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"There is no use trying," she said: "One can't

believe {mpossibTe things." "I daresay you

haven't had much practice," said the Queen,

"When I was your age, I always did it for half-

an-hour a day. Why, sometimes I've belfeved as

many as six impossible things before breakfast."
--Lewis Carroll

Preface

For at least a decade it has been recognized that any truly effective
search of the radio frequency band for extraterrestrial signals would require
a signal detector system of unprecedented resolution and sensitivity. Unfor-

tunately, all searches to date have relied upon rather conventional detection

equipment, and thus have not been able to probe deeply into our stellar
neighborhood.

A great impetus for the search for extraterrestrial intelligence (SETI)
effort came in 1973 in the form of a NASA-Ames Summer Study design of a large
scale search system. This system, called Project Cyclops, gains sensitivity
through linking a great number of telescopes of moderate size. The study
demonstrated the feasibility of a full-scale SETI program to begin in the
near future.

In addition to Project Cyclops, the rapid advance of digital electronics
in the 70's also led to increased interest in SETI. For the first time,
through the development of innovative FFT algorithms and fast microprocessors,

H an 8-million-channel spectrum analyzer (MCSA) was designed to meet the needs

- of a SETI program. The MCSA puts out a very large database at very high rates.

-

The development of the device which follows the MCSA, called the Signal

Detector, represents a major design challenge in both data processing and

i <-mmn«ww;

algorithm optimization. The design of this device is the subject of this

P
¥

report.
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The study was sponsored by the American Society for Engineering
Education (ASEE) and the National Aeronautics and Space Administration (NASA).
The host institutions were the University of Santa Clara and the NASA-Ames
Research Center. The 1979 Summer Study brought together 22 professional
educators in the fields of physics, statistics, electrical engineering, and
radio astronomy. During this summer they designed an integrated system of
a new and original type which can be built with today's technology.

As the study commenced the group was presented with two very difficult

12 bits) of

problems. They were: "How does one process 1/2-terabits (10
data in 1000 seconds," and "How does one detect a completely unspecified
signal with acceptable sensitivity?"

Fortunately, the study team rose to the challenge, and an intense period
of learning, groping, and imagining followed. Proposed solutions emerged,
each with its small camp of supporters. Adding fuel to ensuing debates
was the fact that for an algorithm to be acceptable it was required to be
both sensitive and feasible (implementable). This requirement brought
together hardware specialists and mathematical theorists. Algorithm makers
conferred with data handlers. Outside specialists were frequently brought
in to determine if a product could truly be produced. A1l candidate algo-
rithms, such as Pattern Recognition, Analysis of Variance, and Coherence
Measure were subjected o a makeshift scientific forum, where the participants
learned to speak the language of signal-to-noise ratios and bit rates.
Concurrent with this debate was the search for technologies commensurate to
the massive quantities of processing required. New and exotic technologies
(including optical laser storage, super computers, multiprocessing computer

arrays) were explored. Again concurrent with these studies was one by the
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psychologists of the group regarding the human brain as the most sophisti-
cated "algorithm processor" of all, It was a period of intense inter-
disciplinary learning with statisticians developing integrated circuits
and physicists studying human response to stimuli, and with each person
periodically staring into noise-dominated display screens attempting to
discern a hidden signal.

This period of open scientific query was ultimately channelled into a
period of determined engineering design and layout, where all chosen methods
were incorporated and integrated. It is somewhat sad that so many promising
and exciting areas of research had to be eventually constrained to definitive
dry statements and diagrams within thig report, but it was felt that one
well-specified system was needed which served to incorporate this broad
scope of ideas into one,

We wish to say a word about the use of computers by the study
participants. Individuals within the group produced simulations which:

- determined optimal ways of integrating drifting carrier
waves*

- tested intelligent algorithms to follow drifting carrier
waves

- determined the sensitivity of coherence measure and shift
SNRs

- showed the effect of quantization on variance algorithms

- developed 3-D display techniques for human pattern
recognition

demonstrated the ability of humans to recognize patterns

demonstrated automated pattern and cluster recognition

* explained in the body of this report



Such simulations with computers and with humans aided by computers
helped greatly in gaining an evaluation of beliefs. Simulation of the
various components of the system is an economical and effective way of
evaluating and expanding the ideas proposed in this report.

This study proposes a system that acts as a detector of intelligent
signals. It combines the thinking of physicists, statisticians,
electrical engineers and radio astronomers into one integrated design
constructable with today's technology. While we do not think that this
study is the final answer in temms of instrumentation and algorithms in
the search for extraterrestrial life, we do feel that many of these
proposals are rich with potential and should be exploited further.

A word about the choice of the name for the study--Project QOasis. One
of the major candidate regions of the electromagnetic spectrum in which to
search is the range from 1400 MHz to 1700 MHz. Near the low end of this
band is the spectral line of hydrogen. Near the upper end is the line for
hydroxyl radical. These two lines of the dissociation products of water
gave rise to the suggestion that this narrow band of frequencies, where
nature passes signals with relative ease, be called the "water hole," and
indeed what better place might we search than that ancient meeting ground
of so many disparate species of living creatures. It was this allusion to
a water hole which suggested the word Oasis, a patch of green in a vast
expanse of arid desert, with its water hole providing the source of life,

We have each come from this summer project realizing the power of
collaboration and cooperation between differing disciplines and viewpoints.
This study is the product of a group of individuals who worked together and
reached beyond their 1imits to break new ground, just as man must search beyond

himself towards the limits of space if he is to reach the stars,
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GLOSSARY
A scan refers to one spectrum--8 Miz x 1 Hz, with 16 bits per channel
produced in one second.

The entire array refers to 1000 seconds of the MCSA output and is a 1000
sec x 8 H?z matrix of raw data, (1000 scans).

A block is a 20 sec x 40 Hz section of the entire array, 800 points,
The compacted array is a 50 x 250,000 matrix of 9-bit numbers.

A pattern block is a 50 x 200 matrix of 9-bit numbers which is a vertical
strip of the compacted array.

A pattern class is a set of 9-bit numbers with specified bits equal to 1
which determine the class and no constraint on the unspecified bits,
Thus, both (0, 1,1,1,0,1,0,1, 1) and Sl. 1.0, 1,1, 1,0,1,0)
belong to the class (*, 1, *, 1, *, *, *, 1), and also to the class
(*, 1, *, *, *, *, *, * *), while (0,0,1,1,0,1,0,1, 1) belongs
to neither of these classes,

A pattern point is any 9-bit number of the compacted array.

A cell is the time-frequency location of a pattern point. Note the one-to-
one correspondence between blocks and cells.

In addition, the following mnemonics are used widely throughout the report:

AC - Accumulator

ANOVA - Analysis of Variance

CD - Cluster Detector

CFSR - Commun Frame of Semantic Reference
CWD - Carrier Wave Detector

ETI] - The Extraterrestrial Intelligence
GCV - Generalized Coherence Value

MCSA - Multi-Channel Spectrum Analyzer
NBIT - Numerical Battery of Independent Tests
0SD - Qasis Signal Detector

PD - Pulse Detector

PROM - Programmable Read-Only Memory

RFI - Radio Frequency Interference

RAM - Random Access Memory



ROM - Read=-Only Memory
SETI - Search for Extraterrestrial Intelligence
SNR - Signal to Noise Ratio

Gbit - Gigabit, 10° bits
Mit - Megadbit, 10° bits
Byte - 8 bits



Chapter 1
Introduction

The Search for Extraterrestrial Intelligence (SETI)

.-
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You may seek it with thimbles--and seek it with care;
You may hunt it with forks and hope;

You may threaten its life with a railway share;

You may charm it with smiles and soap--

We have sailed many months, we have sailed many weeks,
(Four weeks to the month you may mark),
But never as yet ('tis your captdin who speaks)
Have we had the least glimpse of a Snark!
--Lewis Carroll, The Hunting of the Snark

Because of continuing advances and discoveries made by astronomers in the
"outer" universe and by microbiologists in the "inner" universe, our estimates
of the probability of life being widespread in the universe are growing rapidly.
At the same time, technological advances are increasing the probability of our
being able to successfully communicate over the large interstellar distances
that might exist between adjacent intelligent civilizations. That this idea
has clearly emerged from the realm of science fiction into that of science
fact may be seen from a statement made by the National Academy of Sciences in
their Recommendations for Astronomy in the 1970's.

"Our civilization is within reach of one of the greatest steps in its
evolution: knowledge of the existence, nature and activities of independent
civilizations in space. At this instant, through this very document, are
perhaps passing radio waves bearing the conversations of distant creatures--
conversations that we could record if we but pointed a telescope in the right
direction and tuned to the proper frequency.

“More and more scientists feel that contact with other civilizations is no
longer something beyond our dreams but a natural event in the history of mankind
that will perhaps occur in the lifetime of many of us. The promise is now too
great, either to turn away from it or to wait much longer before devoting

major resources to a search for other intelligent beings.
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"In the long run this may be one of science's most important and

most profound contributions to mankind and to our civilization."

1.1 - The Evidence for Life

Radio Astronomers have found increasingly large organic molecules
within gas and dust clouds distributed throughout our galaxy. Molecules
such as formaldehyde, ethyl alcohol, formamide, and others with molecular
weights up to 123 have been found.

We have artificially created the building blocks of life--amino acids,
nucleic acids and primitive proteins--in our laboratories by supplying
energy to simple mixtures of water, ammonia, and methane. The energy has
been successfully supplied by a great variety of sources, such as electric
spark, ultraviolet radiation, heat, acoustic waves, x-rays, and nuclear
particle bombardment (Ponnamperuna, 1972). Since these simple substances
and energy sources are likely to be present on any newiy formed planet, the
precursors of life probably are widespread, and although we have no direct
evidence that further development or evolution will necessarily occur, it is
certainly a possibility. These same building blocks have also been found
in moon dust and in meteorites that have landed on the Earth. This indicates
that Earth has no moncpoly on the organic compounds necessary for 1ife as
we know it.

In all our studies of nature, we have yet to encounter a truly unique
object or event. Nature tends to create things of many kinds, but each kind
is well-populated. We find the same elements in our Sun and in all the other
stars and in all the distant galaxies as we do right here on Earth. We
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observe that the same laws of physics hold everywhere in the universe,
The Sun and the Earth are but average members of our galaxy. There is no

basis to believe the Earth is in any sense unique.

1.2 - Where Is Extraterrestrial Life to Be Found?

Our space probes to date have indicated little hope for life on the
Moon, Mars, or Venus, and conditions on the remaining planets of our solar
system seem hostile to any life. Moving out to the stars in our galaxy,
we can expect to find life-bearing planets associated with only certain
types of parent stars,

The parent star should not be too large, since such stars burn them-
selves out in too short a time for intelligent life to evolve. Nor should
it be too small, since the planet then has to be so close to get enough heat
that tidal effects tend to lock the planet with one side always facing the
star, similar to Mercury and the Moon. This causes all the atmosphere
to freeze out onto the cold side. The parent star should be a slow rotator,
indicating that it may have lost most of its initial angular momentum to a
planetary system, In our solar system, 98% of the total angular momentum
is carried by the planets, and the Sun is a very typical slow rotator.

The heavy elements necessary for life are formed only in the cores of
stars. They are not present in the very old first generation stars, but
rather are present in the younger second and subsequent generation stars that
have formed out of the debris of their exploded forefathers. Mzny stars are
part of small groups of two, three or more stars rotating about a common
center of gravity. Stable planetary orbits are less likely to occur in such

multiple star systems.



All of the stellar characteristics described above can be measured
from the Earth, enabling us to choose which specific stars are most likely
to harbor life. The factor which takes very unlikely individual occurrences,
and makes them likely in an overall sense, is the vast size of our universe.
Thus, if we eliminate from further consideration all stars not meeting all
of the above criteria, we are still left with around 20 million good

candidates in our own galaxy.

1.3 - How Should We Look for Extraterrestrial Life?

Considering the time and energy involved, the possibility of actual
interstellar travel seems very remote. That leaves us with attempting to
converse from afar, probably by some form of electromagnetic radiation. We
will have to ignore for the present the fraction of civilizations that
might be sending out gravity waves or other signals as yet unknown to us.

The two obvious candidates for electromagnetic signalling are light
and radio waves. The advent of the laser adds considerably to the possibility
of l1ight signalling, but one basic difficulty is that of trying to outshine
the parent star. Stars radiate most strongly in just those spectral regions
where 1ight signalling is apt to occur. Another difficulty is that the
diffuse material between the stars tends to absorb light, making such
signals be rather short-range.

Radio waves, on the other hand, are not bothered appreciably by stellar
interference, and are regarded as being the most likely s ignals to look for,
by most workers in the field., Our own present capabilities are quite formi-

dable. If we took our most sensitive receiver, our most powerful transmitter
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and our biggest antenna and combined them in an interstellar communications
1ink, we could communicate with a twin of that system at a distance of
100,000 1ight years. That fact in itself goes a long way toward making

the whole idea of interstellar communications seem possible.

Our civilization is an "emerging" one from the standpoint of inter-
stellar communications. We have not yet matured to the point where we
consider it practicable to send out signals with no hope of reply for
hundreds of years. On the other hand, we could receive whatever signals
already exist with much less effort, and with the possibility of immediate
success. The value of such one-way communications should not be discounted.
Our own radio and television broadcasts, as well as books, are one-way
communications in the sense that we cannot immediately reply to the
sender. Our knowledge of early Earth civilization through archaeological
exploration comes through a communication system that is not only one-way,
but is also irreversible and highly unintentional. Yet it is of inestimable
value to us.

There are two types of radio signals that we might search for. There
are those intended for the internal use of the sender, analogous to our own
radio, TV, radar, etc., transmissions which inevitably leak out into space.
Then there are those intended specifically to attract attention or serve
as a space beacon of some sort. Of the two, leakage signals are expected

to be much weaker, since they represent wasted power from the sender's

AR s, W e

viewpoint, Leakage signals are also more difficult to search for, since
we cannot make reasonable assumptions as to expected frequencies, modulation

methods, bandwidths, etc. We have only to consider the chaotic appearance

|
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Earth leakage signals would have to an outsider to appreciate the
magnitude of this problem (Sullivan, 1978 ). Beacon signals, on the

other hand, can be expected to be optimized in the sense of making it

easy for us to find them, since that is their purpose. To be sure, we
should not forget about leakage signals, but their discovery is more

likely to be accidental,

1.4 - Anti-Cryptography vs. Anthropocentrism

Since it is not possible to thoroughly search the entire dimensions
of frequency, time, space and signalling methods, it is necessary to
construct a search strategy that will reduce or eliminate as many of
these dimensions as possible. This involves making a number of
assumptions about the characteristics of the signals we are looking for.

Our search strategy is based, in so far as possible, on physical
laws or properties which are true throughout the universe. The radio
frequency spectrum can thus be l1imited on the lower end by galactic noise
at about 1 GHz, and on the high end by quantum noise at about 100 GHz.
Dispersion in the interstellar medium limits useable bandwidth to a few KHz.
These 1imitations should be recognized by any civilizations considering
interstellar communications, Further, communication theory suggests very
slow signalling rates and narrow bandwidths for maximum range.

The energy-conscious designer of an interstellar beacon will choose
all its operating characteristics in such a way as to maximize its
probability of detection. This means that if a search dimension can be
minimized or eliminated by a design choice, it will be. An example of this

7=




is the dimension of time, If a beacon transmits in different directions
at different times, we would be Tucky to be looking toward it at just
the time it was transmitting toward us. On the other hand, if a beacon
transmits continuously and omni-directionally, we need not concern our-
selves with the unknown of when to look at it, and the dimension of time
is effectively eliminated.

Thus, one approach in the design of a signal detector is to develop
an idea of what sort of signal wculd constitute an optimal interstellar
beacon, in terms of distinguishability from natural sources, as well
as providing ease of reception. On such grounds, one conclusion (Dixon,
1973) is that the signal is in the 1-3 GHz range, circularly polarized (with
binary left and right hand modulation), narrow band, and possibly Doppler
corrected. For the reasons above, the Oasis signal detector, as seen in
the next two chapters, is especially sensitive to narrowband polarized
signals.

In the event that such a signal is not the optimal beacon, or if the
transmitted signal is nonoptimal, the 0SD is designed to be sensitive to a
broad class of signals, including those transmitted routinely and acciden-

tally from Earth into space.

1.5 - Why Should We Look?

Consider the continuum of possible development levels of civilizations,
and their corresponding communications capabilities. Our civilization has
only very recently achieved the technology necessary for interstellar

communications, We cannot communicate with less developed civilizations,



because they cannot construct their half of the circuit. We can communicate
(with difficulty) to other civilizations of equal development to our own,

and can do so with increasing ease to civilizations more and more advanced
than ours. If we assume that we are midway along the infinite time line

of development, then we cannot reach all those others in the less developed
half. The chances of finding another civilization of equal development

to our own is small, since that is analogous to finding a single point

on an infinitely long 1ine. This leaves only the more advanced civilizations
as being those most likely to be found.

We know that our own civilization is capable of destroying itself
through wars, overpopulation, pollution and other causes. It is possible
that all civilizations suffer such a fate at some critical point in their
development, Perhaps that is a general law of nature; we simply do not
know. If this were the case, we might never find another civiiization.

Cn the other hand, if we were to find another civilization (that would very
1ikely be more advanced than we), this would be evidence that it is at least
possible for a civilization to attain maturity without destroying itself,
This might provide the impetus we need to redouble our efforts to eliminate
such possibilities. Perhaps the signals themselves would tell us how to
solve these problems. This might be referred to as a cosmic feedback
effect, where the transfer of knowledge from one civilization to another
tends to stabilize, preserve and synchronize them.

Our sense of perspective would change if we realized we were not alone
in the universe., Perhaps some of our local problems would not seem quite
so important. Looking at things from a larger viewpoint might reduce the

foolish, jealous and chauvinistic tendencies we have,



Mankind needs a continuing challenge. Without it, cultural
stagnation will set in and our civilization will decline. There must
always be new frontiers and adventures to face or we will sit back on

our laurels and let the universe go by.

1.6 - How Can We Understand Their Messages?

Whatever they say, it will be said in such a way as to make it as
easy as possible for us to understand it. Linguists say that a Common
Fr -:e of Semantic Reference (CFSR) must exist before meaningful communi-
cations can occur in any context., In other words, mutually common know-
edgr or experiences must serve as the basis for initial understanding.

Once such a basis is established, knowledge which is known only to one
can be imparted to the other. We have successfully translated ancient
lost languages, but a large CFSR exists between any two races of humans.
Dolphins are apparently quite intelligent, and have complex speech, yet
we have been unable to communicate with them, The CFSR is less cbvious
in that case.

An obvious CFSR that we must share with any intelligent technological
civilization is that of counting and numbers. This has been exploited by
Hans Freudenthal (1960), a Dutch mathematician, who created Lingua Cosmica.
The basic idea ', tc send a repetitive message which begins with a
counting sequence and builds up logically by telling how to answer a
transmission or telling where other transmissions might be found. The first
message might be referred to as an entrance examination,

o es see eses eeees (etc.)
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Each subsequent message or lesson introduces exactly one new idea or
symbol, using it in many different contexts with previously defined ..
symbols, to make its meaning obvious. For example, the concept of
“greater than" can be introduced by using a new symbol *?" in context with
the numbers learned in the entrance examination, i.e.,
271 371 372 471 472 4723  (etc.)

Other schemes have also been created (see Arbib, 1979).

The important thing to note here is not that we really expect inter-
stellar signals to be exactly like Lingua Cosmica, but that at least
methods seem to exist for information to be sent, received, and under-

stood among different civilizations.

1.7 - What Is Being Done Now?

To date, we have only scratched the surface of what we are capable of
doing, in terms of actually looking. Contrary to popular belief, radio
observatories do not spend all their time searching for intelligent signals.
It would be closer to the truth to say that radio observatories never
search for intelligent signals. The actual situation is that most obser-
vatories never search at all, a few search for a tiny fraction of their time,
and only one searches all te time. A long term search for pulsed signals
is being conducted in the USSR, using very small, non-directional antennas.
A full-time search for narrow-band signals using a large radio astronomy
antenna has been in operation since 1973 at Ohio State University. The
various searches to data are summarized in Table 1.1 {excerpted for data

provided by Jill Tarter of NASA-Ames Research Center).
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A1l of these searches basically employ previously-existing radio-
astronomical equipment and techniques. No positively identified signals
from extraterrestrial civilizations have been found, although several
single-event unexplained cases have been noted (Kraus, 1979). Numerous
papers and books have been published on the subject, and many national
and international conferences have been held. A scientific journal
devoted exclusively to the subject (called Cosmic Search, Kraus et al.,
1979) is now being published.

To give proper perspective to what is being done now in comparison to
what could be done, consider the search for earthquakes in the state of
California. An easy earthquake search experiment that can be performed
without specialized equipment is to simply stand outside somewhere in
California for 10 minutes and note carefully if you feel any vibrations.
The most likely outcome of this experiment is not indicative of the true
situation, simply because its scope is too small.

In 1971, NASA sponsored Project Cyclops (Oliver, 1971), a feasibility
study of what would be required in terms of time, money, and personnel to
mount a full-scale search for intelligent extraterrestrial radio signals.
The basic reconmendations were to construct several 100 meter diameter dish
antennas, and search the nearby stars in great detail. If no signals were
found, additional dishes could be constructed in stages, up to a limit of
about 1000, to search progressively more distant stars., If a signal were
found at an early stage, the entire array would not need to be constructed.

In 1975-76, NASA held a series of Science Workshops on Interstellar

Communications (Morrison, et al., 1977). A wide variety of well-known
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scientists in various fields were convened to re-examine the SETI concept
in 1ight of current knowledge and technology. The consensus of all those
attending was that it was both timely and feasible to begin a serious search
for extraterrestrial intelligence and that it can be done now at only modest

cost.

1.8 - Detection Techniques Used in Previous SET! Projects

A1l current and previous SETI projects use equipment that is either
simple and inexpensive, or that has been adapted from some other original
purpose. The techniques may be broadly grouped into two categories--
those which search for wideband pulsed signals and those which search for
narrowband continuous signals. Refer to Table 1.1 for more details on

these various searches,

Wideband Pulsed Signal Techniques

Two projects in the USSR employ widely separated (thousands of miles)
receivers, with simple non-directicnal antennas, to make tape recordings
of pulsed signals. The tapes are later sent to a central location and
cross-correlated to determine if any time-coincident pulses were observed
among the various receivers. Typically each receiver observes many
random pulses due to RFI, lightning, and other phenomena local to each
receiver. Any such pulses would not be observed at the other receivers
however, so they are eliminated by the cross-correlation process. Pulses
which are received simultaneously at all or most of the receivers may be
inferred to have a common, most likely extraterrestrial, origin,

A second technique for finding pulses is the use of pulsar search

equipment, being done in Germany. Pulsars are natural astronomical objects
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that emit periodic broadband pulses, which are received as pulses that
sweep dowrward in frequency with time. The apparent frequency sweep is
caused by the velocity of wave propagation in the interstellar medium
being a function of frequency (i.e., high frequency signals travel faster
than 1ow frequency signals). Pulsar detection equipment typically uses
several receivers spaced in frequency, to observe both the pulsing and

sweeping phenomena.

Narrowband Continuous Signal Techniques

The great majority of projects search for narrowband signals, from
specific target objects. Their techniques differ from one another
principally in the method and degree of achieving narrow bandwidth, and
in the number of receiver channels in simultaneous operation. In
virtually all cases, the equipment used is adapted from radioastronomical
natural line detection apparatus.

Banks of analog filters are used to achieve moderate bandwidth
(10 kHz) and a moderate number of channels (50). To achieve a larger
number of channels (1000) autocorrelation receivers are used. These
receivers digitally compute the Fourier Transform of the autocorrelation
function of the incoming signal in real time, giving as output the power
spectrum of the signal. For extremely narrow bandwidths (10 Hz) and high
number of channels, the incoming signal is recorded on a high-speed tape
recorder for later (non-realtime) processing. The tapes have been
analyzed by a variety of techniques, including direct Fourier Transformation
in a large mainframe computer, optical Fourier Transformation using a laser

and lens system, and Fast Fourier Transformation using a mini-computer. In

all cases, the power spectrum is computed and inspected for peaks.
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The project in Ohio employs a number of spectalized SETI signal
detection algorithms. The sky is continuously swept, at the Earth's
rotation rate. In that mode of observation, the intensity of signals
which come from small-angular-extent objects appears to trace out the
antenna pattern, as a function of time. This fact 1is used by continuously
computing the normalized cross-correlation function of the received data
with the antenna pattern, in each channel. This procedure discriminates
against large diameter natural astronomical objects and short-time peaks.
In addition, adjacent channels are intercompared and if a detection occurs
simultaneously on two or more channels, it is ignored. This discriminates
against wide-band signals. When a signal is detected in one of the
channels, a narrowband tuneable filter is automatically activated and
swept slowly across the frequency range of the detection channel, to
provide a re-examination of the signal at 1/10 the discovery bandwidth.
RFI is largely eliminated through use of a beam-switching technique, where
the receiver output is the difference between two closely-spaced beams on
the sky. Any real source appears in only one of the beams at a time, and
hence is observed normally. RFI in general is received in the sidelobes
of the antenna, which are the same for both main beams. Thus RFI is
effectively subtracted out.

Several other programs make use of data and observations done for
other radioastronomical purposes, which are then reanalyzed with SETI in
mind. This is the case for the projects in the Netherlands (examination
of radio sky maps at known star positions), in California (a parasitic
receiver that makes a separate recording of narrowband signals, from what-
ever the radio telescope happens to be looking at), and the recent one by

Cohen and Malkam (examination of data originally taken to find natural lasers).
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1.9 - The Next Step

The next quantum jump in signal sensitivity requires the use of
receiving equipment designed and constructed specifically for SETI. This
is analogous to building seismographs to detect earthquakes in California.
Existing radio telescope antennas are quite adequate for the present; only
their receivers need be changed. Fortunately, receivers are much cheaper
than antennas.

Before such specialized receivers can be constructed, they must be
designed. Even before that, they must be conceptualized. Decisions must
be made as to what types of signals to expect, and optimum search algorithms
designed to detect them. Such signals might be from beacons. At the same
time, means must be devised to catch those signals which are unpredictable,
amorphous or strange. Such signals might be leakage. Careful searching
takes a long time, requiring full-time operation at several observations
around the earth, for many years. This is analogous to operating the seis-
mograph for ten years, instead of ten minutes.

Overlaying all extraterrestrial signals are the overwhelmingly pawerful
signals being generated by our own radio and television stations. The SETI
receiver must operate in the presence of such interference constantly. Even

worse than the signals generated here on Earth are those transmitted by
artificial sateilites, for they look directly down the throat of the SETI

antennas. “he number of transmitters in operation, both on Earth and in
space, is growing rapidly with time. Eventually this will make it impossible
to conduct SETI programs anywhere on the surface of the Earth. The alterna-
tive is to construct SETI antennas in space or on the moon. This will be
much more expensive and could not occur for many decades. Thus there is

a great urgency to proceed now.
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1.10 - The Receiving System

Figure 1.1 shows conceptually the components which make up the SETI
receiving system. A radiotelescope containing two orthogonally polarized
feed antennas is connected to two separate receivers. The output of each
receiver is fed to two separate Multi-Channel Spectrum Analyzers (MCSA's).
The MCSA is a special purpose SETI device, capable of analyzing 8 MHz of
bandwidth with a resolution of 1 Hz. The 8 MHz input bandwidth is digi-
tized and then initially split into 120 bands using a digital bandpass
filter bank. These bands are then subdivided to a resolution of 1 Hz by
120 microprocessors that continuously compute the Discrete Fourier Transform
of the filter outputs. Both the input and output data is in complex form
(i.e., possessing both magnitude and phase).

Each word is 16 bits in length, but since we use only 4 as being of
sufficient accuracy, then the output data rate is 16 megabytes per second.
This data is fed to the Oasis Signal Detector, where it is searched for
possible intelligence. In actual operation, the radio telescope examines

a target star for up to 1000 seconds. All of the data for a given target is
to be available for computation at one time, and a total of 16 Gigabytes

of data is stored digitally.

To give perspective to the magnitude of this task, consider the
following analogy. 16 megabytes per second is about one encyclopedia set
per second. These encyclopedias do not contain words and sentences, but
are filled with random letters and numbers. As we read through these
encyclopedias (after having taken a speed reading course), we have no idea
when an intelligent message might begin (today or 5 years from now), or in

what language it will be. To make matters worse, each encyclopedia will
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only contain one word of the message (average of 8bytes). For example,
the first set of encyclopedias might contain "The", and the second set
"message”, and the third "is", and the fourth "zk3ja". As usual, just when
you get to the good part, the data got garbled by noise, but this serves
to fllustrate the real fact that noise will always make the signal less
clear than it otherwise might be.

To make 1ife simpler, we assume that the message will always occur in
a consistent volume and on a consistent page, once it gets startéd, for
example, it might always be in the J volume on page 258, Of course we don't
know which volume or page it's on, so we still have to search everything,
but this assumption allows us to reorganize our search, We use a special
device called an MCSA that rips all the pages out of each encyclopedia as
it appears, sorts them out by volume and page number, and rebinds them
again (all in one second). Now we have a new set of encyclopedias to read,
but all the page 258's of all the J volumes now are bound together in
sequential order, We still have just as much reading to do, but now we

don't have to remember as much.
Occasionally the random letters and numbers will appear to say some-

thing purely by accident. The analogy here is that enough monkeys at
enough typewriters must inevitably produce strangely real phrases. We call
these false alarms. They are expensive because they force us to stop
everything ard investigate their source. We try to avoid them if possible,
but we have to be careful that in doing so we don't miss the real signal.
We are also bothered by occasional pages from the Readers Digest that
are pasted right over some of our encyclopedia pages. They correspond to

our receiver picking up terrestrial radio and television stations. These
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pages are usually easy to spot and skip over, but they are distracting and
they cover up an encyclopedia page that might have contained the message.

The last complication is the fact the data in reality comes from two
antennas of different polarizations. This is analogous to splitting the
encyclopedia in two, with all the letters in one half and all the numbers
in the other half. We don't know if the message will be all letters, or all
numbers, or some combination of the two. We have to read both the letters
and numbers simultaneously, trying to intersperse them appropriately to

make up the entire message.

1.11 - Purpose of This Study
This study is a design of that part of the speciaiized SETI receiver

discussed above that actually finds and recognizes the signals. The ideas
and designs incorporated in this system will undoubtedly be refined and
modified by future workers. Eventually a system will actually be constructed.
This is the beginning of the next step.

1.12 - The Oasis Signal Detection System

Three separate signal detection philosophies are embodied in the Oasis
system, illustrated conceptually in Figure 1,2. The Carrier Wave Signal
Detector seeks the extreme case of a signal that has nearly zero bandwidth,
and may be drifting slowly with time. The Pulse Signal Detector seeks the
other extreme case of a signal that has a broad bandwidth, and may be pulsed
in time. The Battery of Tests seeks all those signals in between the extreme
cases; those that are unpredictable.

Each of these detection methods will be explained in detail in the
chapters to follow., Chapter 2 discusses the philosophical differences between
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signals and noise, Chapter 3 lays the detailed mathematical bases and
philosophies of the QOasis detection algorithms, Chapter 4 summarizes the
overall Qasis system in block form, and provides hardware implementation
details, Chapter 5 focuses on the unique capabilities of tie uuman being

to detect nexpected signals, as weil as the role of the operator in the

Oasis system. Chapter 6 discusses the radio astronomy applications of

the system. Chapter 7 provides {llustrations of non-astrophysical areas where
the Oasis system could be put to use in solving a variety of current scienti-
fic problems.
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Chapter 2
Signals and Noise
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Everything gets written down, formally, so that
you know at all times where you are, where you've
been, where you're going and where you want to get.
In scientific work and electronics technology this
is necessary because otherwise the problems get so
complex you get lost in them and confused and
forget what you know and what you don't know and
have to give up.

--Robert M, Pirsig, Zen and the Art of Motorcycle

Maintenance

2.1 - Introducticn

The primary purpose of the signal detector is to differentiate between
signals and noise. This separation process is based, of course, on the differing
characteristics of signals and noise. In this chapter we explore these charac-
teristics, and discuss how they can be used to distinguish one from the other.
The actual implementation of specific algorithms to accomplish this separation

is discussed in Chapter 3.

2.2 - Classifying Signals_and Noise

In this s2ction an arbitrary classification of inputs to the signal detector
is presented. The cla;:ification is based on the origin of the input. The input
will be called either signal or noise and the signal can have one of three forms
as shown in Table 2.1. It is the purpose of the signal detector to pick out any

of the three signals, saving it for subsequent identification, and reject noise,

Classification

Signals
1. Natural - Astronomical
2. Radio Frequency Interference (RFI)
3. Unidentified (Includes ETI)

Noise

Table 2.1 - Classifying Signals and Noise
of Astronomical Interest
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The first signal form comes from natural sources. These include, for
example, pulsars, spectral lines from interstellar clouds, the galactic 21 cm
line, radio continuum sources, etc, Such natural signals are to be identified
and saved as of interest to astronomers,

The second signal form is radio frequency interference (RFI) which is
any man-made electromagnetic radiation originating from sources such as

radio systems (both ground-based and orbiting satellites), radar, igniticn

!

]

systems, household appliances, etc. , depending on the observation frequency. g]

These signals are not usually of direct interest by themselves. However, |

they are in general sufficiently different from noise that they will be ]

picked out by the signal detector. In many situations it will be desirable

to catalog such signals so that later inputs of the same form can be s

recognized as RFI by the signal identification stage. |
Unidentified signals are simply inputs which appear to be different from

noise but which cannot be confidently identified as either astronomical ;}

or RFI. They may in fact be one of the two, or they may originate from an

intelligent source beyond the solar system.

Noise is defined in Section 2.4 below. gl

2.3 - A Global View |

In this section we consider the environment in which signals are generated
and noise introduced, and how a system to distinguish between the two is :
structured. Figure 2.1 shows a conceptual block diagram of a complete g

communications system,
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The message source block may represent an ignition system in a nearby
automobile, a pulsar or hydrogen cloud somewhere in the Milky Way, or
perhaps an intelligent civilization many 1ight years from earth,

The channel represents the medium through which the signal {s trans- .
mitted. It may be a few miles of atmosphere for a nearby RFI, or scores %;
of light years with components such as atmospheres and ionospheres, inter-
stellar clouds, and nearly empty space. Some of these transmission media
can have important effects on the signal as it travels between message

source and receiver.

A1l the noise is assumed to be added to the signal at the receiver. In
fact the noise may have come from far out in space, or may have originated
in the receiver itself. It is assumed in this study that the receiver and
the MCSA already exist. They are not of direct interest to our design except
for some control functions associated with the best operation of the signal
detector.

The signal detector is the focus of this design project. It nas the
task of detecting any signals which exist in the expanse of noise which
permeates the electromagnetic environment. Its design is dictated by the
assumptions which are made about noise and about the various signals. In a
classic conmunication system it is usually assumed that the general character
and the statistics of signals and noise are known, and are used to determine
the nature of the signal detector. In our case nothing is known about any

potential ETI signals, and there is uncertainty about the exact nature of the i

F—

other signals and the noise which will be received. For this reason the

lines eriering the "assumptions" block are shown as dashed. Despite this i
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uncertainty, assumptions must be made because they are an essential pre-
reyuisite to the design of the signal detector. These assumptions are
presented in Sections 2.4 and 2,5.

The output of the signal detector goes to a signal identifier which has
the task of determining whether the signal is natural, RFI, or unident{fied.
This block is not a primary focus of the present study although it does
receive some attention. The signal identifier directs the signal to the
appropriate user.

Unidentified signals are stored temporarily or longer for attempted
identification by the operator, with the aid of a separate RFI detection
and identification systems and various other tools available to the operator.

Finally, of course, we shall want to decode or interpret any ETI
signals which are obtained. This problem has been addressed briefly else-
where (1), and is beyond the scope of this study. If an ETI signal was
ever found, resources far beyond those available for the search itself would

be brought to bear on its interpretation.

2.4 - What Is Noise?

The term "noise" is not uniguely or unambiguously defined. Sometimes it
refers to any undesired input. In our case such a definition could be ambi-
guous. For example, RFI is not of interest or desired for SETI purposes and
yet we must initially detect it as a potential ETI signal, since it has many
of the same characteristics. Once identified as RFI, we catalog such a signal
so as to reject recurrent similar RFI by means of comparison tests. Likewise,

astronomical signals are not desired for SETI purposes, but are sent to the

astronomical observer for other uses.
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For our purposes we define noise in terms of its statistical charac-
teristics. We then define a signal as any input whose characteristics
differ significantly from those of noise,

There are many sources of noise, with many different statistical
properties, in the electromagnetic environment, However, in the part of the
spectrum of interest to us here, the noise is primarily thermal noise
generated by the receiver and the Earth's atmosphere. We assume that the
noise in the system is Gaussian in distribution, with zero mean and
variance g%, We further assume that the noise power is uniformly distri-
buted over the spectral range of interest, with a power spectral density
equal to kT, where k is Boltzman's constant and T is the equivalent system
noise temperature. Hence the noise power is kTB ( = o2) where B is the
bandwidth of the portion of the spectrum under study. Finally we assume

that the noise is unpolarized.

2.5 - Signal Characteristics

The distinguishing characteristics which are used to identify an input
as signal are its:

a. amplitude

b. periodicity

c. polarization

d. bandwidth

Tre amplitude of a signal might be used to distinguish it from noise in
two ways. First, the average power or amplitude of the signal might greatly
exceed that of the noise (a high signal to noise ratio). Then a threshold
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detector can indicate a signal whenever some arbitrary threshold i{s
exceeded, An alternative signaling scheme is one in which the average
signal power {s not necessarily greater than the noise power but the signal
power is concentrated into a short time pulse. Such a signal could also be
detected by an amplitude threshold device, Of course, Gaussian noise,
since 1t has a theoretically infinite amplitude range, can also trigger
such an amplitude detector, although with low probability. The detection
process is inherently probabilistic. A detector output caused by noise

is a false detection of a "false alarm."

One of the most important characteristics of signals {s periodicity, that
is their tendency to repeat their form over constant intervals of time.
Actually, this periodicity can manifest itself in a number of ways. Many
signals have a so-called "carrier" component which is a sinusoidal signal
with a well-defined period. Another possible periodicity is a sequence of
repeated pulses occurringat some fixed spacing. While it is possible to
design a communication system with no periodicity whatsoever, such signals
begin to resemble noise and would be very difficult to detect without
considerable advance knowledge of their structure., One of the reasons that
periodicity is of such great interest to us is that few natural signals
exhibit a high degree of periodicity. (Pulsars are a counter-example. )

Signals can never be exactly periodic though they may be so close to
periodic that we have no interest in the deviations, We are also interested
in signals which have relatively small deviations from periodicity as is
true of slowly drifting sinusoids or carriers with very little modulation.

Such signals are often called narrowband in that they occupy not a single



1ine in the spectrum, but rather a fairly small range of the spectrum,

There are a number of ways of detecting periodicity in an input. One
is by means of a filter, which might be mechanical, or electrical, or of
some other form. If the input is a sinusoid or has sinusoidal components
with a frequency near the resonant frequency of the filter, this input or
components of the input are passed through the filter. A1l other signals
and noise with frequency components not close to this resonant frequency
are "filtered out."

A mathematical approach to isolating or detecting sinusoids is the

Fourier Transform, which has the form:
X(f) = S; x(t)e 3 gy (2-1)
Suppose that the input x(t) is a simple periodic signal of the form:

x(t) = aed2Tf1t (2-2)

If f= fl in (2-1) the exponents cancel so that the only integrand is the
constant A, leading to an unbounded integral, If f # f1 the exponential
function rotates, such that its integral is essentially zero. Hence the
effect of the Fourier Transform is to pick out the signal with frequency f1
and reject all other signals and noise. In our system the signal filtering
process is carried out by the MCSA which is programmed to execute a Discrete
Fourier Transform (DFT) of the form:

1 N-1

X = I x
n N, 'k

e_jZ“nk/N Y n-= 0,1.2,....,N-1

»
where the X, are N samples of the time function x(t) over a total record

(sampling) period of T seconds.
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The response of the DFT to both signals and noise {s discussed in
Appendix A2.1 1in some detail, As Equation (A2.1-20) and Figure A2.1.3 show, the
response of the DFT to a s{nusoid across any one channel has a finite width,
following a sinc function 1aw. Hence the MCSA acts like a set of very
narrowband filters, which reject signals or noise components outside of a
bandwidth of about one Hertz in our case.

Sinusoidal periodicities can also be detected by phase-lock loops which
act as a filter with a variable resonant frequency. The loop attempts to
adjust its center frequency and remain locked to this frequency as long as
the input frequency remains fixed, The loop can follow drifts or shifts in
the input frequency, and also angular modulation of the input, as long as
the drift rate or modulation rate does not exceed the capacity of the loop.

The periodicity may also appear in the form of repeated pulses, such as
in Figure 2.2a, The Fourier series coefficients for such 2 signal vary as
shown in Figure 2,2b. The important point here is that there are strong
frequency components out to about 1/t Hz, where T is the pulse width., That
is, the narrower the pulse, the more fregquency content there is in the signal.
If, for example, the pulse width were about 10 msec, the power in the signal
would be spread over about 100 Hz, that is over 100 channels of the MCSA
operating with 1 Hz channels. Hence such pulses can be sought by observing
many channels at once. In Figure 2.3 we show how a drifting carrier, a pulsed
drifting carrier, and a sinusoida) drifting carrier might appear in the noisy

output of the MCSA.
The final signal characteristic which we consider is the polarization,

We assume here that ETI signals are strongly polarized and noise unpolarized.
Hence the presence of unusually high power in an input which lacks polariza-

tion tends to suggest an unusually high noise peak. On the other hand, some
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Figure 2.3 — Simulated signals in noise. Each display below represents a set of
vertically stacked frequency spectra. Each spectrum has been taken at sequential
moments in time. Brightness indicatas detected powe: at a frequency. The
displays are dominated by noise, while the linear features indicate the detection
of carrier waves.

(a) Carrier wave drifting in frequency
at a constant rate in time

(b) Pulsed drifting carrier wave

(c) Sinusoidally drifting carrier
wave
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polarization in an input which does not have highvpower tends to suggest

the presence of a relatively weak signal in noise.
In this section we have considered three major characteristics of

signals: amplitude, frequency, and polarization. Next we use these
characteristics to define what kind of signals we will attempt to detect.

2,6 - Signal Type Assumptions

The signal detector is designed to detect five different general
classes of signals,
1. Monochromatic (Sinusoidal)
. Drifting Sinusoid
. Repeated Pulses
. Narrowband Signals

o oW N

. Patterned Signals

These classes are not all mutually exclusive, but the classification
is valuable as a guide in setting up signal tests or algorithms. Some
tests may detect more than one class of signal.

Monochromatic or single-frequency sinusoidal signals are a very strong
possibility in the SETI environment. Such signals could be used as a beacon
to attract attention, Or they might be carriers from a radio signal,
observed in an eavesdropping mode (2). Finally, they might be very slowly
drifting signals with a frequency which appears to be constant over the
observation time. In any event such signals would be of great interest and
would require attention.

A drifting sinusoid could easily arise from any of the mechanisms in
the above paragi-aph with the added effect of a change in the doppier shift

due to planetary motion (ours and theirs). Because such an effect is
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exnected, and because the sinusoid is relatively simple to transmit and
detect, this signal is given perhaps the highest a prior{ probability of
existence, and hence a substantial effort is made to detect {t,

Repeated pulses, modulating a carrier in the spectral search range,
have the form shown in Figure 2.2a. They could arise for at least two
reasons. First, an ETI might reason that instead of transmitting a sinu-
soid at some given power level it might be better to transwmit a highker
burst or pulse of power for a short time, and then turn the transmitter off
between pulse repetitions. A peak power detector would have an easier
time observing such a signal than a sinusoid. A second way in which this
signal might arise is from a sinusoidal-signal beacon which is swept across
the sky in an attempt to attract attention over a wider range than a
focused beam, Such a swept beacon would appear to any one observer as a
pulsed signal.

Narrowband signals have their power concentrated over a relatively
narrow rang of the frequency spectrum. They could arise from monochromatic
signals which drift, or which experience a small amount of dispersion, or
which have modulation with a very low index.

By "patterned signals" we mean those which possess some degree or
organization or pattern which might be recognized as too well-structured to
have come from a random process. Accordingly, one of the algorithms to b~
discussed later does search for clusters of signai characteristics, which
can be viewed as a kind of pattern. In addition one of the primary reasons
for introducing the human observer into the s{gnal detection process is to
take advantage of the capacity of the human to detect or recognize certain

types of patterns.
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2.7 - Review of Signal Processing Steps

As we saw in Section 2.3 there are three steps or stages in the process
of searching for and understanding intelligent signals from space. These
are:

1. Signal Detection
2, Signal ldentification
3. Signal Decoding

Signal detection, the central focus of this study, is the process of
distinguishing signals from background noise. In the next section we
explore some theoretical considerations relating to this step. In Chapter 3
we present some specific signal detection algorithms implemented in this
design.

Once we have detected a signal we turn to the problem of classifying
it as: astronomical, RFI, or unidentified (including ETI). If a signal is
identified as astronomical, it is sent to the observing astronomer for
further study. If a signal is known to be RFI, it can be classified and
cataloged, possibly to help with later identification of other RFI. If a
signal cannot be identified as either astronomical or RFI, it is stored until
such time as further identification efforts can be made. This recording or
archiving can be done automatically or under operator discretion.

If a signal is believed to originate from an ETI, it must be interpreted
or decoded by methods and algorithms yet to be devised.

