NNS

NE2- 240]0

SEL-81-013

PROCEEDINGS OF
THE SIXTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

ORGANIZED BY:
SOFTWARE ENGINEERING LABORATORY
GSFC

DECEMBER 2, 1981

C
GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

National Aeronautics ana

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS
OF

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

December 2, 1981

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. Thé activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document.
Single copies of this document can be obtained by writing to

~ Frank E. McGarry

Code 582.1° =~ e meme e

NASA/GSFC
Greenbelt, Maryland 20771

iii

Page Intentionally Left Blank

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
ABOUT THE WORKSHOP

The Sixth Annual Software Engineering Workshop was held on December 2, 1981,

at Goddard Space Flight Center in Greenbelt, MD. Nearly 200 people, represent-
ing 6 wuniversities, 19 agencies of the federal government, and 30 private
organizations, attended the meeting.

As in the past 5 years, the major emphasis for this meeting was the reporting
and discussion of experiences in the identification, utilization, and evaluation
of software methodologies, models, and tools. Eleven speakers, making up four
separate sessions, participated in the meeting with each session having a panel
format with heavy participation from the audience.

The workshop is organized by the Software Engineering Laboratory (SEL), whose

members represent the NASA/GSFC, University of Maryland, and Computer Sciences
Corporation (CSC). The meeting has been an annual event for the past 6 years

(1976 to 1981), and there are plans to continue those yearly meetings as long

as they are productive.

The record of the meeting is generated by members of the SEL and is printed and
distributed by the Goddard Space Flight Center. A1l persons who are registered
on the mail 1ist of the SEL receive copies of the proceedings at no charge.

Additional information about the workshop or about the SEL may be obtained by
contacting:

Mr. Frank McGarry
Code 582.1

NASA/GSFC

Greenbelt, MD 20771

301-344-5048

Page Intentionally Left Blank

8:45 a.m.

9:00 a.m.

10:30 a.m.

10:45 a.m.

AGENDA

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER
BUILDING 3 AUDITORIUM
DECEMBER 2, 1981

INTRODUCTORY REMARKS

MORNING CHAIRMAN

SESSION NO. 1

D. Weiss (NRL)

J. Page (CSC)

V. Basili
(University of MD)
BREAK

SESSION NO. 2

J. Gaffney/R. Judge (IBM)

J. Post

(Boeing Aerospace)

12:45 p.m.

1:15 p.m.

D. Card (CSC)

LUNCH
AFTERNOON CHAIRMAN
SESSION NO. 3

B. Littlewood/A. Sofer
(GW University)

F. E. McGarry/GSFC
F. E. McGarry

“Evaluating Software Development
Characteristics”

“Analyzing Error Characteristics in Software
Development™

“Evaluating the Effects of an Independent
Verification and Validation Team™

“Assessment of Software Measures in the
Software Engineering Laboratory”

“Software Metrics”’

“The Quantitative Impact of Four Factors on
Work Rates Experienced During Software
Development™

“Software Quality Metrics for Distributed
Systems”

“Identification and Evaluation of Software
Metrics” :

V. Basili
“Software Models”
“A Bayesian Approach to Parameter

Estimation in the Jelinski-Moranda Software
Reliability Model”

vii

2:45 p.m.

3:00 p.m.

5:00 p.m.

H. Sayani/C. Svoboda
(ASTEQ)

BREAK
SESSION NO. 4

H. Mills/M. Dyer (IBM)
B. Jones (Hughes)
R. Hamilton

(Bell Labs)

ADJOURN

“The Problem of Resonance in Technology
Usage”

“Software Methodologies™

“A Methodology for Improving Software
Reliability”

“Selecting a Software Development
Methodology”’

“Development Techniques for Géneric
Software”™

viii

Workshop Introduction

The software engineering workshop is one attempt to promote the interchange of
ideas, experiences and approaches to the measurement and evaluation of varying
techniques used in the software development process. The first meeting was

held in August of 1976 in partial response to NASA's concern for the apparent
gap between the availability of state-of-the-art software development approaches
and the actual utilization of these techniques. Also, the First International
Conference on Software Engineering had been held in Washington, DC the previous
year and had stimulated interest and concern within the NASA community.

The first workshop at Goddard essentially surveyed some available state-of-the-
art development techniques to determine if they would be applicable in the NASA
environment. The meeting was attended by approximately 25 people. As a result
of this first workshop, NASA/GSFC initiated efforts to investigate the effective-
ness of the numerous available approaches to developing software.

Within a few months after the first workshop, an organization was created
(called the Software Engineering Laboratory--SEL) which was chartered to

measure the impact that various methodologies, tools, and models had on appli-
cations software within NASA/GSFC. The SEL was formed as a partnership between
NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC).
During the first year of operation, the SEL concerned itself with the approaches
to conducting software development experiments and to collecting development
data for study. The SEL became very interested in finding others who were
attempting to do similar things.

The Second Software Engineering Workshop was held in September 1977 at NASA/
GSFC with the central theme being 'Who else is performing software experiments
and collecting software data'. Approximately 55 persons attended this meeting
and many approaches and experiences relating to software experiments and data
collection were discussed--both during presentations and during informal
discussions. :

The third meeting was held in September of 1978 at NASA/GSFC. Continued
emphasis was placed on the data collection and software experiments. Many of
‘the-discussions focused on the question of 'how' do.you collect software data
and how do you successfully conduct software experiments. This meeting was
attended by approximately 70 people.

The fourth and fifth meetings again were held at NASA/GSFC in November of 1979
and November of 1980 respectively. During these sessions, the emphasis was
once again placed on data collection and the actual experiences with software
methodologies, models, tools, and measures.

The sixth meeting is another attempt to listen to experiences that people have
had in attempting to apply various modern programming practices. Although the
workshops occasionally seem to stray away from the central theme of data
collections and software experiments, the major objectives are still essentially
being met. As an example, these workshops have been instrumental in providing
suggestions and guidance to the efforts within the SEL at Goddard. The SEL has
now been in existence for about 6 years and has-closely monitored 34 applications
projects with NASA/GSFC, collecting approximately 15 m bytes uof development data.

ix

This data has continually been studied and evaluated and has led to numerous
measurements and evaluations of software methodology models and tools.

Many effective . relationships were initiated through the workshops and a great
number of experiences, experimental results and data itself has been exchanged
between organizations. The Sixth Workshop will attempt to stimulate further
exchanges.

- SIXTH ANNUAL

SOFTWARE ENGINEERING WORKSHOP

DEC. 2, 1981

NASA/GSFC

Page Intentionally Left Blank

TTIX

WORKSHOP BACKGROUND

1ST (AUGUST 1976) . . o oo STIMULATED BY

e 1ST INTERNATIONAL CONFERENCE ON S.E. (1975)
e NASA CONCERN FOR SOFTWARE TECHNOLOGY
e APPARENT LACK OF TECHNOLOGY UTILIZATION

CREATION OF SOFTWARE ENGINEERING LABORATORY (SEL)

N

OND (SEPT. 1977) e WHO IS COLLECTING SOFTWARE DATA
e WHO IS EXPERIMENTING WITH TECHNOLOGY
3RD (SEPT. 1978) e HOW DO YOU VALIDATE DEVELOPMENT DATA

e HOW DO YOU INTERPRET THE DATA

4TH (NOV. 1979), o SOME RESULTS OF EXPERIMENTS
| SOFTWARE MODELS
SOFTWARE METRICS

5TH (NOV.1980).................... e FURTHER EXPERIMENTS, DATA COLLECTION
| & PROPOSED EXPERIMENTS

Page intentionally left blank

AX

(NASA/GSFC)

SOFTWARE ENGINEERING LABORATORY

e CREATED FALL 1976 (NASA/GSFC-UNIV. MD.)

o WHY

e PROFILE OF CURRENT DEVELOPMENT TECHNIQUES

e EVALUATE EFFECTIVENESS OF MPP

e APPLY IMPROVED METHODS TO SOFTWARE AT GSFC

e HOW TO PROCEED
o EXTRACT DETAILED DATA FROM ACTIVE TASKS......(FORMS/DATA
o COLLECTION/VALIDITY)
® GENERATE CONTROL EXPERIMENTS....cccccccverssererarn (EXPERIMENTAL DESIGN/
STATISTICAL ANALYSIS)
e QUALIFY THE ‘GOOD’ SOFTWARE AND ‘BAD" (MODELS/MEASURES/

METRICS)

Page Intentionally Left Blank

TTAX

MEASURING SOFTWARE IN THE SEL

: BASIS FOR ANALYSIS

® LABORATORY EXPERIMENTSoocoevvvrsseverssseserssenne 34 PROJECTS

® INFORMATION MONITORED ...occvereerevserscneesereesne 1.6 million L.O.C.

¢ PROGRAMMERS/MANAGERS REPRESENTED.............115 PEOPLE

o DATAEXTRACTED.....c.co. e snsesssseese s 40 m BYTES ON DATA BASE
FORMS (15,000 FORMS)
TOOLS
SUBJECTIVE

® METHODOLOGIES APPLIED ...cccc..cevvrsevrrsssessssserson 200 QUALIFYING PARAMETERS

| VARIOUS MODELS,
TOOLS

NASA/SEL

Page Intentionally Left Blank

XIX

SOFTWARE ENGINEERING LABORATORY
CURRENT ACTIVITIES (FY 81)

PROJECTS BEING MONITORED

APPROXIMATE

NAME END OF DATE SIZE (L.O.C.)
DE-A (ADS) 6/81 68,000
DE-B 6/81 65,000
DADS 5/81 16,000
AODS ' 10/81 18,000
RADMAS 6/82 50,000
AADS 9/82 15,000
DECAP 6/81 12,000
GEDAP 7/81 4,000

ANALYSIS ACTIVITIES:

APPROACHES UNDER STUDY

¢ INDEPENDENT VERIFICATION & INTEGRATION
e CONFIGURATION MANAGEMENT TOOL
e REQUIREMENTS LANGUAGE (MEDL —R)

- o INFORMATION HIDING

¢ DATA ABSTRACTION

e STRUCTURED ANALYSIS (YOURDON & DEMARCO)
o N’ CHARTS FOR DESIGN

e RELIABILITY MODEL EVALUATION (MUSA, GOEL, . . .)
e APPROACHES TO SOFTWARE TESTING
e MEASURES — METRICS FOR SOFTWARE (MCCA BE, HALSTEAD, MCCALL, . . .)
e TOOLS EVALUATION (PWB, MEDL-R, CAT, SAP,. . .)

e METHODOLOGY EVALUATION

Page Intentionally Left Blank

XX

TOPICS FOR 6TH WORKSHOP

e ANALYZING ERROR CHARACTERISTICS

e MEASURES FOR SOFTWARE

e MIODELS FOR RELIABILITY & DEVELOPMENT

e METHODOLOGIES FOR DEVELOPMENT

SUMMARY OF THE SESSIONS:

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Suellen Eslinger

COMPUTER SCIENCES CORPORATION .
and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the

NASA/GSFC

Sixth Annual Software Engineering Workshop

SESSION 1 - EVALUATING SOFTWARE DEVELOPMENT
CHARACTERISTICS

Dave Weiss - "Analyzing Error Characteristics in Software De-
velopment"

The first speaker of the first session was Dave Weiss from
the Naval Research Laboratory (NRL). The purpose of his
pPresentation was to characterize software changes in two
different software development environments. Changes re-
quired to correct errors formed one subcategory of the soft-
ware changes studied. Data was used from several projects
at GSFC and at NRL; data for the GSFC projects was collected
by the Software Engineering Laboratory (SEL).

Although the two environments were quite different, the
Characteristics of the software changes were found to be
very similar. For example, in both environments relatively
few errors (approximately 5 percent) took more than 1 day to
correct, and relatively few errors (approximately 2 to

5 percent) were caused by. requirements problems. Although
the error characteristics detected may not be applicable to
other environments, the same type of study could be per-
formed by another group of software developers to charac-
terize errors in their environment. The results of this
type-of study can help-determine where effort should be
focused to reduce errors and thus improve reliability in
software being developed in a given environment.

In response to questions from the audience, Weiss clarified
Several points:

° Interface errors were only a small part of the
errors counted that affected more than one module. Unlike
simiiar studies in the literature, relatively few errors in
the two environments were found to be interface errors.

S. Eslinger
CSC
1 of 21

° All projects studied were completed, but no data
was used from the maintenance phase of the projects.

] Changes were tracked from the time that a module
was entered into the library. 1In both environments this
process took place after the programmer had coded, compiled,
ana tested the module, i.e., at the completion of unit '
testing.

° Neither environment had a formal configuration con-
trol board. The programmer was responsible for determining
the correctness of the change, and the effort to fix an
error was accepted to be the amount of time the programmer
said it took to make and test the chapge.

® The NRL environment had even less configuration
control than the GSFC environment. Configuration control in
the NRL project consisted of project leaders alone perform-
ing library updates.

Jerry Page - "Evaluating the Effects of an Independent Veri-
‘fication and Validation Team"

The next speaker of the session was Jerry Page from Computer
Sciences Corporation (CSC). The purpose of his presentation
was to evaluate the effectiveness of a particular methodol-
ogy when utilized in the development of application soft-
ware. Experiments in applying independent verification and
integration (V&I) were conducted at GSFC during the develop-
ment of two ground-based software projects. CSC was re-
sponsible for the V&I effort under contract to GSFC.
Detailed data for the projects was collected by the SEL.

The two V&I projects were compared to two similar earlier
projects monitored by the SEL for which V&I had not been
used.' Seven specific measures were used to weigh the
effects of applying the methodology. The only clearly

S. Eslinger
CSsC
20f21

favorable effect found was a reduction in the number of re-
quirements errors. Furthermore, the V&I experimental proj-
ects were costly, and the resulting software seemed to be as
error prone as the software produced by the projects for
which V&I was not used. However, the speaker noted that as
more experience is gained with a particular methodology,
better results are usually achieved. Thus, Page indicated,
more experimentation with V&I is warranted, especially with
projects of a larger size (10 to 12 staff-years) and/or with
high reliapility requirements.

This presentation generated a large response from workshop
participants. The following points were clarified by Page
in answer to questions from the audience:

° The V&I teams represented approximately 15 to
18 percent of the development effort in size and were simi-
lar to the development teams in experience.

o In general, the V&I teams worked behind the devel-
opment teams, verifying the completed code while new code
was being developed.

° The activity of code reading was performed by the
development teams as a standard practice. Since the V&I
teams were relatively small compared to the amount of code
--produced;, -the V&I--teams emphasized testing of-the software - -
and not code reading. In fact, testing was found to be the
most cost-effective part of the V&I effort.

° No investigation was made of the effect of the V&I
teams on the readability or the maintainability of the
code. Since the V&I teams were not directly involved in the
code reading activity, their presence was not expected to
affect the quality of the code in readability or maintain-
ability.

S. Eslinger

Jof2l

) In the four projects studied, similar methodologies
were used, except for the presence of the V&I teams.

[In all four projects, acceptance testing was per-
formed by an independent team, whose effort did not overlap
the effort of either the development teams or the V&I
teams. In particular, the V&I teams did not verify the
acceptance tests. Thus, the quality of acceptance tests was
not perceived to differ significantly for the four projects.

° Most errors found during acceptance testing were
not due, in general, to testing with real data. Since real
data is not usually obtained until very late in acceptance
testihg, most testing is performed with simulated data.

o A member of the audience suggested that the value
of tne V&l efforts may appear after acceptance testing.
Page responded that in this environment, on the average,
only 15 percent of the total cost is incurred during the
maintenance phase. Thus, a significant savings in cost is
not expected for the V&I projects during this phase. How-
ever, all of the projects studied are still being monitored,
and the data will continue to be analyzed.

° There were some instances in which the development
teams relied upon the V&I teams to f£ind their errors.

® There was also an overlap in errors found by the

development -teams and the V&l teams .,although the percentages
have not been computed.

[CsC's Milt Phenneger, who participated in the V&I
effort, suggested that the V&I process could be improved by
tailoring the design and scheduling of the software releases
to an independent testing effort. However, the speaker
noted that the purpose of the experiment was to assess the
effect of independent V&I without perturbing the existing
software development process.

S. Eslinger
CSC
4 0of 21

Vic Basili - "Assessment of Software Measures in the Software

Engineering Laboratory"

The last speaker of the session was Vic Basili from the
University of Maryland. This presentation concentrated on
software measures as studied in the SEL. He outlined the
characteristics of measures examined by the SEL dufing the
past 4 years. His discussion focused on various classes of
measures, such as subjective and objective measures of the
software process and product, cost, and quality. He dis-
cussed the use of metrics for categorization, evaluation,
and prediction. One result obtained from the analysis of
SEL data is that many of the complexity measures, including
the Halstead measures, are highly correlated with each other
and with the number of lines of code. This is a disappoint-
ing result because it indicates that in this environment
none of the more sophisticated complexity measures is a
better predictor than the simple measure of lines of code.

A cost model has been developed using subjective metrics to
modify the basic size/effort equation. Other results indi-
cate that in this environment productivity correlates posi-
tively with methodology but with few other factors,
including size. Also, subjective measures of quality cor-

_relate positively with methodology. and inversely with.com- .

plexity.

In response to questions from the audience, Basili clarified
the following points:

° Examples were given of the subjective measures of
quality, of the methodology measures, and of the complexity
measures for which data is being collected by the SEL.

° On a typical project studied by the SEL, methodol-
ogies either tend to be used as a total group or completely
avoided. As methodology is used to a larger extent, the
quality and productivity tend to increase. However, the

S. Eslinger
CcsC
5of 21

measures dealing with the degrees of use of a particular
methodology do not function individually as predictors.
Rather, the overall set of methodology measures should be
used.

S. Eslinger
CsC
6 of 21

SESSION 2 - SOFTWARE METRICS

Bob Judge - "The Quantitative Impact of Four Factors on Work
Rates Experienced During Software Development"

The first speaker of the second session was Bob Judge from
the International Business Machines Corporation (IBM), who
presented the results of a study done jointly with John
Gaffney. The purpose of the study was to attempt to use
parameters (or factors) to explain the effort required for
developing software with the end goal of building a cost
estimation model.

The effects of four factors on work rate were measured for
nine components of the software development life cycle. The
four general factors studied were the personnel type (pro-
grammers versus systems engineers), the product (type of
software application), the computer (one of three host com-
puters), and the code type (new versus modified software).
Data was used from projécts developed within IBM. The esti-
mation process was more effective for some components of the
life cycle than for others. The four factbrs provided the
best estimates of work rate for the components dealing with
implementation and the worst estimates of work rate for the
requirements analysis phase. Overall, 39 percent of the
variation in work rate for the projects studied was ex-
plained.

In response to questions from the audience, Judge clarified
the following points:

o The study was based on historical data for com-
pleted projects.

[The number of samples used for the analysis was the
number of projects studied. However, not every project
necessarily covered all nine components of the software life
cycle.

S. Eslinger

CsC
7 of 21

) The cost data used came directly from customer
charges and was, therefore, considered highly accurate.
Inaccuracies, however, could be present in the distribution
of costs among the nine life cycle components. Dimensions
of cost were expressed in staff-months instead of-dollars to
eliminate the effects of inflation. The size data used
could contain some inaccuracies but, on the whole, it was
felt to be fairly accurate.

) The purpose of the study was to obtain a predictive
model for cost estimation.

Jonathan Post - "Software Quality Metrics for Distributed
Systems"

The second speaker for the session was Jonathan Post from
Boeing Aerospace Corporation, who discussed measures for
distributed processing systems. As part of a project to
define and evaluate measures for distributed systems, per-
sonnel investigated the similarities and differences between
measures applicable to distributed systems and those appli-
cable to single-processor systems.

The starting point for the study was the set of factors or
qualities desirable'in a software system and the criteria
for evaluating those factors as defined by J. McCall from
the General Electric Company. Post added criteria appli-
cable to distributed systems to some of McCall's factors,
and he defined additional factors and associated criteria
for distributed systems. The rationale for these additions
was presented in some detail. Post indicated that during
the next year data will be collected for distributed systems
developed by Boeing Aerospace; it will then be analyzed in

an attempt to evaluate the quality measures that have been
defined.

S. Eslinger
CSsC
8 of 21

In response tc questions from the audience, Post clarified
the following points:

° A definition of a distributed system is critical to
the project to select projects for which data will be col-
lected. Since no éonsensus currently exists in the com-
munity for the exact definition of a distributed system,
significant effort was expendéd on establishing what this
project considered to be a distributed system.

[The data will be collected using McCall's approach
of a standard worksheet filled out by project personnel.
Information will be extracted from these forms by a single
person in an effort to eliminate the potential for bias in
the responses. Interviews will also be held with project
personnel to establish the validity of the data. Since Post
is familiar with practices used in the projects being
studied, he expected that his role in the company as a

quality assurance monitor would help him obtain valid data.

° The set of quality metrics established includes
some system metrics and some software metrics. Some of the
distributed system factors are the same as those established
by McCall. Other factors have been modified (i.e., new cri-
teria added to those given by McCall), while still others
‘are entirely new. -

Dave Card - "Identification and Evaluation of Software
Metrics"

The last speaker of the session was Dave Card of CSC. The
purpose of his presentation was to describe a procedure for
identifying the underlying gualities measured by a set of
software measures. For a number of actual software proj-
ects, values have been determined by the SEL for 200 meas-

ures that cover the range of GSFC softﬁare development
activities. '

S. Eslinger
CSsC
9 of 21

For this study, data was used from 22 projects for 60 meas-
ures describing the software development process and prod-
uct. The product measures studied included size and
resource measures, and the process measures were ratings of
the degree of use of various methodologies, tools, and docu-
mentation procedures. Six of these measures, for which
there were insufficient examples of use in the data, were
rejected by a test of normality. A factor analysis was per-
formed on the remaining 54 measures that extracted 5 factors
accounting for 77 percent of the variance of the original
data. The factors can be thought of as the underlying inde-
pendent qualities being measured by the 54 measures. The
five factors represented methodology intensity, project
Ssize, computer usage, quality assurance, and change rate.
Card emphasized that this procedure produces a descriptive
model, not a predictive model, and that it is an interme-
diate step toward further research.

This presentation generated considerable audience interest.
In response to questions, Card briefly described the factor
analysis procedure and clarified the meanings of several
factors. He also expanded upon the following points:

° The factors themselves are not directly measur-
able. The factor analysis procedure, however, computes the
correlation of the original variables (i.e., measures) with
each of the factors. The measures shown as contributing to
each factor were those whose correlations with the factor

were at the 0.01 level of significance.

° Variance can be viewed as the amount of information
contained in the data. Thus, the factor model produced ac-
counted for 77 percent of the information in the 54 measures

over the 22 projects.

° The 200 measures for which data is collected by the
SEL were originally selected as completely characterizing
S. Eslinger

CSC
10 of 21

the GSFC software development activity. The 60 measures
used in this particular study consisted of all those related
to the software development process or product. Of these,
54 passed the test of normality and were used in the factor
analysis.

] The measures reflecting the degree of use of a
particular methodology, tool, or documentation procedure are
not binary variables but are ratings on a scale of 0 to 5.
These ratings, reflecting the degree of use of each proce-
dure, were assigned to each project by a single group of-
people.

) The factor procedure does not produce a predictive
model, It provides information different from the correla-
tions among variables. For instance, although the produc-
tivity measure was not significantly correlated with the
methodology intensity factor, it can not be implied or in-
ferred that productivity is independent of any specific
methodology. In fact, the productivity measure may be
highly correlated with the degree of use of an individual
methodology.

° The approach followed in this study is different
from that generally followed. Usually, studies select de-
sirable qualities and then seek measures of these quali-
ties. Here, data from a number of measures is collected,
and the qualities being measured by this data are then iden-
tified.

o Several people besides the speaker pointed out that
these results reflect the environment being studied by the
SEL and that they may not be applicable to other environ-
ments,

S. Eslinger
CSC
11 of 21

SESSION 3 - SOFTWARE MODELS

Ariela Sofer - "A Bayesian Approach to Parameter Estimation
in the Jelinski-Moranda Software Reliability
Model"

The first épeaker of the third session was Ariela Sofer from
the George Washington University, who presehted the results
of work done jointly with Bev Littlewood. The purpose of
the presentation was to evaluate the effectiveness of the
Jelinski-Moranda software reliability model.

Error data provided by John Musa from Bell Laboratories was
used to perform the evaluation. Estimates produced by the
Littlewood model from this data were shown to be better than
similar estimates obtained from the Jelinski-Moranda model.
Several shortcomings in the Jelinski-Moranda model were
enumerated. 1In particular, the estimates obtained from this
model were consistently too optimistic. A Bayesian reparam-
eterization of the Jelinski-Moranda model was presented; and
estimates produced by the standard and reparameterized ver-
sions of the Jelinski-Moranda models for the error data were
compared. This comparison showed that the reparameterized

Jelinski-Moranda model produced better results than the
standard version. '

In response to questions from the audience, Sofer clarified
the following points:

° In the error data used, the times between failure
were calculated as the execution times between program fail-
ure. John Musa, who collected the data, further explained
that a program failure was considered to be any occasion on

which the program did not perform according to its require-
ments.

S. Eslinger
CscC
12 of 21

° The models being evaluated assume that the times
between failures are independent. This may not be the case
witn actual data.

° The models assume that when a program failure
occurs, the error is corrected before execution of the pro-
gram continues,

Disagreement on the approach presented in Sofer's talk was
evidenced by comments from John Musa and Nozer Singpurwalla.
Musa stated that it was unfortunate that Littlewood was not
present at the workshop to participate. Certain other
points were made as follows:

, ° Musa stated that he had published a comparable re-
parameterization of the Jelinski-Moranda model in 1975.

° Both Musa and Singpurwalla pointed out that there
are problems with using quantile-quantile (Q-Q) plots to
evaluate the models. Q-Q plots are based on an assumed dis-
tribution of the random variable being studied. Thus, they
are sensitive to ‘the choice of this distribution for which
no clear criteria are available.

) Furthermore, Singpurwalla noted that if a uniform
prior distribution were assumed, the Bayesian model should
‘have given the same result as the original Jelinski-Moranda
model. The fact that it did not suggests an error in the
calculations,

[Musa said that the flaws in this approach to com-
paring reliability models were pointed out to him by Amrit
Goel. Musa relayed this information to Littlewood but has
not yet received a response from him.

Hasan Sayani - "The Problem of Resonance in Technology Usage"

The second speaker of this session was Hasan Sayani from
ASTEC Corporation, who presented the results of work done
S. Eslinger

CSsC
130f 21

jointly with Cyril Svoboda. His presentation focused on the
management considerations of introducing tools into any
software development environment,

The discussion was based on observations made while con-
sulting in this field with a number of companies. The im-
portance of having an appropriate tool environment in
developing software was brought out; and the problems in-
volved in the implementation of such an environment were
discussed from both the user and managerial point of view.
In particular, Sayani identified specific recommendations
(both dos and don'ts) to guide the process of adopting
tools. The central theme of his presentation was the need
for a systems approach to the management of software tech-
nology.

This presentation generated considerable audience interest.
The chairman of the afternoon sessions, Vic Basili, remarked
that Sayani had presented a comprehensive list with which he
agreed. The speaker clarified the following poihts in the
ensuing discussion:

° The tools whose implementations were studied in-
cluded PSL/PSA, data base design tools, process design
tools, and librarian systems.

° Members of the audience remarked that the study
appeared to be applicable to the implementation of other
technologies in addition to tools. Sayani agreed and stated
that the approach might also be applied to introducing tech-
nology to developing nations. '

. Users generally agree that tools are oversold.
This situation creates management problems.

° Methodologies and tools tend to be sold to people
with weak systems backgrounds who do not understand how the
new technologies interact with the total software develop-

ment life cycle.

S. Eslinger
CsC
14 of 21

° The training and maintenance of a toolsmith group
is an important part of the tool implementation process to
avoid the problem of tools falling into disuse when key
people leave the environment.

° Companies should also standardize and institu-
tionalize these tools to enforce their use.

° A member of the audience remarked that Japanese
management techniques might be applicable to this topic.
Sayani responded that certain of their techniques would be
pertinent but others would not because of cultural differ-
ences. However, the Japanese have adopted the use of cer-
tain technologies that were developed here but are not as
widely used in this country. For example, there are a large
number of PSL/PSA users in.Japan.

S. Eslinger
CSsC
15 of 21

SESSION 4 - SOFTWARE METHODOLOGIES

Mike Dyer - "The Clean Room Software Development Process"

The first speaker of the fourth session was Mike Dyer from
IBM, who presented the results of work done jointly with
Harlan Mills. The purpose of the presentation was to de-
scribe the mechanics of the "clean room" software develop-

ment process. Pilot projects for this approach are still
being set up.

After the preparation of a structured specification, the
software development process is divided between two groups
of people: design engineers and product engineers. The
design engineers will design and code the software product
with the goal of producing first-time correct code. No use
of the computer will be made by the design engineers in ac-
complishing this goal; instead, extensive inspections and
reviews will be conducted. The product engineers will per-
form operational testing on the code produced by the design
engineers with the goal of testing for the customer environ-
ment. Tests will be selected randomly from a set of tests
developed by the product engineers from the structured spec-
ification, and errors identified by the product engineers
will be returned to the design engineers for correction.

This software development process purposely omits the usual
step of unit testing. |

Dyer stated that, based upon small experiments already con-
ducted, there is evidence that this process works. More
extensive experiments are now being planned in which data
will be collected to evaluate the effect of this approach on
the reliability of the software produced.

The audience reaction generated by this presentation was the
largest of the entire workshop. Harlan Mills joined Mike
Dyer in responding to the questions from the audience.

S. Eslinger

CSsC
16 of 21

The following points were brought out in the ensuing dis-
cussion:

° Design engineers will be experienced in software
design and coding; product engineers will be experienced in
system integration and testing. Dyer and Mills indicated
that IBM currently has on its staff skilled people who can

perform, or can be trained to perform, in this new environ-
ment.

) The product engineers are not considered quality
assurance personnel. They must perform the analysis neces-
sary to produce the data base of test cases from the struc-
tured specification. They must also run the tests and
anélyze the results. To function properly the product en-
gineers must have a thorough knowledge of the customer's
operational environment,

° The product engineers will participate in drawing
up the structured specification. They will reenter the
software life cycle after the code is developed. They will

not be allowed access to design materials during the testing
phase.

° Good specifications are necessary for this approach
to be successful. The entire process is based on the use of
a structured specification methodology. '

° This approach to software develooment is not pri-
marily aimed at cost savings. The questicn of whether or
not the "clean room" process will yield productivity gains
has not been addressed. The expected beneiit is in the in-
creased reliability of the software produced. However, the
testing phase in the "clean room" process is not expected to

cost any more than is currently spent in the usual unit,
functional, and acceptance testing phases.

S. Eslinger
CSC
17 of 21

° This process is also not expected to help in sizing
software systems.

° Mills and Dyer clarified an earlier point by saying
that test data will not be chosen at random. Rather, random
tests will be selected from a data base of test casés that
are designed to test all capabilities set forth by the
structured specification. There will be errors that are not
found by the random selection of tests, but evidence is
available that random testing is as good as any other form
of testing. In fact, since in sampling theory the sample
size, and not the population size, is critical, Mills be-
‘lieves that a random sample of tests can provide better
testing coverage than conventional testing.

