strategy

The strategy and philosophy underlying the hardware delsign which follows

can be stated rather simply. If proven off-the-shelf components and pro-

cessors exist to do a task, we use them. Otherwise, as in implementing

several of the computational algorithms, we have found it reasonably straight-

forward to design custom-made processors, all of which may be constructed simply

using current or near-current technology.

When the data rates and computation rates exceed that which is possible

with conventional integrated circuit technology, we use multiple processing,

and/or parallel processing, rather than resorting to higher speed processing

(e.g., greater than 10 MHz), and thus avoid immature and somewhat incompa-

tible integrated circuit families.

Fortunately, the very nature of the MCSA's output scheme (8 megaaaords/sec)

allows all special purpose processors located downstream of this data flow to

operate with a fundamental clock frequency of 8 MHz or 10 MHz. 1 which is

1	 The reason for 10 MHz is due to the redundant processing of overlapped
data as discussed in thediscussion of Figure 3.9, detail. 1.
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within the range of TTL technology. Still, there are cases where the number

of computations to be performed at this rate is very large, and in these cases

parallel processing is employed,, either with special purpose hard-wired

devices (e.g., in the CWD) or else using a set of microprocessors (e.g., as in

the CD). All processors as well as all the major subunits of the Oasis Signal

Detector make extensive use of the techniques of pipelining and double buffering

("ping-pongi ng") . Each stage of the pipeline introduces a delay in the detection

process, but each stage is allowed to operate at 8 MHz or 10 MHz. In some

stages of the pipeline the data is reduced or "compacted" as well. By this means,

in the second stage of the Realtime Processing System, the data rates become much

more manageable. Here, data compaction by a facto. of over one thousand (via the

PBIT routine) reduces data rates to 12.5 kHz and smaller words, allowing a sen-

sitive, non-deterministic search for patterns to take place by way of the Cluster

Detecting firmware routines of a microprocessor.

Large Memories and "Second Looks" at the Data

An important question, and one studied in depth by the group, was the

feasibility of maintaining a large online memory containing all of the raw

data from a target (.1 to .5 terabit). We determined that to store such a

data base was possible, yet such a data base could not be designed to afford

convenient random access to the data for preliminary processing. While it would

have been desirable from both an architectural and algorithmic point of view to

have a large random access data base through which all processors could comb,

backtrack, and focus in or out of, such an entity was not found feasible.

Magnetic disc technology has not reached the storage density or capacity,
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of knowledge, skills and tools. Nor is the concept of a second look new. It

s often been suggested by those working in the field,2

d it emerged independently as well from the ideas of this design team.

The data compaction of .1 terabits to .1 gigabits allows the system to

tomatically take a second look at the data. The second look comes in two

magnetic tape has not reached the required access rate, and erasable

digital optical storage is yet immature and has not solved error rate

problems at high densities, nor are any of these constraints expected to be

sufficiently lifted within the next five years.

We did, however, design a large memory in the form of a "Super Nigh Bit

Recorder Helical Tape Transport", which serves, not as a primary data base,

but as an archive, in both a short term and long term sense. The data taken

from every target is stored temporarily in this "entire observation archive"

while the dedicated processors (PD, CWD, NBIT) concurrently run deterministic

tests on an identical stream of data. The tests are considered deterministic

in the sense that these tests simply act and report their findings over and

over again; never altering their behavior in response to their own results.

After this deterministic search has transpired for a particular target and any

outstanding results of the tests have been gathered, a "second look" is taken

at the data, using the results of the PD, CWD and NBIT processors as a guide

to examining the archive. This is shown in Figure 4.2.

The concept of taking a close second look at promising portions of the

data after an initial evaluation has been made is a natural and convenient

solution to the large memory problem state above. In this way, all of the

data is made available to powerful, sensitive, and non-deterministic tests,

such as are provided by the clustering algorithm and the operator's awn bank,
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forms; the histogring and the adjacenc y search algorithms of the Cluster

Detector.

The histogramming tests each 9 bit "pattern point" coming from the NBIT

detector at a 12.5 KHz rate for membership in any of 512 "pattern classes".

It can be seen that by compressing the data here we have gained the ability

to subject it to many more tests.

The operator is also given a second look at the data. As will be

discussed in the next chapter, it is felt that the operator can and should

play an integral role in signal detection since he possesses the most

advanced and sophisticated algorithms for pattern recognition possible. The

previewing of data by the hardware processors rather than the operator is

necessitated by the fact that the raw data, if presented on a 22-inch-tall

standard display, would require a display 43 miles in length.3

Instead, the operator is able to concentrate on alarms from, and possible

patterns detected by the real-time processing system. To aid him in his task,

he is provided with exclusive use of three archives, an advanced image pro-

cessing unit, and a bank of software data reduction routines, as well as aid

from a radio frequency interference detector and a knowledgeable radio astro-

nomer. At the end of the 16-minute period, as the system moves on to observe

the next star, a decision is made, either by the operator, or by the central

computer, to save or erase the prior observation. The operator's role as a

signal detector is shown in Figure 4.2. Comments on the criteria for the

preservation for an observation will be given in the next chapter.

3	 Assumes each 22"x22" area displays 512x512 pixels of 16 levels, and one
observation consists of 8 10 $ Hz x 1000 seconds x 2 polarization x (1 real
+ 1 imaginary part) x 16 levels.

L
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Advantages of the Architecture Chgen

The system is highly modular, with little or no communication taking

place between processors sharing the sass stage in the pipeline. Input to

processors arrives at a fixed rate on a common bus, and output is typically

limited to the signaling of an alarm through a priority interrupt to the

central computer. The computer acquires identifying information regarding

such a processor's alarm by reading the output register of the processor

without establishing any two-wady communication.

There is great advantage in keeping different functions physically

separate and communications between modules minimal. In addition to providing

a substantial increase in computation power through parallel processing, this

scheme allows for easy modification of the system, through addition or removal

of processors. Processors may be easily monitored for failure, and the failure

of one will not bring down the entire system. The central computer simply

removes the processor from the priority interrupt system, and, if necessary,

terminates the pipeline at this processor.

Such modularity provides for a great deal of options in the implementation

of the Signal Detector. In Figure 4.3 we show the basic pipeline, each level

of which is a set of signal detectors. One may start at the bottom, throwing

away modules without affecting the performance of the modules on the left,

right, or above. At each turn, one is left with a functioning signal detector,

albeit one with reduced sensitivity to some class of signals.

It should be noted that the most fundamental algorithms are located in the

first two lines of this figure, namely the Pulse, Carrier Wave, and the nine

PBIT algorithms. Thus, a minimal system configuration would still contain the
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Detector. Nodules depend only on those directly
above. Each module excluding Array Transposer
is a signal detector.
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most sensitive, and important algorithms. Further, any of the particular

lBIT algorithms may be replaced by any alternative bit-setting algorithm,

with the entire system above and below this stage of the pipeline remaining

unaffected.

An advantage of the system architecture of a more primary nature is the

fact that all components to be described in this chapter are proven, off-

the-shelf items. Though some of the hardware is state-of-the-art within its

class, namely the high density discs, helical tape transport, and display

processor, as well as the integrated circuits for particular integer multiplies,

the classes themselves are mature in the sense of standardization, reliability,

economics, and the very fact that corporations supporting such products are

well-established, and reasonably long-lived. Appendices A4.1 and A4.2 deal

further with the choice of technology, and alternative ways to implement the

OSD modules based, for example, on smaller or larger MCSAs, and the use of

fewer modules.

4.2 -The Real-Time Processing System

Input to the Oasis Signal Detector

The MCSA's bottom stage, consisting of 140 x 56 = 7840 BPF units, each

with associated RAM memories, provides the input data to the signal detector.

As can be seen in Figure 4.4, this stage produces, at each RAM memory, 1024

output words, each representing a channel of width of approximately 1 Hz. With

7840 BPFs of 1024 "channels" each, there are, in total, 8 million outputs.

These outputs are produced each second, so that an 8 MHz bandpass input to the

MCSA may be totally analyzed to 1 Hz resolution and bussed to the OS© in one

second.
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During one of these time intervals, all the RAMS fill in parallel. The

results of the Prime Factor Algorithm (Nerasimha, Peterson, ind Narayan, 1978

leaves the data skewed across the RAM in a fashion similac to the results of an

FFT omra ti on ( Berg 1 and, 1969) . By providing two RAMS at such stages, one

RAM may be written into in a skewed fashion, while from the other, data is read

out from the previous time interval in a sorted manner. Upon leaving the final

DFTs, the data enters the Signal Detector. Explanded block diagrams of the OSD

showing all major components with associated data rates and memory capacities

are shown in Figures 4.5 and 4.6.

The data is read out at 8 Mwords per second, with each word consisting of

16 bits real and 16 bits imaginary, ano is clipped after readout to 4 bits real

and 4 bits imaginary, then multiplexed (box labeled MUX in Figure 4.5) with

the output of the second identical MCSA operating at an orthogonal polarization.

This yields a composite 16-bit word consisting of 4 real bits (polz. X ), 4 bits

imaginan., (polz. X ), 4 bits real (polz. Y ), 4 bits imaginary (polz. Y ). As

discussed in Chapter 3, each quantization level of the new 4-bit values repre-

sents .3a of the average signal amplitude. The clipping is accomplished with

an 8-bit to 4-bit ROM look up table.

Array Transposer

The output of the multiplexer, the 8 Words/sec data flow branches in

two directions. A scan (a one-second observation from the MCSA, 8 million

16-bit composite numbers) read out of the multiplexer is bussed word by word to

the pulse jetector, which performs its computations immediately and directly

on each scan. The scans are also written into a device known as the Array

transposer.

4See references Chapter 3
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F^^
The need for this device is dictated solely by the input requirements

of the CWD. The CWD operates on nearly vertically arranged slices  of raw

data, as was discussed in Chapter 3, and illustrated in Figure 3.8. 	 Each

vertical slice covers 20 spectral scans, and therefore presents an unusual

memory requirement.

The transpose method involves reading twenty seconds of MCSA output

into memory one scan at a time, i.e., row by row. During the next twenty-

second interval the data is read out one frequency (one column) at a time,

i.e., column by column. This form of read out is rally suited to the CWD

algorithm and requires a very small amount of intermediate memory before

the result is accumulated for each slice.

The transpose method consists of a double buffer, one part of which is

reading data in from the MCSA output and the other part of which is writing

out to the CWD implementation. Read-in of data is done in a conventional

manner, where one scan is read in at a time, so that the data of one scan is

arranged contiguously around one set of tracks (one cylinder) on the magnetic

disc.

The transposer is composed of two disc systems and two RAM systems. The

identical disc systems are composed of two discs and one controller. The RAM

systems are two identical 20 x 10 6 bit RAMs. One disc system reads in from

the MCSA output while the other writes out to the RAM system. This procedure

continues for 20 seconds after which the two systems trade functions, with

the disc which was reading now writing and vice versa. The RAMS operate on a

similar basis but on much shorter time scales. Each 0.13 seeds the RAMs

trade functions, one reading from the disc while the other RAM is writing to

the CWD and IBIT algorithms.
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scans from raw-by-row access to column-by-column access in the following

manner. Data is written from one of the disc systems to one of the RAMS in

partial rows. These are 64 x 10 3 Hz strips of an MCSA output scan (1/130th of

a scan). Within the disc system that is writing out, there exist two disc

drives and a controller. One disc reads out a partial scan to the RAM while

the other disc seeks out another partial scan, positioning its read-head

appropriately. The amount of time required to perform this "seek" is equal

to the amount of time required to write out a partial scan. It is in this

way that time is bought to fill one of the comparatively small RAMS with a

64 x 10 3 Hz x 20 second piece of the total 20 seconds of data. Once the data

has filled the RAM, the RAM switches to the write mode and the data is

written out, twenty-element column by twenty-element column. This constitutes

the transposed data flow.

In the read and write modes described above, all data transfer rates are

8 x 10 6 words/sec., where a word consists of 16 bits, 4 bits real and 4 bits

imaginary for each polarization. It should be noted that the data rate out of

the MCSA is maintained at all times. The net effect of the disc-double-buffering

is to delay the "real-time" arrival of the data by 20 seconds as well as to

transpose it.

Advantages of the Transposition Scheme

The transposition scheme is necessitated by the requirements of the CWD

algorithm. There are two additional and very important benefits of the trans-

posing scheme. The first is the block-by-block transmission of the raw data

to the NBIT processors. With this transmission scheme, the 800 raw data words
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that are used to produce one bit of the 9-bit number which represents a block

all arrive sequentially. Hence, none of the partial results of an NBIT test

on a particular block need be saved after that block is processed.

It should be recognized that there is an alternative processing scheme

for the NBIT algorithms that is eliminated by using the array transposer.

This scheme is called the "on-the-fly" implementation. It consists of

taking the raw data from the MCSA, one scan at a time, and computing the

results for all pattern blocks in parallel. This on-the-fly scheme would

require accumulators for each block during the processing of twenty scans.

There are 2.5 x 10 5 blocks being parallels processed and the amount of

accumulator memory required would be approximately 3 x 10 8 bits. This is not

an unreasonable amount of memory, but nonetheless the need for its presence

is completely eliminated by the transpose system.

Pulse Detector Implementation

The algorithm implemented here, as described in Chapter 3, is an

examination of the incoming scans under various resolutions ranging from

1 Hz, 2 Hz, 4 Hz, ... , 2 23 Hz = 8 MHz. This is accomplished in the

following manner. First the incoming signal is converted to a total power

value by summing the squares of 4 complex components. The col nnmt s used in

this operation are "lookup" ROMs for squaring and MSI integer adders. Then

24 such adders integrate the data into 24 accumulators. At the end of 2^-1

integrations, the i th accumulator is compared against a threshold. If there

5	 "Parallel" in the sense that the processor would work on each block only
1120 of the total amount required to complete that block, and then move
on to the next block. Only after 20 visits to each block is this
parallel computation completed.
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is a significant excess of total power, the threshold is exceeded, and

an alarm is sent to the central computer.

This hardware scheme is shown in Figure 4.7. The clock scheme for the

adders is simply an 8 MHz oscillator synchrozi ned with the MCSA readout, and

this clock drives a 24-bit counter. Each bit of the counter is an enable

signal (e.g., rising edge due to 0 -* 1 transition) to the thresholding

function of a unit. All adders add upon each cycle of the clock, and, at

each 2
i-1 

cycle, the i th bit of the counter experiences a rising edge, and

allows a threshold and accumulator clear to take place. The expected total

power from 2 i summed channels is a constant due to the clipping procedure,

and thus the threshold values are likewise constants, hardwired into digital

comparison chips which check for "greater than" situations.

When such a situation exists in any of the 24 units, an or-ing procedure

allows a single alarm ( one-shot interrupt pulse) to be sent to the central

computer's priority interrupt system. The unit experiencing the excess inte-

grated power latches its own identifying number "i" into a register connected

to the computer ' s I0 interface. An additional pair of regist;ers, the 24-bit

counter already discussed, and a scan number counter are also similarly

connected to the computer, and these three registers serve to uniquely describe

the location of the anomaly in the raw data, for the operator interface system.

The detector, as described above, performs the coarse resolution pulse

search on one scan at a time. The detector includes, as well, a second,

identical unit that performs this test on an integrated scan (see Chapter 3).

This integrated scan is accumulated at an 8 MHz rate into a large RAM memory

16 bits x 8 x 106 bi ts.6 At the end of 1000 seconds (1000 scans) this

6 While RAMS of this size are not manufactured per se, in a serial access
utilization such as above, there is little difficulty in str^rigi g
together many 256K RAMS, without encountering additional addressing problems.
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Figure 4.1 - Pulse Detector
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integrated scan is read into an identical pulse detection unit (with appro-

priate thresholds), acid a separate alarm, with the associated registers (less

the scan ID register), may be communicated to the computer.

A Hardware Implementation of the Carrier Wave Detector

As discussed in Chapter 3, this processor is responsible for the detection

of negatively and positively drifting carrier waves (drifting in frequengr) of

driftrate between -1 and +1 Hz/second, and of any initial frequency within the

8 MHz band. The detector integrates for 1000 seconds of data, within which

50 "slabs" of data (measuring 20 seconds by 8 MHz) are individually examined

for carriers, as is the grand total of the 1000-second observation. See

Figure 4.8.

Through the use of the Generalized Coherence measure, the algorithm provides

an enhanced sensitivity to drifting carrier waves. By responding to the phase,

polarization, and amplitude or coherence of a signal occupying a moving

frequency bin (called a "slice"), the detector improves its signal to noise

ratio by a factor of -6 over what is accomplished through simply summing the

power within #.e slice.

The processor also searches for "carriers" of arbitrary bandwidth. One may

think of this either as the search for several nearly adjacent drifting carriers,

or the search for spectral features of any width (up to 8 MHz) which retain

their spectral shape and phase, but with a frequency offset in time. The

detection of such drifting signals is accomplished by binning the output of

the carrier wave detector across the axis of the starting frequency positions

of the s 1 i ces .
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Implementation

The detection of the Generalized Coherence of carriers presents the most

difficult processing requirement of the entire OSQ, where as many as 200 complex

integer multiplies must be clone in parallel at an 8 MHz rate, .a rate

far in excess of what is required of any other processor in the system.

One further ramification of the implementation of this algorithm is the

necessity of providing a "horizontal" data flow to the processor as pictured

in Figure 4.8. This horizontal flow of data, where data closely associated in

time and frequency enter the processor together is accomplished by the array

transposer.

Given the somewhat formidable equation for the Generalized Coherence

measure of a drifting carrier wave (discussed in detail in Appendix A3.10 and

shown on page 136	 a complete separation was made of

serial operations applied to each slice of data (with a specified initial

frequency in the band) and these operations were arranged in a long pipeline

with branches. All data necessary to compute one GC value enters the pipe-

line at an 8 MHz rate in the horizontal manner pictured, and is moved from

stage to stage at this sane rate.

Since all of the data within a slab (8 MHz x 20 seconds) originates

at an 8 MHz rate, all the resulting GC values (8 MHz initial positions x 20

slices)  emerge from the pipeline in real time. While the workspace of each

y	 stage is relatively small (less than 100 words) RAM buffers are considered

the optimal storage medium for their simplicity. The pipeline, with RAM

double buffers is shown in Figure 4.9.
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Carrier Wave Detector

	

Horizont	
Stages

Array	
1	 2	 14

Transposer	 Flow

RAM

^I

!1

	

Read/Write	 +	 P^arrow Carrier

	

at R MHz	 Threshol d

Binning Unit	 Binnin Unit	 CWD	 4

In gration

nGinaRit

+	 +	 +	 +	 +	 +	 Unit	 ll

	

Disc Memory	
AC AC	 AC	 AC	 AC	 AC	

[^ail

1000-second Integration	 20-second Integration
Broadband Alarm I	 Broadband Al rm

To Central Computer

(in the event of an alarm)

Scan Counter

Threshold ID
Alarm to Central

Computer

24-bit Counter

Alarm ( 1 ,2 ,or3)

Figure 4.9 - The 14 Stages of the CWD processor use double-buffered RAMS to

pass the data from stage to stage. The out quted GC values are

1) compared with a threshold, 2) binned within a slab and compared

to a threshold, and 3) integrated and binned with all preceding
slabs and compared with a threshold.
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4
r	 The addressing scheme for reading in the appropriate raw data values for

 a particular slice, as well as the transfer of data from the workspace of one

stage to the next is prcvided by DRAM controllers. The first stage controller

{

	

	 also maps-in the correct weighting factors for the slice being processed. The

pipeline sequentially processes 20 slices for an initial frequency and then

begins on the next initial frequency. Therefore the output of the last stage

appears as sequential columns of the slice (vertical) by initial frequency

(horizontal) array shown in Figure 4.9. As this array appears, it is accumu-

lated onto a 1.3 Gbit disc memory so as to improve the signal to noise ratio

of carriers that drift across several, if not all slabs. Some minor address

computation is performed for this accumulation process, via the disc (programmable)

controller. The controller displaces the data from a particular slice such that,

for example, the GCV of a slice drifting from 1 to 20 Hz in the first slab is

added to the 21 to 40 Hz slice result of the second slab.

An integration of this type is performed on each incoming slab, so that we

have available at all times the most recent slab, and the sum of all slabs to

date. This leads to the three tests: 1) the thresholding of each GC value from

a slab (160 million values), 2) the coarse binning over 24 different resolutions

of a slab, and 3) the coarse binning of the sum of slabs. The coarse binning

circuit, as suggested by Figure 4.9, is simply the circuit used in pulse

detection (Figure 4.7), only now the input to the circuit is the output array

of the CWD algorithm. The result of binning the accumulated output array is

shown in Figure 4.10. It should be stressed that the examination of a single

slab output over 24 resolutions requires no memory, and, that this test alone

constitutes a very sensitive search for drifting signals. Assuming the carrier is

-133-



V
C

V4•- •r
^ N
A

C

N	 R

A	 N ^}

L4

O

V
r-
O
N

A

• A
N 1

NF►
^ •r 4^

r II 41

Q N G Ld O
CL	 4J
lii	 i. CC •r
43	 t •rC

aen Na
++ o
A©n
acc.oc 0 4-1

^^^a
7 N

N	 .r.
•r 0N O
tow a
H- Q 41

.--^ N M

A
N N

a ^
N
H

RI
W
N.

AL
u
a

C
•r
i^

•^	 N

O ^. O

A

',y r	
N r
	 •^ N

1	 1	 +^ ^

mm	 W
(	 J I ^JJ

t/!	 1	 r /) V!

.^
4- O

... c
N



0

observable for 1000 seconds, the 1.3 Gbit disc allows integration which

serves to increase the SNR by a factor of A'e 7. For this reason, tha

optional CWD integration module was placed on the system pipeline (Figure 4.3)

below the detector itself.

The CWD Pipeline

The following schematics (Figures 4.12 - 4.16) show the stages in the

pipeline, along with a guide (Figure 4.11) delineating how the branches of the

pipelines fork and Join. Where there are 20 identical  functions occurring

in parallel, the diagram show the outline of 20 boards in a stack. The

reason for 20-fold multiplicity is that a single slice traverses 20 scans (rows)

of data and the computations performed on the raw data in these rows may be

performed ir, parallel. At some points in the pipeline there are operations

which require more than one 8 MHz cycle. These operations ther span more

than one stage of the pipeline so as to be allotted the required time (e.g.

stage A7 - A8 is a 5-stage, 16-bit, cascade full adder). Also, at some points,

data is produced by one stage that is not needed until many stages down the

line. Such data is passed along the series of RAM workspaces but is shown in

the schematic passing through registers marked "H" for hold.

Stages 1 b 2 - The incoming MCSA data are first weighted in accordance

with the ray angle, the signal distribution model and positio n- in the array.

These factors are predetermined and are reflected in the weighting values

stored in the PROM look-up table, designated by a. Since a ray may cross

.=
	 three frequency bins, three weighting values are multiplied by the three

potential bin contributions.
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Stages 3 - 14 - These stages compute the various factors which comprise a

GCV which is defined as:

GCV = —^ + 2m -	 kl2 Ex
i+lxt + k l k2ej6 Exi+lyi +

k
1
k2e

-j6
 Eyi+lxi + k22 Eyi+lyi

- 1	 1x;I	 - 1	 (Y•I
where k 1 N E xi + y i 	 k2 = N E xi + y i	 as computed i n

Stages A3-A9, and

^x i 	 R x i + 12 	 given	 xi	 Rx i + jIxi

N-1
Im E xiyi

and 6 = tan-  — i-- -1
1 	 at B6-B9)

Re E xiYi
i-1

EIX.1 22 - E ly i 1 2 + 4jExiyfl2
and	 m =	

Elx i 1 2 + EIYi 12	
(computed in C4-C13).

It is possible, therefore, to canpute each of the summations separately, multiply

them together and add the results together at the end. The k  and k 2 components

are derived in Stages A3 - A9, m is computed in parallel C4 - C11, the factor

2m	
is calculated in C12. Meanwhile, the other five correlation

M+1 N- 1

summations are computed in a parallel set of operations in Stages A3 - A9.

The results are combined in Stages 10 - 14.
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3 Copies of ith Scan
4-bit real; 4-bit imaginary MCSA Output

9-antenna	 9- antenna

Notes on Staqes 1 b 2

For each C, there are three complex (4 bit real, d bit imaginary) weighting
factors wh^ch include an area component and a phase correction component.

The input values are held in the RAM buffers for 2.5 usec. During that time
the ray values for each of the 20 slopes are weighted. One angle is started
each 125 nsec.

Not shown is the table which contains the displacements from the j th frequency
10	 20 k which is used to update the address register for the correct ray
fAtor.	 The displacement is a function of i and 8K.

Figure 4.12 - Beginning of CWD Pipeline
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Finally, we examine the actual components of the pipeline. We reduce the

complex mathematical symbols shown in the preceding diagrams to real integer

adders and multipliers. The key to the symbols is as follows:

a complex function

a power computation, e.g.	 x 2 + y2

X, E	 a multiplyand addition operation respectively

M	 the circuit involves 4 stages

16	 and retains words of 16 bits

Hold register
,16
 16-bit bus

change sign bit

look up	 a ROM table lookup of the stored function (e.g. 745189)

The means of performing 8-bit multiplication at 8 MHz rates is easily

commercially available (e.g., TRWMPY8HJ circuit, maximum propagation time 65 ns).

To do additions at this rate is also no problem (e.g., TTL 745182, maximum

propagation time 36 ns). The 16-bit multiplication units commercially available

in 1979 are, in the worst case, a little bela y the required 8 MHz rate (140 ns

grog. time = 7.1 MHz), but if this does not improve, there are many alternative

means of reaching this rate including multiplexinq, or ROM lookups. The approach

favored most by the design team is to have custom MSI complex mathematical

*	 circuits designed by industry, of the functions sham in Figure 4.18 and 4.19.

This should be the most economical solution, and such circuits, being of a

--'-1 nature, may have commercial appeal in their own right.
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16

. e

IN: 20 (16+16j) numbers
OUT: one 16+16j
MAX RATE: 20 MHz
MAX DELAY: 175 nsec

8-BIT COMPLEX MULTIPLIER 8+8j

IN: A = R1 + ji l , B a R2 + JI2
X , 8	 OUT: Re(A'B), Im(A•B)

MAX RATE: 15 MHz
MAX DELAY: 100 nsec

C P .161 16-BIT COMPLEX POWER FUNCTION

IN: one 16+16j number
OUT: 16-bit sum of squares
MAX RATE: 20 MHz
MAX DELAY: 55 nsec

COMPLEX ADDER

+	 +	 (Identical unit

for
+	 •	 +	 Imaginary part)

i16
Real	

Imagine	 16

Figure 4.18 - Some of the components used in the proceeding schematics.
The values for the rates and delays are derived from
current off-the-shelf adders and multipliers.
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MAX RATE: 15 MHz
MAX DELAY: 140 nsec
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II, 16	
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MAX RATE: 20 MHz
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Figure 4.19 - Continuation of Glossary of Circuit Symbols.
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Implementation of the NBIT Algorithms

i
	

The implementation of this part of the OSD amounts to the implementation

of 9 separate algorithms. It includes, as well, a pre-processor that organizes

and prepares the data streams which branch out to the algorithms. Thus,

before the data enters the individual  processors, it passes through the Overlap

System and the Canon Processor as shown in Figure 4.20. By the time the MCSA

output arrives at the Common Processor, its ordering has changed several times.

It emerges from the MCSA scan by scan, from the transpose RAM slab by slab,

accessed a column at a time, and finally from the Overlap System block by block,

accessed a row at a time. (These terms were defined in section 3.5) The

trend here is toward preparing the data to be passed to the algorithms

more and more closely associated in the two dimensions of time and frequency,

not just in one dimension of frequency.

The blocks contain redundant data. Since blocks overlap 8 Hz on each

side with the adjacent blocks, the overall throughput rate is increased to

10 MHz in the system to maintain realtime processing. This is accomplished by

the Overlap System. Next, since many of the NBIT algorithms require the same

sort input, such as spectral power values, the Common Processor prepares these

values at once for many algorithms. Each algorithm takes what is needed from

the Common Processor, and then carries through the operation with its own

particular hardware configuration.

Before describing the Overlap System, Common Processor, and the algorithm

implementations in detail, we will first discuss the role of the NBIT system

in the context of the entire system.

It is the NBIT system which compacts the data by a factor of 1000, and

reduces the throughput rate from megahertz to kilohertz. It is also the
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system that surveys the data with high sensitivity, noting millions of

candidate low-level signal features, and, rather than bombarding the operator

and central computer With these, incorporates them into the compacted array

for further scrutiny. Finally, it is a collection of very diverse detection

algorithms, a Battery of Independent Tests, which are used together in a

"shotgun" approach, with the thought that an arbitrary signal type will be

caught by one or more of these tests.

The NBIT detectors are constructed so as to be able to contact the central

processor directly ( through an interrupt "alarm") if a block of data passes

a particular test with a highly significant score. This direct line to the

central computer is a common feature in the Oasis System. Each pr-^,cessor has

one, and they are designated by triangles in Figure 4.5. This symbol next

to the NBIT system indicates there is available to each of the nine processors

a high threshold alarm channel to the central computer. (The thresholds for

these high level alarms, and the entire strategy regarding false alarm rates

and archiving, are discussed in the next chapter).)

The term "low threshold alarm" in Figure 4.20 refers to the fact that each

block of 800 numbers is reduced by an NBIT algorithm to a single bit based on

a comparison with a threshold. In order to provide the maximum in sensitivity,

as explained in Chapter 3, this bit is set whenever the test score for a block

is greater than the mean value resulting from a block of noise alone. (Thus,

in the absence of signal, the low threshold alarm is t,iggered by noise half

the time.) The collection of low threshold alarms then is not transmitted to

the operator, nor to the central computer, but becomes the compacted array,

and is stored in Pattern Block Replay section of the Cluster Detector.
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Since each of the individual test processors obtains a block (800 numbers)

of data at a 10 MHz rate ( sped-up to offset the inclusion of redundant data

due to overlapping blocks), and each turns a block into a single bit, the bits

flow out of the processors at a 10 MHzl800 = 12.5 kHz rate, into the Cluster

Detector.

The Overlap System, the Common Processor, and each of the NBIT processors

are relatively simple and memoryless custom-made units, built from the same

components as the CWD, though, for the most part, far fewer. In one test

(Goodness of Fit) a pair of microprocessors are also used to provide floating

point divisions which retain a large dynamic range. Otherwise, the same

integer adders, multipliers and small PROM look up tables are employed.

fie schematics of the Generalized Coherence by Raw, and the Degree of Polari-

zation tests are found in Appendix A4.3, and are a much simpler version

of that of the CWD processor which has already been presented.

The implementations are menuryless in the following sense. With the

array transposer system, we have contrived to arrange the data block by block.

so that once a block has been tested, and the low and possibly high alarms are

recorded, the working registers of an NBIT test may be completely cleared.

Without the array transposer, the data would arrive scan by scan, and partial

test values of the 250,000 blocks that comprise 20 scans would have to be

stored in accumulators for each test. From an economic viewpoint we note that

to provide these (RAM) accumulators wrnald be cheaper then providing the array

transpose system. But the transposer is included to make possible the detection

of drifting carrier waves, and that it also allows a memoryless NBIT system is

simply a side benefit.
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To allow the low threshold 9-bit number (representing the results of

the nine simultaneous tests on one block) to be synchronously transferred, some

pipeli ni ng is necessary. Those tests with several stages (e.g., GVC by row)

incur a de 1 ay in the production of their bit, so that the other quicker tests

must provide a pipeline of hold registers to match this delay. Such delay

is on the order of milliseconds.

The Overlap System

As shown in Figure 4.21, data (in slabs, column by column) feed from the

20 Mbit RAM to both the CWD and the overlap RAMS. At all times two of these

RAMs are set for reading in at 8 MHz, and the third is writing out a 10 MHz.

Each RAM holds 800 16-bit words (40 Hz x 20 seconds). In order to overlap

the blocks by 8 Hz on a side, the last 8 columns read i nto one of the 8 MHz

read-in RAMS, are also the first 8 columns of data read into the other.

When the first is full it becomes a 10 MHz read-out RAM, and the functions

of each of the three RAMS are rotated. The 10 MHz readout is row by row. Not

shown, but rather trivial to implement, are the details of the three-phase

counter (which counts once each 800 8 MHz cycles, and controls both the Read/

Write function of the RAMs, and the clocks selection to the RAMs. Also not

shown is the addressing sequence (stored in PROMS) to read out the data in a

different order than the sequential readin.

The Common Processor Implementation

This processor, shown in Figure 4.22, uses previously described components

to prepare data streams for the NBIT algorithms. It also aids the "GVC by rows

test" by preparing a delayed signal for computing the autocorrelation functions.

All preparations are done at a 10 MHz rate in parallel as shown.

-151-

i



sc

lap RAMS
row by

°M)
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10 MHz, with 25% of the data read out twice.

-152-



Good. Fi t

ANOVA

Total Power

Comp. Coh.

Deg. Pol.

GCV

8 Hz P.D.

Comp. Co.

Deg. Pol.

GCV

GCV

GCV

GCV

ANOVA

Total Power

Comp. Coh .

Deg. Pol.

GCV

8Hz P.O.

Good. Fi t

Y

X

8(4+4)

Figure 4.22 - NBIT Detector - First Stage Common Processor

-153-



8-Hz Pulse Detector Implementation

This detector (Figure 4.23) computes an 8-channel running sum across

each row of a block. The total power is compared against a high and low

threshold at a 10 MHz rate. Any occurrence of excess power will latch a "1"

( low threshold) and will possibly send an interrupt (high threshold) . A

counter disables the shift register at the start of a new row when less than

8 values are available for summing from the shift register.