2.8 - Signal Detection Algorithms

In this section we consider the general types of approaches or algorithms

which can be applied to the problem of detecting signals in noise. Specific
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algorithms selected for our designs are discussed in Chapter 3, We
consider six approaches.
1, Data aggregation
2, Data addition
3. Search for sfinusoids
4, Search for drifting sinusoids
5. Search for polarization
6. Pattern recognition
Data aggregation is a process of combining in any one of a number of
ways the new data. A common reason for doing this is to reduce the amount
of data which must be processed in a given amount of time., A second
reason for aggregating data is to include in one value the effects of more
than one signal property. For example, one term might be used to measure
both power and polarization. If we wished only to pay attention to signals
in which both power and polarizations exist, then a multiplicative aggregate
term could be devised. A disadvantage of aggregation is that it sacrifices
data. This effect may be overcome by storing the raw data for some time.
Data addition is a form of aggregation which usually is implemented
with the special motivation of increasing the signal to noise ratio. Data
values may be added over successive MCSA bins, in which case we call this
coarse-binning., Data can also be added for the same bin or channel over a
number of successive time records. The addition can also be performed
over any other combinations of data values.
Data addition increases the signal to noise ratio by taking advantage of
the fact that the data tends to add coherently while the noise adds incoher-

ently, Data addition can be done over the amplitudes of the signals or over
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the power (the sum of the squares of the real and imaginary components),
It may be undesirable in some cases to add amplitudes, if for example
these amplitudes are complex and the MCSA has introduced a phase shift
which permits amplitudes to subtract,

There are a number of ways to search for sinusoids by taking advantage
of their periodic nature. Most of these approaches are equivalent to
narrowband filtering; as discussed in Section 2.5 above. One basic approach
in our situation is to use the MCSA as a narrowband filter and then sum the
output of each bin over many time records.

If the sinusoid is drifting (changing frequency slowly) we cannot add
bin outputs since the signal will drift out of one bin into the next as
time goes on. Two approaches are possible. The first is to force the center
frequency of a channel or bin to track or follow a drifting input., Such a
system would be in essence a phase-locked loop. A second approach is to
add the signal over a set of channels which are different for each time
period, and in this way follow or track the signal. The latter approach
was implemented (see Chapter 3) in the Carrier Wave Detector.

The search for polarization must begin at the receiving antenna which
has two probes, each of which is sensitive to one of two orthogonal polari-
zations. The receiver/MCSA system carries the two resulting signals along
in parallel channels to the Signal Detector, where they are then used to
obtain a measure of the degree of polarization of the input. In our imple-
mentation this data is used in three of the nine NBIT tests.

Pattern recognition is a very general term which can mean many different
things. It refers to ways in which signals are grouped or organized in some
sense. In the design which follows, the Cluster Detector is a form of pattern

recognition device.
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Taking Three as the subject to reason about--
A convenient number to state--

We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.

The Result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two.

Then subtract Seventeen and the answer must be
Exactly and perfectly true,

The method employed I would gladly explain,
whi:le I have it so clear in my head,
If 1 had but the time and you had but the brain
But much remains yet to be said.

--Lewis Carroll, The Hunting of the Snark

3.1 - Purpose of This Chapter

This chapter will introduce the Oasis Signal Detector (0SD), explain
its role in a search for intelligent signals, and develop, in some detail,
the algorithms that this device employs as it shifts and sorts through giga-
bits of data.

As mentioned in Chapter 2, the CSD examines the output of the multi-
channel spectrumn analyzer, in order to recognize signals therein, and, subject
to the control of the operator, determines the nature of the signals as one
of a) RFI (radio frequency interference)

b) natural astronomical bodies

¢) ETI (extraterrestrial transmissions).
The 0SD also records interesting portions of the input data (selected by itself
and/or the operator, at the operator's discretion), and at all times, monitors

the entire SETI search system.
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3.2 - Overview

Real Time Processing

The 0SD is a real time instrument, that is, it recognizes a signal, if
any is present, during the time the antenna is pointed at a particular
target, or shortly (16 minutes) thereafter. Once a signal is detected,
identification tests are made with the aid of the operator and the 0SD's
RF1 detection system, as well as the radio astronomy observer at his own
output station, using a computerized catalog of radio sources. This rapid
performance of identification tests eliminates costly and time-consuming
reobservation of targets, and allows for the detection of transient types of
signals of any of the three types. Reobservation will therefore occur only
when there is a high probability that a detection was not a false alamm.

The length of observation of a target is nominally set a: 1000 seconds
(16.6 minutes), but since the desired length of time may vary appreciably,
the system is configured to handle observations of any multiple of 20

seconds in length,

Signal Recognition Procedure

The number of known signal modulation schemes is arbitrarily large.
while it was felt important to design the 0SD to be able to detect as many
different signal forms as possible, we also felt that the OSD should be highly
sensitive to those types of signals deemed optimal as interstellar beacons, as
well as to high power signals leaked into space from the Earth., The most
dominant components of these signals are very narrowband polarized carriers and
pulsed RF signals, which to a distant observer may appear to be drifting slowly

in frequency. To respond to these pulses and carrier waves, two special purpose
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detectors were designed. They are called the pulse detector (PD) and the
carrier wave detector (QWD). They are designed to be as sensitive as possible,
with an entering data point integrated into many different sums and products,
each of which represents a different type of possible drifting carrier or pulse,

Since artificially generated carrier waves are often constant in amplitude
from second to second, relatively stationary in frequency, and always 100%
polarized, a detection method highly sensitive to signails with such attributes
was developed. This method (or measure), called Generalized Coherence, is
described fully in the latter part of this chapter, and is employed within the
CWD algorithm. Thus the OSD is highly alert to the presence of polarized carrier
waves, even if they are Doppler-drifting.

Beyond providing signal-specific algorithms, the OSD has the facility to
detect signals of an arbitrary and unknown nature. This is accomplished by a
two-stage processor called the Numerical Battery of Independent Tests (NBIT).

The first stage analyzes data from the MCSA in small parcels, and reports to
the second stage a sunmary of the attributes of the data in each parcel. To
this end, each parcel (called a block) undergoes a battery of tests. If any
block scores outstandingly in any of the tests (which examine total power,
polarization, and the presence of narrowband amplitude spikes, and more), the
operator is alerted. In addition, a second stage always examines the report
of the first stage (even in the absence of outstanding features). The second
stage looks for the presence of trends, or patterns, such as the existence of
blocks adjacent in time or frequency which possess similar attributes. This
second stage is called the Cluster Detector (CD).

The terms PD, CWD, NBIT, and CD represent both the algorithms and the
hardware processors that perform these operations. These four processors comprise

the computational part of the 0SD, called the realtime processing system, and are
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described mathematically in this chapter, and as hardware devices in the next
chapter, The realtime processing system is shown in Figure 3.1,

An "alarm" is the term used in this report to indicate an internal signal
or flag from a processor to the human interface system describing the detection
of a signal in noise, An alarm contains the information: What (how much), when,

and where (frequency).

Human Interface

The operator interface system consists of the operator, a central computer
(which allcws the operator the access to converse rapidly with the system),
interactive graphic displays, a small archive in which either he or the central
computer may decide to retain data segments of special interest, and a package
of software routines which allow him to explore the data in his own way.

Most importantly, the operator is given access to the total observation
archive which contains témporari]y all of the data collected on the current
target. He is shown the alarms as they come in, and is free to either let the
system decide that which is important enough to save or else to make the
decision himself. Providing aid in this task is the RFI detector, and the
Radio Astronomy System, since each unit is capable of automatically informing
the central computer that certain alarms are identifiable as non-ETI. Those
signals of astrophysical interest will be processed and recorded independently
by the Radio Astronomy System. The Human Interface System and the Radio Astro-
nomy System are described in Chapters 5 and 6 respectively.

-48-



4032919( (eubLS siseQ ayl [°€ aunbyy

wa3SAS

1--- e e G s G GG W TGS GRS G N PP D T G D G

wa3sAS buLssadoud awi] (edy

(aKo) 4032233¢
BARM U3 LU44R)

dejaaju] {Sudeje
ueuny

wa3 SAS
Awouoal sy

oipey

b

W W S W PR e Smals G RS W IS e W -

(0d) 40333330 3s(nd T

(@) 4032333Q 433snL)

(LIGN) Ss3s9l juapuadapu]

40 Au3jjeg [edL4dwnN

r"--- - G ® e GHER IR @ D R O T G S G S -

-——-————-----.‘

i.

(VSIH)
J97f£|euy

wna3dadg
[suueyy-13 {ny

e nes o cenvavew

ALY Ay I¢

-49-



3.3 - Generalized Coherence

Background
It is widely believed that intelligent signals will be coherent with

respect to both polarization and time., It is therefore desirable that the
receiving system measure these two signal ~haracteristics and use them to
discriminate against signa’s which are not coherent, resulting in a
decrease in sensitivity to incoherent signals. Since noise is incoherent,
the discrimination against noise results in a substantial increase in
sensitivity tu coherent signals.

Polarization coherence and time coherence are two independent
characteristics, and can be measured for any received signal. Polarization
coherence is a measure of the consistency of the amplitude and phase
between the signals received by two orthogonally polarized antennas. Time
coherence is a measure of the consistency of the amplitude and phase of a
single signal, with respect to a time-delayed version of itself. Although
these two types of coherence are determined in quite different ways, it
will be shown below that when both have been taken 1into account they lose

their individual identities and merge into an overall Generalized Coherence.
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Polarization Matching

The receiving system contains two independent receivers, connected
to orthogonally polarized feed antennas. Typically, the feed antennas
will have horizontal and vertical, or left and right circular polarizations.
It would be possible to process the data from each antenna separately, but
this is undesirable because it essentially doubles the cost of data
processing. A preferable procedure would be to combine the two antenna
outputs by some method, and then prccess the resulting single signal,
provided that this can be done without a significant decrease in
sensitivity. One might even suspect that if the two antenna outputs were

combined in some optimum way, the sensitivity would be further increased.

Measuring the Polarization of a Received Signal - In order to examine

various methods of handling the two output signals, some basic polarization
theory is required. Suppose the feed antennas are horizontally and
vertically polarized, and denote their complex output voltages by x and y.

This notation will be used throughout this report. (The choices of horizontal

and vertical, as opposed to left and right circular, is arbitrary but generally
done in polarization discussions., It will make no difference in the final
result.) The type of polarization of the incoming wave is completely determined
by the ratio of the magnitudes of the two outputs, and by their phase angle
difference (Kraus, 1966, and Cohen, 1958) and is commonly expressed as two angles:
§= -1 -180° < &5 < +180°  (3-1)
y = tan'll%l 0 90°  (3-2)

which can be plotted on a spherical surface known as the Poincare sphere

A

A

Y

A

(see Figure 3.2).
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Figure 3.2 - The Poincaré Sphere
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Having measured & and Y for any incoming signal, its polarization type
may be plotted at the appropriate point M on the Poincaré sphere. For
example, suppose the two outputs have equal magnitudes and differ in phase
by 90°. Then & =90° and y = tan"1 = 45°, Plotting this on the
Poincaré sphere, we see that the received signal is left circularly

polarized.

Setting the Polarization of the Receiving Antenna to Match That of the

Signal - Given two orthogonally polarized antennas, it is vossible to combine
their outputs in such a way as to syntnesize a single antenna of any

desired type of polarization. This is the inverse of tne measurement

problem, and may be stated in this way: Given the desired type of

polarization, as specified by the angles & and vy . what are the

weighting factors needed to combine the two antenna outputs in the form
2Ky x+Kyy (3-3)

in such a way as to optimize reception for that type of pclarization?

These weighting factors are derived in Appendix 3.1, giving the

relation
- js _.
7= xcos Y+ye siny (3-4)

When searching for signals whose polarization type is unknown, a
possible optimum method is to use the signal itself to control the x and
y combining process, thereby adaptively matching the polarization type of
the antenna to that of the incoming signal. This may be done by 1.-st
measuring the type of polarization (v and &), and then synthesizing the

antenna that matches that polarization. This combined operation can be

carried out in real time, using the single relation (devcloped in Pppendix £3.2),
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Comparison with Alternative Polarization-Handling Methods - One

simple methad for dealing with signal polarization is to add the powers
coming out of the two antennas ignoring all polarization considerations. It
is a fact that the total signal power will always be otained by doing this,
regardless of the signal or receiving antenna polarization. However, the
fact that two independent noise powers are added always decreases the SNR by
a factor of /2, where the polarization matching method weighis the two so
that the loss ranges from 0 to vZ'. Another disadvantage is that the signal
cannot be tested for time coherence at a later stage in the analysis, if

power is calculaced at this point,

A second simple method is to add the amplitudes. This corresponds to

setting K1=K2=1 in equation ( 2-3 ) above and means in reality that we are

receiving at a single polarization (linear at 450, assuming x and y
antennas). Any other polarization will suffer some loss, ranging up to
infinite for the opposite case (linear at 1350, for x and y antennas).

The two polarizations could also be processed completely independently.
This means that we now are receiving with two polarizations (corresponding
to whatever type of antennas are being used). Other polarizations suffer
some 10ss, up to 3 db for those halfway between the two in use. (e.g. - if
x and y antennas are used, then left and right hand circular both have

3 db loss.)
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By combining the antenna outputs in various ways (i.e., choosing
Kl and Kz), any number of specific receiving polarizations can be
synthesized. In Project Cyclops it was suggested that 4 or 6 cardinally
chosen polarizations be created in this way, and processed separately. This
reduces the possible loss, since a signal polarization must then fall

closer on the average to one of the receiver polarizations. The disadvantage of
this is that the data processing requirements increase in direct

proportion to the number of polarizations.
A1l of these various methods are summarized in Table 3.1. The
average losses were calculated assuming the signal polarization types

are uniformly distributed around the Poincare sphere.

Relative
Number of Amount of
Polarizations Minimum Maximum Average Data Processing
Method Searched Loss (db) Loss (db) Loss (db) Required
Add Powers of
the 2 Antennas 0 1.5 1.5 1.5 1
Add Amplitudes of
the 2 Antennas 1 0 o0 5.1 1
Process 2
Antennas
Separately 2 0 3.0 1.3 2
Synthesize 4
Polarizations
and Process
Separately 4 0 3.0 0.7 4
Synthesize 6
Polarizations
and Process
Separately 6 0 1.0 0.4 6
Signal-Matching o0 0 0 0 1

Table 3.1 - Comparison of different polarization
processing methods
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It is important that the polarization synthesis not be done in the RF
or IF portions of the receivers, as is commonly done. To do so means that
all signals at any instant of time will be received with the same
polarization. On the other hand, if the polarization synthesis is done
as part of the data processing (as in the signal-matching method), then

each signal can be received with a different polarization.

Polarization Coherence

Partial Polarization - It is not necessary for real-world signals to be

polarized at all. Most natural radio sources radiate unpolarized signals.
Some natural radio sources are partially polarized, radiating signals
containing both polarized and unpolarized components. Any signal radiated
from a single antenna, however, is always completely polarized. We use this
fact to great advantage.

The power received by an antenna of polarization type M in response

to a signal of polarization type M' is
- v [12+n(cosr B a2 (3-6)

where PS is the signal power
m is the degree of polarization; 0 <m<1
MM™ is the polarization mismatch angle between the signal and antenna,
as plotted on the Poincare sphere; 0 < W' <
When the signal is completely unpolarized (i.e., m = 0), the received power
js one-half that of the signal power, regardless of what receiving antenna

polarization is used. When the signal is completely polarized (i.e., m = 1),
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the received power lies between zero and the signal power, depending on
the polarization mismatch angle.

The degree of polarization is defined in Appendix 3.2 as

A Y
4(xx* yy* - xy¥ x¥y)
(xx¥ + xy¥)?

The degree of polarization may be regarded as the radius of the
Poincare sphere. A completely polarized signal has radius of one (i.e., the
unit sphere), whereas a completely unpolarized signal has a radius of zero
(i.e., a dot at the center). This graphical representation serves to
illustrate the fact that the type of polarization (location on the surface
of the Poincare sphere) becomes less and less important as the degree of
polarization (radius of the Poincare sphere) becomes smaller and smaller.

In the extreme case of an unpolarized signal, the type of polarization

ceases to exist, as exemplified by the remaining dot at the center.

Polarized Signal Component Extraction - When the receiving antenna

polarization is matched to that of the signal (e.g., using the polarization

matching method described above), equation (3-6) becomes,

P =P (1/2+m2).

r s
This may be rewritten as
. 1-m 3-7

Here the first term in the brackets is the unpolarized component of the
signal and the second term is the polarized component. Since only half of
the unpolarized component is received, a polarization-matched antenna acts

as a filter, leaving the polarized component unchanged. If the powers in
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two antennas were simply added, all of the unpolarized power would be
received thereby decreasing the SNR by a factor of 2, neglecting receiver
noise.

Since we are seeking signals which are polarized, only the second
term is of interest. We wish to extract that fraction of the received

power that is polarized, i.e.,

P
P =P ( s
rp r 1-m
PS ( ....2__4» m)
= 2m
Pep = Pr T (3-8)

If we were concerned only with signal power at this point we would
Just compute the desired result according to equation (3-8). To do so,
however, would prevent later examination of the time coherence properties
of the signal. Instead, we multiply the complex signal z of equation (3-5)
by the square root of the fraction given in (3-8) (since z is an
amplitude, as opposed to power). This extracts the polarized component of

the composite signal z, i.e.,

2, = 2y _'172'111""_ (3-9)

The effects of noise on this calculation are given in Appendix A3.3.

An alternative to extracting the polarized signal component is to
ignore the degreee of polarization. The disadvantage of this is that no
discrimination is made against unpolarized signals. Two signals of equal
power, one polarized and the other unpolarized, would give the same receiver
output. If the degree of polarization is used as described above, the
polarized signal would be unaffected, whereas the unpolarized signal would

be eliminated from the receiver output.
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Time Coherence

The complex degree of self-coherence of a signal z(t) is defined as

2(t + 1) z2(t)*

Jz(t) z(O)* / z(t + 1) z(t + 1)*

This is in fact the same as the complex normalized autocorrelation function

Wom o=

of the signal. The_magnitude of this quantity is known as the Degree of
Self Coherence, and 0 < |u( 1)| < 1. The denominator of u( 1) is the

power of the signal, so that

R GEEI0LE)
lu( T)l - F4 PT P4

z

It should be noted that the magnitude of u depends cn both the phase
and amplitude of the original signal. It is not correct to say that the
magnitude of W depends only on the amplitude of the original signal, or

that the phase angle of U depends only on the phase angle of the sigral.
Thus |4] is a measure of both amplitude coherence and phase coherence in

the signal.

We are interested in only that part of the received signal and noise
combination that has time coherence. That component may be extracted by

multiplying the received power by the degree of self-coherence, i.e.,

P. = Coherent Power = lu(t) | P, = z(t + 1) 2(t)*

The time lag t used above may be regarded as the coherence time of
the power measurement. It must be sufficiently long that the noise
component shows no coherence, but no longer than necessary, to allow for

slow signal variations. The MCSA provides independent outputs at one
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second intervals, so T must be an integral number of seconds. A lag of
zero will cause the noise to appear coherent, and is therefore too small.
A lag of one or more will make the noise independent from point to point.
Therefore we choose a lag of one, as being long enough to discriminate

against noise, yet short enough to allow slow signal variations. Thus,

P_. = Coherent Power = | z{t + 1) z(t)* |

c (3-10)

Coherent power has the useful property that it is unaffected by any
phase shifts that are linear functions of time (see Appendix A3.4). This is
crucial for the current application because the MCSA introduces a linear
phase shift into the signal that is a function of the unknown position of
the signal frequency within a frequency bin. Another way of saying this is
that the complex output voltage of an MCSA channel that contains a non-
drifting sinusoidal signal, is another sinusoidal signal. The frequency
of that output signal is the difference between the center frequency of
the bin and the original signal frequency. Thus for 1 Hz bins, the output
frequency lies in the range of :1/2 Hz. Then if the amplitude of this
sinusoid is A, we have from Appendix A3.4 that

N-1

T A
je1 | i+l

| = A2 =
Pe ® W1 A Ps

so that for a sinusoidal signal, the coherent power is identical to the signal
power.

Consider now an incoherent signal (such as a natural radio source), whose
power is equal to that of the above sinusoidal signal. The MCSA output will
be a voltage whose amplitude and phase are random variables, and whose spectrum

is band limited (%1/2 Hz) white noise. The coherent power will be the same
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as the signal power for the first data point, and will decrease as ;%— as

addi tional data points are included in the measurement. Thus coherent power
has an advantage over signal power in that it distinguishes between coherent

and incoherent signals.

Generalized Coherence

Formulation - In the preceding sections, specific operations were carried
out on the received signal, taking into account successively the type of polar-
ization, the degree of polarization, and the time coherence. These operations
are shown schematically in Figure 3.3. If we now combine these three
operations into a single expressior, and label the resulting quantity as
Generalized Coherence Value (GCV), we obtain (conceptually) (see Appendix A3.5

for details)

= =38 +38
GCV = F %xn Ry (1) # nynEzyx (1) e™" + R (1)e ] t Py Ry (1)}

wnere In( R_(0) )
5 = tan~! X
Re( ny(o) )

R

F= /EXX(O) - Ryy(?lz + 4R (0)

Rex(0) + R, (0)

P. is the normalized power in antenna i

in
Pijn is the normalized cross pover between antennas i and j
Rij is the correlation function between the ith and jth antenna outputs.

In essence, all the possible auto- and cross-correlation functions, both

time shifted and unshifted, appear in the GCV expression, in a symmetrical way.
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Figure 3,3 - Operations Involved in Calculation of the Generalized
Coherence Value

-62=




It has been demonstrated previously (Born and Wolfe, 1970) that the
coherence of a signal obeys the electromagnetic wave equation, and propagates
through space in the same manner as the signal itself. This fact lends addi-
tional support to the idea of coherence being in some sense a fundamental

quality of the signal,

Real-Time Evaluation - Calculation of generalized coherence involves cal-

culating the correlation functions described above. All these quantities are
summations of combinations of the instantaneous outputs of the two antennas.

In a realtime computing situation, the summations can be calculated continuously
as the data points become available, providing the partial results of the auto-
correlation function are accunulated. When the desired amount of data has been
accunulated, the summations may be combined by relatively simple computations to
give the generalized coherence value.

When very many outputs (channels) are monitored for generalized coherence
concurrently, the retention of the partial results may require substantial over-
head in terms of storage. An alternative scheme developed in Chapter 4 enables
the serial evaluation of channel outputs, and thus eliminates the need for
partial result accumulations.

Performance - Noise causes the computed values of the correlation func-
tions described above to have statistical fluctuations. In addition, if the
correlation functions are calculated using too few data points, they

will be biased toward the high side (as are all correlation functions).
In order to quantify the statistical characteristics of GCV, computer

simulations were run for a number of signal-to-noise ratios,

Figure 3.4 is a typical example of the simulations made to investigate
GCV. The data from all such simulations is gathered together in Figure 3.5.

Details are given in Appendix A3.6.
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It is possible that GCV should be squared for optimum detection. This is
suggested by the fact that its probability density is similar to that of a sinu-
soidal signal in noise, just prior to square law detection in a normal receiver,
and because GCV is fundamentally the magnitude of a vector even though it has
units of power, GCV is the sum of many vectors, analogously to the way that a
traditional coherent detector adds up many vectors prior to squaring their sum,

Inspection of Figure 3.5 reveals that below a SNR of 0.6, the power calcu-
lation is more sensitive, and above 0.6 GCV is more sensitive, and becomes
increasingly more so as SNR increases. This advantage will be manifested as
higher detection probabilities and lower false alarm rates, The small amount of
data shown for the square of GCV reveals an even greater advantage. The power
sensitivity crossover is then 0.4, and the output SNR curve climbs more rapidly.
Actually, the relative performance of GCV vs. power is significantly better
than the curves indicate since the power curves assume the signal polarization
is known beforehand and exactly matched to a single chosen antenna, with the
other antenna and its accompanying receptiver noise being ignored. The GCV
curves, in contrast, assume no prior knowledge of the signal polarization and
include the effects of noise from both receivers. It is believed that future
studies comparing randomly mismatched total power detection schemes to GCV
detection will show GCV the favored approach to even lower SNR signals,

This can be summarized by saying that the generalized coherence technique
achieves its goal of using the signal polarization type information in a useful
way, and of discriminating against unpolarized and incoherent signals, without
significantly sacrificing sensitivity, and in fact provides a significant

enhancement to sensitivity.
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3.4 - Analysis of Variance (ANOVA) Algorithm

Background
A shortcoming of most detection algorithms is the degree to which they

have been designed to detect specific types of signals. While this philosophy
serves to maximize sensitivity to these particular signals, many are blind t~
even strong signalc outside this range. One algorithm that demands a minimum

of prior assumptions is an analysis of variance (ANOVA). On the time-frequency
matrix of the MCSA's output, ANOVA can perform three tests of the null hypothesis
{that noise alone is present) to search for significant differences between

means of rows, columns, and interaction terms. If the null hypothesis is not
once rejected, ANOVA concludes that no signal is present. But if rejected

even once, not only has ANOVA addressed the primary question of signal detection,
but valuable information about the type of signal present is provided--with only

a simple thresholding of the three results of a single standardized calculation,

For example, if a monochromatic signal is present, it will
manifest itself in the ANOVA matrix by increasina the power ir the column
that corresponds to i1ts frequency. The presence of this type of signal
would be detected in the ANOVA by a rejection of the null hypothesis of
column effects. Reflecting the difference betweer. the column means
associated with the signal and those column means associated only with
noise, the value for the sum of squares of column sums would increase,
resulting in an increased variance ratio for co.umns. If the variance
ratio for columns exceeds a present critical variance ratio, the null

hypothesis is rejected.

-67-



Similarly, a broad band signal would increase the power in all -

- the matrix columns within the signal's bandwidth. This would result in
higher column means for those columns containing the signal, producing
a proportionately more significant variance ratio for the columns.

Row means and the associated row variance ratios are affected by
pulsed broadband signals which distribute power across many frequencies
within one second. As with the column variance ratio, the effect on the
row variance ratio of more than one pulse within the matrix is cumulative,
the optimum algorithm response occurring when the signal fills one row
of the cells of the ANOVA matrix.

Rapidly drifting signals are detected primari'. -y the interaction
term of ANOVA, though significant row and column effects can result as
well, depending upon the slope of the path of signal as it moves through
the matrix. Drift rates greater than one Hz/sec being detected in rows,
while rates that are less than one Hz/sec are detected by the column

hypothesis.

Because ANOVA makes no assumptions about the signal to be received
and demands only standardized calculations, it serves as an important
global signal detector for the SETI problem. Though further analysis is
required after detection, the results of the three tests of null
hypothesis (Row, Column, and Interaction) greatly reduce the problem of
signal type identification.

-68-

pp——




- The concepts of ANOVA calculations will be i1lustrated here by word
equations and examples, and the detailed mathematical theory is explained
in Appendix A3.8. We will assume here that the time-frequency array output

from the MCSA has a zero mean (i.e., that the noise goes equally above and

below zero, as will be shown is provided by baseline removal, a standard
procedure of radio astronomy.)

5 Column----ceocve cminneniiiccecns Column
1 , J
Row 1
H Time
: a small portion of the MCSA
’ output array, for which ANOVA l
. calculations are to be
: perforaed
Row I
Froougicy ~——>

The three ANOVA calculations are:

(average of—an) 2, [ average of a1l \ 2, {average of ali\2
points in Row 1 points in Row 2 *** {points in Row J
ROW EFFECT =

I * (average of the square of all points in the array)

average of all ) 2 +( average of all )2 + .(average of all Y2
l L E N N ]

COLUMN points in Column points in Col,2 points in Col.
EFFECT J + (average of the square of all the points in the array)

T . _ average of all  _ average of all
INTERACTION . an171,§ P%I™; j ° points in Row i " points in Col.j

I - J - (average of the square of al] points in the array)

AH three calcu]ations involve the averages of averages and are pmer ratios.

‘Y,cr‘, 1*:

e St e e S S o St 7T o e &k b Siies  wiae Ak mrg el e e mimm e amEi Te e BiL mm Sam hm e ame - ;

Al'l are normaHzed to the average pouer"
The folTowing examples 111ustrate the sénsitivities of the three calcula-
tions to various types of data structure. Fcr simp]icxty. data va\ues are

Hmited to tl and 0 Note that the nunber of +1 va1ues equais the nmber of 1
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values, so that the zero-mean assumption is valid.

Example 1;

L~ I

11
60
-1-1-1

Row Effect = _llli;igigé;g};lzllf__. .

2+ (0)* + (0) *

Column Effect = _LQL_"?%#,’_M__ 0 | _

2 0)2 - 2 2 -0)2"

Interaction Effect = {1=1=0)" *(1-1:0) 4 )1 1-0)2 + (0-0-0)2 + (0-0-0)*,

(0-0-0)? ; (<1+1-0)2 + (-1+1-0)% + (-1+1-0)* _

]
ot

This example illustrates how the Row Effect” detects long horizontal data

structures,

Examole 2: 1 0-1
1 0-1
1 0-1

2 2 2
Row Effect = JQ).T*_{%%T*J?)__ =0
: 2 2 -1)2 Ef
Cotunn effect = —{LL Qe L -,
Interaction Effect = —(1=0=1)° * 0‘0'0.2 + 3'1-9'*1)2 + (1-0-1)? + (0-0-0)%,
A=1:0)2 {] 0t (0-0-0)% #(-1-0+1)2_
. . )

~ This example jllustrates how the Column Effect detects long vertical data structures.
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Example 3; 1 0 -1

Row Effect

 Column Effect = —0 *{0;*02 =0 |

Interaction Effect = A1-0-0)* +3(0-ﬂ-0}35;§§-1-6-0)2+ 0-1/3-0)* + -

(1-1/3-0)% + (0-1/3-0)% + (-1+1/3-0)2
33 (6/9) ' :

(-1+1/3-0)2 + (1+41/3-0)2 _ 8
3-34E%7 )

4 This example illustrates how the Intéractian Effect detects long diagonal

data structures. Note that although all the samples use square arrays, this

is of course not necessary for ANOVA calculations. These examples have also

i used infinitely high SNR's--to clearly illustrate the calculation, Evéfuation
fé of the technique was, of course,conducted on low SNR signals, and the detection

sensitivity was thus explored as shown in Appendix A3.9.
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Performance
The potential of Analysis of Variance as a signal detector has

been evaluated by means of computer simulations in 2 series of
systematic experiments. The computer simulation involves modeling the

noise field as a (10 x 40 x 2) matrix of exponentially distributed

random variables. 40 represents the number of frequency channels

(columns), 10 represents the number of independent time samples (rows),

and 2 represents the number of observations (data values) per cell. This size
matrix is that used in the NBIT algorithm for reasons to bé described later in
this chapter. At least 2 values per cell are necessary for the calculation
of the interaction term in ANOVA. This term is important for the detection
of certain signal types and for the reduction in the size of the residual
variance. Since the residual variance is the denominator of the variance
ratio which is used for tests of hypothesis, a reduction in it increases

the overall sensitivity of detection. Although ideally, replication should
be obtained from the simultaneous observation of the event of interest,

the simulations are carried out in the more realistic fashion of letting

the first row consist of data taken during the first and second seconds

of observation and each subsequent pair of scans fill the remaining rows.

Thus a total of 20 independent time samples are used. Superimposed upon

the noise field is a signal of given specification.

The data, obtained in this fashion, are then analyzed by ANOVA
technique. The end product of the ANOVA algorithm is the calculation of
the variance ratio for rows, columns, and interactions. When the variance
ratio exceeds a preset critical value or threshold, the null hypothesis is

rejected and the signal is detected. By examining the values of the variance
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ratio under systematically varying conditions, an understanding of ANOVA's
effectiveness as a detector unfolds.

The simulation experiments and detailed results are described in
Appendix A3.9.

Conclusions

The simulation studies indicate the possible strengths and weaknesses of
ANOVA as a signal detector. For the matrix dimensions presently being considered,
it seems ideally suited to the detection of a broadband pulse. Narrowband non-
drifting and slowly drifting signals are also handled well. The one real

failure occurs with the rapidly drifting signal {slope -1). It is notable that
changing the matrix dimensions to a square would certainly improve ANOVA's 1
capability to detect this type of signal, while not degrading the performance of |
detecting the previously mentioned types.

Based on the simulation results involving bit quantization, a reasonable
bit size for the data processing using ANOVA has been determined to be N = 8,
as is used in the implementation. Thus, in all, ANOVA presents itself as a
significant global signal detector for the SETI problem. No assumptions need
be made about the type of signal. Once one is detected, further analysis is in
order. By retaining information on which of the three hypotheses (Row, Columns,
and Interactions) are significant, the problem of identification of signal type
is significantly reduced.

3.5 - Dasis System Algorithms

rview
The Oasis Signal Detector is a Real-Time Processing System containing four
basic components:. the Pulse Detector (PD), the Carrier Wave Detector (WD)
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which {s meant to detect narrowband carrier signals that may be drifting slowly
in frequency, the Numerical Battery of Independent Tests (NBIT), which consists
of a collection of statistical tests followed by a pattern recognition algo-
rithm, the Cluster Detector (CD), that is designed to detect non-random
associations among the signal parameters in N-space. This system is shown

conceptually in Figure 3.6,

Data Stream Preparation

We are assuming in this study that two of the functions performed by the
MCSA are:
- Quantization level preparation
- Baseline removal
Data within the MCSA is clipped at times both by truncating low order and
high order bits. This process has been given much consideration by the
designers of the MCSA via simulations, and, that the quantization levels be
remormalized linearly, is a requirement of the MCSA implementation. Based on
the simulation studies it is felt that each quantization level corresponds to
.30 of the signal power. Implementation design for this is given in Chapter 4.
Baseline removal is accomplished within the MCSA through the use of its
low resolution 57 kHz output channel. A region of the sky slightly offset from
the target to record the broadband spectral responses of the receiver, R(f); and
this function is then used to normalize true spectra of the target T(f). Nor-

malization is accomplished in the following manrer. The coarse resolution values
are used to compute
yielding a zero mean normalized (except for local power excesses) spectrum, R'(f).
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This practice is common and essential in Radio Astronomy to remove receiver

gain effects before observation of their source.

Pulse Detector (PD)

The coarse binning stage of the system examines each spectral scan under
a wide range of resolutions, to search for excess total power that might
signify a signal of interest. Although it can be argued that very narrowband
signals are optimal for interstellar communication, to neglect the possibility
of detecting broadband signals or pulses within the data, when such information
is easily accessible, would be a mistake. Such a wideband signal may occur
in the eavesdropping or the pulse-beacon cases of signal transmission.

Under the most ideal condition, when the bin width corresponds to a
transmitted signal's bandwidth, coarse binning serves as a matched signal for
signal detection. However, since the signal bandwidth and central frequency
are not known, a wide range of bandwidths is used. The algorithm first sums
the 8 x 10° adjacent frequency bins pairwise in non-overlapping pairs to pro-
duce 4 x 10° channels times 2 Hz/channel resolutions which are compared to a
threshold. This procedure is repeated again and again until every set of
2k (0 :_k 5_23) adjacent bins has been combined and tested. Any coarse bin
which has a total power above the predetermined threshold causes an alarm to
be sent to the central computer. It should be noted that one scan (one second
of MCSA output) can be analyzed at all 23 resolutions within one second.
Simultaneously, an integrated scan, the sum of all previous 8 MHz x 1 Hz

resolution scans is similarly binned and tested for excesses due to repeatedly

detected pulses.
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Carrier Wave Detector (CWD)

Overview - The Carrier Wave Detector (CWD) is designed to search for
narrow band signals which may be drifting slowly in frequency due to the
Doppler shifts, The CWD works on the 2-dimensional array, having dimensions
of frequency and time, in which a drifting carrier would appear as a straight
1ine whose angle of inclination with respect to the vertical is less than 45°.
i.e., a drift rate -1 Hz/sec < r <1 Hz/sec.

In principle, the CWD evaluates the data by overlaying the array with
a "mask" which consists of 20 rays, each of which has a different slope. The
rays all intersect at a single time-frequency element of the array and form a
double fan (Figure 3.7). A column of 20 consecutively observed spectral
elements (20 seconds of data arranged one below the other) is passed under
the mask so that each of the 8 mi1lion single Hertz channels acts as the center
point of the mask exactly once. For each ray of the mask, the CWD weights each
kth row entry (Figure 3.8) of the incoming data for the way in which the ray
intercepts the array, and then a Generalized Coherence Value (GCV) is computed
which reflects the intensity and coherence of the weighted data overlayed by
the ray. The results from each new 20 seconds of data analysis are tested
against a threshold. If any GCV exceeds the threshold, the detector sends an
alarm to the central processor. In addition, all GCV's are accumulated for the
entire 1000 seconds of observation time. At the end of the total observation
time, the accumulated GCV's are also compared to a threshold. These accumulated
values are also evaluated with the coarse binning technique, to search for
extended drifting features.

In order to take advantage of the fact that polarization and phase

information are provided by the pair of MCSA's, the CWD operates on the
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Generalized Coherence Values (GCV's) described above. For each angle and

each center frequency, one GCV is computed using 20 values, each of which

is a weighted entry for that ray (Figure 3.8). The weighting process

involves both amplitude and phase, and is discussed in detail in Appendix A3.10.

Numerical Battery of Independent Tests (NBIT)

Introduction - Since there are numerous possibilities for the forms of
extra-terrestrial intelligent signals, the signal detection problem can be
approached in two ways: (a) a set of tests each of which has a very high
probability of detecting signals of a very specific type; or (b) a set of
tests that have a lesser probability of recognizing a much more general
class of signals.

The Pulse Detector, which searches for pulses of various widths, and
the Carrier Wave Detector, which searches for narrowband signals at various
drift rates, are examples of the first approach. However, because the
characteristics of an ETI signal are purely conjectural, to search even a
significant portion of the possibilities within the general class would require

a prohibitive amount of memory and/or processing.

The second approach is exemplified by the numerical battery of

independent tests (NBIT). The NBIT signal detection system is

a two stage technique which reduces the data to a set of 9-bit values in
the first stage, and employs a pattern recognition algorithm on the

compacted array in the second staye to detect signals.
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In the first stage the entire array is subdivided into blocks, each
of which is 40 Hz by 20 seconds in frequency-time space. Each block has
an 8 Hz overlap with adjacent blocks in order to ameliorate the aliasing
problem between blocks. Nine statistical hypothesis tests are applied to
each block of incoming data. One bit of the 9-bit number is assigned for
each test, and the bit is set when the null hypothesis is rejected. The

first stage tests include: total power in the two polarizations; degree :
of polarization; complex amplitude coherence detection; broadband !

coherent pulse detection for each polarization using generalized

coherent values; 8-hertz pulse detection for each polarization; ANOVA
analysis of variance for rows (frequency), ANOVA columns (time) and
ANOVA interaction, for each polarization; and goodness of fit for each

polarization.

For each of the tests, the null hypothesis is rejected at one of the
two thresholds (a-levels). The first level (low-level) threshold is set to
trigger relatively easily (a = .5, which means that 50% of the time the bit
for a particular test under conditions of noise alone will be "on"). The
second level (high-level) threshold, on the other hand, corresponds to a very
low a-level in order to ensure a very low false alarm rate for immediate
central computer processing (the threshold values are adjusted to reflect the
results of simulation or actual operation). The first level threshold is set
so that the difference between the false alarm rate under noise (a) and the
probability of detection (1-8) for the signal type for which the test is

designed is maximized for each algorithm. This criterion is developed further
in Chapter 5.
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The 9-bit number for each block in the first stage is stored in a
"pattern block" which is passed on to a two-step cluster detection processor.
The first step of the processor tabulates a histogram on the occurrence of
various 9-bit values and sets an alarmm for the central computer if a statis-
tically high number of specific “"pattern points" occurs. The second step,

a single linkage cluster seeking algorithm, searches the entire pattern block
for subtle signal patterns and sets an alarm if a pattern emerges.

The two-step cluster detection algorithm which analyzes the array is a
non-deterministic signal detection scheme, and as such has a great deal of
flexibility.

In general the entire NBIT system has several advantages over more
traditional sicnal detection systems. The two-stage nature of the system
allows a "second look" at the data in real time and it employs two independent
and distinct methods. The meaningful compaction of the data in the first
stage makes it possible to store information for the entire search‘duration at
a reasonable cost, which is vitally necessary to detect a weak sighai of pro-
Tonged duration. The NBIT signal detection system is also versatile because
it is not signal-type specific.

Figure 3.9 provides an overview of the NBIT and Cluster Detection
Algorithms.

For the sake of conceptual clarity, Figure 3.9 intentionally omits the
following details:

1. A BLOCK overlaps its neighbors by 4 points on each side, so its

width is actually 40 points, and total content is 800 points, Al

other quantitative numbters are correct as shown.
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- Figure 3.9
An Overview of the NBIT and Cluster Detection Algorithms
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2, There are additional signal detection decisions made at two inter-
mediate levels:
a. The 9 tests each have two thresholds. If the high-level
threshold is exceeded, a detection is immediately indicated.
The 1ow-level threshold is set such that it is exceeded by

noise 50% of the time, and is used to create the 9-bit
PATTERN POINT,

b. If any HISTOGRAM has an extremely high point, a detection is
immediately indicated, regardless of the presence or absence

of clustering,

3. The 9 tests are actually histogramed with regard to on bits "1"

and don't care bits "*", not the on and off "0" bits. This allows

for additional useful test combinations like total power and
degree of polarization and ignores everything else. Thus there

are actually 27 = 512 PATTERN CLASSES.

4. HISTOGRAM points are not actually chosen for cluster searching on the }
basis of their absolute level. Rather, the available data processing §
power and time are optimized by choosing the highest HISTOGRAM bin excesses
globally over all PATTERN BLOCKS. 1

5. The cluster search algorithm detects not only "blobs" as illustrated,

but also finds and follows long linear features.
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The Individual NBIT Tests

1. JTotal Power - The purpose of this test is to determine whether the total

power accumulated over a 20-second by 40-Hz block is significantly different

from that expected from white noise alone. As the input to the MCSA
is Fourier Transformed, the power of any pulse or wide-band signal is
spread across the frequency domain. Summing the power over a range of
frequencies and time may accumulate the power to a detectable level.
800

Total Power = P = (!xi]2 + y;1%)

i=1l
This value is then compared with previously determined first and
second level threshold values.
If this power exceeds either of the two pre-determined thresholds, a
bit is set and sent to the CPU for further processing. Because the white
noise is thought to be fairly constant, and this test sets a bit approxi-
mately fifty percent of the time, the first power threshold will only be
slightly above the noise level (lo). The second threshold, if exceeded,
immediately notifies the operator, and all information from that scan is
recorded. This threshold is adjusted as discussed in Chapter 5.
The type of signal that is most easily detected by this method is a
wideband signal. The rationale for this argument is that the algorithm is
an integration technique and since the threshold is rather low, any amount of
signal in the 40 Hz block will cause the 1-bit to be set. Since most wide-

band signals are translated into the frequency domain as a set of sinc



functions, a relatively large number of points in the block will
contain the signal. When these points are summed together the power
in the block will be above the threshold level. Narrowband signals on
the other hand, appear as approximate delta functions, and as such,
the signal will be in relatively few points in the block. If the
power of the signal is low enough, a narrowband signal may go un-
detected by this test. However, this algorithm is not specifically
sensitive to any signal type, but rather the elevation in power, over

the noise level, that comes with having a signal present in the block.

2. Degree of Polarization - A signal emanating from any single antenna

will be completely polarized. Even when degraded by noise, a sufficiently
strong signal will have a resulting degree of polarization significantly
greater than that of noise alone.

In this test degree-of-polarization is calculated along each row
of the 20 sec x 40 Hz block, and compared to a threshold value. Degree-
of-polarization is calculated along rows in order to maximize sensitivity
to pulses and other signal types that lack the time coherence required
for detection by the CWD.

The results of this test can also be applied to the signal recognition
problem. Signals of high power but low degree of polarization are unlikely
to be ETI signals, while a high degree of polarization is a halimark of

artificial signals.

Procedure - A general discussion of degree of polarization can be

found in Section 3.3. For the purposes of this test, the following
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calculation is performed for each row of the current block:

" 1 /(TR -TyT0)2+ 8 %2

Er 40
40
1 1
where X|c = I ox,x.*, Lyl? 22 I y.y.*
Tx* o ., i & .o, T
40
and xy* = 3% I xy;* Each calculated value of mis compared to
i=1

stored thresholds.

Sensitivity - If an overall false alarr rate of o, is desired for
each block, then per row the false alarm rate is a = 1-(1-u°)1/20. (Then
if a, = .5, a=.034.)

The behavior of the degree of polarization under noise was determined
empirically. For an integration length of 40, noise has mean degree of
polarization .176 and standard deviation .078 (based on a sample size of
200). This is apparently independent of noise power.

If a, = .5 is chosen, then the threshold value for bit setting is .32,
either by determination of the 93rd percentile of the data or by assumption
of normality.

Signals of various strengths and durations were simulated, and their
degrees of polarization calculated. Figure 3.10 summarizes the results,
with each point representing an average of 50 values. (Note: signal
width is the number of bins in a given row actually containing the

signal, even if they are not contiguous.)
Examination of Figure 3. 10 indicates that if degree of polarization

m results from width = A and SNR = B, then for any d the same value of M
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to Signals of Varying SNR, for Various Signal
Time Durations
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.16

.50
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>1

Number of Rows Containing a Signal of Bandwidth 40 Hz

1 2 3 4 5 6 7 8 9 10
Jd2 .23 .32 40 .47 54 59 .64 .68 .72
.34 .56, .71 .81 .87 .92 .95 .96 .98 .98
J2 .92 .98 .98 1.00 1.00 1.00 1.00 1.00 1.00
.93 .99 1.00 1,00 1.00 1.00 1.00 1,00 1.00 1.00
.98 1.00 1.00 1.00 1,00 1:.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.001 1.00 1.00

Table 3.2 - Probability of Signal Detection by the Degree
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will result from width = dA and SNR = B/d. In other words, degree of

SNR
polarization is proportional to sTonal wideh *

Table 3,2 indicates detection probabilities for a signal of width

40 occurring in r rows of the block. This table can be applied to signals
of width 1ess than 40 by using the appropriately factored SNR. (Note:
There is close agreement between the probabilities obtained from the

samples and those derived from normality assumptions.)

3. Complex Amplitude Coherence - This test is designed to detect any
polarized signal which may be continuous, pulsed, sporadic, or amorphous.
T.e amplitudes need not be particularly large, as we are looking for

persistent coherent signals,

For each 40 Hz by 20 sec. block of data, we compute

|
IV(x) (y)

where Xy* refers to the average cross power in the two MCSA's, X and ¥y

1Al

refer to the power in the x- and y-MCSA respectively. The magnitude of
|A] is an indication of the correlation (or coherence) between the two
polarizations; for example, if the two outputs are linearly related,

|A] = 1, while if there is no correlation whatever between the two,

|[A] = 0. At the end of processing for each block |A| is compared with the

predetermined first and second level thresholds.
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4, Generalized Coherence by Row (A Broadband Coherent Pulse Detector)

Wideband pulses will appear in a string of contiguous frequency bins simulta-
neously, for only ohe time period. They may then repeat at some later time,
Such a signal could be generated at the transmitter by a sinc time variation.
This would cause the received signal phase to have a linearly increasing
variation with frequency, at a slope inversely proportional to the bandwidth
of the pulse, |

As shown in Appendix A2.1, the MCSA does not introduce any more than a
linear relative phase shift between adjacent frequency bins. Therefore, the
original linear phase varifation with frequency is maintained at the MCSA out-
put. The generalized coherence value may be computed across frequency rows,
since it is insensitive to linear phase variations.