° Evidence also exists that successful system testing
can be performed without unit testing.

° Mills indicated that they do not expect to attain
perfection but that they do expect to achieve an increase in
reliability.

o No plans have been made to seed code with errors to
assess the efficiency and effectiveness of the product engi-
neers.

) A member of the audience observed that this process
appears to push error detection farther into the software
life cycle. Dyer responded that this is not the case. More
errors are expected to be found by the design engineers
through the review process. Moreover, since the product
engineers will be performing operational testing, they are
expected to find errors that normally would not be uncovered
until the software was operational.

° To evaluate this process, a complete history of
errors must be maintained.

S. Eslinger

18 of 21

) Several members of the audience questioned the use
of mean time between failures (MTBF) as a measure of soft-
ware reliability. Mills and Dyer indicated that they be-
lieved MTBF to be a reasonable measure and one that was
familiar to management and demanded by customers. Vic Basili
indicated that MTBF is a measure that is associated with
other measures of software quality. Another member of the
audience suggested the use of mean time to repair (MTTR).

° Mills emphasized that the "clean room" software
development process would require some modification in pro-
grammer behavior. Since it is known that programmers can
write thousands of lines of correct code, the goal of pro-
ducing first-time correct code is not unreasonable., Pro-
grammers must be made to believe that they can do this
without the use of the computer. Mills and Dyer hope to
achieve this behavior modification by not allowing the pro-
grammers to have access to the compilers.

® Mills also stated that product engineering was de-
vised because they felt that testing is a critical part of
the development process. This process does not remove the
ability to test the software; rather, design engineers are
askéd to test by thinking instead of making computer runs.

® No projects using this approach are yet complete.
The pilot projects are still in the process of being set up.

) The approach is expected to work for any type of
software application.

° Vic Basili indicated that in recent testing experi-
ments he has run, the functional tests uncovered most of the
errors., However, the testers did not always recognize that

the test results had indicated errors.

S. Eslinger
CSC
19 of 21

Bob Jones - "Selecting a Software Development Methodology"

The second speaker of the session was Bob Jones from Hughes
Aircraft, who discussed an approach for selecting a software
methodology. The presentation centered on a Hughes contract
with the U.S. Air Force to define a set of tools and method-
ologies to be used for integrated digital flight control
software development. In response to this specific need of
the Air Force, Hughes surveyed the enviroﬁment.and attempted
to take a logical approach to the selection of tools and
methodologies for that environment. The results of the
study have been presented in a guidebook, a document of con-
siderable size. Jones indicated that Hughes has started to
collect data to evaluate the cost benefits of using the
techniques specified by the guidebook.

In response to questions from the audience, Jones clarified
several points:

) The tools and methodologies recommended included
the use of CADSAT, structured design, high-order langquages,
and modern programming languages.

° The software produced will not be verified in
flight. There is a standard procedure for verifying flight
control software that uses simulated data. It is not
planned to use the software produced by this experiment in
flight but only to verify that it performs aécording to
specification. ' |

° Hughes will be collecting only cost data for this
experiment. In evaluating cost-benefit tradeoffs, the bene-

fits obtained by following the guidebook will be determined
by the customer.

° A member of the audience pointed out that if the
guidebook covered all the tools and methodologies mentioned,
it would constitute a 4-year curriculum. Jones agreed but

S. Eslinger
CSC
20 0f 21

stated that the guidebook did not present detailed instruc-
tions in the technologies.

Richard Hamilton - "Development Techniques for Generic
Software"

The last speaker of the session was Richard Hamilton from
Bell Laborétories, who spoke about a methodology for devel-
oping generic software. His discussion centered on one
class of applicatibn: networking with a specific protocol.
The use of a layered approach and a finite state machine in
implementing the X.25 protocol was presented. The complex-
ity, size, and speed of the newly developed generic program
were compared to an older, machine-specific X.25 protocol »
program. Hamilton indicated that the complexity of the two
programs was about the same. However, the size of the ge-

neric program was larger and its speed was faster.

In response to questions from the audience, Hamilton clari-
fied the following points:

° The complexity measure used was the McCabe measure
that provides a measure of the number of branches in the
program.

° Hamilton indicated that the finite state machine

used in the generlc program was modeled as closely as pos—
sible to the spec1f1cat10n. """ -

) A member of the audience commented that there might
be a size and/or speed tradeoff effect operating in this
instance. That is, the increased size in terms of more mod-
ularity might contribute to its increased speed.

° The layered approach often requires extra overhead
in additional procedure calls. Hamilton noted that several
hundred extra bytes were attributable to this overhead.

° No attempt was made to use macros to decrease the
overhead.
S. Eslinger

CsC
21 of 21

PANEL #1
EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS
D. Weiss, Naval Research Laboratory

J. Page, Computer Sciences Corporation
V. Basili, University of Maryland

EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS:
A Comparison Of Software Errors In Different Environments

David M. Weiss
Naval Research Laboratory

Introduction

According to the mythology of computer science, the first computer program
ever written contained an error. Error detection and error correction are now
considered to be the major cost factors in software development [Boe72, Boe73,
Wol74]. Much current and recent research is devoted to finding ways to
prevent sotware errors. One result is that techniques claimed to be effective
for preventing errors are in abundance. Unfortunately, there have been few
empirical attempts to verify that proposed techniques work well in production
environments. Indeed, there have been few attempts even to collect data that
could yield insight into the issues involved. The purpose of this paper is to
compare error data obtained from two different software development
environments. ' '

To obtain data that was complete, accurate, and meaningful, a
goal-directed data collection methodology was used. The approach was to
monitor changes made to software concurrently with its development. The
results reported here were obtained by applying the methodology to three
projects at NASA/GSFC, and one project at the Naval Research Laboratory
(NRL). Although all changes were monitored for most projects, we are
concerned here only with results obtained from the error data, and only with
data that may be used to compare the two environments. Readers interested in
a more detailed description of the research methodology or other analyses
using other data from the same sources are referred to [Bas81, Wei79, Wei8l].

Research Methodology

The methodology is goal oriented. It starts with a set of questions to be
answered, and proceeds step-by-step through the design and implementation of a
data collection and validation mechanism. Analysis of the data yields answers
to the questions of interest, and may also yield a new set of questions. The
procedure relies heavily on an interactive data validation process; those
supplying the data are interviewed for validation purposes concurrently with
the software development process. The methodology has six basic steps, as
described in the following.

1. Establish the goals of the data collection,
Many (but not all) of our goals are related to claims made for the
software development methodology being used. As an example, a goal
of a particular methodology might be to develop software that is easy
to change. The corresponding data collection goal is to evaluate the
success of the developers in meeting this goal, i.e. evaluate the
ease with which the software can be changed.

D. Weiss
NRL
1of 25

2. Develop a list of questions of interest
Once the goals of the study are established, they are used to develop
a list of questions to be answered by the study. 1In general, each
goal will result in the generation of several different questions of
interest. For example, if the goal is to evaluate the ease with
which software can be changed, we may identify questions of interest
such as: "Is it clear where a change has to be made?", '"Are
changes confined to a single modules?'", "What was the average effort
involved in making a change?"

3. Establish data categories
Once the questions of interest have been established, categorization
schemes for the changes and errors to be examined may be constructed.
Each question generally induces a categorization scheme. If one
question is, '""How many errors result from requirements changes?", one
~will want to classify errors according to whether or not they are the
result of a change in requirements.

4, Design and test data collection forms
To provide a permanent copy of the data and to reinforce the
programmers' memories, a data collection form is used. Forms design

was one of the trickiest parts of the studies conducted, and will not
be discussed here.

5. Collect and validate data

" Data are collected by requiring those people who are making software
changes to complete a change report form for each change made, as
soon as the change is completed. Validation consists of checking the
forms for correctness, consistency, and completeness, and
interviewing those filling out the forms in cases where such checks
reveal problems. Both collection and validation are concurrent with
software development,

6. Analyze the data
Data are analyzed by calculating the parameters and distributions

needed to answer the questions. of interest,

To apply the methodology to the collection of change data, the following
definitions were used. :

A change is an alteration to baselined design, code or documentation,
An error is a discrepancy between a specification and its implementation.

A modification is a change made for any reason other than to correct an
error.

D. Weiss
NRL
20f 25

The Projects Studied

The studies reported here contain complete results from four different
projects. Two different environments and several different methodologies were
used. One environment was a research group at the Naval Resesarch Laboratory
(NRL), and the other was a NASA software production environment at Goddard
Space Flight Center. Table 1 is an overview of the data collected for each
project. For the ARF project, only error data were collected. Table 2 gives
the values of parameters often used to characterize software development
projects.

The Architecture Research Facility

The purpose of the Architecture Research Facility (ARF) project, developed
at NRL, was to develop a facility for simulating different computer
architectures. The simulation is based on a description of the target
architecture written in the Instruction Set Processor language [Bel71].

A complete description of the ARF simulator is available elsewhere [Elo79].

Briefly, to simulate a machine, the ARF uses a set of tables that describe the

machine being simulated and its state, a module to perform instruction

simulation, and a module to handle the interface to the user. The machine
description contained in the tables is produced by an ISP compiler (an
existing compiler was used)

The ARF was developed by a team of nine people, not all full time.
Development took about ten months and 192 people-weeks, exclusive of
consulting and secretarial support, to develop. The delivered system
contained about 20,000 lines of FORTRAN code.

The primary goal of the ARF designers was to produce a working simulator
that would permit the simulation of small target-machine programs. The
designers also viewed the ARF development as an experiment in the application
of software engineering technology [Elo79]. The key parts of the technology
used are the following.

* Rather than developing the whole system at one time, the ARF was to
be done using the family approach to software development [Par76].
The system was to be built in three main stages. Each stage would
produce a member of the ARF "family" of programs, providing different
facilities.

The information-hiding principle [Par72a) was to be applied to

conceal design decisions that were expected to change during the

lifetime of the ARF. _

* Informal design specifications, followed by standardized interface
specifications, followed by high-level language coding specifications
were written for each major module of the ARF before any code was
written. Each specification was reviewed before its successor was
produced.

* FORTRAN code was written from the coding spec1f1cat10ns, compiled,
and then reviewed by someone other than the coder prior to debugging.
The coder debugged the code and delivered it for testing. A tester
(usually) other than the coder or designer, was selected to test the
debugged code.

*

D. Weiss
NRL
30f 25

* At the possible expense of some run time performance, several
debugging aids were designed into the system to make development
easier. These included

a. A method for detecting errors involving improper access to
table entries, known as the binding mechanism,

b. A consistent execution-time error reporting scheme for
table interface functions, and

c. A mechanism for inserting, and turnlng on and off,
debugging code through the use of a compile-time
preprocessor.

The Software Engineering Laboratory

The Software Engineering Laboratory (SEL) is a NASA sponsored project to
investigate the software development process, based at Goddard Space Flight
Center (GSFC). A number of different software development projects are being
studied as part of the SEL investigations [Bai8l, Bas77]. Studies of changes
made to the software as it is being developed constitute one part of those
investigations, _

Typical projects studied by the SEL are medium size FORTRAN programs that
compute the position (known as attitude) of unmanned spacecraft, based on data
obtained from sensors on board the spacecraft. Attitude solutions are
displayed to the user of the program interactively on CRT terminals. Because
the basic functions of these attitude determination programs tend to change
slowly with time, large amounts of design and sometimes code are often re-used
from one program to the next. The programs range in size from about 20,000 to
about 120,000 lines of source code. They include subsystems to perform such
functions as reading and decoding spacecraft telemetry data, filtering sensor
data, computing attitude solutions based on the sensor data, and providing an
(interactive) interface to the user, ‘

Development is done by contract in a production environment, and is often
separated into two distinct stages. The first stage is a high-level design
stage. The system to be developed is organized into subsystems, and then
further subdivided. For the purposes of the SEL, each named entity in the
system is called a component. The result of the first stage is a tree chart
showing the functional structure of the subsystem, in some cases down to the
subroutine level, a system functional specification describing, in English,
the functional structure of the system, and decisions as to what software may
be reused from other systems.

The second stage consists of completing the development of the system.
Different components are assigned to (teams of) programmers, who write, debug,
test, and integrate the software. Before delivery, the software must pass a
formal acceptance test. On some projects, programmers produce no intermediate
specifications between the functional specifications produced as part of the
first stage and the code. Some projects produce pseudo-code specifications
for individual subroutines before coding them in FORTRAN. During the period
of time that the SEL has been in existence, a structured FORTRAN preprocessor
has come into general use.

In distinction to the ARF developers, NASA is not concerned with
experimenting with new software engineering techniques. It is concerned with
introducing improved techniques into its software development process.

D. Weiss
NRL
4 0f 25

\

Nonetheless, the principal design goal of the major SEL projects is to produce
a working system in time for a spacecraft launch. Results from SEL studies of
three different NASA projects, denoted SEL1l, SEL2, and SEL3, are included here.

Number of Number of Number of
Changes Modifications Errors
Project
SEL1 281 101 180
SEL2 229 110 119
SEL3 760 453 307
ARF : 143
Table 1 Overview of Data Collected
Effort Number of Lines of Dev. Lines Number of
(Months) Developers Code (K) of Code (K) Components
Project
SEL1 79.0 5 50.9) 46.5 502
SEL2 39.6 4 75.4 31.1 490
SEL3 98.7 7 85.4 78.6 639
ARF 44.3 9 21.8 21.8 253
Table 2 Summary of Project Information
Errors Per K Lines Errors Resulting Repeated Error Ratio
0f Developed Code From Change (Average Number
(As Percentage = Of Corrections
Of NonClericals) Per Error)
Project
SEL1 3.9 5 1.02
SEL2 3.8 14 1.08*
SEL3 3.9 12 1.05
ARF 6.6 13 1.007

#* Upper bound. Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

Table 3 Measures of Erroneous Change

D. Weiss
NRL
50f 25

Results

The results presented here are derived from analyses of several different
data parameters and distributions. Table 3 shows error density, errors
resulting from change, and repeated error ratio for each project. These
parameters indicate that for all projects most changes were made correctly on
the first attempt. ,

Figures 1 and 2 are an overview of the change distributions for the SEL
projects (recall that data on modifications is not available for the ARF
project). Figure 3 shows sources of modifications, i.e. reasons for modifying
the software, and figure 4 shows sources of nonclerical errors. Although
there were a significant number of requirements changes for two of the SEL
projects, none of the projects show a significant number of errors resulting.
from incorrect or misunderstood requirements.

For all projects, the major source of errors was the design and
implementation of single components. (For these projects, a single component
is nearly always a FORTRAN subroutine or block data.) Rzlatively.few errors
were the result of misunderstandings of requirements, specifications,
programming language or compiler,’ or software or hardware environment.
Aspects of the design involving more than one component was also not a major
source of errors. Figure 5 shows a continuation of the same pattern. For
most projects, interfaces were not a significant source of errors.

A further categorization of design and implementations errors, including
both single and multi-component design errors is shown in figure 6. The
pattern for the SEL and ARF projects is quite different here; relatively few
ARF errors involved the use (including definition, representation, and access)
of data. For the SEL projects, data errors were a significant fraction of
design and implementation errors. :

A direct measure of ease of error correction is shown in figure 7. For
all projects, the overwhelming majority of errors took less than a day of
effort to correct. 1Indeed, most error corrections took an hour or less of
effort.) :

Figure 8 is a measure of locality of errors with respect to project
components. Only components that required at least one error correction (one
fix) are represented. The majority of such components required no more than
one correction. .For all projects, 80%Z or more of such components were
corrected at most three times.

Locality of errors with respect to project subsystem (project module for
the ARF), is shown in figure 9. The distributions here show the reverse

pattern of those in .figure 8, i.e. most corrections are clustered in a few
subsystems (modules).

Conclusions

The ARF and SEL projects involved different applications and were
developed in different environments, using different methdologies, people with
different backgrounds, and different computer systems. Despite these
differences there are a number of similarities between the two, as listed in
the following.

D. Weiss

6 of 25

1. There is a common pattern to the sources of error
distributions. The principle error source is in the design and
implementation of single routines. Requirements, specifications
and interface misunderstandings are all minor sources of errors.

2. Few errors are the result of changes, few errors require more
than one attempt at correction, and few error corrections result
in other errors. '

3. Relatively few errors take more than a day to correct.

These similarities may be explained by different factors in the different
environments, The SEL projects may be viewed as redevelopments. Much of the
same design and some of the same code is reused from one project to the next.
As a result of experience with the application, the changes most likely to
occur from one project to the next have been identified by the designers. The
systems are now designed so that these changes are easy to make. Confirmation
of this explanation was provided by one of the primary system designers in
discussions held after the data were analyzed.

In the ARF environment, the explicit use of techniques to identify and
design for potential changes is a likely contributing factor to the
similarities in the distributions.

Common factors to both the SEL and ARF projects were the stability of the
hardware and software supporting the development and the familiarity of the
programmers with the language they were using.

The most striking difference between the ARF and SEL projects is in the
proportion of intended use to data errors. The ARF project has a considerably
smaller proportion of data errors than the SEL projects. One reason for this
may be the conscious attempt of the ARF developers to apply abstract data
typing and strong typing in their design.

Acknowledgements

Support for a research project involving data collection in a production
environment must come from many sources. These sources include project
management, the programmers supplylng the data, those malntalnlng the data
base (in both paper and computerlzed form), those assisting in data analysis,
and those providing technical review and guidance. A few of the people
providing such support were Frank McGarry, Drs. Victor Basili, David Parnas,
John Shore, and Gerald Page, Honey Elovitz, Alan Parker, Jean Grondalski, Sam
DePriest, Joanne, Shana, and Joshua Weiss, and Kathryn Kragh.

D. Weiss
NRL
70f 25

References

[Bai81]

{Bas?77]

[Bas81}

[Bel71]}

[Elo79]

[Par72a]
[Par76}

[Wel79]

[Wei81]

J. Bailey and V. Basili, "A Meta-Model For Software Development
Resource Expenditures," Proc. Fifth Int. Conf. Software Eng., Pp.
107-116, 1981

V. Basili, M. Zelkowitz, F. McGarry, et al., The Software Engineering
Laboratory, University of Maryland Technical Report TR-535, May 1977

V. Basili and D. Weiss, "Evaluation of a Software Requirements
Document By Amalysis of Change Data," Proc. Fifth Int. Conf. Software
Eng., pp. 314-323, 1981

C. Bell and A. Newell, Computer Structures: Readings and Examples,
McGraw-Hill, New York, 1971

H. Elovitz, "An Experiment In Software Engineering: The Architecture
Research Facility As A Case Study, Proc. Fourth Int. Conf. Software
Eng., pp. 145-152, 1979

D. L. Parnas, "A Technique For Software Module Specificétion With
Examples," Comm. ACM, vol. 15 no. 5, May, 1972, pp. 330-336

D. L. Parnas, "On the Design and Development of Program Families,"
IEEE Trans. Software Eng., vol. SE-2 no. 1, pp. 1-9, 1976

D. Weiés, “"Evaluating Software Development by Error Analysis: The
Data from the Architecture Research Facility," J. Systems and
Software, vol. 1, pp. 57-70, 1979

D. Weiss, "Evaluating Software Development By Analysis Of Change
Data,'" Ph.D. Thesis, University of Maryland, 1981

D. Weiss
NRL
8 of 25

THE VIEWGRAPH MATERIALS
for the
D. WEISS PRESENTATION FOLLOW

D. Weiss
NRL
9 of 25

x

*

%

PURPOSE OF RESEARCH

FIND A WAY OF EVAULUATING SOFTWARE DEVELOPMENT METHODOLOGIES

LEARN ABOUT THE SOFTWARE DEVELOPMENT PROCESS

LEARN ABOUT MEASURING THE SOFTWARE DEVELOPMENT PROCESS

APPROACH

STUDY CHANGES USING GOAL-~-DIRECTED DATA COLLECTION

D. Weiss

10 of 25

RESEARCH METHODOLOGY DEVELOPED

* ESTABLISH GOALS

EXAMPLE: EVALUATE THE DIFFICULTY OF CHANGING SOFTWARE

* 'DEFINE QUESTIONS OF INTEREST
EXAMPLES: IS IT CLEAR WHERE A CHANGE HAS TO BE MADE?
ARE CHANGES CONFINED TO SINGLE MODULES?

. WHAT WAS THE AVERAGE EFFORT INVOLVED IN MAKING A
CHANGE?

* DESIGN DATA COLLECTION FORM

*

COLLECT AND VALIDATE DATA CONCURRENTLY WITH DEVELOPMENT

* ANALYZE DATA

D. Weiss
NRL
11 of 25

TYPES OF CHANGES

" DEF: A CHANGE IS AN ALTERATION TO (BASELINED) DESIGN, CODE, OR

DOCUMENTATION.

DEF: AN ERROR IS A DISCREPANCY BETWEEN A SPECIFICATION AND ITS

IMPLEMENTATION.

DEF: A MODIFICATION IS A CHANGE MADE FOR ANY REASON OTHER THAN TO

CORRECT AN ERROR.

CHANGES = MODIFICATIONS + ERROR CORRECTIONS

D. Weiss
NRL
12 of 25

SUBCATEGORIES OF CHANGES

* MODIFICATIONS
IMPLEMENTATION OF REQUIREMENTS CHANGE
OPTIMIZATIONS

IMPROVEMENTS OF USER SERVICES

IMPROVEMENT OF CLARITY, MAINTAINABILITY, OR DOCUMENTATION

ADAPTATION TO ENVIRONMENT CHANGE

* ERROR CORRECTIONS
CLERICAL ERRORS

NON-CLERICAL ERRORS

REQUIREMENTS INCORRECT OR MISINTERPRETED
SPECIFICATIONS INCORRECT OR MISINTERPRETED

DESIGN ERROR INVOLVING SEVERAL COMPONENTS

ERROR IN DESIGN/IMPLEMENTATION OF A SINGLE COMPONENT
ERROR IN USE OF PROGRAMMING LANG OR COMPILER

MISUNDERSTANDING OF ENVIRONMENT

D. Weiss
NRL
13 of 25

Number of Number of Number of

Changes Modifications Errors
Project
SEL1 281 101 180
SEL2 229 110 119
SEL3 760 453 307
ARF : 143
A-7 38 9 79

Table 5.4a Overview of Data Collected
Effort Number of Lines of Dev. Lines Number of
Developers Code (K) of Code (K) Components

Project
SEL1 79.0 5 50.9 46.5 502
SEL2 39.6 4 75.4 31.1 490
SEL3 98.7 7 85.4 78.6 639
ARF 44,3 9 21.8 21.8 - 253
A-7

Table 5.4b Summary of Project Information

D. Weiss
NRL
14 of 25

Changes Per K Lines Errors Per K Lines Error To Mod Ratio

Of Developed Code 0f Developed Code (NonClericals Only)
Project
SEL1 6.0 3.9 1.3
SEL2 7.4 3.8 .92
SEL3 9.7 3.9 .54
ARF 6.6
Table 5.5 Change and Error Densities
Erroneous Change Rate Errors Resulting Repeated Error Ratio
(Ratio Of Changes From Change (Average Number
Resulting In Errors (As Percentage Of Corrections
To All Changes) Of NonClericals) Per Error)
Project
SEL1 .025 5 1.02
SEL2 061 14 1.08*
SEL3 .041 12 1.05

ARF 13 1.007

* Upper bound., Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

Table 5.6 Measures of Erroneous Changé

D. Weiss

15 of 25

Number Of People Errors Per Person

Project
SEL2 4 25
SEL1 5 26
SEL3 7 : IAA
ARF 9 10
Table 5.7 Errors Per Person By Number Of People
Effort Errors Per Changes Per
(People-Months) Person-Month Person-Month
Project
SEL2 39.6 2.4 5.8
ARF 44.3 2.1
SEL1 79.0 1.7 3.6
SEL3 98.7 3.1 7.7

Table 5.8 Errors Per Effort By Effort

D. Weiss
NRL
16 of 25

§tyo Ll

TN
sSM " d

MmO —AZ2mOxxmMmT™

MmO —=zZ2moOo’m™

omoOZ2rITO rrep

omEOZ2PpITO rrp

70
60
50
40
30
20
10

70
60

50
40
30
20
10

47
36
17
Mods NonClerical Clerical
Errors Errors
Change Type
SEL1
59
32
8
Mods NonClerical Clerical
Errors Errors

Change Type
SEL3

Figure 5.1 Changes.

MmO —=HzZmOoaoxm™

omeE2r»IT0 rry

70
60
50
40

30

20-

10

—
r—
48
44
F
}_.
—
= 8
Mods NonClerical Clerical
Errors Errors
Change Type
SEL2

§cio 8l

SSIOM " a

LMEZPIO MO ~Z2mMmOx3ImMO

LmMOZPIO MO —HZ2moOoxxImT™

ArpO—IMEO roxm

nrEPO—IMEO COXm

70
60
50
40
30
20
10

70
60
50
40
30

o

LmMEOZPrITO MO —Hz2moxmT

57
43
Mods NonClerical
Errors
Change Type
SEL1
65
35
Mods NonClerical
Errors

Change Type
SEL3

Figure 5.2 Changes (Clerical Errors Excluded).

ArEPO—IMCFO CoOXm

70
60
50
40
30
20
10

B 52
48
-
Mods NonClerical
Errors
Change Type
SEL2

st io6l

TAN
sslom "d

©»wpo=Z MO —HzZmoxImT

©wOO2 MO —HzZmoxomo

70
60
50
40
30
20
10

70
60
50
40
30
20
10

- P 70 —
62 E 0
- g 60 —
- E 50— 49
N
— T 40—
| ; o 30 29
- 20 F
= : 20 |—
B 10 o 10 12
3 2 |, 3 D 4 4 2
Req Design Debug Env | PE Req Design Debug Env Unknown
Change Type Change Type
SEL1 SEL2
- 45
. Key to Figure 5.3
e : ’ Design Modifications caused by changes in design
24 24 ’ '4 y ehang ’
. Debug Modifications to insert or delete debug code
- Env Modifications caused by changes in the hardware or software
] 6 environment
— 1 1
Req Design Debug Env PE Other . PE Planned Enhancements
Req Modifications caused by changes in requirements or functional
Change Type specifications :
SEL3 Unknown Causes of these modifications are not known

Figure 5.3. Sources of Modifications.

MmO —HZ2mOoxxmY
arex»OIMro202

| 67 ' y 70
_ P O 60 -

E N
= R C 50 - R
- ¢ Ll

N R .
- N Rz}
— 14 o N2
) 7 ! . 8 F S 105 3 a 8

] o 1= — 1 1

Req Fnl Design Design Lang Env Other "Req Fnl Design Design Lang Env Other
Spec Multi- Single : Spec Multi- Single
Comp Comp ' Comp Comp

Type of Error . Type of Error

KeyTo Figure 5.5

Desagn Design error mvelving seve

Key To Figui

Design Desuge exror nvolving seve pnents
Muly Comp

Design Frrar i the desgn o iy of i angle

Swghe Conp

[X11% Mistnderstanding of external eaveanment | except binguage:

Faol Spec Functional spreicions ncorsect or nisintespreted

Lang Evror i use of poogramming Linguage/compiien 80 .

Reqy ¥ WMEOTEEL Y

- : 70
- 57 60 ' 57

nmo —=HzZ2mMmOIMD
LorrpOIMrO202

§73002
TN
ssom ‘A

50
40
30
20
10

— 24

—6 5 3 3

Mmoo —=Hz2mOxxmT
nrepoImMrOo202

—

Req Fnl Design Design Lang Env
Spec Muiti- Single
Comp Comp

Type of Error

Figure 5.5. Sources of Nonclerical Errors.

50
40

30

20
10

18

13

Design Design Lang
Multi- Single
Comp Comp

Type of Error

nO —HzZmOolnlmwo

ArB»PO—IMCFO202

30

20

10

27
13
10 10
SEL1 SEL2 SEL3 ARF
PROJECT
‘ Figure> 57 Interface Errors.
D. Weiss
NRL

21 of 25

70— 70—

P o SO p o 60—
E N gol- g '(\:' 50 42 _
R
¢ i 39 C L 40+ 37
E E 40 35 E E
v R v p
o & 208 o a 2r
F L | F L ()] =
L 10) s | 3
— 0 R —
0 {ntended Data Other ' Intended Data Other
Use Use
Type of Error ‘ Type of Error
SEL1 SEL2
Key to Figure 5.6
Data Error in the use of data
Intended Use Error in intended function, i.e. program behavior does not
correspond to the intended use of the program
70— 70—
o N 60 52 o N 60— 57
E 2 50— E N 50
R C
(EI IE- 40+ c L 40—
E E
N R 30 29 N R 30
T 1
o & 20+ c 20— 19
0O A
F ;- 10 r—- F |s_ 1or—
0
NZUO Intended Data . 0 Intended Data
o B = Use Use
b g
Type of Error Type of Error
SEL3 - ARF

Figure 5.6 Sources of Design/Implementation Errors.

80 —
70— 64
60 —
50 —
40 —
30 |- 29

MmO —H2mOD®mY
\urpoIMrO202

Easy Medium Hard Unknown
LE 1THR 1HR To GT 1 Day
1 Day

Effort

SEL1 Effort to Design Change

80
70
60

11

42

40—
30

mo —HAZmoOonx$mo
ArepoImMro202

10— 6 ' 3
1 1 ons——
Easx1 Medium Hard Formid Unknown
LETHR 1HRTo 1DayTo GT3

1Day 3 Days Days

sTyo¢eT
TIN
sSeM "d

Effort

SEL3 Effort to Make Change

MmO —H2Z2mMOD$mM™O

MmO —~HZmOoxIx$€mDo

wrpoOIMroz202

AreOoIMrozo2

80—
70+
60—
50
40— 36
30

51

10

Easy Medium Hard Unknown

LE 1 HR THRTo GT 1Day
1 Day

Effort

SEL2 Effort to Design Change

70—
60—
50—
40—
30—
20—

22

1

Difficult
More Than
A Few Days

Medium
A Few Hrs
To A Few Days

Simple
Less Than
A Few Hrs

Effort

ARF Effort to Fix

Figure 5.10. Effort to Change Nonclerical Errors.

13

N
N

g -

r_

I | | |
QO O O
LaXwo

- OCOZ2Za2w2r-w

auwtowZ2- Ou

26

o=
0

1
o O ©O
N

30

L1]

o O O
m 0 B <
w_Xwn 0O

M

aQ2wZr-

awrow2Z2k Ouw

-~

L]

Number of Fixes

Number of Fixes

SEL1

SEL2

10

Number of Fixes

<
-

—

T | S Y T _
Rggsgsger

L_Xuwd 00ZalZwZtkwuv -

awrowzZk Ow

11

Number of Fixes

24

=]
©.

—

~N © W

L_XwO 002a0Z2wZik

scwxowak- Ou

L) N N N
© 09O 9 9 © © o
M & -

D. Weiss
NRL
24 of 25

ARF

SEL3

Figure 5.15. Frequency Distribution of Fixes.