Total Power Implementation

After 8DO accumulations, the total power of the block is compared against

the two thresholds (Figure 4.24). Although this is by far the simplest and

cheapest detector of the entire Oasis system, it is considered of fundamental

importance, as it is sensitive to constant power within a 40 Hz (medium-sized)

band.

Goodness of Fit Implementation

Here the signal's real and imaginary amplitude components are checked for

obeying Gaussian statistics. Since, for a 4-bit number, there are 16 quantiza-

tion levels, these values are decoded (Figure 4.25), and the number of times

each quantization level occurs in a block is accumulated in ripple counters.

The counting process can occur easily with conventional ripple counters at

20 MHz rate, so that each such unit can handle the real and imaginary part of

one polarization.

At the end of the accumulation of the 800 values, a pair of microprocessors

perform the Chi-Squared test determining the significance of the deviation of

each level. Ripple counter "k" is initialized with -T k so that the microprocessor
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Clock
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P 

Pot. #1	 Pol . #i2
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9	 ,9	 S= E PxP
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10 Ri z
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1
Threshold

Va 1 ues	 S > T2	 Set 1

Interrupt pulse to
Central Computer

Data is accumulated for 800 points (40 Hz x 20 sec block of data) then sent
through a thresholdi ng device. The threshold device (magnitude comparator)
will decide if either a high-level or low-level  al arm has been triggered.

Figure 4.24 - Total Power Detector
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need only perform a square and a divide for each k = 1, 16. With only

(10 MHz) -1 x 800 = 80 psec to perform 16 such sequences, a look up table,

combining the squaring and division by a constant operation into one read

might be required to provide the sufficient speed.

Complex Coherence Implementation

The Common Processor provides this detector (Figure 4.26) with

Re(XY*), Im(XY*), P X , PY , so that only accumulators and look up tables are

required to easily implement this algorithm.

ANOVA Implementation

The implementation of the ANOVA algorithm computes the equations listed

in Table A3.8.1. Ideally, the analysis of variance used in this study (a

two-way ANOVA cross classification) requires a matrix of R rows and C columns

in which two statistically independent sets of measurements of the same target

are contained in each cell of the matrix. Because time is a factor in the

analysis, to simultaneously obtain a second set of independent data would

require a second antenna of the same polarization (not simply a second

polarization).

A suitable substitute for a set of independent replicates has been shown

to be a staggering of each second's output of the MCSA. The first second's

scan fills the first half of the first raw of power values, while the second

second's provides the replicates. Similarly, the third and fourth seconds'

scans comprise the second row of the matrix. Despite the displacement in

time of these signals, simulations have shown this approach to be acceptably

effective (see A3.9, Simulation Studies).
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As shown in the table, the quantities 11SR, MSC, MSI and MSE

require computation. It is not difficult to expand these four summations

so as to obtain:

MSE = r1 (A - 1 E)

MSR = nc I	
( D " r B')

MSC = nr c_	
(D 1 62)

MSI =—	 1	 (E- I	 C-	 D + I B2)
n r-	 c-1	 c	 r	 rc

where A. B, C. D, and E are defined in Figure 4.27. By expressing the MS

values in this way, the entire computation may be performed in the parallel

pipelined manner shown. Here, we have also taken advantage of the dual

availability of row and column outputs of each block provided by the NBIT

caivnon processor. The data flow rate in Figure 4.27 is divided down at each

accumulation point indicated, while the bit width of the busses and accum-

ulators is increased.

At the conclusion of each block input, ':he values A, B, C, D, and E are

syncronously buffered from their respective accumulators into the micro-

processor which computes:

FR - 

MSR  5 C - 1/10 62
W TJ 	 - 112 E

F C
_ MSC = 20 D - 1/40 62
MSE N K - 112 E

F I

MSI

M^

_ 200 E - 1/20C - 1/10D + 1/400 B2

`
351	 A -	 1/2E

where we have substituted from above, setting r = 10, c = 40, and n = 2.

A simple comparison circuit then compares the results against high and low

thresholds, and, after oring with'the results of an identical circuit for

the orthogonal polarization, deposits the three bits in the NBIT word.
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Cluster Detector Implementation

The reduction in data rates (8 Mword/sec -+ 12.5 Kword/sec) allows for

sophisticated, non-determinist processing at low cost. We can now use the speed

and versatility of a computer to comb through a condensed version of the entire

observation. The histogramming (checking for excesses of low-threshold bits)

takes place as the observation proceeds, and as each 9-bit value is output for

NBIT. At the end of the observation the histograms are completed and the

cluster detection (via microprocessornroceeds. The significant results of this

algorithm are transmitted to the Central Computer during the observation of the

new target.

The steps of the process are described in detail in Appendix A3.11, and

are summarized below.

The Histogram Circuit

This circuit prepares a "histogram" for each of the 1250

pattern blocks comprising the entire array. The histogram is a number count

of the 9-bit outputs of NBIT, according to occurrence of each output type

("pattern class"). There are 512 such types, and these types are not mutually

exclusive. Each output of NBIT is thus subjected to 512 tests, and the imple-

mentation for these tests is shown in Figure 4.28. A 9-bit number appears for

(12.5 kHz) -1 = 80 usec and 512 "mask tests" are conducted at 512 x 12.5 kHz =

6.4 MHz rate. The test is for the presence of 1's, with the other bits being

"don't care" bits. The "don't care" bits are represented by 0's in each mask,

so that the Boolean operation is	 (Ff1 V N 1 ) A (R V N2 ) A • • • A (Ff9V N9)

resultino in True (1) whenever all 1's in the mask M appear as 1's in the

NBIT number N. The clock runs at 2 x 6.4 MHz = 12.8 MHz so as to give the

histogram RAM both a read and write cycle for each accumulation. The histogram

circuit, due to the nature of the input to the NBIT processor, (a row of blocks

-162-



r r-

4-
L O

++ C
C r

♦► 4J
10 i

i 

C CT►
C

C C
fa W

N L
= i1
^L C
r

LA

N O
w-+

t ^
u^
w ^o
as a

^, u

to +1

.o
1

w
41 to
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at a time) processes a row of all pattern block histograms at a time. Thus

the address logic in Figure 4.28 performs a read and write by rows of conse-

cutive pattern blocks.

As the pattern points (NBIT numbers) arrive at the CD system, they are

simultaneously stored in an additional memory shown in Figure 4.5 as the

Pattern Block Replay. These 4 RAMS constitute an identical pair of double

buffers. One pair is for the storage constantly taking place during an obser-

vation, and access by the CD processor. The second pair is for storage and

access, but this time, by the operator, who looks at interesting pattern blocks

found by the CD processor and Histogram Generator and stores these blocks on

tape.

Cluster Detector Microprocessor

In this section of the CD system, control is transferred to a microprocessor.

For simplicity, the system includes only one processor, but it will be shown here

how, at this stage in the data flow, large gains can be bought at a very small

price by including additional processors conducting nearly identicai operations

tc the one detailed.

The tasks of the microprocessor are threefold:

1) Accessing histogram results; sending high-level alarms, and

using results to establish a potential pattern.

2) "Cleaning" the pattern blocks to be searched.

3) Subjecting the pattern block to the adjacency algorithm.

The first task abode occurs once at the start of the detection process. The

microprocessor has the list of expected histogram number counts that would be

found from noise aline (shown in A3,11). It notes pattern blocks possessing

significant excesses. If the count is highly significant, a high-ievel alarm
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is sent to the Central Computer. Otherwise, the most significant 1000 excesses

are noted in a list in the microprocessor's m mory. (It retains 1000 "slots"

in memory, and as the histogram contents are read out, the least significant

values from either the slots, or from the current read-out is discarded in a

"quick sort" fashion). At the end of the histogram read-out, the microprocess

has a list of 1000 pattern types, each related to a particular pattern block,

that it will perform tasks #2 and #3 on. The sorting of the top 1000 such

pairs should take:

1250	 histograms

x512	 bins per histogram

X-10	 slots to search through till minimum is found

x 5v seconds per compare and 	 card

32	 seconds

On the average, only -10 slots need be checked before a histogram bin value

is discarded, because we are selecting only the most interesting 1000 pattern

classes out of 1250 x 512 candidates, so that most histogram bins will quickly

be determined to be uninteresting (non-significant).

Since, as shown above, we have used 32 seconds out of 1000 seconds available,

968 seconds remain to "clean" the blocks and find any patterns.

The cleaning operation amounts to arranging a bit (cell) pattern in the

microprocessor's memory that contains 1's wherever the interesting (excessive)

pattern class occurs within the pattern block, and a 0 where it does not. Thus,

in the microprocessor's memory we retain the two dimensional position of the "on"

cells.

Such a program was written in a high-level language (BASIC) simulation to

produce Figures 3.13-16 and its low-level language equivalent might be:
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usec

BACK:	 LDM, PNTR, 1 get pattern point 2
ORI, MASK, 1 is it in class? 2
ISZ, PNTR, 1 yes, leave cell on 1

loop 10,000 times STI, PNTR, #0 no, off, go to next 2
BRZ, PNTR, OUT done?, leave 2
HOP, BACK 1

OUT: -TO s'ec total

Using a mock-assembly code we have conservatively estimated the run-time of

a microprocessor to clean an entirE pattern block is 10,000 x 10 usec = .01 sec.

Thus, after cleaning each of 1000 blocks we still are left with most of 1 second

to seach each for patterns.

As a good example of the firmware programming needed, we choose the most

time-consuming (with half the cells on by noise) adjacency algorithm; one that

checks and counts nearest cell neighbors for complete occupancy.

A cell's survival to the next generation depends on it being totally

surrounded. The surviving cells are counted, with a large count indicating the

presence of a cluster. This would correspond, in the notation of A3.11, to

requiring 8 cells be on within a distance of 1 cell.

Again, such a computer program was used to produce Figure 3.16.	 The mock-

assembly language equivalent would be:

us ec

START: LOM, PNTR.1 get cell 2

10,000 times
IBZ, PNTR,START cell empty? get next 1
CLR, I set up index 1

NEIGHBORS: TRR, PNTR,PNTR2 get centered on cell .5
ADD, PNTR2,UP(i)+ move up,down, or none 1T ADD, PNTR2,RIGHT(I)+ move right,left,or none 1
ISN, @PNTR2 neighbor on? skip 1	 x 8 = 56

8 times BR, START off, get next cell 1
TBRB, 2,I,DOME 8th neighbor? done .5
BR, NEIGHBORS no, get next 1

DONE: INC COUNTER record survivor 1
ISZ PNTR,START next cell?

ALL DONE; — Total -6-2—usec

RIGHT: -1, -11	 -1, 01	 0,	 1, 1,	 1
UP:	 -200, 0 ,	 200,	 -200, 	 200 ,	 -200, 0	 -200
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We can conservatively traverse the neighbors of each cell in a cleaned

pattern block in 62 µsec, so that the number of such surviving cells in a

pattern block could be counted (COUNTER) in 62µ x 10,000 cells = .62 seconds,

and thus in 620 seconds for all blocks. So, with a 1000-second budget, we can

find 1000 interesting pattern-point excesses, clean those blocks, and count

the cells surviving an adjacency search in 662 seconds. Those excesses are

then relayed in a high-level alarm to the Central Computer. The operator, if

he wishes, can view such pattern blocks on his image processor, or can automa-

tically let the most significant  ones--i.e., with the most survivors--be

automatically stored on the Special Interest Archive.

The algorithm just presented is good at finding blobs, or dense amorphous

clusters. It can be seen from careful study of Figure 3.16 that extended

sparse contiguous structures may be revealed through repeated, more relaxed

survivor criteria. If we allow the case of many survivors through relaxed

adjacency requirements in one pass, a second pass requiring survivors to have

surviving neighbors would then select such patterns. This would require the

inclusion of more microprocessors, and would gain the ability to detect

filimentary structures within the pattern blocks.

In conclusion, to quote one member of the group, "signal detection and iden-

tification hinges on a good pattern recognition scheme". While the implementation

here represents a somewhat basic technique, the foundation for easy computer pro-

cessing has been provided, and, at this stage of the pipeline, any number of

sophisticated software schemes could be brought to bear at little additional

expense.
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Conclusions Concerning Realtime Processing

This completes discussion of the realtime processing system. All units

requiring special hardware or software have been fully laid out so as to

demonstrate their feasability. Options have been given here and in A4.2

regarding implementations of all or part of the proposed system. Problematical

aspects of the design have, in all cases (we believe), been explored and

solved ra`,her than omitted or ignored. Those details that were omitted are of

the banal sort, well within the domain of conventional digital design.

4.3 - Archive System Implementation

An essential part of the observing system consists of the ability to play

back an entire 1004-scan observation of a star  during the observation of the

next star or possibly at some later time as an archive. This requires two

high-speed recording systems, double-buffered for simultaneous recording and

play back, as well as archiving.

The most inexpensive systems capable of handling the data rate (128 hbits/

sec) and the storage requirements (.1 terabits/star) were found to be high-speed

helical tape drives. The optimal 1982 version of one of these drives has a

storage capacity of 1 terabit. This is rather useful in that it eliminates the

need for tape changes for every new star being observed. As many as 20 stars

may be recorded before one observation must be rewritten over, or else the tape

be changed. The decision to rewrite new data over old data is actually tantamount

5 The processing of 1000 scans takes place during the taking of the same scans,
and continues on during the taking of the next 1000 scans. It is assumed
for simplicity in this study that each 1000-scans corresponds to the total

'	 observation of one star. Both shorter observations, and longer observations
(1000 scans followed by a second observation) could be easily accommodated
into the present scenario, in 20 second increments.

4
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to the decision to erase data or to archive it. Since one tape drive

stands available for operator perusal during each new observation, information

'.
	

from the alarms that were triggered during the realtime processing may be used

to re-examine the raw data during the 16 minutes = 1000 seconds the tape drive

is available. At the end of this period, a new source is observed and the

tape drives switch function. If the decision to save the data rather than

{
	 write over it is made, then the new data is recorded further along the tape,

leaving the data from the previous star intact. After 10 stars are archived

on one tape, the tape must be removed and a blank one spooled up. Commercial

specs for these drives that will suit the need are mentioned in Appendix A4.1.

The total observation archive stores its data block by block (again, as

a benefit of the array transposer). This enables the operator, when replaying

blocks on this sequential access device, to rapidly view and store adjacent

such related data, rather than waiting for the drive to seek and read out each

row of a block separately. This is of great advantage, for this sort of high

bit read-out drive has long start and stop times (Appendix A4.1) and the

operator has only 16 minutes to decide whether an observation should be

permanently archived or not.

4.4 - Operator Interface

Central Computer

The overall operation of the Oasis signal detector is controlled by the

software operating system of the central computer. In this section we discuss

its major functions and specify the minicomputer configuration that carries

them out.
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Threshold Setting

Each test in the detector yields a value which is then compared against

a threshold. The threshold is optimized for the most feasible balance between

false alarm and missed signals. Threshold setting can be carried out in

either of two modes. In the automatic mode, the CPU polls the response of the

various tests while the receiver is observing a quiet patch of sky, or a

white noise source. Under these conditions, the sensitivity of a particular

test can be adjusted so that noise does not cause an undesirable number of

false alarms. These levels can be adjusted regularly during the search while

the antenna is "off target". Alternatively, the operator may desire to

manually instruct the CPU to increment or decrement a particular threshold as

desired. Each threshold is stored at a particular address and communicated

to tests via an I/O port.

The threshold setting function of the CPU provides a means of system

self-checking and calibration. In the event a part of the system malfunctions,

the CPU can be of utility. For example, if a particular test consistently

triggers when only noise is present, the CPU will disable that test and

notify the operator.

Detection Handling

After thresholds are exceeded and alarms (or "detection flags") are set,

the signal is sent in the form of a priority "interrupt" and the CPU is charged

with responding to those. The detector setting the interrupt sets an identi-

fying bit in a CPU register and transfers other relevant data via an I/O inter-

face.

At this point the CPU consults its RFI catalog for possible information

bearing on the detection. The catalog consists of two classifications of
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Isignals. The first is "natural" signals which have alrea4y been cataloged

in various radio astronoepr observations, and previously-known RFI; frequency,

amplitude, time of day and/or position bounds fnr these phenomena are

recorded. Also, the local RFI receiver dynamically updates the catalog.

Local RFI signals are saved for 25 seconds, long enough for the rest of the

system to utilize them. The maintenance of and referencing to this catalog

represent a considerable portion of the CPU's real time responsibilities.

After a detection is compared against the RFI catalog and is found to

not match any previously-known signals, nor have been concurrently received

by the RFI antenna, the CPU performs one or more of the following:

1. Alerts the operator (only if desired).

2. Informs the display CPU to make the block available for audio/visual
scrutiny. This can also be done manually, by the operator.

3. Prepares for the automatic storage of the block onto the special
interest archive, when the total observation archive is free.

4. Records information on the detection in the system log.

5. Flags total observation tape record for saving.

System Log

The CPU maintains a System log, on standard magnetic tape, which

includes information defining parameters of the search in progress, system

status, and all significant events and detections.

Self-Di agnostics

Each subsystem of the Oasis detector possesses a diagnostic processor

capable of verifying correct operation by supplying special test data and

examining the computed results. Diagnostics are performed during intervals

i
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between star searches on command by the central CPU. Each diagnostic

processor notifies the central CPU of the result of its test; the aggregate

of the tests is reported to the operator via a display of the system block

diagram.

The diagnostic processors are microprocessors with programs in ROM. In

some cases, test data are also stored in ROM. In others, test data are

generated by the diagnostic programs or by special hardware devices as, for

example with the array transposer diagnostic systems.

The Oasis system operation will in general be degraded but not precluded

by the failure of one or more subsystems. The usual result will be to render

one or more detection flags meaningless. The central CPU or operator can in-

hibit the setting of such flags simply by setting thesholds high.

Verification of the control CPU itself  must of course be performed at a

different time. Diagnostic routines for the CPU, its I/O devices, and the

graphics system, are supplied by their respective manufacturers.

Other Functions

Other system service functions the CPU performs include: initializing,

resetting, on/off control of the system. As part of the initialization the

CPU can inform interested algorithms of the length of the ensuing observation.

These functions also have manual overrides.

RFI Receiver and Catalog

This subsystem consists of log spiral and vertical antenna, a preamplifier,

and a remotely-programmable spectrum analyzer interfaced with the Oasis control

CPU. The spectrum analyzer is capable of locating spectral peaks or sweeping

-172-



f.

	 the spectrum with a variety of resolutions and rates. It is used by the

control CPU to maintain a dynamic catalog of probable RFI signals. A

commercially-available analyzer with 1024 channels is used for this purpose.

Other RFI data can be entered into the catalog from tape (via the system log

unit) or manually by the operator.

^	 1

The catalog in its complete form is stored on the catalog disc. In

addition to frequency, any available information on amplitudes, times of day,

antenna coordinates, etc., are included. An abbreviated catalog of fre-

quencies only (for quick checking) is in the control CPU memory.

Entries are static or dynamic. The former are entered via magnetic

tape. Dynamic entries are subject to review and removal by the RFI receiver.

The central CPU consults the catalog in the coarse of processing detections,

to determine validity. It has the capability of compensating for any Doppler

correction applied to the observatory local oscillator. It can also cause

the spectrum analyzer to display for the operator portions of the spectrum

surrounding any specific detection.

4.5 - Radio Astronomy System

The Radio Astronomer is given his own station. The output of the coarse

or fine resolution stages of the MCSA are made available to this system so as

to provide bandwidth for varying applications. Note that stokes parameters are

computed as shown in Figures 4.30 and 4.31. The use of this information is

discussed in Chapter 5. The observer also has a 256-Mbit RAM to enable

quick subtraction and comparison of observations. Standard observatories

(depending on location) may make up the post-processing backend shown in

Figure 4.29.

-173-



MC'

CONTROL
CPU

Figure 4.29 - Radio Astronomy Subsystem

-174-



Im( X

Re( X

Im( Y

Re(Y^R

<pj> + <P?,>

<pX > - <p2-,

<PX PY cosd>

<PxPYsind>

Figure 4.30 - Presfg^lar ( is computed in the manner
shown in figure 4.

-175-



4.6 - Gross Attributes

Storage Capacity: 2 Terabits Online

At all times the Oasis System has a 2-terabit online data store. This

database contains the latest 20 seconds of observations (stored on disc), as

well as any previous 4-1/2 hours of observations on two high speed high 	 -_

dens,ty helical tape transports. Such transports are currently commercially 	 }

available today (Ampex "Super HBR"), with each tape holding one terabit.

Included with this tape drive, the Oasis system will support a tape library

where 20 tapes will store the observations of hundreds of stars, at .1 tera-

bit per star (1000 seconds of observations).
{

°t
Since the Oasis system is primarily a real time processor with the

vast majority (95-99 %) of all input data discarded for lack of interesting

features, it is expected that an entire stellar observation would be archived

in the tape library only for exceptional reasons. Therefore the system

supports a collection of smaller random access memories for intermediate

computation and processing. There are approximately ten independent "working"

memories in the system, each a solid state dynamic RAM, with total storage

capability of 1.1 gigabits.

In summary the system supports:

2 terabits, Tape, Online

40 terabits, Tape, Offline	 A

7.8 gigabits, Disc, Online

-1 gigabit,	 RAM,	 Dedicated	
_f

The role of these memories was delineated 	 in the description of rxmory

stream preparation as well as in the discussion of the individual algorithms

and archives.	

s

e 1
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Brief Inventory of Major Components

The following list is intended to give the reader a feel for the variety

and scale of the hardware required to implement the system.

2 Super High Bit Rate (HBR; Tape Transports

4 1.3 Gbit Parallel Transfer Disc Drives (removable heads)

1	 1 Minicomputer/Display Processor Unit

1 Minicomputer, referred to as "Central Computer" in this report

7 Special Purpose Hardware Processors- TTL at 10 MHz clock rates,
varying in complexity from 1 to 10's of i ntegrer multiplies
and/or adds per cycle, with pipeline architecture

1 Hardware Processor of considerable complexity - customized
integrated circuits and a 1.3 Gbit integrated circuit memory

1 Vertically polarized antenna for RFI detection

1 Log Spiral polarized antenna for RFI detection

1 Commercial Spectrum Analyzer for RFI detection

1 Standard Large Disk 120 byte, 7.5 Mbyte/sec R/W rate

1 Standard Tape Drive 10 Kbyte/sec R/W rate

1 Raster Scan Video Monitor with 3-D Analog Control

1 Mi croproces sor

1 Gbit total of Dynamic RAM

System's Total Size

The OSD will fit in one medium-sized room. Existing prototypes of the

four large capacity discs are surprisingly small, measuring slightly less than

a standard size disc. It is estimated that the CWD wiii occupy an additional

;.wo racks, typically with one processor to a board, excluding the "Generalized

coherence by Rays," whi--h will occupy several boards. Twc additional racks

will hold the Central Computer CPU and the Minicompute r /DisplAv processor. Theis

.s shown in Figure 4.31.
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System cost

We list below the cost of the major components of the Oasis Signal

Detector.

2 Tape Drives at 250K $500 K

4 Discs at 75K 300

2 Instant Replay Discs 150

1 I2S Terminal 200

All other RAM 120

Central Computer 10

$1280 K

Since a general rule of thumb for digital design is that construction costs

equal parts costs, the Oasis system would nominally be costed at three million

( 1 979) dollars.
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Chapter 5

Human Interface
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"Yes, I have a pair of eyes," rep 1 i ed Sams "and
that's just it. If they was a pair o' patent
double million magnifying gas microscopes of
hextra power, p'raps I might be able to see
through a flight  o' stairs  and a deal door; but
bein' only eyes, you see, my vision's limited."

--Charles 4i ckens , Pickwick Papers

&I - Problem Statement

The human observer performs a number of key functions in the detection

system both in the capacity of "pattern detectortrecognizer" and as a decision

maker who can redirect, verify, and supplement the automated phases of the

system. The human interface system is an interactive link between the human

E	 observer (operator) and the rest of the system. It incorporates the observer

in a variety of ways: as an alternative pattern detection algorithm, as

one component of an algorithm which is mainly automated, as a decision-maker

requesting information from the automated algorithms, and finally, as a

trained scientist familiar with the astronomical context of the SETI program.

The yM in which information is displayed often determines its actual

usefulness. Effective decision-making about interesting ETI signals cannot

occur unless that information is presented in a manner commensurate with an

observer's perceptual and intellectual capabilities. The system uses an

advanced image processor and multiple visual display screens as the primary

^odes of data presentation. An auditory display provides supplementary

information.

5.2 - _Usingg Human Information Processing Capabilities in SETI

i
One all-too-common approach is to automate every function that is

technically possible and economically feasible. Whatever is left to do is

relegated to the system operators by default. An alternative procedure,



S

i

and the one being advocated here, is to consider the human element as an

alternative design component, complete with all the tradeoff characteristics

one would identify in selecting one piece of hardware over another. The	 4

first question asked when considering the implementation of a search
F,

strategy or algorithm should not be how do we automate it, but, rather,

should we automate it; if so, is total or semi-automation most appropriate?

The tradeoff for accepting some degree of inconsistency and low

precision in performance specifications is that the human being as infor-

mation processor is far and away the best model on the market * if it can

be determined how to effectively use him. In developing the observer's
	

}

role in the human-computer decision-making process, the following general

attributes of human information processing are important.

1. Human performance often exhibits what has been termed "graceful

degradation" under less than optimal conditions. That is, performance

falls off gradually as conditions worsen, and significant (although not

optimal) discrimination performance can be obtained even under very poor

conditions. This can be contrasted with the discrete "go-no" paradigms

characterizing most automated algorithms.

2. Human beings are conditional samplers of information. That is, the

rate and type of information sampling can be continuously modified based on

past experience and recent events. A human observer can frequently pick up

clues to pattern phenomena by synthesizing events which, at the time they

were perceived, were seemingly unrelated. Further, if he thinks he's "on

to something", 3 human observer can then selectively attend to a narrowed

range of signal stimuli, thus markedly enhancing sensitivity to those

signals on a temporary basis.

3. People can process information on several levels. The 'highest"

level is conscious awareness. However, a tremendous amount of information	 -^



is coded and stored that is not necessarily accessible to conscious awareness;

long-term storage is operationally infinite.

Even though an information display is "too large", presented "too

rapidly" or lacks meaningfulness at the time it is viewed, it may be

processed on a subconscious level to the extent necessary for the observer

to refer to it in subsequent decision-making.

4. Certain attributes of a stimulus can be discerned even in the

absence of sufficient information to permit identification. For example,

color can frequently be perceived before form; motion before luminance.

Thus, a human can scan large quantities of information very rapidly using

certain stimulus dimensions (e.g., density) as a gross sort.

5. The trained human observer can develop and operate under very

complex (by computer standards) decision criteria. For examole, in a SETI

observation, amplitude of extreme levels is obviously of initial interest

rrngardless of other values (e.g., polarization). Below this extreme value,

we might require additional parameters to attain given levels before the

combination of information looks favorable enough to warrant detailed

examination (e.g., type of polarization, consistency over time). Thus, an

intricate system of multiple criteria which can be modified by experience

can be developed by a skilled user. Although automated algorithms can

be differentially weighted for various contingencies or combinations of

variables, these weights must be derived prior to the search process and

fixed arbitrarily at set values during the data analysis procedure. Humans

can modify these weights "on line" under real time constraints.

6. Human algorithms can be altered by selection and tra;ning

without the extensive hardware modification associated with sow automated

changes. It should also be noted that a human observer may be able to give

information about why a currently used algorithm is not producing the desired
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results; such qualitative judgements can be useful in interpreting more

objective indices of system performance.

Straight lines and edges are very easily detected visually by humans

On,the other hand, curved lines and dashed lines are less easily detected.

In the present SETI context, it would therefore seem that a human observer

would be adept at detecting a linearly drifting signal as shown as a

display of the time-frequency output of the multi-channel spectrum analyzer

(MCSA). On the other hand, a person may have more difficulty with pulses,

and possibly greater problems detecting a wavy line embedded in a noise

background. These predictions are indeed verified in our preliminary

experiments (Appendix A5.1).

A more global characteristic of importance in human pattern detection

is perceptual "symmetry." People note symmetry in visual patterns, prefer

symmetry among components, and recall symmetrical patterns over time

intervals more effectively than they do nonsymmetrical patterns (Garner.

1974; Chipman and Mendelson, 1979; Attneave, 1954; Szilagyi and Baird, 1977).

Patterns symmetrical in time and/or space may be noted by the human observer

over regions of the spectrum that are not compared by the automated

algorithms described in Cha pter 3. For instance, the human observer may

note a similarity among cltsters based or the N-bit representation of data

blocks (where one pattern block = 200 x 50 data blocks). The simplest form

of symmetry, of course, is recognition of the same pattern occurring at

different time intervals but within the same region of the MCSA output

space (say for different stars).

A further advantage of using the human observer as a detection device

is his/her ability to deal with stimulus context. The letter A can be
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`	 written in a variety of t	 fonts and t the human can usually=	 t3+	 type	 Ye	 Y perceive

(recognize) the characteristics on the page as an A. Machines have

terrific difficulties with similar contextual problems, as attested to by

the care with which numbers are stamped on bank checks to permit automatic

pattern recognition! In the SETI program, the human observer will be

harder to fool than the automated algorithms whose operation* are more

general than these of the "check processor". Additionally, the observer

will be able to note the same pattern presented in a wide range of

surrounding contexts.

In summary, the human as a detection algorithm will be effective

at pulling out certain features of the KSA output and results of the

clustering scheme that will be missed by the automated algorithms. In

this way, the observer both extends and supplements the automated aspects

of the system. The role of the observer as a detection device is also

advocated by Fender and Evans (1971) who review many of the advantages

mentioned above, but in situations where the signal is known beforehand.

Perceptual Sensitivity

It is anticipated that signals from extra-terrestrial civilizations,

having traveled great-distances through an uncertain electromagnetic

environment, are of weak intensity as compared with background noise. The

psychophysical models that deal with this type of situation as it applies

to the human observer are part of the "theory of signal detectability" (TSD)

(Baird and Noma, 1978; Green and Swetz, 1966; Swets, 1979).

According to statistical decision theory one can choose an optimum

threshold if the values of all oe 4 comes and the probabilit)es of signal and
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noise present are known. This threshold is defined as

s = ' P 	 x Nn _ Y s s -Ns

_,

(5-1)

mere Ps - probability of signal plus noise being present

Pn = probability of noise alone being present

N = no response, "noise"

Y = yes response, "signal"

Nn = value of a correct rejection

Yn = cost of a false alarm

Ys = value of a correct detection

Ns = cost of a miss

In the SETT context, P. is much larger than Ps , thus suggesting that an

observer would set a high $, and hence, world be disinclined to state a

signal was ever present. But the second term of Equation (5-1) will tend

to balance this bias. Looking first at the numerator, the positive

value of a correct rejection, Nn , is small relative to the negative

consequences of a false alarm Y n . In the tatter case the data must be

archived, sorted and so forth--assuming Y  is negative the numerator will

be a positive number depending on the cost of archiving false alarms.

This drives B up and reduces false alarms. However, the denominator more

than offsets this tendency. The negative value of a miss Ns , though

potentially large, merely represents our current level of ignorance, and

is hopefully small relative to the value occurring from a hit Y s . The

latter term is obviously a subject for debate, but it is probably at least

as high in respect to the negative outcome of a false alarm as the

prcbability of noise is in respect to the negative outcome of a false alarm
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as the probability of noise is in respect to the probability of a signal--

otherwise, we would not be initiating a search. Therefore we conclude

that the far right hand term of Equation (4-1) is approximately the inverse

of the middle term; thus leading to a moderate S of around 1.0. In other

words an observer will not be fearful of suggesting the presence of poten-

tial signals, but will certainly be prevented from going overboard (claiming

signals are everywhere) by the large value of P n built up through past

experience. Although the foregoing analysis is not intended to be rigorous,

it does serve to highlight some of the very real factors an observer must

consider in deciding whether or not a signal is present on the display at any

instant in time.

Threshold Setting and False Alarm Rate

The preceding formula shahs that the annoyance of false alarms is but

one of four parameters that must be considered when establishing the thresholds

of the algorithm. If we take into account all four trade-offs, we can deter-

mine the optimal threshold of the entire system and use this to set the thresh-

olds of the individual processor alarms. For example, if the formula is used

to determine that it is optimal to have at least one alarm sound from the system

with 50% probability every 8000 seconds, on the average. To uniformly weight

the individual  thresholds Ti i , i - (1, N). j - (1, M) , where N is the number

of times an alarm may possibly sound in this period and M is the index of the

particular alarm, we simply require that the probability that one will sound

in 8000 seconds be P. P is then given by (1-P) NM - .5, where we have assumed

as an approximation that the alarms are independent.
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This is the simplest arrangement. To weight different alarms, so

that, for example, on the average the CWD alarm sounds more often than the

PD alarm, we then require 	 MN
II (1-Pik)=.5

i.3

where 
Pij 

is the weighted probability for the particular alarm.

The operator then, with the aid of a software routine, will select the

mean time between alarms he desires, the relative probability for each alarm.

and whether he would like the alarm to cause the central computer to

automatically archive the entire observation or whether he will be contacted

by %.he computer to pass the final decision (more usually the case).