Specifically, the GCV is calculated across all 40 frequency bins,
separately for each row. If the GCV for any row exceeds the predetermined
threshold(s), the appropriate bit(s) for this test will be set.

5. B8-Hertz Pulse Detector - This test provides a means for detecting

infrequently occurring pulses whose widths are a few Hertz, It computes the

average power P in an 8-Hz span across each frequency row for each polarization.
7 7

1
P = I Ix |2 P = L |y,l?
x By 't y 8"t
where X4 and y; are row outputs for the x-and y-MCSA's respectively. If

any of these results exceeds the first level threshold, the 1-bit is set.
Likewise, if the results surpass the second level threshold, such an alam

is set as well.
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6,7,8, Analysis of Variance (ANOVA) - ANOVA can be used to detect several

different types of signals. For example, assume that a narrowband monochro-
matic signal is present, This signal will manifest itself in the ANOVA matrix
by increasing the power in the column that corresponds to its frequency. The
presence of this type of signal wcild be detected in the ANOVA by a rejection
of the null hypothesis of column effects. That is, the column mean associated
with the signal would be higher than the column means associated with
the noise. This difference in mean values is reflected accordingly in
the column sum-of-squares, which in turn results in an increased F-ratio
for columns., If the F-ratio for columns exceeds a preset critical F-value,
the null hypothesis is rejected. Similarly, a broacband signal would
increase the power in all the matrix cells associated with its frequency
bandwidth This again would result in an increase of column totals for
those columns containing the signal, and ANOVA would pick this up by
producing a significant F-ratio for the columns. In the event that a
broadband continuous signal completely covers the number of columns in
the ANOVA, this would be detected by comparing the total power (which is
calculated as one of the steps in ANOVA) with the total power in the
previously established noise matrix. Thus, narrowband and broadband
continuous signals would be detected by a rejection of the hypothesis
associated with columns.

A pulsed signal which is broadband and periodic would result in
higher power reading in the vow totals (for those rows where it appeared)
and would result in a rejection of the hypothesis associated with row

effects. It is apparent that the signal to noise ratio is a critical
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parameter in any detection scheme. Simulation studies of SNR and ANOVA
sensitivity are discussed above in Section 3.4.

A drifting signal (or a broadddind signal that has higher frequencies
arriving at reqularly sbaced’intervals of time) would be detected primarily
by the interaction term of ANOVA. Significant row and column effects can
result as well, depending upon the slope of the path of the signal as it
moves through the matrix. Slopes greater than minus 1 are detected by
the row hypothesis. A tall spiked signal that appears somewhere in the
matrix would be detected by row and column hypothesis and possibly even
the interaction. '

The ANOVA tests are conducted for each polarization using the power
contained in each bin of the 20 second by 40 Hz block. The F-ratios for
each of the three tests are compared with the thresholds and the appropriate

action taken.

9. Goodness of Fit -This test compares the actual probability distri-

bution of the MCSA output, treated as a quantized variable, with its expected
distribution in the presence of Gaussian white noise. It is a particularly
useful test since it makes no assumptions about the nature of the signal to

be detected.
For this test the complex output of the MCSA is treated as a pair of

real numhers for each 1 Hz frequency bin every second. Each block contains
800 pairs, so, for the two polarizations, there are a total of 1600 pairs.'
The set of output values for each member of the pair is compared with a
Gaussian distribution, representing the expected outcome for white noise

alone: For any possible output value k, let Tk be the theoretically
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expacted number of occurrences of k and let "k be the observed number of

occurrences.

(Nk - Tk)z 2 .
Then T= L —y— is nearly a X2 (chi-squared)
k k

random variable with M - 1 degrees of freedom, where M is the number of
possible output values for k. This value of T is compared against stored

thresholds.

Pattern Recognition - The Stage II NBIT Algorithm
1. Introduction - A pattern is simply the description of an object.

Pattern recognition is considered one of the most common of activities of
man, as well as all other living organisms. For extraterrestrial life to
survive, it too must be able to produce and recognize patterns in order to
communicate about and react to the dangers inherent in its environment. Once
life--be it terrestrial or extraterrestrial--develops communication capabilities,
the signals used for conmunication must contain patterns distinguishable from
randomness. At the interstellar communication level, energy radiated across
interstellar space must have, if nothing else, distinctive patterns that can
be recognized as an artifact against the background of natural radiation. It
is a primary function of the Qasis Signal Detector to recognize these patterns,
In the past, every SETI experiment began with the assumption that the
hypothetical extraterrestrial radio signal would take some particular form.
The appropriate signal analysis and detection scheme was implemented,
the experiment was run, and the negative finding could be expressed in
a single sentence: "No signal of the particular form and exceeding x

flux density was found."
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These restricted searches had the advantage of being relatively
easy to mount, but their narrowly defined negative results were never

very satisfying. Designing the signal detector as a mathematical pattern

recognition system broadens the constraints on the search immeasurably.

In particular, a mathematical pattern recognition system can take the

parallel outputs of a number of analytic procedures applied to incoming . %

signals and make a single decision based on the location of the point

in feature space which they represent.

2. General Considerations - Since the MCSA provides a multidimensional i

output (frequency, amplitude, polarization, phase, and time), a generalized B
pattern recognition algorithm has been deemed a more useful tool than any ;
pattern-specific signal search method, such as a matched filter. Furthermore,
given the fact that planetary rotation wculd cause a transmitted pattern to
drift across frequencies at an unpredictable rate, the need for a general
spatial search for patterns is further accentuated. The pattern clearly visible
in Figure 2, 3a can not be recognized in any frequency scan. In the figure
imagine frequency increasing to the right and time downward. If we added
signal power vertically in time, the signal would again be lost in noise. The
only cue as to its artificiality is its spatial structure in frequency-time
space.
Although the human brain with eyes and ears as its input receivers, is
the most powerful and versatile pattern recognition system we know of and could
easily recognize a pattern such as the onesshown in Figure 2.3 , it is also

subject to fatigue and hallucinations, it is selective and imprecise, and for
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our purposes, too costly. The pattern or spatial non-homogeneity shown
in Figure 3.11 (a) could be interpreted in many ways by the mind, or not be
recognized as a "pattern" but instead be classified as a random phenomenon

such as shown in Figure 3.11 (b).

Figure 3.11

Furthermore, the enormous data rate provided by the MCSA eliminates the
human operator from consideration as a preliminary realtime pattern recognizer.
If the raw data were to be displayed in real-time and in standard TV display
densities, the latest 1000 seconds of accumulated spectra would require a
console 43 miles long! (See section 4.1)

Powerful algorithms exist for recognizing well-defined prototype signal
categories and for clustering (grouping) unknown categories sharing similar
properties (Andenburg, 1973, Fu, 1976, and Ton and Gonzales, 1974). Some of
these algorithms have been modified to suit different objectives in a detection
and recognition scheme. In view of the implementation limits set by research
time available in this study, we developed the simple yet extremely general
algorithm described in this section. We fe21 that more sophisticated algorithms

could easily be applied to the problem, and suggest study of their implementation.
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3. Definitions - For sake of clarity and preciseness in the ensuing

discussion we need to make the following definitions:
a) A scan refers to one spectrum - 8 Miz x 1 Hz, with 1.6 bits

per channel,
b) The entire array refers to 1000 seconds of the MCSA output and

is a 1000 sec. x 8 MHz matrix of raw data.
c) Ablock is a 20 sec. x 40 Hz section of the entire array.

d) The compacted array is a 50 x 250000 matrix of 9-bit numbers.

e) A pattern block is a 50 x 200 matrix of 9-bit numbers which is

a vertical strip of the compacted array.

f) A pattern class is a set of 9-bit numbers with specified bits

equal to 1 which determine the class and no constraint on the
unspecified bits., Thus, both (0,1, 1,1, 0, 1,0, 1, 1) and
(1,1,0,1,1, 1,0, 1, 0) belong to the class (*, 1, *, 1,

* % % 1, *), and, also, to the class (*, 1, *, * * * * & ),
while (0, 0, 1, 1, 0, 1, 0, 1, 1) belongs to neither of these
classes,

A pattem point is any 9-bit number of the compacted array.

q)
h) A cell is the time-frequency location of a pattern point. Note

the one-to-one correspondence between blocks and cells.

Figure 3.12 should further clarify the above definitions.

4. The Rationale for Cluster Analysis - Cluster analysis is a pattern

recognition technique which encompasses many diverse methods for discovering
structure within complex bodies of data. The common characteristic of the

algorithms of cluster analysis is the attempted grouping of data units into
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Figure 3.12 - Definitions of the Terms used for Cluster Analysis
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clusters such that the elements within a cluster have a high degree of
“natural® association. The two ways we define this natural association in

our application is continuity in time and/or frequency of similar pattern

points,

We view a pattern point as a point in the compacted data array which
has associated with it the time and frequency coordinates of the cell it
corresponds to. Each bit of a pattern point is set by one of the tests
described in stage I and has value either zero or one. If a signal is
present which sets some particular bits for some length of time and/or
across some frequency width, then the pattern points which have these
bits set will lie along meandering lines or be grouped in other types of
clusters in the compacted frequency-time domain. Hence, we need algorithms
which will discover various spatial relationships between similar pattern
points. In order to obtain this objective, we use a two step cluster
algorithm which consists of a "smart" histogram and a modified single
linkage cluster algorithm,

5. Overview - The method by which a pattern block is examined for the
presence of a cluster is straightforward and will be described briefly in this
section, with more detail being given in Appendix A3.11.

We recall that a cluster is defined as a close spatial association of a
number of pattern points belonging to the same pattern class. As an example
of a cluster consider Figure 3.13 which shows a portion of one pattern block
indicating all pattern points having bits 1 through 5 ; i,e., members of
class (1, 1, 1, 1,:1, *, * * *)  Since there is a probability of 1/2 that

any of these bits will be on due to the fluctuation of the noise background,

the probability of them all being on in the same pattern point is 1/32due
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to the background alone. The algorithm searches for deviations from the
statistical noise field by specifically searching for a group of N
“on cells" each being within a spatial distance d of at least one other
member of the cluster., The algorithm detects such a pattern in two
stages.
The first stage is called the histogram stage. Here a dedicated §§

hardware processor looks at a pattern block and determines if any pattern

class has an "excess" of members within the block. Classes having a large éé
excess will then be selected for stage II analysis, Furthermore, an
extremely high excess will alert the central computer,

In the second stage analysis, a dedicated software processor first

"cleans" the pattern block of all paftern points not in the class of

interest. The result of this cleaning procedure is a 2-dimensional binary
representation as shown in Figure 3,13, The binary representation, whose

constituents are also called "cells", is then combed through and a list

is kept in the software processors memory of all closest pairs of "on" cells. fg

These pairs are deemed to be the likeliest centers of clustering, and are
used as seeds around which clusters may be recognized. The algorithm that is
then performed is a variant of the single linkage algorithm (Andenburg, 1973,
and Ton and Gonzales, 1974), which collects adjacent points, that is, points
within a predetermined distance d, into clusters. If the processor finds
itself able to extend the cluster spatially in a particular direction or in
all directions such that a highly significant number of points are amassed,
then a cluster has been discovered. At this point, the central computer is

alerted and the data pertinent to the cluster, which includes both the raw
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data and the cell representation, is archived and available for display.
Simulations were conducted with high-level languages software that were very

effective. These are shown in Figures 3.14 - 3,16,

The great advantage of this algorithm is that it is able to search for
structure across any entire pattern block, which is effectively a 6.4 kHz by :
1000 second record. The ccmpaétification scheme has bought us the real-time
ability to do such extensive spatial searches. This capability is far in excess of
what is possible through the use of dedicated processing of an equivalent
8 billion pixel image. In adfition the dimensions of phase, polarization,
and several types of coherence (temporal, spatial, phase) are included in

the pattern point compacticn scheme.
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(a) Before

Figure 3.14 — A cluster is detected and displayed by highlighting cells that have 12 or more
neighbors within a distance of 2 units.

(a) Before (b) After

Figure 3.15 — In this densely populated pattern class (1,°,%,°.°.%,%,%.°) the vertical feature
was discovered by testing for cells that are completely surrounded, i.e., that have 8
neighbors within a distance of 1 unit.
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(a) Before (b) After First Pass

Figure 3.16 — To isolate a tenuous feature, we first require that a cell have at least 2 adjacent
neighbors to survive highlighting (b), then in a second pass (c) we require that the survivors
have three neighboring survivors within a distance of 2 units.

(c) After Second Pass
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Chapter 4

Qasis System Architecture
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The centipede was happy quite,
Until the Toad in fun
Said, "Pray which leg goes after which?"
And worked her mind to such a pitch,
She lay distracted in the ditch
Considering how to run.

-=Mrs. Edmund Craster

4.1 - Introduction

Purpose of the System

The purpose of the Qasis Signal Detector is to recognize signals in noise

and to identify them in so far as is possible. In addition, the system:

Archives interesting data.

Allows the operator to become involved in decision-making and to

introduce signal identification tests of his own.

Provides the operator with visual and audio feedback.

Oversees the operation of the entire receiving system, including
the sequence of events, such as changing to a new target.

The system has been described in the previous chapter as a set of algorithms
(Puise Detector, Carrier Wave Detector, Numerical Battery of Independent Tests,
Cluster Detector). These algorithms comprise the Real-time Processing System;
there are, in addition, three other systems in the detector: the Total Obser-
vation Archive, the Operator Interface, and the Radio Astronomy System, as shown
in Figure 4.1. Now we will describe the digital hardware implementation of
these systems. First there will be an overview of the architecture and data
flow within the entire detector, followed by a more detailed examination of the
processors, with schematics presented wherever necessary. The chapter ends with
a summary of the speed, capacity, and cost of the planned equipment.

‘The system employs both conventional digitial computers and special

purpose digital processors to implement the algorithms. The reasons for the
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particular choice of technology is discussed in detail in Appendix A4.1.
While the selection of algorithms was somewhat constrained by the availability
of compatible technology, the hardware feasibility study which accompanied
this design project had its largest impact in placing limitations on the

sizes of the random access memories available to each processor.

Architectural Strategy

The strategy and philosophy underlying the hardware design which follows
can be stated rather simply. If proven off-the-shelf components and pro-
cessors exist to do a task, we use them. Otherwise, as in implementing
several of the computational algorithms, we have found it reasonably straight-
forward to design custom-made processors, all of which may be constructed simply
using current or near-current technology.

When the data rates and computation rates exceed that which is possible
with conventional integrated circuit technology, we use multiple processing,
and/or parallel processing, rather than resorting to higher speed processing
(e.g., greater than 10 MHz), and thus avoid immature and somewhat incompa-
tible integrated circuit families.

Fortunately, the very nature of the MCSA's output scheme (8 megawords/sec)
allows all special purpose processors located downstream of this data flow to

1

operate with a fundamental clock frequency of 8 MHz or 10 MHz,” which is

1 The reason for 10 MHz is due to the redundant processing of overlapped
data as discussed in thediscussion of Figure 3,9, detail 1.
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within the range of TTL technology. Still, there are cases where the number

of computations to be performed at this rate is very large, and in these cases
parallel processing is employed, either with special purpose hard-wired

devices (e.g., in the CWD) or else using a set of microprocessors (e.g., as in
the CD). A1l processors as well as all the major subunits of the Qasis Signal
Detector make extensive use of the techniques of pipelining and double buffering
("ping-ponging"). Each stage of the pipeline introduces a delay in the detection
process, but each stage is allowed to operate at 8 Miz or 10 MHz. In some

stages of the pipeline the data is reduced or "compacted" as well. By this means,
in the second stage of the Realtime Processing System, the data rates become much
more manageable. Here, data compaction by a factos of over one thousand (via the
NBIT routine) reduces data rates to 12.5 kHz and smaller words, allowing a sen-
sitive, non-deterministic search for patterns to take place by way of the Cluster

Detecting firmware routines of a microprocessor,

Large Memories and "Second Looks" at the Data

An important question, and one studied in depth by the group, was the
feasibility of maintaining a large online memory containing all of the raw
data from a target (.1 to .5 terabit). We determined that to store such a
data base was possible, yet such a data base could not be designed to afford
convenient random access to the data for preliminary processing. While it would
have been desirable fram both an architectural and algorithmic point of view to
have a large random access data base through which all processors could comb,
backtrack, and focus in or out of, such an entity was not found feasible.

Magnetic disc technology has not reached the storage density or capacity,
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magnetic tape has not reached the required access rate, and erasable
digital optical storage is yet immature and has not solved error rate
problems at high densities, nor are any of these constraints expected to be
sufficiently lifted within the next five years.

We did, however, design a large memory in the form of a "Super High Bit
Recorder Helical Tape Transport", which serves, not as a primary data base,
but as an archive, in both a short term and long term sense. The data taken
from every target is stored temporarily in this "entire observation archive"
while the dedicated processors (PD, CWD, NBIT) concurrently run deterministic
tests on an identical stream of data. The tests are considered deterministic K
in the sense that these tests simply act and report their findings over and .
over again; never altering their behavior in response to their own results,

After this determministic search has transpired for a particular target and any
outstanding results of the tests have been gathered, a “"second 1ook" is taken
at the data, using the results of the PD, CWD and NBIT processors as a guide
to examining the archive. This is shown in Figure 4.2,

The concept of taking a close second 1ook at promising portions of the §
data after an initial evaluation has been made is a natural and convenient ?
solution to the large memory problem state above. In this way, ali of the

data is made available to powerful, sensitive, and non-deterministic tests,

such as are provided by the clustering algorithm and the operator's own bank:
of knowledge, skills and tools. Nor is the concept of a second look new. It ‘g
has often been suggested by those working in the ﬁeld.2 |
and it emerged independently as well from the ideas of this design team.

The data compaction of .1 terabits to .1 gigabits allows the system to
automatically take a second look at the data. The second look comes in two

2Seeger,Stull, 1979, personal communication with members of the summer study.
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forms: the histogramming and the adjacency search algorithms of the Cluster
Detector.

The histogramming tests each 9 bit "pattern point" coming from the NBIT
detector at a 12.5 KHz rate for membership in any of 512 ‘"pattern classes".
It can be seen that by compressing the data here we have gained the ability
to subject it to many more tests.

The operator is also given a second look at the data. As will be
discussed in the next chapter, it is felt that the operator can and should
play an integral role in signal detection since he possesses the most
advanced and sophisticated algorithms for pattern recognition possible. The
previewing of data by the hardware processors rather than the operator is
necessitated by the fact that the raw data, if presented on a 22-inch-tall
standard display, would require a display 43 miles in Iength.3

Instead, the operator is able to concentrate on alarms from, and possible

patterns detected by the real-time processing system. To aid him in his task,
he is provided with exclusive use of three archives, an advanced image pro-
cessing unit, and a bank of software data reduction routines, as well as aid
from a radio frequency interference detector and a knowledgeable radio astro-
nomer, At the end of the 16-minute period, as the system moves on to observe
the next star, a decision is made, either by the operator, or by the central
computer, to save or erase the prior observation. The operator's role as a
signal detector is shown in Figure 4.2. Comments on the criteria for the

preservation for an observation will be given in the next chapter.

3 Assumes each 22"x22" area displays 512x512 pixels of 16 levels, and one

observation consists of 8 10% Hz x 1000 seconds x 2 polarization x (1 real

+ 1 imaginary part) x 16 levels.
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Mdvantages of the Architecture Chosen
The system 1s highly modular, with 1ittle or no communication taking

place between processors sharing the same stage in the pipeline. nmt to
processors arrives at a fixed rate on a common bus, and output is typically
limited to the signaling of an alarm through a priority interrupt to the
central computer, The computer acquires identifying information regarding
such a processor's alarm by reading the output register of the processor
without establishing any two-way communication.

There {is great advantage in keeping different functions physically
separate and communications between modules minimal. In addition to providing
a substantial increase in computation power through parallel processing, this
scheme allows for easy modification of the system, through addition or removal
of processors., Processors may be easily monitored for failure, and the failure
of one will not bring down the entire system. The central computer simply
removes the processor from the priority interrupt system, and, if necessary,
terminates the pipeline at this processor.

Such modularity provides for a great deal of options in the implementation
of the Signal Detector. In Figure 4.3 we show the basic pipeline, each level
of which is a set of signal detectors. One may start at the bottom, throwing
avay modules without affecting the performance of the modules on the left,
right, or above. At each turn, one is left with a functioning signal detector,
albeit one with reduced sensitivity to some class of signals.

It should be noted that the most fundamental algorithms are located in the
first two 1ines of this figure, namely the Pulse, Carrier Wave, and the nine

NBIT algorithms. Thus, a minimal system configuration would still contain the

-117-



MCS

A

]

PULSE DETECTOR

ARRAY

TRANS.

CARRIER WAVE

DET

ECTOR

CWD INTEGRATION

NBIT x 9

HISTOGRAM

CLUSTER
DETECTOR

r

CENTRAL COMPUTER

RFI
DETECTOR

I
OPERATOR

IMAGE
PROCESSOR

OPERATOR
SOFTWARE

SPECIAL
ARCHIVES

Figure 4.3 - A Delineation of the Pipeline of the Qasis Signal
ctor. Modules depend only on those directly
e, Each module excluding Array Transposer

is a signal detector.

Dete
abov

-118-




most sensitive, and important algorithms. Further, any of the particular
MBIT algorithms may be replaced by any alternative bit-setting algorithm,
with the entire system above and below this stage of the pipeline remaining
unaffected.

An advantage of the system architecture of a more primary nature is the
fact that all components to be described in this chapter are proven, off-
the-shelf items. Though some of the hardware {is state-of-the-art within its
class, namely the high density discs, helical tape transport, and display
processor, as well as the integrated circuits for particular integer multiplies,
the classes themselves are mature in the sense of standardization, reliability,
economics, and the very fact that corporations supporting such products are
well-established, and reasonably long-lived. Appendices Ad,1 and A4.2 deal
further with the choice of technology, and alternative ways to implement the
0SD modules based, for example, on smaller or larger MCSAs, and the use of

fewer modules.

4.2 - The Real-Time Processing System

Input to the Oasis Signal Detector
The MCSA's bottom stage, consisting of 140 x 56 = 7840 BPF units, each

with associated RAM memories, provides the input data to the signal detector.
As can be seen in Figure 4.4, this stage produces, at each RAM memory, 1024
output words, each representing a channel of width of approximately 1 Hz. With
7840 BPFs of 1024 "channels" each, there are, in total, 8 million outputs,
These outputs are produced each second, so that an 8 Mz bandpass input to the
MCSA may be totally analyzed to 1 Hz resolution and bussed to the 0SD in one

second,
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During one of these time intervals, all the RAMs fi11 in parallel. The
results of the Prime Factor Algorithm (Narasimha, Peterson, and Narayan, 1978)‘

leaves the data skewed across the RAM in a fashion similai to the results of an
FFT oneration (Bergland, 1969). By providing two RAMs at such stages, one
RAM may be written into in a skewed fashion, while from the other, data is read

out from the previous time interval in a sorted manner. Upon leaving the final
DFTs, the data enters the Signal Detector. Explanded block diagrams of the 0SD
showing all major components with associated data rates and memory capacities

are shown in Figures 4.5 and 4.6.
The data is read out at 8 Mwords per second, with each word consisting of

16 bits real and 16 bits imaginary, ana is clipped after readout to 4 bits real
and 4 bits imaginary, then multiplexed (box labeled MUX in Figure 4.5) with

the output of the second identical MCSA operating at an orthogonal polarization.
This yields a composite 16-bit word consisting of 4 real bits (polz. X ), 4 bits
imaginar. (polz. X ), 4 bits real (polz. Y ), 4 bits imaginary (polz. Y ). As
discussed in Chapter 3, each quantization level of the new 4-bit values repre-
sents .30 of the average signal amplitude. The clipping is accomplished with
an B8-bit to 4-bit ROM look up table,

Array Transposer

The output of the multiplexer, the 8 Mwords/sec data flow branches in
two directions. A scan (a one-second observation from the MCSA, 8 million
16-bit composite numbers) read out of the multiplexer is bussed word by word to
the pulse djetector, which performs its computations immediately and directly
on each scan, The scans are also written into a device known as the drray

transposer,

‘See references Chapter 3
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The need for this device is dictated solely by the input requirements
of the CWD. The QWD operates on nearly vertically arranged slices of raw
data, as was discussed in Chapter 3, and illustrated in Figure 3.8. Each
vertical slice covers 20 spectral scans, and therefore presents an unusual
memory requivement.

The transpose method involves reading twenty seconds of MCSA output
into memory one scan at a time, i.e., row by row. During the next twenty-
second interval the data is read out one frequency (one column) at a time,
i.e., column by column. This form of read out is ideally suited to the CWD
algorithm and requires a very small amount of intermediate memory before
the result is accumulated for each slice.

The transpose method consists of a double buffer, one part of which is
reading data in from the MCSA output and the other part of which is writing
out to the CWD implementation. Read-in of data is done in a conventional
manner, where one scan is read in at a time, so that the data of one scan is
arranged contiguously around one set of tracks (one cylinder) on the magnetic
disc.

The transposer is composed of two disc systems and two RAM systems. The
identical disc systems are composed of two discs and one controller. The RAM
systems are two identical 20 x 10° bit RAMs. One disc system reads in from
the MCSA output while the other writes out to the RAM system. This procedure
continues for 20 seconds after which the two systems trade functions, with
the disc which was reading now writing and vice versa. The RAMs operate on a
similar basis but on much shorter time scales. Each 0.13 seconds the RAMs
trade functions, one reading from the disc while the other RAM is writing to

the CWD and NBIT algorithms,
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This double-buffering of systems allows for the transposing of twenty

scans from row-by-row access to column-by-column access in the following
manner. Data is written from one of the disc systems to one of the RAMs in
partial rows. These are 64 x 10® Hz strips of an MCSA output scan (1/130th of
a scan). Within the disc system that is writing out, there exist two disc
drives and a controller. One disc reads out a partial scan to the RAM while
the other disc seeks out another partial scan, positioning its read-head
appropriately. The amount of time required to perform this "seek" is equal
to the amount of time required to write out a partial scan. It is in this
way that time is bought to fill one of the comparatively small RAMs with a
64 x 10° Hz x 20 second piece of the total 20 seconds of data. Once the data
has filled the RAM, the RAM switches to the write mode and the data is
written out, twenty-element column by twenty-element column. This constitutes
the transposed data flow.

In the read and write modes described above, all data transfer rates are
8 x 10° words/sec., where a word consists of 16 bits, 4 bits real and 4 bits
imaginary for each polarization. It should be noted that the data rate out of
the MCSA is maintained at all times. The net effect of the disc-double-buffering

is to delay the "real-time" arrival of the data by 20 seconds as well as to

transpose it.

Advantages of the Transposition Scheme

The transposition scheme is necessitated by the requirements of the CWD
algorithm. There are two additional and very important benefits of the trans-
posing scheme, The first is the block-by-block transmission of the raw data

to the NBIT processors. With this transmission scheme, the 800 raw data words
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that are used to produce one bit of the 9-bit number which represents a block
all arrive sequentially. Hence, none of the partial results of an NBIT test
on a particular block need be saved after that block is processed.

It should be recognized that there is an alternative processing scheme
for the NBIT algorithms that is eliminated by using the array transposer.
This scheme is called the "on-the-fly" implementation. It consists of
taking the raw data from the MCSA, one scan at a time, and computing the
results for all pattern blocks in parallel. This on-the-fly scheme would
require accumulators for each block during the processing of twenty scans.
There are 2.5 x 10° blocks being parallel® processed and the amount of
accumulator memory required would be approximately 3 x 10® bits. This is not
an unreasonable amount of memory, but nonetheless the need for its presence

is completely eliminated by the transpose system,

Pulse Detector Implementation

The algorithm implemented here, as described in Chapter 3, is an
examination of the incoming scans under various resolutions ranging from
1 Hz, 2 Hz, 4 Hz, ... , 2%% Hz = 8 MHz. This is accomplished in the
following manner. First the incoming signal is converted to a total power
value by suming the squares of 4 complex components. The components used in
this operation are "lookup" ROMs for squaring and MSI integer adders. Then
24 such adders integrate the data into 24 accumulators. At the end of Zi'l

integrations, the ith accumulator is caompared against a threshold. If there

5 "Parallel” in the sense that the processor would work on each block only
1/20 of the total amount required to complete that block, and then move
on to the next block, Only after 20 visits to each block is this
parallel computation completed.
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is a significant excess of total power, the threshold is exceeded, and
an alarm is sent to the central computer.

This hardware scheme is shown in Figure 4,7. The clock scheme for the
adders is simply an 8 Miz oscillator synchrozined with the MCSA readout, and
this clock drives a 24-bit counter. Each bit of the counter is an enable
signal (e.g., rising edge due to 0 + 1 transition) to the thresholding
function of a unit. A1l adders add upon each cycle of the clock, and, at

each 217} th

cycle, the i~ bit of the counter experiences a rising edge, and
allows a threshold and accumulator clear to take place. The expected total
power from Zi summed channels is a constant due to the clipping procedure,
and thus the threshold values are likewise constants, hardwired into digital
comparison chips which check for "greater than" situations.

When such a situation exists in any of the 24 units, an or-ing procedure
allows a single alarm (one-shot interrupt pulse) to be sent to the central
computer's priority interrupt system. The unit experiencing the excess inte-
grated power latches its own identifying number "i" into a register connected
to the computer's 10 interface. An additional pair of regiscers, the 24-bit
counter already discussed, and a scan number counter are also similarly
connected to the computer, and these three registers serve to uniquely describe
the location of the anomaly in the raw data, for the operator interface system.

The detector, as described above, performs the coarse resolution pulse
search on one scan at a time. The detector includes, as well, a second,
identical unit that performs this test on an integrated scan (see Chapter 3).

This integrated scan is accumulated at an 8 MHz rate into a large RAM memory

16 bits x 8 x 10° bits.® At the end of 1000 seconds (1000 scans) this

6 While RAMs of this size are not manufactured per se, in a serial access
utilization such as above, there is 1ittle difficulty in stringing
together many 256K RAMs, without encountering additional addressing problems.
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integrated scan is read into an identical pulse detection unit (with appro-
priate thresholds), and a separate alarm, with the associated registers (less

the scan 1D register), may be conmunicated to the computer,

A Hardware Implementation of the Carrier Wave Detector
As discussed in Chapter 3, this processor is responsible for the detection

of negatively and positively drifting carrier waves (drifting in frequency) of
driftrate between -1 and +1 Hz/second, and of any initial frequency within the
8 MHz band. The detector integrates for 1000 seconds of data, within which

50 "slabs" of data (measuring 20 seconds by 8 MHz) are individually examined

for carriers, as is the grand total of the 1000-second observation. See
Figure 4.8,

Through the use of the Generalized Coherence measure, the algorithm provides
an enhanced sensitivity to drifting carrier waves. By responding to the phase,
polarization, and amplitude or coherence of a signal occupying a moving
frequency bin (called a "slice"), the detector improves its signal to noise
ratio by a factor of ~6 over what is accomplished through simply summing the

power within the slice,

The processor also searches for “"carriers" of arbitrary bandwidth, One may

think of this either as the search for several nearly adjacent drifting carriers,
or the search for spectral features of any width (up to 8 MHz) which retain

their spectral shape and phase, but with a frequency offset in time. The
detection of such drifting signals is accomplished by binning the output of

the carrier wave detector across the axis of the starting frequency positions

of the slices.
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Implementation
The detection of the Generalized Coherence of carriers presents the most

difficult processing requirement of the entire 0SD, where as many as 200 complex
integer multiplies must be done in parallel at an 8 MHz rate, a rate
far in excess of what is required of any other processor in the system,

One further ramification of the implementation of this algorithm is the
necessity of providing a "horizontal" data flow to the processor as pictured
in Figure 4.8. This horizontal flow of data, where data closely associated in
time and frequency enter the processor together is accomplished by the array
transposer,

Given the somewhat formidable equation for the Generalized Coherence
measure of a drifting carrer wave (discussed in detail in Appendix A3.10 and
shown on page 136 : » 2 complete separation was made of
serial operations applied to each slice of data (with a specified initial
frequency in the band) and these operations were arranged in a long pipeline
with branches., All data necessary to compute one GC value enters the pipe-
line at an 8 MHz rate in the horizontal manner pictured, and is moved from
stage to stage at this same rate.

Since all of the data within a slab (8 MHz x 20 seconds) originates
at an 8 MHz rate, all the resulting GC values (8 MHz initial positions x 20
slices) emerge from the pipeline in real time. While the workspace of each
stage is relatively small (less than 100 words) RAM buffers are considered
the optimal storage medium for their simplicity. The pipeline, with RAM

double buffers is shown in Figure 4.9.
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The addressing scheme for reading in the appropriate raw data values for
a particular slice, as well as the transfer of data from the workspace of one
stage to the next is prcvided by FROM controllers. The first stage controller
also maps-in the correct weighting factors for the slice being processed. The
pipeline sequentially processes 20 slices for an {nitial frequency and then
begins on the next initial frequency. Therefore the output of the last stage

appears as sequential columns of the slice (vertical) by initial frequency

(horizontal) array shown in Figure 4,9, As this array appears, it is accumu-
lated onto a 1.3 Gbit disc memory so as to improve the signal to noise ratio

of carriers that drift across several, if not all slabs, Some minor address
computation is performed for this accumulation process, via the disc (programmable)
controller, The controller displaces the data from a particular slice such that,
for example, the GCV of a slice drifting from 1 to 20 Hz in the first slab is
added to the 21 to 40 Hz slice result of the second slab.

An integration of this type is performed on each incoming slab, so that we
have available at all times the most recent slab, and the sum of all slabs to
date. This leads to the three tests: 1) the thresholding of each GC value from
a slab (160 million values), 2) the coarse binning over 24 different resolutions
of a slab, and 3) the coarse binning of the sum of slabs. The coarse binning
circuit, as suggested by Figure 4.9, is simply the circuit used in pulse
detection (Figure 4.7), only now the input to the circuit is the output array
of the CWD algorithm, The result of binning the accumulated output array is
shown in Figure 4,10, It should be stressed that the examination of a single
slab output over 24 resolutions requires no memory, and, that this test alone

constitutes a very sensitive search for drifting signals. Assuming the carrier is
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observable for 1000 seconds, the 1.3 Gbit disc allows integration which

serves to increase the SNR by a factor of v8U '™ 7, For this reason, th2
optional CWD integration module was placed on the system pipeline (Figure 4,3)
below the detector itself.

The CWND Pipeline
The following schematics (Figures 4.12 - 4.16) show the stages in the

pipeline, along with a guide (Figure 4.11) delineating how the branches of the
pipelines fork and join. Where there are 20 identical functions occurring

in parallel, the diagrams show the outline of 20 boards in a stack. The
reason for 20-foldmultiplicity is that a single slice traverses 20 scans (rows)
of data and the computations performed on the raw data in these rows may be
performed ir parallel, At some points in the pipeline there are operations
which require more than one 8 MHz cycle. These operations ther span more

than one stage of the pipeline so as to be allotted the required time (e.g.
stage A7 - A8 is a 5-stage, 16-bit, cascade full adder). Also, at some points,
data is produced by one stage that is not needed until many stages down the
line. Such data is passed along the series of RAM workspaces but is shown in

the schematic passing through registers marked "H" for rold.

Stages 1 & 2 - The incoming MCSA data are first weighted in accordance

with the ray angle, the signal distribution model and position in the array.
These factors are predetermined and are reflected in the weighting values
stored in the PROM look-up table, designated by a. Since a ray may cross
three frequency bins, three weighting values are multiplied by the three
potential bin contributions.
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Stages 3 - 14 - These stages compute the various factors which comprise a

GCV which is defined as:

P 2m 2 jé *
Gey I T (N-T) (“1 IXjpXF ¥ kpkoe™ Ixg vy
_js 2
kika® ™ Wi kg Iy l

| A
L e k, =

; EW as computed in

2|+

2

Stages A3-A9, and

o= . i . = Rx, + jlIx.
%1 /R!x] + I!xiI given X; = Ry + Jlx,

and 6 = tan i (computed at B6-B9)

2 _ 2 *x12°
BAETRE AR

and m (computed in C4-C13).

2 2
Il |2+ zly,l
It is possible, therefore, to campute each of the surmations separately, multiply
them together and add the results together at the end. The k1 and k2 components

are derived in Stages A3 - A9, m is computed in parallel C4 - Cll, the factor

(M+1§TN-17 is calculated in C12. Mearwhile, the other five correlation
sunmations are computed in a parallel set of operations in Stages A3 - A9.

The results are combined in Stages 10 - 14,

" "
I —
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Notes on Stages 1 & 2

For each ©,_ there are three complex (4 bit real, 4 bit imaginary) weighting
factors wh*ch include an area component and a phase correction component,

The input values are held in the RAM buffers for 2.5 usec. During that time
the ray values for each of the 20 slopes are weighted. One angle is started
each 125 nsec,

Not shown is the table wnich contains the displacements from the jth frequency

1¢, , Zak which is used to update the address register for the correct ray
fa%tor. The displacement is a function of i and ek.

Figure 4,12 - Beginning of CWD Pipeline
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COMPUTES AUTO- & CROSS CORRELATIONS
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Finally, we examine the actual components of the pipeline. We reduce the
complex mathematical symbols shown in the preceding diagrams to real integer

adders and multipliers. The key to the symbols is as follows:

a complex function

. 2
a power computation, e.qg. x2 ty

a multiply and addition operation respectively

H

the circuit involves 4 stages
16 and retains words of 16 bits
@ Hold regis ter
16
¥ 16-bit bus
@ change sign bit

] look up a ROM table lookup of the stored function (e.q. 745189)

The means of performing 8-bit multiplication at 8 MHz rates is easily

commercially available (e.g., TRWMPY8HJ circuit, maximum propagation time 65 ns).
To do additions at this rate is alsc no problem {(e.g., TTL 745182, maximum
propagation time 36 ns)., The 16-bit multiplication units commercially available
in 1979 are, in the worst case, a little below the required 8 MHz rate (140 ns
prog. time = 7.1 MHz), but if this does not improve, there are many alternative
means of reaching this rate including multiplexing, or ROM lookups. The approach
favored most by the design team is to have custom MSI complex mathematical
circuits designed by industry, of the functions shown in Figure 4.18 and 4.19.
This should be the most economical solution, and such circuits, being of a

fundamental nature, may have commercial appeal in their own right,
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8-BIT COMPLEX MULTIPLIER 8+8)
IN: A=R1+j11.B=R2+j12

OUT: Re(A*8), Im(AB)

MAX RATE: 15 MHz
MAX DELAY: 100 nsec

16-BIT COMPLEX POWER FUNCTION 16 16§

IN: one 16+16j number

OUT: 16-bit sum of squares N2
MAX RATE: 20 MHz

MAX DELAY: 55 nsec

16 16

COMPLEX ADDER

IN: 20 (16+16j) numbers
OUT: one 16+16j

MAX RATE: 20 MH:z

MAX DELAY: 175 nsec

(Identical unit

for
Imaginary part)

.7!ﬁi_
Imaginary| 16

Real

Figure 4,18 - Some of the components used in the proceeding schematics.

The values for the rates and delays are derived from
current off-the-shelf adders and multipliers.
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SCALAR MULTIPLIER

IN:

ouT:
MAX RATE:
MAX DELAY:

Sy

Figure 4.19 - Continuation of Glossary of Circuit

one 16+16J and one 16 bit real

one 16+16)
15 M2z
140 nsec

TWO STAGE 16-BIT COMPLEX ADDER

IN: three 16+16j numbers
OUT: one 16+16j number
MAX RATE: 20 MHz

MAX DELAY: 70 nsec

8-BIT COMPLEX POWER FUNCTION

IN: one B+8j

QUT: 16-bit sum of squares
MAX RATE: 15 MHz
MAX DELAY: 100 nsec
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Implementation of the NBIT Algorithms

The implementation of this part of the 0SD amounts to the implementation
of 9 separate algorithms. It includes, as well, a pre-processor that organizes
and prepares the data streams which branch out to the algorithms. Thus,
before the data enters the individual processors, it passes through the Overlap
System and the Common Processor as shown in Figure 4,20. By the time the MCSA
output arrives at the Common Processor, its ordering has changed several times.
It emerges from the MCSA scan by scan, from the transpose RAM slab by slab,
accessed a column at a time, and finally from the Overlap System block by block,
accessed a row at a time. (These terms were defined in section 3.5) The
trend here is toward preparing the data to be passed to the algorithms
more and more closely associated in the two dimensions of time and frequency,
not just in one dimension of frequency.

The blocks contain redundant data. Since blocks overlap 8 Hz on each
side with the adjacent blocks, the overall throughput rate is increased to
10 MHz in the system to maintain realtime processing., This is accomplished by
the Overlap System. Next, since many of the NBIT algorithms require the same
sort input, such as spectral power values, the Common Processor prepares these
values at once for many algorithms. Each algorithm takes what is needed from
the Common Processor, and then carries through the operation with its own
particular hardware configuration.

Before describing the Overlap System, Common Processor, and the algorithm
implementations in detail, we will first discuss the role of the NBIT system
in the context of the entire system,

It is the NBIT system which compacts the data by a factor of 1000, and

reduces the throughput rate from megahertz to kilohertz. It is also the
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system that surveys the data with high sensitivity, noting millions of
candidate low-level signal features, and, rather than bombarding the operator
and central computer with these, incorporates them into the compacted array
for further scrutiny. Finally, it is a collection of very diverse detection
algorithms, a Battery of Independent Tests, which are used together in a
"shotgun" approach, with the thought that an arbitrary signal type will be
caught by one or more of these tests.

The NBIT detectors are constructed so as to be able to contact the central
processor directly (through an interrupt "alarm") if a block of data passes
a particular test with a highly significant score, This direct line to the
central computer is a common feature in the Oasis System., Each prucessor has
one, and they are designated by triangles in Figure 4,5. This symbol next
to the NBIT system indicates there is available to each of the nine processors
a high threshold alarm channel to the central computer. (The thresholds for
these high level alarms, and the entire strategy regarding false alarm rates
and archiving, are discussed in the next chapter).)

The term "low threshold alam" in Figure 4.20 refers to the fact that each
blpock of 800 numbers is reduced by an NBIT algorithm to a single bit hased on
a comparison with a threshold. In order to provide the maximum in sensitivity,
as explained in Chapter 3, this bit is set whenever the test score for a block
is greater than the mean value resulting from a block of noise alone. (Thus,
in the absence of signal, the low threshold alarm ic triggered by noise half
the time.) The collection of low threshold alarms then is not transmitted to
the operator, nor to the central computer, but becomes the compacted array,

and is stored in Pattern Block Replay section of the Cluster Detector.
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Since each of the individual test processors obtains a block (800 numbers)
of data at a 10 MHz rate ( sped-up to offset the inclusion of redundant data
due to overlapping blocks), and each turns a block into a single bit, the bits
flow out of the processors at a 10 Miz/800 = 12.5 kHz rate, into the Cluster
Detector.

The Overlap System, the Common Processor, and each of the NBIT processors
are relatively simple and memoryless custom-made units, built from the same

components as the CWD, . though, for the most part, far fewer. In one test

(Goodness of Fit) a pair of microprocessors are also used to provide floating
point divisions which retain a large dynamic range. Otherwise, the same
integer adders, multipliers and small PROM look up tables are employed.

"he schematics of the Generalized Coherence by Row, and the Degree of Polari-
zation tests are found in Appendix A4.3, and are a much simpler version

of that of the CWD processor which has already been presented.

The implementations are memoryless in the following sense. With the
array transposer system, we have contrived to arrange the data block by block.
so that once a block has been tested, and the low and possibly high alarms are
recorded, the working registers of an NBIT test may be completely cleared.
Without the array transposer, the data would arrive scan by scan, and partial
test values of the Z50,000 blocks that comprise 20 scans would have to be
stored in accumulators for each test. From an economic viewpoint we note that
to provide these (RAM) accumulators wauld be cheaper then providing the array
transpose system. But the transposer is included to make possible the detection
of drifting carrier waves, and that it also allows a memoryless NBIT system is

simply a side benefit,
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To allow the low threshold 9-bit number (representing the results of
the nine simultaneous tests on one block) to be synchronously transferred, some
pipelining is necessary. Those tests with several stages (e.g., GVC by row)
incur a delay in the production of their bit, so that the other quicker tests
must provide a pipeline of hold registers to match this delay. Such delay

is on the order of milliseconds.

The Overlap System

As shown in Figure 4,21, data (in slabs, column by column) feed from the
20 Mbit RAM to both the CWD and the overlap RAMs. At all times two of these
RAMs are set for reading in at 8 MHz, and the third is writing out a 10 MHz.
Each RAM holds 800 16-bit words (40 Hz x 20 seconds). In order to overlap
the blocks by 8 Hz on a side, the last 8 columns read into one of the 8 MH:z
read-in RAMS, are also the first 8 columns of data read into the other,
When the first is full it becomes a 10 MHz read-out RAM, and the functions
of each of the three RAMs are rotated. The 10 MHz readout is row by row. Not
shown, but rather trivial to implemeat, are the details ot the three-phase
counter (which counts once each 800 8 MHz cycles, and controls both the Read/
Write function of the RAMs, and the clocks selection to the RAMs, Also not
shown is the addressing sequence (Stored in PROMs) to read out the data in a

different order than the sequential readin,

The Common Processor Implementation

This processor, shown in Figure 4.22, uses previously described components
to prepare data streams for the NBIT algorithms. It also aids the "GVC by rows
test" by preparing a delayed signal for computing the autocorrelation functions.

A1l preparations are done at a 10 MHz rate in parallel as shown.
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-152-



8(4+4)

) 8

-PO Good. Fit

8(4+4)

ANOVA

Total Power
Comp. Coh.

16(8+8)
XY* 7

-0 Deg. Pol.
GCV
8 Hz P.D,

4

X

ﬁ[----liC) Comp. Co.
O Deg. Pol.