CONCLUSIONS ABOUT SOFTWARE DEVELOPMENT COMMON TO NRL AND NASA/GSFC

* PRINCIPAL ERROR SOURCE IS DESIGN AND IMPLEMENTATION OF SINGLE ROUTINES
REQUIREMENTS, SPECIFICATIONS, AND INTERFACE MISUNDERSTANDINGS ARE

MINOR SOURCES OF ERRORS.

* FEW ERRORS ARE THE RESULT OF CHANGES, FEW ERRORS REQUIRE MORE THAN
ONE ATTEMPT AT CORRECTION, AND FEW ERROR CORRECTIONS RESULT IN OTHER

ERRORS.
* RELATIVELY FEW ERRORS TAKE MORE THAN A DAY TO CORRECT.
DIFFERENCES BETWEEN ARF AND SEL SOFTWARE DEVELOPMENT

* THE PROPORTION OF ARF ERRORS INVOLVING DATA IS CONSIDERABLY SMALLER

THAN THE CORRESPONDING PROPORTION FOR SEL ERRORS

D. Weiss
NRL
250f 25

METHODOLOGY EVALUATION:
EFFECTS OF INDEPENDENT VERIFICATION
AND INTEGRATION ON ONE CLASS OF

APPLICATION

Jerry Page
COMPUTER SCIENCES CORPORATION
and
GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the
NASA/GSFC

Sixth Annual Software Engineering Workshop

METHODOLOGY EVALUATION:

'EFFECTS OF '
INDEPENDENT VERIFICATION

| AND INTEGRATION ON

ONE CLASS OF APPLICATION

Viewgraph 1: Title

One area of study in the Software Engineering Laboratory
(SEL) 1is methodology.l This presentation describes the
effects of an independent verification and integration (V&I)
methodology on one class of application. V&I is the name
that we will use for what some call independent verification
and validation (IV&V) and others call verification and vali-
dation (V&V). "One class of application” means the develop-
ment of solutions for a set of similar problems
(ground-based support for satellite operations) that are
developed in the same computing environment--simply put, a
specific problem in a specific environment.

lGoddard Space Flight Center, SEL-81-104, "The Software En-
gineering Laboratory" (Software Engineering Laboratory .
Series), D. N. Card et al., February 1982,

J. Page
CSC
2 0f 47

'

cosessvsesscvrcvense

i

POR L w. Y

- .
ac € -

n
"
.

.
A0
T™RIT

+-

Ll
ne
.
VI
1897
+

. €. -
o = - 15
. E :
_— m e
* 3 . Mt
[od B

. Al e

s . 3 b

. 3 T

. e

- 8 i

o -

ow .
< .

L . .

T ent L
LE=] .

o

*ns e
«

oesIGe
R TN 5
12. 6.

P R R R P N T

envIoen ‘“NNZ‘SMUZA%QQI‘.IWGZJGBOZI BODNT 802‘%“&1‘600

LRBAwAIRS S
R R AR R S, N CERITECIZERIE0 SaNw
L 2 X R R R R R PR P T R R R YRR YRR R T I
H <
R -
: B
T g
; [}
1 . o® t
! 58 ° 8
i G—
T ‘m i34
H . *
H . .
- mu. . ~
v B3
. - -vl
' H
= .
- . nou- g
1
i LT N
i - .
T uo.oo M mm re
i - ™
H < B .
- . © . s
. - -
; s
H o . [
- L — m 154
v L - -y
H « *o m *
: o . e
L) c - in
3 . - b
H .o s
: H
- & e .m.
T ° - :
: . HE
- om - i
I
. c » v
: os .
B . 2, i§
»*

0
L
cape Aty mesr

: . . . e

. g :
. .
. g8 . o

. e . -
2z C\ﬂ - ﬂ.
s
3
% »
B . <
: H b4
. g

< . .-
o - . 33

: :
« o _. 4 L.
. %] g

.
. .
. P S
L.
.-

- - o Tz]

- . - -

sopeny RN T URDA Y UD DN T BOE T SEONYEGENT S
FesgLadgan- gdiddasregenadiciiisenings
- 2

-4
[2.

a4, na,

.

o

"
+0

ACC

ST

PP
an,

. V%S :
: o € £
+
. o 2 L.
H o - b
! [-X2 -
. - .
X - H 1E
. .
! € <
< . I
s, e :
- . 2 -3
: .
. - -
g7 - v
. .
. . g i
2% Te
n' ~ - .
. . = .
. PR m TR
. T E .
: : °F
.z m
- .
. e, -5
ot
Se .
- - .
< . *E
- Ce ~
* 2 . =
: L34
- e a
%
- c.
- . = -
' . T
. -c
TR
- -
N ~
. . -
R iq
: m .
i maba.
o g
B L T T T L R R L
lLd.‘.&&?dS. o .ltLL.o. ENTUOONYVDENT WS v MY O T ONY VDR
FoTRERNIN _..IB%GBI‘S P A b £ L TR -4 T 308 T
ALt
-
000000000000000QCQOOOOOQOOOQQOOQQQQQOH&
H 1d
: o %t
] -] S
H ‘ . 1-J d
- ° .
. i e
<
; LI mm .y
| g T3
[:
- »
: H g
: e, £
. o8 P
: £
. = g
: os L.
T . € o» R
: H
: . .
* L -®
1 Te
'
. . v
1 Te
! e
s .0
: T8

aonaumny rvesr

MR

.

LR
0. 74, A,

+
14,

nonoAgpone 16w
2853gsadnedoigesns irgrerdiidgdsesdsn
FARSSPRESF LSS aRSN L2z

ZODa

J. Page
CSsC
30of 47

174-SEL-(33)-2

Viewgraph 2: Resource Profiles

Why use a V&I methodology? Why have we experimented with a
V&l methodology? To introduce V&I methodology, let me show
you resource profiles for four real projects developed for
the Goddard Space Flight Center (GSFC) by Computer Sciences
Corporation (CSC) and monitored closely by the SEL. These
resource profiles show technical nours charged to the proj-
ects by week. Technical hours are those hours charged by
the programmers and the first-line managers. First-line
managers are those managers who make decisions, set prior-
ities, and solve problems daily, as opposed to higher level
managers who receive weekly or less frequent progress re-
ports. Tnese resource profiles also do not include service
charges, which amount to approximately 13 percent of the
nours charged to a project. Service hours include those
hours charged by librarian, secretarial, technical. publica-
tions, and data technician support groups.

In these profiles, design activity starts at the far left-
hand side and conﬁinues throughout the project at decreasing
levels. The first vertical line indicates the conclusion of
a series of requirements analysis and critical design re-
views., It is the point at which implementation and corre-
sponding testing are allowed to begin. The second vertical
line is the point at which implementatioﬁ (coding) is sup-
posed to be complete and system testing starts. The third
vertical line is the point at which the software is supposed
to pe ready (for operation) and acceptance testing starts.
The fourth vertical line indicates the end of acceptance

testing and the beginning of maintenance (by another group).

Most people who measure software products apply many meas-
ures to the software product from the point at which it en-
ters the maintenance and operation (M&0) phase. We do too,

but since we have no responsibility for the software once it

J. Page

4 of 47

is transferred to the maintenance group and because it is

more difficult to collect data through another group, we

apply many of our measures one or two phases earlier, i.e.,

from the beginning of acceptance testing or from the begin-

ning of system testing.

As you can see from three of these four profiles

(excluding

the one in the upper left-hand quadrant), the peak effort is

at the start of acceptance testing. Some of the reasohs

that the peak effort occurs at that point are

° All the projects grow between 15 and 40 percent

after the start of implementation because of re-

quirements escalation.

. These projects cross two or three funding periods.

This puts some constraint on how much work can be

done in any one funding period. .

° Management problems exist. The profile in the

lower left-hand.quadrant shows the application of

the "mythical man-month."

° There is a hard deadline (launch of a satellite).

] The computers are not very reliable (6- to 8-hour

mean time to failure).

We know_.what we are doing during that peak effort

(the peak

at the third vertical line). A large fraction of our work

there is correcting errors.

It is commonly accepted that the cost to correct an error

approximately doubles as it enters each new phase of the’

development life cycle. For example, if an error originates

in the requirements phase (the phase preceding design) and

if that requirements error gets designed, the cost to cor-

rect the error during design will be one to two times more

than to correct the error in the requirements phase. If the

designed requirements error gets implemented, the cost to

J. Page
CsC
5of 47

correct the error during implementation will be two to four
times more than to correct the error in the requirements
phase. If the implemented requirements error enters the
system testing phase, the cost to correct the error will be
four to eight times more. If the implemented requirements
error enters the acceptance testing phase, the cost to cor-
rect the error will be 8 to 16 times more. If it enters the
M&0 nhase, the cost to correct the error will be 16 to

32 times more (for one simplified example, see Figure 1).

The same progression holds for errors that originate in de-
sign and implementation. Therefore, during the M&0 phase,
even implementation errors are costly to correct; they cost
four to eight times more to correct during the M&0 phase
than during the implementation phase,

We do not need a general hypothesis to know that it costs
more to correct errors in the later stages of development.
Our own data collected over the last 5 years shows that some
increase occurs in the cost of correcting errors from one
phase of development to the next. SEL data shows that (re-
gardless of error type) the average error discovered during
the acceptance testing phase éosts more to correct than the
average error discovered during‘the system testing phase and
that the average error discovered during the system testing
phase costs more to correct than the average error dis-
covered during the implementation phase. The increase in
the average effort to correct the average error from one
phase to the next varies from project to project, but it

frequently approximates a doubling of effort,

Common sense indicates that there will be cost increases for
changes to the evolving product as development progresses
through the life cycle. Certainly, in this environment
there are several transfers of responsibility: £from the

requirements team to the development team, from thne

J. Page
CSC
6 of 47

J8D

oL
aSeq - r

BASED ON TRW SURVEY

16 + DATA FROM IBM
GTE
14 TRW
12
RELATIVE
COSTTO 10
FIX ERROR

N A O @

| |

1 1 | |

REQTS DESIGN CODE TEST ACCEPT- OPERA-
ANCE TION

PHASE WHERE ERROR DETECTED

Figure 1. Cost of Correcting Software Errors

designers to the implementers, from the implementers to the
testers, and finally, from the development team to the main-
tenance team. These are -not complete transfers of responsi-
bility; instead, the team size increases or decreases at
different points in the development life cycle. Because a
system is never 1l00-percent completely or accurately docu-
mented and because few people can instantaneously absorb the
content of the documentation, new team members will require
additional time to become familiar with the system. There-
fore, functions will increase in cost when new members or

groups become responsible for them.

Since the average'development team size is six members, pre-
maturely removing one member from the team always affects
the schedule adversely. If the schedule cannot be adjusted
{adjustments are more difficult late in the life cycle
because of launch deadlines), then a replacement member must
be added to the team. This replacément increases cost and
it does not solve the schedule problem completely unless the
replacement individual is more productive than the individ-

ual who was replaced.

We know that we have to improve our methodology, both in
management and development practices, to move error-
correction efforts earlier into the development life cycle,

closer to the commission of the errors.

We know this from the advocates of V&I methodology, from our
own SEL data, and from common sense. To save money, we must
move the peak effort away from the start of acceptance test-
ing (the third vertical line in the resource profile) and
nearer to the design phase (between the first and second
vertical lines in the resource profile). For example, we
spend approximately 30 percent of our dollars for system and
acceptance testing (the area between the second and fourth

vertical lines). If 50 percent of that expenditure is for

J. Page
CSC
8 of 47

error correction (15 percent of dollars), then by moving
that error-correction effort into the implementation phase,
we will reduce the cost of that effort by approximately
one-half; i.e., we will save approximately 7.5 percent of

our development cost.

J. Page
CSC
9 of 47

.44

D IR T T L L L T T T L R ey A

. 4ot m e s dd et ettt ac ceoiemaneeenen
n.‘

. e -
o .
o=
: -
.

. 143 ‘e
N 134

e 9% <
- te c-
- o %] c I.8
o I . ' < i
m——— .=
d S
. c*c T e © ,
. - - -~ ———————————
o< mm V- _ E3 =
hd .i B e = =
i - < - 4 : os - = 3 -
i -< < or - ~c
.z - 3 Ve
a . -
153 b
= L 4
M" B < . - 5 .
c ‘e ; :
! & .
.z [- =34 '
: : £ ‘g t g8 ie
. [LR ~ . H &
= - ”n e 3 o =
- o z
€ v o - -
- - (& : . £ -
o7 & < - <
- X
- = H mu e
- : = ;
- - o g€ . P
- e P - Z e m -
- 2 ‘e .z g
- = : 2= s
.z m - [-X3 - - .
. c L@ . [Pe
*c . - ee - .z
c L4 [] ‘e . - .
- - - + - e
M H - e !
e . . E .
- ol . 33 8]
. 2 g r L
v € e : . - ‘e
. 8 e 8oz H
- .
- o FL bt - <&
T: T A
N He c - 3
R .= . ST
- -Z] : S 1§
L o - ol :
e . ec .
..z H Sc i
. : .
€ ™ + 2]
- 1S s ®c e
: - - - i Se. = .
A e ; oe i ‘s
f c_ ! : - ;
N 3 H 4 | Se 54
m N - s, -~
v, e gt ie
<“c ' s, .
< . 3 ! m- i
- o. e b - o
o d . .00 ‘e

. -1 -

- - e v . C
X ;- s re

- .- . . u o +6&
s T s
S.° |® ' ‘e
g <! ot

B T R E LR CE D PR L PPN 4 tesaelonrsncctsvaesd st rsvonsssssscsnnsesctl
NBDSVNODOWVI MBDDVTNED O T VEE e
TeoesTaaquIneaeTeRes rhed] oDw NoswTnes

- - Tewr

p -
TRt et t A2 LT TIR IS ITTTIN. SO UUNIDOITOTINSOROOOOTD PO .
H . 190
1 P te
i v
: . iR
H 1 3]
P H -
1 v | H
bt i 3]
. “ -
1 H .|
'
1 H . H
1®
- 4. +8
‘ * ml.
H H o
! H -
< i - o e Te
H v * o T
H } ec
H '
_ i gf
+ e - -3
' 1 Te
v M .
i ® ;
« -3
; .8 . ® 33 i
H) d — -— X
: . o H
- (3 -m g %4
: H - I3
: o e ” :
- .=
s < .
' * B« i .
' S o : H
N . in o
o - . e~
H . 2 R ' re
. -3 (] ¢ '
. . - “M 3
- : .
: € . M .o b e
H - g3 R e
.3 : : H
- H i iv
g . FL A s
H - ‘e €
H g V N .
o ‘g : .
- L2=3 h - 0”
o I t e
. S————— -
: » I <.
: t-m nm. . W‘IIIJQ
v
. & » [: '®
- T " 't
- o = I3
: " . =
. = re : ‘e
. s :
e ‘e R 1w
B - s B -~
. P . g
e .
o= ! =
=14 .
- < e 4 - [
s i - <=
- «Z 3 . e
- « TE, ! - :
- -e - ¢ ig
R = 3 ' . 2 -
- s - Te
.c (K 3 <
!
LA =< -

J. Page
CSC
10 of 47

174-SEL-(33)-3

Viewgraph 3: Scaled Resource Profiles

These resource profiles are scaled so that the start of ac-
ceptance testing is 1 on the x-axis. The technical hours
spent each week (the y-axis) are scaled by the developed
lines of code (in thousands). The scaled resource profiles
show technical hours per thousand lines of developed code by
fraction of development life cycle. The unscaled resource

profiles (see viewgraph 2) show technical hours by week of
development life cycle.

J. Page
CsC
11 of 47

vt
28D
afeq 't

DEVELOPMENT ENVIRONMENT

CHARTER: DESIGN, IMPLEMENT, TEST, DOCUMENT

TYPE OF SOFTWARE: SCIENTIFIC, GROUND-BASED, NEAR-REAL-TIME,
INTERACTIVE GRAPHIC

LANGUAGES: 85% FORTRAN, 15% ASSEMBLER MACROS
MACHINES: IBM S/360-75 AND -95, BATCH WITH TSO
PROCESS CHARACTERISTICS: AVERAGE HIGH LOW
DURATION (MONTHS) 15.6 20.5 12.9
EFFORT (STAFF-YEARS) 8.0 11.5 2.4
SIZE (1000 LOC)
DEVELOPED 57.0 1M11.3 215
DELIVERED 62.0 112.0 32.8
STAFF (FULL-TIME EQUIV.) _
AVERAGE 5.4 6.0 1.9
PEAK 10.0 13.9 3.8
INDIVIDUALS 14 17 7
APPLICATION EXPERIENCE '
MANAGERS 5.8 6.5 5.0
TECHNICAL STAFF 4.0 5.0 2.9
OVERALL EXPERIENCE
MANAGERS 10.0 14.0 8.4
TECHNICAL STAFF 8.5 1.0 70

174-SEL-(33)-5

Viewgraph 4: Development Environment

I will talk about four projects today. Two went into opera-
tion about 2 years ago; the other two went into operation
about 3 months ago. A V&I methodology was applied to the
last two. The last two projects will be labeled V&I 1 and
V&Il 2 on the following viewgraphs. The projects that became
operational 2 years ago will be labeled Paét 1 and Past 2.

Date Past 1 Past 2 V&I 1 vel 2

Development May 1978 June 1978 Oct. 1979 Oct. 1979
start

Maintenance Oct. 1979 Aug. 1979 June 1981 May 1981
start

Operation Feb. 1980 Oct. 1979 Aug. 1981 Aug. 1981
start
M&0 end Active Sept. 1980 Active Active

This viewgraph shows the average value of each development
characteristic and the high and low values of the develop-
ment characteristics from 12 projects in one class of appli-
cation. The high or the low values themselves do not
represent one project but show the most and least of any
characteristic attributed to any of the 12 projects. The
four projects that I will talk about are included in these
statistics.

What is our development environment like? OQur development
teams desigh, implemen£, test; and document software that is
scientific, ground-based, near-real-time, and- interactive
graphic. The software is B85 percent FORTRAN, 1 percent as-
sembler, and 14 percent assembler macros. The assembler
macros are required for the graphics capability. The soft-
ware is developed on the IBM S/360-75 and -95, which are
batch oriented with a timesharihg option (TSO).

This is an operations environment, not a development envi-

ronment. In this environment, the developers have access to

1. Page
CSC
13 of 47

the IBM S/360-95 via a Remote Job Processing (RJP) terminal
and via TSO terminals. The developers use the IBM S/360-75
primarily in programmer-present blocks of time for integra-
tion and system testing via a graphics device. The IBM
S/360-95 is the primary day-to-day satellite operations ma-
chine. When a hardware failure occurs, the developers lose
access to the machine via the RJP and TSO terminals and must
immediately relinquish their programmer-present time (if
they have it) on the IBM S/360-75 so that operations activ-
ities can continue with minimal interruption. Since
programmer-present blocktime is scheduled weekly and since
the schedule is usually fully booked, IBM S/360-95 hardware
failures always affect the development schedule adversely,
especially late in the development life cycle.

In addition, the IBM §/360-75 is the primary satellite
launch and launch-simulation operations machine. It is not
unusual to have launches monthly, and frequently they are
delayed on a day-by-day basis for 1 to 2 weeks or on a
week-by-week basis for 2 to 4 weeks. When this happens,
additional simulations are scheduled and/or additional mis-
sion planning machine time is required. Again, the devel-
opers must-relinquish scheduled programmer-present
blocktimes.

We estimate that 20 to 40 percent of scheduled programmer-
present blocktime is lost because of hardware failures on
both machines and because of launch delays. When frequent
hardware failures and launches occur during the later stages
of a development project, you can see how they can contrib-
ute significantly to the peak effort at the start of accept-
ance testing because of the need to make up lost machine

time to complete the development project on schedule.

On the average, the development process takes 15.6 months,
requires 8 staff-years of effort, develops 57,000 lines of

J. Page
CsC
14 of 47

code, and delivers 62,000 lines of code. Some amount of old
code 1is used in each of these projects. The average staff
size is 5.4 people and peaks at 10 people (full-time equiva-
lents). Fourteen individuals are usually involved; this
figure includes the first-line managers, i.e., those mana-
gers who make decisions, set priorities, and solve problems
on a daily basis. For this application, on the average, the
managers have 5.8 years of experience and the technical
staff has 4 years. The technical staff includes the mana-
gers (approximately 30 percent). The managers have 10 years
of professional experience overall, and the technical staff

nas 8.5 years of professional experience.

J. Page
CSC
15 of 47

Ly 3091

280
a8eq -t

V&l EXPERIMENT

DOES INDEPENDENT V&l IMPROVE
DEVELOPMENT PROCESS AND PRODUCT?

EXPECTATION

DECREASE

DECREASE

DECREASE

DECREASE

INCREASE
INCREASE

MAINTAIN

MEASURE

REQUIREMENTS AMBIGUITIES AND
MISINTERPRETATIONS

DESIGN FLAWS
COST OF CORRECTING FAULTS

COST OF SYSTEM AND ACCEPTANCE
TESTING '

EARLY DISCOVERY OF FAULTS

QUALITY OF SOFTWARE PUT INTO
OPERATION

PRODUCTIVITY/COST

174 SEL-(33)-4

Viewgraph 5: V&I Experiment

Why use a V&I methodology? It has often been claimed that
the use of a V&I team would solve some of our problems.

What we want to know from this experiment is "Does the use
of an independent V&I team improve our dévelopment process
and product?" To test this hypothesis, we will apply seven
measures. These measures, however, are not completely inde-
pendent of each other. They measure, in different ways, the

occurrence of two basic properties:

1. When errors are discovered earlier, they are less

costly to correct.

2. The use of a V&I methodology helps to discover er-

rors earlier,
The seven measures with explanations follow.

1. Decrease requirements ambiguities and misinterpre-

tations, This will save time and money, especially in later
stages of development. Overall, these are the most expen-
sive errors to correct because requirements are the starting

point for the development life cycle.

To evaluate this measure, the development error data that is
collected by the SEL from the development and V&I teams from
the start of implementation through the completion of ac-
éeptéhée teé£ing wiil be examined. 'In thiéwexperihént, the
use of a V&I methodology is not expected to reduce the de-
velooment error rate; rather, it is expected to help dis-
cover errors earlier. If the use of a V&I methodology '
provides this benefit, a larger fraction of requirements
errors will be detected during the design phase, in which
the SEL has no formal process for recording errors, and

therefore, fewer requirements errors (a smaller percentage

J. Page

17 of 47

of total errors) will remain to be discovered during the
formal reporting period.l Compared with the past proj-
ects, a 50-percent decrease in the percentage of réquire-
ments errors reported by the development and V&I teams will
be a clear indication of success for this measure. 1In addi-
tion, since the V&I team will pursue the resolution of un-
specified and ambiguous requirements, fewer of these

requirements problems are expected in the later stages of
development. '

2. Decrease design errors. This will save time and

money in later stages of development. Design errors are the
second most expensive to correct.

To evaluate this measure, the development error data will be
used to compute the percentage of the design errors that are
complex design errors. Complex design errors are many- ‘
component errors, whereas simple design errors are single-
component errors. A component is a subroutine or shared
block of code. Simple design errors are frequently related
to (1) wrong assumptions about data values and structures,
e.g., integer versus real variables, 2-byte versus 4-byte
variables, location in buffer, or length of a format;

(2) lapses in memory, e.g., missing items (declarations,
dimensions, subscripts, statements, or counter incrementers)
or incorrect variable names (not misspellings); or (3) in-
correct interpretation of computations, e.g., wrong sense of
direction (sign operator), factors of 2 or root 2, or wrong

order of steps. Complex design errors are frequently

lrormal error reporting for development is keyed to machine-

readable code that, in this environment, is the executable
source code. Therefore, formal error reporting occurs only
from the start of implementation through the completion of
acceptance testing. Maintenance error data is collected
from the maintenance group in a slightly different form.

J. Page
CSC
18 of 47

related to interfaces and operational considerations and,
therefore, they affect modules (several components). Since
interfaces and operational aspects receive more scrutiny and
high-level attention, they are more likely to be discovered
during design reviews, which for the most part occur outside
the formal error reporting period. The simple design er-
rors, which are found in the detail of the design, are less
likely to be found by a small V&I team (approximately

15 percent of development effort). 1If the use of a V&I
methodology helps to discover complex design errors ear-
lier, a larger fraction of the -complex errors will be de-
tected during the design phase, and therefore, fewer complex
design errors (a smaller percentage) will remain to be dis-
covered during the formal reporting period. Compared with
the past projects, a 50-percent decrease in the percentage
of complex design errors reported by the development and V&l

teams will be a clear indication of success for this measure.

3. Decrease the cost of correcting errors., According

to those who advocate the use of a V&I methodology and from
our own SEL data, we know that correcting errors one life

cycle phase earlier will produce a significant savings.

To evaluate this measure, the relative cost of correcting
errors before and after acceptance testing started will be
computed.l If the use of a V&I methodology reduces the
cost of correcting errors, the developers will spend less
effort per error in the later stages of development. Com-

pared with the past projects, a 20- to 25-percent reduction

1 . ' . ,
Here, the relative cost of correcting errors is computed by

tabulating the effort to correct errors (reported by the
development teams) in each phase, computing the percentage
of error-correction effort that occurred in each phase, and
then dividing the error-correction effort percentage of each
phase by the corresponding percentage of errors found in
that phase.

J. Page
CsC
19 of 47

in the relative cost of correcting errors after acceptance
testing started will be a positive indication of success for
this measure. Maintenance error data that is collected by
the SEL from the maintenance groups will also be used.

4, Decrease the cost of system and acceptance
testing. If the first three items occur, less effort will
be required in these phases.

To evaluate this measure, the percentage of the development
cost required to complete system and acceptance testing will
be computed.l If the use of a V&I methodology helps to
discover errors closer to the phase in which they origi-
nated, (1) the development teams willvspend less time cor-
recting errors during system testing and the system tests
will be completed sooner, reducing the cost of system test-
ing and (2) the development teams will need only to prepare
for and to demonstrate the acceptance tests, reducing the
cost of accepténce testing. Compared with the past proj-
ects, a smaller percentage of development cost for system
and acceptance testing will be a positive indication of suc-
cess for this measure. If the cost is less than the average
cost for this application, it will be a clear indication of
" success.

5. Increase the early discovery of errors. This will

save time and money in later stages of development as stated
apove. It will also improve the reliability of the software
or at least improve confidence in the reliability of the

software, since error rates will be less (or the mean time

lT'ne development cost is computed by weighting the hours

charged to a project by the different responsibilities of
the personnel assigned to the project. A manager's hours
are multiplied by 1.5; a programmer's hours are multiplied
by 1.0; support service personnel's hours are multiplied by
0.5.

J. Page
CSC -
200f47 |

between failures will be greater) in the later stages of
development. To evaluate this measure, the development and
maintenance error data will be used to compute the percent;
ages of errors that were discovered before and after accept-
ance testing started. If the use of a V&I methodology helps
to discover erfors earlier, most of the errors will be dis-
covered before acceptance testing starts. Compared with the
past projects, a 50-percent reduction in the percentage of
errors discovered after acceptance testing started will be a

clear indication of success for this measure.

6. Improve the quality of the software put into opera-

tion. This will decrease maintenance costs. 1In general,
the use of a V&I methodology will be most beneficial in the
M&0 phase, since systems with lifetimes greater than 1 or

2 years hsually have maintenance costs that range from 30 to
100 percent of the development cost.

To evaluate this measure, the software and snaintenance error
data will be used to compute the error rate for the M&0O
phase. If the use of a V&I methodology improves the qpality
of the software put into operation, the error rate in the
M&0 phase will be smaller compared with the error rates of
the past projects. An error rate less than the average er-
ror rate (0.5 to 0.6 errors per thousand lines of developed
code) for this application will be a positive indication of
sqccéss for this measure.

7. Maintain productivity and cost. Adding another

interaction for the development team will slow them down and
will, therefore, reduce their productivity and increase the
cost of development. However, if requirements and complex
design errors are reduced, if the cost of correcting errors
is reduced, and if the time spent on system and acceptance
testing is reduced, those reductions should offset the cost

of interaction between the development and V&I teams.

J. Page

21 of 47

Therefore, productivity and development costs should remain
the same. We do not expect to offset the cost of the V&I
.team completely, but optimistically speaking, we hope to.

To evaluate this measure, the software and the weighted work
hours charged to the projects by the development teams will
be used to compute (in staff-months) the cost of 1000 lines
of developed code. A cost less than or equal to the average
cost (1.7 staff-months per thousand lines of developed code)
for this application will be a clear indication of success
for this measure. That is to say, an average cost for the
development team plus an added cost for the V&I team is a
clear indication of success; the development teams will have
maintained productivity despite the interaction with the V&I

team.

By one calculation, the éost bf interaction with thé V&l
team is estimated to be 10 percent of the development ef-
fort. Therefore, if the development teams are-average in
performance and require only the average cost even though
they are interacting with a V&I team, the use of a V&I meth-
odology will have effected approximately a 1l0-percent sav-
ings in development cost, If the use of a.V&I methodology
works well, i.e., 1if the first six measures show positive
indications of success, then the combined cost of the devel-
opment and V&I teams will be close to the average cost of
development for this application. Since the cost of the V&I
effort will be approximately 15 percent of the development
effort and the estimated cost of interaction with the V&I
teams is 10 percent, a combined cost of the development and
V&l teams that is near the average development cost will
indicate approximately a 25-percent savings in‘deveIOpment

cost (15 percent real savings).

J. Page
CSC
22 0f 47

Ly o€t
afeq‘r

val TEAM]

CHARTER:

VERIFY REQUIREMENTS AND DESIGN
PERFORM SEPARATE SYSTEM TESTING
VALIDATE CONSISTENCY END TO END

FIX NOTHING
REPORT ALL
PROCESS CHARACTERISTICS:
DURATION (MONTHS) 14-16
EFFORT ;1 15-18 PERCENT OF DEVELOPMENT EFFORT
STAFF (FULL-TIME EQUIV.)
AVERAGE | 1.1
PEAK , 3.0
INDIVIDUALS 6
APPLICATION EXPERIENCE
MANAGERS | 7
TECHNICAL STAFF 4
OVERALL EXPERIENCE
MANAGERS 14
TECHNICAL STAFF - 8

1SAME CONTRACTOR AS DEVELOPMENT TEAMS, BUT IN DIFFERENT
OPERATIONAL AREA.

174 SEL (33) 6

Viewgraph 6: V&I Team

‘What did we expect the V&I team to do in this experiment?
The V&I team was supposed to

° Verify requirements and design
® Perform separate‘system testing
® Validate the consistency from start to end (from

requirements to product)
e Fix nothing
) Report all findings

The V&I process lasted 14 to 16 months and required an ef-
fort of 16 to 18 percent of the development effort. The
process required an average of 1.1 people and peaked at

3 people (full-time equivalents). Six individuals were in-
volved, including the first-line managers. The application
and overall experience of the technical staff was similar to
that of the development teams (viewgraph 4); the managers,
hOwever, had. a littlé more experience.

The V&I team was associated with the same contractor as the

development teams but came from a different operational area.

Hext, we will examine the results of the experiment.