Human Perception of Relative Magnitudes

Evaluation by humans of the processed receiver output data relies on

the observer's ability to perceive the relative magnitudes of visual

attributes such as brightness, length, position, and color, and auditory

attributes such as loudness and pitch. When humans are given a reference

level of some perceived quantity and told to assign that level a numerical

value (say 10), they can give numbers to represent the relative perceived

magnitude of other levels of that comparison quantity in respect the

the reference level. Assuming these numbers are values along a ratio scale

of perceived magnitude, the relationship (mapping) between physical and

perceived magnitude can be described by a power function:

1P = ASY
	

(5-2)
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r:	
where 0, the perceived magnitude (numerical rating) is a pater function

of the physical intensity (S). The exponent, y, depend critically on

the type of quantity being perceived. The multiplicative constant, A,

merely is a scale factor relating units of measure. The interesting para-

meter is the exponent. It is approximately .3 for both brightness and

loudness, and closer to 1.0 for spatial position and length (Baird, 1970;

Baird and Noma, 1978; Stevens, 1975). In otter words, people are relatively

accurate in their estimation of spatial position and length, whereas they

grossly underestimate the relative intensity of lights and sounds. The

practical importance of this result is that one gains little by having a

CRT with 28 levels of brightness in a cell (pixel) since the human observer

cannot resolve this many brightness levels. Similarly, we cannot anticipate

high resolution of displays coded by auditory intensity.

Unlike ouantitative attributes such as brightness, loudness and

perceived length, sound frequency and hue are translated into _liter_

perception dimensions. "Green" is not perceived to be twice "blue".

According, to Stevens (1975), these attributes do not follow the power law,

and hence, we expect to use them in current system in cases were qualitative

differences of low resolution are displayed.

Another psychophysical technique of relevance to our task is the

method of absolute identification (Baird and Noma, 1978). Mere a series

of stimuli are presented sequentially and subjects must assign a unique

label to each. By information theoretic measures, the channel capacity of

the subject is determined for attributes such as light, sound and frequency.

Surprisingly, subjects are only able to absolutely identify approximately

6 or 7 different magnitudes (without error) for unidinensional stimuli
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(Miller, 1956). As the dimensionality of the stimulus pattern increases

(say it varies in brightness, hue and size) the error-free level of

identification goes up. In the present context, observers in the SETI

program will be required to recognize radio frequency interference (RFI)

at different points in time. We can expect such recognition capability

to depend on the complexity of the RrI. The greater the number of dimen- 	 f;

sions one reeds to define RFI, the greater the recall. For detection of

signals themselves at low signal to noise ratios, we cannot expect the

observer to be much help in recalling simple patterns over long time

periods, or being able to discriminate a large number (certainly no greater

than 10) noise displays. In brief, the human observer is limited in

ability to recall simple targets over extended time periods, especially

if intervening noise is present.

5.3 - Display Parameters Affecting Observer Performance

This section will discuss the major display variables associated with

CRT's and their relationship to the htxnar, operator's search procedures.

Many real-world tasks have been intensively studied (e.g., radar monitoring,

piloting), and thus a considerable amount of information is known about the

task dynamics.

Luminance

The luminance required for a CRT display is heavily dependent on

contrast, ambient environment and the nature of the visual task. Gould

(1968) cites 24 mL as a minimum figure, and recommends 50 mL for most

applications.
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Brightness (B) is the subjective impression of *luminance (L). Hader

laboratory conditions the two are related by a power function (Equation (5-2)).

where the exponent is typically between .25 and .50 for small, homogeneous

fields (Marks and Stevens, 1966). This relationship does not hold for

complex forms, however, particularly at higher luminance levels. The

relationship appropriate for the SETI display will depend in large part on

the scale of representation used (i.e., what each dot corresponds to), and

on the mental set adoptEd by (or "trained into") the observer (i.e., how

large, relative to the entire display, must a signal be?).

Another consideration for the SETI operator is the duration of the

observing periods. Relatively high luminance levels may be optimized for

short-term signal detections, but may also result in excessive glare and

eye Irritation over time.

In summary, the CRT aisp'14y will be made highly adjustable in luminance

and will be optimally reset for each graphical representation.

Assuming adequate luminance and contrast, a complex target image should

subtend no less than 12 min. of arc (Grether, 1972). For "detail" resolution

(e.g., one picture element) no less than 1.5 to 2.0 min. of arc is required

(Bennett et al., 1967).

Regeneration Rate and Viewing Distance

When the regeneration rate is too slow, the image appears to flicker.

Angular size, luminance and phosphor persistence can all affect the
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regeneration rate which is necessary to obtain a "critical flicker

frequency" or CFF (the point at which no flicker is perceptible) for an

observer (Kelly, 1965). luminance and angular size alone can cause as

much as 15 cps variation in the needed regeneration rate. When the	 -

individual differences in an observer's perceptual characteristics are

added to the equation, it becomes obvious that there is a wide variability

in the required regeneration rates for various applications.

Current image processors may use marginal regeneration rates because

of the reciprocal relationship between the number of binary picture 	 }

elements, N, and the regeneration rate, F, which is (in bits per seconds,

I(max) )

I(max) - F x N	 (5-3)

Flicker can impact the observer's task in several ways. It can

produce irritation and eye fatigue, particularly with the long viewing

periods anticipated for SETT. It can also affect pattern perception

indirectly by its influence over the viewer's distance from the screen.

Thompson (1957) found that observers prefer viewing distances which are

far enough from the screen such that small area flicker (e.g., that caused

by the interlace between scan lines) is not resolvable. Thus, in

addition to degrading pattern detection at relatively close distances to

the screen, the presence of flicker may also detem. ine the range of viewing

distance adopted by the observer.

For the SETT application, an image processor with significantly less

flicker than is typically found on CRT displays is indicated. A great

deal of research is currently in progress to develop flicker-free image
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processors (with adequate information display volumes) for the purpose of

medical diagnosis. Special versions of image processors designed for

medical applications are also marketed currently, and should be seriously

considered in SETI. Some implications for human observers using the

systems are given in Picket and Triggs (1975).

Operator Training
f
F

The unique characteristics of the SETI application places considerable

significance on the role of the system operator. Of particular interest for

system designers is the potential long-term training effect. This could

result in a specific observer becoming a much more effective signal

detector over time. The SETI observer is not a typical "monitor". In a

typical monitoring task where an operator monitors a CRT screen, and may

conduct simple dialogues with the computer, a typical training curve would

tend to asymptote after a few weeks. Any residual improvement as a function

of practice for such tasks is insignificant for all practical purposes.

However, in most monitoring tasks, "sufficient" or even optimal performance

can be clearly defined when training begins; that is, if 100 signals are

presented, 100 detections would equal perfect per formance mile perhaps

98-99 would equal "sufficient" performance. With the aid of guidelines and

instructions, the learner goes through a series of successive approximations

until criterion performance is reached.

For the SETI observer, no such feedback is possible. By the basic

assumptions underlying the program, an ETI has never been detected. This

implies that no direct measure of system performance (i.e., successful

detection) will be possible for most cases. Therefore, the observers'
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perceptions of their own performance may vary widely, and perhaps in an

idiosyncratic manner. For example, one operator mares decide to alter his

search strategy because it has brought no results after 2 hours; another

operator may follow a procedure for a significantly longer period before

modifying or discarding it. One operator may feel that one strategy is

more effective than another because it results in the selection of fearer

total data regions for review, and thus is more sensitive; another operator

may feel that this same approach results in too high a probability of

missing a weak signal.

It should now be fairly clear that the training of SETI observers will

be far from straightforward for the free mode of operation.

The training program is directed toward the following goals:

1. Observers are able to efficientl y access and effectively use the

display enhancement of the data. Data in various states of compression and

analysis may be called up for viewing. Information from the different pro-

cessors in the system will be assessed separately as well as interactively, such

as might be required for a signal detection. Because each operator may put in-

formation from various sources together differently in a complex signal detection

process, it will not always be clear what aspects of the information display are

being utilized, and with what degree of effectiveness. By assessing the ability

to use all information sources available, it can be determined if an observer

can theoretically obtain the maximum information available for signal detection.

Of course, this does not guarantee that all dimensions will be (or even should

be) used in an observer's signal detection strategy.

2. Operators are encouraged to try alternate strategies. An analysis

of search strategy archival records may suggest desirable patterns of search,

which could be demonstrated to other observers.
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3. An ongoing evaluation is conducted on veteran observers to deter-

mine if continuing experience enhances the ability to discriminate unusual

(rare) patterns from more typical noise fields.

Summary and Conclusions

The nature of the human-computer interaction in complex signal detection

and recognition systems is perhaps the least developed aspect of such systems.

The unique and virtually unexplored context of the SETI program makes

research in this area a vital and potentially rewarding endeavor; not only

for SETI, but for the areas of human-computer interaction, cognitive

psychology and human factors as well.

The state-of- the-art in automatic pattern detection is far less

advanced than scientists predicted five or ten years ago. The human

operator will continue to represent the ceiling for system performance

for the foreseeable future. As such, it is critically important that

research be conducted which is aimed at deriving guidelines for observer

task design, and for display-environment specification. The NATO Research

Study Group on Pattern Recognition (Hodge, et al., 1979) cited the failure

to integrate human factors considerations into automatic pattern detection

systems as the major failure of systems design in this area.

{	 5.4 - Human Factors Considerations

Design Philosophy

The human factors system analysis is required to ensure that the task

procedures, environmental conditions and equipment designs are compatible

with the psycholog ical, physiological andog	 ^	 ^	 performance characteristics of
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the intended users. The design philosophy underlying this analysis can be

summarized as follows:

1. Human performance for critical tasks must be, to the extent

possible, designed into the system at the initial uses, not retrofitted

after the fact.

2. Since humans are highly variable, there are virtually no config-

urations which are optimal for everyone. Systems can be designed to narrow

the range of human variation through selection and training; the residual

variation must be considered appropriately in the system design for human

performance (the lower levels are subsumed under the advanced levels):

A. Human Engineering: assuming adequate motivation, knowledge and

skill, design the system to be operated in an optimal manner

(easy, safe, reliable).

B. Human factors: assuming adequate motivation, but not necessarily

appropriate knowledge or skill, design the system to provide job

aids and other support mechanisms to design compensate for human

errors due to ignorance, task overload, environmental stress or

improper decision-making.

C. Behavioral Engineering: assuming nothing, design the system to

predict the human failure modes including all errors (deliberate

or intentional) due to neglect, sabotage or misuse, through one

or more of the following three methods:

I. Prevention: make the undesired behavior less probable

II. Exclusion: make the undesired behavior impossible

III. Fail safe: assume that the undesired behavior will

occur, and minimize the consequences to the system.
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The level of design selected, and the method of implementation is a
r

function of criticality and system resources. Table 5.2 outlines the

major areas of analysis.

`	 Again, the human factors function should be concerned with matching

the tasks, procedures, equipment and environmental conditions comprising

the Display Subsystem to the expected characteristics and capabilities of

the system users in an "optimal" manner. (For further discussion of

methodology, see Van Cott and Kinkude, 1972; or Chapanis, 1970). In this

case, we assume that the range of skill, training, aptitude, motivation and

performance manifested by system operators will be significant. Because

operators may be drawn from a limited source (e.g., radio astronomers), the

ability to modify these attributes through selection and training will be

restricted.

As such, the limitations and predicted behaviors of the human operator

became the "givens" around which the Operator Interface must be designed.

The theoretical and expected capabilities of the operator serve as a

ceiling on subsystem performance. From this ultimate value, the degree of

degradation in operator performance caused by the operational conditions

of the system (e.g., improper illumination, noise, task overload) must be

predicted.

Summary of Some W Human Factors Issues

1. The operator's task must be designed in a manner which will maintain

active participation in the search process but which will not produce

I:
	 excessive false alarms, and will not result in overload-induced

errors. This will require a detailed understanding of the intended
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1. Physical Design and Work-space Layout

Ex.: Can the operator reach all controls and see all visual

displays necessarily while performing sequential operations?

Is the display-control ratio appropriate for the level of

adjustment required on all image processors?

2. Workload and Task Requirements

Ex.: Is the workload sufficient to prevent boredom, fatigue and

perceptual distortion but not so high as to create stress-

induced errors?

3. Task and Procedure Design

Ex.: Is the operator receiving sufficient feedback to permit him

to modify his performance (e.g., correct errors)? Is the

appropriate sensory modality being used to display task-

related information? Can one tell if the operator is

performing as expected?

4. Emergency and Maintenance Procedures

5. Training and Selection Criteria

Ex.: What level of training is required for system operation?

What training methods are appropriate? What individual

characteristics should be considered desirable (or undesir-

able) for operator selection (e.g., spatial visualization

ability)?

Table 5.2 - Major Categories of the Human Factors Functional Analysis
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user groups. A description of relevant user characteristics s'T.ould

be completed prior to the finalization of system procedures.

2. The operator should be acquiring knowledge and experience by performing

his role in the system, i.e., in addition to aiding the ongoing search

process, the operator should be getting better at what he does over

time (see "Training", in this chapter).

3. Tradeoffs between optimal display settings (e.g., luminance contrast)

for "short-term" and "long-term" monitoring must be investigated

since the operator's perceptual system will tend to adapt (selectively

desensitize) over time.

4. The operator should have his performance monitored periodically to

provide feedback and maintain attention allocation. This may involve

the generation of test signals to see if the operator detects them.

Test signals should be well above detection threshold to prevent a

casual response set from developing.

5. Common failure modes must be anticipated and design compensated. For

example, an observer who is absorbed in an active search process may

forget to permanently record and save the data. System design must

anticipate this type of event, and handle it by one of the three

generic approaches (prevention, exculsion, or fail safe).

6. The role of system users is variable in the free mode so that skilled

operators can fully exploit the system's capabilities. However, if

naive or low-skilled operators are employed for fixed-mode tasks, these

procedures should not require excessive interpolation or skilled

Judgments.
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Table 5.3 outlines the kaki display parameters which are relevant to

the human factors analysis while Table 5.4 summarizes the principal human

factors considerations for the interactive search system. (The sequence in

which items are found in Tables 5.3 and 5.4 does not reflect order of

consideration or criticality).

1. Viewing distance

2. Angle of view

3. Image size and variability

4. Brightness and luminance

5. Contrast (range and proportion)

6. Visual field surrounding the display

7. Ambient environment

8. Resolution and image stability

9. Duration of a display pattern and interval length

14. Scale of dots (size of minimum informational unit)

11. Color

12. Single vs. multiple observers

13. Degree and type of visual cues (e.g., cursors)

14. Coding methods (e.g., shape, flicker, brightness)

15. Visual acuity required: level and type

16. Density of visual noise

Table 5.3 - Selected Visual Display Parameters Relevant to Human
Factors Analysis

_5.5 - General Structure of the Image Processor

The automatic signal detection algorithms alert the operator of a

possible signal caused by RFI, random noise correlations or astronomical

signal sources. This presents a massive data analysis and archiving
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1. Display-Control compatibility

2. Population stereotypes; transfer of training

3. Rate of information input and requirements

4. Task loading

S. Reaction to predicted environmental stress levels

6. Training (skills required)

7. Operator background/experience

8. Speed vs. accuracy required (human reliability)

9. Information coding (e.g., shape, color, pattern)

10. Task design (e.g., sequency, coherence, dependency)

11. Communication requirements

12. Feedback and knowledge of results

13. Motivation

14. Work-space layout

15. Anthropometrics/biomechanics

16. Display mode selection and specification (for each task)

17. Maintenance/trouble

18. Design compensation for the disabled where possible

19. Work-rest cycles; circadian-biological rhythms

20. Emergency procedure/safety

21. Aesthetics (attitudes toward the work context)

22. Flexibility for future use

23 Public relations and system documentation (ability to demonstrate
naive persons)

24. Operator/system performance assessment

25. Behavioral engineering; resistance to intentional and accidental
abuse

Table 5.4 - Representative Hunan Factors Considerations
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problem and the operator's effectiveness in dealing with it depends upon

the ability to quickly and efficiently view and manipulate subsections of

the signal detector output and make correct decisions about the data

presented. To further complicate the problem, the most interesting

signals will probably appear at a very low S/N ratio, so sophisticated and

versatile image enhancement techniques will be necessary to separate such	 =`'4s

a low-level signal from noise.

A high-speed digital image processor allows the operator to perform the

various tasks associated with signal evaluation and system operation with

high efficiency. In what follows, we describe the general characteristics

required of a SETI image processor.

In response to a signal alarm, the operator requests that the subsection

of signal detection output containing the signal be sent to the image pro-

cessor's refresh memory. The refresh memory in a minimal system is two

frames of static or dynamic random access memory (RAM), each providing

three channels of 512 x 512 spatial resolution in 8 bit pixels (picture

elements), and two 512 x 512 x 1 bit graphics overlay planes. This system

allows for future expansion in resolution, number of frames and number of

channels. As the need arises and as memory becomes cheaper, it will be

possible to add more displays and/or enable the operator to scroll through

a larger data base with fewer transfers from the host computer.

The graphics overlay planes store system status information for display

on a black/white (B/W) status monitor to provide overlays such as graphs of

statistical information or to designate subareas of the image for further

processing.

A track ball or a digitizing tablet and stylus is used tc position a

cursor on the display. A trackball is a captive sphere that can be rolled
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in any direction causing a corresponding 
movement 

of the cursor. When

used in conjunction with function switches, individual pixels can be

Identified or an area can be outlined. The digitizing tablet and stylus

can be used in a similar manner while additionally providing immediate

hard copy on paper with an inking stylus. Scrolling through a zoomed image

or an image larger than 512 x 512 is done with a trackball or joystick. The

operator is able to scroll quickly by rows or columns through the entire

refresh memory. Zoom is accomplished by positioning the cursor and

specifying the zoom factor. Englargement of at least 4:1 is done by pixel

replication without altering refresh memory concents.

When data from both polarizations or two algorithms are to be viewed

simultaneously, a split-screen view is used. This is accomplished by

selective loading of refresh memory by the host computer or by reading

subsets of two different refresh memories. A feedback loop allows the

processed image to be written back into refresh memory for iterative

operations and spatial convolutions. The operator can perform sophisticated

image enhancement functions in evaluation potential signals without involving

the host computer.

A built-in microprocessor handles all internal control functions as well

as some processing operations, thus off-loading the host computer of most

image-oriented tasks. Microprocessor programs will be down-loaded from a

library on the host computer. The microprocessor performs diagnostics and

aids in locating problems within the image processing system.
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5,6 - &stem Overview

The displays subsystems must perform four types of functions: system

status, operating information, alarm , and detection.

System status is the operator's bookkeeper. It keeps track of all

information concerning system faults and operating parameters (target star,

gain, bandwidth, etc.). Further, it provides for input regarding these

parameters by the operator. Operating information includes a library of

procedures and catalogues readily accessible from airplane schedules to

Now to Replace a 16K RAM Board (In three easy steps)". Alarms signal the

human that the machine requires some attention, whether it be to check

a possible ETI detection, to see why the MCSA malfunctioned, or to perform

maintenance operations (e.g., put more paper in the line printer).

Detection is really what the entire system, and indeed SETI itself,

is all about. This includes everything the operator uses to either search

for ETI signals or to cull out RFI from automatically "detected" signals.

The display parameters are readily changeable by the operator. Complex

analyses, such as 2-0 Fourier or Walsh transforms, that are too expensive,

time consuming, or experimental to be done on the entire output can be

done quite easily on a 5121 display matrix. Such support systems could aid

the operator significantly as the SETI program advances into more sophisti-

cated analyses of the radio spectrum.

There are two maJor mods of operator observation, "fixed" and "free".

By fixed mode we mean the operator responds to the results of the automated

algorithms and system stctus test. In this mode he/she monitors equipment

for proper functioning, and when a detection occurs (alarm from automated

algorithms) it is analyzed, and appropriate action is initiated. In the
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"free mode" the operator acts with greater freedom concerning search

strategies. For example. one may monitor a selected region of the MCSA

output displayed on the color CRT, listen to a selected region of the

spectrum, or call up statistical analyses associated with specific tests

in the N-bit number.

Fixed Node

Although the flexibility of the human observer in formulating, modifying,

and executing search strategies is a major resource for SETI, less flexibility

is required for the fixed mode. Here the operator performs a relatively

fixed set of procedures, especially in response to an alarm. 	 Failure to

attain high levels of standardized performance would result in a non-systematic

data base which would hinder the cumulative and lonvitudinal nature of the

SETI program. There are two phases of the fixed mode: normal and

examination.

Normal State - Between alarms the operator is provided with both visual

and auditory displays that give a selected sample of all incoming signals,

as well as status information on the observations and equipment operation.

The color CRT displays a subsection of the MCSA output spectrum. Each

spectrum is displayed as a horizontal line, with the intensity of a pixel

proportional to the average signal power at that frequency. Each second, a

new spectrum is added beneath the existing ones. In this way up to 512

?conds of output may be observed simultaneously. Since there will be two

:SA spectra (one for each polarization), the display will alternate between

iem at the discretion of the operator.

The auditory portion of the system serves as a final step in checking

possible signal of interest which has been flagged by an algorithm or by

-208-



the operator. A search of the entire 8 MHz band each seed is not under-

taken due to the complete inability of the operator to distinguish differences

at such a rapid rate. Since an alarm will not yield information as to which

MCSA data caused the flag, the computer-controlled tunable system checks the

real part of the input for each MCSA.

The auditory system taps into the data flaw at an intermediate frequency

(IF) before the MCSA. Using an appropriate local oscillator, mixer, and

26-34 MHz bandpass filter as shown in Figure 5.4 , the IF signal is hetero-

4yned down before being received and everted to the auditory range of 0-8 KHz.

As alarms are sounded for possible ETI`s, the computer controlled system

places the indicated algorithm frequency in the middle of the audio band.

For algorithms using 40 Hz by 20 sec. blocks, the center block frequency is

the one used.

Based on cost, the pre-MCSA data are not stored. Since the auditory

system is in real time, the operator hears regions which are down stream

"n" seconds from when the alarm was triggered. Therefore, the signal may

have drifted off the alarm frequency by the time the operator "hears" it.

The number of seconds "n" may vary from a few seconds to 1000 seconds. For

the worst case of n - 1000 seconds, and a drift rate of 1 Hz/sec., the

signal would drift only 1 KHz and would still lie within the 8 KHz band.

To check for more rapidly drifting signals, and to allow for error, the

receiver tunes to the indicated frequency and to adjacent 8 KHz bands. The

auditory display correlates real time with the past, and yields a check for

the continuing presence of the detected signal. In alarms which originate

from the cluster analysis (n - 1000), the operator may elect to hit the

ovverride button and hold the antenna in the location of interest.
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A second black and white CRT continuously displays a variety of

system-status data. Some of this inforation is sham only upon request.

This information is also recorded in permanent archives whenever an alarm

is signaled by either the operator or the automated algorithms. Typical

status parameters are:

1. Observing Parameters

a. Telescope pointing direction

b. Target star name, distance, type, etc.

c. Sky map of the area around the antenna beam (about 14 beam-

widths) including all known astronomical objects, at all

is

d.

e.

2. Re

i a*

b.

C.

d.

wavelengths

Date, time:, polarization

Operator's name

ceiver Parameters

System gain and bandpass shape

Self-diagnosis information. Tests must be end-to-end.

MCS' input and output bandwidths.

Status of any selectable option

3. RFI Parameters

a.

b.

C.

4. En

a.

b.

Radio and TV catalog and schedules

Earth satellite catalog and schedules

Airline schedules and flight paths

viromental Parameters

Wind, precipitation and lightning indicators

Outdoor TV camera, steerable and zoomable, to allow watching

the antenna and its surroundings for unusual conditions that
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could cause false alarms or malfunctions (snow drifts,

flocks of birds or insects, trespassers, etc.)

Examination State - When an alarm occurs from the automated algorithms

the operator carries out a predetermined set of procedures, somewhat different

for different types of alarm. For example, the drifting carrier detector

(CWD) triggers an alarm to the operator whenever the integrated coherent

power along a drift line exceeds the present threshold. The operator first

requests a graphical output showing the location of all data in the vicinity

of that which caused the alarm. At this point, and at each succeeding one

in the decision process, the operator may enter a coded value at the CRT

controls regarding the nature of the alarm. There are four possibilities:

noise (R), radio frequency interference (RFI), useful astrophysical infor-

mation (AI), potential signal from extraterrestrial intelligence (ETI).

Selection of option 3 or 4 saves the region of interest in a permanent

record and automatically records all current status parameters. Option 1 or

2 terminates consideration of the alarm. If the ETI option is selected,

the operator must decide whether or not the telescope should be kept on

the star beyond the 1000 seconds normally allotted.

Before an option is chosen the operator may request further data

concerning the alarm. Specifically, through instant replay the original

MCSA output can be brought onto the color CRT for more detailed examination.

In this case, the output is coded in a frequency x time matrix, with

amplitude represented by pixel brightness. By the use of split screen

techniques, both MCSA outputs of the same region are shown. Through the use

of the CRT, the operator can zoom into a subregion, produce a histogram of
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the intensities, and have the appropriate vectors color-coded and displayed.

The purpose of all such tests is simply to speed and aid the final decision-

making process with respect to the four options (N, RFI, Al, ETI). This

selection can be made at any time during a search with the consequent

procedures outlined above.

The operator also receives auditory information about the current

state of affairs in the region of interest. As soon as an alarm is signalled

to the operator, the communications receiver driving the auditory display

is automatically tuned to the signal frequency (origin of the vector) and

its bandwidth adjusted to encompass a 8 KHz region centered on the origin.

Since the auditory pickup is in real time, the operator is able to ascertain

whether the signal is still present in the region of the spectrum delimited

by the instant visual replay. This sort of data will be helpful in

deciding whether further observing time should be devoted to that star region.

In addition, the operator enters any special comments about the circumstances

of the alarm via the hard-copy terminal.

A second type of alarm is one triggered by the clustering algorithm

based on grouping similar N-bit patterns. When the operator receives such

an alarm, the instant replay tape is searched for the pattern block of

interest, as well as the two adjacent pattern blocks (adjacent in the

frequency spectrum). A pattern block is a 200 x 50 matrix of data boxes.

Each data box is a 40 Hz x 20 second region of the MCSA output. The pattern

block groups 200 (overlapping by 8 Hz) frequency blocks of 40 Hz each by

50 time blocks of 20 seconds each.

The inital display of these data is of the critical pattern block in

the center of the color CRT flanked and surrounded by the eight adjacent

,f
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pattern blocks (appropriately translated to prevent display of redundant

data, and clipped on the left and right sides to fit on 512 x 512 screen).

Since a pattern block is based on data from both MCSA's, only a single

output is shown on the screen. The location of the N-bit numbers of

interest are shown as individual pixels of a constant brightness against a

dark background. Details of the statistical tests comprising the N-bit

number are printed onto the hard-copy terminal. An example of this display

in tabular form is given in Table 5.1. At this junction, the operator proceeds

as previously described: decides which category is appropriate to define the

alarm, or request further information.

Tests	 Status Significance

1. complex coherence 1 >a1

2. broadband pulse 1 >a2

3. degree of polarization 1 >0L3

4. goodness-of-fit 1. .01

5. ANOVA rows 0 .20

6. ANOVA columns 1 .001

1. ANOVA interaction 0 .20

8. total power 1. >a4

9. 8-Hz pulse 0
<05

ai = threshold parameters to be given numerical values (for different levels)

Table 5.1 - Sample Output to Represent Results of N-bit Pattern

If x decision cannot be reached immediately, the operator requests that

closely related bit patterns be displayed simultaneously within the pattern

blocks. In this case, the alternative bit patterns are coded with different

FL
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colors. Finally, while still at the level of the pattern block, the criterion

or statistical level at which an individual test of the N-bit pattern was

passed is displayed as a brightness value (higher brightness represents

higher significance).

If more detailed results are still necessary before a decision can be

reached with any confidence, the operator specifies the relevant region of

space within the pattern block by cursor control, and the original data

boxes (40 x 20) in that region are displayed. By split screen techniques,

both MCSA outputs are shown side by side. Simultaneously, the auditory

display is automatically turned on and moved to the same region of the

current frequency spectrum. (This may be turned off, lowered in volume,

and so forth, at the discretion of the operator). From this vantage point,

the zoom, histogram and color coding options of the CRT are used to highlight

potential signals and eventually aid in the operator's decision concerning

the underlying cause of the alarm.

Free Mode

In addition to responsibilities associated with the fixed-mode displays,

the operator carries out analyses of possible signals in a free mode. Indeed,

most of the time an observer will be viewing or listening to a noise field

that does not contain a signal. In the free mode, the observer may think a

signal is present, based on the existence of an unusual pattern perceived

on occasion within the display. In the SETI situation, such "thoughts" may

in fact reflect bona fide signals.

The real advantage of the free mode comes through the flexibility of the

human being as a pattern detector. The inherent limitation of the automated
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algorithms is that features of potential patterns must be specified

beforehand. The operator works under no such constraints. He is given

virtual freedom to explore any means which will lead him to make a

decision. These include

3 archives

- Er'ire Observation Archive

- Special Interest Archive of previous observations

- Pattern Block Display

RFI detection system memory

Radio Astronomy System, Radio Astronomer

Software routines emulating system algorithms

High level software routines of his own design

His own memory, insight and intuition

In conclusion, the free mode allows the detection system to operate at

its best, combining the broad and diligent scrutiny of the machine, with the

wisdom, judgment, and inventiveness of the human.
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1. Nature of Interaction

2. Information Needed

- Di rective
- Evaluative

- Search Process Steps
- Feedback; Errors
- Time Elapsed
- Time Paninirn3

Comparison of the Fixed and Free Modes of Operation

Characteristic	 Fixed Mode	 Free Mode

t

3. Operator Task Lad - Low

4. Operator Task Sequence - Fixed

5. Operator Task Mode - Forced Paced

- Informative
- Responsive

- Search Options
- Archival Records
- Current Search

Record
- Time Elapsed
- Time Reining

- Low to High

- Variable

- Self-Paced
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Chapter 6

Radio Astronomy Applications - Molecular Spectroscopy
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Sane things you miss because they're so tiny you
overlook them. But some things you don't see
because they ' re so huge. We were both looking at
the s	 thing, seeing the same thing, talking

{	 about the same thing, thinking about the same
thing, except he was looking, seeing, talking
and thinking from a completely different dimension.

--Robert Pi rsig, Zen and the Art of Motorcycle
Maintenance

As of the time of this writing, there are nearly 50 molecular species,

ions, and radicals that have been found in the interstellar medium by radio

astronomers. Observations of the lines from these molecules provide impor-

tant astrophysical information about the sources in which they are found.

As well as being discovered in gas and dust clouds in the interstellar

medium, molecules have also been observed in circumstellar shells. There is

a constant recycling of matter between stars and interstellar space, with

new stars being born from the gas and dust and old and dying stars releasing

matter back into the interstellar medium, molecules have also been observed

in circunstellar shells. There is a constant recycling of matter between

stars and interstell;„^ space, with new stars being born from the gas and

dust and old and dying stars releasing matter back into the interstellar

medium. Currently we estimate that about 90% of the mass is in stars and

the rest in gas and dust that occupies the volume between the stars.

From many of the compounds detected, radio astronomers are able to

observe several different transitions or lines. From the intensities and

widths, physical conditions such as temperature and density may be probed.

Calculations can be made to estimate the column density of a specific mole-
_	 E

cute and hence provide relative abundance information. Abundances are

better determined when several lines are available from different energy

levels so that the population statistics in various energy levels can be
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estimated. The presence of a molecule together with its abundance provides

fundamental data for interstellar chemistry, that is the reactions and rates

responsible for production and destruction of the molecules.

For each molecule present there is also information that is automatically

available for velocity along the line of sight to the observed region from

observations of the Doppler shift. A grid of observations in a molecular

line then provides us a view of the kinematics of the region. In addition

to the nearly 50 different molecular species found to date, which so far

are composed only of atoms of H, C, N, 0, Si, and S, there are also

innumerable isotopes discovered. These add to the list of atoms the

following: D, 13 C, 'sN, 17 0,  1 80, 29 Si, 3OSi, 33S, and 34 S. By observing

line ratios of different isotopic species it is possible to obtain isotopic

abundances when the cloud is optically thin. In turn, the nucleosynthetic

history of our galaxy is highly dependent on isotope ratios such as 12C/ 13C

and 17 0/ 16 0 (see for example Audouze, J., and Tinsley, B.M., 1976 Annual

Review Astronomy and Astrophysics).

The characteristics of the MCSA/SD make it uniquely useful for some radio

astronomy applications. In other instances where it is not necessarily unique

it will be a useful back end for line work. Since we feel the primary use

of the instrument will be in conjunction with SETI in the water hole, we

emphasize work that could be done in this frequency range. However, the

MCSA/SD has much more general capability so we also discuss projects of

interest that are not restricted to the water hole. In addition the MCSA(

being built by JPL is different from that being built for NASA-Armes, and

different problems lend themselves better to one or the other. 	 ¢

Table 6.1 contains a list of molecular lines in the water hole observed

in one or more astronomical sources. We list in Table 6.2 other lines in the

m
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water hole that have not yet been detected astronomically but are of astro-

Physical interest since other lines from the species or an isotope have

I	
already been observed. The ultra high resolution capability will in most

instances not be necessary for work on these lines. Thermal widths in

typical cold clouds are larger than about 1 KH z white the actual widths in

even the narrowest lines wild be larger because of turbulent broadening.

In a search for new lines the JPL MCSA will be extremely powerful. With a

total bandpass of 300 MHz and 10 6 channels, the spectral resolution will

be 300 Hz. This provides sufficient resolution while covering a bandpass

as large as the waterhole in one setting. In this regard an instantaneous

bandpass of 500 MHz would be even more desirable. The detection of new

molecules will provide additional pieces in the puzzle of the young science

of astro-chemistry. Radio astronomers are on the verge of detecting amino

acids in space. Glycine, the simplest amino acid, has 10 atoms and a mole-

cualr weight of 75. Molecules as complicated as 11 atoms and a molecular

weight of 126 have already been found by radio astronomy spectroscopy. In

addition, all of the chemical bondings that are present in glycine have

been seen in at least one of the molecules found already.