(4+d)

100 ns

4[ 100 ns '
Delay P—x}

$O 6oV
8(4+4)
—$O Gev

8(4+4)
f-1 ,

Delay

*

7 0O 6ev
8(4+4)

Ye¢ 4

, 8(4+4)

+ [P

— $O G6Cv

ANOVA
Total Power

s

$QO Comp. Coh.
Deg. Pol.
GCV

84z P.D.

8(4+4)

O Good. Fit

Figure 4,22 - NBIT Detector - First Stage Common Processor

-153-




B8-Hz Pulse Detector Implementation

This detector (Figure 4.23) computes an 8-channel running sum across
each row of a block. The total power is compared against a high and low
threshold at a 10 MHz rate. Any occurrence of excess power will latch a "1"
(Yow threshold) and will possibly send an interrupt (high threshold). A
counter disables the shift register at the start of a new row when less than

8 values are available for summing from the shift register.

Total Power Implementation

After 800 accumulations, the total power of the block is compared against
the two thresholds (Figure 4.24). Although this is by far the simplest and
cheapest detector of the entire Qasis system, it is considered of fundamental
importance, as it is sensitive to constant power within a 40 Hz (medium-sized)

band.

Goodness of Fit Implementation

Here the signal's real and imaginary amplitude components are checked for
obeying Gaussian statistics. Since, for a 4-bit number, there are 16 quantiza-
tion levels, these values are decoded (Figure 4.25), and the number of times
each quantization level occurs in a block is accumulated in rippie counters,

The counting process can occur easily with conventional ripple counters at
20 MHz rate, so that each such unit can handle the real and imaginary part of
one polarization,

At the end of the accumulation of the 800 values, a pair of micronrocessors
perform the Chi-Squared test determining the significance of the deviation of

each level. Ripple counter "k" is initialized with -Tk so that the microprocessor
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Data is accumulated for 800 points (40 Hz x 20 sec block of data) then sent
through a thresholding device. The threshold device (magnitude comparator)
will decide if either a high-level or low-level alarm has been triggered.

Figure 4,24 - Total Power Detector
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need only perform a square and a divide for each k = 1, 16, With only
(10 MHz)'1 x 800 = 80 psec to perform 16 such sequences, a look up table,
combining the squaring and division by a constant operation into one read

might be required to provide the sufficient speed.

Complex Coherence Implementation

The Common Processor provides this detector (Figure 4,.26) with
Re(XY*), Im(XY*), Py PY’ so that only accumulators and look up tables are

required to easily implement this algori thm,

ANOVA Implementation

The implementation of the ANOVA algorithm computes the equations listed
in Table A3.8.1. Ideally, the analysis of variance used in this study (a
two-way ANOVA cross classification) requires a matrix of R rows and C columns
in which two statistically independent sets of measurements of the same target
are contained in each cell of the matrix. Because time is a factor in the
analysis, to simultaneously obtain a second set of independent data would
require a second antenna of the same polarization (not simply a second
polarization).

A suitable substitute for a set ot independent replicates has been shown
to be a staggering of each second's output of the MCSA., The first second's
scan fills the first half of the first row of power values, while the second
second's provides the replicates. Similarly, the third and fourth seconds'
scans comprise the second row of the matrix, Despite the displacement in
time of these signals, simulations have shown this approach to be acceptably

effective (see A3,9, Simulation Studies).
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As shown in the table, the quantities MSR, MSC, MSI and MSE
require computation. It is not difficult to expand these four summations

so as to obtain:

=1 1

- 1 1.2
MR = fetrry (0 - 7 B

. 1 g2
MSC = Frtery (@ - ¢ 8

_ 1 1 1 1
MSI-m(E-EC-FD+E B

where A, B, C, D, and E are defined in Figure 4.27. By expressing the MS

2)

values in this way, the entire computation may be performed in the parallel
pipelined manner shown. Here, we have also taken advantage of the dual
availability of row and column outputs of each block provided by the NBIT
common processor. The data flow rate in Figure 4.27 is divided down at each
accumulation point indicated, while the bit width of the busses and accum-
ulators is increased.

At the conclusion of each block input, “he values A, B, C, D, and E are
syncronously buffered from their respective accumulators into the micro-

processor which computes:

£ MR _5C - 1/108°
R HMSE JIA-T/2E

F - MSC 200D - 1/40 8
CMSE-J/ATIZE

e . MSI _ 200 E - 1/20C - 1/100 + 1/400 8
1 WSE " 35

A-1/2E

where we have substituted from above, setting r = 10, ¢ = 40, and n = 2.

A simple comparison circuit then compares the results against high and low
thresholds, and, after oring with the results of an identical circuit for

the orthogonal polarization, deposits the three bits in the NBIT word,
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Cluster Detector Implementation

The reduction in data rates (8 Mword/sec - 12.5 Kword/sec) allows for
sophisticated, non-determinist processing at low cost. We can now use the speed
and versatility of a computer to comb through a condensed version of the entire
observation. The histogramming (checking for excesses of low-threshold bits)
takes place as the observation proceeds, and as each 9-bit value is output for
NBIT. At the end of the observation the histograms are completed and the
cluster detection (via microprocessonnroceeds. The significant results of this
algorithm are transmitted to the Central Computer during the observaiion of the
new target.

The steps of the process are described in detail in Appendix A3.11, and

are summarized below.

The Histogram Circuit

This circuit prepares a "histogram" for each of the 1250

pattern blocks comprising the entire array. The histogram is a number count
of the 9-bit outputs of NBIT, according to occurrence of each output type
("pattern class"). There are 512 such types, and these types are not mutually
exclusive. Each output of NBIT is thus subjected to 512 tests, and the imple-
mentation for these tests is shown in Figure 4,28. A 9-bit number appears for
(12.5 kHz)'1 = 80 usec and 512 "mask tests" are conducte¢ at 512 x 12.5 kHz =
6.4 MHz rate. The test is for the presence of 1's, with the other bits being
"don't care" bits. The "don't care" bits are represented by 0's in each mask,
so that the Boolean operation is (WHV NI)A (Mév N2) A cee A (Hév Ng)
resulting in True (1) whenever all 1's in the mask M appear as 1's in the

NBIT number N. The clock runs at 2 x 6.4 MHz = 12.8 MHz so as to give the
histogram RAM hoth a read and write Cycle for each accumulation. The histoaram

circuit, due to the nature of the input to the NBIT processor, (a row of blocks
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at a time) processes a row of all pattern block histograms at a time. Thus
the address logic in Figure 4.28 performs a read and write by rows of conse-
cutive pattern blocks.

As the pattern points (NBIT numbers) arrive at the CD system, they are
simultaneously stored in an additional memory shown in Figure 4.5 as the
Pattern Block Replay. These 4 RAMs constitute an identical pair of double
buffers. One pair is for the storage constantly taking place during an obser-
vation, and access by the CD processer. The second pair is for storage and
access, but this time, by the operator, who looks at interesting pattern blocks
found by the CD processor and Histogram Generator and stores these blocks on

tape.

Cluster Detector Microprocessor

In this section of the CD system, control is transferred to a microprocessor.
For simplicity, the system includes only one processor, but it will be shown here
how, at this stage in the data flow, large gains can be bought at a very small
price by including additional processors conducting nearly identicai operations
tc the one detailed.
The tasks of the microprocessor are threefold:
1) Accessing histogram results; sending high-level alarms, and
using results to establish a potential pattern.
2) "Cleaning" the pattern blocks tc be searched.
3) Subjecting the pattern block to the adjacency algorithm,
The first task above occurs once at the start of the detection process. The
microprocessor has the list of expected histogram number counts that would be
found from noise alune (shown in A3.11). It notes pattern blocks possessing

significant excesses. If the count is highly significant, a high-ievel alarm
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is sent to the Central Computer. Otherwise, the most significant 1000 excesses
are noted in a list in the microprocessor's memory. (It retains 1000 "slots®
in memory, and as the histogram contents are read out, the least significant
values from either the slots, or from the current read-out is discarded in a
"quick sort" fashion). At the end of the histogram read-out, the microprocess
has a list of 1000 pattern types, each related to a particular pattern block,
that it will perform tasks #2 and #3 on. The sorting of the top 1000 such
pairs should take:

1250 histograms

x512 bins per histogram

x~10 slots to search through till minimum is found

x 5u seconds per compare and «‘ card

32 seconds

On the average, only .10 slots need be checked before a histogram bin value
is discarded, because we are selecting only the most interesting 1000 pattern
classes out of 1250 x 512 candidates, so that most histogram bins will quickly
be determined to be uninteresting (non-significant).

Since, as shown above, we have used 32 seconds out of 1000 seconds available,
968 seconds remain to "clean" the blocks and find any patterns.

The cleaning operation amounts to arranging a bit (cell) pattern in the
microprocessor's memory that contains 1's wherever the interesting (excessive)
pattern class occurs within the pattern block, and a 0 where it does not. Thus,
in the microprocessor's memory we retain the two dimensional position of the "on"
cells,

Such a program was written in a high-level language (BASIC) simulation to

produce Figures 3.13-16 and its low-level language equivalent might be:
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usec

o BACK: LDM, PNTR, 1 get pattern point 2
ORI, MASK, 1 is it in class? 2
152, PNTR, 1 yes, leave cell on 1
loop 10,000 times STI, PNTR, #0 no, off, go to next 2
ll__ BRZ, PNTR, OUT done?, leave 2
HOP, BACK 1
ouT: 10 pusec total

Using a mock-assembly code we have conservatively estimated the run-time of
a microprocessor to clean an entire pattern block is 10,000 x 10 usec = .01 sec.
Thus, after cleaning each of 1000 blocks we still are left with most of 1 second
to seach each for patterns.

As a good example of the firmware programming needed, we choose the most
time-consuming (with half the cells on by noise) adjacency algorithm; one that
checks and counts nearest cell neighbors for complete occupancy.

A cell's survival to the next generation depends on it being totally
surrounded. The surviving cells are counted, with a large count indicating the
presence of a cluster., This would correspond, in the notation of A3.11, to
requiring 8 cells be on within a distance of 1 cell.

Again, such a computer program was used to produce Figure 3.16. The mock-

assembly language equivalent would be:

56

usec
PSTART: %g?, PNTR,I#A ge%]cell \ 2
. . PNTR,START cell empty? get next 1
10,000 times ¢ p° I set up index 1
NEIGHBORS:  TRR, PNTR,PNTR2 get centered on cell 5)
ADD, PNTR2,UP( 1)+ move up,down, or none 1
ADD, PNTR2 ,RIGHT( 1)+ move right,left,or none 1
ISN, @PNTR2 neighbor on? skip 1 ' x 8 =
8 times BR, START off, get next cell 1
I TBRB, 2,1,DCME 8th neighbor? done 5
BR, NEIGHBORS no, get next 1
DONE : INC COUNTER record survivor ;/
1SZ PNTR,START next cell?
LALL DONE: —_— Total “62 wusec
RIGHT: -1, -1, -1, 0, 0, 1, 1, 1
up: -200, 0, 200, -200, 200, -200, 0 -200
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We can conservatively traverse the neighbors of each cell in a cleaned
pattern block in 62 usec, so that the number of such surviving cells in a
pattern block could be counted (COUNTER) in 62u x 10,000 cells = .62 seconds,
and thus in 620 seconds for all blocks. So, with a 1000-second budget, we can
find 1000 interesting pattern-point excesses, clean those blocks, and count
the cells surviving an adjacency search in 662 seconds, Those excesses are
then relayed in a high-level alarm to the Central Computer. The operator, if
he wishes, can view such pattern blocks on his image processor, or can automa-
tically let the most significant ones--i.e,, with the most survivors--be
automatically stored on the Special Interest Archive.

The algorithm just presented is good at finding blobs, or dense amorphous
clusters. It can be seen from careful study of Figure 3.16 that extended
sparse contiguous structures may be revealed through repeated, more relaxed
survivor criteria. If we allow the case of many survivors through relaxed
adjacency requirements in one pass, a second pass requiring survivors tohave
surviving neighbors would then select such patterns. This would require the
inclusion of more microprocessors, and would gain the ability to detect
filimentary structures within the pattern blocks.

In conclusion, to quote one member of the group, "signal detection and iden-
tification hinges on a good pattern recognition scheme". While the implementation
here represents a somewhat basic technique, the foundation for easy computer pro-
cessing has been provided, and, at this stage of the pipeline, any number of
sophisticated software schemes could be brought to bear at little additional

expense.,
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Conclusions Concerning Realtime Processing

This completes discussion of the realtime processing system. All units
requiring special hardware or software have been fully laid out so as to
demonstrate their feasability. Options have been given here and in A4.2
regarding implementations of all or part of the proposed system. Problematical
aspects of the design have, in all cases (we believe), been explored and
solved raiher than omitted or ignored. Those details that were omitted are of

the banal sort, well within the domain of conventional digital design.

4.3 - Archive System Implementation

An essential part of the observing system consists of the ability to play
back an entire 1000-scan observation of a star5 during the observation of the
next star or possibly at some later time as an archive. This requires two
high-speed recording systems, double-buffered for simultaneous recording and
play back, as well as archiving.

The most inexpensive systems capable of handling the data rate (128 Mbits/
sec) and the storage requirements (.1 terabits/star) were found to be high-speed
helical tape drives. The optimal 1982 version of one of these drives has a
storage capacity of 1 terabit. This is rather useful in that it eliminates the
need for tape changes for every new star being observed. As many as 20 stars
may be recorded before one observation must be rewritten over, or else the tape

be changed. The decision to rewrite new data over old data is actually tantamount

5 The processing of 1000 scans takes place during the taking of the same scans,
and continues on during the taking of the next 1000 scans, It is assumed
for simplicity in this study that each 1000-scans corresponds to the total
observation of one star. Both shorter observations, and longer observations
(1000 scans followed by a second observation) could be easily accommodated
into the present scenario, in 20 second increments.
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to the decision to erase data or to archive it. Since one tape drive
stands available for operator perusal during each new observation, information
from the alarms that were triggered during the realtime processing may be used
to re-examine the raw data during the 16 minutes = 1000 seconds the tape drive
is available. At the end of this period, a new source is observed and the
tape drives switch function. If the decision to save the data rather than
write over it is made, then the new data is recorded further along the tape,
leaving the data from the previous star intact., After 10 stars are archived
on one tape, the tape must be removed and a blank one spooled up. Commercial
specs for these drives that will suit the need are mentioned in Appendix A4.l.
The total observation archive stores its data block by block (again, as
a benefit of the array transposer). This enables the operatcr, when replaying
blocks on this sequential access device, to rapidly view and store adjacent
such related data, rather than waiting for the drive to seek and read out each
row of a block separately. This is of great advantage, for this sort of high
bit read-out drive has long start and stop times (Appendix A4.1) and the
operator has only 16 minutes to decide whether an observation should be

permanently archived or not.

4.4 - Operator Interface

Central Computer

The overall operation of the Oasis signal detector is controlled by the
software operating system of the central computer. In this section we discuss
its major functions and specify the minicomputer configuration that carries

them out.
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Threshold Setting

Each test in the detector yields a value which is then compared against
a threshold. The threshold is optimized for the most feasible balance between
false alarms and missed signals. Threshold setting can be carried out in
either of two modes. In the automatic mode, the CPU polls the response of the
various tests while the receiver is observing a quiet patch of sky, or a
white noise source. Under these conditions, the sensitivity of a particular
test can be adjusted so that noise does not cause an undesirable number of
false alarms. These levels can be adjusted regularly during the search while
the anterna is "off target". Alternatively, the operator may desire to
manually instruct the CPU to increment or decrement a particular threshold as
desired. Each threshold is stored at a particular address and communicated
to tests via an I/0 port.

The threshold setting function of the CPU provides a means of system
self-checking and calibration. In the event a part of the system malfunctions,
the CPU can be of utility. For example, if a particular test consistently
triggers when only noise is present, the CPU will disable that test and

notify the operator.

Detection Handling

After thresholds are exceeded and alarms (or "detection flags") are set,
the signal is sent in the form of a priority "interrupt" and the CPU is charged
with responding to those. The detector setting the interrupt sets an identi-
fying bit in a CPU register and transfers other relevant data via an I/0 inter-
face.

At this point the CPU consults its RFI catalog for possible information

bearing on the detection. The catalog consists of two classifications of
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signals. The first is “natural" signals which have already been cataloged
in various radto astronomy observations, and previously-known RFI; frequency,
amplitude, time of day and/or position bounds for these phenomena are
recorded. Also, the local RFI receiver dynamically updates the catalog.
Local RFI signals are saved for 25 seconds, long enough for the rest of the
system to utilize them. The maintenance of and referencing to this catalog

represent a considerable portion of the CPU's real time responsibilities.

After a detection is compared against the RFI catalog and is found to

not match any previously-known signals, nor have been concurrently received

by the RFI antenna, the CPU performs one or more of the following:
1. Alerts the operator (only if desired).

2. Informs the display CPU to make the block available for audio/visual
scrutiny. This can also be done manually, by the operator.

3. Prepares for the automatic storage of the block onto the special
interest archive, when the total observation archive is free.

4, Records information on the detection in the system log.

5. Flags total observation tape record for saving.

System Loy
The CPU maintains a system log, on standard magnetic tape, which

includes information defining parameters of the search in progress, system

status, and all significant events and detections.

Self-Diagnostics

Each subsystem of the QOasis detector possesses a diagnostic processor
capable of verifying correct operation by supplying special test data and

examining the computed results. Diagnostics are performed during intervals
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between star searches on command by the central CPU, Each diagnostic
processor notifies the central CPU of the result of its test; the aggregate
of the tests is reported to the operator via a display of the system block
diagram,

The diagnostic processors are microprocessors with programs in ROM. In
some cases, test data are also stored in ROM. In others, test data are
generated by the diagnostic programs or by special hardware devices as, for
example, .with the array transposer diagnostic systems.

The Oasis system operation will in general be degraded but not precluded
by the failure of one or more subsystems. The usual result will be to render
one or more detection flags meaningless. The central CPU or operator can in-
hibit the setting of such flags simply by setting thesholds high,

Verification of the control CPU itself must of course be performed at a
different time. Diagnostic routines for the CPU, its 1/0 devices, and the

graphics system, are supplied by their respective manufacturers.

Other Functions

Other system service functions the CPU performs include: initializing,
resetting, on/off control of the system, As part of the initialization the
CPU can inform interested algorithms of the iength of the ensuing observation.

These functions also have manual overrides.

RFI Receiver and Catalog -
This subsystem consists of log spiral and vertical antenna, a preamplifier, {
and a remotely-programmable spectrum analyzer interfaced with the QOasis control

CPU. The spectrum analyzer is capable of locating spectral peaks or sweeping
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the spectrum with a variety of resolutions and rates, It is used by the
control CPU to maintain a dynamic catalog of probable RFI signals. A
commercially-available analyzer with 1024 channels 1s used for this purpose.
Other RFI data can be entered into the catalog from tape (via the system log
unit) or manually by the operator.

The catalog in its complete form is stored on the catalog disc. In
addition to frequency, any available information on amplitudes, times of day,
antenna coordinates, etc., are included. An abbreviated catalog of fre-
quencies only (for quick checking) is in the control CPU memory.

Entries are static or dynamic. The former are entered via magnetic

tape. Dynamic entries are subject to review and rémoval by the RFI receiver.

The central CPU consults the catalog in the course of processing detections,

to determine validity. It has the capability of compensating for any Doppler
correction applied to the observatory local oscillator. It can alsc cause
the spectrum analyzer to display for the operator portions of the spectrum

surrounding any specific detection,

4,5 - Radio Astronomy System

The Radio Astronomer is given his own station. The output of the coarse
or fine resolution stages of the MCSA are made available to this system so as
to provide bandwidth for varying applications. Note thatstokes parameters are
computed as shown in Figures 4.30 and 4.31. The use of this information is
discussed in Chapter 5. The observer also has a 256-Mbit RAM to enable
quick subtraction and comparison of observations. Standard observatories
(depending on location) may make up the post-processing backend shown in

Figure 4.29.
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4.6 - Gross Attributes

Storage Capacity: 2 Terabits Online

At all times the Oasis System has a 2-terabit online data store. This
database contains the latest 20 seconds of observations (stored on disc), as 3
well as any previous 4-1/2 hours of observations on two high speed high H
density helical tape transports. Such transports are currently commercially
available today (Ampex "Super HBR"), with each tape holding one terabit,
Included with this tape drive, the Oasis system will support a tape library
where 20 tapes will store the observations of hundreds of stars, at .1 tera- .
bit per star (1000 seconds of observations). -

Since the Qasis system is primarily a real time processor with the ;
vast majority (95-99 %) of all input data discarded for lack of interesting
features, it is expected that an entire stellar observation would be archived
in the tape library only for exceptional reasons. Therefore the system
supports a collection of smaller random access memories for intermediate
computation and processing. There are approximately ten independent "working"
memories in the system, each a solid state dynamic RAM, with total storage
capability of 1.1 gigabits.,

In summary the system supports:

2 terabits, Tape, Online

40 terabits, Tape, Offline
7.8 gigabits, Disc, Online -
~1 gigabit, RAM, Dedicated

The role of these memories was delineated in the description of memory
stream preparation as well as in the discussion of the individual algorithms

and archives,
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Brief Inventory of Major Components

The following 1ist is intended to give the reader a feel for the variety

and scale of the hardware required to implement the system,

2
4
1

Super High Bit Rate (HBR) Tape Transports

1,3 Gbit Parallel Transfer Disc Drives (removable heads)
Minicomputer/Display Processor Unit

Minicomputer, referred to as "Central Computer" in this report
Special Purpose Hardware Processors- TTL at 10 MMz clock rates,
varying in complexity from 1 to 10's of integrer multiplies
and/or adds per cycle, with pipeline architecture

Hardware Processor of considerable complexity - customized
integrated circuits and a 1.3 Gbit integrated circuit memory

Vertically polarized antenna for RFI detection

Log Spiral polarized antenna for RFI detection
Commercial Spectrum Analyzer for RFI detection
Standard Large Disk 120 Mbyte, 7.5 Mbyte/sec R/W rate
Standard Tape Drive 10 Kbyte/sec R/W rate

Raster Scan Video Monitor with 3-D Analog Control
Microproces sor

Gbit total of Dynamic RAM

System's Total Size

The 0SD will fit in one medium-sized room. Existing prototypes of the

four large capacity discs are surprisingly small, measuring slightly less than

a standard size disc. It is estimated that the QWD wii1 occupy an additional

wwo racks, typically with one processor to a board, excluding the "Generalized

“oherence by Rows," whizh will occupy several boards. Twc additional racks

will hold the Central Computer CPU and the Minicompute~/Displav processor.

'S shown in Figure 4.31.
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System Cost
We list below the cost of the major components of the Oasis Signal

Detector.

2 Tape Drives at 250K $500 K

4 Discs at 75K 300

2 Instant Replay Discs 150

1 1% Terminal 200

A1l other RAM 120

Central Computer 10
$1280 K

Since a general rule of thumb for digital design is that construction costs
equal parts costs, the Qasis system would nominally be costed at three million
(1979) dollars.
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"Yes, I have a pair of eyes," replied Sam, “and
that's just it, If they wos a pair o' patent
double xmillion magnifying gas microscopes of
hextra power, p'raps I might be able to see
through a flight o' stairs and a deai door; but
befn' only eyes, you see, my yisfon's limited."
--Charles Dickens, Pickwick Papers

51 - Problem Statement

The human observer performs a number of key functions in the detection
system both in the capacity of “"pattem detector/recognizer® and as a decision
maker who can redirect, verify, and supplement the automated phases of the
system. The human interface system is an interactive link between the human
cbserver (operator) and the rest of the system. It incorporates the observer
in a variety of ways: as an alternative pattern detection algorithm, as
one camponent of an algorithm which is mainly automated, as a decision-maker
requesting information from the automated algorithms, and finally, as a
trained scientist familiar with the astronomical context of the SETI program.

The way in which information is displayed often determines its actual
usefulness. Effective decision-making about interesting ETI signals cannot
occur unless that information is presented in a manner commensurate with an
observer's perceptual and intellectual capabilities. The system uses an
advanced image processor and multiple visual display screens as the primary
modes of data presentation. An auditory display provides supplementary

information.

5.2 - Using Human Information Procescing Capabilities in SETI

One all-too-common approach is to automate every function that is
technically possible and economically feasible. Whatever is left to do is

relegated to the system operators by default. An alternative procedure,
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and the one being advocated here, is to consider the human elemen. as an

alternative design component, complete with all the tradeoff characteristics

one wouid identify in selecting one piece of hardware over another, The
first question asked when considering the implementation of a search
strategy or algorithm should not be how do we automate it, but, rather,
should we automate it; if so, is total or semi-automation most appropriate?

The tradeoff for accepting some degree of inconsistency and low
precision in performance specifications is that the human being as infor-
mation processor is far and away the best model on the market, if it can
be determined how to effectively use him. In developing the observer's
role in the human-computer decision-making process, the following general
attributes of human information processing are important.

1. Human performance often exhibits what has been termed "graceful
degradation" under less than optimal conditions. That is, performance
falls off gradually as conditions worsen, and significant (although not
optimal) discrimination performance can be obtained even under very poor
conditions. This can be contrasted with the discrete "go-no" paradigms
characterizing most automated algorithms.

2. Human beings are conditional samplers of information. That is, the
rate and type of information sampling can be continuously modified based on
past experience and recent events. A human observer can frequently pick up
clues to pattern phenom=na by synthesizing events which, at the time they
were perceived, were seemingly unrelated. Further, if he thinks he's "on
to something”, 2 human observer can then selectively attend to a narrowed
ranae of signal stimuli, thus markedly enhancing sensitivity to those
signals on a temporary basis.

3. People can process information on several levels. The ®highest"

level is conscious awareness., However, a tremendous amount of information
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is coded and stored that is not necessarily accessible to conscious awareness;
long-term storage is operationally infinite.

Even though an information display is "too large", presented "too
rapidly" or lacks meaningfulness at the time it is viewed, it may be
processed on a subconscious level to the extent necessary for the observer
to refer to it in subsequent decision-making.

4. Certain attributes of a stimulus can be discerned even in the
absence of sufficient information to permit identification. For example,
color can frequently be perceived before form; motion before luminance.
Thus, a human can scan large quantities of information very rapidly using
certain stimulus dimensions (e.g., density) as a gross sort,

5. The trained human observer can develop and operate under very
complex (by computer standards) decision criteria. For examole, in a SETI
observation, amplitude of extreme levels is obviously of initial interest
regardless of other values (e.g., polarization). Below this extreme value,
we might require additional parameters to attain given levels before the
combination of information looks favorable enough to warrant detailed
examination (e.g., type of polarization, consistency over time). Thus, an
intricate system of multiple criteria which can be modified by experience
can be developed by a skilled user. Although automated algorithms can
be differentially weighted for various contingencies or combinations of
variables, these weights must be derived prior to the search process and
fixed arbitrarily at set values during the data analysis procedure. Humans
can modify these weights "on line" under real time constraints.

6. Human algorithms can be altered by selection and training
without the extensive hardware modification associated with some automated
changes. It should also be noted that a human observer may be able to give

information about why a currently used algorithm {s not producing the desired

-183-




results; such qualitative judgements can be useful in interpreting more
objective indices of system performance.

Straight lines and edges are very easily detected visually by humans
On 'the other hand, curved lines and dashed lines are less'easily detected.
In the present SETI context, it would therefore seem that a human observer
would be adept at detecting a linearly drifting signal as shown as a
display of the time-frequency output of the multi-channel spectrum analyzer
(MCSA). On the other hand, a person may have more difficulty with pulses,
and possibly greater problems detecting a wavy line embedded in a noise
background. These predictions are indeed verified in our preliminary
experiments {Appendix A5.1).

A more global characteristic of importance in human pattern detection
is perceptual "symmetry." People note symmetry in visual patterns, prefer
symmetry among components, and recall symmetrical patterns over time
intervals more effectively than they do nonsymmetrical patterns (Garner.
1974; Chipman and Mendelson, 1979; Attneave, 1954; Szilagyi and Baird, 1977).
Patterns symmetrical in time and/or space may be noted by the human observer
over regions of the spectrum that are not compared by the automated :
algorithms described in Chaoter 3. For instance, the human observer may :
note a similarity among clusters based or the N-bit representation of data
blocks (where one pattern block = 200 x 50 data blocks). The simplest form
of symmetry, of course, is recognition of the same pattern occurring at
different time intervals but within the same region of the MCSA output .
space (say for different stars). ;

A further advantage of using the human observer as a detection device

is his/her ability to deal with stimulus context. The letter A can be
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written in a variety of type fonts, and yet the human can usually perceive
(recognize) the characteristics on the page as an A. Machines have
terrific difficulties with similar contextual problems, as attested to by
the care with which numbers are stamped on bank checks to permit automatic
pattern recognition! In the SETI program, the human observer will be
harder to fool than the automated algorithms whose operation: are more
general than those of the "check processor"., Additionally, the observer
will be able to note the same pattern presented in a wide range of
surrounding contexts.

In summary, the human as a detection algorithm will be effective
at pulling out certain features of the MCSA output and results of the
clustering scheme that will be missed by the automated algorithms. In
this way, the observer both extends and supplements the automated aspects
of the system. The role of the observer as a detection device is also
advocated by Fender and Evans (1971) who review many of the advantages

mentioned above, but in situations where the signal is known beforehand.

Perceptual Sensitivity

It 1s anticipated that signals from extra-terrestrial civilizations,
having traveled great distances through an uncertain electromagnetic
environmment, are of weak intensity as compared with background noise. The
psychophysical models that deal with this type of situation as it applies
to the human observer are part of the "theory of signal detectability” (TSD)
(Baird and Noma, 1978; Green and Swetz, 1966; Swets, 1979).

According to statisticacl decision theory one can choose an optimum

threshold if the values of all ou“comes and the probabilities of signal and
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noise present are known. This threshold is defined as

P, N - Y,
S A A N (-1

where Ps = probability of signal plus noise being present

“
"

probability of noise alone being present

=
L]

no response, “noise"

-
]

yes response, "signal"

-
n

value of a correct rejection

e
"

cost of a false alarm

-
1}

value of a correct detection

N. = cost of a miss
In the SETI context, Pn is much larger than Ps. thus suggesting that an
observer would set a high B, and hence, would be disinclined to state a
signal was ever present. But the second term of Equation (5~1) will tend
to balance this bias. Looking first at the numerator, the positive
value of a correct rejection, Nn’ is small relative to the negative
consequences of a false alarm Yn. In the latter case the data must be
archived, sorted and so forth--assuming Yn is negative the numerator will
be a positive number depending on the cost of archiving false alarms.
This drives 8 up and reduces false alarms. However, the denominator more
than offsets this tendency. The negative value of a miss Ns. though
potentially large, merely represents our current level of ignorance, and
is hopefully small relative to the value occurring from a hit YS. The
latter term is obviously a subject for debate, but it is probably at least
as high in respect to the negative outcome of a false alarm as the

prcbability of noise is in respect to the negative outcome of a false alarm
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as the probability of noise 1s in respect to the probability of a signal--
otherwise, we would not be inftiating a search. Therefore we conclude

that the far right hand term of Equation (4-1) is approximately the inverse
of the middle temm; thus leading to a moderate 8 of around 1.0. In other
words an observer will not be fearful of suggesting the presence of poten-
tial signals, but will certainly be prevented from going overboard (claiming
signals are everywhere) by the large value of Pn bui 1t up through past
experience, Although the foregoing analysis is not intended to be rigorous,
it does serve to highlight some of the very real factors an observer must
consider in deciding whether or not a signal is present on the display at any

instant in time.

Threshold Setting and False Alam Rate

The preceding formula shows that the annoyance of false alarms is but
one of four parameters that must be considered when establishing the thresholds
of the algorithm, If we take into account all four trade-offs, we can deter-
mine the optimal threshold of the entire system and use this to set the thresh-
olds of the individual processor alarms. For example, if the formula is used
to determine that it is optimal to have at least one alarm sound from the system
with 50% probability every 8000 seconds, on the average. To uniformly weight

the individual thresholds T 1=(1, N, j=1(1, M), where N is the number

ij’
of times an alarm may possibly sound in this period and M is the index of the
particular alamm, we simply require that the probability that one will sound
in 8000 seconds be P. P is then given by (I-P)m = .5, where we have assumed

as an approximation that the alarms are independent.
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This is the simplest arrangement. To weight different alarms, so

that, for example, on the average the (WD alarm sounds more often than the

PD alarm, we then require

(1 - Pij) = -5
1,J
where P‘j is the weighted probability for the particular alarm,

The operator then, with the aid of a software routine, will select the

[—

mean time between alarms he desires, the relative probability for each alarm,
and whether he would 1ike the alam to cause the central computer to "
automatically arcliive the entire observation or whether he will be contacted

by vhe computer to pass the final decision (more usually the case).

Human Perception of Relative Magnitudes

Evaluation by humans of the processed receiver output data relies on
the observer's ability to perceive the relative magnitudes of visual
attributes such as brightness, length, position, and color, and auditory
attributes such as loudness and pitch. When humans are given a reference
level of some perceived quantity and told to assign that level a numerical
value (say 10), they can give numbers to represent the relative perceived
magnitude of other levels of that comparison quantity in respect the
the referenc: level. Assuming these numbers are values along a ratio scale
of perceived magnitude, the relationship (mapping) between physical and

perceived magnitude can be described by a power function: :

v = sy (5-2)



where y, the perceived magnitude (numerical rating) is a power function

of the physical intensity (S). The exponent, v, depends critically on

the type of quantity being perceived. The multiplicative constant, ),
merely is a scale factor relating units of measure., The interesting para-
meter is the exponent. It is approximately .3 for both brightness and
loudness, and closer to 1.0 for spatial position and length (Baird, 1970;
Baird and Noma, 1978; Stevens, 1975), In other words, people are relatively
accurate {n their estimation of spatial position and length, whereas they
grossly underestimate the relative intensity of lights and sounds. The
practical importance of this result is that one gains little by having a

CRT with 2° levels of brightness in a cell (pixel) since the human observer
cannot resolve this many brightness levels. Similarly, we cannot anticipate
high resolution of displays coded by auditory intensity.

Unlike quantitative attributes such as brightness, loudness and
perceived length, sound frequency and hue are translated into qualitative
perception dimensions. "Green" is not perceived to be twice "blue".
According to Stevens (1975), these attributes do not follow the power law,
and hence, we expect to use them in current system in cases were qualitative
differences of low resolution are displayed.

Another psychophysical technique of relevance to our task is the
method of absolute identification (Baird and Noma, 1978). Here a series
of stimuli are presented sequentially and subjects must assign a unique
label to each. By information theoretic measures, the channel capacity of
the subject is determined for attributes such as 1ight, sound and frequency.
Surprisingly, subjects are only able to absolutely identify approximately

6 or 7 different magnitudes (without error) for unidimensional stimuli
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(Miller, 1956). As the dimensionality of the stimulus pattern increases
(say it varies in brightness, hue and size) the error-free level of
identification goes up. In the present context, observers in the SETI i .
program will be required to recognize radio frequency interference (RFI) .
at different points in time. We can expect such recognition capability
to depend on the complexity of the RFI. The greater the number of dimen-

sions one needs to define RFI, the greater the recall, For detection of i

signals themselves at low signal to noise ratios, we cannot expect the f
observer to be much help in recalling simple patterns over long time é
periods, or being able to discriminate a large number (certainly no greater
than 10) noise displays. In brief, the human observer is limited in
ability to recall simple targets over extended time periods, especially

if intervening noise is present.

5.3 - Display Parameters Affecting Observer Performance

This section will discuss the major display variables associated with
CRT's and their relationship to the human operator's search procedures.,
Many real-world tasks have been intensively studied (e.g., radar monitoring,
piloting), and thus a considerable amount of information is known about the

task dvnamics.

Luminance

The luminance required for a CRT display is heavily dependent on
contrast, ambient environment and the nature of the visual task. Gould
(1968) cites 24 mL as a minimum figure, and recommends 50 mL for most

applications.
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Brightness (B) is the subjective impression of ‘luminance (L). Under
laboratory conditions the two are related by a power function (Equation (5-2)).
where the exponent is typically between .25 and .50 for small, homogeneous
fields (Marks and Stevens, 1966). This relationship does not hold for
complex forms, however, particularly at higher luminance levels. The
relationship appropriate for the SETI display will depend in large part on
the scale of representation used (i.e., what each dot corresponds to), and
on the mental set adopted by (or “trained into") the observer (i.e., how
large, relative to the entire display, must a signal be?).

Another consideration for the SETI operator is the duration of the
observing periods. Relatively high luminance levels may be optimized for
short-term signal detections, but may also result in excessive glare and
eye irritation over time.

In summary, the CRT dispiay will be made highly adjustable in luminance

and will be optimally reset for each graphical representation.

Resolution
Assuming adequate luminance and contrast, a complex target image should

subtend no Tess than 12 min. of arc (Grether, 1972). For "detail” resolution

(e.g., one picture element) no iess than 1.5 to 2.0 min. of arc is required

(Bennett et al., 1967).

Regeneration Rate and Viewing Distance

When the regeneration rate is too slow, the image appears to flicker.

Angular size, luminance and phosphor persistence can all affect the
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regeneration rate which is necessary to obtain a “critical flicker
frequency" or CFF (the point at which no flicker is perceptible) for an
observer (Kelly, 1965). Luminance and angular size alone can cause as
much as 15 cps variation in the needed regeneration rate. When the
individual differences in an observer's perceptual characteristics are
added to the equation, it becomes obvious that there is a wide variability
in the required regeneration rates for various applications.

Current image processors may use marginal regeneration rates because
of the reciprocal relationship between the number of binary picture
elements, N, and the regeneration rate, F, which is (in bits per seconds,
I(max) )

I(max) = F x N (5-3)

Flicker can impact the observer's task in several ways. It can
produce irritation and eye fatigue, particularly with the long viewing
periods anticipated for SETI. It can also affect pattern perception
indirectly by its influence over the viewer's distance frum the screen,
Thompson (1957) found that observers prefer viewing distances which are
far enough from the screen such that small area flicker (e.g., that caused
by the interlace between scan lines) is not resclvable. Thus, in
addition to degrading pattern detection at relatively close distances to
the screen, the presence of flicker may also determine the range of viewing
distance adopted by the observer.

For the SETI application, an image processor with significantly less
flicker than is typically found on CRT displays is indicated. A great

deal of research is currently in progress to develop flicker-free image
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processors (with adequate information display volumes) for the purpose of
medical diagnosis. Special versions of image processors designed for
medical applications are also marketed currently, and should be seriously
considered in SETI. Some implications for human observers using the
systems are given in Picket and Triggs (1975).

Operator Training

The unique characteristics of the SETI application places considerable
significance on the role of the system operator. Of particular interest for
system designers is the potential long-term training effect. This could
result in a specific observer becoming a much more effective signal
detector over time. The SETI observer is not a typical "monitcr". 1In a
typical monitoring task where an operator monitors a CRT screen, and may
conduct simple dialogues with the computer, a typical training curve would
tend to asymptote after a few weeks. Any residual improvement as a function
of practice for such tasks is insignificant for all practical purposes.
However, in most monitoring tasks, "sufficient" or even optimal performance
can be clearly defined when training begins; that is, if 100 signals are
presented, 100 detections wouid equal perfect performance while perhaps
98-99 would equal "sufficient" performance. With the aid of guidelines and
instructions, the learner goes through a series of successive approximations
until criterion performance is reached.

For the SETI observer, no such feedback is possible. By the basic
assumptions underlying the program, an ETI has never been detected. This

implies that no direct measure of system performance (i.e., successful

detection) will be possible for most cases. Therefore, the observers'
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perceptions of their own performance may vary widely, and perhaps in an
idiosyncratic manner. For example, one operator mav decide to alter his
search strategy because it has brought no results after 2 hours; another
operator may follow a procedure for a significantly longer period before
modifying or discarding it. One operator may feel that one strategy is
more effective than another because it results in the selection of fewer
total data regions for review, and thus is more sensitive; another operator
may feel that this same approach results in too high a probability of
missing a weak signal.

It should now be fairly clear that the training of SETI observers will
be far from straightforward for the free mode of operation.

The training program is directed toward the following goals:

1. Observers are able to efficiently access and effectively use the
display enhancement of the data. Data in various states of compression and

analysis may be called up for viewing. Information from the different pro-
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cessors in the system will be assessed separately as well as interactively, such
as might be required for a signal detection. Because each operator may put in-
formation from various sources together differently in a complex signal detection
process, it will not always be clear what aspects of the information display are
being utilized, and with what degree of effectiveness. By assessing the ability
to use all information sources available, it can be determined if an observer
can theoretically obtain the maximum information available for signal detection.
Of course, this does not guarantee that all dimensions will be (or even should
be) used in an observer's signal detection strategy.

2. Operators are encouraged to try alternate strategies. An analysis
of search strategy archival records may suggest desirable patterns of search,

which could be demonstrated to other observers.
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3. An ongoing evaluation is conducted on veteran cbservers to deter-
mine if continuing experience enhances the ability to discriminate unusual

(rare) patterns from more typical noise fields.

Summary and Conclusions

The nature of the human-computer interaction in complex signal detection
and recognition systems is perhaps the least developed aspect of such systems.
The unique and virtually unexplored context of the SETI program makes
research in this area a vital and potentially rewarding endeavor; not only
for SETI, but for the areas of human-computer interaction, cognitive
psychology and human factors as well.

The state-of-the-art in automatic pattern detection is far less
advanced than scientists predicted five or ten years ago. The human
operator will continue to represent the ceiling for system performance
for the foreseeable future. As such, it is critically important that
research be conducted which is aimed at deriving guidelines for observer
task design, and for display-environment specification. The NATO Research
Study Group on Pattern Recognition (Hodge, et al., 1979) cited the failure
to integrate human factors considerations into automatic pattern detection

systems as the major failure of systems design in this area.

5.4 - Human ractors Considerations
Design Philosophy
The human factors system analysis is required to ensure that the task

procedures, environmental conditions and equipment designs are compatible

with the psychological, physiological and performance characteristics of
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the intended users. The design philosophy underlying this analysis can be
sumarized as follows:

1. Human performance for critical tasks must be, to the extent
possible, designed into the system at the initial phases, not retrofitted
after the fact,

2. Since humans are highly variable, there are virtually no config-
urations which are optimal for everyone. Systems can be designed to narrow
the range of human variation through selection and training; the residual
variation must be considered appropriately in the system design for human
performance (the lower levels are subsumed under the advanced levels):

A. Human Engineering: assuming adequate motivation, knowledge and

skill, design the system to be operated in an optimal manner
(easy, safe, reliable).

B. Human factors: assuming adequate motivation, but not necessarily
appropriate knowledge or skill, design the system to provide job
aids and other support mechanisms to design compensate for human
errors due to ignorance, task overload, environmental stress or
improper decision-making.

C. Behavioral Engineering: assuming notring, design the system to
predict the human failure modes including all errors (deliberate
or intentional) due to neglect, sabotage or misuse, through one
or more of the following three methods:

I. Prevention: make the undesired behavior less probable
IT. Exclusion: make the undesired behavior impossible
III. Fail safe: assume that the undesired behavior will

occur, and minimize the consequences to the system,
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The level of design selected, and the method of implementation {s a
function of criticality and system resources. Table5.2 outlines the
major areas of analysis.

Again, the human factors function should be concerned with matching
the tasks, procedures, equipment and environmental conditions comprising
the Display Subsystem to the expected characteristics and capabilities of
the system users in an “"optimal" manner. (For further discussion of
methodol ogy, see Van Cott and Kinkude, 1972; or Chapanis, 1970). In this
case, we assume that the range of skill, training, aptitude, motivation and
performance manifested by system operators will be significant. Because
operators may be drawn from a limited source (e.g., radio astronomers), the
ability to modify these attributes through selection and training will be
restricted.

As such, the limitations and predicted behaviors of the human operator
become the "givens" around which the Operator Interface must be designed.
The theoretical and expected capabilities of the operator serve as a
ceiling on subsystem performance. From this ultimate value, the degree of
degradation in operator performance caused by the operational conditions
of the system (e.g., improper illumination, noise, task overload) must be

predicted.

Summary of Some Key Human Factors Issues

1. The operator's task must be designed in a manner which will maintain
active participation in the search process but which will not produce
excessive false alarms, and will not result in overload-induced

errors. This will require a detailed understanding of the intended
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Physical Design and Work-space Layout

Ex.: Can the operator reach all controls and see all visual
displays necessarily while performing sequential operations?
Is the display-control ratio appropriate for the level of
adjustment required on all image processors?

Workload and Task Requirements

Ex.: Is the workload sufficient to prevent boredom, fatigue and
perceptual distortion but not so high as to create stress-
induced errors?

Task and Procedure Design

Ex.: 1Is the operator receiving sufficient feedback to permit him
to modify his performance (e.g., correct errors)? 1Is the
appropriate sensory modality being used to display task-
related information? Can one tell if the operator is
performing as expected?

Emergency and Maintenance Procedures

Training and Selection Criteria

Ex.: What level of training is required for system operation?
What training methods are appropriate? What individual
characteristics should be considered desirable (or undesir-
able) for operator selection (e.g., spatial visualization

ability)?

Table 5.2 - Major Categories of the Human Factors Functional Analysis
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2.

user groups. A description of relevant user characteristics s"ould
be completed prior to the final{zation of system procedures.

The operator should be acquiring knowledge and experience by performing
his role in the system, i.e., in addition to aiding tha ongoing search
process, the operator should be getting better at what he does over
time (see "Training", in this chapter).

Tradeoffs between optimal display settings (e.g., luminance contrast)
for "short-term" and "long-term" monitoring must be investigated

since the operator's perceptual system will tend to adapt (selectively
desensitize) over time.

The operator should have his performance monitored periodically to
provide feedback and maintain attention allocation, This may involve
the generation of test signals to see if the operator detects them.
Test signals should be well above detection threshold to prevent a
casual response set from developing.

Common failure modes must be anticipated and design compensated. For
example, an observer who is absorbed in an active search process may
forget to permanently record and save the data. System design must
anticipate this type of event, and handle it by one of the three
generic approaches (prevention, exculsion, or fail safe),

The role of system users is variable in the free mode so that skilled
operators can fully exploit the system's capabilities. However, if
naive or low-skilled operators are employed for fixed-mode tasks, these

procedures should not require excessive interpolation or skilled

Judgments,
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Table 5.3 outlines the key display parameters which are relevant to
the human factors analysis while Table 5.4 summarizes the principal human
factors considerations for the interactive search system. (The sequence in
which items are found in Tables 5.3 and 5.4 does not reflect order of

consideration or criticality).