J. Page

24 of 47

Ly 3o ST
ageq-r

%
ERRORS

%
ERRORS

70 —
60 —1
50 —
40 —
30
20 —
10 —

MEASURE 1-REQUIREMENTS PROBLEMS

MEASURE 2—DESIGN FLAWS

63

;19

10 8

60 —
50 —
40 —
30 —

20

10 —

FUNC COMPLEX SIMPLE
SPECS DESIGN DESIGN

REQS

PAST 1

67

23

1
| ctm———

COMPLEX SIMPLE
DESIGN DESIGN

REQS FUNC

SPECS

Ve 1

70

70 —
60 et
50 —
40 —
30 —
20 15
10 l_s_i_L
0 .

REQS FUNC COMPLEX SIMPLE

SPECS DESIGN DESIGN
PAST 2
72
70 —
60 —
50 —
40
30
21
20 —
10 —
) 6

0]

REQS FUNC COMPLEX SIMPLE

SPECS DESIGN DESIGN

val 2

174 SEL (33)-7

Viewgraph 7: Measure 1 - Requirements Problems and
Measure 2 - Design Flaws

This viewgraph shows the breakdown, by percentages, of all
the requirements and design errors detected from the start

of implementation through the end of acceptance testing.
l. Requirements Errors

Expectation:

For requirements errors, we expect to see a 50-percent

decrease in the percentage of requirements errors.

Findings:

From the bar graphs, you can see that the percentage of

requirements errors for both V&I projects was reduced 84
to 90 percent compared with the past projects. In addi-
tion, very few requirements remained unspecified in the

later stages of development. Hence, there were very few
late surprises in terms of iequirements problems com-

pared with the past projects.

Conclusion:

The use of a V&I methodology did significantly decrease

requirements ambiguities and misinterpretations.
2. Design Errors

Expectation:

For design errors, we expect to see a 50-percent de-
crease in the percentage of complex design errors. Com-
plex design errors are those involving many components.'
Simple design errors are single-component errors. A

component is a subroutine or a shared block of code.
Findings:

From the bar graphs, you can see that the percentages of
complex design errors for the V&I projects are 26 and

J. Page
CSC
26 of 47

23 percent of the total design errors. It is a little
less for the two past projects (23 and 18 percent).

Conclusion:

The use of a V&I methodology did not decrease complex

design errors.

J. Page
CSC
27 of 47

L¥ 30 8T

afeq °r

MEASURE 5—EARLY DISCOVERY OF FAULTS

24 1 23.0
20
18-2 17'5
16 - 15.6
% OF ERRORS
- FOUND AFTER
START OF 12
-ACCEPTANCE
TESTING 4 _
4 -
0 ,
PAST 1 PAST 2 VE 1 Vél 2

174-8EL (32)-8

Viewgraph 8: Measure 5 - Early Discovery of Faults

This viewgraph shows the percentage of errors of the total
that were found after acceptance testing started.

Expectation:

We expect to see a 50-percent reduction in the percentage of

errors found after acceptance testing starts.

Findings:

You can see that for the two V&I projects there was a slight
decrease (less than 30 percent) in the percentage of errors
found after acceptance testing started.

.Conclusion:

The use of a V&I methodology did not sigificantly increase
the early discovery of errors,

Additional Data:

The percentage of errors found in each phase is as follows:

Phase ' Past 1 ‘Past 2° V&I 1 vsl 2
After Acceptance Testing 18.2 23.0 15.6 17.5
Started
Before Acceptance Testing 81.8 77.0 84.4 82.5
Started
Maintenance. and Operation 3.4 . 5.3 5.0 6.9
“Acceptance Testing - - 14.8 17.7 10,6~ 10<6
System Testing 14.8 4.8 8.2 18.9
Code/Unit Testing 67.0 72.2 76.2 53.6

This viewgraph and viewgraphs 9 through 11 contain M&0 data
through November 20, 1981. The length and status of the M&O
phases are as follows:

M&O Phase Past 1 Past 2 V&I 1 V&I 2
Months 25 14 5 ° 6
Status Active Complete Active Active

J.Page
CSC

29 of 47

Except for project Past 2, which has ended, the results pre-
sented in viewgraphs 8 through 11 can only become worse with
further operation. However, the results are not expected to
change appreciably because of the characteristics of the
environment. Typically, in this environment, 95 to 100 per-
.cent of the postacceptance error corrections and enhance-
ments occur during the first 6 months of M&0. For example,
the supposedly last-planned modification of the source code
for both V&I projects occurred a few days before \
November 20, 1981.

After the first & months of'M&O, typically, the software is
changed only to support a degradation in satellite hardware
performance, e.g., failure of a primary sensor. However, to
support a launch, the software is engineered to support
these types of contingencies but not always accurately)
enough for day-to-day operation. Since the usual lifetimes
of these projects range from 1 to 3 Years, the users must
weigh the cost of extensive development to support serious
or critical degradation in satellite hardware pe;formance
with the benefit to be gained dufing the expected (and usu-
ally shortened) life of the satellite. For example, about a
year ago, the satellite of project Past 1 (25 months M&O)
had a critical hardware failure that seemed to end the proj-
ect prematurely; ‘however, relatively simple modifications to
the software allowed the users to keep the satellite active
in a degraded mode of operation.

J. Page
CSC
30 0f 47

Lv3o1e

J82
aeq -t

MEASURE 3—-COST OF CORRECTING FLAWS

3.0

25-

RELATIVE COST 2.0-
OF CORRECTING
ERRORS FOUND
AFTER START OF
ACCEPTANCE
TESTING 1.0

1.5

0.5

2.78

2.76

2.88

2.76

PAST 1

PAST 2

val 1

vVal 2

174-SEL (33)-9

Viewgraph 9: Measure 3 - Cost of Correcting Flaws

This viewgraph shows the relative cost of correcting errors
found after acceptance testing started. This number is the
ratio of the fraction of effort required to correct the er-
rors thatboccur:ed after acceptance testing starfed to the
fraction of errors that occurred after acceptance testing
started. For example, if 50 percent of the effort to cor-
rect errors was expended after acceptance testing started
and if that effort was needed to correct 5 percént of the
errdrs, this number would be 10,

Expectation:

We expect to see a 20- to 25-percent lower relative cost to

correct errors after acceptance testing starts.

Findings:

From the bar graphs, you can see that the relati&e cost to
correct errors after acceptance testing started was the same
as that for the past projects. The relative cost to correct
errors before acceptance testing started was approximately
0.5. This indicates that the cosﬁ to correct errors after
acceptance testing started was\betweén 4.4 and 4.9 times
more costly than the cost to correct errors before accept-
ance testing started.

Conclusion:

The use of a V&I methodoloéy did not decrease the cost of
correcting errors in the acceptance testing and M&0 phases

combined.

1. Page
CSC
320f 47

Additional Data:

The relative cost of correcting errors in each phase is as

follows:

Phase Past 1 Past 2 V&Il /1 V&I 2
After Acceptance Testing 2.78 2.76 2.88 2,76
Started)
Before Acceptance Testing 0.60 0.47 0.59 0.63
Started
Maintenance and Operation 4,85 4,53 4,09 3.54
Acceptance Testing 2.31 2.23 2.31 2.26
System Testing 1.00 1.09 1.30 1.08
Code/Unit Testing 0.47 0.43 0.58 0.49

These figures, in part, validate the common belief (advanced

by proponents of V&I methodology) that errors are more ex-

pensive to correct when they are discovered later in the

development cycle. You can also see from these figures and

from the Eigures in the previous viewgraph that the results

'are different for different phases; but, remember that we do

not have responsibility for tne maintenance phase, and data

is more difficult to obtain from the group who.has responsi-

pility. Therefore, we measure things one or two phases ear-

lier, i.e., during acceptance testing or system testing.

The relative cost of correcting errors in the -M&0 phase was

ments errors in that phase. The past projects nad at least

twice as many requirements errors in that phase.

J. Page
CsC
33 of 47

% OF DEVELOPMENT COST

LY 3O €
J80
aleq 'r

MEASURE 4—COST OF SYSTEM AND ACCEPTANCE TESTING

150
135 —
- . v'v.v‘v’v.v.V’v“ |
1257 | 17.5 j:::mmzﬁ V&l DEVELOPMENT OVERHEAD
B XK
7] 1 15 o, ~ 15 | MAINTENANCE ADD ON
100 })) . | AVG 15; HIGH 30; LOW 5
- %.64| SYSTEM AND ACCEPTANCE TESTING
i 37.3 A \X| AVG 29; HIGH 37.3; LOW 20.2
75—
i .
£0 - ////// | % / 503//% CODE/UNIT TESTING
- 402 /) / 48.2 7, //7/////4 AVG 48; HIGH 57.5; LOW 40.2
/ 7
:)
25 \\ \ / % % ‘ %
1IN R R e
] ' \ \\| AVG 23; HIGH 39.2; LOW 17.9
% B NN\ BNV ENSRVE NN

PAST PAST véal val
1 2 1 2 174~SEL~'(33)-'|0

Viewgraph 10: Measure 4 - Cost of System and Acceptance

Testing

This viewgrapn shows the cost for time spent in various de-

velopment calendar phases (not activity phases). Design
activity takes place in the design calendar phase, in the
code/unit testing (implementation) calendar phase, and even
in the system and acceptance testing calendar phase. De-
tailed SEL data shows that design activity ranges from 30 to
45 percent of the development éffort. On the average, how-
ever, only 23 percent of the development effort occurs dur-
ing the design calendar phase, i.e., the phase in which only
design-reiated activity 1is performed. The remaining design
activity is performed primarily during the implementation
phase because requirements change, previously missing infor-
mation is acquired, and design errors exist. Since it is
not unusual to receive requirements changes during the sys-
tem and acceptance testing phases, since some previously
missing information may be acquired during these phases, and
since design,errors are also discovered in these phases,

some design activity occurs here, too.

This viewgraph also contains the average cost for each phase
and the highest and lowest cost for each phase for the

12 projects in our sample. The high or low costs themselves
do not :epgesen;?thercggg of one project but show the most
and least money spent for the various phases by any of the

12 projects.

Expectation:

We expect to see a reduction in the cost of the system test-
ing and acceptance testing phases,

Findings:

On the average, we spend 29 percent of our dollars on system
and acceptance testing. You can see that one V&I project
was below the average (26.6 percent) and the other, above

J. Page
CSC
35 of 47

(31.1 percent). Together, they were equal to the average.
Both were less than our two projects from the past.

Conclusion:

The use of a V&I methodology did not significantly decrease

the cost of system and acceptance testing.

Additional Data:

We do not have responsibility for the maintenance phase.

Our best estimate is that the maintenance costs for the four
projects are about 15 percent of Ehe development costs. The
V&l projects had approximately 16- to 1l8-percent overheads.
to pay for the V&I effort.

J. Page
CSC
36 of 47

OOOOOOOOO

MEASURE 6—-QUALITY OF SOFTWARE

9
ERN// |7/ I
=31 Vi VED T

_ @ 7 /// /M CCCCCCCCCCCCCCCCC

SSSSSSSSSSSSS

/e

2
MAINTENANCE 25 14 5 6
21 3 3

NN

A

N }
=

12
g§ : s
= //{%
- ///
1

0

PPPPPPPP

Viewgraph 1l: Measure 6 - Quality of Software

This viewgraph shows the errors per thousand lines of devel-
oped code for various calendar phases. What is important
here is the M&0 phase.

Expectation:

We expect to see an error rate in the M&0 phase less than

the average error rate for this application.

Findings:

From the bar graphs, you can see that the error rates for
the two V&I projects are not better than the error rates for
the two past projects. The average error rate in the M&0
phase is between 0.5 and 0.6 errors per thousand lines of
developed code; both V&I projects had error rates higher

than the average.

Conclusion:

The use of a V&I methodology did not improve the quality of
the software put into operation.

Additional Data:

-Error rates from the other phases are important track rec-
ords. Hypothetically,.let us say that prdjects Past 1 and
V&l 2 were developing the same product. If we measured the
acceptance testing error rates, we would see that both had
error rates of 1.4 errors per thousand lines of developed
code. We would not be able to tell too much about the proj-
ects from that viewpoint. However, if we examined those
projects' error rates before acceptance testing, we would
see that proﬂect Past 1 had a preacceptance testing error
rate of 7.9 and project V&I 2 had a preacceptance testing
error rate of 10.6. From this, we may be able to predict
. the worse M&O phase error rate for project V&I 2,

J. Page
CsC .
380f 47

STAFF-MONTHS/K DLOC

3.00
2.75 -
2.50 j
2.25 —
2.00 —
1.75
1.50 —
1.25 —
1.00 —
0.75
0.50 —

0.25

MEASURE 7—PRODUCTIVITY/COST

AVERAGE

ANV \

i
/__

0.10

77
v

\
xi

R

0.00

PAST

N
\

V&l OVERHEAD

SERVICES
AVG 0.11; HIGH 0.22; LOW 0.07

_ MANAGERS

AVG 0.48; HIGH 0.76; LOW 0.28

PROGRAMMERS
AVG 1.11; HIGH 1.42; LOW 0.77

Viewgraph 12: Measure 7 - Productivity/Cost

This viewgraph shows the cost (in staff-months) per thousand
lines of developed code (K DLOC).

Expectation:

We expect the V&I overhead costs to be an add-on cost to our

average development cost.

Findings:

Because of the interaction with the V&I team and some other
problems, we drove the productivity of the development teams
to the low end of our productivity range. Together, the two
V&1 projects were about 85 percent more expensive than our
two past projects. Since the quality of the products was
not any better (see viewgraph 11), an 85-percent increase in
cost for the same product is a very'expensive penalty to
pay. The cost of the development part of the V&I projects
(2.2 staff-months per K DLOC) was approximately 30 percent
nhigher than the average development cost (1.7 staff-months
per K DLOC). This is three times as large as the estimated
cost of interaction with the V&I team. ‘

Conclusion:

The use of a V&I methodology is expensive.

J. Page
CSC
40 of 47

Lyioly

280
afeq 't

RESULTS OF V& EXPERIMENT

FROM THE DATA WE HAVE USED, WE HAVE

FOUND

LARGE DECREASE IN

. NO DECREASE IN

NO DECREASE IN
SMALL DECREASE IN

SMALL INCREASE IN
NO INCREASE IN

LARGE DECREASE IN
INCREASE IN

SCORE: 1 PLUS; 5 ZEROS; 1 DOUBLE MINUS

MEASURE

REQUIREMENTS AMBIGUITIES
AND MISINTERPRETATIONS

DESIGN FLAWS
COST OF CORRECTING FLAWS

- COST OF SYSTEM AND

ACCEPTANCE TESTING
EARLY DISCOVERY OF FAULTS

QUALITY OF SOFTWARE PUT INTO
OPERATION

PRODUCTIVITY
COST

174-SEL-(330)-13

Viewgraph 13: Results of V&I Experiment

From the data we have used, which includes resource data,
error data, and the software, we have found that a V&I meth-
odology provided

1. A large decrease in requirements ambiguities and

misinterpretations. There were very few late surprises in

terms of requirements problems, and the number of require-
ments errors reported was significantly less than for the

past projects.

2. No decrease in design errors. The fraction of com-

plex design errors was similar to that of the past projects.

3. No decrease in the cost of correcting errors. The

relative cost of correcting errors that occurred after ac-
ceptance testing started was the same as that for the past
projects.

4. A small decrease in the cost of system and accept-

ance testing. One V&I project had a system and acceptance

testing cost less than the average system and acceptance
testing cost; the other V&I project was above the average
cost. However, both V&I projects -had costs below the costs
of the past projects used in the comparison.

5. A small increase in early discovery of errors. For

both V&I projects, the percentage of errors that occurred
after acceptance testing started was less than the percent-
age of errors that occurred after acceptance testing started
for the past projects.

6. No improvement in the quality of software put into
operation. The error rates in the M&0 phase for both V&I
projects were higher than the average error rate for soft-

ware put into operation for this class of application.

7. A decrease in productivity and an increase in

cost. Because, in part, the interaction of the V&I and

J. Page

42 of 47

development teams lowered productivity and because there was

not a savings in correcting errors, the cost was high.

We scored a plus with the first measure (requirements prob-
lems); zero with the next five measures; and a double minus
with the last measure (productivity/cost).

J. Page
CSC
43 of 47

Ly o vy

afeq 't

SUMMARY

® FIRST APPLICATION OF V&al IN THIS
ENVIRONMENT

— DID NOT IMPROVE PROCESS
— WAS EXPENSIVE
— WAS A MANAGEMENT HEADACHE

e HOWEVER, WITH VARIATIONS, WE WILL
ENCOURAGE ITS USE FOR

— THE RIGHT SIZE EFFORT
_ THE RIGHT RELIABILITY REQUIREMENT

174-SEL (33)-16

Viewgraph 14: Summary

For our first application of a V&I methodology in this en-

vironment

° V&l did not improve the process
° V&l was very ekpensive
° V&I was a management headache

To qualify this, our experience with many methcdologies has
been as follows:

® The first time a methodology is applied, mistakes
are made (and we made many mistakes), and many of
the potential benefits or advantages of the method-
- ology are not realized.

¢ The second time a methodology is applied, there is
a tendency to overcompensate for the things that
you did worst the first time, and the methodology

still does not work as well as it potentially could.

° The third time a methodology is applied, you lower
your expectations somewhat or modify them, and you

home in on what is right for your environment.

In general, development teams are at the bottom of the totem
pole in this environment. Because they work in an opera-
tions environment, they have low priority for accessing the
machines. They have adversary relationships with the
analysis/requirements team, the team that conducts accept-
ance testing, the people who schedule computer time, the
computer operators, the programmer assistance center, and
the customer. The V&I team members, who are like a develop-
ment team but do not design or implement, have the same ad-
versaries. Placing a V&I team in this environment creates
another adversary for both the development team and the
development-like V&I team. The manager who monitors both

teams (the customer) has twice as many complaints, computer

J. Page
CsC
45 of 47

problems, priority decisions, schedule problems, cost prob-
lems, reporting problems, and conflicts to deal with. The
V&I experiment was a management headache.

However, we believe that we know what changes are needed and
how to moderate them to make the use of a V&I methodology
more cost effective in this environment for

) The right size effort

® The right reliability requirement

Most of our projects require 8+4 staff-years of effort. We
believe that a V&I methodology will be cost effective in the
10- to 1l2-staff-year range and that cost savings will be
~achieved for larger efforts. All our completed projects
have been for ground-based software, but we have started to
develop some onboard (flight) prototype systems. For these
systems, which have a more stringent reliability require-
ment, we pelieve that a V&I methodology will be cost effec-
tive for 5- to 6-staff-year efforts. 1In both these cases,
we believe that a V&I effort of approximately 15 percent of
the development effort is sufficient for our work.

J. Page
CsC
46 of 47

THE VIEWGRAPH MATERIALS
for the
J. PAGE PRESENTATION WERE
INCORPORATED IN PAPER

J. Page
CSC
47 of 47

EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS:
ASSESSMENT OF SOFTWARE MEASURES IN THE
SOFTWARE ENGINEERING LABORATORY

Victor R. Basili

University of Maryland
College Park, MD 20742

The purpose of this presentation is to discuss some of the work done

on metrics in the Software Engineering Laboratory. To put things in per-

spective, there are many factors that affect software quality and each of these

factors has several criteria which define it. Metrics represent some sort
of measurement as to whether or not we have achieved a particular'criteria.
For example, one factor that we would like the software to possess is relia-
bility. One of the many criteria that goes to make up this generalized
factor of reliability might be fault tolerance. One of the metrics that can
be used to evaluate fault tolerance might be the number of crashes of the
system.

There are many views of metrics. We can think of metrics as being

subjective or objective. Subjective metrics normally do not involve any

exact measurement; they tend to.be an estimate . of extent to a-degree in the .

application of some technique or a classification or qualification of a
problem or experience. Subjective metrics are usually dbne on a relative
scale; e.g., they may be binary (yes or no), or discrete numbers (zero, 1,
2, 3). Examples of subjective metrics would be a qualitative judgment on
the use of Process Design Language or an evaluation of the experience of
programmers in a particular application.

Objective metrics, on the other hand, tend to be absolute measures

taken on the product or process. For example, the time of development,

V. Basili
Univ, of MD
10of 24

the number of lines of code delivered, the productivity in lines of code

per staff month, the number of errors or changes associated with the project.
The distinction between subjective and objective metrics is typically a
little bit fuzzy. Very often we make a metric subjective because we don't
know how to quantify it.

Another characterization of metrics is as product or process metrics.
Product metrics measure the developed product, such as the source code, the
object code, or the documentation. Such metrics might be lines of code
(objective metric) or readability of the source code (subjective metric).
Process metrics tend to measure the process model used for developing the
product. Metrics such as use of methodology (subjective metric) and effort
and staff months (objective metric) are two metrics that measure the process.

Another characterization is to think of metrics as being cost or quality
metrics. Tt is clear that cost can be a quality metric. However, typically
a goal in software development is to minimize cost and maximize quality. So
for that reason we will consider these as separate views. Cost normally
involves the expenditure of resources in dollars, which might include some
capital investment, and this metric is usually normalized according to some
value component. For example, we measure staff months or productivity in
terms of dollars received for dollars spent, or output for dollars spent, or
size per time slice. Quality metrics, on the other hand, measure some form
of the value of the product. For example, trying to measure the mean time
to failure of the product, the ease of change, the correctness, or the
number of errors remaining are all quality measures.

Use of Metrics

We use metrics in varving ways. We can use them to characterize,

V. Basili
Univ, of MD
20f24

evaluate, or predict. Almost all metrics fit in the characterizing category.
In that sense, the metric helps to distinguish the product and process or
environment. For example, we may categorize an environment by the use of

a methodology, the number of externally-generated changes, or the size. This
allows us to compare environments or products or processes.

Not all characterizing metrics are evaluative. Metrics aré considered
evaluative if the metric correlates with or shows directly the quality of the
process or the product. For example, the number of errors recorded during
acceptance testing or the productivity involved in the development of a
software project give us some way of evaluating whether the product has some
reasonable reliability or the development is cost effective.

The most powerful capability a metric can have is prediction; that is,
the measure is estimable or calculable and is used to predict another
measure. For example, estimating size as a predictor of effort is a way to
use an estimable metric to predict some desired information.

To demonstrate that a particular metric evaluates or predicts, requires
some validation. Too often metrics are proposed in the literature which are
meant to be evaluative or Predicted, but that capability is not established
by experiment or case study.

Analyzing Objective Metrics in the Software Engineering Laboratory

In a paper presented at the Sigmetrics Workshop (Basili/Phillips), we
tried to use the laboratory project data to study the relationship between
various metrics of size and complexity. One of the questions raised was
could we predict effort, which was a cost measure, and the number of errors,
a quality metric, using the various size and complexity metrics that appear
in the literature. A second question was to be able to check the internal

V. Basili
Univ. of MD
3of 24

consistency of several of those size and complexity metrics. The metrics
used are given in Table 1. The relationship between the various complexity
metrics appears in Table 2, which gives the Pearson correlation coefficient.

As can be seen from this table, several of the complexity and size metrics

OBJECTIVE SIZE AND COMPLEXITY MEASURES STUDIED

 SRC : SOURCE LINES OF CODE INCLUDING COMMENTS
XQT : EXECUTABLE STATEMENTS

SOFTWARE SCIENCE METRICS
N : LENGTH IN OPERATORS AND OPERANDS

V. . VOLUME
V* : POTENTIAL VOLUME
L : LEVEL
E : EFFORT

CYC : CYCLOMATIC COMPLEXITY

CLS : NUMBER OF CALL STATEMENTS

CAJ : CALLS AND JUMPS

CHG : CHANGES TO THE SOURCE CODE

REV : NUMBER OF REVISIONS (VERSIONS) IW THE LIBRARY

EFF : NUMBER OF HOURS EXPENDED IN DEVELOPMENT
ERR : NUMBER OF ERRORS ASSOCIATED WITH COMPONENT

Table 1

V. Basili
Univ, of MD
4 0f 24

vzios
QN JO aluf)

RELATIONSHIP BETWEEN SIZE AND COMPLEXITY METRICS

mseq ‘A

REV CHG XQT SRC CAJ (e oS
E 6750 .2407 1 .8390 .8706 .8742 .8906 .7966
(LS 6427 3579 .7594 8186 .9648 .8651 |
CyC .7921 .2534 .9253 ,9519 9666
CAJ .7439 3158 .8734 .9176
SRC 8415 2942 9896
XaT .85%0 .2920
CHG .u4229

Table 2

correlate well with one another. On the other hand, the change metrics do
not correlate well. 1In trying to use combinations of these metrics to predict
effort and errors, we see by Table 3 that there is some success in accounting

for effort with some of the metrics, but less success in accounting for errors.

PREDICTING EFFORT AND ERRORS USING

SIZE AND COMPLEXITY METRICS

EFF ERR
‘EFF | | 6346
CLS /977 5704
CYC . 7399 .5592
CAJ . 7957 . 58438
SRC 7583 ss76
XQT . 7400 5485
REV 7127 6734
E 06612 5432
CHG 4799

Table 3
Univ. of MD

6 of 24

Another study was to look at thg internal validation of some of the
metrics. Specifically, the software science metrics were examined to see
whether predicted values for some of the metrics and actual values related in
some way. Again, Pearson's correlation was used;the results are given in
Table 4. One can‘see from this table that metrics like length, that is,

N and ﬁ,do correlate. There is not a bad relationship between V and V*,
although in the group of metrics)that relationship is probably the worst.

It should be noted that érojects are broken.up into two groups--those of
small components which were 50 lines or less, and large components which were
more than SOllines.

Based on this study, we made the following conclusions: First of all,
there does exist some relationship between complexity metrics and effort and
errors. However, most of the complexity metrics do not do much better at
estimation than 1inés of code or executable statements. On the other hand,
many of the metrics relatéd very well with each other, which seems to imply
that they really are measuring the same thing. The goal, therefore, should
be concentrated on looking at orthogonal metrics. We are currently investi-

gating data metrics in the SEL.

Using Subjective and Objective Metrics to Predict Cost

In a p;per presented at the 5th Internaticnal Conference on Software
Engineering (Bailey/Basili), we inverted that experiment by examining the
relationship between productivity and various factors. Basically, we used
nonparametric statistics. The results were as follows: We found no signifi-
cant relationship between productivity and size. However, there was a large
set of methodology factors that showed varying degrees of positive correla-
tion with productivity. A combined methddology factor that was used to pre-

V. Basili
Univ. of MD
7 of 24

- INTERNAL VALIDATION

SMALL COMPONENTS 50 LINES (280)
LARGE COMPONENTS ‘50 LINES (285)
LARGE SMALL
A) .
N~ N .79 .83
Vo~ V* .52 .50
A : .
L~ L W71 .b62
A |
E~E 61 42

PEARSON CORRELATION

Table 4

V. Basili
Univ, of MD
8 of 24

dict cost or effort in the cost model showed a significant positive correla-
tion with productivity as might have been expected. 1In this study, projects
with high methodology rating were shown to have -come from a different popula-
.tion than those with a low methodology rating. No other factor showed a
significant positive correlation with productivity and we were able to show,

at least in the SEL énvironment, that methodology does correlate with producti-

vity and therefore has been an effective approach to software development.

Using Subjective Metrics to Predict Quality

Based on the study to predict productivity but changing the statistical
approach to factor analvsis, we compressed three sets of metrics ipto threg
factors--quality, methodology, and complexity. Methodology ana complexity
were not significantly correlated in the study. However, quality was sig-
nificantly correlated with methodology with a correlation (R) of .67 and
quality was also significantly correlated with complexity with a correlation
(R) of -.64. 1In both cases, the correlation was less than a .00l significance
level.

Using methodology alone to predict quality, the coefficient of determina-
tion:(Rz)wis equal ﬁo .45.. This means that methodology accounted for
essentially 45% of the quality rating. Using methodology and complexity both,
we got an R2 of .65. This implies that there is some evidence that we can
predict quality from methodology and complexity and that methodology is again
highly correlatéd, not with just productivity as we saw in the previous study,
but also with quality. Work in this particular area is just beginning and
we plan to make tremendous use of the subjective metrics, not just for

evaluation, but also for prediction.

V. Basili
Univ. of MD
9 of 24

REFERENCES
(Basili/Phillips) - Basili, V. and Phillips, T.,''Validating Metrics

on Project Data'" - Submitted to special issue of Software Metrics,

Transactions on Software Engineering.