Current OH surveys in our galaxy have been limited to 
+20 

of the galactic

plane and have been unable to cover high velocities because of limited band-

width. With the JPL MCSA all four OH lines could be covered simultaneously

(as well as lines of the isotopes) perhaps making it worthwhile to undertake

a major new OH-survey, that would also pick up the high velocity OH. As

long as we know the positions of OH to within V - 2' very useful polariza-

tion work could be done on the OH masers. These new observations could

provide the necessary resurgence for theoretical work on classification

schemes and pumping mechanisms.
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An interesting experiment with the NASA-Ames MCSA will be to attempt

to find Zeeman splitting in OH. Crutcher and Heiles (private communication)

feel they have a possible first detection of this for OH from a dark cloud

in Taurus seen in absorption against the source 3C133. They observed both

right hand circular (RHC) and left hand circular (LHC) polarization with

the Arecibo telescope. With two MCSA's providing RHC and LHC polarization,

we would subtract one spectrum from the other and look for the slightly

shifted lines which would manifest themselves by a sideways S profile. The

height of the ripple is proportional to the magnetic field, and the frequency

difference between maximum and minimum is equal to the full width at half

maximum, FWHM, of the line. The narrowest lines found so far in 18-cm OH

are about 0.5 Km/s or 3 KHz wide. This is the case for the dust cloud L134N.

This is considerably greater than the thermal width which for a 10K cloud is

about 0.1 Km/s. Chances of successful detection will be enhanced when

clouds are discovered that are both colder and less turbulert or have a larger

magnetic field. The Zeeman splitting is 3.27 Hz/VG for the 1665 MHz line and

1.96 Hz/uG for the 1667 MHz line (see e.g., B.E. Turner and G. Vershuur ApJ 162,

341, 1970). Zeeman splitting in the 21-cm HI line has been measured in a

number of sources since the first detections by Vershuur (ApJ 156, 861, 1969

and Mature 223, 140, 1969). The splitting is 2.8 Hz/uG. Further work could

profitably be done on HI as well as on other molecules with an unpaired

electron spin such as CN, CH, and SO that would have comparable Zeeman splitting.

The spectral resolution provided by the MCSA/SD will easily resolve

nuclear quadrapole hyperfine splitting. This has already been done for forma-	 a

mide but not yet for 13 C formamide (see Table 6.1). The latter would require
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a more sensitive system than available to the French group that measured

one component of NH2
i 'CM. Even when the rotational energy levels are not

populated according to local thermodynamic equilibrium LTE as is the case in

formamide, the hyperfine components appear to have relative intensities

conforming to LTE. This would be interesting to corroborate and further

check in other molecules. The MCSA/SD system would be particularly useful

1	 for more closely spaced hyperfine lines such as the spin-rotation lines of

the 1 10 -► 1 11 transition at H zCO at 6-cm. The Fu -o-FL lines 0 -,-I and

2 -► 2 are separated by about 1 KHz. Astronomically, they appear to be in

LTE.

As mentioned above the nucleosynthetic history of our galaxy depends heavily

on ratios of line intensities of various isotopic species. According to

A.A. Penzias (IAU Symposium No. 87 Interstellar Molecules meeting 8/1979 to

=	 be published) the interstellar I I C/ 1 2C  abundances ratio is about 150% of the

t	 terrestrial value of 1/89 throughout the plane of our galaxy and about twice
3k

t

the terrestrial value near the galactic center. 12 C is a primary element

formed directly from H and He inside a star while 13C is considered a secondary

element produced from primary elements in second and later generation stars

by the S-process. Table 6.1 and 6.2 show that isotope experiments could be

done with lines in the water hole.

The MCSA coupled with the Signal Detector would provide a valuable tool

for radio frequency pulsar investigations. This apparatus makes possible

the high resolution power spectrum monitoring of pulsar pulses, as well as

a frequency domain record of the type and degree of polarization (stokes

parameters) associated with a single pulsed period. The following experiments

are suggested a3 worthwhile:
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1. Measuring the bandwidth of micropulses and nano-
pulses within a single pulse.

2. Using Power spectrum, or autocorrelation functions
derived from the Power spectrum, to determine the
relative contributions of sub-pulses, micropulses ,
and nanopulses to the total integrated single pulse.

3. Exploring the possibility of extraterrestrial
transmitters being located near a pulsar, using
the pulsar as the signpost advertising a beacon
signal.

Radio Recombination Lines

Since radio recombination lines are very wide there is no need to observe

them with the MCSAJSD having 8 MHz bandpass and 8 x 10 6 channels. On the other

hand an instantaneous bandpass of about 300 MHz with 10 6 channels would provide

a unique combination for recombination line experiments. For example, the

entire water hole could be covered with a single bandpass that would

provide simultaneous observations of the following hydrogen, helium, and

carbon recombination lines:

a - 1 i nes 156 - 166

B - lines 196 - 209

y - lines 224 - 238

a - lines 247 - 282

c - lines 265 - 282

Rest frequencies for these lines can be found in (A.E. Lilley and P. Palmer

ApJJ Supplement 144, 16:143, 1968). Such observations would provide better

data in the sense of good internal calibration because of the simultaneity of

a
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the observations. A new level of accuracy may then be brought to bear on

such familiar problems in gaseous nebulae as:

1) local thermodynamic equilibrium (LTE) and departures therefrom.

2) electron temperatures

3) line broadening - Stark effect

4) gas dynamics - within an individual object as well as an aid in
galactic structure determination.

5) relative abundance of helium to hydrogen with its cosmological
significance.

6) carbon line studies to determine regions of emissions compared to
hydrogen and helium, and relative abundances.

For additional commentary on the above avenues of research see for example

R.L. Brown, R.J. Lockman, and G.R. Knapp, Ann. Rev. Astron. Astrooys 16, 445 1, 1978.
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Lines in Water Role	 1.42 a 1.72 GHz	 Already Detected Astronomically

v (GHz) Molecule Transition Refer

1.538 135 NH2CHO
110-111	

F - 1-1 6,7

1.538 693 Formami de 1-2

1.539 295 Formamide 2-1

1.539 570 Formamide 1-0

1.539 851 Formamide 2-2

1.541 018 Formamide 0-1

1.570 825 NH213CHO
110-111	

F 2-2 8

1.610 249 HCOOCH3 110-111	 A 2,3
Methyl Formate

1.610 906 Methyl Formate
110-111	

E 2,3

1.612 2310 OH 2713/2 J =3/2 F= 1-2 11,13

1.624 518 17 OH
2713/2 J =3/2 F,F 1=7/2,4-7/2,4	 1,5

1.626 161 17 OH
2713/2 J= 3/2 F,F 1 =9/2,4-9/2-4	 1,5

1.637 564 18 OH
2713/2 J=3/2 F= 1-1 4,6,10,15

1.638 805 HCOOH 
Formic 110-111 17

1.639 503 18 OH
2713/2 J =3/2 F=2-2 4,6,10,12,15

1.665 4008 OH 2713/2 J=3/2 F= 1-1 11,13,14

1.667 3590 OH 2713/2 J*3/2 F-2-2 11,13,14

1.720 5300 OH 2713/2 J-3/2 F-2-1 11,13,14

Table 6.1
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Table 6.2
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' a	 Lines i n Wbter Hole of Potential Mtroftsi cal intenst ( Mot ' Ytt f ound)

! _	 v (GHz)	 Molecule	 Transition	 Refer

1.455 1290	
17^	

2n3/2 J-3/2 F,F 1-5/2,2-3/2,1 1,12

1.474 787	 H2CS	 1028-1029	 1,1

1.501 250	 NH2CHO	 194,15-194,16	 1,7

-	 (unsplit - will have hyperfine components)

1.547 377	
H2 CO184,14-184,15	

1,7

1.549 798	 H2CS	 24321-243,12	 1,7

1.584 2740	 18OH	 2ifJ-3/2 F- 1-2	 1,12

1.596 061	 HDS	 33	 93,0 3,1

1.604 270	 HNCO	 41,3-41,4	 10,16

(4nspiit - will have hyperfine components)

1.629 515	 NH2CHO	 1239-
123,10	

1,7

(unspiit - will have hyperfine components)

1.636 816 HDS
54,1-54,2 9

1.655 499 17 OH
2 7r3/2	 J

0
3/2 F,F 1 -5/2,3-5/2,3 12,1

1.656 542 170H F,F1=7/2,3-7/2,3 12,1

1.659 577 H213C0
113,8-113,9 1,7

1.683 540
17 OH

27r3/2	
J=3/2 F,F 1-3/2,1-3/2,1 1

1.684 542
17 

OH
F,F 1 .1/2,1-1/2,1 1

1.692 7950
18 ON

2'x3/2	
J-3/2 F-2-1 1

Only ground vibrational state has been considered here. There are other lines
that could be of astrophysical interest in excited vibrational states such as
several lines of HC3N.
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Why do we wish to bear forever tho noise
of these more than another noise so close
to our dwelling place.

--Robert Frost

1.1 - Introducti on

The unprecedented combination of broadband coverage and high frequency

resolution in the multichannel spectrum analyzer and signal detector provide

a means for previously unattainable sensitivity in signal analysis. The

criteria used in the choice of nonastrophysical applications for the system

are: 1) the signals to be monitored must have a broad total bandwidth,

which contains narrowband spectral components of interest, and 2) the signals

must have a low signal to noise ratio.

Some of the most promising non-astrophysical applications of the multi-

channel spectrum analyzer and signal detector are in the field of acoustic

or microseismic monitoring. There are currently many ongoing research

projects, and numerous diagnostic incipient failure tests and non-destructive

tests employing acoustic technology, which are producing a wealth of useful	 `'.

data. The two major impediments in this relatively new and very promising

field are frequency resolution and acoustic emissions with low signal to noise

ratios. A sensitive signal detector with high frequency resolution might

illuminate many of the microseismic or acoustic emission phenomena that are

only partially understood at the present time. 	 .^

Acoustic or microseismic emissions are transient elastic waves generated

t	 by rapid release of energy during dynamic processes in materials. Localized

transient instabilities such as crack propagation, dislocation motion, and

microfracturing in rocks and metals or fiber fracture and crack propagation in

polymers and fiber-reinforced plastics (FRP) are examples of the dynamic
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processes which produce acoustic emissions. The transient elastic waves

or acoustic emissions are detected with piezoelectric transducers which

anvert them to electrical signals which are then analyzed in a variety of

ways which will be discussed later. The sensitivity of acoustic emission

analyzers to localized transient instabilities allows prediction of catas-

trophic failure. Although the stresses in the system are below the

elastic limit of the material, the localized stresses in the region around a

flaw or crack may be higher than the elastic limit, due to stress concentra-

tion, which results in propagation of the flaw or crack. In most material

systems catastrophic failures are often the result of numerous localized

instabilities which coalesca, and therefore the ability of acoustic

emission analysis to detect these localized failures which occur at stresses

well below the elastic limit of the material makes prediction of catastrophic

failure possible.

In addition to failure prediction, acoustic emission technology has a

variety of useful applications. Leaks in pipes, reservoirs, and dams have

been successfully detected and located with acoustic emission analysis. Flaws

in pressure vessels, reactor vessels, and a variety of other structures have

been detected and located with a variety of acoustic non-destructive testing

(NOT) methods.

The use of acoustic monitoring was initiated in the late thirtits and

early forties by Obert (1939, 1940, 1941), Obert and Duvall (1942, 1945, 1945a)

Hodgson (1943) and Hodgson and Gibbs (1945), in studies of rock bursts and

pillar failures in mines. This early work was crude and employed a low

frequency resonant yeophone, an audio amplifier, and a headset (audible

frequencies were the only frequencies monitored) . Kaiser (1950,  1953) and
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his coworkers in GermarUr in the earlier fifties are ,enerally credited with

the first modern acoustic studies in work on metals, Kaiser reported that

all metals, including steel, zinc, copper, aluminum, and lead produce acoustic

emissions under load. He also reported that acoustic phenomena were irrever-

sible, that is, acoustic emissions do not occur in cyclic loading tests

unless the load in the cycle exceeds that in all previous loading cycles. This

pehnomenom is called the Kaiser effect. Schofield (1958) and Tatra, (1959) did

much to improve the sophistication of acoustic monitoring instrumentation and

experimentation in the mid to late fifties with research on the sources of

emissions. They found that acoustic emissions in metals were produced by the

dislocation movement which accompanies plastic deform-ation in such materials.

Dunnegon Tatro, and Harris first investigated the use of instrumentation

whose frequency range was well above the audio range. The use of equipment

with this range eliminated many of the problems early workers encountered

with excessive background ambient noise.

There are numerous present areas of application of acoustic or microseismic

analysis. Brittle deformation processes in geologic materials have been

greatly illuminated by studies of microseismic emissions. Scholz (1968)

proposed that acoustic emissions in polycrystalline geologic materials were

produced by microfracturing of individual grains, and that failure in such

materials (by coalescence of microfractures) could be predicted on the basis

of the acoustic count rate. This work is further supported by Martin and

Durham (1975) and Dunning and Dunn (1978), in work on crack propagation in

quartz. Lockner, Walsh, and Byerlee (1977) and Gupta (1973) have investigated

changes in velocity of acoustic emissions in rocks undergoing deformation.

Byerlee and Lockner (1978) and Blacic and Malone (1911) have investigated the
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acoustic nature of shear failure and fracture propagation. Byerlee and

Lockner (1977) and Hardy (1975, 1978) have found that fluid or gas pressure

in geological materials can be estimated on the basis of acoustic activity.

The acoustic nature of slope instability in rock, soil, and snow has been

investigated by Koerner and Lord (1974, 1975) and Sommerfield (1978). There

are many other examples of acoustic applications in geologic problem solving

which, for the sake of brevity, cannot be covered in this report.

Acoustic emission techniques are also well-suited to problem solving

studies in material research, structural integrity analysis, and other areas

of industrial research. Liptai (1972) investigated the acoustic nature of

failure in fiberglass-reinforced epoxy. Tetelman, Harris and Darwish (1972)

conducted similar experiments with whisker-reinforced composites. Carlyle

(1975), Hamstad and Chiao (1976), and Fowler and Gray (1979) have characterized

the acoustic nature of failure in fiber-reinforced plastics. Their work

indicates that the different mechanisms involved in failure of these

materials; such as fiber failure and glass cracking, can be differentiated

on the basis of acoustic signature, signal amplitude, and power spectra.

Hamstad and Chiao (1976) and Mitchell (1979) have investigated non-destructive

tests for fiber-reinforced plastic structures and pressure vessels. Hartbower

et al (1972) and Wingfield (1972) have demonstrated that weld-cracking can be

detected and located, and that the structural integrity of welds can be

tested with acoustic emission techniques. Acoustic emission technology has

been applied in the aerospace and aeronautics industries with success by

Moore (1970), Green et al (1970), and Nakamura et al (1972). Acoustic analysis

of on-line nuclear reactor vessels has been employed by the Connecticut Yankee,

and Elk River power plants (Whylie, 1971). The deformation of concrete and

r
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and other building materials has been characterized acoustically by Li et al.

(1970). The mining industry has made extensive and successful use of acoustic

monitoring technology. Leighton and Blake (1970) and Krauland and Westerberg

(1977) have shown that rock bursts, roof bounces, and pillar failures can be

predicted in some instances on the basis of increased acoustic activity

prior to the event.

7.2 - Acoustic Emission Analysis Technique s

Acoustic activity can be measured and analyzed in a variety of ways.

Early workers employed threshold counting techniques, which consist of

accumulating a running count of the number of times the amplitude of the

signal from the transducer exceeds a predetermined threshold. It has been

shown by numerous experimentalists that, in most polycrystalline materials,

the count rate (counts per unit tima) rises sharply just prior to failure.

In some cases the use in count rate can be utilized to predict failure. This

technique has some deficiencies, however, which limit its effectiveness. A

single acoustic burst of high amplitude may exceed the threshold several

times, resulting in a spurious value for total acoustic activity, while

acoustic events with lower amplitude produce a single count.

Furthermore, in materials that have been loaded in a cyclic manner, the Kaiser

effect often precludes prediction of failure if the material fails at a

load level attained in a previous cycle.

Another technique commonly employed is burst or event thresholding, which

entails accumulating the count rate of acoustic events or bursts above a pre-

determined threshold. This method has the same limitations as simple thres-

holding, however the count rate obtained in event thresholding is more

accurate and not as sensitive to the level of the threshold.
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The maximum signal amplitude during a single event is a commonly employed

E_	 !

acoustic analysis technique. Signal amplitude measurements are useful in the

llaboratory where sample homogeneity is not a problem or in the field when

_ t

	

	 relative changes in amplitude as a function of time for a single transducer

are of interest, however in other cases signal amplitude alone is not a

particularly informative parameter.

A number of workers have investigated the frequency characteristics and

power spectra of individual acoustic events and cumulative acoustic events.

Suzuki et al (1964) and Chugh et al (1972) found that acoustic events in rocks

undergoing deformation had a regular and predictable paver spectra. Chugh

et al (1972) found that the frequency of emissions shifts upward as a function

of stress level, as the failure stress is approached. Chugh et al propose that

spectral data was more useful when presented as an energy distribution ratio

which, in that study, was defined as the ratio of acoustic energy in the

range 500-5,000 Hz, to that observed in the range of 10,250-15,000 Hz. In

general, the energy distribution ratio decreases with increased stress for a

variety of rock types. Graham and Alers (1975) found that many metals and

composite materials have specific and unique acoustic emission spectra. They

also shaved that it was possible to detect failure and identify component

noises in steam turbine equipment based on the spectra of emissions. Fowler

and Gray (1979) and others have shown that fiber failure, crack propagation

in glass and other failure mechanisms in fiber-reinforced plastics can be

identified by their spectra. A typical frequency-versus-amplitude plot

reveals such flaws. The major drawback of spectral analysis is the lack of

frequency resolution attainable with available off-the-shelf spectral analysis

equipment. Most workers involved with acoustic spectra feel that frequency
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resolution is the main impediment to solution of a number of acoustic

problem. Many materials have rather wide spectra (up to several MHz)

which cannot be observed in total with very high frequency resolution.

Source location analysis is a recently developed acoustic technique

that appears to be promising. Source location techniques employ an array

of three or more transducers which are located at various points on the

body of interest. Acoustic activity from a source is detected by each

transducer at a different time depending on the distance from the source to

the transducer. A triangulation technique based on the differences in arrival

times among the transducers is used to locate the acoustic source

empirically. Mo9i (1968) and 'icholz (1968) have used this technique on a

variety of rock types with some success. Byerlee and Lockner (1978) have

used the source location technique to map fracture propagation in granite

in the most sophisticated geologic source location study yet attempted.

Source location techniques are commonly used in industry to identify flaws and

fractures (Hamstad and Chiao, 1976; Mitchel, 1979; and Wingfield, 1972). Source

location techniques are employed in mines to predict and locate rock bursts,

Blake (1977) and Leighton and Steblay (1977). An excellent description of

this technique is found in Kelly and Schlamp (1977).

Seismic velocity attenuation analysis is another promising acoustic

technique. Lockner et al (1977) have demonstrated that the seismic velocity

of acoustic signals decreases up to 30% immediately prior to failure in

granite. They attributed this attenuation to the presence of numerous micro-

cracks. Hadley (1975) , 14erkulova et al (1972), and Born (1941) have also

investigated this phenomenon with similar results. It has also been observed

that seismic velocities are often attenuated in the area of the focus just
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the signature of acoustic emissions generated during sliding friction

tests on granite was similar to the signature of some earthquakes.

7 .3 - Possible Applications of the Signal Detector in Acoustic Emission

The two areas of interest in acoustic monitoring which might be greatly

illuminated by the multichannel spectrum analyzer and signal detector are

spectrum analysis and low SNR signal analysis. Spectrum analysis at the

present time is limited by frequency resolution. The acoustic spectra of

many materials undergoing deformation have bandwidths of a megahertz or

more, while the frequency resolution of presently available off-the-shelf

equipment with bandwidths in this range is on the order of 10 kHz. There

are undoubtedly numerous narrowband acoustic spectral components that cannot

be effectively analyzed with 10 kHz frequency resolution. It can be shown

that the effective SNR of a signal whose bandwidth is narrower than the

frequency resolution of the analyzer becomes

	

Bs	 where Fr = frequency resolution of the analyzer

	

SNR Bs 	
(7-1)

Bs = bandwidth of the signal

This means that narrowband signals of interest may be lost because of poor

frequency resolution. The frequency resolution of the multichannel spectrum

analyzer is high enough to effectively investigate narrowband acoustic

spectral components.

There are numerous instances, especially in filed projects, when the

ambient noise is of such great amplitude that many acoustic signals of interest

are well below the detection threshold. Acoustic analysis of mines, under-

ground reservoirs, and oil fields is often hindered by high amplitude noise

and a low SNR as are laboratory investigations of the Kaiser effect, crack
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and fracture propagation, and hydrofracture. The high sensitivity signal

detector proposed in this study would greatly enhance our ability to effect-

ively investigate such phenomena. Some specific types of investigations in

industry and geophysics that would be greatly enhanced by the multichannel

spectrum analyzer and the signal detector will be covered in the next two

sections. One limitation of the system, however, is the low time resolution

of the spectrum analyzer. Transient emission of much less than a second in

duration would not be detected by the signal detector unless the pipeline

capability of the spectrum analyzer could be implemented:

7.4 - Industrial Applications

Source Mechanism Studies

It has been found by McCabe and Koerner (1979) that the frequency of

acoustic emissions produced by crack propagation in coal is shifted downward

as the crack propagates, and the source area is enlarged. A rigorous analysis

of this apparent phenomenon could result in an effective method for monitoring

acoustic sources in order to determine if the flaws producing acoustic signals

are growing. The sensitivity and frequency resolution of the proposed signal

detection system would be ideal for such an investigation (an experimental

procedure outline for a feasibility study of this phenomenon is presented in

Appendix A7.1). Source mechanism studies of bearing failure in rotating equipment

have so far shown some promise. The spectra of missions of a bearing under-

going failure can be used to identify the type of bearing, and source location

analysis can locate the particular bearing of interest (Pollock, 1979). Source

mechanism studies are also of importance in pressure vessels and nuclear reactor

vessels. The location, spectral properties and amplitude attenuation of acoustic
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signals generated by a flaw or fracture, or the velocity, frequency, and

amplitude attenuation (if the coupling parameters are well understood) of

induced acoustic signals may allow workers to identify and characterize flaws

in such vessels during on-line operation. The signal detection system

proposed in this study and the multichannel spectrum analyzer would be capable

of such studies.=i
Failure Mechanism Studies

The failure mechanisms in metals, plastics, composite materials, and

building materials may fall into specific categories based on spectral

components, signal amplitude and spectral shift characteristics. It has

been shown, for instance, by Fowler and Gray (1979) that fiber failure

can be differentiated from glass cracking in fiber-reinforced plastics

based on relative amplitudes and spectral components. Further investigation

employing a sensitive detector with high frequency resolution may show that

intercrystal line fracture, grain boundary deformation, and dislocation move-

ment for various types of materials can be uniquely characterized by the

parameters listed previously. High resolution and high sensitivity studies

such as these might also reveal that there is a unique frequency component

for each material that appears immediately prior to failure, the knowledge of

which would greatly enhance the ability to predict failure. It has already

been established that the flow mechanisms in plastics can be differentiated

and identified by characteristic signatures of acoustic activity in frequency-

time space. The signal detection system and multichannel spectrum analyzer

proposed in this report could, quite possibly, provide extremely important

information on failure mechanism characteristics.
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Leak 	 on

It has bean demonstrated by Parry (1971) in pressure vessels and pipes

and by Koerner and Lord (1974) in earthen dams, that leaks can be detected

by analyzing the spectral components and frequency ratios of acoustic

emissions. Leaks are often manifested by a single or group of specific

spectral components, the characteristics of which are apparently dependent

on the pipe, vessel, or dam material and the leaking medium. The signal

amplitudes of acoustic emissions resulting from leaks are often quite low,

a problem which could be ameliorated to a great extent by the sensitivity

and frequency resolution of the proposed signal detection system.

Kaiser and Felicity Studies

The apparently irreversible nature of acoustic activity was discovered

by Kaiser (1950). The Kaiser effect is the immediately irreversible nature

of acoustic emission activity resulting from applied stress. If the effect

is present, there is little or no acoustic activity until previously applied

stress levels are exceeded. This effect is not extremely well-understood for

some materials. The Kaiser effect in rocks and concrete may be due to the

fact that acoustic emissions are produced by microfracturing, and in cyclic

loading new microfractures are not produced until previous loads are exceeded.

Previous investigations of the Kaiser effect have employed thresholding tech-

niques which may not have detected low amplitude signals which possibly occur

6_

under cyclic loading at stresses below previous stress levels. An investigation

of this phenomenon with the multichannel spectrum analyzer and signal detector

may uncover low amplitude signals or characteristic spectral components that

will enable us to better understand the Kaiser effect.
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The felicity effect is a phenomenon which occurs in plastics under

cyclic loading. The felicity effect results in significant emissions at

stress levels well below previously attained stress levels. It is believed

that the felicity effect is caused by isoelastic deformation during

unloading which effectively anneals previously formed deformation structures.

A highly sensitive high frequency resolution analysis of this phenomenon may

reveal the deformation mechanism which produces the felicity effect.

Thermoplastic Studies

The failure of thermoplastics and glasses cannot presently be predicted

with acoustic monitoring techniques because acoustic emissions are either

absent or low enough in amplitude to escape detection. Glass sometimes

displays acoustic activity during crack initiation, however, this only occurs

when the crack propagation is unstable. The high frequency resolution and

sensitivity of the multichannel spectrum analyzer and signal detector pro

posed in this study may enable detection of acoustic emissions in these

materials, if they are present.

There are, undoubtedly, numerous other industrial applications in the

field of industrial acoustic omission monitoring for which the signal detec-

tion system proposed in this study may be well-suited. The applications

discussed in the section are, however, of particular interest in this field.

1.5 - Geoehysical Applications

Fracture Density Studies

Fracture density is of great interest to geophysicists, structural

geologists and petroleum geologists. Fracture density in fault zones appears
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to be an important parameter in fau l t mechanics, a clear understanding of

which may lead to significant advances in the field of earthquake prediction.

The density and nature of fractures in petroleum reservoirs are two of the

most important factors in effective tertiary recovery of oil in ,fractured

reservoirs.

Present fracture density studies are implemented in a variety of ways.

Many geophysicists and petroleum geologists investigate seismic velocity

attenuation. In this test an ultrasonic or shot blast signal is activated

and the travel times of the elastic waves from the shot site to the sites are

recorded and compared to the predicted travel times for the unfractured rock

type of interest. If the fracture density is high, the velocity of the elastic

waves will be greatly attenuated from the predicted value. This method has

some limitations, most notably sensitivity to fracture filling. A fracture

which is open and filled with gouge or fluid will produce the same velocity

attenuation as numerous closed fractures. Another parameter measured by

geophysicists and petroleum geologists and engineers is the Q factor which is

basically a measure of the energy loss of an input ultrasonic or shot signal.

A highly fractured body of rock will have a lower Q value than unfractured

rock of the same composition. This method has the same basic limitations as

velocity attenuation because the parameters used to calculate both are basi-

cally the same. Measurement of amplitude attenuation as a function of

fracture density has been attempted in the laboratory, however the uncertainly

involved in determining the coupling parameters of the transducer and the rock

makes field utilization of this technique somewhat difficult. Power spectral

analysis has been employed with some success in recent years. It has been

found that high fracture density results in a downward frequen.y shift of the

power spectrum.
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'I The frequency and amplitude resolution of the multichannel spectrum

analyzer and signal detector allow more detailed and sophisticated analyses

of fracture density. Wider bandwidth input signals can be employed and

frequency attenuation, amplitude attenuation (if the coupling parameters are

known), and detailed power spectra measurements would be possible. An

analysis of Q as a function of frequency might also be productive because

AM (1979) has found that Q varies as a function of frequency to some

extent, in addition to varying as a function of fracture density.

Stress Field Anallsis

Accurate measurements of stress fields and stress orientations are of

great importance to geophysicists, petroleum engineers, and mining engineers.

A sudden change in the stress field of a fault zone may be a premonitory

event, or an unexpected variation of the stress field with depth may result

in expensive drilling equipment damage in an oil well. Rock bursts and other

mine failures are often preceded by rapid variation in stress field intensity

and orientation.	 Presently such techniques as overcoring, hydrofracture

strength analysis, and extensometer and strain gage analysis are used to

measure stress field orientation and magnitude. An interesting application

of the multichannel spectrum analyzer and signal detector would be an analysis

of the acoustic emission activity, under loading, of cores cut from fault

zones, mine walls, or drill cores i n order to determine the stress field by

investigation of the Kaiser effect. The Kaiser effect could be used as a

stress level indicator of great sensitivity. One major limitation of the use

of the Kaiser effect to determine stress levels is the fact that the stress

values calculated by determining the stress level at which acoustic activity
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begins may be higher than the actual stress level, if the stress level in

the rock was significantly higher at some time shortly before the cores

were cut. Kaiser effect studies should, however, be undertaken because the

spectrum analyzer and signal detector are well-suited for this type of inves-

tigation and Kaiser effect measurements may prove to be an excellent and

inexpensive measurement technique. An experimental procedure outline for

a feasibility study of an investigation of Kaiser effect as a stress

indicator is presented in Appendix A1.1.

Source Mechanism Studies

It has been established that the source mechanism of acoustic emissions

in metals and plastics can be determined on the basis of frequency and ampli-

tude. Fiber fracture, dislocation movement, crack propagation, and grain

boundary deformation all have different amplitudes and spectral components.

It is probable that the same situation exists in rocks; source mechanisms

such as dislocation movement, microfracturing, grain boundary deformation,

and inter-crystalline crack propagation should be distinguishable on the

basis of spectral components and relative signal amplitudes. This has not

been investigated as of yet because the spectrum of acoustic emissions in

rocks is wide enough in bandwidth to preclude high resolution spectral

analysis with available equipment.

Another type of source mechanism study that would be productive is

spectral analysis of a propagating flaw or fracture. McCable and Koerner

(1979) have found that the spectrum of emissions from a propagating cleat

in coal shifts downward in frequency as the cleat dimensions increase. This

apparent phenomenon should be investigated with a high resolution detection
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system such as the one proposed in this study because if this phenomenon

exists and can be clearly understood, significant progress may be made in

prediction of pillar failures and rock bursts in minus.

General Deformation Studies

The acoustic nature of deformation processes in rocks is not very well

understood at the present time due in great part to the broad bandwidth of

the emissions and the lack of frequency resolution of existing acoustic

monitoring equipment. Numerous types of investigations of rock deformation

could be carried out with the signal detection system proposed in this

report. Compressive and tensile failure tests might illuminate the acoustic

nature of the shift from microfracturing to cataclastic failure in rocks.

The acoustic nature of hydrofracturing could well be delineated in a more

rigorous manner with such a signal detector. Cyclic loading tests might

illuminate the acoustic nature of failure under cyclic loading. There are

undoubtedly numerous additional studies that could be implemented with the

multichannel spectrum analyzer and signal detector proposed in this study

that would greatly enhance our knowledge of deformation processes in rocks.

c
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The operator powers up the Oasis system, mounts fresh tapes on

the replay/archive drives, and places the system in self-diagnostic mode.

Momentarily, the status display reports tnat all subsystems are functioning

Via a magnetic tape, the operator enters into the RFI

catalog data concerning astrophysical signals in the portion of sky to be

covered today.	 He now activates the local RFI receiver which begins to

dynamically update the catalog.

Pointing the telescope at a known quiet portion of the sky, the

operator places Oasis into threshold-setting mode. The control CPU makes

minor adjustments to thresholds in the carrier wave detector, pulse

detector and cluster detector systems.

On this particular day, a radio astronomer is on hand to continue

a high resolution OH survey along the lines of sight to be searched.

She takes her seat at the radio astronomy terminal and loads a program

on her minicomputer.

The SETI operator, meanwhile, is specifying to the control CPU the

protocol for making automatic entries to the system log and event archives,

for generating graphic displays and audible alarms.

When all is ready, he points the antenna to the first star ( and any

unseen surrounding system of planets) and the search begins.

Digital data from multi-channel spectrum analyzers (MCSA.$) connected

to two orthogonally-polarized receiving systems conmences to flow at the

rate of 8 million complex spectral values per receiver per second in four

parallel data streams into the NBIT detector, the pulse detector, the



carrier wave detector, and a 100 giga-bit tape memory. In the RBIT system the

stream divides again to supply 12 processors each at the same data rate:

32 megawords per second. The NBIT low-threshold feature detectors are

now providing the clustering system's histogram unit with numerous patterns

to count. The actual cluster search will begin at the end of the 1000-second

observation of this star.

At the first 20-second decision point, the carrier wave

processor makes several detections, but the control CPU matches these with

known military radar signals in the RFI catalog so no further action is

taken on them. Nor does anything unusual appear in the coarse- resolution

spectrum the operator has chosen for his display.

Two minutes into the search, the audible alarm sounds and an integrated

coarse spectrum of somewhat different resolution appears on the graphics

display. A small but noticeable peak is seen in the middle of the spectrum.

The status display indicates that the binning system has made a detection

and the moving system log and event archive tapes indicate that information

is being written on them.