1. Viewing distance

2. Angle of view

3. Image sfze and variability

4. Brightness and luminance

5. Contrast (range and proportion)

6. Visual field surrounding the display

7. Ambient environment

8. Resolution and image stability

9, Duration of a display pattern and interval length
10. Scale of dots (size of minimum informational unit)
. 11. Color

12, Single vs. multiple observers

13. Degree and type of visual cues (e.g., cursors)
14, Coding methods (e.g., shape, flicker, brightness)
15, Visual acuity required: level and type

16. Density of visual noise

Table 5.3 - Selected Visual Display Parameters Relevant to Human
Factors Analysis

5.5 - General Structure of the Image Processor

The automatic signal detection algorithms alert the operator of a
possible signal caused by RFI, random noise correlations or astronomical

signal sources, This presents a massive data analysis and archiving
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10.
11.
12.
13.
14,
15,
16.
17.
18.
19.
20,
21.
22,
23

24,
25,

Display-Control compatibility

Population stereotypes; transfer of training

Rate of information input and requirements

Task loading

Reaction to predicted environmental stress levels
Training (skills required)

Operator background/experience

Speed vs. accuracy required (human reliability)
Information coding (e.g., shape, color, pattern)
Task design (e.g., sequency, coherence, dependency)
Communication requirements

Feedback and knowledge of results

Motivation

Work-space layout

Anthropometrics/biomechanics

Display mode selection and specification (for each task)
Maintenance/trouble

Design compensation for the disabled where possible
Work-rest cycles; circadian-biological rhythms
Emergency procedure/safety

Aesthetics (attitudes toward the work context)
Flexibility for future use

Public relations and system documentatien (ability to demonstrate toj
naive persons)

Operator/system performance assessment

B:havioral engineering; resistance to intentional and accidental
abuse

Table 5.4 - Representative Human Factors Considerations
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problem and the operator's effectiveness in dealing with it depends upon
the ability to quickly and efficiently view and manipulate subsections of
the signal detector output and make correct decisions about the data
presented. To further complicate the problem, the most interesting
signals will probably appear at a very low S/N ratio, so sophisticated and
versatile image enhancement techniques will be necessary to separate such
a low-level signal from noise.

A high-speed digital image processor allows the operator to perform the
various tasks associated with signal evaluation and system operation with
high efficiency. In what follows, we describe the general characteristics
required of a SETI image processor.

In response to a signal alarm, the operator requests that the subsection
of signal detection output containing the signal be sent to the image pro-
cessor's refresh memory. The refresh memory in a minimal system is two
frames of static or dynamic random access memory (RAM), each providing
three channels of 512 x 512 spatial resolution in 8 bit pixels (picture
elements), and two 512 x 512 x 1 bit graphics overlay planes. This system
allows for future expansion in resolution, number of frames and number of
channels. As the need arises and as memory becomes cheaper, it will be
possible to add more displays and/or enable the operator to scroll through
a larger data base with fewer transfers from the host computer.

The graphics overlay planes store system status information for display
on a black/white (B/W) status monitor to provide overlays such as graphs of
statistical information or to designate subareas of the image for further
processing.

A track ball or a digitizing tablet and stylus is used tc position a

cursor on the display. A trackball is a captive sphere that can be rolled
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in any direction causing a corresponding movement of the cursor. When

used in conjunction with function switches, individual pixels can be
identified or an area can be outlined. The digitizing tablet and stylus

can be used in a similar manner while additionally providing immediate

hard copy on paper with an inking stylus. Scrolling through a zoomed image
or an image larger than 512 x 512 is done with a trackball or joystick. The
operator is able to scroll quickly by rows or columns through the entire
refresh memory. Zoom is accomplished by positioning the cursor and
specifying the zoom factor. Englargement of at least 4:1 is done by pixel
replication without altering refresh memory concents.

When data from both polarizations or two algorithms are to be viewed
simultaneously, a split-screen view is used. This is accomplished by
selective Toading of refresh memory by the host computer or by reading
subsets of two different refresh memories. A feedback loop allows the
processed image to be written back into refresh memory for iterative
operations and spatial convolutions. The operator can perform sophisticated
image enhancement functions in evaluation potential signals without involving
the host computer.

A built-in microprocessor handles all internal control functions as well
as some processing operations, thus off-1oading the host computer of most
image-oriented tasks. Microprocessor programs will be down-1oaded from a
library on the host computer. The microprocessor performs diagnostics and

aids in locating problems within the image processing system.
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5.6 ~ System Overview
The displays subsystem must perform four types of functions: system

status, operating information, alarms, and detection.

System status is the operator's bookkeeper. It keeps track of all
information concerning system faults and operating parameters (target star,
gain, bandwidth, etc.). Further, it provides for input regarding these
parameters by the operator. Operating information includes a library of
procedures and catalogues readily accessible from airplane schedules to
"How to Replace a 16K RAM Board (In three easy steps)®. Alarms signal the
human that the machine requires some attention, whether it be to check
a possible ET] detection, to see why the MCSA malfunctioned, or to perform
maintenance operations (e.g., put more paper in the line printer).

Detection is really what the entire system, and indeed SETI {tself,
is all about. This includes everything the operator uses to either search
for ETI signals or to cull out RFI from automatically “"detected" signals.
The display parameters are readily changeable by the operator. Complex
analyses, such as 2-D Fourier or Walsh transforms, that are too expensive,
time consuming, or experimental to be done on the entire output can be
done quite easily on a 5122 display matrix. Such support systems could aid
the operator significantly as the SETI program advances into more sophisti-
cated analyses of the radio spectrum,

There are two major modes of operator observation, "fixed" and "free".
By fixed mode we mean the operator responds to the results of the automated
algorithms and system stotus test. In this mode he/she monitors equipment
for proper functioning, and when a detection occurs (alarm from automated

algorithms) it is analyzed, and appropriate action is initiated. In the
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“free mode" the operator acts with greater freedom concerning search
strategies. For example, one may monitor a selected region of the MCSA
output displayed on the color CRT, listen to a selected region of the
spectrum, or call up statistical analyses associated with specific tests

in the N-bit number.

Fixed Mode

Although the flexibility of the human observer in formulating, modifying,
and executing search strategies is a major resource for SETI, less flexibility
is required for the fixed mode. Here the operator performs a relatively
fixed set of procedures, especially in response to an alarm. Failure to
attain high levels of standardized performance would result in a non-systematic
data base which would hinder the cumulative and longitudinal nature of the
SETI program. There are two phases of the fixed mode: normal and
examination.

Normal State - Between alarmms the operator is provided with both visual
and auditory displays that give a selected sample of all incoming signals,
as well as status information on the observations and equipment operation.
The color CRT displays a subsection of the MCSA output spectrum. Each
spectrum is displayed as a horizontal line, with the intensity of a pixel
proportional to the average signal power at that frequency. Each second, a
new spectrum is added beneath the existing ones. In this way up to 512
seconds of output may be observed simultaneously. Since there will be two
MCSA spectra (one for each polarization), the display will alternate between
them at the discretion of the operator.

The auditory portion of the system serves as a final step in checking

a possible signal of interest which has been flagged by an algorithm or by
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the operator, A search of the entire 8 Miz band each second is not under-
taken due to the complete inability of the operator to distinguish differences
at such a rapid rate. Since an alarm will not yteld information as to which
MCSA data caused the flag, the computer-controlled tunable system checks the
real part of the input for each MCSA.

The auditory system taps into the data flow at an intermediate frequency
(IF) before the MCSA. Using an appropriate local oscillator, mixer, and
26-34 MHz bandpass filter as shown in Figure 5.4 , the IF signal is hetero-
dyned down before being received and converted to the auditory range of 0-8 KHz.
As alamms are sounded for possible ETI's, the computer controlled system
places the indicated algorithm frequency in the middle of the audio band.
For algorithms using 40 Hz by 20 sec. blocks, the center block frequency is
the one used.

Based on cost, the pre-MCSA data are not stored. Since the auditory
system is in real time, the operator hears regions which are down stream
“n" seconds from when the alarm was triggered. Therefore, the signal may
have drifted off the alarm frequency by the time the operator “"hears" it.
The number of seconds "n" may vary from a few seconds to 1000 seconds. For
the worst case of n = 1000 seconds, and a drift rate of 1 Hz/sec., the
signal would drift only 1 KHz and would still 1ie within the 8 KHz band.
To check for more rapidly drifting signals, and to allow for error, the
receiver tunes to the indicated frequency and to adjacent 8 KHz bands. The
auditory display correlates real time with the past, and yields a check for
the continuing presence of the detected signal. In alarms which originate
from the cluster analysis (n = 1000), the operator may elect to hit the
ovierride button and hold the antenna in the location of interest.
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A second black and white CRT continuously displays a variety of

system-status data. Some of this information is shown only upon request.

This information is also recorded in permanent archives whenever an alarm

is signaled by either the operator or the automated algorithms. Typical

status parameters are:

1,

2.

4.

Observing Parameters

a. Telescope pointing direction

b. Target star name, distance, type, etc.

c. Sky map of the area around the antenna beam (about 10 beam-
widths) including all known astronomical objects, at all
wavelengths

d. Date, time, polarization

e. Operator's name

Receiver Parameters

a. System gain and bandpass shape

b. Self-diagnosis information., Tests must be end-to-end.

€. MCS ™ input and output bandwidths.

d. Status of any selectable option

RFI Parameters

a. Radio and TV catalog and schedules

b. Earth satellite catalog and schedules

¢. Airline schedules and flight paths

Environmental Parameters

a. Wind, precipitation and lightning indicators

b. Outdoor TV camera, steerable and zoomable, to allow watching

the antenna and its surroundings for unusual conditions that

-211-



could cause false alarms or malfunctions (snow drifts,

flocks of birds or insects, trespassers, etc.)

Examination State - When an alarm occurs from the automated algorithms

the operatur carries out a predetermined set of procedures, somewhat different
for different types of alarm. For example, the drifting carrier detector
(WD) triggers an alarm to the operator whenever the integrated coherent
power along a drift line exceeds the present threshold. The operator first
requests a graphical output showing the location of all data in the vicinity
of that which caused the alarm. At this point, and at each succeeding one
in the decision process, the operator may enter a coded value at the CRT
controls regarding the nature of the alarm. There are four possibilities:
noise (N), radio frequency interference (RFI), useful astrophysical infor-
mation (AI), potential signal from extraterrestrial intelligence (ETI).
Selection of option 3 or 4 saves the region of interest in a permanent
record and automatically records all current status parameters. Option 1 or
2 terminates consicderation of the alarm, If the ETI option is selected,

the operator must decide whether or not the telescope should be kept on

the star beyond the 1000 seconds normally allotted.

Before an option is chosen the operator may request further data
concerning the alarm. Specifically, through instant replay the original
MCSA output can be brought onto the color CRT for more detailed examination,
In this case, the output is coded in a frequency x time matrix, with
amplitude represented by pixel brightness. By the use of split screen
techniques, both MCSA outputs of the same region are shown. Through the use

of the CRT, the operator can zoom into a subregion, produce a histogram of
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the intensities, and have the appropriate vectors color-coded and displayed.
The purpose of all such tests {s simply to speed and aid the final decision-
making process with respect tc the four options (N, RFI, Al, ETI). This
selection can be made at any time during a search with the consequent
procedures outlined above.

The operator also receives auditory information about the current
state of affairs in the region of interest. As soon as an alam is signalled
to the operator, the communications receiver driving the auditory display
is automatically tuned to the signal frequency (origin of the vector) and
its bandwidth adjusted to encompass a 8 KHz region centered on the origin.
Since the auditory pickup is in real time, the operator is able to ascertain
whether the signal is still present in the region of the spectrum delimited
by the instant visual replay. This sort of data will be helpful in
deciding whether further observing time should be devoted to that star region.
In addition, the operator enters any special comments about the circumstances
of the alarm via the hard-copy terminal.

A second type of alarm is one triggered by the clustering algorithm
based on grouping similar N-bit patterns. When the operator receives such
an alam, the instant replay tape is searched for the pattem block of
interest, as well as the two adjacent pattern blocks (adjacent in the
frequency spectrum). A pattern block is a 200 x 50 matrix of data boxes.
Each data box is a 40 Hz x 20 second region of the MCSA output. The pattern
block groups 200 (overlapping by 8 Hz) frequency blocks of 40 Hz each by
50 time blocks of 20 seconds each.

The {nital display of these data is of the critical pattern block in
the center of the color CRT flanked and surrounded by the eight adjacent
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pattern blocks (appropriately translated to prevent display of redundant

data, and clipped on the left and right sides to fit on 512 x 512 screen).

Since a pattern block is based on data from both MCSA's, only a single

output is shown on the screen. The location of the N-bit numbers of

interest are shown as individual pixels of a constant brightness against a

dark background. Details of the statistical tests comprising the N-bit

nunber are printed onto the hard-copy terminal. An example of this display

in tabular form is given in Table 5.1. At this junction, the operator proceeds 7
as previously described: decides which category is appropriate to define the :

alamm, or request further information.

Tests Status Significance
1. complex coherence 1 >ay
2. broadband pulse 1 >a,
3. degree of polarization 1 >0q
4, goodness-of-fit 1. 01
5. ANOVA rows 0 .20
6. ANOVA columns 1 .001
7. ANOVA interaction 0 .20
8. total power 1. >a,
9. 8-Hz pulse 0 <ag
a, * threshold parameters to be given numerical values (for different levels)

Table 5.1 - Sample Output to Represent Results of N-bit Pattern
If » decision cannot be reached immediately, the operator requests that

closely related bit patterns be displayed simultaneously within the pattern
blocks. In this case, the alternative bit patterns are coded with different
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colors. Finally, while still at the level of the pattern block, the criterion
or statistical level at which an {ndividual test of the N-bit pattern was
passed is displayed as a brightness value (higher brightness represents

higher significance).

If more detailed results are ctill necessary before a decision can be
reached with any confidence, the operator specifies the relevant region of
space within the pattern block by cursor control, and the original data
boxes (40 x 20) in that region are displayed. By split screen techniques,
both MCSA outputs are shown side by side. Simultaneously, the auditory
display is automatically turned on and moved to the same region of the
current frequency spectrum. (This may be turned off, lowered in volume,
and so forth, at the discretion of the operator). From this vantage point,
the zoom, histogram and color coding options of the CRT are used to highlight
potential signals and eventually aid in the operator's decision concerning

the underlying cause of the alarm.

Free Mode

In additfon to responsibilities associated with the fixed-mode displays,
the operator carries out analyses of possible signals in a free mode. Indeed,
most of the time an observer will be viewing or listening to a noise field
that does not contain a signal. In the free mode, the observer may think a
signal is present, based on the existence of an unusual pattern perceived
on occasion within the display. In the SETI situation, such "thoughts" may
in fact reflect bona fide signals.

The real advantage of the free mode comes through the flexibility of the
human being as a pattern detector. The inherent limitation of the automated
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algorithms is that features of potential patterns must be specified
beforehand. The operator works under no such constraints. He is given .
virtual freedom to explore any means which will lead him to make a

decision. These include

3 archives

- Er*ire Observation Archive
- Special Interest Archive of previcus observations
- Pattern Block Display

RFI detection system memory

Radio Astronomy System, Radio Astronomer

Software routines emulating system algorithms

[ —

High ievel software routines of his own design

His own memory, insight and intuition

In conclusion, the free mode allows the detection system to operate at
its best, combining the broad and diligent scrutiny of the machine, with the

wisdom, judgment, and inventiveness of the human,
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Comparison of the Fixed and Free Modes of Operation

Characteristic Fixed Mode Free Mode
1. Nature of Interaction - Directive = Informative
- Evaluative - Responsive
2. Information Needed - Search Process Steps - Search Options
- Feedback; Errors = Archival Records
- Time Elapsed = Current Search
= Time Remaining Record
' - Time Elapsed
= Time Remaining
3. Operator Task Load - Low - Low to High
4, Operator Task Sequence - Fixed - Variable
5. Operator Task Mode - Forced Paced - Self-Paced
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Chapter 6

Radio Astronormy Applications - Molecular Spectroscopy
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Some things you miss because they've so tiny you
overlook them, But some things you don't see
because they're so huge. We were both looking at
the same thing, seeing the same thing, talking
about the same thing, thinking about the same
thing, except he was looking, seeing, talking
and thinking from a completely different dimension.
--Robert Pirsig, Zen and the Art of Motorcycle
‘ Maintenance

As of the time of this writing, there are nearly 50 molecular species,
ions, and radicals that have been found in the interstellar medium by radio
astronomers, Observations of the lines from these molecules provide impor-
tant astrophysical information about the sources in which they are found.

As well as being discovered in gas and dust clouds in the interstellar
medium, molecules have also been observed in circumstellar shells, There is
a constant recycling of matter between stars and interstellar space, with
new stars being born from the gas and dust and old and dying stars releasing
matter back into the interstellar medium, molecules have also been observed
in circumstellar shells. There is a constant recycling of matter between
stars and interstelli, space, with new stars being born from the gas and
dust and old and dying stars releasing matter back into the interstellar
medium. Currently we estimate that about 90% of the mass is in stars and
the rest in gas and dust that occupies the volume between the stars.

From many of the compounds detected, radio astronomers are able to
observe several different transitions or lines. From the intensities and
widths, physical conditions such as temperature and density may be probed.
Calculations can be made to estimate the column density of a specific mole-
cule and hence provide relative abundance information. Abundances are
better determined when several lines are available from different energy

levels so that the population statistics in garious energy levels can be
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estimated. The presence of a molecule together with its abundance provides
fundamental data for interstellar chemistry, that is the reactions and rates

responsible for production and destruction of the molecules.

For each molecule present there is also information that is automatically
available for velocity along the line of sight to the observed region from
observations of the Doppler shift. A grid of observations in a molecular
line then provides us a view of the kinematics of the region. In addition
to the nearly 50 different molecular species found to date, which so far
are composed only of atoms of H, C, N, 0, Si, and S, there are also
innumerable isotopes discovered. These add to the list of atoms the
following: D, '3C, 'SN, 70, %0, 2°Si, 3°Si, 3%S, and *“S. By observing
line ratios of different isotopic species it is possible to obtain isotopic
abundances when the cloud is optically thin. In turn, the nucleosynthetic
history of our galaxy is highly dependent on isotope ratios such as '2C/ '3C
and 70/ '¢0 (see for example Audouze, J., and Tinsley, B.M., 1976 Annual
Review Astronomy and Astrophysics).

The characteristics of the MCSA/SD make it uniquely useful for some radio
astronomy applications. In other instances where it is not necessarily unique
it will be a useful back end for Tine work. Since we feel the primary use
of the instrument will be in conjunction with SETI in the water hole, we
emphasize work that could be done in this frequency range. However, the
MCSA/SD has much more general capability so we also discuss projects of
interest that are not restricted to the water hole. In addition the MCSA
being built by JPL is different from that being built for NASA-Ames, and
different problems lend themselves better to one or the other.

Table 6.1 contains a 1ist of molecular lines in the water hole observed

in one or more astronomical sources, We list in Table 6.2 other lines in the
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water hole that have not yet been detected astronomically but are of astro-

physical interest since other iines from the species or an {sotope have

already been observed. The ultra high resolution capability will in most
instances not be necessary for work on these lines. Thermal widths in
typical cold clouds are larger than about 1 KHz white the actual widths in
even the narrowest lines will be larger because of turbulent broadening,

In a search for new lines the JPL MCSA will be extremely powerful. With a
total bandpass of 300 MHz and 10° channels, the spectral resolution will

be 300 Hz. This provides sufficient resolution while covering a bandpass
as large as the waterhole in one setting. In this regard an instantaneous
bandpass of 500 MHz would be even more desirable. The detection of new
molecules will provide additional pieces in the puzzle of the young science
of astro-chemistry. Radio astronomers are on the verge of detecting amino
acids in space. Glycine, the simplest amino acid, has 10 atoms and a mole-
cualr weight of 75. Molecules as complicated as 11 atoms and a molecular
weight of 126 have already been found by radio astronomy spectroscopy. In
addition, all of the chemical bondings that are present in glycine have
been seen in at least one of the molecules found already.

Current OH surveys in our galaxy have been limited to +2° of the galactic
plane and have been unable to cover high velocities because of limited band-
width, With the JPL MCSA all four OH lines could be covered simultaneously
(as well as lines of the isotopes) perhaps making it worthwhile to undertake
a major new OH-survey, that would also pick up the high velocity OH. As
1ong as we know the positions of OH to within 1' - 2' very useful polariza-
tion work could be done on the OH masers. These new observations could
provide the necessary resurgence for theoretical work on classification

schemes and pumping mechanisms.
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An interesting experiment with the NASA-Ames MCSA will be to attempt
to find Zeeman splitting in OH. Crutcher and Heiles (private communication)
feel they have a possible first detection of this for OH from a dark cloud
in Taurus seen in absorption against the source 3C133, They observed both
right hand circular (RHC) and left hand circular (LHC) polarization with
the Arecibo telescope. With two MCSA's providing RHC and LHC polarization,
we would subtract one spectrum from the other and look for the slightly
shifted lines which would manifest themselves by a sideways S profile. The
height of the ripple is proportional to the magnetic field, and the frequency
difference between maximum and minimum is equal to the full width at half
maximum, FWHM, of the line. The narrowest lines found so far in 18-cm OH
are about 0.5 Km/s or 3 KHz wide. This is the case for the dust cloud L134N.
This is considerably greater than the thermal width which for a 10K cloud is
about 0.1 Km/s., Chances of successful detection will be enhanced when
clouds are discovered that are both colder and less turbulert or have a larger
magnetic field. The Zeeman splitting is 3.27 Hz/uG for the 1665 MHz 1ine and
1.96 Hz/uG for the 1667 MHz line (see e.q., B.E. Turner and G. Vershuur ApJ 162,
341, 1970). Zeeman splitting in the 21-cm HI line has been measured in a
number of sources since the first detections by Vershuur (ApJ 156, 861, 1969
and Nature 223, 140, 1969). The splitting is 2.8 Hz/uG. Further work could
profitably be done on HI as well as on other molecules with an unpaired
electron spin such as CN, CH, and SO that would have comparable Zeeman splitting.
The spectral resolution provided by the MCSA/SD will easily resolve
nuclear quadrapole hyperfine splitting. This has alrezdy been done for forma-

mide but not yet for '*C formamide (see Table 6.1). The latter would require
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a more sensitive system than available to the French group that measured
one component ofA_NHz“wi. Even when the rotational energy levels are not
populated according to local thermodynamic equilibrium LTE as is the case in
formamide, the hyperfine components appear to have relative intensitics
conforming to LTE. This would be interesting to corroborate and further
check in other molecules. The MCSA/SD system would be particularly useful
for more closely spaced hyperfine lines such as the spin-rotation lines of
the 1lo +> 1u transition at Hzco at 6-cm. The F +F, lines 0 + 1 and
2 + 2 are separated by about 1 KHz, Astronomically, they appear to be in
LTE.

As mentioned above the nucleosynthetic history of our galaxy depends heavily
on ratios of line intensities of various isotopic species. According to
A.A. Penzias (IAU Symposium No. 87 Interstellar Molecules meeting 8/1979 to
be published) the interstellar '3C/!2C abundances ratio is about 150% of the
terrestrial value of 1/89 throughbout the plane of our galaxy and about twice
the terrestrial value near the galactic center. !2C is a primary element
formed directly from H and He inside a star while '3C is considered a secondary
element produced from primary elements in second and later generation stars
by the S-process. Table 6.1 and 6.2 show that isotope experiments could be

done with lines in the water hole. .
The MCSA coupled with the Signal Detector would provide a valuable tool

for radio frequency pulsar investigations. This apparatus makes possible

the high resolution power spectrum monitoring of pulsar pulses, as well as

a frequency domain record of the type and degree of polarization (stokes
parameters) associated with a single pulsed period. The following experiments

are suggested as worthwhile:
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1. Measuring the bandwidth of micropulses and nano-
pulses within a single pulse.

2. Using Power spectrum, or autocorrelation functions
derived from the Power spectrum, to determine the
relative contributions of sub-pulses, micropulses,
and nanopulses to the total integrated single pulse.

3. Exploring the possibility of extraterrestrial
transmitters being located near a pulsar, using
t?e p$1sar as the signpost advertising a beacon
signal,

Radio Recombination Lines

Since radio recombination lines are very wide there is no need to observe
them with the MCSA/SD having 8 MHz bandpass and 8 x 10° channels. On the other
hand an instantaneous bandpass of about 300 MHz with 10° channels would provide

a unique combination for recombination line experiments. For example, the

entire water hole could be covered with a single bandpass that would
provide simultaneous observations of the following hydrogen, helium, and

carbon recombination lines:

a - lines 156 - 166
B - lines 196 - 209
y - lines 224 - 238
g - lines 247 - 282
€ - lines 265 - 282

Rest frequencies for these 1ines can be found in (A.E. Lilley and P. Palmer
ApJ Supplement 144, 16:143, 1968). Such observations would provide better

data in the sense of good internal calibration because of the simultaneity of
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the observations. A new level of accuracy may then be brought to bear on
such familiar problems in gaseous nebulae as:
1) local thermodynamic equilibrium (LTE) and departures therefrom.
2) electron temperatures
3) 1line broadening - Stark effect

4) gas dynamics - within an individual object as well as an aid in
galactic structure determination.

5) relative abundance of helium to hydrogen with its cosmological
significance.

6) carbon line studies to determine regions of emissions compared to
hydrogen and helium, and relative abundances.

For additional commentary on the above avenues of research see for example

R.L. Brown, R.J. Lockman, and G.R. Knapp, Ann. Rev, Astron. Astrophvs 16, 445, 1978.
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Lines in Water dole

1.42 = 1,72 GHz

Already Detected Astronomically

v (GHz

1.538 135
1.538 693
1.539 295
1.539 570
1,539 851
1.541 018
1.570 825
1.610 249

1.610 906
1.612 2310
1.624 518
1.626 161
1.637 564
1.638 805
1.639 503
1.665 4008
1.667 3590
1.720 5300

Reference

6,7

8
2,3

2,3
11,13

F,F1=7/2,4-7/2,4 1,5
F,F1=9/2.4—9/2-4 1,5

Molecule Transition

NH,CHO 1,971y F = 1-1

Formamide 1-2

Formamide 2-1

Formamide 1-0

Formamide 2-2

Formami de 0-1

NH, 3cHO gl F = 22

HCOOCH, g7l A

Methyl Formate

Methyl Formate 110-111 E

OH 2n3/2 J=3/2 F=1-2

Von Zny/p 95312

Vow 2y 0 99312

8oy Pnyp 92372 Fel-1

HoooH 0T ¢ o'l

18y Zuyjp 942 Fe2-2

o 2w3/2 3=3/2 F=l-1

W 2n3/2 393/2 F=2-2

o 2n3/2 J=3/2 Fx2-1
Table 6.1
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Lines in Water Hole of Potential Astrophysical Interest (Mot Yet Found)

-
-

v (GHz Molecule Transition ‘Reference
1455 7290 Yoy Pryp I%3/2 FFy"5/2,2-3/2,1 1,12
1.474 787 HZCS 102,8'102,9 1,7
(unsplit - will have hyperfine components)

1,547 377 H2C0 184’14-184’15 1,7
1.549 798 HZCS 243'21-243!22- 1,7
1,584 2740 18y s 2 2 Fr1-2 1,12
1.596 061 HDS 33’0-33’1 9
1.604 270 HNCO 41’3-41’4 10,16
(unsplit - will have hyperfine components)
1.629 515 NHZCHO 123'9-123'10 1,7
(unsplit - will have hyperfine components)
1.636 816 HDS 54’1-54’2 9
1.655 499 17OH 2ﬂ3/2 J=3/2 F,F1=5/2,3-5/2,3 12,1
1.656 542 g, FiFi=7/2,3-7/2,3 12,1
13
1.659 577 HZ co 113,8'113,9 1,7
1.683 540 1y 21:3 1 9532 FiF1=3/2,1-3/2,1 1
1.692 7950 18y 2nq 2 9%3/2 Fe2-1 1

Only ground vibrational state has been considered here., There are other lines
that could be of astrophysical interest in excited vibrational states such as

several lines of HC3N.

Table 6.2
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Why do we wish to bear forever the noise

of these more than another noise so close

to our dwelling place.
-=Robert Frost

7.1 - Introduction

The unprecedented combination of broadband coverage and high frequency
resolution in the multichannel spectrum analyzer and signal detector provide
a means for previously unattainable sensitivity in signal analysis. The
criteria used in the choice of nonastrophysical applications for the system
are: 1) the signals to be monitored must have a broad total bandwidth,
which contains narrowband spectral components of interest, and 2) the signals
must have a low signal to noise ratio.

Some of the most promising non-astrophysical applications of the multi-
channel spectrum analyzer and signal detector are in the field of acoustic
or microseismic monitoring. There are currently many ongoing research
projects, and numerous diagnostic incipient failure tests and non-destructive
tests employing acoustic technology, which are producing a wealth of useful
data. The two major impediments in this relatively new and very promising
field are frequency resolution and acoustic emissions with low signal to noise
ratios. A sensitive signal detector with high frequency resolution might
illuminate many of the microseismic or acoustic emission phenomena that are
only partially understood at the present time.

Acoustic or microseismic emissions are transient elastic waves generated
by rapid release of energy during dynamic processes in materials. Localized
transient instabilities such as crack propagation, dislocation motion, and
microfracturing in rocks and metals or fiber fracture and crack propagation in

polymers and fiber-reinforced plastics (FRP) are examples of the dynamic
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processes which produce acoustic emissions. The transient elastic waves

or acoustic emissions are detected with piezoelectric transducers which
wnvert them to electrical signals which are then analyzed in a variety of
ways which will be discussed later. The sensitivity of acoustic emission
analyzers to localized transient instabilities allows prediction of catas-
trophic failure. Although the stresses in the system are below the

elastic 1imit of the material, the localized stresses in the region around a
flaw or crack may be higher than the elastic 1imit, due to stress concentra-
tion, which results in propagation of the flaw or crack. In most material
systems catastrophic failures are often the result of numerous localized
instabilities which coalesce, and therefore the ability of acoustic

emission analysis to detect these localized failures which occur at stresses
well below the elastic 1imit of the material makes prediction of catastrophic
failure possible.

In addition to failure prediction, acoustic emission technology has a
variety of useful applications. Leaks in pipes, reservoirs, and dams have
been successfully detected and located with acoustic emission analysis. Flaws
in pressure vessels, reactor vessels, and a variety of other structures have
been detected and located with a variety of acoustic non-destructive testing
(NDT) methods.

The use of acoustic monitoring was initiated in the late thirtius and
early forties by Obert (1939, 1940, 1941), Obert and Duvall (1942, 1945, 1945a)
Hodgson (1943) and Hodgson and Gibbs (1945), in studies of rock bursts and
pillar failures in mines. This early work was crude and employed a low
frequency resonant seophone, an audio amplifier, and a headset (audible

frequencies were the only frequencies monitored). Kaiser (1950, 1953) and
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his coworkers in Germany in the earlier fifties are cenerally credited with
the first modern acoustic studies in work on metals, Kaiser reported that

all metals, including steel, zinc, copper, aluminum, and lead produce acoustic
emissions under load. He also reported that acoustic phenomena were irrever-
sible, that is, acoustic emissions do not occur in cyclic loading tests

unless the load in the cycle exceeds that in all previous loading cycles. This
pehnomenom is called the Kaiser effect. Schofield (1958) and Tatro (1959) did
much to improve the sophistication of acoustic monitoring instrumentation and
experimentation in the mid to late fifties with esearch on the sources of
emissions. They found that acoustic emissions in metals were produced by the
dislocation movement which accompanies plastic deformation in such materials.
Dunnegon Tatro, and Harris first investigated the use of instrumentation

whose frequency range was well above the audio range. The use of equipment
with this range eliminated many of the problems early workers encountered

with excessive background ambient noise.

There are numerous present areas of application of acoustic or microseismic
analysis. Brittle deformation processes in geologic materials have been
greatly illuminated by studies of microseismic emissions. Scholz (1968)
proposed that acoustic emissions in polycrystalline geologic materials were
produced by microfracturing of individual grains, and that failure in such
"materials (by coalescence of microfractures) could be predicted on the basis
of the acoustic count rate. This work is further supported by Martin and
Durham (1975) and Dunning and Dunn (1978), in work on crack propagation in
quartz. Lockner, Walsh, and Byerlee (1977) and Gupta (1973) have investigated
changes in velocity of acoustic emissions in rocks undergoing deformation,

Byerlee and Lockner (1978) and Blacic and Malone (1977) have investigated the
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acoustic nature of shear failure and fracture propagation. Byerlee and
Lockner (1977) and Hardy (1975, 1978) have found that fluid or gas pressure
in geological materials can be estimated on the basis of acoustic activity.
The acoustic nature of slope instability in rock, soil, and snow has been
investigated by Koerner and Lord (1974, 1975) and Sommerfield (1978). There
are many other examples of acoustic applications in geologic problem solving
which, for the sake of brevity, cannot be covered in this report.

Acoustic emission techniques are also well-suited to problem solving
studies in material research, structural integrity analysis, and other areas
of industrial research. Liptai (1972) investigated the acoustic nature of
failure in fiberglass-reinforced epoxy. Tetelman, Harris and Darwish (1972)
conducted similar experiments with whisker-reinforced composites. Carlyle
(1975), Hamstad and Chiao (1976), and Fowler and Gray (1979) have characterized
the acoustic nature of failure in fiber-reinforced plastics. Their work
indicates that the different mechanisms involved in failure of these
materials; such as fiber failure and glass cracking, can be differentiated
on the basis of acoustic signature, signal amplitude, and power spectra.
Hamstad and Chiao (1976) and Mitchell (1979) have investigated non-destructive
tests for fiber-reinforced plastic structures and pressure vessels. Hartbower
et al (1972) and Wingfield (1972) have demonstrated that weld-cracking can be
detected and located, and that the structural integrity of welds can be
tested with acoustic emission techniques. Acoustic emission technology has
been applied in the aerospace and aeronautics industries with success by
Moore (1970), Green et al (1970), and Nakamura et al (1972). Acoustic analysis
of on-line nuclear reactor vessels has been employed by the Connecticut Yankee,

and Elk River power plants (Whylie, 1971). The deformation of concrete and
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and other building materials has been characterized acoustically by Li et al.
(1970). The mining industry has made extensive and successful use of acoustic
monitoring technology. Leighton and Blake (1970) and Krauland and Westerberg
(1977) have shown that rock bursts, roof bounces, and pillar failures can be
predicted in some instances on the basis of increased acoustic activity

prior to the event,

7.2 - Acoustic Emission Analysis Techniques

Acoustic activity can be measured and analyzed in a variety of ways.
Early workers employed threshold counting techniques, which consist of
accumulating a running count of the number of times the amplitude of the
signal from the transducer exceeds a predetermined threshold. It has been
shown by numerous experimentalists that, in most polycrystalline materials,
the count rate (counts per unit time) rises sharply just prior to failure.

In some cases the use in count rate can be utilized to predict failure. This
technique has some deficiencies, however, which limit its effectiveness. A
single acoustic burst of high amplitude may exceed the threshold several
times, resulting in a spurious value for total acoustic activity, while
acoustic events with lower amplitude produce a single count.

Furthermore, in materials that have been loaded in a cyclic manner, the Kaiser
effect often precludes prediction of failure if the material fails at a

load level attained in a previous cycle.

Another technique commonly employed is burst or event thresholding, which
entails accumulating the count rate of acoustic events or bursts above a pre-
determined threshold. This method has the same limitations as simple thres-
holding, however the count rate obtained in event thresholding is more

accurate and not as sensitive to the level of the threshold.
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The maximum signal amplitude during a single event is a commonly employed
acoustic analysis technique. Signal amplitude measurements are useful in the
laboratory where sample homogeneity is not a problem or in the field when
relative changes in amplitude as a function of time for a single transducer
are of interest, however in other cases signal amplitude alone is not a
particularly informative parameter.

A number of workers have investigated the frequency characteristics and
power spectra of individual acoustic events and cumulative acoustic events.
Suzuki et al (1964) and Chugh et al (1972) found that acoustic events in rocks
undergoing deformation had a regular and predictable power spectra. Chugh
et al (1972) found that the frequency of emissions shifts upward as a function
of stress level, as the failure stress is approached. Chugh et al propose that
spectral data was more useful when presented as an energy distribution ratio
which, in that study, was defined as the ratio of acoustic energy in the
range 500-5,000 Hz, to that observed in the range of 10,250-15,000 Hz. In
general, the energy distribution ratio decreases with increased stress for a
variety of rock types. Graham and Alers (1975) found that many metals and
composite materials have specific and unique acoustic emission spectra. They
also showed that it was possible to detect failure and identify component
noises in steam turbine equipment based on the spectra of emissions. Fowler
and Gray (1979) and others have shown that fiber failure, crack propagation
in glass and other failure mechanisms in fiber-reinforced plastics can be
identified by their spectra. A typical frequency-versus-amplitude plot
reveals such flaws., The major drawback of spectral analysis is the lack of
frequency resolution attainable with available off-the-shelf spectral analysis

equipment. Most workers involved with acoustic spectra feel that frequency
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resolution is tne main impediment to solution of a number of acoustic
problems. Many materials have rather wide spectra (up to several MHz)
which cannot be observed in total with very high frequency resolution.

Source location analysis is a recently developed acoustic technique

that appears to be promising. Source location techniques employ an array
of three or more transducers which are located at various points on the ?’i
body of interest. Acoustic activity from a source is detected by each 1

transducer at a different time depending on the distance from the source to

the transducer. A triangulation technique based on the differences in arrival

times among the transducers is used to locate the acoustic source

empirically. Moai (1968) and icholz (1968) have used this technique on a

variety of rock types with some success. Byerlee and Lockner (1978) have

used the source location technique to map fracture propagation in granite

in the most sophisticated geologic source location study yet attempted.

Source location techniques are commonly used in industry to identify flaws and

fractures (Hamstad and Chiao, 1976; Mitchel, 1979; and Wingfield, 1972). Source

location techniques are employed in mines to predict and locate rock bursts,

Blake (1977) and Leighton and Steblay (1977). An excellent description of

this technique is found in Kelly and Schlamp (1977).

Seismic velocity attenuation analysis is another promising acoustic

technique. Lockner et al (1977) have demonstrated that the seismic velocity

of acoustic signals decreases up to 30% immediately prior to failure in
é granite. They attributed this attenuation to the presence of numerous micro-
cracks, Hadley (1975), Merkulova et al (1972), and Born (1941) have also
investigated this phenomenon with similar results. It has also been observed 'i

that seismic velocities are often attenuated in the area of the focus just
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the signature of acoustic emissions generated during sliding friction

tests on granite was similar to the signature of some earthquakes.

7.3 - Possible Applications of the Signal Detector in Acoustic Emission

The two areas of interest in acoustic monftoring which might be greatly
i1luminated by the multichanne' spectrum analyzer and signal detector are
spectrum analysis and low SNR signal analysis. Spectrum analysis at the
present time is limited by frequency resolution. The acoustic spectra of
many materials undergoing deformation have bandwidths of a megahertz or
more, while the frequency resolution of presently available off-the-shelf
equipment with bandwidths in this range is on the order of 10 kHz. There
are undoubtedly numerous narrowband acoustic spectral components that cannot
be effectively analyzed with 10 kHz frequency resolution. It can be shown
that the effective SNR of a signal whose bandwidth is narrower than the

frequency resolution of the analyzer becomes

SNR Bs where Fr = frequency resolution of the analyzer
Fr /Fr (7-1)
Bs = bandwidth of the signal

This means that narrowband signals of interest may be lost because of poor
frequency resolution. The frequency resolution of the multichannel spectrum
analyzer is high enough to effectively investigate narrowband acoustic
spectral components.

There are numerous instances, especially in filed projects, when the
ambient noise is of such great amplitude that many acoustic signals of interest
are well below the detection threshold. Acoustic analysis of mines, under-
ground reservoirs, and oil fields is often hindered by high amplitude noise

and a 1ow SNR as are laboratory investigations of the Kaiser effect, crack
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and fracture propagation, and hydrofracture. The high sensitivity signal
detector proposed in this study would greatly enhance our ability to effect-
ively investigate such phenomena. Some specific types of investigations in
industry and geophysics that would be greatiy enhanced by the multichannel
spectrum analyzer and the signal detector will be covered in the next two
sections. One limitation of the system, however, is the low time resolution
of the spectrum analyzer. Transient emission of much less than a second in
duration would not be detected by the signal detector unless the pipeiine

capability of the spectrum analyzer could be implemented.

7.4 - Industrial Applications

Source Mechanism Studies

It has been found by McCabe and Koerner (1979) that the frequency of
acoustic emissions produced by crack propagation in coal is shifted dowward
as the crack propagates, and the source area is enlarged, A rigorous analysis
of this apparent phenomenon could result in an effective method for monitoring
acoustic sources in order to determine if the flaws producing acoustic signals
are growing, The sensitivity and frequency resolution of the proposed signal
detection system would be ideal for such an investigation (an experimental
procedure outline for a feasibility study of this phenomenon is presented in
Appendix A7.1), Source mechanism studies of bearing failure in rotating equipment
have so far shown some promise. The spectra of emissions of a bearing under-
going failure can be used to identify the type of bearing, and source location
analysis can locate the particular bearing of interest (Pollock, 1979). Source
mechanism studies are also of importance in pressure vessels and nuclear reactor

vessels. The location, spectral properties and amplitude attenuation of acoustic
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signals generated by a flaw or fracture, or the velocity, frequency, and
amplitude attenuation (if the coupling parameters are well understood) of
induced acoustic signals may allow workers to identify and characterize flaws
in such vessels during on-line operation. The signal detection system
proposed in this study and the multichannel spectrum analyzer would be capable

of such studies.

Failure Mechanism Studies

The failure mechanisms in metals, plastics, composite materials, and

building materials may fall into specific categories based on spectral
components, signal amplitude and spectral shift characteristics. It has

been shown, for instance, by Fowler and Gray (1979) that fiber failure

can be differentiated from glass cracking in fiber-reinforced plastics

based on relative amplitudes and spectral components. Further investigation
employing a sensitive detector with high frequency resolution may show that
intercrystalline fracture, grain boundary deformation, and dislocation move-
ment for various types of materials can be uniquely characterized by the
parameters listed previously. High resolution and high sensitivity studies
such as these might also reveal that there is a unique frequency component
for each material that appears immediately prior to failure, the knowledge of
which would greatly enhance the ability to predict failure. It has already
been established that the flow mechanisms in plastics can be differentiated
and identified by characteristic signatures of acoustic activity in frequency-
time space. The signal detection system and multichannel spectrum analyzer
proposed in this report could, quite possibly, provide extremely important

information on failure mechanism characteristics.
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Leak Detection

It has beea demonstrated by Parry (1971) in pressure vessels and pipes
and by Koerner and Lord (1974) in earthen dams, that leaks can be detected
by analyzing the spectral components and frequency ratios of acoustic
emissions, Leaks are often manifested by a single or group of specific
spectral components, the characteristics of which are apparently dependent
on the pipe, vessel, or dam material and the leaking medium. The signal
ampli tudes of acoustic emissions resulting from leaks are often quite low,
a problem which could be ameliorated to a great extent by the sensitivity

and frequency resolution of the proposed signal detection system,

Kaiser and Felicity Studies

The apparently irreversible nature of acoustic activity was discovered
by Kaiser (1950). The Kaiser effect is the immediately irreversible nature
of acoustic emission activity resulting from applied stress., If the effect
is present, there is little or no acoustic activity until previously applied
stress levels are exceeded. This effect is not extremely well-understood for
some materials. The Kaiser effect in rocks and concrete may be due to the
fact that acoustic emissions are produced by microfracturing, and in cyclic
loading now microfractures are not produced until previous loads are exceeded.
Previous investigations of the Kaiser effect have employed thresholding tech-
niques which may not have detected 1ow amplitude signals which possibly occur
under cyclic loading at stresses below previous stress levels., An investigation
of this phenomenon with the multichannel spectrum analyzer and signal detector
may uncover low amplitude signals or characteristic spectral components that

will enable us to better understand the Kaiser effect.
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The felicity effect is a phenomenon which occurs in plastics under
cyclic loading. The felicity effect results in significant emissions at
stress levels well below previously attained stress levels., It is believed
that the felicity effect is caused by isoelastic deformation during
unloading which effectively anneals previously formed deformation structures.
A highly sensitive high frequency resolution analysis of this phenomenon may
reveal the deformation mechanism which produces the felicity effect.

Thermoplastic Studies

The failure of thermoplastics and glasses cannot presently be predicted
with acoustic monitoring techniques because acoustic emissions are either
absent or low enough in amplitude to escape detection. Glass sometimes
displays acoustic activity during crack initiation, however, this oniy occurs
wheen the crack propagation is unstable. The high frequency resolution and
sensitivity of the multichannel spectrum analyzer and signal detector pro
posed in this study may enable detection of acoustic emissions in these
materials, if they are present.

There are, undoubtedly, numerous other industrial applications in the
field of industrial acoustic emission monitoring for which the signal detec-
tion system proposed in this study may be well-suited. The applications

discussed in the section are, however, of particular interest in this field.

7,5 - Geophysical Applications

Fracture Density Studies

Fracture density is of great interest to geophysicists, structural

geologists and petroleum geologists. Fracture density in fault zones appears
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to be an important parameter in far't mechanics, a clear understanding of
which may lead to significant advances in the field of earthquake prediction.
The density and nature of fractures in petroleum reservoirs are two of the
most important factors in effective tertiary recovery of oil in fractured
reservoirs.