(Bailey/Basili) - Bailey, .J. and Basili, V., "A Meta-Model for
Software Development Resource Expenditures,' Proceedings of the
Fifth International Conference on Software Engineering, March 1981,

pp. 107-116

V. Basili ~
Univ. of MD
10 of 24

THE VIEWGRAPH MATERIALS
for the
V. BASILI PRESENTATION FOLLOW

V. Basili
Univ. of MD
110of 24

FACTOR
(RELIABILITY)

CRITERIA
(FAULT TOLERANCE)

METRICS
(NUMBER OF CRASHES)

V. Basili
Univ. of MD
12 of 24

VIEWS OF METRICS

SUBJECTIVE VS, OBJECTIVE -

SUBJECTIVE:

NO EXACT MEASUREMENT

AN ESTIMATE OF EXTENT OR DEGREE IN THE APPLICATION
OF SOME TECHNIQUE |

A CLASSIFICATION OR QUALIFICATION OF PROBLEM OR
EXPERIENCE |

USUALLY DONE ON A RELATIVE SCALE

E.G., USE OF A PDL

EXPERIENCE OF THE PROGRAMMERS IN THE APPLICATION

OBJECTIVE:
AN ABSOLUTE MEASURE TAKEN ON THE PRODUCT OR PROCESS
“£.Gv, TIME FOR-DEVELOPMENT |
NUMBER GF LINES OF CODE
PRODUCTIVITY -
NUMBER OF ERRORS OR CHANGES

V. Basili
Univ, of MD
13 of 24

VIEWS OF METRICS

PRODUCT VS. PROCESS

PRODUCT:
MEASURE OF THE ACTUAL DEVELOPED PRODUCT
I.E., SOURCE CODE, OBJECT CODE, DOCUMENTATION
E.G., LINES OF CODE, READABILITY OF THE SOURCE CODE

PROCESS: |
MEASURE OF THE PROCESS MODEL USED FOR DEVELOPING

THE PRODUCT |
E.G., USE OF METHODOLOGY, EFFORT IN STAFF MONTHS

COST VS, QUALITY

COST:
EXPENDITURE OF RESCURCES IN DOLLARS INCLUDING
CAPITAL INVESTMENT USUALLY NORMALIZED ACCORDING
TO SCHME VALUE COMPONENT |
E.G., STAFF MONTHS, PRODUCTIVITY, SIZE/TIME SLICE

QUALITY:
SCME FORM OF VALUE OF THE PRODUCT
E.G., RELIABILITY, EASE OF CHANGE, CORRECTNESS,

HUMBER OF ERRORS REMAINING

V. Basili
Univ. of MD
14 of 24

USE OF METRICS

PREDICTIVE VS. EVALUATIVE VS, CHARACTERIZING

CHARACTERIZING:
* MEASURE HELPS DISTINGUISH THE PRODUCT OR PROCESS
| OR ENVIRONMENT |
E.G., USE OF A METHODOLOGY, HUMBER OF EXTERNALLY
GENERATED CHANGES, SIZE

EVALUATIVE:
MEASURE CORRELATES WITH OR SHOWS DIRECTLY THE QUALITY
OF THE PROCESS OR PRODUCT
E.G., NUMBER OF ERRORS REPORTED DURING ACCEPTANCE
TESTING, PRODUCTIVITY

PREDICTIVE:

 MEASURE IS ESTI/MATABLE OR CALCULABLE AND IS USED TO
PREDICT ANOTHER MEASURE

E.G., ESTIMATING SIZE AS A PREDICTOR OF EFFORT

USE REQUIRES VALIDATION

V. Basili
Univ. of MD
15 of 24

ANALYZING OBJECTIVE MEASURES
IN THE SEL

USING SEL PROJECT DATA TO STUDY THE RELATIONSHIP BETWEEN
VARIOUS METRICS OF SIZE AND COMPLEXITY

PREDiCTING EFFORT (A COST MEASURE) AND NUMBER OF ERRORS
(A QUALITY METRIC) USING SIZE AND COMPLEXITY METRICS

CHECKING THE INTERNAL CONSISTENCY OF SEVERAL SIZE AND
COMPLEXITY METRICS

V. Basili
Univ. of MD
16 of 24

SRC :

OBJECTIVE SIZE AND COMPLEXITY MEASURES STUDIED

SOURCE LINES OF CODE INCLUDING COMMENTS

XQT : EXECUTABLE STATEMENTS
SOFTWARE SCIENCE METRICS

CYC
CLS
CA
CHG
REV

EFF

N . LENGTH IN OPERATORS AND OPERANDS
V. VOLUME

V¥ . POTENTIAL VOLUME

L : LEVEL

E : EFFORT

CYCLOMATIC COMPLEXITY

NUMBER OF CALL STATEMENTS

CALLS AND JUIPS

CHANGES TO THE SOURCE CODE

NUMBER OF REVISIONS (VERSIONS) Iil THE LIBRARY

: NUMBER OF HOURS EXPENDED IN DEVELOPMENT
ERR

NUMBER OF ERRORS ASSOCIATED WITi! COMPONENT

V. Basili
Univ. of MD
17 of 24

PREDICTING EFFORT AND ERRORS USING

SIZE AND COMPLEXITY METRICS

EFF ERR
EFF 6346
CLS 7977 5704
CYC 7399 5592
CAJ 7957 5813
SRC 7583 15576
XaT 7400 5485
REV 7122 6734
£ 6612 543
CHG 4799 |

V. Basili
Univ. of MD
18 of 24

nseq "A

$T30 61
aw Jo “amn

RELATIONSHIP BETWEEN SIZE AND COMPLEXITY METRICS

CHG - XQT SRC CAJ CYC CLS

REV
E L6750 .2407 8390 .8706 .8742 .8906 .7966
(LS .47 3579 L7594 8186 L9648 .8651

cYe 7921 253 9253 .9519 9666

CAJ . 7439 3158 | ,8734 .9176

SR .84l5 .2942 .9896

XaT .8560 2920 |

CH6 4229

[NTERNAL VALIDATION

SMALL COMPONENTS 50 LINES (280)

LARGE COMPONENTS 50 LINES (285
LARGE SMALL

A
N~ N 79 .83
Vo~ v .52 50

N
L~ L 71 .62

A' .
E~E 61 42

PEARSON CORRELATION

V. Basili
Univ. of MD
200f 24

CONCLUSION
CAN USE COMMERCIALLY-OBTAINED DATA TO VALIDATE COMPLEXITY METRICS
VALIDITY CHECKS AND ACCURACY RATINGS ARE VITAL

THERE EXIST RELATIONSHIPS BETWEEN COMPLEXITY METRICS AND EFFORT
AND ERROR COUNTS

THE BETTER THE DATA, THE BETTER THE RESULTS
DON'T DO MUCH BETTER THAN LINES OF CODE ON EXECUTABLE STATEMENTS

METRICS RELATE WELL WITH EACH OTHER
(MEASURING THE SAME THING)

V. Basili
Univ. of MD
21 of 24

USING SUBJECTIVE AND OBJECTIVE METRICS
T0 PREDICT COST (EFFORT)

A META-MODEL WAS DEVELOPED FOR DERIVING AN -INDIVIDUALIZED
COST MODEL FOR THE LOCAL ENVIRONMENT

IT ASSUMES EACH ENVIROMMENT IS DIFFERENT AND- IS CLASSIFIABLE
BY A SET OF FACTORS (CAPTURED USING SUBJECTIVE METRICS)

SOME FACTORS ARE CONSTANT ACROSS THE ENVIRONMENT AND ARE
HIDDEN IN A BASIC SIZE/EFFORT EQUATION BASED UPON
PAST HISTORY WITHIN THE ENVIRONMENT

OTHER FACTORS CAUSE DIFFERENCES BETWEEN PROJECTS AND CAN BE
USED TO EXPLAIN THE DIFFERENCE BETWEEN ACTUAL EFFORT
AND EFFORT AS PREDICTED BY THE BASIC SIZE/EFFORT
EQUATION

CAN PREDICT COST (EFFORT) WITH THE USE OF SUBJECTIVE METRICS

V. Basili
Univ. of MD
22 of 24

EVALUATING THE EFFECT OF VARIOUS
FACTORS ON PRODUCTIVITY

WE EXAMIWED THE RELATIONSHIP BETWEEN PRODUCTIVITY AND VARIOUS
FACTORS

FOUND NO SIGNIFICANT RELATIONSHIP BETWEEN PRODUCTIVITY AND SIZE

A LARGE SET OF METHODOLOGY FACTORS SHOWED VARYING DEGREES OF
POSITIVE CORRELATION WITH PRODUCTIVITY

A COMBINED METHODOLOGY FACTOR SHOWED A SIGNIFICANT POSITIVE
CORRELATION WITH PRODUCTIVITY

| [PROJECTS WITH HIGH METHODOLOGY RATING CAME FROM A DIFFERENT
POPULATION THAN THOSE WITH A LOW METHODOLOGY RATING] -

NO OTHER FACTORS SHOWED A SIGNIFICANT POSITIVE CORRELATION- -
WITH PRODUCTIVITY

METHODOLOGY IS CORRELATED WITH PRODUCTIVITY

V. Basili
Univ. of MD
230f 24

USING SUBJECTIVE METRICS TO PREDICT QUALITY

WE COMPRESSED THREE SETS OF METRICS IATO THREE FACTORS:
QUALITY, METHODOLOSY, AND COMPLEXITY |

METHODOLOGY AND COMPLEXITY WERE NOT SIGNIFICANTLY
CORRELATED

QUALITY WAS SIGNIFICANTLY CORRELATED WITH
~ METHODOLOGY (R = .67) AHD COMPLEXITY (R =-=64)
AT LESS THAN .001 SIGNIFICANCE LEVEL
USING METHODOLOGY ALONE TO PREDICT QUALITY, R? = .45

USING METHODOLOGY AND COMPLEXITY WE GET RZ = .65

THERE 1S EVIDENCE WE CAN PREDICT QUALITY FROF
METHODOLOGY AND COMPLEXITY

METHODOLOGY IS CORRELATED WITH QUALITY

V. Basiti
Univ. of MD
24 of 24

PANEL #2
SOFTWARE METRICS
J. Gaffney/R. Judge, IBM

J. Post, Boeing Aerospace
D. Card, Computer Sciences Corporation

SOFTWARE METRICS

The Quantitative Impact of Four

Factors on Work Rates Experienced During

- Software Development

~John E. Gaffney, Jr.
Rdbert W. Judge
IBM Corporation
Federal Systems Division

Manassas, Virginia 22110

Abstract

This paper describes a model of the software development process
which is being used at the IBM, Federal Systems Division. The model
considers the software development process to consist of a sequence of
activities, such as "program design" and "module development" (or coding).
A manpower estimate is made by multiplying code size by the rates (man
months per thousand lines of code) for each of the activities relevant
" to the particular case of interest-and summing -up the results.--The- - —
effect of four objectively determinable factors (organization, software
product type, computer type, and code type) on the productivity values
for each of nine principal software development activities has been
assessed. The analysis indicates that four factors can be identified
whicﬁ account for 39% of the observed product%vity variation.

R. Judge
IBM
1of 15

Software Cost Analysis By Work Components

Software development costs may be estimated by considering each of
the activities or work components that constitute a particular software

1)

development process, These components are the basis for a software
engineering management model(z) used by fhe Fedefal Systems Division of
IBM. Sixteen work components have been identified from which the software
organization or the engineering organization involved in a software
development project can structure its particular activities. Data on 9

of them served as the basis for the work reported upon here. This
information was based on experience at the IBM, Manassas, Virginia

facility. These work components are:

Software Requirements Definition - This work component includes the

definition and/or analysis of functional, operational, and other software

system requirements.

Software Development Planning - This work component includes all tasks

necessary to'gene;ate the plans necessary for the implementation of the

software system.

Functional Design - This work component covers the documentation of the

functions the software must perform to meet the requirements imposed

upon 1it.

Program Design - This work component covers the documentation of the

software system from an internal viewpoint.

Module Development - This work component covers the tasks associated

with the detailed design of the software modules and their coding and

test.

R. Judge

20f 15

Software Integratioﬂ and Test (SWIT) - This work component covers the

integration and testing of the software system and the analysis to

determine if it meets the system requirements.

SWIT Problem Analysis and Error Cofrection - This work component covers

the analysis and correction of software problems uncovered during SWIT.

System Test - This work component covers the hardware/software integration

and test effort. -

Acceptance Test ~ This work component covers the demonstration to the

customer that the software system satisfies the requirements imposed

upon it.

A cost estimate can be made by considering the nature of the particular
software development job and the work components (such as program design,
coding, etc.) that constitute it. Tﬁen, the labor (man months) for

each compdneht is estimated. The sum of thesevman month figures is the
amount required for the given job. The labor for each work component

is estimated as the product of the productivity rate (in man months per
MM/KSLOC) and the amount of source lines

thousand source lines of code

of code. Thus;

 Total labor (man months) = 2 Pei xS = SPT
i=1 o .
Where; n = number of work components
Pei = work rate #i
S = amount of source lines of code (=KSLOC).

The approach to considering the software development process as a
sequence of activities with well-ordered time precedehce relationships

is a model long used by industrial engineers, and has been applied

R. Judge
IBM
3of 15

(3,8 Considering the

recently to modern electronic systems development.
development process in terms of its constituents enables the estimator
to achieve a greater degree of intellectual control than if he were to
evaluate the process overall. For example, it may not be clear how the
availability of a new process that facilitates unit testing would impact
overall development productivity. However, its effect on the work
component that covers unit test would be much easier to discern. Then,
the effect on overall productivity can be readily calculated by simply
reviewing the appropriate rate (e.g. the proper "Pei" in the equation

given above).

The Impact .of Four Factors on Work Component Productivities

Earlier work has considered the effect on overall productivity of
various factors relating to the complexity of the code to be developed,
the skills of the software development work force, and other factors

representative of the software development environment.(s"6’ 7, 8)

This
paper brovides a quantitative assessment of the impact of several

‘significant factors on the work rates of 9 specific work coﬁponents.

A linear regression model was structured to relate the values of
work rate in man months per KSLOC (MM/KSLOC), experienced in a reasonably
large number of cases (typically more than 30 data samples), to variables
representative of the factors; organization, software product type,
computer type, and code type)involved in each case. The multiple correlation
coefficient between the MM/KSLOC value and the encoded values of each of
the variables was determined in each case. The square of this value
times 100 is equal to the amount of variation in the given cost component
'explainable' by these four variables. Table 1 tallies their percentages,
_togethef with the sample size for each of the 9 work componeﬁts that

were evaluated.

R. Judge
IBM
4 0f 15

Table 1 - Percentage of Variation in Work Rate

DK

Explainable by Four Factors

Percentage of Variation

Work , In Work Rate Explained Number of

Component By The Four Factors (1) Samples Used
Software Requirements 15.12 30
Software Development

Plan 17.81 38
Functional Design - 15.53 45
Program Design 38.43 66
Module Development 55.87 : 60
Software Integration

and Test (SWIT) : 46.90 51
SWIT-Problem Analysis

and Error Correction 60.33 : 51
System Test 26.13 39
Acceptance Test " 49,40 42

Average 36.17 47

(1); organization (2 alternatives); product types (2 alternatives);
computer type (3 alternatives); code type (3 alternatives)

Table 1 shows that, on a work component basis, the percentage of
variation explained by the four factors is 36.17%. However, on an overall
 project basis, this percentage increases to 39% value. This is because - -
the percentage of variation explained is larger for those work components
which represent a greater proportion of the overall software product
development effort.

Conclusion
o

The methodology of 'bottom-up' or 'micro' software development cost
estimation and analysis has been described. The definitions of the
sixteen cost components used by the IBM Federal Systems Division were

presented. The effects of knowledge of four factors in resolving the

uncertainty of nine of these cost components were presented.

R. Judge
IBM
5of15

Bibliography

Cruickshank, R. D., and Lesser, M., "An Approach To Estimating and
Controlling Software Development Costs in ''The Economics of Information
Processing," R. Goldberg and H. Lorin (eds); Wiley, 1981.

Quinnan, R. E., "The Management of Software Engineering, Part V,"

“IBM Systems Journal," Volume 19, No. 4, 1980

Maynard, H. B. (ed.), "Industrial Engineering Handbook," McGraw-

Hill, 1956.

‘Norden, P. V. , "On the Anatomy of Development Projects,” "I.R.E.

PGE.M. Transactions,”" Vol. EM-7; No. 1, pg. 4l.

Walston, C. E. and Felix, C. P., "A Method of Programming Measurement
and Estimation,'" IBM Systems Journal, Vol. 16, 1977, pg 54-73.

Gaffney, Jr., J.qE., "Maximize Design Effort and Minimize Progfam
Control Complexity - To Maximize Software Development Productivity,"
"Proceedings, IEEE Computer Software and Applications Conference,"
October, 1980, pg 225-228, IEEE catalog # 80CHL607-1.

Basili, V. R., and Reiter, R. W., Jr., "An Investigation of Human
Factors in Software Development,” "IEEE Computer,' December 1979,
pg 21-38.

Brooks, W. D., "Software Technology Payoff; Some Statistical Evidence,"
IBM Software Engineering Exchange (IBM Federal Systems Division,
Bethesda, Md), Volume 2, No. 1, April, 1980.

R. Judge

6 of 15

THE VIEWGRAPH MATERIALS
for the
J. GAFFNEY/R. JUDGE PRESENTATION FOLLOW

R. Judge

7of 15

THE QUANTITATIVE IMPACT OF FOUR FACTORS ON
WORK RATES EXPERIENCED DURING SOFTWARE DEVELOPMENT

J. E. GAFFNEY, JR. R. W, JUDGE
IBM CORPORATION
MANASSAS. VIRGINIA

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
~ NASA
GODDARD SPACE FLIGHT CENTER

DECEMBER 2, 1981

R. Judge
‘IBM
8of 15

WORK RATE

o WORK RATE IS AN INDICATOR OF PRODUCTIVITY WHICH
USES SOURCE LINES OF CODE (SLOC) AS THE MEASURABLE

LABOR (MAN MONTHS) = WORK RATE (MM/SLOC) WORK(SLOC)

R. Judge
IBM
9of 15

SOFTWARE REQUIREMENTS DEFINITION
SOFTWARE DEVELOPMENT PLANNING
FUNCTIONAL DESIGN

'PROGRAM DESIGN

MODULE DEVELOPMENT

SOFTHARE INTEGRATION AND TEST
PROBLEM ANALYSIS AND ERROR CORRECTION

SYSTEM TEST

ACCEPTANCE TEST

R. Judge
IBM
10of 15

N
TOTAL LABOR (MAN MONTHS) = :z:z' PEI XS =M
1=1

WHERE :
M = MAN MONTHS

N = NUMBER OF WORK COMPONENTS

P = WORK RATE #I

- S = NUMBER OF SOURCE LINES OF CODE

R. Judge
IBM
11 of 15

IHE_EQLLR_EA&O@_

ORGANIZATION
PRODUCT TYPE
COMPUTER TYPE

CODE TYPE

(2 ALTERNATIVES)

(2 ALTERNATIVES)

(3 ALTERNATIVES)

(3 ALTERNATIVES)

R. Judge
IBM
120f15

OR TPONENT)
NO, OF CASES
T
MM/KSLOC
(SIMULATED)
R. Judge
IBM

13 of 15

| IN WO E
Y TORS

'PERCENTAGE OF
VARIATION IN
- WORK RATE EX-

WORK PLAINED BY THE NUMBER OF
COMPONENT FOUR FACTORS SAMPLES USED
SOFTWARE REQUIREMENTS 15,12 30
SOFTWARE DEV,: PLAN 17.81 | 33
FUNCTIONAL DESIGN 15,53 5
PROGRAM DESIGN 38,143 66
MODULE DEVELOPMENT 55,87 60
SOFTWARE INTEGRATION -

AND TEST (SWIT) 16,90 51
SWIT-PROBLEM ANALYSIS

AND ERROR CORRECTION 60.33 ~ 51
SYSTEM TEST 26,13 39
ACCEPTANCE TEST 49,40 | 1y

AVERAGE 36,17

WEIGHTED AVERAGE | 39,00

R. Judge
IBM
14 of 15

SUMMARY
DESCRIBED WORK COMPONENT APPROACH TO ESTIMATION
ASSESSED IMPACT OF FOUR FACTORS ON WORK RATE

DETERMINED THAT THESE FOUR FACTORS ACCOUNTED FOR
39% OF THE VARIABILITY IN THE OVERALL WORK RATE

EXPLAINED WHY THE RESULTS DEMONSTRATE THE POWER
OF THE WORK COMPONENT APPROACH

R. Judge
IBM
15 of 15

SOFTWARE METRICS:
SOFTWARE QUALITY METRICS FOR DISTRIBUTED SYSTEMS

by

Jonathan V. Post
Boeing Aerospace Company

ABSTRACT

Recent publication of numerous books and papers indicates
the growing importance of Software Quality Metrics [l]. Studies
at the Boeing Aerospace Company [2,3] have extended this field to
cover Distributed Computer Systems. Emphasis 1is placed on
studying Embedded computer systems, and on viewing them within
a system life cycle [4]. The approach of J.A.McCall, et.al.
[5,6)], at General Electric was pursued and extended, maintaining
the hierarchy of quality factors, criteria, and metrics [fig.l].
New software quality factors have been added, including Sur-
vivability, Expandability, and Evolvability ([fig.2].

_KEYWORDS

Software, Quality, Metrics, Distributed, Survivability, Life Cy-
cle, Expandability, Evolvability, Virtuality

INTRODUCTION

What 1s a distributed computer system? Enslow [7] requires
such a system to meet five criteria, while LeLann [8] requires it
to be a collection of entities participating in system perfor-
mance. Mauchley and Eckert built the first distributed computer,
BINAC, circa 1947 , and acknowledged [9] that the structure of the
human brain, with its two cerebral hemispheres, was ,a guiding
design metaphor. Dr.Roger Sperry’s Nobel Prize in Medicine was
for experiments performed at Caltech which established that the
human brain is a distributed computer [(10). We consider a dis-
tributed system to be formed by the interconnection of potential-

ly autonomous systems to accomplish system functions cooperative-
’ J. Post
Boeing
1of 15

ly. N

There are several ways the term "distributed" may be inter-
preted. Data may be distributed, processors may be distributed,
processes may be distributed, users may be distributed, communi-
cations may link geographically dispersed clusters of components,
or some combination of these strategies may be imposed on system

architecture. Each of these types of distributedness leads to
design tradeoffs, and to qualitative distinctions between cen-
tralized and distributed systems. No single model allows

analysis of all such tradeoffs; data is either specialized, anec-
dotal, or condensed to "lessons learned" or scenario form. The
application of Software Quality Metrics should help to provide a
unifying framework for all such distributed systems. As Norber
Weiner first emphasized [11], it is possible to build a reliable
system out of unreliable parts. '

It will be increasingly important to understand distributed
computer systems. Some of their characteristics will emerge more
extensively in future configurations. One characteristic peculiar
to distributed systems, and of importance in the 80°s, is Geo-
graphic Dispersiont? The extent to which computers within a dis-
tributed system can be physically displaced from each other,
range from the centimeter to the multi-thousand-kilometer. Com-
puters will indeed be "tightly-coupled" over intercontinental
distances by fiber-optics technology currently under research.
This technology complements that of the communications satellite.
Interconnection of even a very small percentage of available com-
puters will be able to form distributed systems of complexity
beyond those of today, since by 1999 there will be on the order
of one billion computers in the world [13].

- QUALITY METRICS APPROACH

The approach chosen to evaluate distributed systems is the
Software Quality Metrics methodology, which has been fruitfully
applied to the study of a broad range of uniprocessor computers
and embedded computer systems [L]. Since the 1970°s, additional
factors have been judged necessary in evaluating the performance
of software and systems besides that of classic Reliability which
was a factor closely identified with software and system quality.
McCall and others [5,6] identified eleven software quality fact-
ors and developed a system of metrics to predict and assess the
degree of presence of these factors. As shown in fig.l, each fa-
ctor is composed of a number of criteria which are further broken
down into quantitative metrics. The eleven Factors identified :
Correctness, Reliability, Efficiency, Integrity, Usability, Main-
tainability, Testability, Flexability, Portability, Reusability,
and Interoperability. The extension of this approach to distrib-
uted systems was introduced at last year’s workshop by Robert W.
Lawler of Boeing Aerospace Company [15]. The research conducted
during the past year, as reported to RADC[2], has concentrated on
identifying unique characteristics of distributed systems, and on

J. Post
Boeing
20f 15

definition or redefinition of factors and criteria which can mea-'

sure these characteristics. Three new software factors, four new
system factors, twelve new software criteria , and two new system
criteria have been described, and the factor of Testability has
been generalized into the factor of Verifiability. Examples of
these new factors and criteria are described below and in fig.2.

DISTRIBUTED SYSTEM CHARACTERISTICS

How do we approach the identification of the characteristics

of distributed systems? Distributed System characteristics are
identified and <classified, along with rationales for the
selection of Distributed Systems. 58 rationales are grouped into
9 reasons in fig.3 . The rationales given for selection of a
distributed system over .a uniprocessor system indicate the
characteristics which people imagine distributed systems, as a
whole, exhibit. No one system meets more than a fraction of
these identifications, just as no system life cycle for a distri-
buted system quite fits 1into the system life cycle models for

uniprocessor systems. Instead, we find the distributed system to’

be distributed through time in a distributed life cycle of con-
current phases of Operation, Revision, and Transition [fig.4].

NEW QUALITY FACTORS

The main difference between software metrics for a distri-
buted system and software metrics for a uniprocessor system is
that the quality of software in a distributed environment depends
upon the design and performance characteristics of the entire
system. We therefore distinguish between Software Quality Factors
and System Quality Factors, although these have impact upon each
other. The quality factor of Survivability, for example, re-
flects system performance when one or more nodes or communication
links become totally nonoperational. The concepts of Reliability
and Redundancy in a uniprocessor are not broad enough to describe
Survivabilitye. —— - - — . . . S

Survivability is a factor which measures the capability of a
system to operate when one or more components are destroyed. For
a non- distributed system, Survivability is not a very meaning-
ful measure. A single unit computer, depending on the degree of
hardening and the damage received in the tactical environment,
will wusually either <continue to operate, or else be completely
incapacitated. For a geographically dispersed system, it 1is
desirable that damage or destruction of individual components
shall allow the system to continue functioning, albeit at a some-
what lower 1level of performance. Survivability, then, might
measure the likelihood of a distributed system to exhibit this
"graceful degradation". The 5 criteria within the system quality
factor of .Survivability are Autonomy, Distributedness, Anomaly
Management, Modularity, and Reconfigurability. '(See fig. 2)

Distributed Systems also require metrics to evaluate the capaci-
’ 1. Post
Boeing
3of 15

'ty of expanding and upgrading the system, so we have identified
and defined the corresponding factors of Expandability and
Evolveability. Expandability 1is the extent to which the system
capability can be expanded to enhance current functions or to add
new functions. The criteria within the factor of Expandability
include: Virtuality, Generality, Modularity, Augmentability,
Clarity, Specificity, and Simplicity. Evolvability is the extent
to which the system performance could be enhanced by the incor-
poration of new technology. Criteria within Evolvability are
Virtuality, Generality, . Modularity, Clarity, Specificity, and
Simplicity. 1In addition, we have defined four new system quality
factors, Availability, Safety, Transportability, and Interchange-
ability.

NEW CRITERIA

Twelve new software criteria were identified during investi-
gation of characteristics for distributed systems [2]. These
criteria are: Compliance, Validity, Clarity, Specificity, Virtu-
ality, Comprehensibility, Reconfigurability, Distributedness, Au-
tonony, Supportability, Augmentability, and Compatibility
[fig.5]. In addition, two new system criteria were identified :
Self-containedness (an attribute of Transportability) and Homo-
geneity (an attribute of Interchangeability). A majority of these
system and software criteria are applicable to uniprocessors as
well. The following brief discussion on one of the new software
criteria, Virtuality, shows how the entire system, . including the
human users, needs to be measured to evaluate the system quality.

_ For Distributed Systems, there is a new criterion within the
quality factor for Usability. We refer to this criterion as Vir-
tuality. The structure of a distributed system can be quite com-
plex, and it is not always desirable for the user to be appraised
of this structure. The user may perceive the system in terms of
a virtual architecture, and be shielded from knowing the actual
internal representation and location of data.

Virtuality is a measure of the extent to which the system
appears to the user as it is intended to appear to the user. The
user (or users) of a system is not expected or intended to see
the system”s 'logical, topological, orAphysical structure. In-
stead, an abstract "virtual" system is designed. The "real" sys-
tem supports, emulates, and embodies the designed appearance and
"feel”™ of the virtual system.

Theodor H. Nelson [12]) explains the relationship Dbetween
Virtuality and other «criteria such as Conceptual Simplicity,
Machine Independance, and Network File Availability. _ "Our ap-
proach to computer design we call ‘the design of virtuality.’ By
virtuality we mean the seeming of an object or system, its con-
ceptual structure, its atmospherics and its feel.... What counts
is effects, not techniques.... The design of an interactive com-

puter environment, similarly, should not be based on particular
. J. Post
Boeing
40f 15

hardware, or a particular display device, or a programming tech-
nique.... the systems analysis for an interactive system should
deal with the mental space of the user’s experience."

Virtuality also measures the subjective coumponent of the
user interface. In the special case of flight training simula-
tors [14), the "feel" of the system has 1long been regarded as
crucial to Usability. "Feel" is evaluated by expert pilots (su-
perusers). This goes beyond Human Engineering, which concen-
trates on one display/sensory modality at a time, or on total
bits per second. "Feel", and thereforeVirtuality, involves ges-
- talt perception, with an emphasis on right-brain holistic activi-
ty. Virtuality, and the human brain, cannot be ignored when
studying distributed systems.

NEW METRICS

During the next year of this research effort there will be a
set of metrics developed within the criteria and factors discuss~
ed above. The existing metrics [6}] will be added to, deleted, and
modified in accordance with results to date. ‘The work yet to be
performed may be summarized as follows:

(1) Select Quality Metrics for Validation (Identify those metrics
that will make the greatest contribution to validating the quali-
ty measurement framework previously developed);

(2)Develop Scenarios and Collect Data (Design the data collection
methodologies and gather relevant data from Boeing Aerospace Com-
pany projects which use distributed embedded computer systems);

(3) Validate Metrics (Validation techniques consistent in concept
and methodology with McCall, et.al. [6], but with multivariate
regression analysis and other numerical analysis and correlation
methods; conduct interviews with engineering and management
personnel to supplement empirical data);

(4) Produce a Report and Handbook (Final Report to be published
by RADC. A Handbook will be prepared that describes the step-

by~step procedures required to implement the quality meas-
urements for distributed systems). '

SUMMARY

Software Quality Metrics may be applied to the evaluation of
distributed computer systems. Exactly what constitutes a distrib-
uted system is disputed in the literature. They have been built
in wvarious configurations for thirty years, but the human brain
shares some of the characteristics of these systems and provides
a valuable model. The approach of McCall et.al., with factors,
criteria, and metrics, has been extended. New factors and new
criteria have been defined. New metrics will be devised and val-
idated as the research described in this paper is continued.

J. Post
Boeing
Sof 15

BIBLIOGRAPHY

{l1] Perlis, A.; Sayward, F.; Shaw, M.; "Software Metrics",
MIT Press, 1981, includes 130 page annotated bibliography
on Software Metrics, compiled by Mary Shaw

[2] Post, Jonathan, and Bowen, Thomas P. "Interim Report for
Quality Metrics for Distributed Systems", Boeing Document
D180-26748-1, November 1981, prepared for RADC under contract
F30602-80-C-0330 :

(3] Henrick, John, "Performance Modeling of Distributed Computing
Systems: A Literature Search", Boeing Document D182-1,0827-1
1l December 1981

[4] Post, Johathan} "Software Systems Engineering', Boeing
Document D180-25488-5, January 1980, prepared for ASD USAF
under contract number F33657-76-C-0723

(5] McCall, J., Richards, P., Walters, G.; "Metrics for Software
Quality Evaluation and Prediction", Proceedings of the NASA/
Goddard Second Summer Engineering Workshop, September 1977

[6] McCall, J.A., Matsumoto, M.T., "Software Quality Metrics
Enhancements Final Report", prepared for RADC under. contract
number F-30602-78-C-0216

[7) Enslow, Philip. H., "What is a ‘Distributed’ Data Processing
System?", Computer, January 1978, p.13-21

[8] LeLann, Gerard, "Distributed Systems -- Towards a Formal Approach,"
1977 IFIP Congress Proceedings, p.155-160

(9] Mauchley, John; Personal communication, Philadelphia, PA, June 1978
(10] Sperry, Dr.Roger; Personal communication, Caltech, 1973
(11] Weiner, Norbert, "Cybernetics'", MIT Press, 1947

[12] Nelson, Theodor H., "Replacing the Printed Word", Information
Processing 80, Proceedings of the IFIPS Congress 1980,
North-Holland Publishing Co.