It looks like a maser--a previously unknown one. "Do you have a maser

on your screen?" he asks the radio astronomer. "Yes I do, now," she replies.

"You should record it." "It already has been."

' He enters a comment in the system log.	 Over the remainder of the

observation of the star the maser line  shows more and more clearly.	 The

operator elects to save the entire record on the total observation archive.

The next few stars reveal nothing unusual.	 Later in the afternoon,

the clustering algorithm finds some extremely unusual concentrations of

broadband pulse features in an observation of Epsilon Euridoni,.	 The SETT
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operator saves the total observation for further analysis, along with

an image of the cluster as it ap pears on the display.
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Detection is, or ought to be, an exact science,
and should be treated in the same cold and un-
emotional manner. You have attempted to tinge it
with romanticism, which produces much the same
effect as if you worked a love-story or an elope-

ment into the fifth proposition of Euclid.
--A.C. Doyle, The Sign of Four

The Discrete Fourier Transform

Assume that we have some time process x(t) , either deterministic or

stochastic, which is sampled every T/N seconds where T is the length of one

complete record or realization, and N is the number of samples per record.

This is illustrated in Fig. A2.1.1. (In the MCSA which is a part of the

system under study here, two quadrature time signals are sampled in this way.)

x(t)
"k

t

	

T	 2T	 kT	 T

	

N	 N	 N

l F------- time record	 I

Figure A2.1.1 - Sampling a Continuous Time Function

The Discrete Fourier Transform is defined as:

N-1

	

X =	 E xk 
e-j27nk/N	

n = 0,1,2,...,N-1	 (A2.1-1)
k^

If the xk are samples of a real baseband process with a maximum
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frequency w, the sampling theorem requires that the sampling frequency be

at least 2W, or that in T seconds the number of samples be at least 2WT.

If the x  are samples of a baseband process obtained from a bandpass process

of bandwidth B T , the number of samples required in time T is at least 2BTT

but these samples are of the real and imaginary parts of the complex

envelope of the bandpass process, where these parts are sampled once every

BT1 seconds. This is called quadrature sampling (Peebles, 1979).

The bandpass signal is detected by multiplying it in parallel channels

by cosWct and sinWct, where W e is a constant angular frequency, and thus

yielding the real and imaginary parts of the complex envelope. These two

signals are low pass filtered and then sampled to produce the real and

imaginary parts of the complex samples x  used in Equation (A2.1-1).

The values of X  generated by Equation (A2.1-1) are complex numbers

corresponding to the signal which is in each of N frequency bins. (If, for

example, a bandpass signal of bandwidth 10 MHz is to be divided into one

million 10 Hz channels, one million samples will be taken of the real and

imaginary parts of the complex envelope, and one million values of X  will

be otained (N = 106).)

The bandwidth of each individual bin is:

B = B 
T 
A	 ( A2.1-2)

The center frequency of the n th bin is:	 _Ifn 
= nBT = nB = NT	 n = 0,1,2,...,N-1	

(A2.1-3)

N	 s

where Ts = T/N is the sampling time which equals B T 1 . Hence the output of

the DFT is a set of N complex numbers each one of which is associated with

a frequency bin with bandwidth B and center frequency f n . The baseband

representation of this result is shown in Figure A2.1.2.
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Binj 0
	

Bin 1	 1 • • . • , • •
	

Bin N-1

	

0
	

B	 28	 .......	 (N-1)B

Figure A2.1.2- Discrete Fourier Transform Frequency Bins

Response of the DFT to Sinusoid Signals

Next we consider the case where the input x(t) to the DFT is a complex

sinusoid of the form

x(t) - AeJWrt	 (A2.1-4)

where W  is a fixed baseband frequency. A signal of this form corresponds

to a sinusoidal signal in the original passband. In order to conveniently

relate cyclic frequency fr ( = Wr/27r) to the frequency bins shown in

Fig. A2.1.2,we define fr in terms of the birmidths B as:

fr A rB	 (A2.1-5)

Hence, for example, fr lies within Bin 2 whenever 1.5 < r < 2.5. We have

then:

X(t) - Ae327rr8t	
(A2.1-6)

Since the k th sample is taken at the time t - kTs , the k th sample of

X(t) is:

x  - Ae j2nrBkTs	 (A2.1-7)

Using Equations (A2.1-3) and (A2.1-5), x  can be written as:

1^ k r

x  - Ae	 (A2.1-8)

If this sampled signal is now inserted into the DFT, Equation (A2.1-1)

becomes:	 1 N-1 JP (r- n )

Xn - N k-	
(A2.1-9)
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Consider first the simple example where r - n, corresponding to an

f  in the center of bin n. The effect of the summation in Equation (A2.1-9)

is simply to add A a total of N times so that X  equals A. Thus the

transform has a "gain" of unity in center band.

Next consider a signal x(t) which has the center frequency of Bin n

but which has a phase angle 9. That is:

X(t) = Aej(Wnt + 9)
	

(A2.1-10)

Then, clearly:

X  = Aeje	
(A2.1-11)

Hence Xn , the complex number out of the DFT has the same amplitude for an

input signal of any phase, and has the sane angle as that of the input.

Let us now generalize to the case where r takes some general value,

not necessarily equal to n. Define d to be the difference between r and n:

d A r - n	 (A2.1-12)

Assume now that the input signal is:

x(t) = Aej 'ejWrt	 (A2.1-13)

j@ j 2N kr
x  = Ae a	 (A2.1-14)

so that the DFT is:

X 
s 

1 AejB N^1 j-̂ kd
n	

e	
(A2.1-15)

k-0

	

Aej8 N- 1	 j 2̂  k

k=0

and since	 E a k
 = 1 - aK+1	

(A2.1-17)
k=0	

-3^= a

3

)
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d d

s

= Ae38 	1 - e32nd
i	 Xn	

1 - e3

E I

= Aeje e jR(d-d/N) simrd
^:	 — 1^	 s ntt

If N is large, which is our case, X  can be approximated by:
i

Xn = Aejs e3ftdsinc d

(A2.1-18)

(A2.1-19)

(A2.1-20)

sinc x A sinnx

	

nx	 (A2.1-21)

Hence the magnitude and phase of X  are respectively:

	

IXn I = A sinc	 d	 (A2.1-22)

	

= 8 + 7rd	 (A2.1-23)

These outputs (response characteristics) are plotted in Figure A2.1.3 for

8 equal to 0.

a. Amplitude Response
	

b. Phase Response

Figure A2.1.3- Response of DFT to Sinusoidal Signal
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It is apparent from Equations (A2.1-22) and (A2.1-23) and Figure A2.1.3

that the response of the DFT to a sinusoid which is not in the center of the bin

will be less than unity in amplitude, and will introduce some phase.

We consider next the relationship between X  as obtained from one set

of samples (one record) of x(t) and the X  obtained from the next record, which

is obtained T seconds after the first. In Equation (A2.1-7) substitute kTs + T

x
k = 

4ej2nrB(kTs + T)

= Aej2nrBkTsej2nr

= Ae
j2nrBkTsej2-r(d + n)

= Aej2nrBkTsej2nd

since BT = 1 and ej2nn = 1.

Since the values of x  in Equations (P2.1-7) and (A2.1-24) differ only by

the term e
j2nd 

which does not depend on k, the resulting DFT's will differ

only by this factor. Thus the angle of X  obtained from the second record

will differ from that of the first by 2nd.

The implication of the above result is that any phase coherence which

the sampled signal possesses will be lost in the DFT operation if the signal

is not in the center of the band. If, however, an X  is observed which

changes phase angle linearly as a function of time but does not change in

amplitude, then it can be deduced that the input signal is a sinusoid of

f = f + TBde
r	 n	 2-r

where Ae is the change in the phase of X  over T seconds, that is from one

record to the next. A first order indication of a linear change in phase is



I
an equal phase difference between successive pairs of 

In 
's. That is:

e2-e1=e1-60

9 2 - 29 1 + e0 = 0	 (A2.1-26)

The test implied by Equation (A2.1-26) could be implemented quite easily to

search for constant frequency signals as processed by a OFT.

We consider next the case of a sinusoid which drifts linearly in

frequency as a function of time. That is, the instantaneous frequency is:

Wi = W  + it	 (A2.1-27)

where W is the drift rate in radian: per second. The corresponding

signal is:

x(t) = Aej(Wt2/2 + W
rt + e)	

(A2.1-28)

Three cases will be examined depending on the value of W.

Case 1 • Small W

We assume first that the instantaneous frequency is nearly constant

within the bin of interest over one record, of length T seconds. We express

this condition as:

-FT « B ^i W «
(A2.1-29)

In this case the frequency input is essentially constant over one set

of data. If that frequency is W r , the output Xn is approximately equal to

that given by Equation (A2.1-19).
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Case 2: Intermediate W

We start by assuming that the record begins at t = 0 so that the kth

sample is again taken at t = kT s . The sampled input signal is then:

xk = Ae3eej(WrkTs + A2T2/2)	 (A2.1,30)

and hence:

X = ^3e 
NE1 

a 
(2--A. + W k2)

n	 N	
k=0	

(A2.1-31)

The effect of the second term (due to frequency drift) in the exponent

is to shift each of the k complex terms in the sum by the angle A /2B2 N2

If this shift is small compared with 27rdk/N, we can neglect it, and we are

then back to Case 1. But now we are considering the case where this term is

too large to neglect. The summation in Equation (A2.1-31) is not tractable.

Our approach is to obtain an approximation by calculating X  for a number of

fixed values of frequency over which the signal drifts in T seconds, and

averaging over these X n . That is, since X  for a fixed frequency is given

by Equation ( A2.1-20), Xn for a drifting frequency is ap proximated by

j e M-1
Xn = M
	

E 
ejndm 

sine dm	 (A2.1-32)
M=O

Where:

dm = d i W	 MT	 (A2.1-33)0 2 n8	 1

As an example to illustrate this approach consider a signal whose frequency

drifts from fn (d = 0) att = 0 to f n + B (d = 1) att = T. Let M=3so

that the fixed-frequency X  are obtained for d = 0, 1/2, and 1. These

values are:

Xno = Aeia
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Xn2 - Aeje(0)

and the average is:

Xn = 0.33 + j0.21

This procedure was repeated for a number of values of M with the results

shown in Table A2.1.1.

	

M	 7Aej
e

	4 	 0.3017 + j0.2686

	

8	 0.2615 + j0.3348

	

12	 0.2492 + j0.3536

	

24	 0.2373 + j0.3713

	

100	 0.2284 + j0.3840

Table x!2.1.1 - Approximate X  for 0 < d < 1.0

The results approach an asymptotic value. We , shall accept the value

for M = 100. That is:

X = Ae je (0.23 + j0.38)

= Aeje0.44/58.80

This suggests that a drifting signal is definitely attenuated by a

significant amount if it drifts from center bin to an edge in one observation

time.

We next consider the case for a signal which drifts from the center of

a bin to a point part way to the edge (0 < d < a). The resulting approximate
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values of Xn were calculated by an averaging process paralleling that

suggested by Eq. (A2.1-32).- The resulting values of X  are given in

Table A2.1.2 for four values of a.

Drift Range Xn/Aeje

0 < d < 1.0 0.44 51 8.a°

0<d<0.5 0.79 4

0<d<0.2 0.96 1

0 < d < 0.1 0.99 8..

Table A2.1.2 - Approximate Xn for Varicus Drift Ranges

These results show that the DFT can accommodate a certain amount of

drift per record, up to perhaps 20% of the binwidth, without serious

degradation. However, a drift from the center of the bin to an edge clearly

produces a very significant attenuation in the DFT output. Clearly it is

desirable that the relative drift per record (compared with the bandwidth)

be kept small to maintain the basic system sensitivity. Two strategies are

available to keep the relative drift small. These are:

a. Increase the binwidth B

b. Change the center frequency of the bin, f n , as the
signal drifts.

The first strategy has the disadvantage that it increases the amount of

noise passed by the bin. The second strategy has the disadvantage that it

requires a method of forcing fn to track the drifting input signal.

Case 3: Large W

Next we consider the case in which W is very large. Specifically:
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This means that the carrier signal sweeps through the bin in a time which

is short compared with the record time T.

The problem is simplified by assuming that the response is due only

to the input while the carrier is within the bin (i.e. -1 < d < 1). This

is equivalent to assuming in Figure A2.1.3a that Xn = 0 when (dl > 1. In this

case Xn can be approximated by:

je M-1
Xn = ^ E	 e^ndm 

sinc dm 	(A2.1-35)
m= -M+1

The solution to Equation (A2.1-35) is easily found from the solution to

(P2.1-32) since the values of the X n contributions for negative m are just the

complex conjugates of contributions for positive m. The resulting value of

Xn for M=100 and-1<d<1 is

Xn = Ae je x 0.22

This result assumes that the time required for d to sweep from -1 to +1 is

just T seconds, the record length. The time required for the carrier to

sweep from a value corresponding to d = -1 to d = 1 is:

2B x 27	 47TB

T2d =	 ^	 = W
	 (A2.1-36)

If T 2 is less than T, the average value of X n is:

X = 0.2=' T2d Ae je
n	 T	 (A2.1-37)

2.76 BAe je	W > 47rB	 (P2.1-38)
W	 T

Hence the amplitude of the DFT output is reduced to as little as 22% of the

non-drifting case, and can be much less if the drift is quite rapid.
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an t = Qn 2 = a n 2 
= NOT 

= Q2

c	 s
(A2.1-40)

Response of the DFT to Noise

Next we consider the effect of the DFT on noise. We assume that the

input is Gaussian White noise with zero mean and power spectral density N0.

We assume that this noise is passed through an ideal bandpass filter of

bandwidth BT . The resulting bandpass noise can be written in the Rice

representation (Viterbi, 1966) as:

n(t) = nc (t) cos W 
c 
t + ns (t) sin W ct
	

( A2.1- 39)

where We is the center frequency of the bandpass filter, and n c (t) and ns(t)

are low frequency independent Gaussian random processes. The variances of

n(t), nc (t) and ns (t) all equal NOB T , and we shall call this variance a2.

The quadrature detection process used in the receiver yields the complex

low frequency (envelope):

x(t) = nc (t) + ins (t)	 (A2.1-41)

The kth sample of x(t) is

x  = a  + jb k	(A2.1-42)

where a  and b  are defined respectively as the kth samples of n c (t) and

n s (t). Since the original processes n c (t) and ns (t) are Gaussian, the

samples a  and b  are likewise Gaussian with zero mean and the same

da = vb = Q2
	 (A2.1-43)

if the complex samples x  is:

X = 1 
N 
E 
1 x e-j2nnk/N

n = 0,1,2,...,N-1	 (A2.1-,U)
n	 N k=0 k
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= N
E 1 ake

-j2nnkjN + jR N
E

1 IT 
k-0

(142.1-45)

	k^	 k-0

Since a-j2 nk/N = cos 
27rnk- jsin 

2Nnk
(A2.1-46)

Equation (A2.1-45) can be written as

X - 1 
NE1 (a cos 2nnk + b sin 

2nnk ) + j l NE1 (b cos 2nnk	 a sin 2nnk
n 

f^k=0 
k	 ^k	 k	 -` k	 ^I—)

(A2.1-47)
This result can be written as:

-1 N-1	 1N-1
Xn - N E ck + jN E dk	 (A2.1-48)

	

k=0	 k=0

where
ck = akcos Nnk + bks i n 2--y-

dk = bkcos 
2Nnk - 

aksin 
Nnk

Clearly ck and dk are Gaussian random variables since the sum of Gaussian

random variables is Gaussian (the cosine and sine terms are just constant

weights for any given k). Similarly the two sums in Equation (A2.1-48) are

Gaussian, and hence Xn is a complex Gaussian random variable. It is easily

shown that the mean values of ck and d  are zero. The variance of c k is:

ac e = E{(ak Cos 2
2Nnk + b k sin 2

2Nnk )2}

k

= E(a 2)cos22nnk + C(b ')sin' 
21nk

k	 N	 k	 N

= a
2 (cOS2 

27nk + sin2 27rnk )

	

TV —	 N

= 02 (A2.1-49)
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Since the ck are assumed to be independent over k, the variance of the sum

of the ck is the sum of the variances. Hence the variance of 
1 
times the

first sum is 0 2 . The same arguments apply to the second sum. In summary,

X  is a complex random variable whose real and imaginary terms are

independent Gaussian with zero mean and variance a 2 . Equation (A2.1 -4$) can be

written in polar form as:

X  = Rn CSC
	

(A2.1-50)

We review next the well-known (Papoulis, 1965) distributions of the three

ra::,'::m variables Rn , 8, and Rn2 = 2P

The random variable R  is Rayleigh,

1

z	 z
f(Rn) = R^ 

a-Rn J2Q ,	 0<R <oo,
— n — W.1-51)

The angle 8 is uniformly distributed.

f(@) = -	 -Tr < g < Tr	 (A2.1-52)

The random variable P, which is the power of X n , is exponentially

(or Gamma) distributed:

f(P) = 1 e- p/0
2

	(A2.1-53)

We now have the statistics of the output of the DFT when the input is

Gaussian noise. Next we turn our attention to the statistics of the sum of

a number of DFT outputs. This sum can be taken directly on the Xn , or on

the power P, if' a square law detector is first applied to the X n . Consider

the former case first.

We assume that the X  being sunned are independent complex Gaussian

random variables. Let the sum of M values of X  be called S.
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this sum PM.
M-1

P
M
	E P

M 
m=0 

m (A2.1-55)

M-1
8 - E Xn	 (A2.1-54)

nXO

The real and imaginary terms add but since these are independent and

Gaussian, the two terms are both Gaussian, with mean zero and variance Ma e .

Hence S is still a complex Gaussian random variable. Its amplitude, angle

and power are given by Equations (A2.1-51) - (A2.1-53) whei^e Q2 is replaced by

Mat

We next consider the sum of M independent values of power P. We call

Where the Pm are the powers which are to be added. They are exponentially

distributed as given by Equation (P.2.1-53). The mean and standard deviatim of

Pm both equal a2.

The sum of M independent exponentially distributed random variables is

known to follow the Gammia distribution (Papoulis, 1965).

M-1

f(PM)	 2M PM-- a- PM/a2
	

(A2.1-56)
a	 (M-1)!

where the mean and standard deviation of P M are:

E[PM] = M Q2	
(A2.1-51)

a 
M ' 

S02	 (A2.1-58)

The Gamma distribution becomes increasingly Gaussian-like as M

increases, that is, as the number of summed terms grows. This is as one would

expect from the Central Limit Theorem.
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Note that if the % in Equation (A2.1-55) represent signal power, and

hence are identical for each m, the total signal power is MP m. That is,

the signal power grow in proportion to M. On the other hand, the standard

deviation of the total noise power is growing as A, as Equj!tion(p,2.1-58)
shows.

Hence the ratio of the total signal power to the standard deviation of

the total noise power increases in proportion to X, whereas the SNR
increases in proportion to M if the summation is carried out on the

amplitude instead of the power. Thus it is more desirable to carry out the

summation over amplitude values if this is possible. Unfortunately, this

cannot be done if the amplitudes are independent and random, or appear to

be so because of the action of the DFT in the MCSA.

References

1. Papoulis, A., Probabilit	 Random Variables and Stochastic Processes,
McGraw-Hill, New York, 1965.

2. Peebles, P., Communication System Principles, Addison-Wesley, Reading,
Mass., 1916.

3. Viterbi, A.J., Principles of Coherent Communication, McGraw-Hill, 1966.

A1

-272-



r

Appendix AM

Polarization Synthesis

Given a desired type of polarization, as specified by the angles

d and y, what are the weighting factors needed to combine the outputs of

two orthogonal antennas in the form

z=K1 x +K2y

in such a way as to synthesize an antenna of that polarization?

In general, K1 and K2 are complex constants. Writing them in polar

form, we have

Z = IK11eiol x + IK21e3E)2 y

The value of d is the (specified) phase angle difference that a

signal will have between the x and y antennas. To optimize reception,

this phase difference must be cancelled, which gives the relation,

d +(U 1- p2) -0

We are free to choose any values of p 2 and p 1 , which satisfy this

equation, so let us choose for simplicity,

01 = 0 and p2 = b

The value of Y defines the relative magnitudes of the received

signals, in the form

4-tan Y	 1
We are free to choose any values of K 1 and K2 that satisfy this equation.

'	 Therefore let us also impose the condition that power be conserved by the

combining operation, or in other words,

IK112 + IK212 a 
1
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Solving these two simultaneous equations for JK 1 1 and 1K2 1, we obtain

1 K 1 1= cos -f

1 K21 = sin Y

Thus the required equation for combining the x and y outputs to match the

polarization type ( 6,-Y) is

Z = x cos Y+ y eis sin Y	 (A3.1-1)

From (3-1) and (3-2) we can obtain:

	

cos Y =	 ( xI
xl -+ 1 y 1

	sin Y =	 ( yl

x l 2  -+1y11

e36 = e(&- L)
Then substituting these measured quantities into equation (A3.1-1), we obtain

fi nal ly,

Z	 L'1--- x + 	 y e j	 (A3.1-2)

1	 + I y 1 2	 4 X I I -+ I y l

If the outputs of the x and y antennas are combined according to this

^quation, the result will be the same as if a single antenna that wds

exactly matched to the polarization type of the incoming Signal had been

used, regardless of the polarization type of the signal.

Effects of Noise

Thus far, the effects of noise have been neglected, for the sake

of simplicity. Noise causes the measured polarization type to have some

probable error, and therefore the synthesized polarization type does not

a
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exactly match that of the signal. Before discussing this effect

explicitly, it is interesting to note that equation (A3.1-2) reduces to a

nearly trivial equation in the complete absence of noise. If we write

X = I x l ej "

Y = Iy I e3,12-

Then,

Z =	 1	 [XI 2 e " + Iy I'ej-41 
a J( - l r}

x12 + iY12

Z = 1 IejA	 I x 1 2 + IY12
4X-17—+ ,  Y12

Z = xj 2 + IY1 2 eit'

The fact that the phase of Z is the same as the phase of x has no

particular physical significance, and stems solely from the previous

choice of 01 and 02 . The fact that the power in Z is the swn of the

powers in x and y stems from the conservation of power constraint

placed on IK1 1 and IK2 1 earlier. Thus we conclude that in the complete

absence of noise, the polarization matching method extracts all of the

available signal power, since

Pl = Z2 =x2+y2 
=Px+PY

Consider now the case when the signal to noise ratio (SNR) is small.

The point M on tha Poincare sphere in Figure 1 now marks the maximum

value of a probability density function on the surface of the sphere.

In order to increase the accuracy of the measured polarization type, it

is necessary to average the weighting factors K1 and K2 over time.

C r l
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The magnitudes of the factors then become

I K I	 1x1	 1I
1/[xT+  IYI2 1

I K2 I 
=(/Tx

 2 

+ IyI

1 y !	

x )I 

Note that it is not exactly correct to factor out the denominator of

these expressions, or to regard it as the average power. To do so

implies interchanging the order of averaging and computing, which leads

to a somewhat different result.

An average phase difference between the x and y antennas must also

be calculated. This could be done by simply averaging their phase

difference over time. A statistically better average is the phase angle

of the complex correlation coefficient between the two antenna outputs,

given by

uxy	
I	 YI2	

(0 < (uxy l < 1)

Since the denominator of ;; xy is real, it does not affect its phase angle.

Thus

-/ XY* = tan-, Im x
Re (xy*)

This is a weighted average phase angle, where the weighting factors are

the product of the amplitudes. This may be seen by considering the polar

r	 coordinate form of x and y.
,a.

Let x = rx eJax
`^	

_	 -jay



f.
r

If we have N time samples of x and y, then
N

^—= 1 1, rxi ryiej
 
(°t xi - 

ayi)

from which the weighted average effect may be seen. When the product

r
xi yi is large, its corresponding phase difference will be weighted

a	 heavily. That product corresponds to cross power, so in fact instantaneous

cross power is the weighting factor.

Summarizing these results, in the presence of noise we combine the

i

	 outputs of the x and y antennas according to

Z = K 
1 
x + K 2

where

x
K1 =

(T_X 111 
+ y

( A3.1- 3)

	

K	

e_(	
J6

	

Z 	 I x^ + lyl 

	

g	 tan-1
	 IM(*}

Re( x"y^

The factors K 1 and K2 emphasize the antenna that has the strongest signal,

and hence the best SNR. Since the time averaged information must be used

to combine even the first signals, a time delay must occur before the

combined output is available. This may be accomplished by recording the

signal, or by appropriate data processing. However, it will turn out that

the final expression for generalized coherence to be derived below may be

computed continuously in quasi-real time, using "pipeline" techniques similar

to those used in real-time FFT calculations.

The above results may be generalized to any two orthogonal antennas.

The fact that x and y oriented linear antennas were being used only.affects

-	 i
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the definition of the polarization angles Y and d on the Poincare sphere.

Horizontal linear polarization is chosen by convention to be the origin of

the coordinate system. However, one could with equal validity choose any

other point (such as left-circular) as the ori gin, and then define new

polarization angles exactly analogous to d a-A r , relating the

amplitudes and phase angles of the two new antennas. The angles d and

Y are only intermediate variables, and once they are eliminated by

substituting their values in terms of the observable quantities into

equation (A3.1-3) , their meaning and definition become irrelevant. Thus

equation (A3.1-3) is true for any two orthogonally polarized antennas. For

example, if left and right hand circularly polarized antennas were used,

x and y could simply be replaced by R and L.

-278-



f.
+.	

endix

Coherency Matrix and Degree of Polarization

,

I

	

	

A matrix known as the Coherenc y Matrix contains all of the polarization

information about a signal (Ka, 1962 and Beran et al., 1964). It is

[-
*Y

X* IXY
c  

where x and y are the complex output signals from two orthogonal receiving

antennas. The total signal power is

Ps = trace [cj = -X-XT  + yyF

The degree of polarization is

m=	 1 _	 4 det JSL
(trace [c])2

1 _ 4{xx* YY* - xy* z*vi
( x^ + Yyy 2

Using the fact that xx^ = Px , yy* = P, and xy* x*y = PXY	 have

M
4(PXPy - PXY )

	

= 1 -	 --
(Px + PY)

This may also be rearranged to

M - P + F— FPx PY)2 + 4PXY

	

x	 y

t.

is

i
i

i

{
i
i
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Appendix AM

Effects of Noise on the Measured Degree of Polarization

The measured degree of polarization is affected by noise in two

distinct ways. The first is that it has statistical fluctuations, and

therefore must be computed using coherence matrix values that are

averaged over a significant length of time.

Degree of polarisation behaves like a correlation function in that

if only one time sample is used, its measured value will always have a

value of 1. As more and more time samples are used, its measured value

will approach the true value, from above (Sendat, 1958; Lee, 1970;

Otnes, et al, 1978). This behavior is illustrated in Figures A3.3.2 and A3.3.3

for various signal-to-noise ratios.

The probability density for the degree of polarization is shown in

Figure A3.3.1. These curves were computed by adding signals to random noise

in such a way as to simulate the actual operation of experimentally measuring

the degree of polarization. The curves apply to a single antenna which is

matched to the signal polarization. Each curve is a smoothed histogram of

5000 total samples. The integration time used for these curves is 25

data points.

t	 The second effect of noise on the measured degree of polarization is

that receiver noise cannot be directly distinguished from unpolarized
r=_

signals. A strong partially polarized signal may have th ! 3 same measured

degree of polarization as a weak polarized signal. This effect manifests

itself as a measured degree of polarization that is always lower than the
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When the True Degree of Polarization is 1.0.
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E	
d;

	true degree of polarization.	 h	 NR is_	 g e	 p	 at on. When the S	 .. large, the measured and

true values are the same, and when the SNR is very small, the measured

value is nearly zero.

This effect may be quantified as follows: The received signal

powers in the two antennas are

Px = Ps ( m + m cost ^ )

Py = Ps ( 1-m - + m cos t ( ^2	 } )

The total received signal power is, after simplification

Pr = P  + Py = Ps

To this we add the receiver noise, in the form

Ps

Pn 	 SNR

Since the receiver noise power in each receiver is the same, we add half

of the total to each. After the polarization type has been matched, the

cos t factor is 1, so the total received power in the polarization-matched

antenna is

If we lump together the two noise-like components of the power (receiver

noise and unpolarized signal), and regard them as being caused by some

other unpolarized signal, then the original unpolarized power of that

signal must have been twice that measured (since any antenna receives

only half the unpolarized power). Thus

1
Punpolarized = Ps ( 1 - m + 31 - )

_
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The polarized component is mP s , so we can compute the measured degree of

polarization m', as

m ,

	

	 r in on inal signal
total power In original signal

m' _	
mp

Ps (I -m+——+m)

m'	 m (	
SNR	 )

This effect is illustrated in Figure A3.3.2, as the asymptotic values

approached as N	 'If it were desired to measure

the true degree of polarization accurately, one could measure the SNR

separately (by comparing the total measured power at the time when the

signal is sought, with a globally averaged total power), and then invert

the above relation,

SNR

This does not become infinite for small SNR, because m' is also small in

that case. In the limit both SNR and m' become zero simultaneously, leaving

m indeterminate. This just reflects the physical reality that you cannot

measure the polarization of a signal that is not there.

Although in principle one could correct the measured degree of

polarization for both the finite-sample effect and the receiver noise effect,

it is not necessary to do so for the application at hand. First it should

be pointed out that the two effects are in opposite directions, so that

they tend to partially cancel. Second, the measured degree of polarization

is always a monotonically increasing function of the true degree of

polarization, so that a thresholding operation may always be carried out

successfully, even in the presence of the two above-mentioned effects.
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8p npe di x AM

Linear Phase Invariance Property of Coherent Power

To demonstrate the linear phase invariance property, let the phase

of the signal z advance linearly by an amount AO radians per second. Then

if we explicitly write out the averaging process for coherent power,

N-1

Pc	N-- 1	 i E1 z i +1z i

and change the z's to polar coordinates,

z i	 Ai ej
 ( 0 +i oA )

where 0 is the original (arbitrary } phase angle of z.

Then	
N-1

P	
1	 Ai eJ( 0 + i ©O 

)A i+1 e- j( 0 + (i + 1) dO )

c	 N-1	 i =1

1	 N-1	 _f^O
Pc	 N-1	 i1	

A i A i +1 e

N-1

Pc -
	 ^'Fi	

a-iAO	 F, Ai 
A i

+ 
1

i=1 

N-1
Pc	 -^-^-- 

i=1
	 AiAi+l

Since this is independent of A0 , we see that the linear phase shift has

no effect on the outcome. Note, however, that any other phase shifts

(non-linear or random) would cause P c to become smaller, thereby

illustrating its sensitivity to phase coherence.
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Apendi x AM

Generalized Coherence Mathematical Details

From Equations (3-5) , (3-9) , and (3-10), we obtain

1	 N-1
GCV =	 +	 I N -T

1=1 zi+lzi* I	 (A3.5-1)

where	 1	
y ^'

m= x—Py 
x -

z  = K 1 x i + K2yi

and K1 and K2 were defined earlier in equation (3-5). Substituting for

the z i values, the summation term becomes

N-1
Summation = E ( K 1 x i+l + K2y i+1 ) 

(Kl*xi* + K2*yi*)
i=1

N-1
ZJl ( IK,llxi+lxi* + K21 1*y i+l x i * + K1K2*xi+lyi*

+ (K2 1 2y i+lyi *)	 (A3.5-2)

From equation (3-5), we obtain

^K ^

2 = 1 E ^-	
xi

	1 	
^ i=1	 xi l2 + ^yi'2

which may be regarded conceptually as the power in the x antenna, normalized

to the total power; call it Pxn.

^2 a FWIE	 lyi12IK2 	 i=1 A xi	 + yi 2

which may be regarded conceptually as the newer in the y antenna, normali

to the total power. Call it PYn.
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KK*- [

-ffI
JIVfI-X i I 

1yt1	 1 E	 'Xi	 eJ6

	

2 1 - 
	

2 + I
y iJ 2	i'1 xi 2 + (yi l2

which may be regarded conceptually as the cross power between the x 	 {

and y antennas, normalized to the total power, with a phase lag of d{

Call it P	 exyn-3 d.

K K = 1 N	 I xi'	
i N ---IyiI -- a -J S*

	

1 2	 N i=l'xi 1 2 +1yi 1 2	 mil4 xi12+1yi12y'=

which may be regarded conceptually as the ratio of the cross power 	 ;^ E

between the x and y antennas, to the total power, with a phase lag

of d	 Call it Pxyne 
Jd	 Then the summation becomes

N
Summation = E F_Pxnxi+lxi* + Pxyne Jd yi+ixi*

i=1

	

+ Pxyne jdxi+lyi* + Pynyi+lyi* I	 (A3.5-3)
The first term within the summation is the autocorrelation function

of the signal in the x antenna, weighted by the normalized power in the

x antenna. The last term within the summation is the autocorrelation

function of the signal in the y antenna, weighted by the normalized

power in the y antenna. The middle two terms within the summation are

time-shifted cross-correlation functions between the signals in the

x ar.d y antennas, weighted by the normalized cross power in the x and

y antennas. The two middle terms differ in that one has the time lag

in x, and the other has it in y, so that both are included in a

symmetrical way. The two middle terms also differ in their phases.

Due to the polarization type of the signal, the phase of x is expected

-288-

1



to lead the phase of Y by the angle d 	 This phase difference will on

the average be cancelled by the e^3a factor for y, and by the a

factor for y*. The extent to which this phase difference cancellation

occurs is a measure of the phase coherence of the signal both in time

and between the two antennas.