Present fracture density studies are implemented in a variety of ways.
Many geophysicists and petroleum geologists investigate seismic velocity
attenuation. In this test an ultrasonic or shot blast signal is activated
and the travel times of the elastic waves from the shot site to the sites are
recorded and compared to the predicted travel times for the unfractured rock
type of interest. If the fracture density is high, the velocity of the elastic
waves will be greatly attenuated from the predicted value. This method has
some limitations, most notably sensitivity to fracture filling., A fracture
which is open and filled with gouge or fluid will produce the same velocity
attenuation as numerous closed fractures. Another parameter measured by
geophysicists and petroleum geologists and engineers is the Q factor which is
basically a measure of the energy loss of an input ultrasonic or shot signal.
A highly fractured body of rock will have a lower Q value than unfractured
rock of the same composition. This method has the same basic limitations as
velocity attenuation because the parameters used to calculate both are basi-
cally the same. Measurement of amplitude attenuation as a function of
fracture density has been attempted in the laboratory, however the uncertainly
involved in determining the coupling parameters of the transducer and the rock
makes field utilization of this technique somewhat difficuit. Power spectral
analysis has been employed with some success in recent years. It has heen
found that high fracture density results in a downward frequen.y shift of the

power spectrum.
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The frequency and amplitude resolution of the multichannel spectrum
analyzer and signal detector allow more detailed and sophisticated analyses
of fracture density. Wider bandwidth input signals can be employed and
frequency attenuation, amplitude attenuation (1f the coupling parameters are
known), and detailed power spectra measurements would be possible. An
analysis of Q as a function of frequency might also be productive because
Aki (1979) has found that Q varies as a function of frequency to some

extent, in addition to varying as a function of fracture density.

Stress Field Analysis

Accurate measurements of stress fields and stress orientations are of
great importance to geophysicists, petroleum engineers, and mining engineers.
A sudden change in the stress field of a fault zone may be a premonitory
event, or an unexpected variation of the stress field with depth may result
in expensive drilling equipment damage in an oil well, Rock bursts and other
mine failures are often preceded by rapid variation in stress field intensity
and orientation, Presently such techniques as overcoring, hydrofracture
strength analysis, and extensometer and strain gage analysis are used to
measure stress field orientation and magnitude. An interesting zpplication
of the multichznnel spectrum analyzer and signal detector would be an analysis
of the acoustic emission activity, under loading, of cores cut from fault
zones, mine walls, or drill cores in order to determine the stress field by
investigation of the Kaiser effect. The Kaiser effect could be used as a
stress level indicator of great sensitivity. One major limitation of the use
of the Xaiser effect to determine stress levels is the fact that the stress

values calculated by determining the stress level at which acoustic activity
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begins may be higher than the actual stress level, if the stress level in
the rock was significantly higher at some time shortly before the cores

were cut, Kaiser effect studies should, however, be undertaken because the

spectrum analyzer and signal detector are well-suited for this type of inves-

tigation and Kaiser effect measurements may prove to be an excellent and
inexpensive measurement technique. An experimental procedure outline for
a feasibility study of an investigation of Kaiser effect as a stress

indicator is presented in Appendix A7.1,

Source Mechanism Studies

It has been established that the source mechanism of acoustic emissions

in metals and plastics can be determined on the basis of frequency and ampli-

tude. Fiber fracture, dislocation movement, crack propagation, and grain
boundary deformation all have different amplitudes and spectral components.
It is probable that the same situation exists in rocks; source mechanisms
such as dislocation movement, microfracturing, grain boundary deformation,
and inter-crystalline crack propagation should be distinguishable on the
basis of spectral components and relative signal amplitudes. This has not
been investigated as of yet because the spectrum of acoustic emissions in
rocks is wide enough in bandwidth to preclude high resolution spectral
analysis with available equipment,

Another type of source mechanism study that would be productive is
spectral analysis of a propagating flaw or fracture. McCable and Koerner
(1979) have found that the spectrum of emissions from a propagating cleat
in coal shifts downward in frequency as the cleat dimensions increase. This

apparent phenomenon should be investigated with a high resolution detection
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system such as the one proposed in this study because if this phenomenon
exists and can be clearly understood, significant progress may be made in

prediction of pillar failures and rock bursts in mines,

General Deformation Studies

The acoustic nature of deformation processes in rocks is not very well
understood at the present time due in great part to the broad bandwidth of
the emissions and the lack of frequency resolution of existing acoustic
monitoring equipment. Numerous types of investigations of rock deformation
could be carried out with the signal detection system propcsed in this
report. Compressive and tensile failure tests might illuminate the acoustic
nature of the shift from microfracturing to cataclastic failure in rocks.
The acoustic nature of hydrofracturing could well be delineated in a more
rigorous manner with such a signal detector. Cyclic loading tests might
illuminate the acoustic nature of failure under cyclic loading. There are
undoubtedly numerous additional studies that could be implemented with the
muTtichannel spectrum analyzer and signal cetector proposed in this study

that would greatly enhance our knowledge of deformation processes in rocks.
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The operator powers up the Oasis system, mounts fresh tapes on

the replay/archive drives, and places the system in self-diagnostic mode.

Momentarily, the status display reports tnat all subsystems are functioning

properly.

Via a magnetic tape, the operator enters into the RFI
catalog data concerning astrophysical signals in the portion of sky to be
covered today. He now activates the local RFI receiver which begins to
dynamically update the catalog.

Pointing the telescope at a known quiet portion of the sky, the
operator places Oasis into threshold-setting mode. The control CPU makes
minor adjustments to thresholds in the carrier wave detector, pulse
detector and cluster detector systems.

On this particular day, a radio astronomer is on hand to continue
a high resolution OH survey along the lines of sight to be searched.

She takes her seat at the radio astronomy terminal and loads a program
on her minicomputer.

The SETI operator, mearwhile, is specifying to the control CPU the

protocol for making automatic entries to the system log and event archives,

for generating graphic displays and audible alarms.
When all is ready, he points the antenna to the first star (and any

unseen surrounding system of planets) and the search begins.

Digital data from multi-channel spectrum analyzers (MCSAs) connected

to two orthogonally-polarized receiving systems commences to flow at the
rate of 8 million complex spectral values per receiver per second in four

parallel data streams into the NBIT detéctor, the pulse detector, the
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carrier wave detector, and a 100 giga-bit tape memory. In the NBIT system the
stream divides again to supply 12 processors each at the same data rate:

32 megawords per second. The NBIT low-threshold feature detectors are

now providing the clustering system's histogram unit with numerous patterns

to count. The actual cluster search will begin at the end of the 1000-second
observation of this star.

At the first 20-second decision point, the carrier wave
processor makes several detections, but the control CPU matches these with
known military radar signals in the RF] catalog so no further action is
taken on them. Nor does anything unusual appear in the coarse-resolution
spectrum the operator has chosen for his display.

Two minutes into the search, the audible alarm sounds and an integrated
coarse spectrum of somewhat different resolution appears on the graphics
display. A small but noticeable peak is seen in the middle of the spectrum.
The status display indicates that the binning system has made a detection
and the moving system log and event archive tapes indicate that information
is being written on them.

It Tooks like a maser--a previously unknown one. "Do you have a maser
on your screen?" he asks the radio astronomer. "Yes I do, now," she replies.
"You should record it." "It already has been."

He enters a comment in the system log. Over the remainder of the
observation of the star the maser line shows more and more clearly. The
operator elects to save the entire record on the total observation archive.

The next few stars reveal nothing unusual, Later in the afternoon,
the clustering algorithm finds some extremely unusual concentrations of

broadband pulse features in an observation of Epsilon Euridoni, The SETI
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operator saves the total observation for further analysis, along with

an image of the cluster as it appears on the display.
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Detection is, or ought to be, an exact science,
and should be treated in the same cold and un-
emotional manner. You have attempted to tinge it
with romanticism, which produces much the same
effect as if you worked a love-story or an elope-
ment into the fifth proposition of Euclid.

--A.C. Doyle, The Sign of Four

~Appendix A2,1
Jhe Discrete Fouyrier Transform of Signals and Noise

The Discrete Fourier Transform

Assume that we have some time process x(t), either deterministic or
stochastic, which is sampled every T/N seconds where T is the length of one
complete record or realization, and N is the number of samples per record.
This is illustrated in Fig, A2.1,1. (In the MCSA which is a part of the

system under study here, two quadrature time signals are sampled in this way.)

x(t) )
"k
A\
4 1 1 | ! n t
0 I _g_T_ . L] . . ﬂ T
N N N
€&—— time record ;;

Figure A2.1.1 - Sampling a Continuous Time Function

The Discrete Fourier Transform is defined as:

N-1
=1
X = R

0t SN sz (R
k=0

X

If the Xk are samples of a real baseband process with a maximum
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frequency w, the sampling theorem requires that the sampling frequency be

at least 2W, or that in T seconds the number of samples be at least WT.

If the X, are samples of a baseband process obtained from a bandpass process
of bandwidth BT’ the number of samples required in time T is at least 2BTT
but these samples are of the real and imaginary parts of the complex
envelope of the bandpass process, where these parts are sampled once every
8}1 seconds. This is called quadrature sampling (Peebles, 1979).

The bandpass signal is detected by multiplying it in parallel channels
by coswct and sinwct, where wc is a constant angular frequency, and thus
yielding the real and imaginary parts of the complex envelope. These two
signals are low pass filtered and then sampled to produce the real and
imaginary parts of the complex samples Xy used in Equation (A2,1-1).

The values of Xn generated by Equation (A2.1-1) are complex numbers
corresponding to the signal which is in each of N frequency bins. (If, for
example, a bandpass signal of bandwidth 10 MHz is to be divided into one
million 10 Hz channels, one million samples will be taken of the real and
imaginary parts of the complex envelope, and one million values of Xn will
be otained (N = 10°).)

The bandwidth of each individual bin is:

B = B, /N (R2.1-2)
The center frequency of the nth bin is:

£ o= n=0,1,2,... 01 (A2.1-3)
n —-N-~ NTS

1. Hence the output of

where T_ = T/N is the sampling time which equals B}
the DFT is a set of N complex numbers each one of which is associated with
a frequency bin with bandwidth B and center frequency fn‘ The baseband

representation of this result is shown in Figure A2,1,2,
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Figure A2,1,2 - Discrete Fourier Transform Frequency Bins

Response of the DFT to Sinusoid Signals

Next we consider the case where the input x(t) to the DFT is a complex
sinusoid of the fom
(t) = et (A2.1-4)
where wr is a fixed baseband frequency. A signal of this form corresponds
to a sinusoidal signal in the original passband. In order to conveniently
relate cyclic frequency fr- (= Nr/ZTr) tc the frequency bins shown in

Fig. A2.1.2,we define fr in terms of the binwidths B as:

frars , (A2.1-5)
Hence, for example, f. lies within Bin 2 whenever 1.5 < r < 2.5, We have
then:

x(t) = pedemrBt (A2.1-6)
Since the kt'h sample is taken at the time t = kTs. the kth sample of
x(t) is:

= fe j2nr8kTg (A2.1-7)
Using Equations (A2.1-3) and (A2,1-5), X can be written as:

j%l kr
X = he (A2.1-8)
If this sampled signal is now inserted into the DFT, Equation(A2.1-1)

becomes : W1 J%’-’«(r-n) ,

o § k)_;o Pe (A2,1-9)

-259-




Consider first the simple example where r = n, corresponding to an
fr in the center of bin n, The effect of the summation in Equation (A2,1-9)
is simply to add A a total of N times so that Xn equals A, Thus the
transform has a “gain" of unity in center band.

Next consider a signal x(t) which has the center frequency of Bin n
but which has a phase angle 6. That is:

x(t) = aedllnt *6) (A2.1-10)
Then, clearly:
Hy = pe (A2.1-11)
Hence xn, the complex number out of the DFT has the same amplitude for an
input signal of any phase, and has the same angle as that of the input.
Let us now generalize to the case where r takes some general value,
not necessarily equal to n. Define d to be the difference between r and n:
dar-n (A2.1-12)

Assume now that the input signal is:

x(t) = AedfdWrt (A2.1-13)
je jg% kr
x, = he e (A2.1-18)
so that the DFT is:
2n
.o N=1 Jjr— kd
1 ) N
xn‘N“Jk%° (A2.1-15)
. 2nd
jo N-1 A k
=%%_kz e N (A2.1-16)
Kok _1-af
and since kZO a =" (A2.1-17)
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pe® 1 . ed2Md
Xn * N - ejﬁd/N (AZ.I-IB)
. 2e® mid-a/) _simd (A2.1-19)

If N is large, which is our case, Xn can be approximated by:

X = ned® eI inc d (A2.1-20)
where:
sinc x 4 S10MX (A2.1-21)

Hence the magnitude and phase of xn are respectively:

(A2.1-22)

| X A sinc d

nl

La

These outputs (response characteristics) are plotted in Figure A2.1.3 for

[]

6 + nd (A2.1-23)

8 equal to C.

A X, |
L 1 d d
~1.0 -0.5 0.5 1.0\

a. Amplitude Response b. Phase Response

Figure A2.1,3- Response of DFT to Sinusoidal Signal
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It is apparent from Equations (A2.1-22) and (A2.1-23) and Figure A2.1.3
that the response of the DFT to a sinusoid which is not in the center of the bin
will be less than unity in amplitude, and will introduce some phase.

We consider next the relationship between Xn as obtained from one set
of samples (one record) of x(t) and the X, obtained from the next record, which
is obtained T seconds after the first. In Equation(A2.1-7) substitute kTg + T

hrkk.
AejZTrr'B(kTs +T)

- ped2mrBKTs j2nr

peJ2nTBKT 32n(d + n)

since BT = 1 and e32™ = 1.
Since the values of Xy in Equations (#2,1-7) and (A2.1-24) differ only by

the temm ernd

which does not depend on k, the resulting DFT's will differ
only by this factor. Thus the angle of Xn obtained from the second record
will differ from that of the first by 2nd.

The implication of the above result is that any phase coherence which
the sampled signal possesses will be lost in the DFT operation if the signal
is not in the center of the band. If, however, an Xn is observed which
changes phase angle linearly as a function of time but does not change in

amplitude, then it can be deduced that the input signal is a sinusoid of

frequency

TBAS
27 (R2.1-25)

fe=fn?

where A6 is the change in the phase of Xn over T seconds, that is from one

record to the next. A first order indication of a linear change in phase is
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an equal phase difference between successive pairs of xn‘s. That is:

00 -6,=0,-8

- = A2.1-2
8, 291+eo 0 (A2.1-26)

The test implied by Equation (A2.1-26) could be implemented quite easily to
search for constant frequency signals as processed by a DFT.
We consider next the case of a sinusoid which drifts linearly in

frequency as a function of time. That is, the instantaneous frequency is:
Hi = Hr + Wt (p2.1-27)

where ﬁ is the dritTt rate in radians per second. The corresponding
signal is:
x(t) = Aed(WE/Z + Nrt + 8) (A2.1-28)

Three cases will be examined depending on the value of ﬁ.

Case 1: Small ﬁ

We assume first that the instantaneous frequency is nearly constant
within the bin of interest over one record, of length T seconds. We cxpress
this condition as:

W 28
T <<B =d W <<
“2n T (A2.1-29)

In this case the frequency input is essentially constant over one set
of data. If that frequency is Nr, the output Xn is approximately equal to
that given by Equation (£2.1-19).
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Case 2: Intermediate Q

We start by assuming that the record begins at t = 0 so that the kth

sample is again taken at t = kTS. The sampled input signal is then:

peiBed(WrkTg + WK*TE/2)

X, = (A2.1-~30)
and hence: Y
. f2n W 2
jo N1 §(5% + g «?)
X = 5%—&0 e ( N o°N (R2.1-31)

The effect of the second term (due to frequency drift) in the exponent
is to shift each of the k complex terms in the sum by the angle ﬁk’/ZBzN’.
If this shift is small compared with 2ndk/N, we can neglect it, and we are
then back to Case 1. But now we are considering the case where this term is
too large to neglect. The summation in Equation (A2.1-31) is not tractable.
Our approach is to obtain an approximation by calculating Xn for a number of
fixed values of frequency over which the signal drifts in T seconds, and
averaging over these Xn. That is, since Xn for a fixed frequency is given
by Equation (A2.1-20), X, for a drifting frequency is aporoximated by
M-1

je .
X, = A%—— z eJ"dm sinc d (A2,1-32)
m=0
Where:
d=d. +eN_ T ($2.1-33)

As an example to illustrate this approach consider a signal whose frequency
drifts from f_ (d=0) att =0 to f,+8 (d=1) att=T., LetM=3so0
that the fixed-frequency Xn are obtained for d = 0, 1/2, and 1. These
values are:

= Aed®
Xp, = Re
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= peib

- ned®
Xy, = Re3%(0)

and the average fis:

Yh = 0,33 + jo.21

This procedure was repeated for a number of values of M with the results

shown in Table A2.1.1.

M X/ Pe®

a 0.3017 + j0.2686

8 0.2615 + j0.3348
12 0.2492 + j0.3536
24 0.2373 + j0.3713
100 0.2284 + j0.3840

Table £2.1.1 - Approximate xn for 0 <d < 1.0

The results approach an asymptotic value. We shall accept the value

for M = 100. That is:

re8(0.23 + j0.38)

>
n

ne3%.44/58. 8°

This suggests that a drifting signal is definitely attenuated by a
significant amount if it drifts from center bin to an edge in one observation
time.

We next consider the case for a signal which drifts from the center of

a bin to a point part way to the edge (0 <d < a). The resulting approximate
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values of Yh were calculated by an averaging process paralleling that
suggested by Eq. (A2,1-32), . The resulting values of Xn are given in

Table A2,1.2 for four values of a.

Drift Range Xp/ted®
0<d<1.0 0.44/58.8°
0<d<0.5 0.79/41.4°
0<d<0.2 0.96/16.9°
0 <d<0.1 0.99/8.1°

Table A2.1.2 - Approximate Xn for Varicus Drift Ranges

These results show that the DFT can accommodate a certain amount of
drift per record, up to perhaps 20% of the binwidth, without serious
degradation. However, a drift from the center of the bin to an edge clearly
produces a very significant attenuation in the DFT output. Clearly it is
desirable that the relative drift per record (compared with the bandwidth)
be kept small to maintain the basic system sensitivity. Two strategies are

available to keep the relative drift small. These are:

a. Increase the binwidth B

b. Change the center fregquency of the bin, fn' as the
signal drifts.

The first strategy has the disadvantage that it increases the amount of
noise passed by the bin. The second strategy has the disadvantage that it

requires a method of forcing fn to track the drifting input signal.

Case 3: Large W

Next we consider the case in which W is very large. Specifically:

W " . 2mB
ﬁ-.T >> B = W >> —T- (A2.1'34)
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This means that the carrier signal sweeps through the bin in a time which
is short compared with the record time T.
The problem is simplified by assuming that the response is due only
to the input while the carrier is within the bin (i.e. -1<d <1). This
is equivalent to assuming in Figure A2,1.3a that Xn = O when |d| > 1. In this
case Xn can be approximated by:
T Aeje M-1

Jrdm _.
T e sinc d (A2.1-35)
noT e m

The solution to Equation (A2,.1-35) is easily found from the solution to

(P2.1-32) since the values of the X, contributions for negative m are just the
complex conjugates of contributions for positive m. The resulting value of

X, for M =100 and -1 <d < 1 is

X, = e x 0.22
This result assumes that the time required for d to sweep from -1 to +1 is
just T seconds, the record length., The time required for the carrier to

sweep from a value corresponding tod = -1 tod =1 is:

T, = 2B X 2n  _ 4?8 (A2,1-36)
2d C W

If T2d is less than T, the average value of Xn is:

T .

Y - ~ Zd Je
X, =0.2 -;—-Ae (R2.1-37)
=276 gped® s 4;8 (£2.1-38)

W
Hence the amplitude of the DFT output is reduced to as little as 22% of the

non-drifting case, and can be much less if the drift is quite rapid.
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Response of the DFT to Noise

Next we consider the effect of the DFT on noise. We assume that the
input is Gaussian White noise with zero mean and power spectral density NO'
We assume that this noise is passed through an ideal bandpass filter of
bandwidth BT‘ The resulting bandpass noise can be written in the Rice

representation (Viterbi, 1966) as:

n(t) = nc(t) cos th + ns(t) sin wct (A2.1-39)

where wc is the center frequency of the bandpass filter, and nc(t) and ns(t)
are low frequency independent Gaussian random processes. The variances of

n(t), nc(t) and ns(t) all equal NOBT’ and we shall call this variance o2.

Onz = onz = O'nz = NOBT = 02 (AZ.I‘AO)
c

The quadrature detection process used in the receiver yields the complex

low frequency (envelope):

x(t) = nc(t) + jns(t) (p2.1-41)

The kth sample of x(t) is
X = + jbk (P2.1-82)

where a and bk are defined respectively as the kth samples of nc(t) and
ns(t). Since the original processes nc(t) and ns(t) are Gaussian, the
samples a and bk are likewise Gaussian with zero mean and the same
variance

= g2 = ¢? (R2.1-23)

The DFT of the complex samples X, is:
1 N1 2mmkoN
X =< I xe , N =0,1,2,...,N-1 (R2.1-44)
n N,z K
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1 N1 ommkon . 2 M g2mnkoN

== I ae +3 L be (A2.1'45)
N k=0 k N.k=0 k
Since e'JZ nk/N _ cos 2%95- - jsin gﬁﬂi (A2.1-46)
Equation (A2.1-45) can be written as
N-1 N-1
| 2mnnk . 2mnk .1 2mnk 2mnk
X = N kfo (akcos ~* b, sin =% ) + Iy kio (bkcos 5 - 3 sin Sg— )
(A2,1-47)
This result can be written as:
1 N-1 1 N-1
X =% L ¢ +jg L d A2,1-48
n N L kTN L ( )
where:
C = 3 cos §%ﬂ£_+ bysin 2%2&
2nnk 2nnk

o
n

K bkcos N - aksin N

Clearly <y and dk are Gaussian random variables since the sum of Gaussian
random variables is Gaussian (the cosine and sine terms are just constant
weights for any given k). Similarly the two sums in Equation (A2.1-48) are
Gaussian, and hence Xn is a complex Gaussian random variable. It is easily

shown that the mean values of Cy and dk are zero. The variance of Cy is:

o E{(akcos vt bks1n

Cx

E(akz)cos2 Zznk + C(bkz)sin2 E%EK

o? (cos? Zﬁﬂk + sin? 2&2& )

= g? (A2,1-49)
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Since the C) are assumed to be independent over k, the variance of the sum
of the Cy is the sum of the variances. Hence the variance of %-times the
first sum is g2. The same arguments apply to the second sum. In summary,

Xn is a complex random variable whose real and imaginary terms are

independent Gaussian with zero mean and variance c?. Equation (A2,.1-48) can be

written in polar form as:

Xn = Rn A'Q (A2.1-50)

We review next the well-known (Papoulis, 1965) distributions of the three
ra:.m variables R , 6, and an z 2P

The random variable Rn is Rayleigh,

R 2/9q2
f(R) =33 efn /2" | gcp <w, (A2.1-51)

The angle 8 is uniformly distributed.

fle) = 5=, -mce<m (A2.1-52)

The random variable P, which is the power of Xn, is exponentially
(or Gamma) distributed:

- 2
£(P) = —-;—;e Plo (A2.1-53)

We now have the statistics of the output of the DFT when the input is
Gaussian noise., Next we turn our attention to the statistics of the sum of
a number of DFT outputs. This sum can be taken directly on the Xn, or on
the power P, if a square law detector is first applied to the Xn. Consider
the former case first,

We assume that the Xn being summed are independent complex Gaussian

random variables. Let the sum of M values of Xn be called S.
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M-1
§= L X A2,1-54
n=0 " ( )
The real and imaginary terms add but since these are independent and
Gaussian, the two terms are both Gaussian, with mean zero and variance Mo? .
Hence S is still a complex Gaussian random variable. Its amplitude, angle
and power are given by Equations (A2.1-51) - (A2.1-53) where o2 is replaced by
mz'
We next consider the sum of M independent values of power P. We call
this sum PM'

M-1

= I Pn (A2,1-55)

Where the Pm are the powers which are to be added. They are exponentially
distributed as given by Equation (A2,1-53), The mean and standard deviation of
P both equal o?.

The sum of M independent exponentially distributed random variables is
known to follow the Gamma distribution (Papoulis, 1965).

p M-1

- M -PM/o?
f(p,) = e (A2,1-56)
M OgM (M-1)!
where the mean and standard deviation of PM are:
E(Pyl = Mo? (A2.1-57)
%y A o? (A2.1-58)

The Gamma distribution becomes increasingly Gaussiar-1ike as M
increases, that is, as the number of summed terms grows. This is as one would

expect from the Central Limit Theorem,
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Note that {if the Pm in Equation (A2,1-55) represent signal power, and
hence are identical for each m, the total signal power is MPm1 That is,
the signal power grow- in proportion to M. On the other hand, the standard
deviation of the total noise power is growing as v , as Equation (A2.1-58)
shows.

Hence the ratio of the total signal power to the standard deviation of
the total noise power increases in proportion to VW, whereas the SNR
increases in proportion to M if the summation is carried out on the
amplitude instead of the power. Thus it is more desirable to carry out the
summation over amplitude values if this is possible. Unfortunately, this
cannot be done if the amplitudes are independent and random, or appear to

be so because of the action of the DFT in the MCSA.
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Appendix A3.1
Polarization Synthesis

Given a desired type of polarization, as specified by the angles
& and y, what are the weighting factors needed to combine the outputs of
two orthogonal antennas in the form
= K1 X + K2 y
in such a way as to synthesize an antenna of that polarization?
In general, K1 and K2 are complex constants. Writing them in polar

form, we have
1= |K1|eje‘ X + 'K2|9j62 y
The value of ¢ is the (specified) phase angle difference that a
signal will have between the x and y antennas. To optimize reception,
this phase difference must be cancelled, which gives the relation,
§ +(0q-0) =0
We are free to choose any values of 0@ 2 and o 1° which satisfy this
equation, so let us choose for simplicity,
0 * 0 and 0p * 8
The value of Y defines the relative magnitudes of the received
signals, in the form

tany = %%% }

We are free to choose any values of K1 and Kz that satisfy this equation.
Therefore let us also impose the condition that power be conserved by the
combining operation, or in other words,

2 2
[Ky1™ + 1Ko = 1
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Solving these two simultaneous equations for |K1| and |K2|, we obtain
]K1|= cos Y
|Ky| = sin v

Thus the required equation for combining the x and y outputs to match the

polarization type ( 6, v) is

Z=xcosy+y ejG sin y (A3.1-1)

From (3-1) and (3-2) we can obtain:

cos y = x|
IX[Z+ Ty[?
sin Y = lyl
x[Z+ Tyl
6 Gl
Then substituting these measured quantities into equation (A3,1-1), we obtain
finally,
7 e —1x .+ Ly y e (&) (A3.1-2)

JAx|? o+ Jyl? Ax|? + y|?
If the outputs of the x and y antennas are combined according to this
nquation, the result will be the same as if a single antenna that wis
exactly matched to the polarization type of the incoming signal had been

used, regardless of the polarization type of the signal.

Effects of Noise

Thus far, the effects of noise have been neglected, for the sake
of simplicity. Noise causes the measured polarization type to have some

probable error, and therefore the synthesized polarization type does not
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exactly match that of the signal. Before discussing this effect

explicitly, it is interesting to note that equation (A3.1-2) reduces to a
nearly trivial equation in the complete absence of noise.
X = lee‘?a-
y =yl

- 1 i i ez - gy)
Z= [x|2edX + |y|2eld o N&X - AL
Ax® + y[? [ d

) :
Z=—-—-—-—-——_[e‘)a 2 4 2]

MESamE CIxl* + 1y|?)
2= AT L&

If we write

Theﬂ s

The fact that the phase of Z is the same as the phase of x has no
particular physical significance, and stews solely from the previous
choice of 01 and (32. The fact that the power in Z is the sum of the

powers in x and y stems from the conservation of power constraint
placed on lKll and lel earlier. Thus we conclude that in the complete

absence of noise, the polarization matching method extracts all of the

available signal power, since

PZ=ZZ=x2*¥y2=Px+Py

Consider now the case when the signal to noise ratio (SNR) is small.
The point M on tha Poincare sphere in Figure 1 now marks the maximum
value of a probability density function on the surface of the sphere.
In order to increase the accuracy of the measured polarization type, it

is necessary to average the weighting factors K1 and K2 over time,

c- 7
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The magnitudes of the factors then become

S v

1K, | (——m—-—wj

Note that it is not exactly correct to factor out the denominator of

these expressions, or to regard it as the average power, To do so
implies interchanging the order of averaging and computing, which leads
to a somewhat different result.

An average phase difference between the x and y antennas must also
be calculated. This could be done by simply averaging their phase
difference over time. A statistically better average is the phase angle
of the complex correlation coefficient between the two antenna outputs,

given by
v

Xy
W = =
Yo A=EAE

Since the denominator of pxyiS real, it does not affect its phase angle.

Thus

This is a weighted average phase angle, where the weighting factors are
the product of the amplitudes. This may be seen by considering the polar

coordinate form of x and y.
joax

Let x
y

r.e
X

]
-
4]

Then

xy
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If we have N time samples of x and y, then

N
I

from which the weighted average effect may be seen. When the product

rxiry1 is large, its corresponding phase difference will be weighted
heavily. That product corresponds to cross power, so in fact instantaneous
cross power is the weighting factor.
Summarizing these results, in the presence of noise we combine the
outputs of the x and y antennas according to
L= Kix+Ky (A3.1-3)

where

(i) o

§ = tan-l M_*)
Re(xy*)

The factors Kl and K2 emphasize the antenna that has the strongest signal,
and hence the best SNR. Since the time averaged information must be used
to combine even the first signals, a time delay must occur before the
combined output is available. This may be accomplished by recording the
signal, or by appropriate data processing. However, it will turn out that
the final expression for generalized coherence to be derived below may be
computed continuously in quasi-real time, using "pipeline" techniques similar
to those used in real-time FFT calculations.

The above results may be generalized to any two orthogonal antennas.

The fact that x and y oriented linear antennas were being used only affects
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the definition of the polarization angles y and § on the Poincare sphere.
Horizontal linear polarization is chosen by convention to be the origin of
the coordinate system. However, one could with equal validity choose any
other point (such as left-circular) as the orinin, and then define new
polarization angles exactly analogous to & 224 y , relating the

amplitudes and phase angles of the two new antennas. The angles & and

y are only intermediate variables, and once they are eliminated by
substituting their values in terms of the observable quantities into
equation (A3.1-3), their meaning and definition become irrelevant. Thus
equation (A3.1-3) is true for any two orthogonally polarized antennas. Ffor
example, if left and right hand circularly polarized antennas were used,

x and y could simply be replaced by R and L.
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Appendix A3,2
Coherency Matrix and Degree of Polarization

A matrix known as the Coherency Matrix contains all of the polarization
information about a signal (Ko, 1962 and Beran et al., 1964). It is

xF Xy
(<] = | w

where x and y are the complex output signals from two orthogonal receiving
antennas. The total signal power is

P, = trace [c] = »F+w*

The degree of polarization is

m=J1- _ddet (]

(trace [c"j)2

=J 1 - 4(xx* yy* - xy* I;L__
( xx¥ + yy* )

Using the fact that xx¥ = P y_y*'=Py and xy* x*y = ny we have
2 \
app - p 2
[ n
(Px+Py)

This may also be rearranged to

. 1 ¢ 2
m= ———=—=— (P, - P )" + 4P
Px + Py X y Xy
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Appendix A3,3
Effects of Noise on the Measured Degree of Polarization

The measured degree of polarization is affected by noise in two

distinct ways. The first is that it has statistical fluctuations, and

therefore must be computed using coherence matrix values that are
averaged over a significant length of time.

Degree of polarization behaves 1ike a correlation function in that B
if only one time sample is used, its measured value will always have a

value of 1. As more and more time samples are used, its measured value

will approach the true value, from above (Bendat, 1958; Lee, 1970;

Otnes, et al, 1978). This behavior is illustrated in Figures A3.3.2 and A3.3.3

for various signal-to-noise ratios.

The probability density for the degree of polarization is shown in
Figure A3.3.1. These curves were computed by adding signals to random noise
in such a way as to simulate the actual operation of experimentally measuring
the degree of polarization. The curves apply to a single antenna which is
matched to the signal polarization. Each curve is a smoothed histogram of

5000 total samples. The integration time used for these curves is 25
data points.

The second effect of noise on the measured degree of polarization is
that receiver noise cannot be directly distinguished from unpolarized
signals. A strong partially polarized signal may have th: same measured

degree of polarization as a weak polarized signal. This effect manifests -y

Lo

itself as a measured degree of polarization that is always lower than the *
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Figure A3.3.2 - Measured Degree of Polarization, when the True Degree
of Polarization is 1.0.
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true degree of polarization. When the SNR is large, the measured and
true values are the same, and when the SNR is very small, the measured
value is nearly zero.

This effect may be quantified as follows: The received signal

powers in the two antennas are

szPs(—lil“—— +mcosz-%r—)

Py = P —l%m— +m cosz(-ﬂéj!zl) )

The total received signal power is, after simplification
Pr = Px + Py =P

S

To this we add the receiver noise, in the form

Since the receiver noise power in each receiver is the same, we add half
of the total to each. After the polarization type has been matched, the
cos2 factor is 1, so the total received power in the polarization-matched

antenna is
i ¢ l-m 1
PrePl—— *mmm * ")
If we Tump together the two noise-1ike components of the power (receiver
noise and unpolarized signal), and regard them as being caused by some
other unpolarized signal, then the original unpolarized power of that

signal must have been twice that measured (since any antenna receives

only half the unpolarized power). Thus
. _ 1
Punpolarized Ps (1-m+ SNR )
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The polarized component is mPs. so we can compute the measured degree of

polarization m', as

v o __polarized power in original signal
m total power in original signa
mPg T
Ps (1-m+ =+ m)

g )

This effect is illustrated in Figure A3.3.2, as the asymptotic values
approached as N+ = , 'If it were desired to measure

the true degree of polarization accurately, one could measure the SNR
separatély (by comparing the total measured power at the time when the
signal is sought, with a globally averaged total power), and then invert
the above reiation,

nem (—Lt SR

This does not become infinite for small SNR, because m' is also small in
that case. In the 1imit both SNR and m' become 2ero simultaneously, leaving
m indeterminate. This just reflects the physical reality that you cannot
measure the polarization of a signal that is not there.

Although in principle one could correct the measured degree of
polarization for both the finite-sample effect and the receiver noise effect,
it is not necessary to do so for the application at hand. First it should
be pointed out that the two effects are in opposite directions, so that
they tend to partially cancel. Second, the measured degree of polarization
is always a monotonically increasing function of the true degree of
polarization, so that a thresholding operation may always be carried out

successfully, even in the presence of the two above-mentioned effects.
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Appendix A3.4

Linear Phase Invariance Property of Coherent Power

To demonstrate the linear phase invariance property, let the phase

of the signal z advance linearly by an amount AO® radians per second. Then

if we explicitly write out the averaging process for coherent power,

N-1
|
P ™ | WT L Had” ,

and change the z's to polar coordinates,

2 = A, el O+iod )
1

where O is the original (arbitrary ) phase angle of z.

Then N-1 _ ’
1 A EJ( 0+ b0 )A e'J( 0+ ('“'l)AO )
Po= | 2 i+1
¢ i=1
N-1
. 1 - 30
P |1 L Ahiace
N-1
. 1 -jho |.
Pe ® “m—‘ |° ‘ Lfl Aikin
R
Pes W[ Ahia

Since this is independent of A0 , we see that the linear phase shift has
no effect on the outcome. Note, however, that any other phase shifts
(non-1inear or random) would cause Pc to become smaller, thereby

illustrating its sensitivity to phase coherence.
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Appendix A3.5

Generalized Coherence Mathematical Details

From Equations (3-5), (3-9), and (3-10), we obtain

6oV * 18w |"|sr“'r'z 243" (A3.5-1)

where

- 1 - L
neE T, TR TPy

Zy = Kpxg * Koy
and K, and K, were defined earlier in equation (3-5). Substituting for
the z, values, the summation cerm becomes

N-1

Summation = }:1 (leiﬂ + KZ’HI) (K x;* + K *y‘*)

=
N-1
B O™ ¢ KR Y g™ + KKy

L LA LRV (A3.5-2)

From equation (3-5), we obtain

m:.E" ! ]
: o1 Ax F+ Iy P

which may be regarded conceptually as the power in the x antenna, normalized

to the total power; call it Pxn

N ly; | ?
1 i
N
1 Vix Yy
which may be regarded conceptually as the nower in the y antenna, normalized

to the total power. Call it Pyn.
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N ly; | N x|
=1/ T2 + Tyl =1/ T2+ Ty T2

which may be regarded conceptually as the cross power between the x
and y antennas, normalized to the total power, with a phase lag of ¢ .

call it P e d 6,

xyn
* = 1 N 'xﬂ *is
K1K2 = I —— e
i= 1 EIAL LRt 1 ,s“w,!’

which may be regarded conceptually as the ratio of the cross power

between the x and y antennas, to the total power, with a phase lag

of 5. Call it nyne'ﬂs . Then the summation becomes

N .
. - js
Summation iEI lP n%i+1 ‘ + nyne yi+1xi*

-3s
*Pyn® T XYt Y PynYianY :l (A3.5-3)

The first term within the summation is the autocorrelation function
of the signal in the x antenna, weighted by the normalized power in the
x antenna. The last term within the summation is the autocorrelation
function of the signal in the y antenna, weighted by the normalized
power in the y antenna. The middle two terms within the summation are
time-shifted cross-correlation functions between the signals in the
x and y antennas, weighted by the normalized cross power in the x and
y antennas. The two middle terms differ in that one has the time lag
in x, and the other has it in y, so that both are included in a
symmetrical way. The two middle terms also differ in their phases.

Due to the polarization type of the signal, the phase of x is expected

-288-




to lead the phase of ¥ by the angle 5§ . This phase difference will on
N the average be cancelled by the e J% factor for y, and by the e 3
: factor for y*. The extent to which this phase difference cancellation

occurs is a measure of the phase coherence of the signal both in time

and between the two antennas.
Thus we see that the terms within the sumation of equation (3-10)

represent all of the possible time-shifted correlation functions of the

signal, with each correlation function being weighted by its importance
relative to the particular signal being received.
The multiplicative factor outside of the summation of equation

(3-10) takes into account all of the possible non-time-shifted

correlation functions of the signal, namely

o o
<
n "
| E|e
-y e
ZutaENME
[ ot
< >
rads -de
o >
—ly by
* »

I x,y.*
jep T

&
|

In summary, the generalized coherence expression involves all the
possible correlation functions of the signal. The separate effects of
polarization and time coherence lose their individual identities, and
thus generalized coherence may be regarded as a fundamental characteristic
of the signal itself, apart from the way in which it is received and
measured.

The correlation functions in equation (3-12) are merely generalizations

of those found in the coherency matrix discussed earlier. This leads to
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the suggestion of a Generalized Coherency matrix,

[GC] YL 63) yy*(T1)
x¥y(1) yy*(1)

where 1 is the time shift of the correlation function. When t = 0, this

matrix reduces to the coherency matrix, which as stated previously

completely defines the polarization of a signal. When t ¥ 0, this matrix
completely defines the time coherence properties of a signal. Thus the

Generalized Coherency matrix completely defines both the polarization and
time coherence properties of a signal.

g

mm!!
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i
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Mndix A3,6
Generalized Coherence Statistics

Test cases showed that GCV is insensitive to the distribution of

signal power between the two feed antennas, so all simulations added

the signal to only one antenna, and the signal-to-noise ratio is
therefore defined to be that in a polarization-matched antenna. The
actual operational SNR is always lower than that, since the other
antenna contributes an equal amount of noise and no additional signal.
It is difficult to define a SNR which takes this polarization effect
into account satisfactorily. If one simply takes the ratio of total
signal power to total noise power (adding powers arithmetically), one
obtains a SNR that is one half of that in a single matched antenna.

On the other hand if one were to add together the output power signals
from the two antennas, using simple square law detectors, the SNR would
be V2 less than that in a single matched antenna. The definition used
here always underestimates the performance of GCV relative to total power
detection.

In Figure 3.5 the open circles are the simulation outputs of 25
seconds integration on the sum of the powers of the two feed antennas. The
solid line is the theorctical locus of these points, representing a SNR
improvement of five, due the integration over 25 data points (i.e., v25 = 5).
The plus signs are the simulation outputs of GCV, computed over the same 25
data points. The dashed line is simply a smooth curve drawn through these

points.
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For low SNR, additional data points were obtained for Figure 3.5 from
the simulation probability density curves shown in Figures A3.6.1, A3.6.2,
and A3.6.3. The points were obtained using a relation:

OUTPUT SNR = (MEAN VALUE, AT DESIRED SNR‘ - (MEAN VALUEQ AT _ZERO SNR)

The power points are shown as solid circles, the GCV points as letter X's, and
the square of GCV as solid triangles. Since the simulations for probability
density involved a much greater number of total data points (5000) than did
the simple comparison simulations (25), the experimental error is much smaller
in the former case. This explains why the points obtained from the power
probability density curves fall exactly on the theoretical curve, whereas the

others exhibit a scatter.



Appendix A3,7
The Possibility of Truly Coherent Detection

Generalized coherence does not require knowledge of the exact signal
frequency within an MCSA output bin, because of its phase invariaace
property. The one remaining piece of information that is not used by
generalized coherence is the phase angle of the degree of coherence
(i.e., the phase angle of the complex autocorrelation function). This
phase angle is in fact the average phase change per data point (i.e., the
linear phase term). The offset frequency from the center of the bin is
—Jégglz— (since f = —%%— ), in units of binwidths. In principle,
one could compute ¥, after taking the polarization information into
account, and then use it to apply a phase correction to the signal that
compensates for its frequency within the MCSA bin. The procedure could
be iterated if necessary, by computing a new 4y, after the first
corrections had been applied, and repeating the process. This would
presumably permit a truly coherent detector to be used, in place of
that portion of the generalized coherence that calculates Iizi+lzi*| .
Instead we would compute l”zzl | T Zilz ‘ where ‘uzzl now

i=1
serves as a measure of the coherence of the signal.
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Appendix A3.8
Theory of ANOVA

Analysis of variance is deeply rooted in the history of
statistical methodology (Cochrane and Cox, 1962, and Scheffe, 1950) and
it is a prime tool for the handling of data obtained from designed
experiments. As its name implies, it involves the systematic parti-
tioning of the total variation in specially obtained data sets. The
partitioning is done in order to assess the contribution each designated
source of variability has on the total variance.

The form of analysis of variance that is appropriate for the SETI
data matrix is the two-way ANOVA with cross classification. The columns
of the data matrix represent the FREQUENCY in Hz, while the rows represent
the TIME in seconds. Cross classification is obtained by having at least
two observations per matrix cell. This "pseudo" set of replicated obser-
vations (Sec. 3.5, ANOVA, Performance) is necessary for the calculation of
an interaction effect, and an interaction effect is necessary for the detection
of certain types of signal. So, to consider the most general class of signal
types, an r x ¢ matrix of time vs. frequency, with n observations per cell

will be the format for the analysis of variance done on the data.

th replicate to the

Let Yijk represent the observed response of the k
ith level of the row treatments and the jth level of the column treatments.
Stated in a more physical fashion, Yijk represents the calculated (observed)

polarized power of the kth replicate at the ith time period and the jth

frequency.
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Each observed response, YiJk can be represented by the following
model:

Y'ljk =+ pi + YJ' + (pY)iJ + Eijk (A3-8‘1)

where i = 1,...,r and r is the number of levels of the first factor (time);
J=1,...,c and c is the number of levels of the second factor
(frequency);
k =1,...,n and n is the number of replications for each row x column
combination;
while u is the overall mean response, which, for this problem, is the

average power. o, represents the effect of the ith level of the first factor
th

averaged over c levels of the second factor; (the i~ time interval response

values averaged over all frequencies).
t
yj represents the effect of the j h level of the second factor

averaged over the r levels of the first factor (the jth frequency averaged

over time).

(py) represents the interaction between the 1th level of the first

iJ
th level of the second factor (the interaction between

th

factor and the j

th

the i time (second) and the j~ frequency).

€4 jk represents the deviation of Yijk from the population mean

response for the (13’)th

population.
To demonstrate how the total sum of squares can be partitioned
into the sum of squares attributed to row and column and interaction

effects, the following mathematical discussion is presented.
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Consider the deviation obtained by subtracting the mean u in (A3.8-1)
from Yijk' and substituting the following point estimates for the

parameters:
I
. P1 * Vi...' V..
| Oj * Y.j. - V...

€k = Yigk ~ Vage
The following expression for the partition of the total deviation about
the mean:
(Yijk -V =V, -V )¢ (v.j. -Y...)
F (Vg = T = Vg #1000+ (g - Vg0 (R3.8-2)
is obtained.

Three tests of hypothesis can be realized by looking at the computed
F-ratios for rows, columns and interactions. For a given a-level (a
prespecified risk) the critical value can be found for the appropriate F-
distribution. The null hypothesis of no-signal present is rejected if the
computed F-ratio for rows, or columns or interactions exceeds its critical
F-value.

The choice of a, which is the risk allowed in rejecting the null

hypothesis, Ho’ even though it be true, can be made as small as desired

* The dot (-) indicates summation over all values of the index replaced
by the dot; i.e.,

- .1
3 Toee * T 1flj§1kgl "3k
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(Type I error) However, a very small a will result in a large Type II
error, called 8. B is the probability of accepting the null hypothesis
when it is false. The relationship between Type I and Type II errors is
indicated in TableA3.8.2,

DECISION
ACCEPT REJECT

NO a
H TYPE 1
0 ERROR ERROR

HYPOTHESIS
8

H1 TYPE 11 NO

ERROR ERROR

Table A3.8.2 - Type I and Type Il Errors

For the detection problem, a represents the probability of affirming
the presence of a signal when none is present; i.e., a FALSE ALARM. 8
represents the probability of MISSING A SIGNAL when one is present. A
trade off between these two types of errors is always present in any
statistical hypothesis testing. A decrease in one type of error results
in an increase in the other type of error, for a fixed number of observations.
Usually, a is preset at some tolerable level, and the value of 8 is
determined for various alternative hypotheses. The complement of B, namely

(1 - 8) is called the power of the test. Plots have been determined

(Chemical Rubber Co., 1968) showing the power of ANOVA for given o against
varfous alterrative hypotheses. The alternative hypotheses state that a signal
is present. Obviously, the stronger the signal the higher the value of (1 - 8),
and thus the greater the 1ikelihood of its being detected.
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Appendix A3.9
ANOVA Performance

Experimental Conditions

1.

A1l experiments were cafried out at nine signal-to-noise ratio (SNR)
levels, starting with 9 db and decreasing to -12 db in decrements of
3 db. The SNR is represented in the figures by the vertical axis.
The horizontal axis represents the row, column, or interaction
variance ratio depending upon the type of signal being analyzed.
Four types of signals were consistently analyzed. They are:

(a) non-drifting narrow-band signals,

(b) broad band pulsed signals,

(c) slowly drifting narrow-band signals, and

(

d) drifting narrow band signals.