[13] Post, Jonathan V., "Quintillabit: Parameters of a Hyperlarge
Database'", Proceedings of the 6th International Conference
on Very Large Databases, Montreal, 1-3 October 1980

[14] Post, Jonathan V., "Software Development and Maintenance
Facilities Guidebook", Boeing Document D180-25488-~3, Sep. 1979,
Prepared for USAF ASD, Contract F33657-76-C-0723

[15] Lawler,R.L., "Software Quality Tradeoff Measurement", Proceedings
from the Fifth Annual Software Engineering Workshop, 24 Nov 1980,

Goddard Space Flight Center, NASA, Greenbelt, Maryland

J. Post
Boeing
6o0f 15

THE VIEWGRAPH MATERIALS
for the
J. POST PRESENTATION FOLLOW

J. Post
Boeing
7of 15

USER-ORIENTED VIEW
FACTOR ~ OF PRODUCT QUALITY

SOFTWARE-ORIENTED
== ATTRIBUTES WHICH

INDICATE QUALITY

CRITERION CRITERION

T { g 4
J QUANTITATIVE MEASURES
METRIC METRIC METRIC |14 0F ATTRIBUTES

Figure 1 Software Quality Model

J. Post
Boeing
8of 15

SJ4030e4 A311en) aaem3}jos
03 ®L433L4) 40 diysuorie|ay 2 aunbiry

Suraog
1504 °f

S1J06

SPECIFICITY

VALIDITY

CLARITY

TRACEABILITY || CONSISTENCY |JCOMPLETENESS || COMPLIANCE

RELIABILITY

*%k

ANOMALY MANAGEMENT || ACCURACY CONSISTENCY SIMPLICITY

EFFICIENCY '

: * ¥k

EFFECTIVENESS
?! * !! *x
New VIRTUALITY J JACCESSIBILITY

Different

S13001

Suteog
104 °f

COMPREHENSIBILITY

VIRTUALITY

OPERABILITY

VISIBILITY

COMMUNICATIVENESS

TRAINING |

SURVIVABILITY)

RECONFIGURAB

ILITY

AUTONOMY

DISTRIBUTEDNESS

I MODULARITY

ANOMALY MANAGEMENT

MAINTAINABILITY

CONSISTENCY

[supporTABILITY][CONCISENESS |

ke

CLARITY]

SIMPLICITY

MODULARITY

New
Different

Figure

2

VISIBILITY {1 SELF-DESCRIPTIVENESS

Relationship of Criteria to Software Quality fFact

ors

'
i

[ncz}~n~4—o:omr—..»c--;
syt |mlo|lmiviwnlz]l 7z |c
Abefrrlmln(o[Cimim -4 4]0
'Dzmx—,{-—imwz,'m i<
Mi-4|x» [~]nojlwico] ol.g
n»wwww>»<..}:uc<
2P IRIRIRIEIZ IS RS
M lrar e~ 4, <[0|1~
ol |4l A[A]—]<|< o e
] <|<]<|<]— [2-3 P
— ~< 2
- ~|<
REASON REASONS FOR SELECTION OF 2 3
NO. DISTRIBUTED SYSTEMS <
1 IMPROVE RESPONSE TIME NN 1111
° CONCURRENCY OF DIAGNOSIS WITH NORMAL OPERATION [x|x}x]| |Xx X
* ENHANCED DATA PARALLELISM 1 x x|
"oMINIMIZE MEMORY/PROCESSOR COMMUNICATION TIME X B
¢ALLOW OPTIMAL PARTITIONING OF WORKLOAD X x[1T Ix]]
e LOAD LEVELING ' X x| x]
oREAL-TIME COORDINATION OF MULTIPLE SUBSYSTEMS . Rl
2 PROVIDE GREATER PROCESSING AND ACCESSING 7]
CAPABILITIES ERER
o AUTOMATIC JOB SEGMENTING X x1x
ePARTITIONING OF FUNCTIONALITY x| x] Ix] [x] |x x[x
o INCREASED VARIETY OF PROCESSING MODES _ |x x| [x]]
oRESOURCE UNIFORMITY x|x x[x]x
eSPECIALIZED HARDWARE: DATABASE MACHINE X X R
* INTEROPERABILITY WITH EXISTING SYSTEMS xIxT 11 Ix
3 REDUCE COST
eLOWER COST TO UPGRADE (EXPANDABILITY) x[x X ‘
eLOCAL ADMINISTRATIVE APPROVAL OF COMPONENTS x| x|]
*NEW TOPOLOGICAL CONFIGURATIONS ON DEMAND . x| x}x X X
e LOWER INITIAL COST x| x T
e INCREASED PROCURABILITY X
¢ INCREASED DEPLOYABILITY x| [x X
* LOWER TOTAL WEIGHT X X} X
*LOWER TOTAL POWER CONSUMPTION x| [x X X
* NETOWRK TOPOLOGY OPTIMIZATION XX X X
*RESOURCE SHARING XX x| Ix] [x
4 REDUCE VULNERABILITY TO HARDWARE ERROR
e REDUNDANCY AT EACH NODE x|x X
e TOLERANCE TO NODE FAILURE x[x]x| x xIx] Ix
e TOLERANCE TO COMMUNICATIONS LINK FAILURE x| xx7]x x| [x
e CAPABILITY FOR ISOLATING FAILED COMPONENTS x|x] Ix x| [x
eDIAGNOSIS OF FAILURE TO LEAST REPLACEABLE UNIT| IxIx] 1x
*REPAIR WITHOUT INTERRUPTION x| x[xTx] Tx
5 REPLACE HARDWIRED LOGIC WITH MICROPROCESSOR
®* RESOURCE UNIFORMITY x1x x| xIx
e RECONFIGURABILITY x| x 1x X | X
e MACHINE INDEPENDENCE X x(x x| |
e DELAYED COMMITMENT T0 SPECIFIC NODE HARDWARE x| |x “Ix]
e MULTIPLICITY OF VENDORS x| x}x 1x
e RECONFIGURABILITY THROUGH LOW-COST HARDWARE X x|x]
Figure 3 Relationship Between Reasons, Rationales, and
System Quality Factors (page 1 of 2)
J. Post
Boeing

11 of 15

g X|O™m :u lm C‘i{-—' — v
i e R B
R A
Olr»iw|luwlww|e|—|«2o]<
]l | M|~ |—=]0|>
F 3 £ ot £ £ =] -3 Kl I LR
g {4l]=<]<] [3]r
Ui <] <] <j=<iH us
(g < vo |
— —|<
REASON REASONS FOR SELECTION OF ;‘ :
NO. DISTRIBUTED SYSTEMS =<
6 IMPROVE THRUPUT
@ DISTRIBUTE JOBS TO SEVERAL NODES CONCURRENTLY X X B X
® EXPLOITATION OF UNIFORM INTERCHANGE MEDIA X X1Xx ||
® ENHANCED DATA PARALLELISM xix] | | |
¢ ENHANCED COMPUTATIONAL PARALLELISM X X
e OPTIMAL PARTITIONING OF WORKLOAD X X{X
« REDUCE LOAD ON HOST x| X X X
e DISTRIBUTED OPERATING SYSTEM X N X
¢ ELIMINATE MULTIPROGRAMMING X X XX
7 IMPROVE SURVIVABILITY
A SECURITY ON HIERARCHICAL NETWORK XX X
9SYSTEM PROTECTION FROM OVERLOAD XixX X X X
o BACKUP REDUNDANCY x| [x]|x X
e RESTORATION/RECOVERY X{X|X X X X X
o ENDURANCE/HARDENING XX X X
8 IH'PROVE SENSOR PERFORMANCE)
¢ DISTRIBUTED SENSORS XIXIX|X X i
¢ DISTRIBUTED EFFECTORS XX X X
o INTELLIGENT SENSOR CLUSTERS X X
® DEPLLOYABLE SENSOR ARRAYS X| XX X
® CONCURRENT MULTI-SPECTRAL SCANNING XX X
9 IMPROVE GEOGRAPHIC DISPERSION
e USER DISTRIBUTION X XIX|X X
® GATEWAY TO NATIONAL/INTERNATIONAL NETWORK X X|X{X
e GLOBAL C3I APPLICATIONS X X XIX{X|X
- SPACE SYSTEMS NETWORKS _ . XXX X|X|X]
e NEED FOR MOBILE NODES X|X].X X
® NEED FOR DISTRIBUTED DATABASE MANAGEMENT X X|IX|X]|X i
® ADAPTIVE ROUTING X X|X X
|
|
I
|
Figure 3 Relationship Between Reasons, Rationales, and
System Quality Factors (page 2 of 2)
J. Post
Boeing

12 of 15

ACTIVITY

USER CONCERN

QUALITY FACTOR -

PRODUCT
OPERATION

PRODUCT
REVISION

PRODUCT
TRANSITION

DOES IT DO WHAT IT'S SUPPOSED TO?

WHAT CONFIDENCE CAN BE PLACED IN
WHAT IT DOES?

HOW WELL DOES IT UTILIZE THE
RESOURCES? '

HOW SECURE IS IT?

HOW EASY IS IT TO USE?

HOW WELL WILL IT PERFORM UNDER
ADVERSE CONDITIONS?

CAN IT BE REPAIRED?

CAN ITS OPERATION AND PERFORMANC
BE VERIFIED? »

CAN IT BE CHANGED?

CAN IT BE USED IN ANOTHER
ENVIRONMENT?

APPLICATION?

CAN IT BE INTERFACED WITH ANOTHER
SYSTEM?

CAN ITS CAPABILITY BE EXPANDED?

CAN ITS PERFORMANCE BE UPGRADED
WITH NEW TECHNOLOGY?

= NEW OR DIFFERENT

Figure 4 Quality Life Cycle Scheme

CORRECTNESS
RELIABILITY
EFFICIENCY
INTEGRITY
USABIL;TY

SURVIVABILITY*

 MAINTAINABILITY

VERIFIABILITY®

FLEXIBILITY -

PORTABILITY

'"REUSABILITY

INTEROPERABILITY

EXPANDABILITY *

EVOLVABILITY*

J. Post
Boeing
13 of 15

CRITERION ' DEFINITION

® TRAINING ¢ THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE TRANSITION FROM CURRENT
OPERATION OR PROVIDE INITIAL FAMILIARIZATION.

¢ COMMUNICATIVENESS ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE USEFUL INPUTS AND OUTPUTS
WHICH CAN BE ASSIMILATED.

¢ OPERABILITY e THOSE ATTRIBUTES OF THE SOFTWARE WHICH DETERMINE OPERATIONS AND
. PROCEDURES CONCERNED WITH THE OPERATION OF THE SOFTWARE.
® MODULARITY ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE A STRUCTURE OF HIGHLY

COHESIVE MODULES WITH OPTIMUM COUPLING.

S RECONFIGURABILITY* | e THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR CONTINUITY OF SYSTEM
OPERATION WHEN ONE OR MORE PROCESSORSs STORAGE UNITSs» OR COMMUNICATIONS
LINKS FAIL.

o DISTRIBUTEDNESS* ®THOSE ATTRIBUTES OF THE SOFTWARE WHICH DETERMINE THE DEGREE TO WHICH
SOFTWARE FUNCTIONS ARE GEOGRAPHICALLY OR LOGICALLY SEPARATED WITHIN THE

SYSTEM.
o AUTONOMY* ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH DETERMINE ITS DEPENDENCY ON
INTERFACES.
® CONCISENESS ¢ THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR IMPLEMENTATION OF A
' FUNCTION WITH A MINIMUM AMOUNT OF CODE,
® SUPPORTABILITY#* ®THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR EASE IN CREATIQN OF NEW

SOFTWARE VERSIONS (e.g.y» USE OF HOLy+ VERSION UPDATE SCHEME),

®SELF-DESCRIPTIVENESS] @ THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE EXPLANATION OF THE
IMPLEMENTATION OF A FUNCTION.

SuOLILuL43Q BLUBTILA) A3LLeNn) 3ueMIOS G aunbiy

o GENERALITY '@ THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE BREADTH TO THE FUNCTIONS
PERFORMED.
® INDEPENDENCE#*# ®THOSE ATTRIBUTES OF THE SOFTWARE WHICH DETERMINE ITS DEPENDENCY ON THE

SOFTWARE ENVIRONMENT (COMPUTING SYSTEM:» OPERATING SYSTEMs UTILITIES,

¥sod ‘[

SJureog

ST iodi

INPUT/OUTPUT ROUTINESs LIBRARIES).

® AUGMENTABILITY#* e THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE EXPANSION CAPABILITY FOR
FUNCTIONS AND DATA.

¢ COMPATIBILITY* ¢ THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE INTERFACE PROTOCOLS AND
ROUTINES THAT ARE APPROPRIATE TO0 THE INTERFACE EQUIPMENT FEATURES AND
CAPABILITIES.

® COMMONALITY®* e THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR THE USE OF INTERFACE

STANDARDS FOR PROTOCOLSs ROUTINESs AND DATA REPRESENTATIONS.

JusUay L

ST 3o ¢y

Sueog
sod °r

SUDLILULS3Q PLABILAD A)1|BNY SUPMI40S § 24nblj

CRITERION

DEFINITION

® TRACEABILITY

® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE A THREAD OF ORIGIN FROM THE
IMPLEMENTATION TO THE REQUIREMENTS WITH RESPECT TO THE SPECIFIED
DEVELOPMENT ENVELOPE AND OPERATIONAL ENVIRONMENT.

® CONSISTENCY

® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR UNIFORM DESIGN AND
IMPLEMENTATION TECHNIQUES AND NOTATION,

® COMPLETENESS

®THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FULL IMPLEMENTATION OF THE
FUNCTIONS REAQUIRED.

® COMPLIANCE®

® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROMOTE IMPLEMENTATIONS THAT
CONFORM TO THE RERUIREMENTS.

® VALIDITY® ® THOSE ATTRIBUTES -OF THE SOFTWARE WHICH CONSTRAIN IMPLEMENTATIONS TO A
RANGE OF ACCEPTABLE SOLUTIONS.

® CLARITY#* ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE NON-AMBIGUOUS DESCRIPTIONS
OF FUNCTIONS AND IMPLEMENTATIONS.

e SPECIFICITY# ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE SINGULARITY IN THE
DEFINITION AND IMPLEMENTATION OF FUNCTIONS.

e SIMPLICITY ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR THE DEFINITION AND
IMPLEMENTATION OF FUNCTIONS IN THE MOST NON-COMPLEX AND UNDERSTANDABLE
MANNER

® ANOMALY ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR CONTINUITY OF

 MANAGEMENT ## OPERATIONS UNDER AND RECOVERY FROM NON-NOMINAL CONDITIONS.

e ACCURACY ® THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE THE REAQUIRED PRECISION IN
CALCULATIONS AND OQUTPUTS.

® EFFECTIVENESS#*##* ¢ THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR MINIMUM UTILIZATION OF
RESOURCES (PROCESSING TIME, STORAGEs+ OPERATOR TIME) IN PERFORMING
FUNCTIONS.

® ACCESSIBILITY## OTHOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE FOR CONTROL AND AUDIT oF

ACCESS T0 THE SOFTWARE AND DATA.

® VIRTUALITY®*

THOSE ATTRIBUTES OF THE SOFTWARE WHICH PRESENT A SYSTEM THAT DOES NOT
REGQUIRE USER KNOWLEDGE OF THE PHYSICAL CHARACTERISTICS (e.2.» NUMBER OF
PROCESSORS/DISKSy STORAGE LOCATIONS)

® VISIBILITY¥*#

THOSE ATTRIBUTES OF THE SOFTWARE WHICH PROVIDE STATUS MONITORING OF THE
DEVELOPMENT AND OPERATION (e.2.s INSTRUMENTATION).

® COMPREHENSIBILITY#*

® THOSE ATTRIBUTES OF THE SOFTWARE WHICH ENHANCE UNDERSTANDING OF THE
OPERATION OF THE SOFTWARE.

IDENTIFICATION AND EVALUATION

OF SOFTWARE MEASURES

David N. Card
"COMPUTER SCIENCES CORPORATION
and
GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

. Prepared for the
NASA/GSFC

Sixth Annual Software Engineering Workshop

INTRODUCTION

The purpose of this presentation is to describe and demon-
strate a large-scale, systematic procedure for identifying
and. evaluating measures that meaningfully characterize one
or more elements of software development. The background of
this research, the nature of the data involved, and the
steps of the analytic procedure are discussed. The presen-
tation concludes with an example of the application of this
procedure to data from real software development projects.

AS the‘term is used here, a measure is a count or numerical
rating of the occurrence of some property. Examples of
measures include lines of code, number of computer ‘runs,
person-hours expended, and degree of use of top-down design
methodology. Measures appeal to the researcher and the man-
ager as a potential means of defining, expléining, and pre-
dicting software developmént_qualities, eSpééially
productivity and reliability;

Measures may be classified into four groups as illustrated
by the software development model presented in Figure 1. It
shows these components: a problem, a solhtion-generating
process, the environment in which that procéss takes place,
and the solution (or software product). Measures can be
"employed to characterize the components of this model and to-
show their interrelationships. Some examples of appropriate
measures for each component are also shown in the figure.

The Goddard Space Flight Center (GSFC) Software Engineering
Laboratory (SEL) is engaged in an effort, part of which this
presentation describes, to develop a concise set of such
characteristic measures. The SEL and its activities are

discussed in more detail in Reference 1.

D.Card
¢ CSC/GSFC
1 of 28

:14 L4
24$9/28D

PIeD A

PROBLEM

£EG SIZE
COMPLEXITY

Figure 1.

£E G LANGUAGE
COMPUTER

ENVIRONMENT

PRODUCT

PROCESS

€EG METHODOLOGIES USED
DOCUMENTATION PROCEDURES

T

E G LINES OF CODE
NUMBER OF MODULES

SEL Software Development Model

The approach to software measurement adopted in this presen-
tation is different from that generally followed. The usual
procedure is to select high-level "qualities" and then to
seek numerical criteria or measures of these qualities.
McCall (Reference 2) has developed a comprehensive system of‘
such qualities and appropriate measures. However, the goal
of the approach followed here is to identify the qualities
being measured by the data collected rather than to attempt
to associate measures with previously specifiéd qualities.
The measures considered in this analysis are described in
the next section.

D. Card
CSC/GSFC
3of 28

DATA DESCRIPTION

Clearly, the number of potentially useful measures is large;
. the SEL has selected more than 200 for study. These meas-
ures cover the entire range of software development activity
as experienced by the SEL. However, the analysis described
here will focus on the relationships among measures of the
process and product components of the software developmenf
model (see Figure 1).

Therefore, a data subset containing only the 60 measures
relevant to those two components was used. The measures (or
variables) used are listed in Table 1 (see Appendix A).

This list does not necessarily exhaust the possibilities for
measures in those areas; however, this group of measures is
believed to form a comprehensive set. The process measures
class is represented by three subclasses: methodology
(Tabie la), tools (Table 1lb), and documentation (Table lc).
"Note that the methodology class is further subdivided by
development phase into design, code, and test measures. The

product class (Table 1d) includes size and resource measures.

The data used in this analysis were collected by the SEL
from 22 actual medium-scale, scientific software development
projects. Values for all these measures were determined for
each project. The values are ratings of the degree of use,
counts, or rates per line of code, as indicated in Table 1.
Degree-of-use process measures are expressed as relative
scores on a scale from zero to five. The exact derivation
of these scores will be explained in a forthcoming SEL docu-

ment (Reference 3).

D. Card
CSC/GSFC
4 of 28

ANALYTIC PROCEDURE

The 60 measures just described are not unique or inde-
pendent. Some may, in fact, measure the same or related
qualities. The object of the analytic procedure is to
identify the most basic set of qualities (or properties)
being measured by the group of 60. A "basic" quality is
defined to be one that is independent of all other such
qualities. This subset, then, defines the basic quality
charaéteristics deécribing the projects from which the data
were obtained.

The procedure to be proposed is "large scale." That is, it
is appropriate when a large number of measures (or vari-
ableé) are to be evaluated. The researcher interested in
studying the relationships of only a few specific measures
can probably get better results from regression and hypoth-
esis testing techniques. Nevertheless,‘this procedure can
be useful as a screening tool for detecting confounding ef-
fects in the data before selecting other statistical tech-

niques.

The analytic procedure followed in this experiment has two
steps, as indicated in Figure 2. These are the application

-0f a test of normality to the candidate measures (data),

followed by a factor analysis of those not rejected by the

test. The result of this procedure is a descriptive, rather
than a predictive, model of the data. The procedure iden-
tifies the descriptive factors common to the set of meas-
ures. Thus, the original measures are organized into a
number of groups (or factors) smaller than the number of
measures input to the procedure. These factors correspond
to the basic qualities sought for in the data. The steps of
this procedure are discussed in more detail in the following

sections,

D. Card
CSC/GSFC
50f28

60 MEASURES FOR
DATA EACH OF 22
SOFTWARE PROJECTS

REJECTED
MEASURES

TEST OF
NORMALITY

ACCEPTED MEASURES

Y

FACTOR
ANALYSIS

FACTORS (n < 60)
DATA

MODEL

Figure 2. Analytic Procedure

D.Card
CSC/GSFC
6 of 28

TEST OF NORMALITY

The test of normality analyzes the probability distribution
of a measure. The observed values of each measure are dis-
tributed over some range. The normal distribution is
readily identifiable in Fiqure 3. The test of normality
will detect measures whose values are distributed in a pat-
tern significantly different from the normal. For example,
it would reject a measure with values clustered at one end
of the range (skewed) rather than distributed symmetrically

across it.

This is not a very powerful test. It will accept any ap-
proximately symmetrical distribution even if that distribu-
tion is not truly normal. However, the test is important
because approximate normality of the data is an assumption
of step two, the factor analysis.

Six measures from the set of 60 were rejected by the test of
normality using the 0.05 level of significance. These are
measures of techniques for which insufficient examples of
use were available. Consequently, most projects had scores
of zero for these degree-of-use measures, a result that pro-

duced dramatically skewed distributions. They are

HIPO Design Technique
Verification and validation Team {two méasnresy
Requirements Language Tool

Configuration Management Tool

Unit Development Folders

These measures could, however, be used in some other types

of analyses not considered here.

D. Card
CSC/GSFC
7 of 28

Figure 3. Test of Normality

D. Card
CSC/GSFC
8 of 28

FACTOR ANALYSIS

The 54 remaining measures were included in the factor anal-
ysis. The goal of the factor analysis is to "discover" the
underlying structure of the data. Factor analysis hypoth-
esizes the existence of a set of statistically independent
"factors" that are not directly measurable by the experi-
menter. Measures (or variables) are the gquantities that are
observed in practice. However, the apparent correlations
among measures can be interpreted to be due to their joint
correlation with common factors (see Figure 4). That is,
two or more measures correlated with the same factor will be
correlated with each other. The desirable result of a
factor analysis is the extraction of a smaller set of fac-
tors whose relationships are known (they are independent)
from the larger set of measures whose relationships are more
complex.

Consider this example of the factor concept. The number of
errors in a piece of software and its mean time to failure
are_measureé related to reliability and are correlated with
each other. However, neither meésure by itself is a full
description of reliability. Such things as the location of
the error and the severity of the failure must also be con-
sidered; Therefore, the reliability quality factor is not
directly measurable although a number of meaéurable vari-

ables are correlated with 1it.

A successful factor analysis will explain such groups of
related measures. Thus, each factor defined will correspond
to a distinct basic quality being measured by the original
set of variables. These qualities are the sources of varia-

tion (or differentiation) among the projects studied.

D. Card
CSC/GSFC
9 of 28

873001
24S9/28D
PIe) ‘q

NOTE: VARIABLES MAY BE CORRELATED.
FACTORS ARE INDEPENDENT.

Figure 4. Concept of Factor Analysis

The principles of factor analysis are explained in detail in
the text by Harman (Reference 4). A number of software im-
plementations of factor analysis are available. The spe-
cific software used in this analysis was the principal
components factor procedure of the Statistical Analysis Sys-
tem (Reference 5). '

D. Card
"CSC/GSFC
11 of 28

SUMMARY OF RESULTS

Further analysis of the 54 process and product measures that
passed the test of normality produced a factor model con-
taining 5 factors that explained 77 percent of the variance
of the original measures. The meaning df each factor is
determined by examining the measures that are closely cor-
related with it. These factors and the amount of variance

accounted for by each are as follows:

Methodology Intensity (31%)
Project Size (25%)

Computer Usage (9%)
Quality Assurance (8%)
Change Rate (5%)

The variance associated with a factor is a measure of the
degree to which that factor differentiates among the pro-
jects (or cases) studied. Thus, it is a measure of informa-
tion content. A larger portion of the total variance could
have been accounted for by using a larger number of fac-
tors. The relationship of the number of factors to the var-
iance explained by the factor model is illustrated in '
Table 2 of Appendix A. The interpretation of additional
factors is difficult because none of the original measures
are highly correlated with them. Therefore, they are not

included in this preliminary definition of the factor model.

The correlations of the original measures with the five fac-
tors are listed in Table 3 of Appendix A. Only correlations
greater than 0.526 (the 0.0l level of significance) are re- '
produced. The measure showing the highest correlation with
a factor can be taken as the best estimator of that quality
factor from among the original measures included in the
analysis. These "best" estimators are indicated by as-
terisks in the tables.

D. Card
CSC/GSFC
12 of 28

Remember that, although the factors are mutually inde-
pendent, any given measure may be correlated with more than
one factor and/or with other measures. The factor model
does, however, identify the strongest relationships in the
data; Some specific observations are made below about each
of the factors defined by the analysis,

Factor 1 - The first and most power ful factor (Table 3a in
Appendix A) is highly correlated with degree-of-use process
measures; thus, this factor may be interpreted to represent
the degree to which formal methodology was applied during
development. The most strongly correlated measure, method-
ology reinforcement (the extent to which adherence to speci-
fied methodologies was enforced by management), supports
this interpretation. The strong correlation of so many
methodology, tool, and documentation measures with a common
factor suggests that simple regression and hypothesis test-
ing techniques are inappropriate for analyzing such effects
because of their inability to isolate the action of a single

technique from among the actions of other techniques.

Factor 2 - The second factor (Table 3b in Appendix A) is
clearly related to the size of the development effort and
product. 1Its "best" estimator is person-hours. The corre-
lation of top-down coding with this factor illustrates the
descriptive, rather than predictive, nature of factor anal-
ysis. The proper conclusion based on this observation is
that more top-down coding tends to be used in small projects
than in large ones, not that top-down coding necessarily
reduces the size of a development effort.

D. Card
CSC/GSFC
130f 28

1

Factor 3 - The third factor (Table 3¢ in Appendix A) con-
tains a number of measures related to the pattern of com-
puter usage. This factor indicates that the manner and
degree of computer usage reflect the use of certain develop-
ment tools and techniques. The "best" estimator of this

factor is top-down design.

Factor 4 - The fourth factor (Table 3d in Appendix A) has

only one measure, semiformal quality assurance, signifi-
cantly correlated with it. Thus, its meaning is difficult
to establish. However, a substantial amount of variance

(8 percent) is associated with this factor. The preceding
factor contained five variables but explained only slightly
more variance (9 percent). Thus, this factor and measure

deserve closer examination in future analyses.

Factor 5 - The last factor (Table 3e in Appendix A) clearly
describes the change rate. The interpretation of this fac-

. tor is important since, as a consequence of the mutual inde-

pendence of factors, it is independent of the four factors
previously defined. Hence, methodology intensity, project
size, and computer usage do not appear to be related to each
other or to code stability (reliability), as measured by the

change rate.

Another feature of this model should be noted. Although
productivity was most strongly correlated with factor 4, it

was not significantly correlated with any factor. Produc-

tivity may still be related to specific methodologies but
not to the general factors just defined. Thus, the informa-
tion provided by this procedure about productivity and re-
liability is negative in this example because unrelated
qualities and measures were identified rather than related

ones.

D.Card
CSC/GSFC
14 of 28

CONCLUSION

The results presented here are preliminary. Conclusions
based on the factor model just developed may change as more
data become available and as the procedure is refined. How-
ever, the analysis has demonstrated its capacity to resolve
some important questions about the data. The conclusions
are as follows: the basic qualities being quantified by the
original measures can be identified and enumerated; their
relative importance or strength (in terms of percentage of
variance accounted for) can be established; and a "best"

estimator can be selected for each quality.

Therefore, we can define a concise set of qguality measures
that meaningfully characterizes the process and product com-
ponents of the software development model and that can serve
as a framework for further research. These qualities and
associated measures can be studied in greater detail with
other techniques to determine their relationships to produc-
tivity and reliability more exactly. Hence, these results
are a first step toward defining, explaining, and predicting

software reliability and productivity in the SEL environment.

D.Card
CSC/GSFC
15 of 28

APPENDIX A - SUMMARY OF FACTOR ANALYSIS

This appendix consists of a series of three tables that sum-
marize the factor analysis procedure described in the pre-
ceding discussion. Table 1 describes the measures evaluated
in this analysis. Table 2 identifies the variances asso-
ciated with factors. Table 3 lists the significant correla-

tions (at the 0.0l level of significance) of measures with
factors.

D.Card
CSC/GSFC
16 of 28

8T)0 L1
2489/280
p1e) "d

ORGANIZATION —

DESIGN —
DESIGN —
DESIGN —
DESIGN —
DESIGN —
DESIGN —
DESIGN —
DESIGN —

CODE -~
CODE —
CODE —
CODE —
CODE —
CODE —

TEST —
TEST —
TEST —
TEST —
TEST —

Table la. Methodology Measures

(DEGREE OF USE)

CHIEF PROGRAMMER

WALKTHROUGHS

FORMAL REVIEWS

FORMALISMS

TREE CHARTS

PROGRAM DESIGN LANGUAGE (PDL)
HIERARCHICAL INPUT PROCESSING OUTPUT (HIPO)
TOP-DOWN

ITERATIVE ENHANCEMENT

STUBS |
TOP-DOWN

STRUCTURED
WALKTHROUGHS

READ

CONFIGURATION CONTROL

FORMALISM
FOLLOWTHROUGH
BATCH

V&V PRESENCE
V&V USE

8cjo gy
2489/28D
PIE) ‘q

Table, lb. Tools Measures

(DEGREE OF USE)

FORMAL TRAINING IN METHODOLOGY
INFORMAL TRAINING

METHODOLOGY REINFORCEMENT
REQUIREMENTS LANGUAGE (MEDL-R)
DESIGN LANGUAGE (PDL)
PRECOMPILER (SFORT)

SOFTWARE AIDS (e.g., EXREF, MAP, LIST)
LIBRARIAN .

DATA GENERATORS

TERMINALS (TSO)

REMOTE JOB PROCESSING (RJP)
CONFIGURATION ANALYSIS (CAT)

8T 1061
2489/28D

a0 M ¢ |

Table lc. Documentation Measures

(DEGREE OF USE)

SEL FORMS

DESIGN DOCUMENT

DESIGN DECISIONS

SEMIFORMAL QUALITY ASSURANCE
ACTIVITY NOTEBOOKS

UNIT DEVELOPMENT FOLDERS

TEST PLANS

USER’S GUIDE/SYSTEM DESCRIPTION
FORMAL TREATMENT OF USER'S GUIDE
WEEKLY/MONTHLY PROGRESS REPORTS

8T 3007

2485/08D
pre) q

Table 1ld. Resource/Product Measures

(COUNTS AND RATES)

NUMBER OF COMPONENTS

TOTAL MODULES

NEW MODULES

MODIFIED. MODULES

TOTAL LINES OF CODE (INCLUDES COMMENTS)
NEW LINES OF CODE (INCLUDES COMMENTS)
MODIFIED LINES OF CODE

NUMBER OF COMPUTER RUNS

NUMBER OF CHANGES

PAGES OF DOCUMENTATION

TOTAL MANHOURS

TOTAL COMPUTER HOURS

PERCENT OF NEW CODE

CHANGES PER LINE OF CODE

CHANGES PER LINE OF NEW CODE

NEW LINES + 20% OF REVISED LINES

LINES OF CODE PER MANHOUR

COMPUTER HOURS PER LINE OF CODE

FACTOR

EIGENVALUES
PORTION
CUM PORTION

FACTOR
EIGENVALUES
POR1ION
CUM PORTION

Table 2. Preliminary Eigenvalues and Variances Associated With Factors

. 1 2 3 4 . 5 6 7
16.492786 13.305087 4.744286 4.063959 2.855640 2.43898%1 1.738979
0.305 0.246 0.088 0.075 0.053 0.049% 0.032
0.305 0.552 - 0.640 0.715 0.768 0.813 0.845

12 ' 13 14 15 16 . 17 18
0.685056 0.621503 0.495917 0.427863 0.397183 0.2559t1 0.209853
0.013 0.012 . 0.009 0.008 0.007 0.005 0.004
0.952 0.963 0.972 0.980 0.987 0.992 0.996

NOTE: Only five factors were retained in the analysis.