Thus we see that the terms within the summation of equation (3-10)

represent all of the possible time-shifted correlation functions of the
's

signal, with each correlation function being weighted by its importance

relative to the particular signal being received.

The multiplicative factor outside of the summation of equation

(3-10) takes into account all of the possible non-time-shifted

correlation functions of the signal, namely

N
px E xixi*

I

N
P	 N
y

E yiyi*

i=1

1
N

P	 =
4	 N

E x y
i	 i

i=1

In summary, the generalized coherence expression involves all the

possible correlation functions of the signal. The separate effects of

polarization and time coherence lose their individual identities, and

thus generalized coherence may be regarded as a fundamental characteristic

of the signal itself, apart from the way in which it is received and

-	 measured.
t

1	 The correlation functions in equation (3-12) are merely generalizations

of those found in the coherency matrix discussed earlier. This leads to
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the suggestion of a Generalized Coherency matrix,

[GC] - a^x T yY T
xT yY;T^

where T is the time shift of the correlation function. When T = 0, this

matrix reduces to the coherency matrix, which as stated previously

completely defines the polarization of a signal. When t f 0, this matrix

completely defines the time coherence properties of a signal. Thus the

Generalized Coherency matrix completely defines both the polarization and

time coherence properties of a signal.
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Appendix AIJ

Generalized Cohere" Statistics

Test cases showed that GCV is insensitive to the distribution of

signal power between the two feed antennas, so all simulations added

the signal to only one antenna, and the signal -to-noise ratio is

therefore defined to be that in a polarization-matched antenna. The

actual operational SNR is always lower than that, since the other

antenna contributes an equal amount of noise and no additional signal.

It is difficult to define a SNR which takes this polarization effect

into account satisfactorily. If one simply takes the ratio of total

signal power to total noise power ( adding powers arithmetically), one

obtains a SNR that is one half of that in a single matched antenna.

On the other hand if one were to add together the output power signals

from the two antennas, using simple square law detectors, the SNR would

be ^ less than that in a single matched antenna. The definition used

here always underestimates the performance of GCV relative to total power

detection.

In Figure 3.5	 the open circles are the simulation outputs of 25

seconds integration on the sum of the powers of the two feed antennas. The

solid line is the theoretical locus of these points, representing a SNR

improvement of five, due the integration over 25 data points (i.e., J25 - 5).

The plus signs are the simulation outputs of GCV, computed over the sane 25

data points. The dashed line is simply a smooth curve drawn through these

points.

t
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For low SNR, additional data points were obtained for Figure 3.5 from

the simulation probability density curves shown in Figures A3.6.1, A3.6.29

and A3.6.3. The points were obtained using a relation:

OUTPUT SNR - (MEAN VALUE-, AT DESIRED SNR) - (MEAN VALUE, AT ZERO SNR)
STANDARU ULVIATION, AT ZERO SNR

The power points are shown as solid circles, the GCV points as letter X's, and

the square of GCV as solid triangles. Sind the simulations for probability

density involved a much greater number of total data points (5000) than did

the simple comparison simulations (25), the experimental error is much smaller

in the former case. This explains why the points obtained from the power

probability density curves fall exactly on the theoretical curve, whereas the

others exhibit a scatter.



Appendix AM

The Possibility of Truly Coherent Detection

Generalized coherence does not require knowledge of the exact signal

frequency within an MCSA output bin, because of its phase invariance

property. The one remaining piece of information that is not used by

generalized coherence is the phase angle of the degree of coherence

(i.e., the phase angle of the complex autocorrelation function). This

phase angle is in fact the average phase change per data point (i.e., the

linear phase term). The offset frequency from the center of the bin is

4IL zz	 (since f = d^ ), in units of binwidths. In principle,
IT

one could compute Lu zZ 	after taking the polarization information into

account, and then use it to apply a phase correction to the signal that

compensates for its frequency within the MCSA bin. The procedure could

be iterated if necessary, by computing a new,Lu
zz

 after the first

corrections had been applied, and repeating the process. This would

presumably permit a truly coherent detector to be used, in place of

that portion of the generalized coherence that calculates IEzi+Izi *1 .
N

Instead we would compute Iuzz I I E	
z i l	 where	 IuzZI now

i=1
serves as a measure of the coherence of the signal.
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Appendix A3. 8

Theory of ANOVA

Analysis of variance is deeply rooted in the history of

statistical methodology (Cochrane and Cox, 1962, and Scheffe, 1950) and

it is a prime tool for the handling of data obtained from designed

experiments. As its name implies, it involves the systematic parti-

tioning of the total variation in specially obtained data sets. The

partitioning is done in order to assess the contribution each designated

source of variability has on the total variance.

The form of analysis of variance that is appropriate for the SETI

data matrix is the taro-way ANOVA with cross classification. The cobs

of the data matrix represent the FREQUENCY in Hz, while the rows represent

the TIME in seconds. Cross classification is obtained by having at least

two observations per matrix cell. This "pseudo" set of replicated obser-

vations (Sec. 3.5, ANOVA, Performance) is necessary for the calculation of

an interaction effect, and an interaction effect is necessary for the detection

of certain types of signal. So, to consider the most general class of signal

types, an r x c matrix of time vs. frequency, with n observations per cell

will be the format for the analysis of variance done on the data.

Let Yijk represent the observed response of the k th replicate to the

i th level of the row treatments and the 
3th level of the column treatments.

Stated in a more physical fashion, Yijk represents the calculated (observed)

polarized power of the k th replicate at the i th time period and the Jth

frequency.
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Each observed response, Y ijk can be represented by the following

model:

Yijk - u + Pi + Yj + ( PY)ij + e ijk	 (A3.8-1)

where i = 1,...,r and r is the number of levels of the first factor (time);

j = 1,...,c and c is the number of levels of the second factor

(frequency);

k - 1,...,n and n is the number of replications for each row x column

combination;

while a is the overall mean response, which, for this problem, is the

average power. 
Pi 

represents the effect of the i th level of the first factor

averaged over c levels of the second factor; (the i th time interval response

values averaged over all frequencies).

Yj represents the effect of the j th level of the second factor

averaged over the r levels of the first factor (the jth frequency averaged

over time).

(PY) ij represents the interaction between the i th level of the first

factor and the j th level of the second factor (the interaction between

the i th time (second) and the j th frequency).

Eijk represents the deviation of Y
ijk from the population mean

response for the (ij) th population.

To demonstrate how the total sum of squares can be partitioned

into the sum of squares attributed to row and column and interaction

effects, the following mathematical discussion is presented.
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Consider the deviation obtained by subtracting the mean p in (A3.8-1)

from Y ijk , and substituting the following point estimates for the

parameters:

A-	 *

tijk - Yijk - Yij.
The following expression for the partition of the total deviation about

the mean:

+ (Vf ij* - Vi.. - V.i. + ^...) + (Yijk - Vij .) 'A3.8-2)

is obtained.

Three tests of hypothesis can be realized by looking at the computed

F-ratios for rows, columns and interactions. For a given a-level (a

prespecified risk) the critical value can be found for the appropriate F-

distribution. The null hypothesis of no-signal present is rejected if the

computed F-ratio for rows, or columns or interactions exceeds its critical

F-value.

The choice of a, which is the risk allowed in rejecting the null

hypothesis, Ho , even though it be true, can be made as small as desired

* The dot (-) indicates summation over all values of the index replaced

by the dot; i.e.,

1
^••• - n^ J1j-1k-1 Yi3k

e	 -299-
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(Type I error) However, a very small a will result in a large Type II

error, called B. 0 is the probability of accepting the null hypothesis

when it is false. The relationship between Type I and Type II errors is

indicated in Table A3.8.2.

DECISION

ACCEPT	 REJECT

I.-

Ho
NO a

TYPE I
ERROR ERROR

TYPE II NO
ERROR ERROR

HYPOTHESIS

H1

Table A3.8.2 - Type I and Type II Errors

For the detection problem, a represents the probability of affirming

the presence of a signal when none is present; i.e., a FALSE ALARM. 0

represents the probability of MISSING A SIGNAL when one is present. A

trade off between these two types of errors is always present in any

statistical hypothesis testing. A decrease in one type of error results

in an increase in the other type of error, for a fixed number of observations.

Usually, a is preset at some tolerable level, and the value of B is

determined for various alternative hypotheses. The complement of S, namely

0 - 8) is called the power of the test. Plots have been determined
(Chemical Rubber Co., 1%8) showing the power of ANOYA for given a against

various alternative hypotheses. The alternative hypotheses state that a signal

is present. Obviously, the stronger the signal the higher the value of (1 - E),

and thus the greater the likelihood of its being detected.
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Appendix A3.9

ANOVA Performance

Exp2rimental Conditions

I.	 All experiments were carried out at nine signal-to-noise ratio (SNR)

levels, starting with 9 db and decreasing to -12 db in decrements of

3 db. The SNR is represented in the figures by the vertical axis.

The horizontal axis represents the row, corm, or interaction

variance ratio depending upon the type of signal being analyzed.

t
	 2.	 Four types of signals were consistently analyzed. They are:

k	 (a) non-drifting narrow-band signals,

(b) broad band pulsed signals,

(c) slowly drifting narrow-band signals, and

(d) drifting narrow band signals.

These four types represen't orobable forms of a meaningful ETI

signal, and are diverse enough to trigger one (or more) of each

type of hypothesis provided for by ANOVA.

3.	 Three factors that affect the quality of detection of signals by

ANOVA were examined for each of the four signal types of all

specified SNR. These factors are:

(a) width of signal

(b) frequency averaging

(c) number of bits used to represent the signal power (quantization

level)

4.	 The data for all combinations of the three above-mentioned factors

were each analyzed six times with six different noise fields, and

the averages of the six results are shown in Figures A3.9. to A3.9. .
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Discussion of variance Ratio vs. F-Ratio

The use of the expression "variance ratio" instead of the familiar

F-ratio is in recognition of the fact that the distribution of the noise

power data is exponentially distributed rather than Gaussian, hence the

ratio of the squares of these random variables follows some distribution
*

that is not yet known.	 Until the theoretical distribution is established,

critical values appropriate to the F-distribution for various a-levels can

serve as conservative thresholds for the hypothesis tests. Empirical

evidence of the distribution of the variance ratio for the noise data,

seems to support this assumption.

Description of Figures

Figure A3.9.1 depicts the representation of four types of signals in

the noise field matrix.

Figures A3.9.2(a-d) demonstrate the sensitivity of ANOVA as a function

of signal width. Widths of 1, 2 and 4 Hz bandwidth are superimposed upon the

noise field according to the signal type pattern. As expected, an increase

in signal width in general improves the detestability as is evidence+

by the larger values of the variance ratio. In particular, Figure A3.9.2(a)

depicts the response of ANOVA (as represented by the column variance ratio)

to a non-drifting narrow-band signal. If a variance ratio of 1.3 represents

a critical value, a one-Hertz signal would be detectable at -1.5 db, a

* The derivation of the distribution of the variance ratio for exponentially

distributed random variables is being investigated (Sogliero, 1980).

L
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two-Hertz signal at -3 db, while the four-Hertz bandwidth signal would be

detected a. -6 db. It is understood that the signal is present the full 	 III'
20 seconds.

Figure A3.9.2(b) shows a plot of the raw variance ratio for a broadband

pulsed signal. The signal has a bandwidth of 40 Hz and lasts for 1, 2, or

4 seconds. Here the effect of signal width is even more striking than in

Figure A3.9.2(a). If a variance ratio of 1.5 is considered as the threshold, a

1-second pulse would be detectable at abort -2 db, a 2-second pulse at about

-4 db, and a 4-second pulse at about 5.5 db.

Figure A3.9.2(c) shows the plot of the column variance ratio for a

slowly drifting narrowband signal. While the general trend remains as

in A3.9.2(a and b) the increase in detectability is not as great due to the

splitting of the variation in the data between the column and interaction

sum of squares. Nevertheless, the improvement with signal width is

sizeable.

Figure A3.9.2(d) shows the plot of the interaction variance ratio,

the term most logically suited for the drifting narrowband signal.

Unfortunately, ANOVA fails to pick up the 1-Hz signal at any SNR. If

the matrix were square the results would be better. For signals of

2-Hz and 4-Hz bandwidth the results are better. However, for this

configuration of matrix size and type of signal, ANOVA does not do well.

Figures A3.9.3(a) to A3.9.3(d) show the effect of frequency averaging

upon the variance ratio. In Figure A3.9.3(a), a non-drifting narrowband

signal shows consistent improvement in its detectability as a result of

increased frequency averaging. The improvement occurs as a result of the

smaller residual variance brought about by the averaging. In general,

I
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the residual variance is reduced by a factor of 11N, where N is the

number of frequencies averaged. For larger time x frequency matrices,

an even greater improvement in detection might be expected.

A broadband pulsed signal displays a more complicated response as

reflected in the row variance ratios plotted in Figure A3.9.3(b). While

the 8 Hz averaging is highly beneficial for SNR > 0 db, a lessening of

its effectiveness is detected at SNR < 0. In fact at -12 db, although

mostly noise effects dominate, the 8 Hz averaging fares worse than either

2 or 4 Hz averaging.

Figure A3.9.3(c) depicts the effect of frequency averaging upon a

slowly drifting narro band signal. Here, as in A3.9.3(a), the effect of

averaging is highly beneficial, with 8 Hz averaging being consistently

better than the other averaging levels.

Figure A3.9.3(d) shows how the drifting narrowband signal is improved

by frequency averaging.

As was shown in Figure A3.9.2(d), the rapidly drifting signal is most

difficult to detect for the matrix size specified--a square matrix being

optimal.

Figure A3.9.4(a-d) shows the effect of bit quantization in the

generation of the noise field. Quantization is a necessary outgrowth of

the discretization of the data. The level of quantization refers to

the number of bits that are available for the algorithm processing.

For the simulation studies 2. 4, 8 and 10 bits are used.

The use of 2 bits implies that the observations of the noise field

are represented by 4 numbers only. This represents the number of

intervals allowed in the partitioning of the exponential distribution.



It is apparent that some information is lost at this level of quantization.

In (Chen, 1980) the loss of such information as a function of bit size is

explored. Different scale parameters for adjusting the variance (of the

exponential distribution) to the word length in order to minimize the loss of

information, are presented. These values are used to adjust the quantization

levels of the clipped exponential distribution.

Figure A3.9.4 (a-d) reflects the results of quantizing the data of

exponentially distributed noise pulse signal to bit values of 2, 4, 8 and 10.

The degradation of the detectability of the signal at low quantization levels

is apparent. A gradual improvement results as the bit size increases. For

bit size of 10 the curves are almost identical to the non-quantized values.

Figure A3.9.4 (d) shows that quantization does not improve this signal type

possibility of detection. For adequate performance of the ANOVA algorithm,

eight bits are reconnended.
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I do loathe explanations,

--Sir James Matthew Barrie,
My Lady Nicotine

Appendix A3.10

Carrier Wave Detector Weighting Factors and Approximate Detection Statistics

Amplitude Weighting and Signal Distribution Models

The weighting procedure described below is a way of applying

techniques of the Radon Transform (Radon, 1917) to the signal extraction

problem at hand. Since it allows a signal to be picked up in a continuous,

1 4 near fashion, it is in some respects a generalized digital version of the

analog, delay line video detector described in the CYCLOPS Report (1973,

pp. 132-133). In general there are three potential signal distribution

modes that could be used to determine weighting factors: the delta-function

model, which uses the value in the frequency bin whose center falls within

the ray; the uniform distribution model, which uses weighting factors

proportional to the area of each frequency bin contained within the ray;

and the sine distribution model which uses weighting factors proportional to

the area under the sine curve.
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The MCSA impresses a sinc weighting function on the incoming data; there-

fore, the delta-function model is not exactly appro priate for this situation.

The most obvious choice is to use exactly the same model as the MCSA;

however, the following analysis of the difference between the two models

seems to indicate that little is gained by going to a sinc model, and a

t,
uniform model is much easier to implement.

Consider a single time-frequency "picture element" (pixel) of the

array with unit length and unit width. The percentage of the pixel
i

value (pv) contributed to the total ray sum depends upon the way the

pv is distributed throughout the pixel and the way in which the pixel

is overlapped by the ray. For the uniform model the percentag e is

just that portion of area inside the ray, which in Figure A3.10.1 is just

1 - x = x; the contribution to the ray sum is x times pv.

Consider the case in which the weighting is by the sinc function

which is, by definition (Bracewell, 1978),

sinc x =	
sinnx
nx

And, suppose the pv is distributed over the pixel so that the zero crossings

occur at zero power, corresponding to the corners of the pixel, as illustrated

in Figure A3.10.2. Since we wish to include the central lobe in the pixel, our

purposes are served best by considering sinc (2x - 1). In the sinc model the

contribution to the ray sum made by a given pixel is given by f(x) times pv

where f(x) is	 x

f(x) _ ^ 	 - 1) dt	 (A3.10-I)

Isinc(2t - 1) dt

Thus, f(x) is an appropriately normalized fraction of area under the sinc

function.
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Fiaure A3. 10.1 - In the uniform model the contribution to the ray
sum is just that portion of the pixel which lies

inside the ray multiplied by the pixel value. The

variable x represents the fraction of pixel over-
lapped by the ray.
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For purposes of calculation it will be useful to simplify (A3.10-1)

First, observe the defining relation for the Sine Integral function

(Abramowitz and Stegan, 1964).
x

Si(x) _	 sin t dt
0 t	

(A3.10-2)

By (A3.10-2) it is straightforward to obtain
x

Si(7x) = n S sinc t dt,	 (A3.10-3)
0

and	 2x-1
sinc(2t - 1) dt = 27t Si(n) + sinc t dt (A3.10-4)

For 0 < x < 112 the integral on the right side of (A3.10-4) is negative

it is useful to take that into consideration explicitly; thus

sinc(2t - 1) dt = 1 Si(Tr) - ZTr Si(Tr - 2Trx), 0 < x < 112

I Si (Tr) + I Si (2Trx - Tr), 112 < x < 1
(A3.10-5)

	

We now observe that the denominator in (A3.10-1) is 	 Si(Tr) and reririte

f(x) in terms of the tabulated Sine Integral function,

1	 1	 Si(Tr-2Trx),0<x<1/22 - 2Si n	 — —
f(x) =

1+	 1
MOT Si(27x - Tr), 112 < x < 1,	 (A3.10-6)

where Si(n) = 1.8519370. 	 (A3.10-7)

The values for f(x) were computed for 0 < x < 1 and were used to

compute the per cent of the pv included in the ray sum which is given by

f(x) times 100. In Figure A3.10.3 the results are plotted as a function of the

fraction of overlap x. The straight line represents the percent of the
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pixel value included in the ray sum for the uniform model and is included

for comparison with the graph for the sinc model.

A moment of thought reveals that the results of Figure A3.10.3 hold

even if the ray is not parallel to the pixel, provided x is normalized to

represent the fraction of overlap for the more general case.

In the case where the pv is distributed over the pixel as indicated

in Figure A3.10.4 so that the zero crossings occur at half-power, corresponding

to the midpoints of adjacent pixels, the function f(x) is modified to

)
	rsinc(tf(x = 
	 - 1/2)dt
 

So sinc(t - 112)dt	
(A3.10-8)

In terms of the Sine Integral function,

1 _	 1	
Si(7T/2 - 7rx), 0 < x < 112

2	 Si n/	 — —
f(x)

1+	 1
2	

2Si r,/2Si(nx - n/2), 112 < x < 1	 (A3.10-9)

where

Si(n/2) = 1.3707622	 (A3.10-10)

This "second" sinc model is shown in Figure A3.10.5 (dashed line) where it can

he compared with the uniform model and the previous sinc model. Observe

that for the second sinc model there is very little deviation from the

uni form.

The weighting function used by the MCSA is most closely matched by the

second sinc model and therefore, seems to be the most logical choice. However,

since the difference between it and the uniform model is so slight it is

recommended from the standpoint of the implementation that the weighting

factors for the ray be based on the uniform model.
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The special way in which the Radon transform (Radon, 1917; Gel'fard,

1966) is applied to the GCV numbers or power spectrum for signal enhancement

and linear pattern selection has been shown (Deans, 1979) to be equivalent

}	 to a transform known as the Hough transform to people in the area of

pattern analysis and image processing. This transform grew out of early

attempts to implement automatic and rapid methods for analyzing particle

{	 tracks in bubble chamber photographs (Hough and Powell, 1961; Hough, 1962;

Franck, Hough, and Powell, 1963). The basic idea is to designate the

frequency-time space by the rectangle xy coordinate system, see Figure A3.10.6.

Collinear points in this space may be characterized by the line

P = xcos 6 + ysin 8

This approach is used to map collinear points in the xy plane to single

cell regions in a space with rectangular coordinates (8,p) which we call

parameter space (see Figure A3.10.6(b)).

Calculation of Ray Amplitude Factors

Usually, the discrete implementation of Radon transform is performed

using line integrals or ray suns, where the rays are equal in width to the

width of the pixel. Implementation constraints here dictate that the ray

widths vary as a function of angle. (The horizontal distance is kept

constant and equal to one unit as illustrated in Figure 3.9.) A method

^-	 is presented for computing the ray factors which does not require that the

ray width be the same as the pixel width. A sample calculation is given to

illustrate the method for finding the ray factors associated with a given

;.	 cell or pixel.
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Given a unit cell	 (or pixel) at location (i+1,J+1) in tine grid

indicated in Figure A3.10.7 it is desired to find the line factors and racy

factors associated with the cell.	 The line factors may be found directly

from the Radon transform of the characteristic function

1	 whenever (x,y) a Ci+1,+1

F(x,y) a X(i+1,j+1)
!	 0	 elsewhere

In Figure A3.10.7 the line factor is just the length of the line segment AB

(shown in inset).	 The ray factor is the area of the shaded region.	 Once

the line factors are determined it is easy to calculate the ray factors

by adding areas, see Figure A3.10.8.

The line factors for C	 are found from the Radon transform
i +1,j +1

formula

fj	ff X(i+1,3+1) d (O
k - xcos0 - ysin0)dxdy

where the integral over the domain D reduces to an integral over 
Ci+1, 

+11

We now give a prescription for finding the various factors. Details
i

of derivation may be found elsewhere (Deans, 1979).

(1) Given O and
Pk:

Calculate p = p ij - Pk - icos0 - jsin0

If p is not in the region 0 < p < sinO + cosO the line does

not pass through the cell and the line factor is zero.

(Z) Use Table A3.10.1 to calculate the line factors, fk.

(3) Use Table A3.10.1 to calculate the ray factors, rk.

(4) Once the ray factors are calculated there are various cases

to consider in order to find the contribution made by the cell

under consideration to the total ray sum for various rays.
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Region for p line factor f  ray factor r 

0<p<	 sine— p
sine cosh

—	 p?
sin 20

sine < p < cos8
1 2psine - sin26

cose sin 20

cos8 < p < sin8 + cose
sine + cose - ^^ 2p(sin8 + cose)	 -	 (1 +	 2

sin 20sine cose

Table A3.10.1 - Line and Ray Factors



Pf

t

For the ray width equal to unity (same as cell width) there are only two

cases (a) and (b), illustrated in Figure A3.10.9.

(aj Cell i,j contributes to ray sum S k and Sk+l . The contribution

to Sk is just the ray factor rk for the line ik . The

contribution to Sk+l is one minus the ray factor, 1 - rk.

(b) In this case a contribution is made to Sk, Sk+l and Sk+2.

The contribution to Sk is rk . The contribution to Sk+l is

rk+l - rk . The contribution to S k+2 is 1 - rk+l.

A sample calculation is shown for the indicated cell in Figure A3.10.10.

Calculation for C(21,7):

Step 1:	 C(21,7) contributes to rays 22 and 23. 0 = 14.040

P
k p22 = 22cosO

P = Pk - 20cos0 - 6sin0 = 21.343 - 20.858

p = 0.485

Step 2: Contribution to ray 22:

2psin0 - sin20
r	 `222 	 sin'O	

= •315

Contribution to ray 23:

r23 = 1 - r22 = .625

Phase Factors

Overview

There are two separate phase corrections that must be applied in

order to properly combine adjacent time-frequency cells into the generalized

coherence value along a given line. One of them is due to the phase of the

signa, itself, and the other is caused by phase shifts that occur in the

I:
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Figure A3.10.9 - Contributions made by Ray Factors to Ray Sums
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MCSA. The two corrections are independent, and can be made separately.

Signal-Caused Corrections

From equation (A.28) we can write the polarization-matched signal

as
z. = A

i
 e3(Trfi2 + 2nfo i + tai)

^ 

where

f = frequency drift rate (Hz/sec)

fo = initial frequency (when i = C)

0  =
initial (arbitrary) phase angle

i = integer time index; i = 0 initially; i increases in steps

of one second.

Note that the phase is a quadratic function of time.

The generalized coherence factor involving z  is

N-1

GCV	
- iTE	

zi+lzi*

Using

zi+1 = A
i
+1 ej('ff(i+1)' + 2nf0 (i + 1) + Oi+1)

we obtain
N-1

GCV	 -	 ( E AiAi+le3(nf(i+1)
=+ 21rf

0
(i+1)	 + 01+1 )	 -	 (nfi`+ 2nf

0
i	 + 0

i-0
N-1

GCV_
F AiAi+leii(2n f) eJ( n f+ 2 r. fo )	 ej(Oi+1-tai)

i=0
N-1

GCV	 _	 I e .l( 7 427 fo )	 F A'Ai+1 e ,j2, i ej Oi+1 -00 ,

Since the magnitude of the phase term outside the summation is one, we have

N - 1
-t? i )eJ i +1GCV	 _	 i

AiAi	 lej2nfi
+

i_0
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or
N-1	

*+j2nfi
GCV	 E	

zi+lzi 
e

i=0

This is the value that would be measured if no phase correction were made.

In order to cancel the phase variation, we actually compute

N-1	 _j2nfi
GCV _	 E	 zi+ lz i * e

i=0	 I	 (A3.10-11)

The linear phase invariance property of generalized coherence thus

requires that only a linear phase correction be made to a signal with a

quadratic phase variation.

MCSA- Caused Phase Corrections

a
The phase shift introduced by the MCSA is derived in Appendix A.

For a drifting signal, the phase shift depends on the path of the signal
I

through the frequency bin during the integration period. " good

approximation to the phase shift is ndf radians, where df is the

difference frequency between the signal and the center of the bin (in

units of binwidths), measured halfway through the integration period.

Table 3.5 compares the approximate and exact phase shift, for linear

drift rates up to 1/2 Hz/sec, which is the maximum being considered for

this system.

The approximate method will be used for the remainder of this

discussion, because it is easier to visualize. The exact method assumes

that the signal has infinitesimally small bandwidth, whereas the approxi-

mate method is somewhat more general. This comparison is analogous to the

case of the amplitude weighting factors, where sinc weighting is exactly

correct for infinitesimally narrowband signals, but uniform weighting
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gives nearly the same result, and is applicable to rider bandwidth signals

as well. Since the phase factors only need be computed once and then

hardwired into the system, the exact method of Appendix A could still be

used if desired, following the general plan to be described here.

Drift Range Exact method phase shift Approximate method phase shift

0 < d < 0.5	 41?4
	

450

0 < d < 0.2	 160.9
	

180

0<d<0.1	 8?1
	 90

Table A3.10.2 - Comparison of Exact and Approximate MCSA
Phase Shift Computations (See Appendix A)

Let us first consider phase changes which occur as a function of

time (i.e., from one integration interval to the next). Changes which

occur as a function of frequency between adjacent frequency bins in the

same integration interval will be considered subsequently. In Figure A3.10.11.

the solid lines are the edges of the Radon band, the dashed line is its

center, and the dotted lines mark the halfway time point of two successive

integration periods. The boxes represent time-frequency bins. Let us

first assume that the signal is drifting exactly along the centerline of

the radon band, at a drift rate of f. Using the approximate phase shift

method discussed above, we see that the MCSA will introduce phase shifts

of n(C-B) in bin 1 and n(F-E) in bin 2. Since F=C+f and E=B, the shift

in bin 2 is also n(C-B+f). Thus the shift in bin 2 differs from that of

bin 1 only by nf. It may also be seen that the same difference would

occur between bin 3 and bin 2, and between any two successive bins in a
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vertical row. Suppose now that the signal was not at the center of the

radon band, but at its left edge. The phase shift introduced by the

MCSA is n(A-B) in bin 1 and n(D-E) in bin 2. Since D - A+f and E = B,

this is also n(A-B+f), so again bin 1 and bin 2 differ only by nf.

Thus it can be seen that the phase shift between adjacent integration

►eriods does not depend on the position of the signal within the radon

band. Furthermore the phase change from one integration period to the

next is constant, which means the phase changes linearly with time.

Since generalized coherence is invariant under such phase changes, this

shift has no effect and can be ignored.

Considering now the MCSA phase shifts between adjacent frequency

bins in the same integration interval. In Figure A3.10.12 the lines have

the same meanings as in Figure A3.10.11. Points A, B, and C are the midpoints

of bins 1, 2, and 3 respectively. Point D is the intersection of the

center of the radon band and the center time line. The radon transform

requires a weighted average of all bins lying within the radon band.

The amplitudes of the weighting factor are the respective areas within

the band, as discussed elsewhere. The relative phases must also be

taken into account for proper combining of the bins.

The position of the signal within the band makes no difference as

was shown above, but some point must be chosen as a phase origin, so 	 .1

that all the bins can be adjusted to have the same phase. The logical

choice for this is point D. The MCSA phase shift is 7(A-D) for bin 1,

n(B-D) for bin 2 and n(C-D) for bin 3. Thus the necessary correction

factor is the negative of these, and would be applied in the form

zl - clzAe jn(D-A) + c2z8e jn(D-B) + c3zCejn(D-C)	 (A3.10 -12)
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where the c's are the amplitude weighting factors. It is also useful to

note that ( D-A) - (D-B) = B-A = 1 and (D-C) - ( D-B) - B-C = -1 (since the

units are bin-widths). Thus z i can also be written as

z i
 = ein(D-B) (c1zAe+jrr + 

c2zB 
+ c3zCe-jn)

zi = ejn(D-B) 
(-cIzA + 

c2zB - c3z C )	 ( A3.10-13)

Either method (A3.10-12) or (A3.10-13) may be used to apply the necessary

phase correction factors.

The two MCSA phase corrections derived above may be combined and

applied simultaneously. The composite result is

jTr(D-A-2fi) + c z ejv(D-B-2fi) + c z ejn(D-C-2fi)
z i = c 1 z Ae 	 2 B	 3 C	 (p3.10-14)

for a given drift rate and starting point, the phase factors in equation

(A3.10-14) may all be computed in advance, and stored in a lookup table

for real time computation purposes.

Approximate Effect of Drift Rate Quantization

Since only a finite number of drift rates are used in the CWD it is

important to know what happens if a signal drifts at rate other than one of

those chosen for analysis. The worst case is when the signal drift rate is

halfway between two to those chosen. That case will now be examined.

The CWD rate quantization chosen is such that the drift increment is

the reciprocal of the total integration length (e.g., for 20 seconds

integration, the drift increment is 1120 Hz).

A typical worst case is thus a signal with a drift rate of 1/40 Hz.

Over the total integration period, it will drift half-way across a radon band.
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Then the worst way in which it can do so is to drift from the center to

one edge. Since the combining operation among bins at the same time does

not depend on the signal frequency, the combining will still be correct.

However, the phase correction of the sun to the center of the radon band

will have an error varying linearly from 0 at the beginning to n/2 at the

end of the integration period. Similarly the phase correction factor due

to the signal itself will be in error ranging linearly from 0 to w, over

the same period, resulting in a total error of 3n/2. The net result is

that the z i+lz i * terms of GCV do not all add up exactly in phase, and

partial cancellation occurs. The amplitude of the observed signal also

changes as it drifts across the MCSA sinc response function. The

situation is exactly analogous to that given in Table A.2, if it had an

entry for 0 < d < 0.75. Plotting and interpolating Table A.2 gives an

amplitude value of 0.62 for this case. Thus the worst case signal loss

is 2.1 db.

For the same drift rate, the best case would be for the signal to

drift from -1/4 bin, to +1/4 bin, relative to the center. Then the

amplitude factor would be about .85, making the average be about 0.74,

or 1.3 db loss. If we now calculate the average over all drift rates,

we can estimate the average loss to be one half of this or abc ut 0.7 db.

In summary, by choosing the drift rate increment to be the

reciprocal of the integration time, we incur an average decrease in

sensitivity of 0.7 db, and worst case loss of 2.1 db. This loss is not

substantial, and could be decreased by increasing the number of drift

rates analyzed.
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Approximate Detection Statistics

In this section, approximate detection statistics for the CWD wilt

be derived. The basis for this derivation is the body of pre-existing

knowledge concerning the Radon transform. The derivation is approximate

in the sense that it does not explicitly include the effects of

Generalized Coherence. Based on the results of Section 3.3 above,

these results may be considered as underestimates of the true performance

of the CWD.

The particular angle-radius parametrization (which comes out of

Radon transform theory naturally) utilized by the CWD was not developed

for the Hough transform until (Duda and Hart, 1972) pointed out the

advantages in 1972. Since this work many papers on the Hough transform

and more general Hough-type transforms have appeared (Shapiro, 1978;

Sklansky, 1978; Shapiro and Iannino, 1979). (Shapiro, 1978) and

(Shapiro anJ Iannino, 1979) have studied the Hough transform in the

presence of noise with particular attention given to errors in parameter

space which arise from errors in feature space. Noi r e analysis of the

MCSA output is discussed elsewhere in this report. The important point

here is that the transform which is being used has been applied to arrays

of data which are in many respects similar to the properties of the GCV

and power spectrum data. The noise properties of the transform have been

studied and it may be comforting to observe that the transform is in some

sense optimal in that it behaves as a matched filter (Sklansky, 1978).