These four types represeri orobable forms of a meaningful ETI

signal, and are diverse enough to trigger one (or more) of each

type of hypothesis provided for by ANOVA.

Three factors that affect the quality of detection of signals by

ANOVA were examined for each of the four signal types of all

specified SNR. These factors are:

(a) width of signal

(b) frequency averaging

(c) number of bits used to represent the signal power (quantization
level)

The data for all combinations of the three above-mentioned factors

were each analyzed six times with six different noise fields, and

the averages of the six results are shown in Figures A3,9. to A3.9. .
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Discussion of Variance Ratio vs. F-Ratio

The use of the expression “variance ratio" instead of the familiar
F-ratio is in recognition of the fact that the distribution of the noise
power data is exponentially distributed rather than Gaussian, hence the
ratio of the squares of these random variables follows some distribution
that is not yet known. Until the theoretical distribution is established,
critical values appropriate to the F-distribution for various o-levels can
serve as conservative thresholds for the hypothesis tests. Empirical
evidence of the distribution of the variance ratio for the noise data,

seems to support this assumption.

Description of Figures

Figure A3.9.1 depicts the representation of four types of signals in
the noise field matrix.

Figures A3.9.2(a-d) demonstrate the sensitivity of ANOVA as a function
of signal width. Widths of 1, 2 and 4 Hz bandwidth are superimposed upon the
noise field according to the signal type pattern. As expected, an increase
in signal width in general improves the detectability as is evidenced
by the larger values of the variance ratio. In particular, Figure A3.9.2(a)
depicts the response of ANOVA (as represented by the column variance ratio)
to a non-drifting narrow-band signal. If a variance ratio of i.3 represents

a critical value, a one-Hertz signal would be detectable at -1.5 db, a

* The derivation of the distribution of the variance ratio for exponentially
distributed random variables is being investigated (Sogliero, 1980).
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two-Hertz signal at -3 db, while the four-Hertz bandwidth signal would be
detected ¢t -6 db. It is understood that the signal is present the full
20 seconds.

Figure A3.9.2(b) shows a plot of the row variance ratio for a broadband

pulsed signal. The signal has a bandwidth of 40 Hz and lasts for 1, 2, or

4 seconds. Here the effect of signal width is even more striking than in

Figure A3.9.2(a). If a variance ratio of 1.5 is considered as the threshold, a

1-second pulse would be detectable at abort -2 db, a 2-second pulse at about
-4 db, and a 4-second pulse at about 5.5 db.

Figure A3.9.2(c) shows the plot of the column variance ratio for a
slowly drifting narrowband signal. While the general trend remains as

in A3.9.2(a and b) the increase in detectability is not as great due to the

splitting of the variation in the data between the column and interaction
sum of squares. Nevertheless, the improvement with signal width is
sizeable.

Figure A3.9.2(d) shows the plot of the interaction variance ratio,
the term most logically suited for the drifting narrowband signal.
Unfortunately, ANOVA fails to pick up the 1-Hz signal at any SNR. If
the matrix were square the results would be better. For signals of
2-Hz and 4-Hz bandwidth the results are better. However, for this
configuration of matrix size and type of signal, ANOVA does not do well.

Figures A3.9.3(a) to A3.9.3(d) show the effect of frequency averaging

upon the variance ratio. In Figure A3.9.3(a), a non-drifting narrowband

signal shows consistent improvement in its detectability as a result of
increased frequency averaging. The improvement occurs as a result of the

smaller residual variance brought about by the averaging. In general,
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the residual variance is reduced by a factor of 1/N, where N is the
number of frequencies averaged. For larger time x frequency matrices,
an even greater improvement in detection might be expected.

A broadband pulsed signal displays a more complicated response as
reflected in the row variance ratios plotted in Figure A3.9.3(b). While
the 8 Hz averaging is highly beneficial for SNR > 0 db, a lessening of
its effectiveness is detected at SNR < 0. In fact at -12 db, although

mostly noise effects dominate, the 8 Hz averaging fares worse than either

2 or 4 Hz averaging.
Figure A3.9.3(c) depicts the effect of frequency averaging upon a

slowly drifting narrowband signal. Here, as in A3.9.3(a), the effect of
averaging is highly beneficial, with 8 Hz averaging being consistently
better than the other averaging levels,

Figure A3.9.3(d) shows how the drifting narrowband signal is improved
by frequency averaging.

As was shown in Figure A3.9.2(d), the rapidly drifting signal is most
difficult to detect for the matrix size specified--a square matrix being
optimal.

Figure A3.9.4(a-d) shows the effect of bit quantization in the
generation of the noise field. Quantization is a necessary outgrowth of
the discretization of the data. The level of quantization refers to
the number of bits that are available for the algorithm processing.

For the simulation studies 2, 4, 8 and 10 bits are used.

The use of 2 bits implies that the observations of the noise field

are represented by 4 numbers only. This represents the number of

intervals allowed in the partitioning of the exponential distribution.
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It is apparent that some information is lost at this level of quantization,
In (Chen, 1980) the loss of such information as a function of bit size is
explored, Different scale parameters for adjusting the variance (of the
exponential distribution) to the word length in order to minimize the loss of
information, are presented. These values are used to adjust the quantization
levels of the clipped exponential distribution.

Figure A3.9.4 (a-d) reflects the results of quantizing the data of
exponentially distributed noise pulse signal to bit values of 2, 4, 8 and 10.
The degradation of the detectability of the signal at low quantization levels
is apparent. A gradual improvement results as the bit size increases. For
bit size of 10 the curves are almost identical to the non-quantized values.
Figure A3.9.4 (d) shows that quantization does not improve this signal type
possibility of detection. For adequate performance of the ANOVA algorithm,

eight bits are recommended.
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Signal-to-Noise Ratio, dB

Signal Width vs, Column Variance Ratio

Vertical Slope: Non-Drifting Narrowband Signal
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Figure A3.9.2(a) - ANOVA's Sensitivity to a Non-Drifting Narrowband Signal :
as a Function of Signal Bandwidth
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Signal-to-Noise Ratio, dB

Signal Width vs. Row Variance Ratio

Horizontal Slope: Broadband Pulsed Signal
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Figure A3.9.2(b)

Row Variance Ratio

- ANOVA's Sensitivity to a Broadband Pulsed Signal
as a Function of Time Duration
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Figure A3.9.2(c) - ANOVA's Sensitivity to a Slowly Drifting Signal
as a Function of Signal Bandwidth
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Drifting Narrowband Sianal
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Figure A3,9.2(d) - ANOVA's Sensitivity to a Drifting Narrowband
Signal as a Function of a Signal Bandwidth
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Figure A3.9.3(a) - ANOVA's Sensitivity to a Non-Drfiting Narrowband
Signal as a Function of Frequency Averaging
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Broadband Pulsed Signal
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Figure A3.9.3(b) - ANOVA's Sensitivity to a Broadband Pulsed Signal
as a Function of Frequency Averaging
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Figure A3.9.3(c) - ANOVA's Sensitivity to a Slowly Drifting Narrowband
Signal as a Function of Frequency Averaging
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Broadband Pulsed Signal
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Figure A3.9.4(b)- ANOVA's Sensitivity to a Broadband Pulsed Signal as
a Function of Quantization
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Slowly Drifting Narrowband Signal
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Figure A3.9.4{c) - ANOVA's Sensitivity to a Slowly Drifting Signal as a
Function of Quantization
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Figure A3,9.4(d) - ANOVA's Sensitivity to a Drfiting Signal as a
Function of Quantization
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I do loathe explanations.

--Sir James Matthew Barrie,
My Lady Nicotine

Appendix A3.10

Carrier Wave Detector Weighting Factors and Approximate Detec tion Statistics

Amplitude Weighting and Signal Distribution Models

The weighting procedure described below is a way of applying
techniques of the Radon Transform (Radon, 1917) to the signal extraction
problem at hand. Since it allows a signal to be picked up in a continuous,
Yinear fashion, it is in some respects a generalized digital version of the
analog, delay line video detector described in the CYCLOPS Report (1973,
pp. 132-133). In general there are three potential signal distribution
modes that could be used to determine weighting factors: the delta-function
model, which uses the value in the frequency bin whose center falls within
the ray; the uniform distribution model, which uses weighting factors
proportional to the area of each frequency bin contained within the ray;
and the sinc distribution model which uses weighting factors proportional to

the area under the sinc curve.
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The MCSA impresses a sinc weighting function on the incoming data; there-
fore, the delta-function model is not exactly appropriate for this situation.

The most obvious choice is to use exactly the same model as the MCSA;
however, the following analysis of the difference between the two models
seems to indicate that little is gained by going to a sinc model, and a
uniform model is much easier to implement.

Consider a single time-frequency "picture element" (pixel) of the
array with unit length and unit width. The percentage of the pixel
value (pv) contributed to the total ray sum depends upon the way the
pv is distributed throughout the pixel and the way in which the pixel
is overlapped by the ray. For the uniform model the percentage is
just that portion of area inside the ray, which in Figure A3.10,1 is just
1 - x = x; the contribution to the ray sum is x times pv.

Consider the case in which the weighting is by the sinc function

which is, by definition (Bracewell, 1978),

sinnx

sInc x = ™

And, suppose the pv is distributed over the pixel so that the zero crossings

occur at zero power, correspendirg to the corners of the pixel, as illustrated |
in Figure A3.10.2. Since we wish to include the central lobe in the pixel, our §

purposes are served best by considering sinc (2x - 1). In the sinc model the

contribution to the ray sum made by a given pixel is given by f(x) times pv

where f(x) is X

£(x) = __J;pinc(Zt - 1) dt (A3.10-1)
fsinc(at - 1) et

Thus, f(x) is an appropriately normalized fraction of area under the sinc

function.
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Fiqure £3.10.1 - In the uniform model the contribution to the ray
sum is just that portion of the pixel which lies
inside the ray multiplied by the pixel value. The
variable x represents the fraction of pixel over-
lapped by the ray.
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sinc (2x - 1)

Figure A3.10.2- The Central Lobe of the Sinc Function
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For purposes of calculation it will be useful to simplify (A3.10-1)
First, observe the defining relation for the Sine Integral function

(Abramowitz and Stegan, 1964).

X
Si(x) = I Sint g, (A3.10-2)
0 t
By (A3.10-2) it is straightforward to obtain
Si(nx) = nj sinc t dt, (A3.10-3) e
0
and 2x-1 ' |
i sinc(2t - 1) dt = 211! Si(m) + \Xsinc t dt (A3.10-4) Fg 7

For 0 < x < 1/2 the integral on the right side of (A3.10-4) is negative -1

it is useful to take that into consideration explicitly; thus

sinc(2t - 1) dt = —-— Si(n) ~ —— Si(n - 2nx), 0 < x < 1/2
1 Si(n) + 54— Si(2nx - 1), /2 < x < 1

(A3.10-5)
We now observe that the denominator in {A3,10-1) is %-Si(w) and rewrite

f(x) in terms of the tabulated Sine Integral function,

%' zs%(n’T Si{m - 2mx), 0 < x < 1/2

f(x) = )

%—+ 3- _.).W S?(ZTTX - TT); 172 <£x < 1, (A3. 10'6)

where Si(n) = 1.8519370. (13.10.7)

The values for f(x) were computed for 0 < x <1 and were used to
compute the per cent of the pv included in the ray sum which is given by

f(x) times 100. In Figure A3.10.3 the results are plotted as a function of the

fraction of overlap x. The straight line represents the percent of the
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% pv

(Overlap Fraction)

Figure A3.10.3 - Comparison of Uniform (solid line) and Sinc (dashed line) Models
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s R

pixel value included in the ray sum for the uniform mcdel and is included
for comparison with the graph for the sinc model.
A moment of thought reveals that the results of Figure A3.10.3 hold
even if the ray is not parallel to the pixel, provided x is normalized to
represent the fraction of overlap for the more general case.
In the case where the pv is distributed over the pixel as indicated
in Figure A3,10.4 so that the zero crossings occur at half-power, corresponding

to the midpoints of adjacent pixels, the function f(x) is modified to

f(x) = rSiﬂC&‘ 1/2)dt

- 1 (A3.10-8)
{isinc(t - 172)at
In terms of the Sine Integral function,
1 1 .
7" §§TTE7§7'S1(“/2 -mx), 0<x<1/2
f(x) =
1+ ] i(mx - £3.10-9
5 iqu;7§7-S1(nx m2), 12 <x<1 )
where
Si(n/2) = 1.3707622 (A3,10-10)

This "second" sinc model is shown in Figure A3.10.5 (dashed line) where it can

he compared with the uniform model and the previous sinc model. Observe
that for the second sinc model there is very little deviation from the
uniform.

The weighting function used by the MCSA is most closely matched by the
second sinc model and therefore, seems to be the most logical choice. However,
since the difference between it and the uniform model is so slight it is
recommended from the standpoint of the implementation that the weighting

factors for the ray be based on the uniform model.
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Fiqure A3.10.4 - Sinc (X-%) as a Function of X
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The special way in which the Radon transform (Radon, 1917; Gel'fard,
1966) is applied to the GCV numbers or power spectrum for signal enhancement
and linear pattern selection has been shown (Deans, 1979) to be equivalent
to a transform known as the Hough transform to people in the area of
pattern analysis and image processing. This transform grew out of early
attempts to implement automatic and rapid methods for analyzing particle
tracks in bubble chamber photographs (Hough and Powell, 1961; Hough, 1962;
Franck, Hough, and Powell, 1963). The basic idea is to designate the
frequency-time space by the rectangle xy coordinate system, see Figure A3,10.6.
Collinear points in this space may be characterized by the line

p = xcos 6 + ysin 6
This approach is used to map collinear points in the xy plane to single
cell regions in a space with rectangular coordinates (6,p) which we call

parameter space (see Figure A3,10.6(b)).

Calculation of Ray Amplitude Factors

Usually, the discrete implementation of Rndon transform is performed
using line integrals or ray sums, where the rays are equal in width to the
width of the pixel. Implementation constraints here dictate that the ray
widths vary as a function of angle. (The horizontal distance is kept
constant and equal to one unit as illustrated in Figure 3.9.) A method
is presented for computing the ray factors which does not require that the
ray width be the same as the pixel width. A sample calculation is given to
illustrate the method for finding the ray factors associated with a given

cell or pixel.
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Given a unit cell (or pixel) at locatfon (1+1,j+1) in the grid
indicated in Figure A3.10.7 1t is desired to find the line factors and ray
factors associated with the cell. The 1ine factors may be found directly
from the Radon transform of the characteristic function

F(x,y) = x(i+1,3+1) = {l whenever (x,¥) € Ciyy 41
0 elsewhere
In Figure A3,10.7 the 1ine factor is just the length of the line segment AB
(shown in inset). The ray factor is the area of the shaded region. Once
the line factors are determined it is easy to calculate the ray factors
by adding areas, see Figure A3,10.8.

The line factors for Ci+1,j+1 are found from the Radon transform

formula

fj = 77 x(i+1,3+41) ¢ (ek - xcos® - ysin0)dxdy
D

where the integral over the domain D reduces to an integral over C1+1’j+1.
We now give a prescription for finding the various factors. Details
of derivation may be found elsewhere (Deans, 1979).
(1) Given 0 and Py
Calculate o = pi‘1 =0 - icos® - jsino
If p is not in the region 0 < p < sinO + cos® the line does
not pass through the cell and the line factor is zero.
(2) use Table A3.10.1 to calculate the line factors, f,.
(3) Use Table A3.10.1 to calculate the ray factors, r,.
(4) Once the ray factors are calculated there are various cases

to consider in order to find the contribution made by the cell

under consideration to the total ray sum for various rays.
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Cell (i+1,j+1) -

; Figure A3.10.7 - A Unit Cell. The Length of Line AB through the Cell is
: the Line Factor, and the Shaded Region is the Ray Factor,
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Figure A3.10.8 - Geometry for Ray Factors
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Region for p

line factor fk

ray factor v

0<p«< sine®

sind < p < cosd

cos® < p < sinb + coso

R .
sing cosb

1
coso

sin® + cos6 - p

p?

“sin 20

2psind - sin?e
sin 26

20(sine + cosd) - (1 + p?)

sinf cos®

sin 20

Table A3.10,1 - Line and Ray Factors
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For the ray width equal to unity (same as cell width) there are only two

cases (a) and (b), illustrated in Figure A3,10.9.

(aj Cell i,j contributes to ray sum Sk and Sk+1' The contribution

to Sk is just the ray factor ' for the line zk. The
contribution to Sk+1 is one minus the ray factor, 1 - e
(b) In this case a contribution is made to Si» Sgap 3Nd Sppo.

The contribution to Sk is e The contribution to S is

k+1
"+l = Tk The contribution to Sk+2 is 1 - T+l

A sample calculation is shown for the indicated cell in Figure A3.10.10.
Calculation for C(21,7):
Step 1:  C(21,7) contributes to rays 22 and 23. © = 14.04°

P = Pop = 22c0s0

P =Py - 20cosO - 6sin0 = 21.343 - 20.858
p = 0.485

Step 2: Contribution to ray 22:

_ __2psin0 - sin®0 _
2o = 5In?0 -375

Contribution to ray 23:

r23 = 1 - ?‘22 = -625

Phase Factors

Overview

There are two separate phase corrections that must be applied in
order to properly combine adjacent time-frequency cells into the generalized
coherence value along a given line. One of them is due to the phase of the

signai itself, and the other is caused by phase shifts that occur in the
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Case (b)
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Figure A3.10.9 - Contributions made by Ray Factors to Ray Sums
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MCSA. The two corrections are independent, and can be made separately.

Signal-Caused Corrections

From equation (A.28) we can write the polarization-matched signal

as 1 dep ‘
2, = Ai eJ(nfl + anoi + 04)

where
f = frequency drift rate (Hz/sec)
fo = initial frequency (when i = C)
ei = initial (arbitrary) phase angle
i = integer time index; i = 0 initially; 1 increases in steps
of one second.
Note that the phase is a quadratic function of time.

The generalized coherence factor involving Z; is

N-1
GCv - iio zi+lzi* I
Using
Jnf(i+1)2 + 2nf _(i+1) + O.,,)
we obtain N-1
GV -~ |z AiAi+leJ(nf(i+1)~+ 2nf0(1+1) + Qi+1) - (nfil+ 2nf01 + Qi) ‘
i=0
N-1 . .
)i j( (0, .,-0,
v -t AiAi+1eJ1(ZHf)eJ(“f*z“fo) e340i41°0) ‘
" 1 L
sy . | ed(rfrnf) E A gJanfi 3(0,,,-0,) !
i=0
Since the magnitude of the phase term outside the summation is one, we have
N-l » .' K3
Gy - iEO AiAi+leJ2ﬂf1 o3 (0547704)
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or
N-1

I 2,,,2;% e
§=0 1+1%4

GCV -~ +i2nfi

This 1s the value that would be measured if no phase correction were made.

In order to cancel the phase variation, we actually compute

GV -~ | L zi+121* e

i=0

N-1 -jonfi
(A3.10-11)

The 1inear phase invariance property of generalized coherence thus
requires that only a linear phase correction be made to a signal with a

quadratic phase variation.

MCSA-Caused Phase Corrections

The phase shift introduced by the MCSA is derived in Appendix A.

For a drifting signal, the phase shift depends on the path of the signal
through the frequency bin during the integration period. A good
approximation to the phase shift is nAf% radians, where Af& is the
difference frequency between the signal and the center of the bin (in
units of binwidths), measured halfway through the integration period.
Table 3.5 compares the approximate and exact phase shift, for linear
drift rates up to 1/2 Hz/sec, which is the maximum being considered for
this system.

The approximate method will be used for the remainder of this
discussion, because it is easier to visualize. The exact method assumes
that the signal has infinitesimally small bandwidth, whereas the approxi-
mate method is somewhat more general. This comparison is analogous to the
case of the amplitude weighting factors, where sinc weighting is exactly

correct for infinitesimally narrowband signals, but uniform weighting
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gives nearly the same result, and is applicable to wider bandwidth signals
as well. Since the phase factors only need be computed once and then
hardwired into the system, the exact method of Appendix A could still be

used if desired, following the general plan to be described here.

Drift Range Exact method phase shift Approximate method phase shift

0<d<0.5 1% as®
0<d<0.2 16%9 18°
0<d<0.1 8%1 9°

Table A3.10.2 - Comparison of Exact and Approximate MCSA
Phase Shift Computations (See Appendix A)

Let us first consider phase changes which occur as a function of
time (i.e., from one integration interval to the next). Changes which
occur as a function of frequency between adjacent frequency bins in the
same integration interval will be considered subsequently. In Figure A3,10.11,
the solid lines are the edges of the Radon band, the dashed line is its
center, and the dotted lines mark the halfway time point of two successive
integration periods. The boxes represent time-frequency bins. Let us
first assume that the signal is drifting exactly along the centerline of
the radon band, at a drift rate of %. Using the approximate phase shift
method discussed above, we see that the MCSA will introduce phase shifts
of m(C-B) in bin 1 and n(F-E) in bin 2. Since F=C+f and E=B, the shift
in bin 2 is also n(C-B+f). Thus the shift in bin 2 differs from that of
bin 1 only by n%. It may also be seen that the same difference would

occur between bin 3 and bin 2, and between any two successive bins in a
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Figure A3.10.11- MCSA Phase Shifts Between Successive
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vertical row. Suppose now that the signal was not at the center of the
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radon band, but at its left edge. The phase shift introduced by the
MCSA is m(A-B) in bin 1 and m(D-E) in bin 2. Since D = A+f and E = B,
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et
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this is also n(A-B+%). so again bin 1 and bin 2 differ only by w%.

Thus it can be seen that the phase shift between adjacent integration

reriods does not depend on the position of the signal within the radon

band. Furthermore the phase change from one integration period to the E%
next is constant, which means the phase changes linearly with time. .
Since generalized coherence is invariant under such phase changes, this i%

shift has no effect and can be ignored. 3
Considering now the MCSA phase shifts between adjacent frequency '

bins in the same integration interval. In Figure A3.10.12 the lines have

the same meanings as in Figure A3.10.11. Points A, B, and C are the midpoints
of bins 1, 2, and 3 respectively. Point D is the intersection of the ;%
center of the radon band and the center time line. The radon transform -1
requires a weighted average of all bins lying within the radon band. :
The amplitudes of the weighting factor are the respective areas within é
the band, as discussed elsewhere. The relative phases must also be B
taken into account for proper combining of the bins.

The position of the signal within the band makes no difference as .
was shown above, but some point must be chosen as a phase origin, so ot
that all the bins can be adjusted to have the same phase. The logical
choice for this is point D. The MCSA phase shift is m(A-D) for bin 1,
n(B-D) for bin 2 and n(C-D) for bin 3. Thus the necessary correction

factor is the negative of these, and would be applied in the form

L S

2, = cleeJ"(D'A) + cyzge jn(D-C)

jn(D-B)

d‘mmm]

]
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where the c's are the amplitude weighting factors. It is also useful to
note that (D-A) - (D-B) = B-A =1 and (D-C) - (D-B) = B-C = =1 (since the

units are bin-widths). Thus z, can also be written as

24 = eJ"(0-8) (clee+J" + ez * c3zce'3")
. oJm(D-B) -
2, = e (-clzA * Cy2g - cazc) (A3.10-13) )
Either method (A3.10-12) or (A3.10-13) may be used to apply the necessary i}

phase correction factors.

The two MCSA phase corrections derived above may be combined and

applied simultaneously. The composite result is

jn(D-A-2fi) | _, in(D-B-2f1)

. jm(D-C-2f1i)

(A3.10-14)
for a given drift rate and starting point, the phase factors in equation
(A3.10-14) may all be computed in advance, and stored in a lookup table

for real time computation purposes.

Approximate Effect of Drift Rate Quantization

Since only a finite number of drift rates are used in the CWD it is
important to know what happens if a signal drifts at rate other than one of
those chosen for analysis. The worst case is when the signal drift rate is -
halfway between two to those chosen. That case will now be examined. -

The CWD rate quantization chosen is such that the drift increment is

A

the reciprocal of the total integration length (e.g., for 20 seconds

w”mm\mmi‘

integration, the drift increment is 1/20 Hz).

A typical worst case is thus a signal with a drift rate of 1/40 Hz.

oo

Over the total integration period, it will drift half-way across a radon band.

L
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Then the worst way in which it can do so is to drift from the center to
one edge. Since the combining operation among bins at the same time does
not depend on the signal frequency, the combining will still be correct.
However, the phase correction of the sum to the center of the radon band
will have an error varying linearly from 0 at the beginning to n/2 at the
end of the integration period. Similarly the phase correction factor due
to the signal itself will be in error ranging linearly from 0 to =, over
the same period, resulting in a total error of 3n/2. The net result is
that the zi+lzi* terms of GCV do not all add up exactly in phase, and
partial cancellation occurs. The amplitude of the observed signal also
changes as it drifts across the MCSA sinc response function. The
situation is exactly analogous to that given in Table A.2, if it had an
entry for 0 < d < 0.75. Plotting and interpolating Table A.2 gives an
amplitude value of 0.62 for this case. Thus the worst case signal loss
is 2.1 db.

For the same drift rate, the best case would be for the signal to
drift from -1/4 bin, to +1/4 bin, relative to the center. Then the
amplitude factor would be about .85, making the average be about 0.74,
or 1.3 db loss. If we now calculate the average over all drift rates,
we can estimate the average loss to be one half of this or abcut 0.7 db.

In summary, by choosing the drift rate increment to be the
reciprocal of the integration time, we incur an average decrease in
sensitivity nf 0.7 db, and worst case loss of 2.1 db. This loss is not
substantial, and could be decreased by increasing the number of drift

rates analyzed.
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Approximate Detection Statistics

In this section, approximate detection statistics for the CWDwill
be derived. The basis for this derivation is the body of pre-existing
knowledge concerning the Radon transform. The derivation is approximate
in the sense that it does not explicitly include the effects of
Generalized Coherence. Based on the results of Section 3.3 above,
these results may be considered as underestimates of the true performance
of the CWD.

The particular angle-radius parametrization (which comes out of
Radon transform theory naturally) utilizéd by the CWD was not developed
for the Hough transform until (Duda and Hart, 1972) pointed out the
advantages in 1972. Since this work many papers on the Hough transform
and more general Hough-type transforms have appeared (Shapiro, 1978;
Sklansky, 1978; Shapiro and lannino, 1979). (Shapiro, 1978) and
(Shapiro and lannino, 1979) have studied the Hough transform in the
nresence of noise with particular attention given to errors in parameter
space which arise from errors in feature space. Noice analysis of the
MCSA output is discussed elsewhere in this report. The important point
here is that the transform which is being used has been applied to arrays
of data which are in many respects similar to the properties of the GCV
and power spectrum data. The noise properties of the transform have been
studied and it may be comforting to observe that the transform is in some
sense optimal in that it behaves as a matched filter (Sklansky, 1978).
Noise analyses from a slightly different viewpoint(Hanson, 1979)
demonstrate that once the projections (GCV numbers or sum over power

spectra along rays of width a) are obtained for a fixed angle 0, the
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function Pe(x) which contains both signal and noise information may be
studied by standard techniques of communication theory (Middleton 1960;
Middleton 1965; Whalen 1971). It follows that the optimum SNR is given by
L lratal® an®

vao //T

for a projection ray of width a and length L, for white noise with mean

SNR

zero and variance o?, where the integral is over the ray width. Observe
that for signal S in k pixels of unit width this reduces to kS/ovL . For
L=1and k = 1 we obtain S/o for a single pixel, and for _ = k we obtain
vk S/o.

Assume that L is the integration period t of the CWD. Then, according
to the above SNR formula the optimum signal power extracted is given by
%-«f'ga This expression can be used to do some elementary analysis to
investigate the set of conditions under which a signal can be detected if
the angle of the drifting signal is not matched exactly by a projection
ray P@ of the detector. The probability of detecting a signal can be
analyzed with respect to the fraction of signal (k/t) picked up by the
detector at various false alarm rates (a levels) and for different signal
to noise ratios (S/c). In addition, the number of seconds needed for
the integration period t in order to achieve a 99% probability of detection
for different a levels and S/c is considered.

The results given below are based on the following: The noise is
assumed to be a Gaussian (normally distributed) variable with mean
power u/Hz and standard deviation o = u. (Note that we do not assume
normalization with zero mean at this stage.) The sianal is assumed to be

continuously drifting, with a constant mean power S/Hz and, if present, is

presumed to exist for the entire integration period (t seconds). It is
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also assumed that the average power x (or GCV) in an arbitrary ray

(traversing a sufficient number of data points) is nearly normally
distributed with mean u and variance ofta where t, the integration
period, and a the width of the ray, are the dimensions of the ray. The H

standard deviation is, therefore, oy = a/t. e

The hypotheses to be tested are:

H

Hl = There is a signal in addition to the noise.

The decision rule will be to reject Hy 1f X >+ z 05 where z_

[}

The power distribution (in the region) is due to noise alone.

is -
the z-score associated with a false alarm rate o (i.e., Pr(z > zd) = a).

Therefore, the probability of detecting a signal when it is present is, in

general, Pr(x > +{x<‘1 I)

Now, under Hl’ there is signal power in addition to noise so the o
expected value of x is x = u + %% where k is the number of times the Jd
signal is in the ray during the integration periou .. Since the signal

|
-E
|
;

nower is assumed to be a constant, x is the same value as before
(i.e., O; = (I/f’t—a. )

In the special case of the (WD a projection ray is approximately

1 Hz wide (a = 1) and t seconds long, so the value of x is . + 5% where

% is that part of the time a signal is picked up by a projection ray.

. . . .S
p is the mean noise power, % =-7%, and the signal to noise ratio is =
¥ pa

3

(the average signal power divided by the average noise power).

By definition a z-score is z = —15571—- where Y is the mean, y a
Y
specific value and oy is tne standard deviation. In this case it is

given by z = —55573— . Then: 1-38 = probability of detection = Pdet =

>
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Poet = Prix > u+ z o7)

7 $1

Pr(z>za-%(§t-))

"

S k
1-Pr(2z- 3 t) (A3.10-15)

Table A3.10.3 gives the number of seconds needed in a time block to

achieve a 99% probability of detection for various a, k/t, and S/y.
Figures A3.10.13 (a), (b), and (c), and Tables A3,10.4 (a), (b), and (c), show the

probability of detection versus time for various k/t, P/u, and a levels
using equation (A3.10-15),

Based on these statistics, the probability of detecting a signal
after 20 seconds of integration when SNR = 1, the false alarm rate
a = .01, and the angle of drift coincides exactly with the slope of some
ray, is approximately 98%. If the drift angle is such that a projection
ray picks up half the available signal, then the probability of detection
for the same parameters specified above, degrades to 46%. There are
several ways to increase the probability: one is to raise the false alarm
rate, i.e. if a = .05, then the probability of detection is increased by
72%; another is to increase the integration time, i.e., if t = 40, then
when a = .01, the probability of detection is about 85% and when a = .05
the probability of detection increases to 94%. Longer integration
periods are possible by combining the approximate GCV numbers (ray sums)
every 20 seconds.

It appears from the foregoing analysis that at least one projection
ray must pick up half the signal, if present, in order to detect the
signal. Therefore, the number of projection rays to include in the

detection mask is a function of that constraint.
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S/N k/t time(sec.)
.8 172 56
.8 1/3 127
.8 174 225
a = ,05
.8 3/4 44
.8 172 99
.8 1/3 223
.8 1/4 396
.5 3/4 113
.5 1/2 253
.5 173 570
.5 1/4 1014
a = ,01
1 172 87
.8 3/4 60
.8 172 136
.8 1/3 305
.8 1/4 543
.5 3/4 154
.5 1/2 347
.5 1/3 782
.5 1/4 1390
a = ,001
1 1/2 118
.8 3/4 82
.8 1/2 184
.8 1/3 410
.8 1/4 734
.5 3/4 209
.5 172 170
5 1/3 1058
5 174 1880
a = 1077
.5 1 54
1 1/2 215
1 1/2 335
.8 1/2 860

Table A3.10.3 - Approximate Number of Seconds Needed for the Integration
Period to obtain a 99% Probability of Detection at Various
a and S/N.
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S/N=10a=0.001 k=t
S/N=0.8 a=0,01 k=1t

S/N a = 0,01
1.0p= L g sm=08 ot0.001 k=t
S/N = 0.87a = 0.0001
Z[S/N =0.546=0.01 k=t
9= //" /N = a = 0.01 k/4p8
/
/ S/N =0, a=0.001 k =t
.84 IN = a = 0.001 k/t=0
S/N = 0.5 a=0.0001k =t
L S/N=1 a=0.0001 k/t=0

Probability of Detection

Figlive £3.10.13(a) - Approximate CWD Detection Probabilities
for Cases When the Signal is Present

.2 in Every Cell (k/t = 1), and in Half
the Cells (k/t = 1/2), for Various
Signal-to-Noise Ratios (S/N) and
False Alarm Probabilities (a)
A
0 ) 1 " 1 2 4 1 g2 - .
0 10 20 30 40 50 60 70 80 90 100

Inteqration Time in Seconds
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Probability of Detection
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/
// Figy® A3.10.13(b) - Approximate CWD Detection
Probabilities for the Case
/ when the Signal is Present in
75% of the Cells (k/t = 3/4),
for Various Signal-to-Noise
Ratios (S/N) and False Alarm
Probabilities (a)
11 1 1 1 1 \ L 1 y
10 20 30 40 50 60 70 80 90 100

Inteqration Time in Seconds
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S/N=0.8 o =0,05

S/N=1 o=0.05

S/N=1_a=0,00
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Figupé A3.10.13(c) - Approximate CWD Detectips
Probabilities for (3 when the
/ Signal is Presepe”Tn Half the Cells
/ (k/t = 1/2 or Various Signal-to-
S/N = 0,5 Moise Rastos (S/N) and False Alarm
a = 0.001 Probatfflities (a)
1 1 1 | ] L 1 1 ]
10 20 30 40 50 60 70 80 90 100

Integration Time in Seconds
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& 0 10 20 30 40 50 60 70 8 90 100

.01 1% 80% 98% 99.9%
001 .1 53 92 99 99.9

S/g = .8

.01 57 89 98 99.8
001 .1 29 69 90 98
0001 ,01 12 45 75 91 97.5

S/” = 05
.01 23 46 66 80 89 98
.001 6 20 36 53 78 97
.0001 1.7 7 17 29.5 57 90
S = .3
.01 8.4 16 25 33
.001 1.6 4 7.411.7
.0001 1 2

Table A3,10.4(a) - Approximate Probability of Detection for Various
a and Integration Periods t, when k/t =1 =
Perfect Match
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s

30 40 50 60 70 90 100
S/g =1
.05 76 96 99 100
01 52 85 96 100
.001 24 60 85 100
.0001 10 36 66 100
S/o = .8
.05 60 85 95 100
01 33 64 83 93
.001 12 32 58 76 94 99
.0001 4 15 34 54
S/o = .5
.05 32 51 66 76 89 98
01 13 26 39 52
001 3 8 13 24 43 75
001 .6 2 5 9

Table A3.10.14(b) - Approximate Probability of Detection for Various
a and Integration Periods t, when k/t = 3/4
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a 0 10 20 30 40 650 60 70 90 100
S/le =1
.05 46 72 86 93 97
.01 22 46 66 80
.001 7 20 36 53 78 97
0001 2 7 17 30 57 90
S/c = .8
.05 35 5 71 81 93 100
.01 14 30 44 58
.00 3 10 18 29 50 82
.0001 . 3 7
S/og = .5
.05 20 30 39 47 61 80
.01 6 11 17 23
.001 1 2 4 7 12 28
.0001 . Sl 2

Table A3.10.14(c) - Approximate Probability of Detection for Various
a and Integration Periods t, when k/t = 1/2
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Consider the situation depicted in Figure A3.10.14 where the signal
lasts t seconds and falls within the ray labeled S which is a perfect
match. Suppose the signal is traversed by a projection ray Re; then the
amount of the signal picked up by the ray is proportional to the shaded
area A and A = 1/2 {(cos(zos) + 1)cota0 - sin(zes)} where O, is the anale
the signal makes relative to the vertical and AQ is the difference
between the ray angle Or and the signal angle.

For the implementation of the algorithm the area of every ray is
the same, no matter what the angle of the projection is. Also, that
area of a ray of width 1 unit and length t seconds is t square units.
Therefore, in order to ensure that half the signal falls within the
a projection ray we need to have

t = (cos(20;) + 1)cotao - sin(20,)

S0
t + SiNLZOS)
cos(ZOS) +1

cotAQ =

Now, as Og 0, cotad » t/2, and as @S + 485° , COtAO ~» t ; 1 .

1f ¢ = 20 seconds, AO is between 3° and 6° whenever os is between 0 and 45°.

Consequently, if the ray projections of the (WD mask are separated by

3% it should be possible to detect a signal with an acceptable probability.

Furthermore, when t = 20, tan'1 2%

w?

3% which means that the ends of the
rays overlap.

A second consideration involved in the choice of the number of angles
is the maximum amount of Doppler shift caused by planetary rotation for a
planet that could support life. For a planet 1ike the earth, the Doppler
shift is .15Hz/sec. {CYCLOPS, p.57); for Jupiter it is 14 Hz/sec, and for
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A=1/2 {{cos(295)+1}Fome-sin(ZOS)}

VER

Figure A3.10,14- Proportion of Area in the Intersection of an
Arbitrary Ray R with an Ideal Ray S, which

Contains the Signal
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an Earth-sized planet rotating at Jupiter's rate (8 hr) it is 1.4 Hz/sec.
(Machol, 19 ).

Finally, there are implementation and cost considerations. A
reasonable choice, for a first approximation, seems to be 20 angles

spaced 3° apart covering the range from -27° to +27°,

Combination of Successive Generalized Coherence Values

The sets of generalized coherence values calculated every 20 seconds
are used not only for immediate threshold testing, but are accumulated
as time goes on to obtain additional results encompassing all the data
received up to that time.

Both the old and new sets of accumulators each contain GCV's for
each of eight million frequency channels for forty-one uniformly spaced
drift rates between plus and minus one hertz per second. However, it
is not optimal to simply combine corresponding frequency-drift-rate
cells.

When two sets of accumulators are combined, those individual GCV's
are added together which could approximate the same uniformly drifting
signal. For example a typical low level signal might be present most
strongly in accumulator A from one set and accumulator B in the next set.
Most likely A and B would have the same drift rate and the reference
frequency of B would be offset from A by the drift rate times 20 sec. Note
that the correspondence between one set of accumulators and the next
depends on their individual drift rates.

If a uniformly drifting signal had a drift rate that exactly matched

one of the accumulators, the best way to combine the GCV's from the
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previous time periods with the GCV's for the present 20 sec would be

to add the values of corresponding accumulators together. This would
always add accumulators containing the signal together and would always
add accumulators containing only noise to other accumulators that
contain only noise. This would allow signal-containing accumulators to
be most clearly distinguished from those that do not.

However, a real signal could have any drift rate and would in
general be expected to gain or lcse frequency relative to the closest
accumulator drift rate. In fact, from one set of accumulators to the
next, a signal could go to the next higher or lower drift rate as well
as the next higher or lower frequency.

An initial step in resolving this ambiguity is to offset the
accumulator frequencies by one-half hertz in alternate 20 second sets.
This reduces to four the number of accumulators in one set that could
contain the same signal as a particular accumnlator in the next 20
second set.

For a signal that is not clearly distinguished from noise one

cannot be sure which of the four accumulators from the previous set might

have contained the signal. The best estimate is to choose the one with
the highest GCV. Conceptually, the procedure is to add the maximum of
four possibly corresponding accumulators from one set to each of the
accumulators in the next set. This modified set of accumulators is then
used in the same way to modify the following set and so on for as many

sets as desired.

Every accumulation produced from a combination of 20 second periods

is tested against an appropriate threshold. Whenever a threshold is

exceeded it is considered sufficient evidence that a signal is present and

a flag is set for the control computer.
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How often have 1 said to you that when you
have eliminated the impossible, whatever
remains, however improbable, must be the
truth.

--AC Doyle, Sign of Four

Appendix A3,11

Cluster Detector Details and Statistics

Step 1: The Histogram Analysis

We initially subdivide the 50 x 250,000 compacted array into 1250
pattern blocks and have dedicated processors oper.i: un each pattern block
independently. Subdividing the compacted array vastly reduces the
number of computations and, hence, hardware requirements, and does not
result in a significant loss of information for the second step analysis.
After subdivision, a processor establishes a histogram for its pattern block by
simply "counting" the number of pattern points in each pattern class. If
the number of pattern points in some pattern class exceeds a preset thresh-
old, the central computer is alerted. An excess number of points in a

pattern class within a pattern block suggests the presence of a signal due

to an unusual number of one or more NBIT tests scoring a pass { = "1").

DT

This possibility may be confirmed by the clustering algorithm of step 2,
which detects the spatial structure of these pattern points within the
pattern block. The rationale for counting the pattern points in the
pattern classes instead cf counting identical types of pattermn points

within a pattern block is provided by the following example.
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Suppose that in some pattern block there is a narrow band signal which
consistently sets the same three bits for a 1000 seconds. By our supposition,
the signal will be present in 50 cells of the pattern block. A pattern point i

affected by the signal has six bits which remain unaffected, Each of these

six bits has a 50% false alarm rate. Hence a pattern point affected by the

signal has equal probability of belonging. Although the signal to noise

ratio remains essentially the same, we have a clustering of 1294 - 1250 = 44

points in this class as compared to less than one for the other histogram.
Furthermore, the three 2-bit and three 1-bit subclasses of the above 3-bit e
pattern class will also show significant clustering. This provides us
with another indicator as to whether or not a pattern class is affected
by a signal.

As was indicated in Section II1ID4.5, the first stage clustering serves

two basic functions. One is to compactify the data even further, in the -t
sense that the input to the second step analysis consists of only those

pattern points whose classes are deemed "interesting" by the first step. -
The second function of the first step clustering is to alert the central

computer if some pattern class contains an unusually large number of

pattern points, In order to achieve this objective we establish thresh-

olds for the histogram such that whenever the number of pattern points
in a particular pattern class exceeds its thres! >ld, the alarm is

activated. The levels of the thresholds are such that the false alarm
rate will be within acceptable limits. We expect some readjustment of

these thresholds as more data concerning the interdependency of the 9-bit

tests becomes available during actual simulations.

—
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Let i =1,2, ..., 511 identify the pattern class (we do not consider
the zero or "no bits are on" pattern class). Llet n(i) = 1,2,...,9 the
number of bits which determine the i-th class, Ni= the number of pattermn
points in the i-th class/pattern block, and Tn(i) the threshold for the
i-th class. If we compare the desired false alarm rate with tossing a
coin once every 1,000 seconds, where "heads" corresponds to "no false
alarm" and "tails" to “one or more false alarms", and we want the coin
to be honest, then we must set

Pr(x >0) =1-Pr(x=0)=1-(1-x)!2% =05

where o = Pr(Ni > Tn(i) for at least one i)

Pr(at least one threshold exceeded)
and x ~ b(1250, .).
Solving for a, we obtain

(0.5)1/125 = 0.999445636 or

1-oa

0.000554364

"

a

We note that

Pr(x = 1) = 1250a(l - a)'2“® = 0.347,
Prix = 2) = E@_;JA‘E a?(1 - «)'2*® = 0,1201 and
PV‘(X - 3) - 1250 x 1249 x 1248 03(1 - a)1257 = 0.0277.

6

Thus the probability of two or three false alarms in 1,000 seconds is very

small. If o, = Pr(ni > Tn(i) ), then Pr(N. < Tn(i)) =1-aq.

-363-




Since P\r‘(Ni < Tn(i) vi=1,2,...,511) = 1-a, we have
511

Il

i=1

(1 - “i) (1-a)* =1-a or

(0.999445636) 1/ 51! = 0.9999989148.

(1-a)

The corresponding nomal deviate is zz = 5. Therefore,

Tn(i) ~ ¥n(i)
%n(i)

w

or
Tn('l) = Son(i) + Un(i) . where

“n(i) denotes the expected number of pattern points in the i-th class
under noise alone and on(i) denotes the corresponding standard deviation.
We define the sensitivity, Sn(i)' associated with the threshold Tn(i)
as the minimum number of cells/pattern block a signal must occupy in
order for n(i) > Tn(i)’ where “n(i) denotes the expected value of the

signal in random noise. If the signal occupies k cells, then from the

inequality
- _ 10,000 - k
(i) =T ey R e
we obtain My 10,000
K > n(1)
2"(‘) - 1
2"(‘)rn(i) - 10,000
Hence, Sn(i) = 2"(” 1 , where

[x] denotes the first integer greater than x.

For a = 0.000554364 and 23 = 5, we obtain the threshold sensitivities

shown in Table A3,11.1,
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) 1 oGy | o) | Ty | Saci)
9 4.42 19.53 42 23
8 6.32 | 39.06 | 71 3
7 8.8 | 718.13 | 122 43
6 12.4 156.25 218 62
5 17.4 312.5 400 91
4 24.216 | 625 746 130
3 33.07 11250 1415 189
2 43.3 2500 2717 290
1 50 5000 5250 500

Table A3.11.1 - Threshold Sensitivities

-365-




Step 2: Single Linkage Cluster Analysis

This algorithm searches for spatially contiguous cells of a pattermn

type within a pattern block. Two cells are contiguous with respect to
the i-th pattern class if they are within a pre-specified distance di‘

If contiguous cells form a group such that the number of cells within the
group exceeds a preset threshold Ti depending on the i-th pattern class,
then a cluster exists and the central computer is alerted.

The input to the algorithm are the pattern points of pattern classes
deemed interesting by the histogram, where "interesting" is defined as
follows. Let j = 1,2,...,1250 identify the pattern block, Nij = the
number of pattern points in the i-th class and j-th pattern block, and

_ Mg T Hagi) . )
set zij = i) . The interesting classes and pattern blocks are
those which have large normal deviations Zij‘ Because of the compactifi-
cation scheme, we have the real-time ability for approximately 100 searches/
10 seconds. Hence we may search for clusters in pattern blocks producing
the 100 largest normal deviations.