8TI0 12
2489/280
PIE) A

8
1.555128
0.029
0.874

. 19
0.153974
0.003
0.999

9
1.469211
0.027
0.901

20
0.055635
0.001
1.000

10
1.101198
0.020
0.922

21
0.000000
0.000
1.000

1t
0.931850
0.017
0.939

8TJo e
2:489/28D
PIe) ‘q

Table 3a. Factor 1

MEASURE

CHIEF PROGRAMMER ORGANIZATION
DESIGN WALKTHROUGHS

FORMAL DESIGN REVIEWS

DESIGN FORMALISMS

DESIGN TREE CHARTS

PROGRAM DESIGN LANGUAGE (METHODOLOGY)
CODE STUBS

CODE WALKTHROUGHS

CODE READING

CONFIGURATION CONTROL (METHODOLOGY)
TEST FORMALISMS

TEST FOLLOWTHROUGH

FORMAL TRAINING IN METHODOLOGY
INFORMAL TRAINING

METHODOLOGY REINFORCEMENT
DESIGN LANGUAGE (TOOL)

SOFTWARE (CODING) AIDS

LIBRARIAN

DATA GENERATORS

REMOTE JOB ENTRY

SEL FORMS

DESIGN DOCUMENT

DESIGN DECISION (DOCUMENTATION)
ACTIVITY NOTEBOOKS

USER’'S GUIDE/SYSTEM DESCRIPTION
WEEKLY/MONTHLY PROGRESS REPORTS

NOTE: VARIANCE ACCOUNTED FOR: 31%.

CORRELATION

.62
.75
.75
.83
.65
.63
.86
.69
.60
.62
.74
.72
.78
.61
.89+
.64
.68
.85
&
.54
.76
73
75
.76
.69
.69

8730 €7
24S9/08D
pred ‘a

Table 3b. Factor 2

MEASURE

NUMBER OF COMPONENTS
TOTALS MODULES

NEW MODULES

MODIFIED MODULES
TOTAL LINES

NEW LINES

MODIFIED LINES

'NUMBER OF RUNS

NUMBER OF CHANGES
PAGES OF DOCUMENTATION
PERSON HOURS

- COMPUTER HOURS

DELIVERED LINES
TOP-DOWN CODING

CORRELATION

.89
.89
.85
.80
.91
.92
77
.91
.93
.94
.96*
.88
.93

- — .56

NOTE: VARIANCE ACCOUNTED FOR: 25%.

8T o ¥t
pred - d

2489/38J

.Table 3c.' Factdr 3

MEASURE CORRELATION

COMPUTER HOURS/LINES OF CODE .60
TOP-DOWN .DES-GN . .88*
BA'i'CH. -TESTING .70
REMOTE JOB ENfRY .69
TEST FLANS | —.57

NOTE: VARIANCE ACCOUNTED FOR: 9%.

87 jo 57
2489/280

120 ¢

Table 3d. Factor 4

MEASURE
SEMIFORMAL QUALITY ASSURANCE

(PRODUCTIVITY

CORRELATION

.60*

—.30)

NOTE: VARIANCE ACCOUNTED FOR: 8%.

8C 3097
J489/080
Pred "q

Table 3e. Factor 5

MEASURE CORRELATION

CHANGES/LINES OF CODE

CHANGES/LINES OF NEW CODE

NOTE: VARIANCE ACCOUNTED FOR: 5%.

J3*

.64

REFERENCES

Computer Sciences Corporation, CSC/TM-81/6104, The Soft-
ware Engineering Laboratory, D. N. Card, et al., October

1981

Rome Air Development Center, RADC-TR-77-369, Factors in
Software Quality, J. A. McCall, P. K. Richards, and
G. F. walters, November 1977

Computer Sciences Corporation, Evaluation and Applica-
tion of Subjective Measures of Software Development,

D. Card and G. Page (in preparation)

H. H. Harman, Modern Factor Analysis, Chicago: Uni-
versity of Chicago Press, 1976

J. T. Sall, et al., Statistical Analysis System User's
Guide, SAS Institute, 1979

D.Card
CSC/GSFC
27 0of 28

THE VIEWGRAPH MATERIALS
. for the

D. CARD PRESENTATION WERE
INCORPORATED IN THE PAPER

D. Card
CSC/GSFC
28 of 28

PANEL #3
SOFTWARE MODELS

B. Littlewood/A. Sofer, George Washington University
H. Sayani/C. Svoboda, Advanced Systems Technology Corporation

SOFTWARE MODELS:
A BAYESTIAN APPROACH TO PARAMETER ESTIMATION IN THE
JELINSKI-MORANDA SOFTWARE RELTABILITY MODEL
by

Bev Littlewood, The City University, London, England
Ariela Sofer, The George Washington University, Washington, D.C.

Abstract

Maximum likelihood estimation procedures for the Jelinski-Moranda
software reliability model often give misleading answers. We show here
that a reparameterization and a Bayesian analysis eliminate some of the
problems incurred by MLE methods and often give better predictions on
sets of real and simulated data.

Practical difficulties in estimating the initial number of errors
N and the failure rate of each error ¢ by the method of maximum like-
lihood are:

1. N , the MLE of N , is occasionally infinite (i.e., the routines

forwcalculating ﬁxréﬁdr $ do no; conQerge)ﬁ Ligélewbégwénd
Verrall show that N is finite if and only if the regression
line of the interevent times ti vs. 1 has positive slope.

2. A serious problem is that often N=n , the sample size, and
sometimes N = n . Thus the MLE predicts that the program is
perfect even when it is far from being so. Forman and Singpur-
walla have shown that N and $ can only be trusted near the
end of debugging, i.e., when almost all failures have been-

removed. Sofer

G. Wash, Univ.
1of 14

3. Even when these problems are not encountered, the results
obtained from the model are too optimistic; it predicts the
reliability to be greater than it really is,

In view of these deficiencies, we are led to consider a Bayesian
approach to the estimation problem. It seems plausible that it is easier
to correctly estimate the initial program failurg rate A = N¢ than the
initial number of bugs N , since small errors in $ could lead to large
errors in N . It is therefore plausible to reparameterize the model to :
(A,$) instead of (N,¢) .

Using now the Bayesian approach, letting prior (A,9) = prior (A)-
prior (¢) , where prior (A) and prior (¢) are gamma distributed, and

using

R (t) = P(T ., <t) =P(T . <t | tgseeest)

n+l 1 n

JR(T , <t | X,9) post(A,¢ | tyse -t)dAdY

we oBtain an explicit estimate of the program's current reliability,
Similarly, we can get in closed form the distributions of the number of
bugs remaining in the program, the number of bugs that have to bé removed
in order to attain a given reliabiiity; and the times between future
consecutive failures (pfovided they are well defined; i.e., the program
is not perfect).

The quality of these estimations was exémined for the special case
when A and ¢ have an (improper) uniform prior distribution over
[0,©) (i.e., a noninformative prior distribution). The predictions were
examined both for real and for simulated sets of data. In all cases where
- ML erfoneously predicts the program to be perfect, the Bayesian method
gives a positivé probability that the program is not perfect. Moreover,

Sofer

G. Wash, Univ.
20f14

since the predicted reliability is given in closed form, problems of
convergence of the computer program are not encountered.

To examine the quality of prediction, we use a goodness of fit pro-
cedure. Suppose that from the data tl,...,tn we predict the distribu-

the time to next failure. We then observe ¢t

tion of Tn+l s ntl *

Define U = Pr(T < t If the model is correct, then U are
n nt+l n

n+l) :
uniform variables on (0,2) . We compare the sample c.d.f. of the un's
with a line of unit slope which is the uniform c.d.f.

When applying the goodness of fit procedure to real data sets, the
Bayesian approach is almost always better than the MLE method. For the
simulated &ata, the goodness of fit procedure on the Bayesian estimates
give very good results; this, however, is not always true for the real
data sets.

There seems to be evidence that the J-M model is intrinsically opti-
mistic in its estimate of software reliability. This could be a conse-’
quence of the assumption that all errors contribute equally to the failure
raté. A new model by Littlewood relaxes this assumption with the result
that earlier fixes tend to involve larger reductions in the failure rate
than the later ones. It can be shown that this model is less optimistic’
than the J~M model and we hope to examine its performance on real and

simulated data in future work.

Sofer
G. Wash. Univ.
30f 14

THE VIEWGRAPH MATERIALS
for the
B. LITTLEWOOD/A. SOFER PRESENTATION FOLLOW

Sofer
G. Wash, Univ.
4 0of 14

JELINSKI-MORANDA model assumptions:

1. Sﬁccessive inter-failure times T, T,, are independent.
pdf (t;12;) = A, e~

2. ,;=(N—i+1)¢ where

N is “initial number of faults” ¢ is “contribution to program failure rate from each fault”

f.r
No¢
(N-1) ¢
(N-2) ¢
| | |
- t1 *t2 — t3 - - _
time
>
Note that -
1. All fixes have same effect.
2. Same model by SHOOMAN and MUSA. Same assumptions
for NHPP model by GOEL-OKUMOTO.
Sofer
G. Wash, Univ.

50f14

There seems to be 3 problems with J-M:
1. I:I occassionally infinite ((5 =0)

Nec. & Suff. conditions: “‘Regression line of t. versus i has negative slope”
(Littlewood, Verrall: 1981 IEEETR)

This can also occur with simulated data from J-M with finite N, ¢ # 0,
A A
However A = N¢ is finite, non-zero.
2. Reliability predictions always(?) too optimistic

. .
3. N usually too small, sometimes equal to sample size (i.e. program is “‘perfect’’)

Sofer
G. Wash, Univ.
6 of 14

Table 7.
Failure Intervals — System 3 System Test Phase

i T,

1 115, 1
2 0, 1
3 83, 3
4 178, 3
5 194, 3
6 136, 3
7 1077, 3
8 15, 3
9 15, 3
10 92, 3
11 . 50, 3
12 71, 3
13 606, 6
14 1189, 8
15 40, 8
16 788, 18
17 222, 18
18 72, 18
19 615, 18
20 589, 26
21 15, 26
22 390, 26
23 1863, 27
24 1337, 30
25 4508, 36
26 834, 38
27 . .3400, _40) 3
28 6, 40
29 4561, 42
30 3186, 44
31 10571, 47
32 563, 47
33 2770, 47
34 652, 48
35 5593, 50
36 11696, 54
37 6724, 54
38 2546, 55
39 -10175, 56

Sofer
G. Wash, Univ,
7 of 14

SYSTEM 3

FAILURE
NUMBER

COoO~NOAVLDWN

A

N

ESTIMATED ESTVIMATED INITIAL

FAILURES

999999
999999
5

6

8

7

8

12

19

55
899999
22

15

18

18

21

25

25

OC)O(DO(DO(DO(DO(DO()O(DQF)pS)OC)O(DO()O(DO(DO(DO()OC)O

MTTF

.5750E+02
.6600E+02
.5900E+02
.64B0E+02
.T7275E+02
.7884E+02
.B845E+02

1196E£+03
1396E+03

. 1609E+03
. 1688E+03
.1387E+03
. 1125E+03
. 130GE+03
. 1306E+03
. 1476E+03
.1616E+03

1622E+03
1612E+03
{807E+03
1854E+03

. 1609E+03
. 1606E+03
. 15820E+03
. 1628E+03
. 1764E+03
. 1876E+03
.2023E+03
.2182E+03
.2427E+03
.2642E+03
.2853E+03
.3041E+03
.3248E+03
.3519E+03
.3804E+03
.4073E+03

QOO0 QO00000000N0DO0O00VO0OOV0O0OO0OOOOO000

A
¢.
MORANDA
PHI

. 173913E~07
. 151515E~07
.338983E~02
.257202E-~02
.171821E~02
. 181206E~02
.141318€E~02
.696972€E~03
.377017E~03
. 112990€E~03
.592304E~08
.327621€-03
.592367E-03
.425447€E~03
.425294E~03
.322715E~03
.247463E-03
.2466 15E~-03
.248210E~03
. 178535E~-03
. 163413E~03
.239046E-~03
.239457E~03
.263205E~03
.236199E~03
.210001E~03
. 190384E-03
. 170456E~03
. 152766E~-03
. 132935E-03
. 118265E~03
. 106202E~03
.967196E~04
.879556E-04
.789439E-04
.7T10397E~04
.646041E-04

7. Sofer
G. Wash. Univ.
8of 14

How well does model perform?
Simplest problem is estimation of current reliability:

Given datat;,.. .t what can we say about T;?

1>

What is cdf F; ()?

Obtain ML estimates of N, ¢, based on t,..>t; and use “Predictor distribution”
A A A
Fi(t)=1—e®-#1) et

If prediction is “good”
U; = F; (T;) is approx.

U(0,1). Examine Q-Q plots of realizations U

Sofer
G. Wash. Univ.
9of 14

EXAMPLE
Data: MUSA “System 17, range of i:30-129
Jelinski-Moranda: poor prediction, optimistic

Littlewood-Verrall: good prediction, slight pessimism

Sofer
G. Wash, Univ.
10 of 14

Bayesian J-M

Reparameterize to (A, ¢) from (N, ¢) where XA = N¢ “‘initial failure rate”.

Assume:

prior (A, ¢) = prior (A) * prior (¢) where prior (A) and prior (¢) are gamma distributed
Then “predictor distribution” is

FLM=PT,<=PM<tlt,...t,)=/PT,<t]\¢)post \oIt..4) d\de

Reparameterization: Informal Justification

f.r .

“TRUE LINE” \, = (N-i+1)¢

NSNS

i, FAILURE NUMBER

Sofer
G. Wash. Univ.
11 of 14

For the case of uniform (improper) priors we get:

Foo (g) =

i a k! (=K I o
C i T A - N] .
o (’E G—-j+1) tj)k+l (z::tj)l—k+l (t+ litj)l"k*l']
o o K=K ‘
-1 _ ,
where ¢ * =

i i .
0 (2 Gi—1) t-)k+1 (z t_)l—k+1
2]] F) ,
, i i ,
and where a_; is the coefficient of xi K in Tl (x +k)= Z ay ; xi—k
3 . k:l m b
These coefficients are easily computed from the relation
i Tlagg jop T g kK21

agy =laj =1ag =1V,

DATA: MUSA ‘‘System 3", i=18. .37
J-M ML estimation of (N,¢)

————— J-M Bayes, uniform (improper) priors on (X, ¢)
— 1
r——
P 3
|
r
J J
—
!
r—- —05
r-:._ |
-
r.J
' 0.
0 05 1.
Sofer
G. Wash, Univ.

12 0f 14

Data: MUSA ‘‘System 1” o
i=30,...129 e
J-M MLE {N,¢) -~
J-M Bayes, uniform o
prior (\,¢)—

slightly better

Conclusion!

1. Bayes J-M seems always (?) better than MLE J-M, but sometimes only slightly.
2. Results on real data are always optimistic.

3. But on SIMULATED data from J-M model, Bayes is very good, ML poor

= real data do not follow J-M model?

Sofer
G. Wash, Univ.
130f 14

Hypothesis: Assumption of equal ¢s is wrong. In fact ¢'s different.
Larger ones tend to be eliminated earlier:

fr.
®
)
S o
o O “best fitting”’ linear
: function {i.e. J-M).
O .
° J-M model f.r.
o “true”’ :.r.
o
(o]
s
g °
> 1o
| | | l | L 4@
1 2 3 4 5 6 7
failure number
Sofer
G. Wash. Univ,

14 of 14

e whh- o
e & o o o

The Problem of Resonance
in

Technology Usage

OUTLINE

Introduction

Composite Case Study

Analysis of the Problem

Generalization of a Solution to the Problem
Conclusion

Hasan H. Sayani, Ph.D.
Cyril P. Svoboda, Ph.D.

Advanced Systems Technology Corporation
9111 Edmonston Road Suite 302
Greenbelt Maryland 20770
(301) 441-9036
H. Sayani

ASTEC
1of 18

ABSTRACT

Developers of information systems are bombarded with publicity releases
hawking a plethora of tools and techniques. Although vendors give the impression
that their product will lead to developer to the "promised land", they rarely are
able to deliver. The result is that information systems developers ride a roller-
coaster: rising to a peak of expectation and hope, only to plummet down the
track of reality, before beginning to climb up to yet another peak of hope. This
paper will analyze this situation from the authors' perspective, formed by using
various information system tools/techniques and by consulting with over ten.
Fortune 500 firms and six government agencies.

A case study will be presented which draws together the issues raised in
three distinct cases. Obviously, the names of the organizations will be changed
as will any other information that might lead to identification. This case study
will show a typical progression from the selection of an analysis methodology (SA)
to the adoption of an automated tool for specification and documentation (PSL/PSA)
and the difficulty of fitting these into an existing life cycle development methodology.

The problem presented in the case study is similar to the problem of resonance:
over a period of time, the morale of system developers reels through a journey
over peaks of "hyped" expectations and down into valleys of depressing realizations.
In addition, management is weighed down with the pressures of shért—term goals
and the burdens created by long ignored human factors, both of which entice
management to press for "any" product rather than the "right" product. The
technology to which both developers and management often turn in desperation is
marked by desperate development and by the shallow experience of the developers.

Lastly, the mentality of those employing development tools and/or techniques is

H. Sayani
ASTEC
20f 18

very often provincial, relegating various items to a rigidly determined set of
categories or hardware-driven.

The general approach to a solution is taken from a procedure for problem-
solving developed by Svoboda and Sayani (1980). In this procedure, the system
developer is encouraged to take time first to examine the problem before attempting
to solve it, defining its major dimensions and determining the evaluative criteria
to be used in assessing any proposed solution. Then the problem-solver uses
some visualization tactic suited to his/her cognitive style or suggested by an
organization's methodology. These visualizations are then elaborated on by
translating them into linguistic expressions, at various levels of formality or
precision. What is expressed needs to be reflected, so that the composer can
grasp the implications of what has been said from various points of view, with a
differing focus or scone. Although what has .been said seems, on reflection, to
be what was intended, it needs next to be analyzed or evaluated against the
earlier determined critéria, in light of any constraints, within the scope of
resources available. Those specifications which do not "pass" the foregoing
evaluation must be modified and this expression-reflection-evaluation-modification
process must be repeated until the system has been completely specified and is
ready for construction and implementation. Before the development team congratulafes
itself for a job "well~-done", it should project which tool/technique ought next to be
selected and employed and what has been learned from the whole process of system
development that might give direction to the next effort. -

If an organization does not employ such an approach in systems development,
it will eventually begin to experience the rollercoaster ride mentioned earlier. If
one does employ such an approach, the organization will be in a better position

from which to assess the intrinsic quality of its tools/techniques and their

H. Sayani
ASTEC
3of 18

contribution to the successful development of information systems. Such an
approach would offer the basis for guiding an organization in the introduction,
facilitation and institutionalization of new tools /techniques for the development

of future information systems.

H. Sayani
ASTEC
40f 18

THE VIEWGRAPH MATERIALS
for the
H. SAYANI/C. SVOBODA PRESENTATION FOLLOW

H. Sayani
ASTEC
50f18

The Problem
of
Resonance
in
Technology Usage

Presented at Sixth Annual NASA
Software Engineering Workshop
December 2, 1981

Hasan H. Sayani, Ph.D.
Cyril P, Svoboda, Ph.D.

Advanced Systems Technology Corporation
9111 Edmonston Road Suite 302
Greenbelt Maryland 20770
(301) 441-9036

Copyright (©) 1981 by Advanced Systems Technology Corporation (ASTEC),
Greenbelt, Maryland.

All rights reserved. No part of this material may be reproduced in any form
or by any means, without permission in writing from ASTEC.

H. Sayani
ASTEC
6of 18

CREDENTIALS

Corporate Objectives

R &D in IS development process

analysis, design, code generation and life cycle
management automation tools

engineering and human factors backaround

-- agpplication of tools on projects

Corporate Exnerience

-- instruction and application of tools

- 23 courses, seminars & workshops on PSL/PSA,
methodologies, tools (ADL, ADS)

-- consultation with organizations using tools
(over 10 Fortune 500 & major Government Agencies)
on all levels of organization

- executive
- management
- operational

-- evaluation of usage of tools

H. Sayani
ASTEC
7 of 18

PREVIEW OF PRESENTATION

Composite Case Studv

-- examination of organization background in
sof tware development process

- recognition of need for formal techniques
-- response to problem

-- result of piece-wise intro of tools

Analysis of Situation

Generalization Approach

Conclusion

H. Sayani
ASTEC
8 of 18

COMPOSITE CASE STUDY

Examination of Background in Software Development Process

-- third generation of hardware
-- obsolete/poorly documented existing systems
-- high turnover/additions to systems people

-- dissatisfied users viewing systems as:

- inadequate and costly
- in large backlog/overruns
- unintegrated

-- lure of effortless development via tools and
techniques

- “let’s get on some bandwagon”

H. Sayani
ASTEC
90f 18

RESPONSE TO PROBLEM

“Small is beautiful”

“Have Money - Will Buy Tools”
-- one for each phase of development life cycle
-- acquire tools

-- train pilot group

H. Sayani
ASTEC
100f 18

RESPONSE TO PROBLEM

Apply the Solution

-- result can range from

- success to disaster

Next Evolutionary Step
-- pass on work from one phase to another, or
-- have a second group use the same tool

-- both of which are usually doomed to disaster

Backlash
-- build in-house
-- force fit a tool by outspoken advocate

-- regaress

H. Sayani
ASTEC
110f 18

ANALYSIS OF SITUATION

Problem .of Introduction

reality rarely matches overall expectations

-- never possible in isolation

- distortion between existing and new
'technlques for each tool

difficulty of integration across life cycle
phases

H. Sayani
ASTEC
120f 18

ANALYSIS OF SITUATION

Management “Baggage”

-- short term goals
-- due-date versus -quality

-- ignoring human factors
- career-path implications
- E & T budget

- management styles
guthoritative
democratic
laissez-faire

H. Sayani
ASTEC
13 0of 18

ANALYSIS OF SITUATION

Technology Growing Pains

-- first aeneration of tdols/techniques
- shallow experience

-- venhdor myopia and user passivity

-- disparately developed
- no overall plan of action

-- changing ground rules
- cost parameters (hardware/software ratios)
- rapidly changing base technologies

DBMS
A-1
Graphics

H. Sayani
ASTEC
14 of 18

ANALYSIS OF SITUATION

Field Immaturity

-- failure to recoonize commonalities
e.q,, different types of systems

- engineering vs commercial

-- financial and leaal community’s effect

- capitalization
- protection (e.g., cooyright/trade secrets)
- inability to keep up with rate of change

-- Governmental approach

- doesn’t foster coordinated effort

H. Sayani
ASTEC
1501 18

GENERALIZATION APPROACH

(Problem-Solving)

Problem Recognition

-- postoone solution before understanding
dimensions of problem -
developing criteria of judging solution

Visualization

-- cognitive style
methodology
merely a basis for further work

not universal

Expression

-- graphics
-- linguistic
- levels of formality

Reflection

-- other than mere echo cf expression
-- other focus, scope, dimension

H. Sayani
ASTEC
16 of 18

GENERALIZATION APPROACH

(Problem-Solving)

Analysis/Evaluation

-- comparing against criteria
-- evaluate against constraints
-- realization of resources available

Modification/Iteration
-- sensitivity analysis
-- impact projection
Solution
-- determination

and of product
-- presentation

[teration

-- whefe should next tool fit?
-- what have we learned from experience?

H. Sayani
ASTEC
17 of 18

CONCLUSION

-- User organization: “get your house in order”

Articulqte needs of tools/techniques

Set quality standards

-- Evaluate existing tools/techniques

Walk through whole development cycle scenario

Introduce in a studied fashion

deliverables

career paths
feedback
support usage

training

-- Study the process as well as the problem

H. Sayani
ASTEC
18 of 18

PANEL #4
SOFTWARE METHODOLOGIES
H. Mills/M. Dyer, IBM

B. Jones, Hughes Aircraft Corporation
R. Hamilton, Bell Labs

Sixth Annual Software Engineering Workshop
Goddard Space Flight Center
December 2, 1981

Cleanroom Software Development

M. Dyer and H. D. Mills

The 'cleanroom' software development process is a new IBM technical
and organizational approach to developing scoftware with certifiable
reliability. Key ideas behind the process are well structured soft-
ware specifications, randomized testing methods and the_ introduction
of statistical controls; But the main point is to deny entry for de-
fects during the development of software. This latter point suggests
the use of the term 'cleanroom' in analogy to the defect prevention

controls used in the manufacture of high technology hardware.

The present state of the art in software development is to conceive
and design a system in response to perceived reéuirements, then test
the system with cases perceived to be typical to those requirements.
The result.is frequently a system which works well against inputs
similar to those tested for, but one which is unreliable in unexpected
circumstances. 1In fact, the evidence obtained by such teéting is N

entirely anecdotal rather than statistical.

In the 'cléanroom', we embed the entire software development process
within a formal statistical design, in contrast to executing selected
tests and appealing to the randomness of operational settings for
drawing statistical inferences. Instead, we introduce random testing
as a part of the statistical design itself so that when development
and testing is completed, statistical inferences can be made about
the future operation of the system.

M; Dyer

IBM
1of 10

We believe there are several major benefits to such a procedure. One
benefit is derived from standard statistical procedures in which a

formal statistical design permits objective stateﬁents about properties

of the system. But it is believed that an even more important benefit
will arise from effects on the developers through the discipline of the
statistical design on their activities. In fact, we believe that develop-
ing systems under stringent statistical controls will induce significant

behaviour modifications on software developers.

Presently, when developers conceive early tests to check the correct
operation of a system, they are able to identify Jjust those parts of
the system that will have to function correctly to pass those tests.
Thefefore, they can develop systems in‘phases, and control the test-
ing such that the system under development is protected from unwanted
testing. As a consequence, system parts may be omitted or done per-
functorily since the choice of tests is under the control of the de-

velopers.

We have in mind a different circumstance in testing under statistical
control, namely, that from the outset tests are selected at random

out of an expanding (top down) hierarchy of operational test cases.
Therefore, the system designer must be prepared to deal with a growing,
but always coherent, set of eventualities. It is believed that this
circumstance, which may seem unfair or impossible at first glance, will
dramatically change the way software development is done, by forcing a
system approach top down rathexr than permitting gbttom up pieces to be

conceived and built under the protection of developer-selected testing.

M. Dyer

20f10

THE VIEWGRAPH MATERIALS
for the
H. MILLS/M. DYER PRESENTATION FOLLOW

M. Dyer

3of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS
DEFINITION
o TECHNICAL AND ORGANIZATIONAL APPROACH TO DEVELOPING

SOFTWARE PRODUCTS WITH CERTIFIABLE RELIABILITY

LOGICAL EXTENSION OF

o) SOFTWARE RELIABILITY THEORY

(o) MODERN SOFTWARE ENGINEERING PRACTICES

o FUNCTIONAL ORGANIZATIONAL STRUCTURE
GOALS

o PRODUCT RELIABILITY

- INITIALLY ADDRESS PRODUCTS IN THE RANGE OF 10-25K SLOCS
- RELIABILITY TARGETS OF MTBF}S MEASURED IN MONTHS AND
YEARS
o STATISTICAL DESIGN
- EXPECTATION OF CORRECT SOFTWARE DESIGNS
- "BLACKBOX" TESTING OF SOFTWARE

- TESTING FOR THE OPERATIONAL ENVIRONMENT

o PROCESS CONTROLS
- SOFTWARE PRODUCT ENGINEERING FUNCTION

- MANAGEMENT TO RELIABILITY COMMITMENTS

M. Dyer

tof 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

RELIABILITY MODEL

o BASED ON SOFTWARE OPERATING FAILURES, NOT ERRORS IN THE CODE
o DIFFERS FROM HARDWARE MODELS, LOGICAL NOT PHYSICAL FAILURES
o REASONABLENESS - DEMONSTRATED USING PUBLISHED SOFTWARE

FAILURE DATA

STATISTICAL APPROACH

o INPUT/OUTPUT SPECIFICATIONS
o INPUT PROBABILITY DISTRIBUTIONS

o STOCHASTIC PROCESS INTRODUCED THROUGH RANDOMLY SELECTED RUNS
o MTBF STATISTICS DEVELOPED FROM CYCLE/FAILURE RATIO

(o} CERTIFICATION BASED ON FAILURE FREE EXECUTION INTERVALS,
NOT ERROR FREE CODE

M. Dyer

50f 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

CLEANROOM DEVELOPMENT METHOD

o STARTS WITH STRUCTURED SPECIFICATION

- STATE MACHINE MODEL

o SOFTWARE DESIGN ENGINEERING PROCESS
- MODERN DESIGN METHODS

- FIRST TIME CORRECT PROGRAMS

o] SOFTWARE PRODUCT ENGINEERING PROCESS

IDENTIFICATION OF PRODUCT INPUTS AND PROBABILITY
DISTRIBUTIONS

SOFTWARE INTEGRATION INTO PRODUCT FORM

COLLECTION/CORRELATION OF FAILURE STATISTICS (MTBF)

CERTIFICATION TO CUSTOMER

o SOFTWARE MANAGEMENT
- RELIABILITY COMMITMENTS

- PRODUCT VISIBILITY THROUGH MTBF MEASUREMENTS

M. Dyer
IBM
6 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

DESIGN FUNDAMENTALS

o MODERN DESIGN METHODS

- STATE MACHINES AND FUNCTIONS

- STEPWISE REFINEMENT AND CORRECTNESS PROOFS

- DATA TYPING AND ABSTRACTION

- PROCESS DESIGN LANGUAGE (PDL) DOCUMENTATION

o] MODERN IMPLEMENTATION METHODS

PROGRAM SUPPORT LIBRARIES

HIGH-ORDER PROGRAMMING LANGUAGES

. STRUCTURED PROGRAMMING

REVIEWS AND INSPECTIONS

DESIGN INNOVATIONS

o STATISTICAL DESIGN APPROACH

- DESIGN ALWAYS EXPOSED TO RANDOMIZED OPERATING
INPUTS ’ '

- EMPHASIS ON TOP-DOWN IMPLEMENTATION STRATEGY

o ELIMINATION OF SOFTWARE DEBUGGING
- FOCUS TESTING ON OPERATING ENVIRONMENT

- FOCUS DESIGN ON CORRECTNESS

M. Dyer

70f10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

PRODUCT ENGINEERING STRATEGY

o CERTIFICATION BY INDEPENDENT GROUP

- TESTING FROM SOFTWARE SPECIFICATION WITH DESIGN
DETAILS HIDDEN

- SEPARATION OF RESPONSIBILITIES AND INTERACTIONS

o TEST DEVELOPMENT
- ANALYSIS OF INPUT PROBABILITY DISTRIBUTIONS
- STATISTICAL/DISCRETE INPUT VALUES
- INITIALIZATION AND OUTPUT VALUES

- CONCURRENCY CONSIDERATIONS FOR PERFORMANCE TESTS

o) TEST EXECUTION
- SELECTION OF RANDOM INPUT SAMPLES
- RECORDING OF FAILURE FREE EXECUTION MATERIALS

- GENERATION OF MTBF STATISTICS

o FATILURE DIAGNOSTIC SUPPORT
- FAULT LOCALIZATION

- REGRESSION TESTING

M. Dyer
IBM
8 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DESIGN ENGINEER

o CREATES THE PRODUCT

o RESPONSIBILITY
- IMPLEMENTATION OF AN APPROVED SPECIFICATION

- DELIVERY OF CORRECT SOFTWARE TO THE PRODUCT ENGINEER

o] OUTPUTS
- SOFTWARE PRODUCT DESIGN
- SOFTWARE PRODUCT CODE

- SOFTWARE PRODUCT DOCUMENTATION

SOFTWARE PRODUCT ENGINEER

o CERTIFIES THE PRODUCT

© RESPONSIBILITY
- VALIDATION OF THE PRODUCT AGAINST THE SPECIFICATION

- DELIVERY OF A CERTIFIED SOFTWARE TO THE CUSTOMER

Q> OUTPUTS
- SOFTWARE PRODUCT TEST PLANS/PROCEDURES
- SOFTWARE PRODUCT INTEGRATION. PLANS/PROCEDURES
- SOFTWARE PRODUCT LIBRARIES

- SOFTWARE PRODUCT TEST REPORTS

M. Dyer

90f 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

TOOL REQUIREMENTS

o LIBRARY SYSTEM
- DESIGN DOCUMENTATION
- PRODUCT CODE

- CERTIFICATION TEST SAMPLES

o) STATISTICAL MODEL
- MTBF CALCULATIONS

- TREND ANALYSES

o] SOFTWARE UTILITIES
- TEST SAMPLE BUILD
- TEST EXECUTION CONTROL

- DATA COLLECTION/REDUCTION

M. Dyer
IBM
10 of 10

SELECTING A SOFTWARE DEVELOPMENT METHODOLOGY

Robert E. Jones
Hughes Aircraft Company
Fullerton, CA

This paper describes the “Integrated Software Development Methodology (ISDM)” which is
being accomplished by Hughes Aircraft Company, Software Engineering Division, in Fullerton,
California and is sponsored by the Air Force Wright Aeronautical Laboratories, Flight Dynamics
Laboratory at Wright Patterson AFB, Dayton, Ohio under Contract F33615-80-C-3614.