Noise analyses from a slightly different viewpoint(Hanson, 1979)

demonstrate that once the projections (GCV numbers or sum over power

spectra along rays of width a) are obtained for a fixed angle 0, the
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function PG(x) which contains both signal and noise information may be

studied by standard techniques of communication theory (Middleton 1960;

Middleton 1965; Whalen 1971). It follows that the optimum SNR is given by

SNR = 
1 11%wl' dx)^

Yaa1 3T
for a projection ray of width a and length L, for white noise with mean

zero and variance c ? , where the integral is over the ray width. Observe

that for signal S in k pixels of unit width this reduces to kS/avf . For

L = 1 and k = 1 we obtain S/a for a single pixel, and for = k we obtain

Ac S/a.

Assume that L is the integration period t of the CWD. Then, according

to the above SNR formula the optimum signal power extracted is given by

t^. This expression can be used to do some elementary analysis to

investigate the set of conditions under which a signal can be detected if

the angle of the drifting signal is not matched exactly by a projection

ray PO of the detector. The probability of detecting a signal can be

a
	 analyzed with respect to the fraction of signal (k/t) picked up by the

detector at various false alarm rates (a levels) and for different signal

to noise ratios (S/o). In addition, the number of seconds needed for

the integration period t in order to achieve a 99% probability of detection

for different a levels and S/o is considered.

The results given below are based on the following: The noise is

assumed to be a Gaussian (normally distributed) variable with mean

power a/Nz and standard deviation o = U. (Note that we do not assume

normalization with zero mean at this stage.) The si-mal is assumed to be

continuously drifting, with a constant mean power S /Nz and, if present, is

presumed to exist for the entire integration period (t seconds). It is
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also assumed that the average power x (or GCV) in an arbitrary ray

( traversing a sufficient number of data points) is nearly normally

distributed with mean u and variance O to where t, the integration

period, and a the width of the ray, are the dimensions of the ray. The

standard deviation is, therefore, oX = n/t.

The hypotheses to be tested are:

Ho = The power distribution (in the region) is due to noise alone.

H l = There is a signal in addition to the noise.

The decision rule will be to reject H o if x > u + zao	 where z'Y is

the z-score associated with a false alarm rate a (i.e., Pr(z , z a ) = a).

Therefore, the probability of detecting a signal when it is present is, in

general, Pr(x > u + 7a:? x).

Now, under H 1 , there is signal power in addition to noise so the

expected value of x is x - u + to where k is the number of times the

signal is in the ray during the integration perio4 	 Since the signal

power is assumed to be a constant, x is the same value as before

In the special case of the CWD a projection ray is approximately

1 Hz wide (a = 1) and t seconds long, so the value of x is ;, + kt where

Lis that part of the time a signal is picked up by a projection ray.

u is the mean noise power, ox = -T, and the signal to noise ratio is S

(the average signal power divided by the average noise power).

By definition a z-score is z = -Y Y where Y is the mean, y a`
Y

specific value and oy is the standard deviation. In this case it is

given by z = 
x - 

i' . Then: 1-C^ = probability of detection = Pdet

x

i
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Pdet=Pr(x> u + zaz)=Pr( z > u + z -Q" '(u+kr^ )
x

= 1 - Pr( z - u t	 (A3. 10-15)
t

	

	 Table A3.10.3 gives the number of seconds needed in a time block to

achieve a 99% probability of detection for various a, klt, and Slu.

Figures A3.10.13 (a), (b), and (c), and Tables A3.10.4 (a), (b), and (c), show the

probability of detection versus time for various k/t, PJu, and a levels

using equation (A3.10-15).

Based on these statistics, the probability of detecting a signal

after 20 seconds of integration when SNR = 1, the false alarm rate

a = .01, and the angle of drift coincides exactly with the slope of some

ray, is approximately 98%. If the drift angle is such that a projection

ray picks up half the available signal, then the probability of detection

for the same parameters specified above, degrades to 46%. There are

several ways to increase the probability: one is to raise the false alarm

rate, i.e. if a = .05, then the probability of detection is increased by

72%; another is to increase the integration time, i.e., if t = 40, then

when a = .01, the probability of detection is about 85% and when a = .05

fi the probability of detection increases to 94%. Longer integration

periods are possible by combining the approximate GCV numbers (ray sums)

every 20 seconds.

It appears from the foregoing analysis that at least one projection

ray must pick up half the signal, if present, in order to detect the

s signal. Therefore, the number of projection rays to include in the
1

detection mask is a function of that constraint.
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a = .25

S/N klt	 time(sec.

.8 1/2	 56

.8 1/3	 127

.8 1/4	 225

a = .05
.8 3/4	 44
.8 1/2	 99	 -
.8 113	 223
.8 1/4	 396
.5 3/4	 113
.5 1/2	 253
.5 1/3	 570
.5 1/4	 1014

a = .01
1

1 1/2	 87
.8 3/4	 60
.8 1/2	 136
.8 1/3	 305
.8 1/4	 543
.5 3/4	 154
.5 112	 347
.5 1/3	 782
.5 1/4	 1390

a = .001
1 1/2	 118
.8 314	 82
.8 112	 184	 3
.8 1/3	 410
.8 1/4	 734
.5 3/4	 209
.5 112	 170'
.5 113	 1058
.5 1/4	 1880

a = 10-'
.5 1	 54
1 1/2	 215
1 112	 335
.8 112	 860

Table	 A3.10.3 - Approximate Number of Seconds Needed for the Integration
Period to obtain a 99% Probability of Detection at Various
C-1 and S/N.
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Fi	 re	 A3.10.13(a) - Approximate CWD Detection Probabilities
for Cases When the Signal is Present
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/ the Cells	 (k/t =	 1/2), for Various

Signal-to-Noise Ratios (S/N) and
False Alarm Probabilities 	 (a)
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j	 Fig	 A3.10.13(b) - Approximate CWD Detection

1
.2	 Probabilities for the Case^ when the Signal is Present in

/	 75% of the Cells (k/t = 3/4),
/	 for Various Signal-to-Noise

l	 Ratios (SIN) and False Alarm
•1	 /	 Probabilities (a)
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f

E.

i

a

S	 1^

.01 1%	 80%	 98% 99.9%
.001 .1	 53	 92 99 99.9 1

S/C = .8 .

.01 57	 89 98 99.8
.001 .1	 29	 69 90 98

.0001 .01	 12	 45 75 91	 97.5

S/Q 	= .5

.01 23	 46 66 80	 89	 98
.001 6	 20 36 53	 78	 97

.0001 1.7	 7 17 29.5	 57	 90 ¢,

Sj t,	 =	 .31

.01 8.4	 16 25 33
.001 1.6	 4 7.4 11.7

.0001 1 2

Table A3.10.4(a) - Approximate Probability of Detection for Various
a and Integration Periods t, when k/t = 1 =
Perfect Match
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n	 to ?n	 3n an r%n Fn	 7n An 9n	 inn

.05	 76	 96

.01	 52	 85
001	 24	 60
001	 10	 36

S/Q = . 8

.05	 60	 85

.01	 33	 64
001	 12	 32
001	 4	 15

S/o = .5

.05	 32	 51

.01	 13	 26
001	 3	 8
001	 .6	 2

Table A3.10.14(b)

99 100
96 100
85 100
66 100

95 100
83 93

	

58 76	 94	 99
34 54

	

66 76	 89	 98

	

39	 52

	

13	 24	 43	 75

	

5	 9

Approximate Probability of Detection for Various
a and Integration Periods t, when k/t = 3/4



t
a 0 10 20 30 40	 50	 60	 70	 80 90	 100

S/Q = 1

.05 46 72 86 93	 97

.01 22 46 66 80
.001 7 20 36 53	 78 97
0001 2 7 17 30	 57 90

S/a = .8

.05 35 56 71 81	 93 100

.01 14 30 44 58
.001 3 10 18 29	 50 82

.0001 .7 3 7

S/o = .5

.05 20 30 39 47	 61 80

.01 6 11 17 23
.001 1 2 4 7	 12 28

.0001 .2 .5 1 2

Table A3.10.14 (c)	 - Approximate Probability of Detection for Various
a and Integration Periods t, when k/t = 1/2
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lasts t seconds and falls within the ray labeled S which is a perfect

match. Suppose the signal is traversed by a projection ray Re ; then the

amount of the signal picked up by the ray is proportional to the shaded

area A and A = 1/2 {(cos(20 s ) + 1)cotAO - sin(20s )) where Qs is the angle

the signal makes relative to the vertical and A0 is the difference

between the ray angle 0R and the signal angle.

For the implementation of the algorithm the area of every ray is

the same, no matter what the angle of the projection is. Also, that

area of a ray of width 1 unit and length t seconds is t square units.

Therefore, in order to ensure that half the signal falls within the

a projection ray we need to have

t = (cos(20s ) + 1)cote0 - sin(20s)

so

cotAO = 
t + sin(20s)

cos(20s ) + 1

Now, as 
s	

0, cotd0 a t/2, and as 0s	 45
0
	 cotd0 i t i 1

o 

If t = 20 seconds, AO is between 30 and 60 whenever 0s is between 0 and 45
0

.

Consequently, if the ray projections of the CWD mask are separated by

3° it should be possible to detect a signal with an acceptable probability.

Furthermore, when t = 20, tan-1 ^1,;.  3°	 which means that the ends of the

rays overlap.
I

A second consideration involved in the choice of the number of angles

is the maximum amount of Doppler shift caused by planetary rotation for a

t	 planet that could support life. For a planet like the earth, the Doppler
i

shift is .15Hz/sec. (CYCLOPS, p.57); for Jupiter it is 14 Hz/sec, and for
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Figure A3.10.14- Proportion of Area in the Intersection of an
Arbitrary Ray R with an Ideal Ray S, which
Contains the Signal
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an Earth-sized planet rotating at Jupiter's rate (8 hr) it is 1.4 Hz/sec.

(Machol, 19 ).

Finally, there are implementation and cost considerations. A

reasonable choice, for a first approximation, seems to be 20 angles

spaced 3
0
 apart covering the range from -27

0
 to +27

0 
.

Combination of Successive Generalized Coherence Values

The sets of generalized coherence values calculated every 20 seconds

are used not only for immediate threshold testing, but are accumulated

as time goes on to obtain additional results encompassing all the data

received up to that time.

Both the old and new sets of accumulators each contain GCV's for

each of eight million frequency channels for forty-one uniformly spaced

drift rates between plus and minus one hertz per second. However, it

is not optimal to simply combine corresponding frequency-drift-rate

cells.

When two sets of accumulators are combined, those individual GCV's

are added together which could approximate the same uniformly drifting

signal. For example a typical low level signal might be present most

strongly in accumulator A from one set and accumulator B in the next set.

Most likely A and B would have the sans drift rate and the reference

frequency of B would be offset from A by the drift rate times 20 sec. Note

that the correspondence between one set of accumulators and the next

depends on their individual drift rates.

If a uniformly drifting signal had a drift rate that exactly matched

one of the accumulators, the best way to combine the GCV's from the
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f ^=

i

previous time periods with the GCV's for the present 20 sec would ue

to add the values of corresponding accumulators together. This would

always add accumulators containing the signal together and would always

add accumulators containing only noise to other accumulators that

contain only noise. This would allow signal-containing accumulators to

be most clearly distinguished from those that do not.

However, a real signal could have any drift rate and would in

general be expected to qain or lose frequency relative to the closest

accumulator drift rate. In fact, from one set of accumulators to the

next, a signal could go to the next higher or lower drift rate as well

as the next higher or lower frequency.

An initial step in resolving this ambiguity is to offset the

accumulator frequencies by one-half hertz in alternate 20 second sets.

This reduces to four the number of accumulators in one set that could

contain the sane signal as a particular accum+ llator in the next 20

second set.

For a signal that is not clearly distinguished from noise one

cannot be su re which of the four accumulators from the previous set might

have contained the signal. The best estimate is to choose the one with

the highest GCV. Conce ptually, the procedure is to add the maximum of

!	 four possibly corresponding accumulators from one set to each of the

accumulators in the next set. This modified set of accumulators is then

-	 used in the same way to modify the following set and so on for as many

sets as desired.

Every accumulation produced from a combination of 20 second periods

is tested against an appropriate threshold. Whenever a threshold is

exceeded it is considered sufficient evidence that a signal is present and

a flag is set for the control computer.
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How often have I said to you that when you
have eliminated the impossible, whatever
remains, however improbable, must be the
truth.

--AC Doyle, Si gn of Four

Appendix AM

Cluster Detector Details and Statistics

Step 1: The Histogram Analysis

We initially subdivide the 50 x 250.000 compacted array into 1250

pattern blocks and have dedicated processors oper& ­._ ,,n each pattern block

independently. Subdividing the compacted array vastly reduces the

number of computations and, hence, hardware requirements, and does not

result in a significant loss of information for the second step analysis.

After subdivision, a processor establishes a histogram for its pattern block by

simply "counting" the number of pattern points in each pattern class. If

the number of pattern points in some pattern class exceeds a preset thresh-

old, the central computer is alerted. An excess number of points in a

pattern class within a pattern block suggests the presence of a signal due

to an unusual number of one or more NBIT tests scoring a pass (_ "1").

This possibility may be confirmed by the clustering algorithm of step 2,

which detects the spatial structure of these pattern points within the

pattern block. The rationale for counting the pattern points in the

pattern classes instead cf counting identical types of pattern points

within a pattern block is provided by the following example.
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Suppose that in some pattern block there is a narrow band signal which

consistently sets the same three bits for a 1000 seconds. By our supposition,

the signal will be present in 50 cells of the pattern block. A pattern point

affected by the signal has six bits which remain unaffected. Each of these

six bits has a 50% false alarm rate. Hence a pattern point affected by the

signal has equal probability of belonging. Although the signal to noise

ratio remains essentially the same, we have a clustering of 1294 - 1250 = 44

points in this class as compared to less than one for the other histogram.

Furthermore, the three 2-bit and three 1-bit subclasses of the above 3-bit

pattern class will also show significant clustering. This provides us

with another indicator as to whether or not a pattern class is affected

by a signal.

As was indicated in Section IIID4.5, the first stage clustering serves

two basic functions. One is to compactify the data even further, in the

sense that the input to the second step analysis consists of only those

pattern points whose classes are deemed "interesting" by the first step.

The second function of the first step clustering is to alert the central

computer if some pattern class contains an unusually large number of

pattern points. In order to achieve this objective we establish thresh-

olds for the histogram such that whenever the number of pattern points

in a particular pattern class exceeds its th res' 3ld, the alarm is

activated. The levels of the thresholds are such that the false alarm

rate will be within acceptable limits. We expect some readjustment of

these thresholds as more data concerning the interdependency of the 9-bit

tests becomes available during actual simulations.
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Let i = 1,2, ..., 511 identify the pattern class (we do not consider

(	 the zero or "no bits are on" pattern class). Let n(i) = 1,2,...,9 the

number of bits which determine the i-th class, N i = the number of pattern

s	 points in the i-th class/pattern block, and Tn(i) the threshold for the

i-th class. If we compare the desired false alarm rate with tossing a

coin once every 1,000 seconds, where "heads" corresponds to "no false

alarm" and "tails" to "one or more false alarms", and we want the coin

to be honest, then we must set

Pr(x > 0) = 1 - Pr(x = 0) = 1 - (1 - 00)1 2 50 = 0.5.

where a = Pr(N i > Tn(i) for at least one i)

= Pr(at least one threshold exceeded)

and x - b(1250,

Solving for a, we obtain

1 - a = (0.5)1/1250 = 0.999445636 or

a = 0.000554364

We note that

Pr(x = 1) = 1250a(1 - a)1249 = 0.347,

Prx = 2) = 1250 
2 

1249 a2(1 - a
)1248 = 0.1201 and

Pr(x = 3) = 1250 x 1249 x 1248 a
3 (1 - a) 12 "' = 0.0277.

Thus the probability of two or three false alarms in 1,000 seconds is very

small.	 If a i
	 i
= Pr(n	

in(i)
> T	 ), then Pr(N	

in(i)
< T 	) = 1 - a.
— 
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Since Pr(Ni —` Tn(i) b i = 1,2,...,511) = 1 - a, we have

511
II 0 - a.) = (1- -a) 51-1 = 1-a or

i=1	 ^

0 - a) = (0.999445636)11511 = 0.9999989148.

The corresponding normal deviate is za z 5. Therefore,

Tn(i)
	 un(i) = 5	 or
an(i)

Tn(i) = 5an(i) 
+ %0)  ,	 where

"n(i) 
denotes the expected number of pattern points in the i-th class

under noise alone and an(i) denotes the corresponding standard deviation.

We define the sensitivity, Sn(i) , associated with the threshold Tn(i)

as the minimum number of cells/pattern block a signal must occupy in

order for un(i) ' Tn ( i)' 
where un(i) denotes the expected value of the

signal in random noise. If the signal occupies k cells, then from the

inequality

10,000 - k
l;n(i) =	

2n i
	

+ k > Tn(i)

we obtain	 2n(i)T	 - 
n(i)	

10,000k	 > 
2 n i - 1

2n( ' ) T	 - 10,000
Hence,	 Sn( i ) =	

n(i

2n i _ 1	 , where

[x] denotes the first integer greater than x.

For a = 0.000554364 and z- = 5, we obtain the threshold sensitivities

shown in Table A3.11.1.

0
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n(i) '3n(i) lin(i) Tn(i) Sn(i)

9 4.42 19.53 42 23

8 6.32 39.06 71 33

7 8.8 78.13 122 43

6 12.4 156.25 218 62

5 17.4 312.5 400 91

4 24.216 625 746 130

3 33.07 1250 1415 189

2 43.3 2500 2717 290

1 50 5000 5250 500

Table A3.11.i - Threshold Sensitivities
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Step 2: Single Linkage Cluster Analysis

This algorithm searches for spatially contiguous cells of a pattern

type within a pattern block. Two cells are contiguous with respect to

the i--th pattern class if they are within a pre-specified distance di.

If contiguous cells form a group such that the number of cells within the

group exceeds a preset threshold T i depending on the i-th pattern class,

then, a cluster exists and the central computer is alerted.

The input to the algorithm are the pattern points of pattern classes

deemed interesting by the histogram, where "interesting" is defined as

follows. Let j = 1,2,...,1250 identify the pattern block, N ij = the

number of pattern points in the i-th class and j-th pattern block, and

set z ij = N ^^ - 
U)	

. The interesting classes and pattern blocks are
n( ^

those which have large normal deviations z ij . Because of the conpactifi-

cation scheme, we have the real-time ability for approximately 100 searches/

10 seconds. Hence we may search for clusters in pattern blocks producing

the 100 largest normal deviations.

The implementation of cluster seeking is based on the general algo-

rithm described next. The algorithm will vary somewhat according as to

whether we are considering one and two bit pattern classes, or three and

greater bit classes. For each large z ij , the algorithm establishes three

lists, A ij , B ij , and C ij . Initially Aij is a list of cell positions of

all cells in the j-th pattern block which are occupied by pattern points of

the i-th class; B ij is a list of distances between all pairs of occupied

cells sorted by ascending distance with ties arranged arbitrarily, and

Cij = 0. The algorithm proceeds in three steps.
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1. if the first distance in 
BiJ 

is greater than di , stop.

There is no cluster. Otherwise, remove the first entry from

Bid , and remove the cells corresponding to this distance from

Aij and add them to Ci.

2. Update the list 
BiJ 

by computing the distances from cells in

Ail to the "cell" Cif.

3. If every distance to 
CiJ 

is greater than di , return 
Cii 

to its

original state and go to 1. Otherwise remove from 
BiJ 

all

distances between cells of 
Aij 

and the cluster 
Cii 

which are

less than or equal to d i . Remove the cells corresponding to

these distances from 
Aii 

and add them to Cif . If the number

of pattern points in 
Cif 

exceeds the threshold T i , stop. A

cluster is found. Otherwise go to 2.

Note: For a c A id , d(a,C
ij

) = min id(a,c), c e Ciji

We may obviously continue the algorithm in order to establish the actual

size of 
CiJ 

and/or for finding further clusters in the remaining list Aid.

1	 The actual implementation of the algorithm for three and larger bit

classes is reduced to a simple scan and record procedure. A processor

scans 
Aii 

and if a cell of 
AiJ 

does not have a preset number N i of

neighbors within the distance d i , the cell is removed from Aid . After

all cells which do not have Ni neighbors within d i have been removed, the

t
j	 clusters remaining are then examined to see whether the number of cells in

any cluster exceeds T i . We may also repeat the entire procedure on the

clusters obtained by redefining N . Figure A3.11 1(a) shows the 2-dimensional
i



^M

(a) - Before

(0) - After

,P.iC!NAL

BLACK AND WHITE f'.:, I C:i ,^1?l {

array representing A id , where the 
ith 

class is a 3-bit pattern class,

before the application of the algorithm, while Figure A3.11.1(b) shows the

result of appl y ing the algorithm with 
di 

= 1 and N i = 2.

."M

Figure A3.11.1 - Effect of the Single Linkage

Cluster  Analysis Algorithm
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The algorithm is somewhat modified for the one and two bit pattern

classes. Since each bit has a 50% false alarm rate, half of all cells in

a pattern block are expected to be occupied by any given 1-bit pattern

class due to noise alone. This situation is illustrated in Figure A.3.11.2

where the "on" cells in the pattern block belong to a particular 1-bit

pattern class.

YN.•• • •. a"* .... . • .J.. ..
10	 .1ISO 	 G.M

.•	 .= . n•J J	 a	 •..^ i	 .'•.• 1 •.^	
•

.. :•:e..
I	

'••^'.'.S"S ^^• ' .i^• ..• 
	 a• r

...•!Z
ale	

soRose	 a	 or

PISIt r

Figure A3.11.2 - p P,, ttern Rlnck for the One Bit
Pattern Class

It becomes clear from Figure A3.11.2 that there is an extremel
y high

degree of contiguousness between the "on" cells. In fact, one can find

connected sequences of "on" cells forming meandering lines which stretch

across the entire pattern block.

Because of this high degree of contiguousness, we are forced to set

di = 1 for one and two bit classes and to alter the clustering algorithms

in order to keep the false alarm rate within a reasonable minimum.

The altered algorithm is capable of finding clusters of cells

containing horizontal and/or vertical line segments formed by contiguous

cells, and of finding clusters containing rectangles of contiguous cells.

For lines, there are two minimal alarm thresholds, T I and T2 , with T 1
 < T2'

while for clusters containing rectangles there is only one, which we shall

r
r
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denote by T. We set T 2 such that if the length of a contiguous

sequence of cells in a row or column exceeds T 2 , the pr^abilit,y of an

alarm due to noise alone is extremely low. If T 2 is exceeded, we say

that a cluster has been found and alert the central computer. The

algorithm itself is reduced to a scanning and recording procedure and

is accomplished in the following steps.

1. Scan the first row of Aij . If a contiguous sequence of

"on" cells of length greater or equal to T 1 is found add

these cells to C ij while removing them from Aij . Also

remove all cells from Aij appearing before this contiguous

sequence. If the number of cells in Cij exceeds T21stop.

A cluster has been found. If there is no sequence exceeding

T i . remove all cells in this row from A ij .

2. Scan the next row. If another sequence of contiguous cells

is found which exceeds T 1 and is situated "below" C ij , that

is, the vertical projection of Cij into the row below is

contained in the sequence or the vertical projection of

the sequence into the row above it is contained in C ij , remove

the cells from Aij and add them to Cij . Otherwise, return Cij

to its original state and go to 1.

3. If the number of cells in C ij exceeds T. stop. A cluster has

been found. Otherwise go to step 2.

If no clusters are found and Ai j is erased, we repeat the algorithm

by refreshing Aij with its original data, and by replacing "row" with

"column". That is, we scan along columns. Obviously, the algorithm stops

whenever all the data from 
Aii 

has been exhausted. The effect of the

algorithm is shown in Figure A3.11.3. Here (a) represents a pattern block
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0 ;GINAL

BLACK Af,I G ',NHITj ('i ;vTGGRf1P,y

with "on" cells belonging to a specific_ 1-bit pattern class before

application of the algorithm and (b) shows the cells remaining after

application of the algorithm.

(a) - Before
	

(b) - After

Figure A3.11.3 - Effect of the Modified Sinqle I_inkaye
Cluster Analysis Algorithm for a

One-Bit Pattern Class

Our final goal is to obtain a method for establishing some of the

thresholds discussed above. Since we are interested in clusters formed

by contiguous cells, the first question which arises is as to the proba-

bility, due to noise alone, of obtaining at least r contiguous (d i = 1)

cells belonging to the same class in a row (column) of 200 (50) cells

long. Calling a sequence of r contiguous cells in a row of n cells a

run of r successes, we are asking for the probability of having a run of

r successes in n trials, where n = 200 or n = 50.

Let P i denote the probability of the event that a cell contains a

pattern point of the i-th class due to noise, and let P n r denote the

probability of a run of r successes in n trials. Then P n,r is given by
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Pn,r	
1	

Xn r 
+ 

Pi xn-r,r

where

m

X	

i) pir)k
E (-1) k
	 ^ n	 kr)	 P

n,r kzO	 k! ( n - k r 	 k)!

and m is the integer truncation of r +n 1	 Values of Pn , r for n z 200

are given in Table A3 . 11.1. We computed Pn,r for as many as fifty conti-

guous cells, an event which would certainly trigger alarms set in previous

stages and in ste p 1 clustering. Values for T 1 and T2 can be chosen from

the r column of Table A3.11.1 with the corresponding Pn,r providing the

false alarm rate. A rough estimate for T can also be computed with the

aid of Table A3.11.1. Thus, if we choose T	 8 for a 1-bit pattern class

and multiply P n,8 k times, we obtain a rough estimate as to the probability

due to noise, of obtaining a T = 8 x k rectangle of contiguous cells.
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Table A3.11.1 - Probability that a contiguous string of r cells, contained
in a linear  string of n cells, will exceed the detection
threshold due to noise alone. Three examples are shown.

P i = 0.03125

n	 r	
Pn r

	200	 2	 1.7E-01

	

200	 3	 5.8E-03

	

200	 4	 1.8E-04

	

200	 5	 5.6E-06

	

200	 6	 1.7E-01

	

200	 7	 5.4E-09

	

200	 8	 1.7E-10

	

200	 9	 1.0E-11

	

200	 10	 8.8E-16

P i = 0.00781250

n	 r	 Pn ,r
	200	 2	 1.1E-02

	

200	 3	 9.3E-05

	

200	 4	 7.2E-01

	

200	 5	 5.6E-09

	

200	 6	 4.0E-11

	

200	 7	 1.7E-15

	

200	 8	 1.3E-17

	

200	 9	 1.0E-19

	

200	 10	 8.4E-22

P i = 0.00390625

n	 r	
Pn , r

	

200	 2	 3.0E-0 3

	

200	 3	 1.1E-05

	

200	 4	 4.5E-08

	

200	 5	 1.8E-10

	

200	 6	 3.5E-15

	

200	 7	 1.3E-17

	

200	 8	 5.4E-20

	

200	 9	 2.1E-22

	

200	 10	 8.?E-25
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Appendix A3.12

An Evaluation of Some Classical Algorithms in the SETI Context

1. Matched Filters

A possible SETI signal detection system might be constructed

utilizing an array of matched filters. A matched filter is an algorithm

for the combination of information from the MCSA in such a manner as to

maximize, for a given expected set of signal characteristics, the peak

power to root-mean-square (rms) noise power.

It can be shown (Schwartz, Bennet, and Stein, 1966) that if a signal,

represented as a function in time by f(t), passes through a linear filter,

whose transfer function is H(w), that filter is said to be matched if:

H( w) = F*(w) a-jwto

where F*(w) = complex conjugate of the Fourier transform of f(t),

to = time of occurrence of the peak value of f(t)

This filter performs the function of:

al weighing the spectral components in the filter in proportion

to the spectral components in the signal;

b) aligning all spectral components in the filter in phase.

This is a type of conjugate matching.

If such a filter can be implemented, the ratio of the peak signal power to

rms noise power, assuming white noise, is

S2E
N KT

where E = the total signal energy

K = Boltzmann's constant

T = system noise temperature

Thus, the detectability of a signal through a matched filter is independent

of the form of the signal.
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1	
It is possible to impress information onto an otherwise monochromatic

continuous carrier in a number of ways: amplitude, phase, frequency, and

polarization. Terrestrial technologies have used all four possible

modulations to some extent in order to convey messages via the electro-

magnetic radiation. One might expect that it could be a straightforward

exercise to implement a large set of filters, a group for each modulation

scheme, which would respond, in some optimal way, to extraterrestrial

modulated RF energy. In order to accomplish this, however, one must

i
know a priori, the form of the message contained within the modulation.

z
	 Since this is quite obviously impossible, this direction for a SETI

detector is not reasonable.

We expect that an ETI signal, deliberately radiated for the purposes

of detection (a beacon) by other civilizations, would be a "single"

signal in order to increase the likelihood of detection (Dixon, 1973).

9

	 Simplicity, in terms of detectability, implies extreme spectral purity

(Seeger, 1971; Oliver and Billingham, 1971). Further, many forms of

terrestrial modulation use the redundant information contained within

the monochromatic carrier to facilitate coherent detection. Therefore,

the strategy is to attempt to detect the narrowband carrier, and to

a
	 leave the examination of possible modulation sidebands, however they may

manifest themselves, to a purely statistical approach. The advantage of

this latter point is that we search the MCSA output only for possible

departures from noise statistics.

Signals which are pulsed in a time scale shorter than the reciprocal

bandwidth of the MCSA (1 Hz) present special problems to the signal detector.
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The present design of the MCSA precludes optimum detection of pulses

hitween time frames from 1 second to > 1/8000 second, and from Z 1/8000	 1
I

to -10
-g
 second, the reciprocal IF bandwidth. Pulsed signals in those

realms must be found by an analysis of the time domain signal, rather
k '

than the frequency domain signal as presently envisaged in the MCSA. 	 T

2. Walsh Transforms

As a cartoonist captures the important features which make a

simply-drawn caricature recognizable, it would be desirable to have a

transform which would extract --from the MCSA output --recognizable

features necessary to indicate the presence of a signal. Walsh functions

and transforms were explored as possible candidates for that transform.

The Walsh functions may be defined as an orthonormal set of square

wave functions.

The Walsh function has two arguments: n is the order and u is

normalized time. The order n is related the the number of zero crossings

in the interval over which the function is defined. (See Fig. A3.12.1 taken

from Harmuth, 1977).

i ^i ► iiJ

T'"`J'" 1 T__'

t

Try-z--

Figure A3.12.1 - Walsh Functions, Continuous and Discrete
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Each Walsh function may be expressed as a product of odd symmetry

periodic square waves of amplitude ti. (Rademacher functions)
Walsh functions may be transformed into the "sequency" domain, where

sequency is the number of zero crossings. A sequency spectrum plot would

indicate the number and magnitude of the coefficients necessary for a

"Walsh series" expansion. (See Figure AM?.? taken from Alexandridis, 1971)

(Schreiber and Sandy, 1974).

Among the applications of Walsh functions are:

Pattern recognition systems

Image compression

Design of radar waveforms

Voice processing

Signal multiplexing

Walsh analysis has several advantages over sinusoidal analysis.

(1) Walsh functions contain real integral numbers of two levels

( t l). This makes them directly compatible with digital
integrated circuitry.

(2) The Walsh function set is a natural describer of pulse-like

signals. This property may be used to extract features from

binary patterns (Alexandridis, 1971).

(3) The transform from input data to Walsh function series

expansion coefficicients is faster than the FFT. For N

samples, the FFT takes 2Nlo92N multiplications and additions

(Blackman, 1974). The FWT takes only N109 2N additions

(Harmuth, 1977).

r

r
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Furthermore, techniques are available for obtaining two dimensional

Walsh transforms in real time without waiting for all samples to be

scanned before starting the transform o peration (Alexandridis, 1971).

Three potential applications of Walsh functions are applicable in

this context.

First, it is possible that the ETI signal may be a transmitted

electromagnetic Walsh wave. The transmission of Walsh waves has been shown

to have certain advantages in applications such as radar (Schreiber and

Sandy, 1974). However, waves traveling through space would be filtered by

the interstellar medium. A sinusoidal signal may be attenuated or phase-

shifted, but the sinusoidal character would be preserved. A filtered

Walsh wave would assume a significantly different characteristic.

Secondly, it is possible to analyze the MCSA output using a two-

dimensional transform to pick out periodicities in time. The two-

dimensional Walsh transform is attractive since the implementation of the

fast Walsh transform is less expensive and faster than the FFT. However,

for long samples of smooth signals, more terms are required in the Walsh

series representation and greater accuracy is required of their

coefficients for a given RMS total error (Blachman, 1974).

Finally, Walsh transform techniques are a possible approach to the

recognition of binary patterns in the NBIT two-stage data compaction

scheme. Axis symmetry properties of Walsh functions can be used in

designing a feature extractor with a resulting reduction in dimensionality

in the feature space (Alexandridis, 1971). However, due to the dis-

advantage of the Walsh transform being position dependent, position

normalization of the binary pattern is necessary. In addition, specific

VI

I
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binary patterns which indicate a high probability of "signal presence" must

be defined.