The implementation of cluster seeking is based on the general algo-
rithm described next. The algorithm will vary somewhat acccrding as to
whether we are considering one and two bit pattermn classes, or three and
greater bit classes. For each large Zij' the algorithm establishes three
lists, Aij’ Bij' and cij' Initially Aij is a list of cell positions of
all cells in the j-th pattern block which are occupied by pattern points of
the i-th class; Bij is a list of distances between all pairs of occupied

cells sorted by ascending distance with ties arranged arbitrarily, and

cij = 0, The algorithm proceeds in three steps.
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-
1. 1f the first distance in Bij is greater than di’ stop.

There is no cluster. Otherwise, remove the first entry from

B

A

ij® and remove the cells corresponding to this distance from

ij
2. Update the list Bij by computing the distances from cells in

and add them to Ci'

Aij to the "cell" Cij‘

3. If every distance to cij is greater than di’ return cij to its
original state and go to 1. Otherwise remove from Bij all
distances between cells of A].j and the cluster Cij which are
less than or equal to di' Remove the cells corresponding to
these distances from Aij and add them to cij' If the number
of pattern points in Cij exceeds the threshold Ti’ stop. A

cluster is found. Otherwise go to 2.

Note: For a ¢ Ai d(a’cij) = min {d(a,c), c¢€ Cij’

j?
We may obviously continue the algorithm in order to establish the actual
size of cij and/or for finding further clusters in the remaining list Aij'
The actual implementation of the algorithm for three and larger bit
classes is reduced to a simple scan and record procedure. A processor
scans Aij and if a cell of Aij does not have a preset number Ni of
neighbors within the distance di’ the cell is removed from Aij' After

all cells which do not have Ni neighbors within di have been removed, the
clusters remaining are then examined to see wkether the number of cells in
any cluster exceeds T,. We may also repeat the entire procedure on the

clusters obtained by redefining Ny« Figure A3.11.1(a) shows the 2-dimensional
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before the apnlication of the algorithm, while Figure A3.11.1(b) shows the

result of applying the algorithm with ji = 1 and Ni = 2.

(a) - Before

P :‘('L(’"
ure A3,11.1 - Effect of the Single Linkage
‘uster Ay <‘v 2 | Al ;(‘y‘j‘\n"‘




UliGuvml. PAGE IS
OF POOR QUALITY.

The algorithm is somewhat modified for the one and two bit pattern
classes. Since each bit has a 50% false alarm rate, half of all cells in
a pattern block are expected to be occupied by any given 1-bit pattern
class due to noise alone, This situation is illustrated in Figure A3.11.2
where the "on" cells in the pattern block belong to a particular l-bit

pattern class.
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Figure A3.11.2 - 8 Pattern Rlack for the One Bit
Pattern Class

It becomes clear from Figure A3.11.2 that there is an extremely high

degree of contiguousness between the "on" cells. In fact, one can find
connected sequences of "on" cells forming meandering lines which stretch
across the entire pattern block.

Because of this high degree of contiquousness, we are forced to set
di = 1 for one and two bit classes and to alter the clustering algorithms
in order to keep the false alarm rate within a reasonable minimum.

The altered algorithm is capable of finding clusters of cells
containing horizontal and/or vertical line segments formed by contiguous
cells, and of finding clusters containing rectangles of contiguous cells.

For lines, there are two minimal alarm thresholds, T1 and Tz. with Tl < T2,

while for clusters containing rectangles there is only one, which we shall
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denote by T. We set T2 such that if the length of a contiguous
sequence of cells in a row or column exceeds T2, the probability of an
alarmdue to noise alone is extremely low. If T2 is exceeded, we say
that a cluster has been found and alert the central computer. The
algorithm itself is reduced to a scanning and recording procedure and
is accomplished in the following steps.
1. Scan the first row of Ai" If a contiguous sequence of
"on" cells of length greater or equal to T1 is found add
these cells to Ci. while removing them from Aij' Also

J

remove all cells from Aij

sequence. If the number of cells in Cij exceeds Tz,stop.

appearing before this contiguous

A cluster has been found. If there is no sequence exceeding
Tl’ remove all cells in this row from Aij'

2. Scan the next row. If another sequence of contiguous cells
is found which exceeds T1 and is situated "below" Cij' that
is, the vertical projection of C}.j into the row below is
contained in the sequence or the vertical projection of
the sequence into the row above it is contained in Cij, remove

the cells from Aij and add them to Ci Otherwise, return Ci'

i’ J

to its original state and go to 1.
3. If the number of cells in cij exceeds T, stop. A cluster has
been found., Otherwise go to step 2.
If no clusters are found and A{j is erased, we repeat the algorithm
by refreshing Aij with its original data, and by replacing "row" with
"column", That is, we scan along columns. Obviously, the algorithm stops

whenever all the data from Aii has been exhausted. The effect of the

algorithm is shown in Figure A3.11.3, Here (a) represents a pattern block
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with "on" cells belonging to a specific 1-bit pattern class before
application of the algorithm and (b) shows the cells remaining after
application of the algorithm.
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Figure A3.11.3 - Effect of the Modified Single Linkage
Cluster Analysis Algorithm for a
One-Bit Pattern Class

OQur final goal is to obtain a method for establishing some of the
thresholds discussed above. Since we are interested in clusters formed
by contiquous cells, the first question which arises is as to the proba-
bility, due to noise alone, of obtaining at least r contiguous (di = 1)
cells belonging to the same class in a row (column) of 200 (50) cells
Tong. Calling a sequence of r contiquous cells in a row of n cells a

run of r successes, we are asking for the probability of having a run of

r successes in n trials, where n = 200 or n = 50,
Let Pi denote the probability of the event that a cell contains a
pattern point of the i-th class due to noise, and let Pn ” denote the

,

probability of a run of r successes in n trials. Then Pn ’ is given by

,
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- r
Pn,r =1- xn,r + P xn-r,r :
where
m rk
. vk _(n - kr)! ((1-P)P")
LA e 3 B (e T 9 o

n =
T Values of Pn,r for n = 200

are given in Table A3.11.1. We computed Pn r for as many as fifty conti-
]

and m is the integer truncation of

guous cells, an event which would certainly trigger alarms set in previous
stages and in step 1 clustering, Values for T1 and T2 can be chosen from
the r column of Table A3.11.1 with the corresponding pn,r providing the
false alarm rate. A rough estimate for T can also be computed with the

aid of Table A3.11.1. Thus, if we choose T1 = 8 for a 1-bit pattern class
and multiply Pn,a k times, we obtain a rough estimate as to the probability

due to noise, of obtaining a T = 8 x k rectangle of contiguous cells.
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Table A3.11.1 - Probability that a contiguous string of r cells, contained
in a linear string of n cells, will exceed the detection
threshold due to noise alone., Three examples are shown.

P1 = 0,03125
n r Pn.r
200 2 1.7E-01
200 3 5.8E-03
200 4 1.8E-04
200 5 5.6E-06
200 6 1.7e-07
200 7 5.4E-09
200 8 1.7E-10
200 9 1.0E-11
200 10 8.8E-16

Pi = (0,00781250
n r Pn,r
200 2 1.1E-02
200 3 9,3E-05
200 4 7.2E-07
200 5 5.6E-09
200 6 4,0E-11
200 7 1.7€-15
200 8 1,3C-17
200 9 1.0E-19
200 10 B.4E-22

Pi = 0.00390625
n r Pn,r
200 2 3.0E-03
200 3 1.1E-05
200 4 4,5E-08
200 5 1.8E-10
200 6 3.5E-15
200 7 1.3E-17
200 8 5.4E-20
200 9 2.1E-22
200 10 8.2E-25
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Appendix A3,12
An Evaluation of Some Classical Algorithms in the SETI Context

Wwwl
Wi

1. Matched Filters

mmnw ﬂ

A possible SETI signal detection system might be constructed

utilizing an array of matched filters. A matched filter is an algorithm

i

3
for the combination of information from the MCSA in such a manner as to = |
1
maximize, for a given expected set of signal characteristics, the peak %% %
=

power to root-mean-square (rms) noise power.

il
W

It can be shown (Schwartz, Bennet, and Stein, 1966) that if a signal,
represented as a function in time by f(t), passes through a linear filter,

whose transfer function is H(Ww), that filter is said to be matched if:

H(W) = Fr(w) ed"to

where F*(w)

complex conjugate of the Fourier transform of f(t),

to = time of occurrence of the peak value of f(t) ';
This filter performs the function of: .
2) weighing the spectral components in the filter in proportion ok

to the spectral components in the signal;

-

)
o

b) aligning all spectral components in the filter in phase.
This is a type of conjugate matching.
If such a filter can be implemented, the ratio of the peak signal power to

rms noise power, assuming white noise, is

s . 2%

N KT

where E = the totai signal energy
K = Boltzmann's constant

T = system noise temperature

Thus, the detectability of a signal through a matched filter is independent
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It is possible to impress information onto an otherwise monochromatic
continuous carrier in a number of ways: amplitude, phase, frequency, and
polarization. Terrestrial technologies have used all four possible

modulations to some extent in order to convey messages via the electro-

magnetic radiation. One might expect that it could be a straightforward

exercise to implement a large set of filters, a group for each modulation

scheme, which would respond, in some optimal way, to extraterrestrial

modulated RF energy. In order to accomplish this, however, one must
know a priori, the form of the message contained within the modulation.
Since this is quite obviously impossible, this direction for a SETI
detector is not reasonable.

We expect that an ETI signal, deliberately radiated for the purposes
of detection (a beacon) by other civilizations, would be a "single"
signal in order to increase the likelihood of detection (Dixon, 1973).
Simplicity, in terms of detectability, implies extreme spectral purity
(Seeger, 1971; Oliver and Billingham, 1971). Further, many forms of
terrestrial modulation use the redundant information contained within

the monochromatic carrier to facilitate coherent detection. Therefore,

the strategy is to attempt to detect the narrowband carrier, and to

leave the examination of possible modulation sidebands, however they may

manifest themselves, to a purely statistical approach. The advantage of
this latter point is that we search the MCSA output only for possible
departures from noise statistics.

Signals which are pulsed in a time scale shorter than the reciprocal

bandwidth of the MCSA (1 Hz) present special problems to the signal detector.
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The present design of the MCSA precludes optimum detection of pulses
hntween time frames from 1 second to > 1/8000 second, and from < 1/8000
to ~10"9 second, the reciprocal IF bandwidth. Pulsed signals in those
realms must be found by an analysis of the time domain signal, rather

than the frequency domain signal as presently envisaged in the MCSA.

2. Walsh Transforms

As a cartoonist captures the important features which make a
simply-drawn caricature recognizable, it would be desirable to have a
transform which would extract --from the MCSA output --recogrizable
features necessary to indicate the presence of a signal. Walsh functions
and transforms were explored as possible candidates for that transform.

The Walsh functions may be defined as an orthonormal set of square
wave functions.‘

The Walsh function has two arguments: n is the order and v 1is
normalized time. The order n is related the the number of zero crossings
in the interval over which the function is defined. (See Fig.A3.12.1 taken

from Harmuth, 1977).
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Figure A3.12.1 - Walsh Functions, Continuous and Discrete
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- Each Walsh function may be expressed as a product of odd symmetry
periodic square waves of amplitude ¥1. (Rademacher functions)
Walsh functions may be transformed into the "sequency" domain, where
sequency is the number of zero crossings. A sequency spectrum plot would

indicate the number and magnitude of the coefficients necessary for a

mialsh series® expansion. (See Figure A3.17.2 taken from Alexandridis, 1971)

(Schreiber and Sandy, 1974).
Among the applications of Walsh functions are:
Pattern recognition systems
Image compression
Design of radar waveforms
Voice processing
Signal multiplexing

Walsh analysis has several advantages over sinusoidal analysis.

(1) Walsh functions contain real integral numbers of two levels
(£1). This makes them directly compatible with digital
integrated circuitry.

(2) The Walsh function set is a natural describer of pulse-like
signals. This property may be used to extract features from
binary patterns (Alexandridis, 1971).

(3) The transform from input data to Walsh function series
expansion coefficicients is faster than the FFT. For N
samples, the FFT takes 2N1092N multiplications and additions
(Blachman, 1974). The FWT takes only N)ogZN additions
(Harmuth, 1977).
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Furthermore, techniques are available for obtaining two dimensional
Waisn transforms in real time without waiting for all samples to be
scanned before starting the transform operation (Alexandridis, 1971).

Three potential applications of Walsh functions are applicable in
this context.

First, it is possible that the ETI signal may be a transmitted

electromagnetic Walsh wave. The transmission of Walsh waves has been shown

to have certain advantages in applications such as radar (Schreiber and
Sandy, 1974). However, waves traveling through space would be filtered by
the interstellar medium. A sinusoidal signal may be attenuated or phase-
shifted, but the sinusoidal character would be preserved. A filtered
Walsh wave would assume a significantly different characteristic.

Secondly, it is possible to analyie the MCSA output using a two-
dimensional transform to pick out periodicities in time. The two-
dimensional Walsh transform is attractive since the implementation of the
fast Walsh transform is less expensive and faster than the FFT. However,
for long samples of smooth signals, more terms are required in the Walsh
series representation and greater accuracy is required of their
coefficients for a given RMS total error (Blachman, 1974).

Finally, Walsh transform techniques are a possible approach to the
recognition of binary patterns in the NBIT two-stage data compaction
scheme. Axis symmetry properties of Walsh functions can be used in
designing a feature extractor with a resulting reduction in dimensionality
in the feature space (Alexandridis, 1971). However, due to the dis-
advantage of the Walsh transform being position dependent, position

normalization of the binary pattern is necessary. In addition, specific
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'E binary patterns which indicate a high probability of "signal presence" must

t be defined.

; {é Conclusion:

E Although the Walsh transform may lead to significant savings of hardware
and processing time in analyzing binary or pulsed data, it seems not to be an
all-purpose pattern recognizer. The Walsh transform was initially considered
a candidate for serving as a "cartoon transform"; that is, a transform that
would show strong narrowband repsonse in the presence of an edge, outlined
form, or filled-in pattern, Thus, while the axis symmetry properties of Walsh
functions may be used to recogrize specific patterns, but apparently provide

no clue to the presence of signals of unknown characteristics.
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Appendix A4.1

Large Memory Systems

AM.1.1 - Requirements

As is the case with many other dimensions of this study, the memory
requirements of the proposed system are quite unusual. The two basic parameters
of the memory requirements are the memory size and the memory read-write and
access times that are required to handle the amount of data and the data rates
that will be encountered.

One large memory system is required for the storage of the digitized
input signal. The analog signals being received from each antenna feed are
sampled at a 16 x 10° Hz rate for the 1000-second observation period for each
star, and quantized into 8-bit samples, This information must be stored, at
least temporarily, in case a suspected ETI signal is discovered. The impli-
cation of this requirement is that storage (memory) is required for 2,56 «x
10!'! bits of digitized incoming data. These data arrive at a 2.56 x 10° bits/
second rate.

A second large memory system is necessarily involved with the output of
the dual, 8 x 10° channel multi-channel spectrum analyzer (MCSA). If all the
data being output by the dual MCSA for 1000 seconds is to be stored temporarily
for use by the ETI signal detection algorithms, the total required storage
capacity is 0,512 x 102 bits,

It rapidly becomes apparent that the hardware required to randomly access
0.512 x 10'% bits of memory in sufficient time to perform all the analyses used
to detect ETI signals is prohibitively costly in dollars, power, and space
requirements even if read-write and access time limitations allow realtime

processing. For this reason, the output of the dual MCSA is truncated for some
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of the algorithms to 4 bits each for the real and imaginary components of
each feed; and further, we require temporary storage of "only" twenty seconds
of MCSA output at a time. Thus, the data transfer rate into this memory is
reduced to "only":

2 x(4+4) x8x 10%° =1.,28 x 10° bits/second
and a storage of "only":

20 x 1,28 x 10® = 2,56 x 10° bits

is required.

Ad.1.2 - Types of Memories

The types of memories which are available to draw from for the various
memory systems in our system are, at least theoretically, quite varied. These
include:

Semiconductor Random Access Memory (RAM)

Magnetic Tape Systems

Magnetic Disc Systems

Read Only Memory (ROM)

Charge Coupled Devices (CCD)

Magnetic Bubble Memory (MBM)
Factors which eliminate some of these memory types from further consideration
include the bit storage capacity of currently available units as well as those
projected to be available by about 1982, current and future read-write rates,
access times, and, of course, the presont cost per bit of storage as well as

projected future costs.

Less Conventional Memories

The last three types of memory listed above, the less conventional forms
of memory, were eliminated from further consideration in this system for

various reasons, including the desire to utilize a technology which has been
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well-developed and proven to be a reliable means of data storage and retrieval,

Charge coupled devices (CCD) appear to be in the research and development
stage continuously, and seldom get into production.

Magnetic bubble memories (MBM) seem to be moving ahead very rapidly with
the immediate objective being to replace disc memories in the home computer
market, (Mavity, 1979) and (Waller, 1979), in the very near future. However,
from a cost-effectiveness viewpoint, bubbles were ruled out as a viable alter-
native at this time,

Read only memory (ROM) are employed in many of the ETI detection algorithms
and/or as look-up tables, but they cannot play a role in the overall large

memory system picture.

Exotic Memories

Additional exotic memory forms were investigated also. Optical recording
has the capability of storing 10° bits per square inch. As attractive as this
medium appears at first glance, it has the disadvantage of being a non-erasable
medium, and thus it is usable only for archival storage in this project,
(Hoagland, 1979), (Kenney, 1977), (Kaczorowski, 1977), (Kenville, 1978), and
(Tufte, 1973).

Electron Beam Accessed Memory (EBAM) shows a good deal of potential, with
densities of 10'? bits per square inch possible, (Smith, 1978), (Speliotis,
1976), and (Hughes, 1975). The most serious fault with this technique is that
to date no operating EBAM system has been built.

Holographic memories also present a possibility, but to date the memories
are non-erasable and consequently are useful for archival storage only, (Gillis,

1975), (Harris, 1979} and (Honeywell, 1979).

-382-

il Pee—— W

[

Wil e



Random Access Memory

Recent activity involving solid state random access memory (RAM) has been
primarily limited to decreased access time with an improvement by a factor of 5
having been achieved over the past two years, (Hewlett Packard, 1979). Another
advance in RAM technology is the development of a very large semiconductor
RAM-based memory by means of Adaptive Wafer Scale Integration (AWSI) as reported
by Geideman (1978), Hsia (1979) and Brinton (1979). A 1.2 x 10® bit version of
the AWSI memory is in development and is scheduled for production within a year,
with predicted cost to remain at about the present .03 cents/bit for semi-

conductor memory, (McDonnell-Douglas, 1979).

Disc Memory
According to Hoagland (1979), the disc remains the primary form of mass

storage. Despite competing technologies, improvements in disc technology will
probably ensure its widespread use througchout the remainder of the century.

A disc system has been developed and is presently available which has
multiple (20) read-write heads and recording surfaces which aliow for 8 or
9 bits of parallel input or output data, (Ampex, 1979). This system can store
2.4 x 10 bits and achieve 8.7 x 10 bits/second data transfer rates.

As Hoagland (1979) also mentions, reduced cost per bit in all technologies
derives primarily from an increase in density on the material being used for
storage. If one were to double the bit packing density on a magnetic disc unit
of the type described above, and then double the number of bits that are
available in parallel for read-write operations, one would have the disc system
presently being investigated in the Simulation Facility at Ampex, Redwood City,
Calif. (1979). In any event, it is anticipated that the magnetic disc industry

will be going to a double bit density magnetic medium, Also, the higher the
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number of parallel outputs described above will be feasible in the near

future. This system would have a capacity of 4.8 x 10° bits per disc pack and

a potential data transfer rate of 3 x 10° bits/sec.

Tape Memory

In terms of providing for the storage of massive amounts of data the
most widely used medium is likely to continue to be magnetic tape. With
increased recording densities and increased numbers of tracks per unit tape
width, the amount of storage represented by a reel of magnetic tape is
exceedingly large. The packing densities that are presently being utilized
are on the order of 10® bits/square inch of tape (RCA, 1979), with one system
under development which uses 180 tracks across a 2-inch magnetic tape. The
result is a tape capacity on the order of 5 x 10'! bits, using a 2-inch,
10,000-foot tape (Bell and Howell, 1979).

A new tape system under development by Ampex (1979), which utilizes a
flying head technology, is scheduled to be available by 1982, This system has
a capacity of 1.2 x 10 bits and is appropriately designated the Ampex Super
HBR (high bit recorder).

In terms of rapid random access to stored data, the tape systems are use-
less, with access times to the center of the tape running up to two and a half
minutes. But, in terms of quantity of storage, the tape unit is by far the
least expensive storage medium.

Table A4.1 is a .ompilation of the characteristics of memory units available

now and those envisioned to be available from three to six years hence,
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1979

Character-
jstic

Mag.
Tape

Mag.
Disc

Solid State RAM

Static

namic

RAM-Based

Memory System

Max Capac.
per Unit
(bits)

4 x 1011

2.4 x 10°

1.6 x 10°

6.4 x 10°

Read-Write
Rate
(bits/sec)

6 x 108

8.7 x 107

1.6 x 108

1.6 x 108

Access
Time
(sec)

120

[hrde

2.8 x 10°°

10-50 x
1072

100 x 1072

Cost
(¢e/bit)

1.5 x 107°

0.003

0.1

0.03

[ER———

[e—

By 1982-1985

Max Capac.
per unit
(bits)

1.2 x 1042

4.8 x 10°

1.28 x 10
(1983)

1.2 x 10°

Read-Write
Rate
(bits/sec)

7.5 x 10

1.7-3 x 108

1.6 x 108

1.6 x 10

1 x10

Access
Time
(sec)

150

*k

2.8 x 10°

10-50 x
1072

80 x 10'9

1-2 x 107

Cost
(¢/bit)

2 x 107°

1.5 x 107

C.05

0.015

0.03

* to middle of tape

** average

Table A4,1 - Memory Characteristics
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Appendix 4.2 Discussion of Present and Alternative Architectures

In this appendix we will discuss briefly other signal detector architec-

tures that might be more appropriate to MCSAs which output data at a rate 102

lower or ~ 102

A4.2.1. - Architectures for Smaller Scale MCSAs

With a throughput rate dropping from millions to thousands of data per
second, many powerful processing possibilities are opened up. Floating point
numbers rather than integers could be processed by programmable Floating Point
Array Processors, now commercially available. The processors would be ideally
suited to the high speed analysis of data because they possess the speed of
dedicated hardware units and yet are programmable, and could be used to imple-
ment many of the algorithms described in this report. Their advantages are:

- Floating point preserves the dynamic range, eliminating clipping losses.

- Hardware building cost is traded for lower software designing cost.

- The software algorithms may be easily altered or replaced.

The reduced throughput of a smaller MCSA might also allow:

- Storage and random access of an entire observation on a few conventional

disc drives (while ~ 20 would be required for the 8 MHz MCSA).

- The possibility of human preprocessing, since a larger percent of an

observation could be viewed with a display.

- The data of an observation could be stored in RAM memories (say 64 Kbits

each) and a network of minicomputers could simultaneously operate on
each RAM employing either identical or varied detection algorithms, i.e.
network processing.

A4.2.2 - Architecture for Larger Scale MCSAs

For MCSAs on the order of 300 Mega-Channels per second, processing of the
entire array with the algorithms of the Oasis system becomes nearly impossible.

A different approach would be to sample and analyze the output of selected

higher than the 8 Megawords per second rate of the Qasis System MCSA.
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“groups" of channels sequentially. In other words, if we 1imit the total search
to one for persistent carrier waves, pulses, etc., then we need only check a
set of adjacent channels periudically for the presence of such a signal. The
processing required can thus be arbitrarily reduced, but the price for this
reduction is a loss of sensitivity to ephemeral signals. Thus, for the Qasis
system to analyze the data from a spectrometer with 300 106 channels output per
second at an 8 MHz rate, it is first necessary to consider every 40th block in
the first row of blocks, and then to consider each 40th block offset by one in
the second row of blocks. Random selection of blocks may be more desirable
s0 as to avoid systematic omission of identically drifting spectral features.
Finally, the signal detection algorithms for such a large bandwidth spec-
trometer might be justifiably limited to simpler tests, such as employed by the
pulse detection algorithm, and the total power detection algorithm of the NBIT
processor.

Ad.2.3 - Critique of the Qasis Design: Weaknesses

The proposed QOasis System is a rather complex system. The Summer Study
Group as a whole consciously declined from rejecting any potentially powerful
algorithm simply on the basis that it made for a more complex final system.
Every attempt was made to evaluate the relative merits of each algorithm, yet
time did not allow for a truly fair and complete evaluation and ordering of the
worth and merits (both as signal-specific, and signal-arbitrary tests) of the
dozen or so different algorithms implemented. While much work was done toward
this end, much more remains to be done. It is recommended that further com-
puter simulations of these algorithms be conducted, upcn a more varied (in SNR
as well as type) set of earth-civilization-type signals as well as artifically
concocted signals in noise. If nothing else, such a study would yield the rela-
tive weights to place on the alarm thresholds, as discussed in Chapter 5. To

the hardware designer wishirg to construct a sensitive, yet simpler and cheaper



system, the Oasis System, as it stands, represents a menu or shopping list of
algorithms. This hypothetical designér is in turn given from this report the
plans necessary for implementing and integrating any subset of the algorithms
deemed most effective.

The decision to retain 16 output levels (4 bits) of real and 16 levels of
imaginary signal amplitude, for each polarization in the Oasis System was made
without a thorough evaluation of the resulting clipping losses inflicted on each
algorithm. The decision was based instead on the high cost of providing another
set of 4 high density disc drives for, say, 8 bits of amplitude resolution. The
GCV and ANOVA algorithms were tested through simulations for clipping losses
and were found to be only slightly degraded by 4-bit clipping (see the appendices).
Similarly, the proposed simulation of all Oasis algorithms should include a
check for the clipping sensitivity of each.

A4.2.4 - Critique of the Oasis Design: Strengths

Chapter 2 has described the first and second stage processing of the
entire 8 106x 103 element array. It detailed how the array was divided into
blocks, each tested and compacted into 9-bit words forming the elements of pat-
tern blocks for pattern recognition and cluster detection. The scale of the
array subdivision test is gradually increased in each of these stages. This
is shown in Table A4.2.1.-

Table A.4.2.1 The Increasing Scope of the Major Search Algorithms
Humber of Array Elements

Algorithm Items Tested Considered at Once
Pulse Detector (1st pass) individual elements 100

Carrier Wave Detector 60 elements/slice* 10]‘7

NBIT Tests 20 x 40 element block 102+9
Carrier Wave Detector 3000 element slice 103'5
(Accumulated)

Cluster Detector 200 x 50 elements, each a block 1082

(Size of Entire Array 8 108 x 1000 10%-2

for comparison) -
* each slice includes 3 elements per row x 20 rows of the entire array
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This slowly increasing scale or scope of the Qasis search, especially with
such signal-arbitrary algorithms as NBIT and Cluster detection is considered
a major strength of the system. This table also implicitly gives a rationale
for the sizes chosen for Block and Pattern Block arrays.

A second strength of the system is found in the transpose hardware system
which, in real time, arranges the data into a much more desired form within a
memory unit. To search effectively for any signal, an individual channel's
output over time must be stored in a memory device contiguously and analyzed
in a like manner. The array transposer accomplishes this for the algorithms,
for the archives, as well as for the operator's perusal with an advanced image
processor.

Another strength of the system 's felt to be found in the Generalized Co-
herence measure. This algorithm or measure seems to implicitly embody many
fundamental SETI principles while providing a new means of compressing the out-
put of an MCSA. Since it is a succinct measure of polarization, phase, and am-
plitude coherence of received time series, it serves as a detector for those
qualities expected to be characteristic of intelligent communication.

Finally, the Oasis System places a good deal of emphasis on the capability
of the operator to detect and identify signals. For this reason, the role of
the operator has been given a wide latitude, including his/her facility of view-
ing and interacting with all stages of the hardware processing. Indeed, to use
the operator as the learning part of the system, capable of modifying the per-
formance of the rest of the system and possessing complete control over the
all-important archiving decision, we believe greatly enhances the performance

of the total system.



Appendix Ad4.3
Implementation for (1) Degree of Polarization and
(2) Broadband Pulse Detection (with GCV)

Since these two algorithms require some common computation, they share
a common front end processor which passes the values on to the two subroutines:
m-routine, and GCV-routine, Conceptually, there are three processing
components: the front end processor receives the incoming data, computes and
accunulates the power associated with each polarization, the cross product of
the two polarizations, for corresponding data points, and the auto- and cross
products for two adjacent frequency data points., After 40 frequencies have
been processed, the first three sums are sent to the m-routine which calculates
the degree of polarization. The other sums are passed along to the GCV
routine. In addition, the front end processor computes three other factors used
by the GCV routine: normalized power factors for each polarization and a phase
coherence angle (4).

The m-routine calculates the degree of polarization in each 40 Hz row of

data according to the formula:

e DA Ty 2+ 8 Joxgyt
(zlxgl? + @ lyl?)
The result is compared to a predetermined threshold and, if it exceeds the
threshold, the rcutine sets on the 1-bit and sets an alarm for the central
processor.

The GCV routine calculates the general coherence value for each 40 Hz

row of data according to the formula:
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. 1 2 Jé -jé 2
GCV 5T | KPPIxX] + KyKale mxy v + @ hy g xf) + KTy )

where

a_]..“ inl =1 f[__rw—r_-
NVRTE T %R EART TR

1 Im iny;

and
§ = tan
Re inyg
Part of the processor is operating on the incoming data while the rest of the
calculation is being processed in parallel. The entire processor is a multi-
stage pipeliﬁe. It is outlined in Figure A4.3.1 and presented in Figures

A4,.3.2 - A4.3.4,
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Figure A4.3.1

Schematic Block Diagram for:
(1) Degree of Polarization by Row and
(2) Degree of Generalized Coherence by Row

Front End Processor

Stages 1 & 2: As data for each row Stages 3 - 5: After one row is
come in complete
Compute and Accumulate: Complete K-Factors
1. Power Evaluate Phase Coherent Factor
2. Auto- & Cross- eJG, where § is the
Correlations Associated Phase Angle
3. Normalized Power Factors
Kl and '52 )R
In Parallel with Stdges 3 - In Parallel with Jtages 6 -
Stages 3 - 8: m-Rogtine Stages 6 - 12: GEV-Routine
Compute the degree of polar- Compute the Generalized Coherence
ization m and set 1-bit and Value, GCV, and set 1-bit and CPU
CPU alarm if m > threshold alarm if GCV > threshold
I - 2lyg 12+ alexgyyl® o

1
AT LK B

38 -38
Kikplexgy vy + & oy X

2
t K Z’iﬂ"?}

GCV =—F*T

(Elxilz + Zlyilz)
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Appendix A4.4

Survey of Image Processors

This appendix summarizes the results of a survey of commercially
available digital image processors, The evaluation of each system was
based upon its potential role as the operator-machine interface in the
Oasis signal detector. The survey included careful examination of manu-
facturers' literature, personal conversations, and demonstration of opera-
tional image processing systems. Two previous surveys exist. (LaPado, R.,
Reader, C., Hubble, L., ESL engineering report, and Allen, R.J., and ter
Horst, H.J., Excerpt from Market Study of Several Image Processing and
Display Systems, University of Groningen).

The current trend in state-of-the-art image processor architecture is a
bus-oriented, pipeline array processor utilizing function tables and memory
multiplexing techniques to maintain video speed (10 MHz) while performing
various operations on image data.

The most powerful image processors are capable of stand-alone operation
with a keyboard and mass storage devices controlled by an on-board micro-
processor. More commonly, the image processor will be interfaced to a host

mini-computer for additional computational and 1/0 capabilities.

Refresh Memory

The image data resides in refresh memory that is typically dual-ported
RAM arranged in arrays of 8-bit pixels for 256 intensity levels per pixel, A
monochrome CRT requires one refresh array, and a color CRT is refreshed from
3 arrays, one each for red, green, and blue, The size of the image data

base is limited only by the address space. This varies amona manufacturers
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and is usuallv mnre than can be disnlaved at once because of amplifier
bandwidth 1imitations in the CRT. Scrolling overcomes this limitation by
allowing the user to roam at will through the entire refresh memory.

In addition to image refresh memory there is usually one or more
channels of graphic overlay memory. Histograms, vectors and alphanumerics
are stored in this memory and combined at the processor output by pixel
replacement or color combination so they are visible against the image back-

ground,

Pipeline Processors

Refresh memory contents are read out and processed before conversion to
analog video signals. The use of function table look-ups and high speed
arithmetic hardware is necessary to maintain video refresh rates. Pipelined
processing allows an operator to scroll, zoom on a specified area without
altering refresh memory contents, obtain pixel statistics, and perform image
combination arithmetic in one or a few refresh times. A feedback loop allows
processed output to be written back into refresh memory so that more complex
iterative functions such as spatial convolution and filtering can be accom-

plished in a few seconds.

Displays
The display device for high resolution monochrome or rolor monitors uses

refresh rates of 30 Hz interlaced or 60 Hz non-interlaced. Some image pro-
cessors accept external sync for use with video discs or digitized TV camera

input, The highest spatial resolution in both monochrome and color monitors
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currently available {s 1024 x 1024 pixels. Some of the most recently intro-
duced image processors will handle the higher data rates for these monitors
as well as standard 512 x 512 pixel monitors. Three image processors--the
Comtal Vision one/20, the De Anza IP 5000 and the I2S Model 70--meet the
requirement of the Oasis system. A comparison of the more important features
of these image processors is summarized in Table 4.4,1, and in the following

paragraphs.

.Jmtal Vision one/20:

- Refresh memory can be expanded to 134 Mbits. Memory configuration is
dynamic and under firmware control,

- Can accomodate up to 4 independent user stations.
- Multiple images in refresh memory can be displayed in rapid succession
resulting in a "loop movie" effect.
De Anza IP 5000:
- Good processing and feedback 1oop.
- 3 x 3 convolution in less than one second.

- Feedback is routable to any bits of any refresh memory by defining a
32-bit mask,

2

I™S Model 70:

- Extensive software is available, such as utilities for file management and
image . rocessor control and a library of image enhancement and transform-

ation routines,

- A feedback ALU does 16-bit arithmetic on images.

- Minimum and maximum pixel values and other pixel statistics are continuously

availabe,
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Appendix AS5.1
Experiments on Observer Detection and Recognition

of Simulated Signals in Noise

Perhaps the most critical information we desire concerning the human
observers is an understanding of his/her ability to detect weak signals amidst
background noise., There is an extensive literature in psychology on this
problem, but most of this work deals with the case where the signal character-
istics are known by both the subject and the experiment (see Swets, Green,
Getty, and Swets, 1978 for examples in the visual modality). The challenging
aspect of the SETI problem is that nobody has a firm idea concerning the
precise nature of the signal. Moreover, it appears that little research has
been done using visual noise fields similar to the ones anticipated in the
present context (except Swets et al., 1978). For these reasons, then, we
conducted some preliminary experiments with simulated visual displays.
Observers made estimates of their confidence that a signal was present under
a variety of conditions, spanning several signal types at various signal to
noise ratios, as well as complete noise fields. Further, we present data to
a new technique whereby observers draw potential signals on a matrix repre-
senting the visual display. Analysis of such drawings may permit us to infer
the accuracy of localizing detections, and the types of "pseudo" signals
observers perceive in noise fields.

Observers. The participants were 14 members of the summer study program
and 4 other professionals at the NASA-Ames research laboratories. They each
participated on a voluntary basis, and were tested individually.

Equipment, The display simulations were generated by a Hewlett-Packard
9800 computing system consisting of two primary components: the 9825A
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calculator and a black and white video display unit. The video display
was built especially by Hewlett Packard for the SETI program. It presents
a 128 x 128 pixel noise field with 256 (8 bit) levels of intensity. The
entire screen must be erased before the next picture is written; refresh
time for the screen is 30 frames per second.

Displays. The noise was generated over 27 levels of amplitude
approximating a Rayleigh distribution. These amplitude values then were
squared to approximate an exponential distribution of pixel intensities
on the screen. This noise field is what the observer saw in all displays
(different noise fields were used for each presentation).

Signals were superimposed on the noise fields giving the impression
of a pattern of brighter pixels. Average signal to noise ratios (SNR)
were .4, .6, .8, 1, 1.2, and 1.4,

Experimental design. Three patterns were employed at each SNR: straight

line, wavy line, and pulse. The shape and calculation of these patterns
are presented in Figure A5.1.1 (panels a, b, ¢). Examples of each pattern
at the highest SNR, as seen on the screen, are shown in Figure A5,1.7,

The starting point of the signal was randomly selected from positions
across the top edge of the screen and extended to the bottom edge. In
addition to the signal displays (6 presentations for each of 3 signal
conditions, for a total of 18) six noise field displays (i.e., without

signals) were used. Hence, there were 24 displays presented to each observer,
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Procedure. The 24 displays first were presented in a random order
for approximately 10 seconds each. This phase was introduced to give the
observer an idea about the range and type of displays. Next, the series
was repeated and the observer gave a confidence rating from 1 to 10 con-
cerning the presence of a signal anywhere in the display. Part of the
instructions for this phase read: 'We want you to estimate your confi-
dence that a signal (of any shape, size, or type) is present. Give a
number from 1 to 10 where 1 represents minimum confidence and 10 represents
maximum confidence." The procedure was self-paced; the display was changed
automatically after the observer's estimate was recorded by the experimenter.

In the third phase of the experiment, the series was repeated and
confidence ratings obtained. In addition, observers drew potential signals
on a sheet of graph paper. This page was divided into 64 equal "boxes"
or zrnes (i.e., 8 x 8 matrix). The instructions for this phase read (in
part:

"In this last phase first give a confidence rating for each display.

Don't try to recall what number you gave last time. Make each

Jjudgment independent of earlier ones. After giving a confidence

rating for a display, draw potential signals on this graph paper,

Precision is not important, just try to localize the perceived

signal as best you can. For each display you must draw at least

one signal regardless of your confidence rating. In addition, you

may draw other signals for the same display. These can be short

lines, pulses, or other shapes, located anywhere in the display.,"

The experiment was conducted under low room illumination which
produced satisfactory visual contrast levels for the displays. The
entire set of observations for a single session took approximately 40

minutes.
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Results and discussion

Preiiminary analysis suggested that there was minimum difference
between confidence ratings on the two trials (phases), so these data
were combined in further analyses. The means and standard deviations of

the confidence ratings were calculated for each of the 24 displays. The
results are presented in Table A5,1.1 (as a function of SNR and pattern type:

line, wavy, pulse). The mean data are presented graphically in Figure A5.1.2,

Turning first to the mean ratings, there are obvious differences in
an observer's confidence of his ability to detect the three types of
patterns. The average rating for the noise fields is approximately 2.5
on the 10 point scale. Using this value as a lower referent, linear
patterns are first detected at a SNR of .8; pulses and wavy lines at a
higher value (1.0). Hence, by this measure, an observer's absolute
detection threshold is lowest for straight lines. Further, once a
straight line is detected, its presence is obvious, as indicated by the
sharp increase in confidence at SNR = ,8, On the other hand, the confi-
dence ratings for the wavy lines and pulses increase gradually, and level
off at a low - value than for straight lines. In short, straight lines are
the easiest to detect; pulses and wavy lines are about equal in detectability
across the values of SNR tested.

The standard deviations also depend on the signal pattern. In general,
the standard deviations (see Table A5.1.1) are larger for the pulses and wavy
lines than for the straight lines. The standard deviations also vary with
SNR; greater variability was obtained for the higher SNR values with the
exception of the straight lines, where variability drops dramatically at

large SNR values.
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The finding of an increase in variability with higher mean ratings at
first glance appears paradoxical. However, examination of the data of
individual observers explains this contradiction. What appears to have
happened here was that observers split into two distinct groups: one
group definitely saw the signal, the other appeared to miss it completely.
Hence, the combined data are highly variable.

The signal drawing data were analyzed by calculating the percentage
of hits and false alarms for each stimulus pattern. A hit is defined as
any mark drawn in a cell of the 8 x 8 matrix that in fact contained part
of a signal. The percentage of hits is the total number of correctly
marked cells for all 18 observers divided by the total signal cells
(multiplied by the number of observers). Since this measure by itself may
or may not reflect accuracy (for example, a perfect score would result if
observers marked every cell of the matrix), it is necessary to compute
the false alarms as well. The percentage of false alarms is defined as
the total number of marked cells, where a signal was not present, divided
by the total number of non-signal cells in the matrix (multiplied appro-
priately to obtain a single group score).

The percentage of hits is shown in Figure A5.1.3 as a function of signal
to noise ratio for each of the three signal types. The trend of the
results is very similar to the confidence ratings presented in Figure A5.1.2,
The hi*s for the linear signal show a dramatic increase at SNR = .8; whereas
the trend is more gradual (and in fact, non-monotonic) for wavy lines and
pulses.

The false alarm results are shown in Figure A5.1.3. For each signal pattern

the false alarm rate is at or below the rate for noise alone (-~ 15-20%).
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The linear signal yields the lowest false alarm rate. Quite obviously,
the hit results are not artifactually due to a high percentage of the matrix

being marked independent of signal presence.

Histograms were constructed to represent the location of drawn signals

aggregated for all observers. Figure A5.1.7 shows the frequency of drawn marks
for the linear pattern at the highest SNR (1.4). It is clear that observers
show substantial agreement on the location of the signal. (For purposes of

1 representing the data, the size of the matrix on the histogram is larger than

é - the matrix used in the experiment.)

b Figures A5.1.8 and 9 present results for two noise fields. The inter-
esting aspect of these histograms is the apparent differences. In Fig. A5.1.R

the agreement is minimal among observers concerning the location of potential

signals. However, a fair amount of agreement is evident in Figure A5.1.9.
The latter finding is intriguing since it suggests that characteristics of a
noise display lead people to infer the presence of signals, even though their
confidence in signal presence is rather low (the mean confidence ratings for
the two patterns are approximately the same).

The findings here must be considered tentative. Further analysis of
individual differences among observers, with replications using larger
sample sizes, should help to clarify and extend the present study along

§ avenues that invite direct appl.cati .: to the problem of signal detection

and recognition.

o
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SNR 0 4 N} .8 1.0 1.2 1.4
X 2.44 2.08 2.25 8.61 8.0 9.31 9.69
Linear
3 1.88 1.32 1.44 1.79 2.18 1.34 .82
X —_— 3.08 2.47 3.03 3.64 6.31 6.58
Pulse
S —_— 2.52 1.96 2.31 2.47 2.96 2.88
X | — 2.50 2.69 2.61 3.44 5.14 7.33
Wavy
S _— 1.90 2.05 2.25 2,27 3.25 2.72

Table A5.1.1 - Composite Statistics for Confidence Ratings
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Pulsed Signal
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Y=MK+y (see Linear Signal)
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Z = Intensity
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Figure A5,1.1 (b)
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Appendix A7.1

Experimental Procedure Outlines for Several Feasibility Studies

of Non-Astrophysical Uses of the Multichannel Spectrum Analyzer

and Signal Detection System

Two experimental outlines for preliminary feasibility studies of non-astro-

physical uses of the multichannel spectrum analyzer and signal detection system
are presented in this appendix. Each of these studies can be implemented with
of f-the-shelf hardware, however the studies will provide insight into the
nature and depth of the results that could be obtained by implementing the

full system as proposed in this study.

A Source Mechanism Study

In this study, the apparent downward frequency shift which accompanies
growth of the acoustic emission source will be investigated.

Parallelpipeds or right circular cylinders will be cut from a single
crystal of quartz (5102). A stress riser hole will be drilled perpendicular
to the long axis of the sample, which will allow a crack to stably propagate
from the strcss riser hole when the sample is loaded. Zirconium titanate
piezoelectric transducers will be bonded to the sides of the sample with
conductive epoxy. The transduccr outputs will be amplified by an 80-110 dB
preamplifier and recorded on an analog instrument tape recorder. A video
camera will be used to monitor crack velocity. The time gate signal on the
tape recorder will be used as an input to the camera in order to insure
synchronization of the camera and recorder.

Each sample will be loaded perpendicular to the stress rider hole and

the long axis of the sample until the crack propagation stress is reached.
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when crack propagation is initjated, the sample will be statistically
loaded, A1l acoustic emissions during crack propagation will be recorded

on magnetic tape. The power spectrum as a function of crack length will

be analyzed with a spectrum analyzer. An off-the-shelf analyzer can be

used for the initial study because while the frequency resolution over the
entire spectrum of emissions is poor, high frequency resolution can be
obtained if the bandwidth of the analyzer {s reduced. The spectrum analyzer
can be used in narrowband mode to examine the high and low ends of the
spectrum by replaying the tape into the spectrum analyzer, in order to deter-
mine the relationship between crack length and frequency shift or crack
velocity and frequency shift. The sample and experimental configuration are

shown in Figure 7.1.1,

Stress Field Measurement

Stress field measurement using the Kaiser effect as a stress measurement
tool will be investigated. The Kaiser effect is basically an acoustic memory;
if a rock has been loaded to 70% of its compressive strength (with acoustic
emission activity from roughly 40 - 50% of the compressive strength up to
failure) acoustic emission activity will not occur, upon reloading, until
the previous load is exceeded.

Parallelpipeds or right circular cylinders will be cut from a relatively
homogeneous rock such as sandstone. Each sample will be loaded axially to
70% of the compressive strength of the material and then unloaded. A piezo-
electric transducer will be bonded to the side of the sample with conductive
epoxy. Each sample will then be reloaded along the same axis up to 85% of the

compressive strength of the rock, and the acoustic emissions during reloading
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will be monitored, A series of sample sets with varying durations between
initial loading and reloading can be run in order to determine the nature

and longevity of the Kaiser effect, Samples can also be axially deformed

under confining pressure in order to determine if the three dimensional

stress field can be evaluated with the Kaiser effect. The output of the
transducer will be amplified by an 80-120 dB pre-amplifier and recorded on

an analog instrument tape recorder. The signal gating track on the tape
recorder will be used to enter the stress level data and time signal. The

tape will be replayed through a spectrum analyzer. An off-the-shelf

spectrum analyzer will be used. The gross characteristics of the spectrum can
be determined with the spectrum analyzer in wideband mode and then the spectrum
can be re-examined section by section with the spectrum analyzer in the narrow-
band mode. The multichannel spectrum analyzer and signal detector proposed

in this study has far greater sensitivity and frequency resolution than an
off-the-shelf spectrum analyzer, however the feasibility of using the system

to determine stress levels in fault zones can be investigated with off-the-
shelf equipment. The sample and experimented configuration are shown in

Figure 7.1.2.
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