The ISDM project is currently in progress and its purpb_se is to study in detail state-of-the-art
analytical techniques for the development and verification of digital flight control software and’
produce a practical designer-oriented development and verification methodology.

SCOPE

The scope of this project is limited to the study of existing tools and analytical techniques
and the production of a practical ISDM guidebook. The methodology selected is adapted to flight
control software, but is also applicable to most real time software developments.

The problem of evaluating the complete system is called validation, while the problem of
checking the software at each stage Qf the design process is called verification. This project is
concerned with verification.

The effectiveness of the analytic techniques chosen for the development and verification
methodology will be assessed both technically and financially. Technical assessments analyze the
error preventing and detecting capabilities of the chosen technique in all of the pertinent software
development phases. Financial assessments describe the cost impact of using the techniques,
specifically, the cost of implementing and applying the techniques as well as the realizable cost
savings. Both the technical and financial assessment will be quantitative where possible. In the
pressed about the effectiveness and cost of the techniques. The reasons why quantitative assess-
ments are not possible will be documented.

BACKGROUND

The design of digital flight control systems has been the role of the control engineer rather
than the computer or software specialist. Research into software design and verification has been
the role of very specialized software experts. The results of this research have not always been
practical in helping the flight control system designer with his tasks. Many tools and techniques
are too complex to adapt to the flight control problem. Other tools are too expensive to main-
tain and operate for the flight control problem.

R Jones
Hughes
1of 14

SUMMARY OF OBJECTIVES AND RESULTS

The objectives and results being discussed here reflect those individual objectives and accom-
plishments to date.

Metrics

The development of metrics which can be applied to assess the design quality was one of our
first objectives. The effort was to be directed toward predictive metrics with the intention of
producing metrics which can be used by a flight control systems engineer to determine the quality
of the design produced and the likelihood -of a successful implementation.

The metrics are being developed to aid in predicting such things as how many errors are
likely, how long it will take to test, how long it will take to correct an error, etc.

One of the results is that a set of concepts which provide the foundation for the ISDM metrics
has been developed. The equations which will be used as the basis of procedures to calculate pre-
dictors for the testability, reliability and flexibility have also been defined.

Guidebook

The overall objective is to create an integrated set of techniques and tools which are usable
by a digital flight control systems engineer for development of a DFCS. Primary emphasis is to be
on those activities involved in generating the DFCS software requirements specification, performing
the software design, and verifying the software design through software integration.

The guidebook represents the bulk of the output from this project and will be the most
visible. Emphasis must be placed on generating a document that is.clear, understandable, and
usable while fuifilling its intended role of a guidebook.

The results thus far have produced a draft guidebook that is ready to be applied during the
experiment. The guidebook goes beyond the explanations of the tool and technique description
and use. There are discussions regarding the development environment and major issues of DFCS
software development. These are included to provide a backdrop for the actual application of the
tools and techniques. o '

As a result of numerous reviews on various versions of the draft guidebook, there now exists.
a solid foundation from which to build. This building will occur as a result of the experiment. As
different techniques are applied and as data is collected and analyzed, the guidebook will be up-
dated. The guidebook will be maintained in a dynamic fashion, being changed as dictated by the
experiment results.

Expeﬁment

Having selected candidate analytic techniques and having organized these techniques into a
guidebook, there remains the problem of objectively and quantitatively assessing the value of these
techniques in producing a reliable flight control software system. For this reason, an experiment
will be conducted in which a small sample flight control system will be developed using the ISDM
guidebook.

R. Jones
Hughes
20f 14

The experiment will begin with the specification and progress through all software develop-
ment phases. For each phase, an experiment will be conducted in which the analytic techniques
and tools described in the guidebook will be applied. The resources expended in the application
will be monitored and errors detected will be monitored and summarized.

In each of the development phases of the experiment, two classes of activity will take place.
The first class of activities will be the actual application of the techniques in the ISDM guidebook
to produce software. The second class of activities will be collection and analysis of the data
pointing out the effectiveness of each technique, the impact of each technique on the overall
schedule, the cost to prevent/detect errors, and the impact of errors on the total development
effort.

Results thus far include the development of the experiment plan. This document is a de-
tailed description of the activities which will occur. The plan includes the following factors to be
considered in evaluating the guidebook:

1. Usability by a flight control engineer,
2. Cost to use,

3. Quality of the result and software.

The plan delineates the following data to be captured:

1. Errors,

2. Cost,

3. System documents,
4. Subject comments.
CONCLUSION

The ISDM project has just started in the second phase, the experiment. Although it is too
early to provide firm conclusions, we are already starting to see some indications of not only which
tools/languages may be useful, but also identify distinct weaknesses. The experiment will help to
__prove out these preliminary “feelings’” and provide quantification, at least when applied to metho-
dologies for specific applications.

R. Jones

Hughes
3o0f 14

THE VIEWGRAPH MATERIALS
for the
B. JONES PRESENTATION FOLLOW

R. Jones
Hughes
4 0of 14

....................

....................

INTEGRATED SOFTWARE DEVELOPMENT
METHODOLOGY

151154-3.3—(12-9-81) ‘ . ‘ . . : i GROUND SVSTEMS GROUP/FULLERTON. .CALIFORNIA

v13o9

saySny

sauof *y

“EVALUATE ANALYTIC METHODS FOR VERIFICATION OF

....................

ISDM GOAL

....................

DIGITAL FLIGHT CONTROL SOFTWARE"

RESTATED

DEVELOP GUIDEBOOK FOR AN ISDM
(INTEGRATED SOFTWARE DEVELOPMENT METHODOLOGY)

AND QUANTITATIVELY EVALUATE THE EFFECTS ON COST
AND RELIABILITY OF USING ISDM FOR DEVELOPING DIGITAL

FLIGHT CONTROL SOFTWARE

151154-32-(12-9-81)

blioL

say3ny

sauof *y

191140-18 (11-24-81)

ISDM OBJECTIVES

....................

DEVELOP GUIDEBOOK FOR ISDM
CONDUCT DFCS EXPERIMENT

EVALUATE COST AND ERROR DETECTION
EFFECTIVENESS

DEVELOP DESIGN METRICS

EVALUATE OVERALL ISDM COST AND RELIABILITY .
EFFECTIVENESS

RECOMMEND ISDM USAGE

RECOMMEND AREAS FOR FURTHER STUDY

y1jos
saydny
souof "y

-~

"""""""""""

PROJECT DESCRIPTION

DEVELOP

GUIDEBOOK EVALUATE
* METRICS RESULTS
* TOOLS '

* TECHNIQUES

APPLY
GUIDEBOOK

FINAL

SYSTEM o - DMFCS . GUIDEBOOK AND |
REQUIREMENTS SAMPLE RECOMMENDATIONS;

PROGRAM

$51140-22 (11-26-81)

ISDM GUIDEBOOKS CONTENTS PER | riivciice’

® DESCRIPTION OF PROCEDURES

. DESCRIPTION OF SUPPORTING TOOLS AND TECHNIQUES
o TYPES OF ERRORS DETECTED
® REVIEW PROCEDURES
o INTERFACE WITH OTHER PHASES
® INTERFACE BETWEEN TOOLS AND TECHNIQUES
. RESOURCES NEEDED FOR EACH TooL AND TECHNIQUE

e GUIDELINES ;FOR USING EACH TOOL AND TECHNIQUE

151140-34-(12-10-81

vijoorl

SAUOS Y

e IMPLEMENT SAMPLE SYSTEM USING TOOLS/
TECHNIQUES

e RECORD DAILY ACTIVITIES FOR COST ANALYSIS
e RECORD GUIDEBOOK COMMENTS FOR FINAL DRAFT
e RECORD ERRORS DETECTED AT EACH PHASE

e ANALYZE TOOL/TECHNIQUE EFFECTIVENESS

181140-8 (11-25-81)

vriolt

EXPERIMENTAL APPROACH | | HUGHES

1
T ~
N STATIC DESIGN ERRORS DYNAMIC DESIGN ERRORS
: ' o INCONSISTENT * BAD PERFORMANCE
‘ ¢ INCOMPLETE * IMBALANCED RESOURCES
APPLY j » NOT TRACEABLE o NOT TESTABLE
REQUIREMENTS ==p{ DECOMPOSITON * OVERLY COMPLEX
(LAST METHODOLOGY
PHASE : .
RESULTS) —f ; } DESIGN A
DESIGN CAD
TEAM . TOOLS
APPLY .
PROCEDURE STATIC ANALYSIS
: TECHNIQUES
f‘ STATICALLY |
ANALYZED
DESIGN
DESIGN METRICS
REVIEWS S
: APPLY
DYNAMIC ANALYSIS
TECHNIQUES ey VERIFIED
DESIGN
T f ’ {NEXT
-y . PHASE
232 SIMULATORS MODELS REQ'S)

151140-24 (11-30-81)

....................

ASSESSMENT REVIEW ' HUGHES |

....................

vijozl
saydny
or-d

$61140-10 (11-24-81)

e GUIDEBOOK USABILITY AND ACCURACY
¢ COST OF TOOL/TECHNIQUE APPLICATION
* QUALITY OF SOFTWARE/DOCUMENTATION
RELIABILITY |
'SAFETY
TESTABILITY
MAINTAINABILITY
FLEXIBILITY

saySny

vriogl
sauof *y

....................

TOOL ANALYSIS "HUGHES

TRAINING COSTS

GUIDEBOOK EFFECTIVENESS AND ACCURACY
* ERROR DETECTION CAPABILITY |

« DOCUMENTATION SUPPORT

151140-0 {11-24-81)

....................

PLANNED ACTIVITIES ' HUGHES '

e COMPLETE EXPERIMENT

+ EVALUATE RESULTS

« RECOMMEND IMPROVEMENTS
"« TAILOR GUIDEBOOK

181140-14 (11-24-81)

Development Techniques for Generic Software
Richard L. Hamilton

Bell Laboratories
Holmdel, New Jersey 07733

1. INTRODUCTION

In developing the first version of a generic implementation of X.25,
Levels 2 and 3, we examined three development techniques: table-driven
finite state machine implementation, an integrated testing énvironment,
and top-down design. While not designed as an experiment, we monitored
the project closely and compared the product with other implementations
of X.25 at Bell Laboratories to evaluate potential benefips and

penalties.

2. TECHNIQUES
2.1 Finite State Machine

A finite state machine (FSM) is a powerful tool for both specifying and
implementing protopols} This technique was used in the X.25
specification and has been discussed in the literature{1,2,3,4]. A
table-driven implementation.of the FSM was chqsgn to facilitate changes
and simplify coding. We were intergsted in what effect this technique
would have on program size, speed of execution, coding time, and

debugging time.
2.2 Testing Environment

Contrary to common practice, we made a testing environment before
coding. The complexities of a communications protocol, especially

X.25, require careful attention to the problems of verifying that an

R. Hamilton
Bell Labs
10f 20

implementation of that protocol does in fact perform correctly. 1In
addition, we felt that the process of verification should start as
early as possible in the development process. The testing environment,
which runs under the UNIX* operating system, let us test the FSM and
its tables very early in the coding process. We were able to integrate

new modules easily and test them thoroughly using this tool.
2.3 Top Down Design

In designing and implgmenting a solution, we followed a top-down
approach. This made it possible t§ have a '"running" version at all
times, with unwritten modules replaced by dummy routines. This was nbt
rigorously followed in coding because it was often more sensible to
code all of the ioutines that performed one function even if that meant
coding some low-level functions early. Doing this still let us always

have a running version, but simplified testing.

3. MEASUREMENTS

Our main method for evaluatihg these techniques was comparison with
existing implementations of X.25 at Bell Laboratories. We measured the
size and execution speed of both our implementation and the existing

ones and ran some simple complexity metrics.

* UNIX is a Trademark of Bell Laboratories

R. Hamilton
Bell Labs
20f 20

We used the testing environment to help modify and transport existing
implementations of both Level 2 and Level 3 to a new environment, which
gave us the opportunity to compare our versions with the existing ones
in terms of the ease of making modifications. We kept a iog of prégram
bugs found and the effort it took to fix them, for all of the

implementations, and tried to characterize the types of problems found.

4. CONCLUSION

A combination of a table-driven finite state machine realization, a
comprehensive testing environment, and a top-down approach was used- to
produce an implementation of X.25, Levels 2 and 3. In comparison with
other, ad hoc, X.25 implementations, we found that our solution ran as
much 55 20% faster, but was about 35 to 40 percent bigger. We were
able to explain all but Ii% of that aifferenEe in ferms of added
function or added flexibility. A McCabe complexity metric showed

little difference between the implementations.

Comparison of time spent debugging showed that our approach was
superior to the ad hoc methods, both in terms of number of errors
detected and time taken to correct those errors. Even so, the testing
environment was shown to be a signifipant aid in debugging the other
implementations when compared to other testing techniques. Although
not intended as a controlled experiment, the data collected during

development support using these techniques in similar circumstances.

R. Hamilton
Bell Labs
30f20

REFERENCES

(1]

(2]

- [3]

{4l

Bochmann, Gregor V., "A General Transition Model for Protocols

and Communication Services," 1EEE Transactions on Communications,

vol. COM-28, no. 4, April 1980.

Bochmann, Gregor V. and Tankoano Joachim, 'Development and

Structure of an X.25 Implementation,'" IEEE Transactions on

Software Engineering, vol. SE-5, no. 5, September 1979,

Bochmann, Gregor V. and Carl A. Sunshine, '"Formal Methods in.

Communication Protocol Design," IEEE Transactions on

Communications, vol. COM-28, no. 4, April 1980.

Danthine, Andre A. S., "Protocol Representation with Finite-State

Models," IEEE Transactions on Communications, vol. COM-28, no. 4,

April 1980.

R. Hamilton
Bell Labs
4 of 20

THE VIEWGRAPH MATERIALS
for the
R. HAMILTON PRESENTATION FOLLOW

R. Hamilton
Bell Labs
50f20

0T309
$qeT] f1eg
rurey Y

DEVELOPMENT TECHNIQUES

FOR GEMERIC SOFTWARE

0TioL

$qQe] 129
uoiweH yJ

X.25 DEVELOPMENT

OBJECTIVES - Toofs

Portable - C language, minimal
-set of primitive functions

Maintainable Testing/
development environment

Flexible Table-driven finite state

Modifiable Layered approach

0z308
sqeT 11°d
wey Y

DEVELOPMENT ENVIRONMENT

UNIX™Operating System
® Make |
® AWK
e SCCS
¢ Shell

07306
8qe] P4
uoyTwey Y

LEVEL 2 -- MORMAL EMVIRONMENT

Level 2. Level 2

Level 1

Target Operating
Environment

Operating
Sysiem

0T 3001
sqe] fleg
uoyTwey ‘Y

i
[
=
im
—

Automated

Regrassion ====+

Testing

Interactive
Debugging

N

-~ TESTING EMYIRONMENT

"UNIX™ - Based Tester

0Tionl
$qQe] o9
JIueH “y

FINITE STATE LIACHINE
° Table-driven
"® Hierarchical

¢ Parallel

oozl
8qeT] [1og
uoyIwRy Y

X.25 IMPEEMENTATION

MESSAGE

|

LEVEL 3
TABLES

COMPUTER
OPERATING
SYSTEM

PHYSICAL
LINK

0TJotl

$qe1 ned
uojtwey ¥

FINITE STATE MACHINE

TATES

ARCHICAL S

R. Hamilton
Bell Labs
140f20

R.Hamilton
Bell Labs
15 0f 20

0T 3091
sqe] g
uojiweH “y

LEYEL 2
CONTROL

TRANSLATION

O

 QUEUES

T oA M) e s
= g4 3 : =
FRLAby 1 L =

INFORMATION FRAME

PRIMITIVES
PACKET TO

FINITE STATE
MACHINE

LEYEL 3

SqQe] Med

0TIo LT
uojrureH 4

LEVEL2 . LINES OF CODE % DIFFERENCE
* Existing. - 1039
® Generic 1846 | +78%
LEVEL2 LINES OF CODE % DIFFERENCE
® Existing 1590
® Generic 2252 +42%

0T 3o 81
$qe] 28
uojrurey -y

LEYEL 2
® Existing
® Generic

LEYEL 3
® Existing

* Generic

TEXT
5688
6766

TEXT
6818
8558

DATA
56
1236

DATA
268
926

- TOTAL % DIFFERENCE
5744

3002 +39%
TOTAL

7086

8484 +34%

Note: All programs compiled under the 5086 cross-compiler
with the optimize option, without primitives, and
. without any debugging aids included

sqe] nieg

0ZJo 61
uojiurey *y

s, e koA el L e § g e pam s gy
5! {tx- vy "-’ TR Ty i e P fete :? Foa g}*.,; :
Haa den E fomm e fima ex D tics tesa o 33 3 L—.E dAad

Aéldad function

@ Channel No. 200
- @ Timer routines 272
- Disconnect 186
Added flexibility
& Actian overhead 248
. ® Channel select 52
. & Multi-table FSM 200
- ® Table clarity 192
¢ Oplional prims 100
TOTAL _ 1450
Actual difference 2258

By tes unsccounied for 808

03007

Sqe] g
ugyjiurey “yJ

%EﬁS‘

é%EﬁENTS
Size - 35to 40% larger
Speed - 0 to 20% faster

| Complexity - Equivalent

Alphabetical Listing of Attendees and Their Affiliations

Amold, Robert Univ. of Maryland

Bachman, Portia NASA/GSFC

Bailey, John W, GE

Barrett, Curtiss C. A NASA/GSFC

Basili, Vic Univ. of Maryland

Batz, Joe DOD

Bell, John F. Action

Boggs, R. B. NRL

Bond, Jack NASA

Boone, Dave CSC

Borochoff, Robert ' Nat’l Lib. Med.

Boward, Stephanie Sachs/Freeman

Bowe, Peggy Lockheed

Brenneman, Dale HUD

Card, David N. CSC

Carpenter, Lloyd S NASA/GSFC

Carson, John H. G.W.

Cephas, Arnold P. NASA/GSFC

Cheuvront, S. E. CSC

Chumura, Louis NRL

Clarson, John Stromberg-Carlson

Clements, Paul NRL

Church, Vic ' CSC

Cook, John NASA/GSFC

Copperthite, Robert : Action

Corrigan, Paul CTA

Cortez, Romo V. NASA/HQ

Cruickshank, Robert D. IBM '

Cunningham, H. Conrad Gen. Dyn.

Daniels, Herman SASC

Boehm-Davis, Deborah GE

Decker, William CSC

Dickenson, Charles USDA

Dinatale, Vincent IBM
-Diskin,-Dave _ _ Census Bureau

Duncan, Ray CSC

Dyer, Michael IBM

Eiserike, Howard NASA/GSFC

Eng, Eunice NASA/GSFC

Eslinger, Sue Ellen CSC

Eisenhardt, George H. Logicon Inc.

Fischer, Kurt - CSC

Forman, Ernest H. G.W.

Fuchs, Art NASA/GSFC -

Gaertner, Ken NSA

Gary, J. Patrick NASA/GSFC

Giammo, Carol A. DCA/CCTC

Goel, Amrit L. Syracuse Univ.

Golden, John R. Rochester Inst. Tech.

Goodson, Al ’ NASA/GSFC

Green, Art

Green, Tony
Grossman, Robert
Hamilton, Richard
Hanlin, Richard
Hannan, Sue K.
Hansan, Kevin
Herring, Ellen
Hilmer, Doug
Hiller, Donald
Hocking, Daniel

Houghton, Raymond C., Jr.

Howarth, Daniels
Howell, Carol

Hull, Larry G.
Humphrey, William B.
Hutchens, Dave
Jamieson, Lillian
Jones, Antonio L.
Jones, Robert .
Judge, Robert

Jun, Linda
Kallmeyer, Fred W.
Karl, John K.
Kartatzke, Owen
Kell, Veronica
Kelly, A.

Knaus, Rodger
Knight, John C.
Koschmeder, Lou
Kruesi, Betsy
Kurihara, Tom
Kurzhals, Peter R.
Kown, Y.R.

Larson, Robert A.
Leader, Karen
Leibowitz, Steve
Lichtenstein, Arleen
Lin, Tsu H.
Laubenthal, Nancy
Maione, Anthony
Mark, Marilyn
Mazzuchi, Thomas
McGarry, Frank
McGarry, Mary Ann
McPhee, John
Medeiros, Edward J.
Meick, Douglas
Miles, Tim

Mills, Harlan
Mishoe, Jim
Modlin, Mark

A-2

CSC

NSA

HUD .

Bell Labs.
NASA/GSFC
GE

IBM
NASA/GSFC
Census Bureau
Lib. of Congress
AIRMICS

NBS

USDA
NASA/GSFC
NASA/GSFC
DOTY

Univ. of Maryland
NASA/GSFC
CSTA

Hughes

IBM
NASA/GSFC
NASA/GSFC
NASA/GSFC
NASA/GSFC
NASA/GSFC
INSCOM ,
Nat’l Lib. Med.
Univ. of Virginia
NASA/GSFC
GE

DOT
NASA/GSFC
CsC

USDA

IITRI

Lib. of Congress
SDC

USDA
NASA/GSFC
NASA/GSFC
NASA/GSFC
G.W.
NASA/GSFC
IITRI

Dept. of Commerce
CSC

Lib. of Congress
Dept. of Commerce
IBM

IITRI _
Social Security Adm.

Moe, Karen
Mohanti, Siba
Motiey, Ron W.
Musa, John
Nadelman, Matthew
Napjus, Chris
Neill, David
Nelson, Bob
Neuwann, A. J.
Oesterricher, Charles
Oldson, Dennis
Ondrus, Paul J.
Ostrand, Tom
Page, Jerry
Parker, Donald
Penny, Leonie
Peters, Karl
Phenneger, Miiton
Pietras, John
Pinsky, Sylvan
Plett, Michael
Post, Jonathan
Postak, John N.
Posthuma, Bilt
Province, Phillip E.
Ratte, George
Redwin, Sam
Reynold, Paul
Roeder, John H.
Rowe, William
Rupolo, Vince
Ryland, Jim
Sandson, Mark
Savolaine, Cathy
Sauble, Geosge R., Jr.
Sayani, Hasan H.
Scheffer, Paul

" Schienoff, Marvin — S
Schneck, Paul
Schneider, Richard
Schwenk, Bob
Schultheisz, Robert
Sheppard, Sylvia B.
Selby, Richard
Shimer, John
Shukla, P.
Siegel, Mark E.
Singpurwalla, N.D.
Sloger, Marcia
Smart, Leslie
Smith, Gene
Smith, Luther G.

NASA/GSFC
Mitre Corp.
iBM

Bell Labs.

CsSC

NSA
NASA/GSFC
NASA/GSFC
NBS

Mitre Corp.
Sachs/Freeman
NASA/GSFC
Sperry-Univac
CsC
NASA/GSFC
USDA

CsC

CSC

Mitre Corp.
Social Security Adm.
CSC

Boeing Aerospace

-DOTY

NASA/GSFC

CSC

USDA

Mitre Corp.

Univ. of Virginia
NASA/GSFC

Social Security Adm.
Bankers Trust Co.
Social Security Adm.
CTA

Bell Labs.
NASA/GSFC
ASTEC

Martin Marietta

- -Social-Security-Adm. - -

NASA/GSFC

NASA/GSFC

NASA/GSFC

Nat’l Lib, Med.

GE

Univ. of Maryland

NSA

CSsC

Dept. Media Lib. Instr’l Systems
G.W.

USDA

Univ. of D.C.

NASA/GSFC

Fed. Reserve Bank of Richmond

Snyder, Glen
Sofer, Ariela
Gloss-Soler, Shirley
Sorkowitz, Alfred R.
Sos,John Y.
Soyer, Refik
Stanke, Edward C.
Starbird, Thomas
Stark, Mike
Stevenson, T.Q.
Suddith, Steve
Sokieski, Stanley
Sullivan, William
Svoboda, Cyril
Szulewski, Paul
Tesaki, Keiji
Tippett, James
Truss, Vivian
Truszkowki, Walt
Turner, Chris .
Vandegrift, Shia Lu
Voight, Susan
Waligora, Sharon
Walton, Barbara A.
Wamser, Ray
Weaver, Alfred
Weiss, Dave

Will, Ralph
Williams, Clifford
Wong, Alice A.
Youman, Charles -
Zelkowitz, Marv

A4

CSC

G.W.

IITRI

HUD
NASA/GSFC
G.W.

Martin Marietta
JPL
NASA/GSFC
USDA

CSTA _
NASA/GSFC
Dept. of Commerce
ASTEC

Draper Lab
NASA/GSFC
NSA

IITRI
NASA/GSFC
IITRI

USDA
NASA/Langley
CsC
NASA/GSFC
McDonald Douglas
Univ. of Virginia
NRL

NASA /Langley
DOTY

FAA

Cey Enterprises
Univ. of Maryland

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W. and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering,
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Managemeht
and Engineering," ASME Advances in Computer Technology,
vol. 1, January 1980

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering, New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

Basili, V. R. and J. Beane, "Can the Parr Curve Help with
_the Manpower Distribution and Resource Estimation Problems?"
Journal of Systems and Software, vol. 2, mo. 1,71981 ~— - -

Basili, V. R; and K. Freburger, "Programming Measurement and
Estimation in the Software Engineering Laboratory," Journal
of Systems and Software, vol. 2, no. 1, 1981

Basili, V. R. and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

Basili, V. R. and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

Basili, V. R. and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R. and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R. and M. V., Zelkowitz, "Operational Aspects of a
Software Measurement Facility," Proceedings of the Software
Life Cycle Management Workshop, September 1977

Basili, V. R. and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

Basili, V. R. and M. V. Zelkowitz, "Measuring Software De-
velopment Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R. and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering, New York: Com-
puter Societies Press, 1978

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"

Computer Sciences Corporation, Technical Memorandum, March
1980

Data and Analysis Center for Software, Special Publication,
NASA/SEL Data Compendium, C. Turner, G, Caron, and
G. Brement, Aprail 1981

--, Special Publication, A Comparison of RADC and NASA/SEL
Software Development Data, C. Turner and G. Caron, May 1981

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Mapp, T. E., "Applicability of the Rayleigh Curve to the SEL
Environment" (paper prepared for the University of Maryland,
December 1978)

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December
1978) '

National Aeronautics and Space Administration, Special Pub-
lication, NASA Software Research and Technology Workshop,
L. B. Holcomb and J. H. Bredekamp, March 1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F. and D. Weiss, "Concepts Used in the Change Report
Form," Goddard Space Flight Center, Technical Memorandum,
May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A. and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: BAddendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop, August
1976 -

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry et al., May 1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

--, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, -and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

--, SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

--, SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978 _

--, SEL-78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P, A, Scheffer, November 1978

--, SEL-79-001, SIMPL—D-Data Base Reference Manual,
M. V. Zelkowitz, July 1979

--, SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

--, SEL-79—003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

--, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and F. E. McGarry, September
1979 .

--, SEL 79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

--, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

--, SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Description, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MSS/GSSS) State-of-the-Art Computer System/
Compatibility Study, T. Weldon, M. McClellan, P. Liebertz et
al., May 1980

--, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan et al., October 1980

--, SEL-80-005, A Study of the Musa Reliability Model,
A, M. Miller, November 1980

--, SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

--, SEL-81-001, Guide to Data Collection, V. E. Church,
F. E. McGarry, D. N, Card et al., September 1981

--, SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff,
D. N. Card, V. E. Church et al., September 1981

--, SEL-81-003, Software Engineering Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, V. E. Church et al.,
September 1981

-=, SEL—81—004, The Software EngiheeringﬁLaboratorx,'
D. N. Card, F. E. McGarry, G. Page et al., September 1981

--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, D. N, Card et al., September
1981

--, SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green
et al., February 1981

--, SEL-81-008, Cost and Reliability Estimating Models
(CAREM) User's Guide, J. F. Cook and F. E. McGarry, February
1981

--, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J., Decker, A. L. Green, and
F. E. McGarry, March 1981

--, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

--, SEL-81-011, Evaluating Software Development by Analysis
of Change Data, D. M. Weiss, November 1981 '

--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

--, SEL-81-013, Proceedings From the Sixth Annual Software
Engineering Workshop, December 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Englneering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"”
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science, New York:
Computer Societies Press, 1979

Zelkowitz, M. V. and E. Chen, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering,
New York: Computer Societies Press, 1981