Conclusion:

Although the Walsh transform may lead to significant savings of hardware

and processing time in analyzing binary or pulsed data, it seems not to be an

all-purpose pattern recognizer. The Walsh transform was initially considered

a candidate for serving as a "cartoon transform"; that is, a transform that

would show strong narrowband repsonse in the presence of an edge, outlined

form, or filled-in pattern. Thus, while the axis symmetry properties of Walsh

functions may be used to recognize specific patterns, but apparently provide

no clue to the presence of signals of unknown characteristics.
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Appendix A4.1

Lame Memory Systems

A4.1.1 Requirements

As is the case with many other dimensions of this study, the memory

requirements of the proposed system are quite unusual. The two basic parameters

of the memory requirements are the memory size and the memory read-write and

access times that are required to handle the amount of data and the data rates

that will be encountered.

One large memory system is required for the storage of the digitized

input signal. The analog signals being received from each antenna feed are

sampled at a 16 x 10 6 Nz rate for the 1000-second observation period for each

star, and quantized into 8-bit samples. This information must be stored, at

least temporarily, in case a suspected ETI signal is discovered. The impli-

cation of this requirement is that storage (memory) is required for 2.56 x

10 11 bits of digitized incoming data. These data arrive at a 2.56 x 10 8 bits/

second rate.

A second large memory system is necessarily involved with the output of

the dual, 8 x 10 6 channel multi-channel spectrum analyzer (MCSA). If all the

data being output by the dual MCSA for 1000 seconds is to be stored temporarily

for use by the ETI signal detection algorithms, the total required storage

capacity is 0.512 x 10 12 bits.

It rapidly becomes apparent that the hardware required to randomly access

0.512 x 10 12 bits of memory in sufficient time to perform all the analyses used

to detect ETI signals is prohibitively costly in dollars, power, and space

requirements even if read-write and access time limitations allow realtime

processing. For this reason, the output of the dual MCSA is truncated for some
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f^ r.
of the algorithms to 4 bits each for the real and im aginary components of9	 9 ry ^P

each feed; and further, we require temporary storage of "only" twenty seconds

of MCSA output at a time. Thus, the data transfer rate into this memory is

reduced to "only":

2 x (4 + 4) x 8 x 10 6 - 1.28 x 10 1 bits/second

and a storage of "only":

20 x 1.28 x 10° = 2.56 x 10 9 bits

is required.

A4.1.2 - Wipes of Memories

The types of memories which are available to draw from for the various

memory systems in our system are, at least theoretically, quite varied. These

include:

Semiconductor Random Access Memory (RAM)
Magnetic Tape Systems
Magnetic Disc Systems
Read Only Memory ( ROM)
Charge Coupled Devices (CCD)
Magnetic Bubble Memory (MBM)

Factors which eliminate some of these memory types from further consideration

include the bit storage capacity of currently available units as well as those

projected to be available by about 1982, current and future read-write rates,

acct» times, and, of course, the preslant cost per 'n i t  of storage as well as

projected future costs.

Less Conventional Memories

Y
The last three types of memory listed above, the less conventional forms

of memory, ware eliminated from further consideration in this system for

various reasons, including the desire to utilize a technology which has been
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well-developed and proven to be a reliable means of data storage and retrieval.

Charge coupled devices (CCD) appear to be in the research and development

stage continuously, and seldom get into production.

Magnetic bubble memories (MBM) seem to be moving ahead very rapidly with

the immediate objective bein0 to replace disc memories in the hone computer

market, (Mavity, 1979) and (Waller, 1979), in the very near future. However,

from a cost-effectiveness viewpoint, bubbles were ruled out as a viable alter-

native at this time.

Read only memory (ROM) are employed in many of the ETI detection algorithms

and/or as look-up tables, but they cannot play a role in the overall large

memory system picture.

Exotic Memories

Additional exotic memory forms were investigated also. Optical recording

has the capability of storing 10' bits per square inch. As attractive as this

medium appears at first glance, it has the disadvantage of being a non-erasable

medium, and thus it is usable only for archival storage in this project,

(Hoagland, 1979), (Kenney, 1977), (Kaczorowski, 1977), (Kenville, 1978), and

(Tufte, 1973).

Electron Beam Accessed Memory (EBAM) shows a good deal of potential, with

densities of 10 12 bits per square inch possible, (Smith, 1978), (Speliotis,

1976), and (Hughes, 1975). The most serious fault with this technique is that

to date no operating EBAM system has been built.

Holographic memories also present a possibility, but to date the memories

are non-erasable and consequently are useful for archival storage only, (Gillis,

1915), (Harris, 1979) and (Honeywell, 1979).
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Random Access Memory

Recent activity involving solid state random access memory (RAM) has been

primarily limited to decreased access time with an improvement by a factor of 5

having been achieved over the past two years, (Hewlett Packard, 1979). Another

advance in RAM technology is the development of a very large semiconductor

RAM-based memory by means of Adaptive Wafer Scale Integration (AWSI) as reported

by Geideman (1978), Hsia (1979) and Brinton (1979). A 1.2 x 10' bit version of

the AWSI memory is in development and is scheduled for production within a year,

with predicted cost to remain at about the present .03 cents/bit for semi-

conductor memory, (McDonnell-Douglas, 1979).

Disc Memory

According to Hoagland (1979), the disc remains the primary form of mass

storage. Despite competing technologies, improvements in disc technology will

probably ensure its widespread use throushout the remainder of the century.

A disc system has been developed and is presently available which has

multiple (20) read-write heads and recording surfaces which allow for 8 or

9 bits of parallel input or output data, (Ampex, 1979). This system can store

2.4 x 10 bits and achieve 8.7 x 10 bits/second data transfer rates.

As Hoagland (1979) also mentions, reduced cost per bit in all technologies

derives primarily from an increase in density on the material being used for

storage. If one were to double the bit packing density on a magnetic disc unit

of the type described above, and then double the number of bits that are

available in parallel for read-write operations, one would have the disc system

presently being investigated in the Simulation Facility at Ampex, Redwood City,

Calif. (1979). In any event, it is anticipated that the magnetic disc industry

will be going to a double bit density magnetic medium. Also, the higher the

G
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number of parallel outputs described above will be feasible in the near

future. This system would have a capacity of 4.8 x 10' bits per disc pack and

a potential data transfer rate of 3 x 10 0 bits/sec.

Tape Memory

In terms of providing for the storage of massive amounts of data the

most widely used medium is likely to continue to be magnetic tape. With

increased recording densities and increased numbers of tracks per unit tape

width, the amount of storage represented by a reel of magnetic tape is

exceedingly large. The packing densities that are presently being utilized

are on the order of 10" bits/square inch of tape (RCA, 1979), with one system

under development which uses 180 tracks across a 2-inch magnetic tape. The

result is a tape capacity on the order of 5 x 10
11 bits, using a 2-inch,

10,000-foot tape (Bell and Howell, 1979).

A new tape system under development by Ampex (1979), which utilizes a

flying head technology, is scheduled to 5e available by 1982. This system has

a capacity of 1.2 x 10 12 bits and is appropriately designated the Ampex Super

HBR (high bit recorder).

In ter% of rapid random access to stored data, the tape systems are use-

-	 less, with access times to the center of the tape running up to two and a half

minutes. But, in terms of quantity of storage, the tape unit is by far the

least expensive storage medium.

Table A4.1 is a _onpi IAtion of the characteristics of memory units avai lable

now and those envisioned to be available from three to six years hence.
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Character- Mag. Mag.
Solid State RAM

RAM-Based
Static ynam cistic Tape Disc Memory System

Max CApac.
per Unit 4 x 10 11 2.4 x 109 1.6 x 104 6.4 x 104

(bits)

Read-Write
Rate 6 x 108 8.7 x 107 1.6 x 106 1.6 x 106

(bits/sec)

Access
Time

*

120

*

2.8 x 10-2 10-50 x 100 x 10-9
(sec)

10-9

(Cost
1.5 x 10-4 0.003 0.1 0.03

Max Capac.
per unit 1.2 x 10 12 4.8 x 109 6.4 x 10 4 1.28 x 105 1.2 x 109
(bits) (1985) (1983)

- I

Read-Write
Rate

8
7.5 x 10

8
1.7-3 x 10 1.6 x 10 8

8
1.6 x 10

6
1 x 10

nj (bits/sec)
M

m Access
Time

*

150

**

2.8 x 10
-2

0-50 x_
9

80 x 10
-9

1-2 x 10-4
(sec) 10-

(Cobit)
2 x 10-5 1.5 x 10-3 0.05 0.015 0.03

* to middle of tape
** average

Table A4.1 - Memory Characteristics

1
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Appendix 4.2 Discussion of Present and Alternative Architectures

In this appendix we will discuss briefly other signal detector architec-

tures that might be more appropriate to MCSAs which output data at a rate ti 102

lower or ti 102 higher than the 8 Megawords per second rate of the Oasis System MCSA.

A4.2.1. - Architectures for Smaller Scale MCSAs

With a throughput rate dropping from millions to thousands of data per

second, many powerful processing possibilities are opened up. Floating point

numbers rather than integers could be processed by programmable Floating Point

Array Processors, now commercially available. The processors would be ideally

suited to the high speed analysis of data because they possess the speed of

dedicated hardware units and yet are programmable, and could be used to imple-

ment many of the algorithms described in this report. Their advantages are:

- Floating point preserves the dynamic range, eliminating clipping losses.

- Hardware building cost is traded for lower software designing cost.

- The software algorithms may be easily altered or replaced.

The reduced throughput of a smaller MCSA might also allow:

- Storage and random access of an entire observation on a few conventional

disc drives (while ti 20 would be required for the 8 MHz MCSA).

- The possibility of human preprocessing, since a larger percent of an

observation could be viewed with a display.

- The data of an observation could be stored in RAM memories (say 64 Kbits

each) and a network of minicomputers could simultaneously operate on

each RANI employing either identical or varied detection algorithms, i.e.

network processing.

A4.2.2 - Architecture for Larger Scale MCSAs

For MCSAs on the order of 300 Mega-Channels per second, processing of the

entire array with the algorithms of the Oasis system becomes nearly impossible.

A different approach would be to sample and analyze the output of selected



"groups" of channels sequentially. In other words, if we limit the total search

to one for persistent carrier waves, pulses, etc., then we need only check a

set of adjacent channels periodically for the presence of such a signal. The

processing required can thus be arbitrarily reduced, but the price for this

reduction is a loss of sensitivity to ephemeral signals. Thus, for the Oasis

system to analyze the data from a spectrometer with 300 1
0  channels output per

second at an 6 MHz rate, it is first necessary to consider every 40th block in

the first row of blocks, and then to consider each 40th block offset by one in

the second row of blocks. Random selection of blocks may be more desirable

so as to avoid systematic omission of identically drifting spectral features.

Finally, the signal detection algorithms for such a large bandwidth spec-

trometer might be justifiably limited to simpler tests, such as employed by the

pulse detection algorithm, and the total power detection algorithm of the NUIT

processor.

H4.2.3 - Critique of the Oasis Design: Weaknesses

The proposed Oasis System is a rather complex system. The Sumner Study

Group as a whole consciously declined from rejecting any potentially powerful

algorithm simply on the basis that it made for a more complex final system.

Every attempt was made to evaluate the relative merits of each algorithm, yet

time did not allow for a truly fair and complete evaluation and ordering of the

worth and merits (both as signal-specific, and signal-arbitrary tests) of the

dozen or so different algorithms implemented. While much work was done toward

this end, much more remains to be done. It is recommended that further com-

puter simulations of these algorithms be conducted, upon a more varied (in SNR

as well as type) set of earth-civilization-type signals as well as artifically

concocted signals in noise. If nothing else, such a study would yield the rela-

tive weights to place on the alarm thresholds, as discussed in Chapter 5. To

the hardware designer wishirg to construct a sensitive, yet simpler and cheaper

c



system, the Oasis System, as it stands, represents a menu or shopping list of

algorithms. This hypothetical designer is in turn given from this report the

plans necessary for implementing and integrating any subset of the algorithms

deemed most effective.

The decision to retain 16 output levels (4 bits) of real and 16 levels of

imaginary signal amplitude, for each polarization in the Oasis System was made

without a thorough evaluation of the resulting clipping losses inflicted on each

algorithm. The decision was based instead on the high cost of providing another

set of 4 high density disc drives for, say, 8 bits of amplitude resolution. The

GCV and ANOVA algorithms were tested through simulations for clipping losses

and were found to be only slightly degraded by 4-bit clipping (see the appendices).

Similarly, the proposed simulation of all Oasis algorithms should include a

check for the clipping sensitivity of each.

A4.2.4 - Critique of the Oasis Design: Strengths

Chapter 3 has described the first and second stage processing of the

entire 8 106 X10 
3  
element array. It detailed how the array was divided into

blocks, each tested and compacted into 9-bit words forming the elements of pat-

tern blocks for pattern recognition and cluster detection. The scale of the

array subdivision test is gradually increased in each of these stages. This

is shown in Table A4.2.1.-

Table A.4.2.1 The Increasing Scope of the Major Search Algorithms

Algorithm	 Items Tested	
dumber of Array Elements

Considered at Once

Pulse Detector (1st pass) 	 individual elements	 10

Carrier Wave Detector	 60 elementstslice*	101.7

NBIT Tests	 20 x 40 element block	 102.9

Carrier Wave Detector	 3000 element slice	 101.5
(Accumulated)

Cluster Detector	 200x 50 elements, each a block	 106.9

(Size of Entire Array 	 8 106 x 1000	 109.9
for comparison)

* each slice includes 3 elements per row x 20 rows of the entire array

1
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This slowly increasing scale or scope of the Oasis search, especially with

such signal-arbitrary algorithms as NBIT and Cluster detection is considered

a major strength of the system. This table also implicitly gives a rationale

for the sizes chosen for Block and Pattern Block arrays.

A second strength of the system is found in the transpose hardware system

which, in real time, arranges the data into a much more desired form within a

memory unit. To search effectively for any signal, an individual channel's

output over time must be stored in a memory device contiguously and analyzed

in a like manner. The array transposer accomplishes this for the algorithms,

for the archives, as well as for the operator's perusal with an advanced image

processor.

Another strength of the system :s felt to be found in the Generalized Co-

herence measure. This algorithm or measure seems to implicitly embody many

fundamental SETI principles while providing a new means of compressing the out-

put of an MCSA. Since it is a succinct measure of polarization, phase, and am-

plitude coherence of received time series, it serves as a detector for those

qualities expected to be characteristic of intelligent communication.

Finally, the Oasis System places a good deal of emphasis on the capability

of the operator to detect and identify signals. For this reason, the role of

the operator has been given a wide latitude, including his/her facility of view-

ing and interacting with all stages of the hardware processing. Indeed, to use

the operator as the learning part of the system, capable of modifying the per-

formance of the rest of the system and possessing complete control over the

all-important archiving decision, we believe greatly enhances the performance

of the total system.
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Appendix A4.3

Implementation for (1) Degree of Polarization and

(2) Broadband Pulse Detection (with GCV)

Since these two algorithms require some common computation, they share

a common front end processor which passes the values on to the two subroutines:

m-routine, and GCV-routine. Conceptually, there are three processing

components: the front end processor receives the incoming data, computes and

accumulates the power associated with each polarization, the cross product of

the two polarizations, for corresponding data points, and the auto- and cross

products for two adjacent frequency data points. After 40 frequencies have

been processed, the first three sums are sent to the m-routine which calculates

the degree of polarization. The other sums are passed along to the GCV

routine. In addition, the front end processor computes three other factors used

by the GCV routine: normalized power factors for each polarization and a phase

coherence angle (d).

The m-routine calculates the degree of polarization in each 40 Hz row of

data according to the formula:

M 	F-E	 +4 1 Zx4 y l I 2

( E I x i I 
s	 + E l yi 1 2 )

The result is compared to a predetermined threshold and,ifit exceeds the

threshold, the routine sets on the 1-bit and sets an alarm for the central

processor.

The GCV routine calculates the general coherence value for each 40 Hz

row of data according to the formula:
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M"

GCY_^ `{ K 1 z Exi+lxi + K1 K2teJd Ex i + ly1 + e- d ;+lx1 + K22'yi +lyi }

where

K 1 N	
xi + Y 

i	 K2 = N E ^ + 7.-1 2
^

and
Im Exiy*

d = tan 1
	 1

Re Exiyi

Part of the processor is operating on the imroming data while the rest of the

calculation is being processed in parallel. The entire processor is a multi-

stage pipeline. It is outlined in Figure A4.3.1 and presented in Figures

A4.3.2 - A4.3.4.
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Figure A4.3.1

Schematic Block Diagram for:

(1) Degree of Polarization by Row	 and

(2) Degree of Generalized Coherence by Row

Front End Processor

Stages 1 & 2: As data for each row
	

Stages 3 - 5: After one row is

come in
	 complete

Compute and Accumulate:

1. Power

2. Auto- & Cross-

Correlations

3. Normalized Power Factors

K, and K.,

Complete K-Factors

Evaluate Phase Coherent Factor

e jd , where d is the

Associated Phase Angle

In Parallel withSt ges 3 -

Stages 3 - 8: m-Ro tine

Compute the degree of polar-

ization m and set 1-bit and

CPU alarm if m > threshold

/(Elx i 1 1 - Ely i 11), + 4j Zxiyi"
m=

MY, + Elyil2)

In Parallel with tages 6 -

Stages 6 - 12: G V-Routine

Compu-`e the Generalized Coherence

Value, GCV, and set 1-bit and CPU

alarm if GCV > threshold

2m 1 j s	 tGCV = mrT N-1 LKl Exi+l xi +

jd	 ^	 -jd
K l K2 (e Ex i+ly i + e	 Eyi+lxi)

+ 
K2 ZEy i +lYi) I
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Appendix A4.4

Survey of Image Processors

This appendix summarizes  tie results of a survey of commercially

available digital image processors. The evaluation of each system was

based upon its potential role as the operator-machine interface in the

Oasis signal detector. The survey included careful examination of manu-

facturers' literature, personal conversations, and demonstration of opera-

tional image processing systems. Two previous surveys exist. (LaPado, R.,

Reader, C., Hubble, L., ESL engineering report, and Allen, R.J., and ter

Horst, H.J., Excerpt from Market Study of Several Image Processing and

Display Systems, University of Groningen).

The current trend in state-of-the-art image processor architecture is a

bus-oriented, pipeline array processor utilizing function tables and memory

multiplexing techniques to maintain video speed (10 MHz) while performing

various operations on image data.

The most powerful image processors are capable of stand-alone operation

with a keyboard and mass storage devices controlled by an on-board micro-

processor. More commonly, the image processor will be interfaced to a host

mini-computer for additional computational and I/O capabilities.

Refresh Memory

The image data resides in refresh memory that is typically dual-ported

RAM arranged in arrays of 8-bit pixels for 256 intensity levels per pixel. A

F
	

monochrome CRT requires one refresh array, and a color CRT is refreshed from

3 arrays, one each for red, green, and blue. The size of the image data

base is limited only by the address snacP. This varies amnnn manufacturers
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and is usuall y mere than can be disolaved at once because of amplifier

bandwidth limitations in the CRT. 	 Scrolling overcomes this limitation by

allowing the user to roam at will through the entire refresh memory.

In addition to image refresh memory there is usually one or more

channels of graphic overlay memory.	 Histograms, vectors and alphanumerics

are stored in this memory and combined at the processor output by pixel

replacement or color combination so they are visible against the image back -

°	 = ground.

Pipeline Processors

Refresh memory contents are read out and processed before conversion to

analog video signals. 	 The use of function table look-ups and high speed

arithmetic hardware is necessary to maintain video refresh rates.	 Pipelined

processing allows an operator to scroll, zoom on a specified area without

- altering refresh memory contents, Main pixel statistics, and perform image

combination arithmetic in one or a few refresh times. 	 A feedback loop allows

processed output to be written back into refresh memory so that more complex

iterative functions such as spatial convolution	 and filtering can be accom-

plished in a few seconds.

Displays

The display device for high resolution monochrome or color monitors uses

refresh rates of 30 Hz interlaced or 60 Hz non-interlaced. Some image pro-

cessors accept external sync for use with video discs or digitized TV camera

input. The highest spatial resolution in both monochrome and color monitors
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currently available is 1024 x 1024 pixels. Some of the most recently intro-

duced image processors will handle the higher data rates for these monitors

as well as standard 512 x 512 pixel monitors. Three image processors--the 	
a

Comtal Vision one/20, the De Anza IP 5000 and the I 2S Model 70--meet the

requirement of the Oasis system. A comparison of the more important features

of these image processors is summarized in Table 4.4.1, and in the following

paragraphs.

sntal Vision one/20:

- Refresh memory can be expanded to 134 Mbits. Memory configuration is
dynamic and under firmware control.

- Can accomodate up to 4 independent user stations.

- Multiple images in refresh memory can be displayed in rapid succession
resulting in a "loop movie" effect.

De Anza IP 5000:

- Good processing and feedback loop.

- 3 x 3 convolution in less than one second.

- Feedback is routable to any bits of any refresh memory by defining a
32-bit mask.

I2S Model 10:

- Extensive software is available, such as utilities for file management and
image .. rocessor control and a library of image enhancement and transform-
ation routines.

- A feedback ALU does 16-bit arithmetic on images.

- Minimum and maximum pixel values and other pixel statistics are continuously
availabe.
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Appendix A5,1

Experiments on Observer Detection and Recognition

of Simulated Signals in Noise

Perhaps the most critical information we desire concerning the human

observers is an understanding of his/her ability to detect weak signals amidst

background noise. There is an extensive literature in psychology on this

problem, but most of this work deals with the case where the signal character-

istics are known by both the subject and the experiment (see Swets, Green,

Getty, and Swets, 1978 for examples in the visual modality). The challenging

aspect of the SETI problem is that nobody has a firm idea concerning the

precise nature of the signal. Moreover, it appears that little research has

been done using visual noise fields similar to the ones anticipated in the

present context (except Swets et al., 1978). For these reasons, then, we

conducted some preliminary experiments with simulated visual displays.

Observers made estimates of their confidence that a signal was present under

a variety of conditions, spanning several signal types at various signal to

noise ratios, as well as complete noise fields. Further, we present data to

a new technique whereby observers draw potential signals on a matrix repre-

senting the visual display. Analysis of such drawings may permit us to infer

the accuracy of localizing detections, and the types of "pseudo" signals

observers perceive in noise fields.

Observers. The participants were 14 members of the summer study program

and 4 other professionals at the NASA-Ames research laboratories.  They each

participated on a voluntary basis, and were tested individually.

Equipment. The display simulations were generated by a Hewlett-Packard

9800 computing system consisting of two primary components: the 9825A
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calculator and a black and white video display unit. 	 The video display

was built especially by Hewlett Packard for the SETI program. 	 It presents

a 128 x 128 pixel noise field with 256 (8 bit) levels of intensity.	 The

entire screen must be erased before the next picture is written; refresh

time for	 the screen is 30 frames per second.

Displays.	 The noise was generated over 27 levels of amplitude

approximating	 a Rayleigh distribution. 	 These amplitude values then were

squared to approximate an exponential distribution of pixel intensities

on the screen.	 This noise field is what the observer saw in all displays

(different noise fields were used for each presentation).

Signals were superimposed on the noise fields giving the impression

of a pattern of brighter pixels.	 Average signal to noise ratios (SNR)

were	 . 4 ,	 . 6 ,	 . 8 ,	 1,	 1.2 , and	 1.4.

Experimental design.	 Three patterns were employed at each SNR:	 straight

line, wavy line, and pulse.	 The shape and calculation of these patterns

are presented in Figure A5.1.1 (panels a, b, c). 	 Examples of each pattern

at the highest SNR, as seen on the screen, are shown in Figure A5.1.2.

The starting point of the signal was randomly selected from positions

across the top edge of the screen and extended to the bottom edge.	 In

addition to the signal displays (6 presentations for each of 3 signal

conditions, for a total of 18) six noise field displays	 (i.e., without

signals) were used.	 Hence, there were 24 displays presented to each observer.
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Procedure. The 24 displays first were presented in a random order

for approximately 10 seconds each. This phase was introduced to give the

observer an idea about the range and type of displays. text, the series

was repeated and the observer gave a confidence rating from 1 to 10 con-

cerning the presence of a signal anywhere in the display. Part of the

instructions for this phase read: "We want you to estimate your confi-

dence that a signal (of any shape, size, or type) is present. Give a

number from 1 to 10 where I represents minimum confidence and 10 represents

maximum confidence." The procedure was self-paced; the display was changed

automatically after the observer's estimate was recorded by the experimenter.

In the third phase of the experiment, the series was repeated and

confidence ratings obtained. In addition, observers drew potential signals

on a sheet of graph paper. This page was divided into 64 equal "boxes"

or zones (i.e., 8 x 8 matrix). The instructions for this phase read (in

part:

"In this last phase first give a confidence rating for each display.
Don't try to recall what number you gave last time. Make each
judgment independent of earlier ones. After giving a confidence
rating for a display, draw potential signals on this graph paper.
Precision is not important, just try to localize the perceived
signal as best you can. For each display you must draw at least
one signal regardless of your confidence rating. In addition, you
may draw other signals for the same display. These can be short
lines, pulses, or other shapes, located anywhere in the display."

The experiment was conducted under low room illumination which

produced satisfactory visual contrast levels for the displays. The

entire set of observations for a single session took approximately 40

minutes.
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	 Preliminary analysis suggested that there was minimum difference

between confidence ratings on the two trials (phases), so these data

Iwere combined in further analyses. The means and standard deviations of

the confidence ratings were calculated for each of the 24 displays. The

results are presented in Table A5.1.1 (as a function of SNR and pattern type:

line, wavy, pulse). The mean data are presented graphically in Figure A5.1.2.

Turning first to the mean ratings, there are obvious differences in

an observer's confidence of his ability to detect the three types of

patterns. The average rating for the noise fields is approximately 2.5

on the 10 point scale. Using this value as a lower referent, linear

patterns are first detected at a SNR of .8; pulses and wavy lines at a

higher value (1.0). Hence, by this measure, an observer's absolute

detection threshold is lowest for straight lines. Further, once a

straight line is detected, its presence is obvious, as indicated by the

sharp increase in confidence at SNR = .8. On the other hand, the confi-

dence ratings for the wavy lines and pulses increase gradually, and level

off at a low - value than for straight lines. In short, straight lines are

the easiest to detect; pulses and wavy lines are about equal in detectability

across the values of SNR tested.

The standard deviations also depend on the signal pattern. In general,

the standard deviations (see Table A5.1.1) are larger for the pulses and wavy

lines than for the straight lines. The standard deviations also vary with

I	 SNR; greater variability was obtained for the higher SNR values with the

exception of the straight lines, where variability drops dramatically at

large SNR values.
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The finding of an increase in variability with higher mean ratings at

first glance appears paradoxical. However, examination of the data of

individual observers explains this contradiction. What appears to have

happened here was that observers split into two distinct groups: one

group definitely saw the signal, the other appeared to miss it completely.

Hence, the combined data are highly variable.

The signal drawing data were analyzed by calculating the percentage

of hits and false alarms for each stimulus pattern. A hit is defined as

any mark drawn in a cell of the 8 x 8 matrix that in fact contained part

of a signal. The percentage of hits is the total number of correctly

marked cells for all 18 observers divided by the total signal cells

(multiplied by the number of observers). Since this measure by itself may

or may not reflect accuracy (for example, a perfect score would result if

observers marked every cell of the matrix), it is necessary to compute

the false alarms as well. The percentage of false alarms is defined as

the total number of marked cells, where a signal was not present, divided

by the total number of non-signal cells in the matrix (multiplied appro-

priately to obtain a single group score).

The percentage of hits is shown in Figure A5.1.3 as a function of signal

to noise ratio for each of the three signal types. The trend of the

results is very similar to the confidence ratings presented in Figure A5.1.2.

The hi*s for the linear signal show a dramatic increase at SNR = .8; whereas

the trend is more gradual (and in fact, non-monotonic) for wavy lines and

pulses.

The false alarm results are shown in Figure A5.1.3. For each signal pattern

the false alarm rate is at or below the rate for noise alone (_ 15-20X).
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The linear signal yields the lowest false alarm rate.	 Quite obviously,

the hit results are not artifactually due to a high percentage of the matrix

being marked independent of signal presence.

Histograms were constructed to represent the location of drawn signals

aggregated for all observers. 	 Figure A5.1.7 shows the frequency of drawn marks

for the linear pattern at the highest SNR (1.4). 	 It is clear that observers

show substantial agreement on the location of the signal.	 (For purposes of

representing the data, the size of the matrix on the histogram is larger than

the matrix used in the experiment.)

Figures A5.1.8 and 9 present results for two noise fields. 	 The inter-

esting aspect of these histograms is the apparent differences.	 In Fig. A5.1.p

the agreement is minimal among observers concerning the location of potential

signals.	 However, a fair amount of agreement is evident in Figure A5.1.9.

The latter finding is intriguing since it suggests that characteristics of a

noise display lead people to infer the presence of signals, even though their

confidence in signal presence is rather low (the mean confidence ratings for

the two patterns are approximately the same).

The findings here must be considered tentative.	 Further analysis of

individual differences among observers, with replications using larger

sample sizes, should help to clarify and extend the present study along

r
avenues that invite direct appl,catiji: to the problem of signal detection

and recognition.
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S N R 0 .4 .6 .8 1.0 1.2 1.4

Linear

X 2.44 2.08 2.25 8.61 8.0 9.31 9.69

1.88 1.32 1.44 1.79 2.18 1.34 .82

Pulse

X 3.08 2.47 3.03 3.64 6.31 6.58

S 2.52 1.96 2.31 2.47 2.96 2.88

Wavy

X 2.50 2.69 2.61 3.44 5.14 7.33

S 1.90 2.05 2.25 2.27 3.25 2.72

Table 15.1.1 - Composite Statistics for Confidence Ratings
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&Pendi x A7.1

Experimental Procedure Outlines for Several Feasibility Studies
of Non-Astrophysical Uses of the Multichannel Spectrum Analyzer
and Signal Detection System

Two experimental outlines for preliminary feasibility studies of non-astro-

physical uses of the multichannel spectrum analyzer and signal detection system

are presented in this appendix. Each of these studies can be implemented with

off-the-shelf hardware, however the studies will provide insight into the

nature and depth of the results that could be obtained by implementing the

full system as proposed in this study.

A Source Mechanism Study

In this study, the apparent downward frequency shift which accompanies

growth of the acoustic emission source will be investigated.

Parallelpipeds or right circular cylinders will be cut from a single

crystal of quartz (SiOd . A stress riser hole will be drilled perpendicular

to the long axis of the sample, which will allow a crack to stably propagate

from the stress riser hole when the sample is loaded. Zirconium titanate

piezoelectric transducers will be bonded to the sides of the sample with

conductive epoxy. The trans&.ccr outputs will be amplified by an 80-110 dB

preamplifier and recorded on an analog instrument tape recorder. A video

camera will be used to monitor crack velocity. The time gate signal on the

tape recorder will be used as an input to the camera in order to insure

synchronization of the camera and recorder.

Each sample wi l l be loaded perpendicular to the stress rider hole and

the long axis of the sample until the crack propagation stress is reached.
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when crack propagation is initiated, the sample will be statistically

loaded. All acoustic emissions during crack propagation will be recorded

on magnetic tape. The power spectrum as a function of crack length will

be analyzed with a spectrum analyzer. An off-the-shelf analyzer can be

used' for the initial study because while the frequency resolution over the

entire spectrum of emissions is poor, high frequency resolution can be

obtained if the bandwidth of the analyzer is reduced. The spectrum analyzer

can be used in narrowband mode to examine the high and low ends of the

spectrum by replaying the tape into the spectrum analyzer, in order to deter-

mine the relationship between crack length and frequenc y shift or crack

velocity and frequency shift. The sample and experimental configuration are

shown in Figure 7.1.1.

Stress Field Measurement

Stress field measurement using the Kaiser effect as a stress measurement

tool will be investigated. The Kaiser effect is basically an acoustic memory;

if a rock has been loaded to 70% of its compressive strength (with acoustic

emission activity from roughly 40 - 50% of the compressive strength up to

failure) acoustic emission activity will not occur, upon reloading, until

the previous load is exceeded.

Parallelpipeds or right circular cylinders will be cut from a relatively

homogeneous rock such as sandstone. Each sample will be loaded axially to

70% of the compressive strength of the material and then unloaded. A piezo-

electric transducer will be bonded to the side of the sample with conductive

epoxy. Each sample will then be reloaded along the same axis up to 85% of the

compressive strength of the rock, and the acoustic emissions during reloading

f.	
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will be monitored. A series of sample sets with varying durations between

initial loading and reloading can be run in order to determine the nature

and longevity of the Kaiser effect. Samples can also be axially defomed

under confining pressure in order to determine if the three dimensional

stress field can be evaluated with the Kaiser effect. The output of the

transducer will be amplified by an 80-120 dB pre-amplifier and recorded on

an analog instrument tape recorder. The signal gating track on the tape

recorder will be used to enter the stress level data and time signal. The

tape will be replayed through a spectrum analyzer. An off-the-shelf

spectrum analyzer will be used. The gross characteristics of the spectrum can

be determined with the spectrum analyzer in wideband mode and then the spectrum

can be re-examined section by section with the spectrum analyzer in the narrow- 	 I
band mode. The multichannel spectrum analyzer and signal detector proposed

in this study has far greater sensitivity and frequency resolution than an

off-the-shelf spectrum analyzer, however the feasibility of using the system

to determine stress levels in fault zones can be investigated with off-the-

shelf equipment. The sample and experimented configuration are shown in 	 i

Figure 7.1.2.	 1
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Step 1	 Axial Load
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loaded to 70% of its
compressive strength
and then unloaded.
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Each sample is reloaded to 85 40 10 of
is compressive strength and monitored
acoustically.

Figure 7,1.2
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