RIME ICE ACCRETION AND ITS EFFECT ON AIRFOIL PERFORMANCE

Michael B. Bragg

The Ohio State University
Columbus, Ohio

63/0く vsita
March 1982

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewls Research Center
Under Grant NAG 3-28

TABLE OY CONTENTS

NOMENCLATURE iii
Chapter
I. INTRODUCTION 1
ÍI. REVIEG OF IITERATURE 8
IIf. theoretical analysis 16
Trajectory bquation 16
Trajectory Similarity Analysis 22
Modified Inertia Parameter 24
Trajectory Scaling Parameter 27
plowield 33
Droplet Impingement parameter 35
Ice Shape Calculation 39
Time Effects 43
IV. Numerical pormulation 45
Druplet Trajectory Calculation 45
Flowfitla 49
Tce Shape calculation 50
Iteration and Smooihing 51
∇. arrodynamic anazysis 54
Ice Shape Analysis 54
Roughness Effects 56
Analysis procedure 60
vi. RESULTS AND DISCUSSION 62
Trajectory Analysis Palidation 63
VMD Approximstion 67
Scaling parameter Validation 68
Trajectory Results 74
Ice Shape Calculation 77
Aerodyamic analysis 84
VII. SUMMARY AND CONCLUSIONS 92
REPRRENCES 98
PIGURES 106
APPENDIX 155

NOMENCLATURE
 \qquad

SYMBOL
DESCRIPTION

A	Area
AC	Accunulation parameter, Eq. (34)
B	Bassett unsteady memory force
C	Airfoil chord length
C_{D}	Droplet drag coefficient
$C d$	Airfoil drag coefficient
C_{2}	Airfoil lift coefficient
$C m$	Airfoil moment coefficient
D	Viscous drag force
E	Total_airfoil collection efficiency,

Fr Froude number, Eq. (6)
Gravitational acceleration constant
Airfoil projected height
Inertia parameter, kq. (5)
Trajectory similarity parameter, Eq. (24)
Modified inertia parameter. Eq. (14)
$k \quad$ Roughness height
$\ell \quad$ Length of ice grovth
M - Mass of ice accretion
$m \quad$ Mass of water droplet
Ma Apparent mass force


```
    \mu Absolute air viscosity
    \rho Air density
    O Droplet density
    \tau Nondimensiunal time
    \phi Anqle between the droplet trajectory and outer
    surface normal at impact
    Angle between the droplet trajectory and the
    vertical at impact
Subscripts
    m Model
    t Total_conditions
    O Initial condition
Superscripts
    - Derivative with respect to nondimensional time
    - vector notation
```

I. INTPODUCTION

The scientific study of aircraft icing began in the 1920's when aircraft were first relied upon for dependable transportation and national defense. Recently the increased utiliy of general aviation aircraft and helicopters has resulted in an increased potential for unfavorable encounters vith ice. Advances in avionics has made instrument navigation very reliable and sufficiently inexpensive to enable this equipment to be within reach of most qemeral aviation aircraft.

The aerody namic fenalties associated with fight into known icina conditions are well known; a sharp dra. ise and a reduction of maximum lift coefficient. However avoiding icina by remaining on the around when such conditions are redicted results in an economic penalty of loss of aiccraft usefullnese which is not easily accepted. The physical processes involved in aircraft icing, and therefore the solutions to the icing problem, are very complex.

Aircraft icing occurs when an aircraft penetrates in flight a cīoud of small super cooled water droplets. A portion of these droplets impinge upon the leadinq edqes
of various aircraft components resulting in the qrowth or accretion of ice. The accretion of ice and its effect on the aifcraft is a very difficult problem reguiring the expertise of rany areas of science and engineering. However most of the problem falls into one of two categories; thermodynamics or aerodynamics.

Whe thermodynamics of aircraft icing deals with the process by which the droplets which impinge on the surface change from the liguid to the solid phase. Two types of ice accretions can be identified and these are depictea in fiqure 1. Rime ice forms a relatively streamine shape extendina intu the oncoming air, while glaze ice is characterized by the double horned shape. Table 1 summarizes the conditions under which each typ of ice may bee expected.

TABLE 1 ICE FORMANION

	Rime	Glaze
Liquid Water Content	-_LOW	High
Air Temperature	Lov	Near Prpezinq
Piight Velocity	Low _	High
Freezina Praction	One	Less than one
Droplets Frpeze	On Impact	Flow on Surface
Ice Color	White, opaque	clear
Ice Density	$<1 \mathrm{qm} / \mathrm{cc}$	$1 \mathrm{qm} / \mathrm{cc}$

Rime ice ócura at luv air temperatures and at low liquid water contents f the concentration of water droplets in the free stroam and low flight speeds. In rimo icing the
dropiets frefze on impact and a good approximation to this ofrowth can be made by nexlecting all thermodynamic effects [1]. Glaze ict occurs at temperatures slightly below freezina and at rnlatively high liquid water ontents and hign flight velocities. An analysis of glaze ice accretion must include the proper thermodynamic modelling.
pesults of an aerodynamic wind tunnel test of a simulater ice shape [2] are shown in figure 2. Large increases in orag and a reduction in maxinum lift cofficient are shown for both types of ice. Iced airfoils are difiicult to analyze due to the severe surface rouahness and large zones of separated flow which result from the irreqular shapes of the ice accretions: Only empirical methoas are currently available to predict this derradation in jurfurmanco.

Two apmroacher to the aircraft icing problem are available. The first method is to prevent the ice from forming (ant-icing) or to remove it periodically (deicina) from the aircraft component. This reguires the dosian and installation of complex mechanical or thermal systems. These systems are usually designed as an add-on or retrofit ta an existing conponent. The second approach is to desian the component to eliminate or at least minimize the adurse effects of ice accretion. Such a component would not allow ice to accrete, or the ice
posit would be of such a geometrical shape as not to adversely affect the aeruivnaic performance. 'fris me has several advantages aver a ae-icing or anti-icind
2) Minimize cost of construction
3) Less maintenance required
4) No chance of system failure

While components which are unaffected by ice may
feasible, reducing this as feasible. such a design aerodynamic deniun certainly would have the greatest impact (Apis), and missies aircraft, remotely piloted venicies not desirable. where deicing systems are To design an aiferil or other acton. a method for which minimizes the effect of ice accermance must be evaluating the-iced airfoil per approach to airfoil design established. An experimental ape time consuming. some other if both too expensive anditoo mat means by rinicn to design of ana ty funnel tests for De fount, rescrvina-w2ad would be an empirical evaluation. one possible metro experimental tests of approach based on the werner method has limited iceô airfoils. However such a data base. Empirical - - potential and requires a va
methors are difficult to formulate, including all the necessary independent variables, and can not be used accurately to extrapolate beyona the available data base. An analytical approach does not suffer these limitations. Froperly formulated, this method will not only reproduce existina experimental data, but can be used to evaluate new airfoil defigns. The theoretical model may also generate new insiaht into the icing problem.

To be most useful an analytical method must be as self contained as possible. That is, not rely on experimental results as input to the analysis. The analysis must contain in adition to the aerodynamic analysis, a model of the ice accretion process. The only inputs to the problem shou'd be the atmospheric icing environment and flight conditions of the airfoil. The logical first step in such an analysis would be to initially study only rime ice accretion. Here the thermodynamics can be: iqnored and the droplet dynamics and aerodynamics can be emphasized. Rime ice is streamlinea in shape and conventional methods of aerodynamic analysis for unseparated flows are_applicahle. Concentrating on rime ice initially vould provide insight into the problem while allowing time for the further development of wethous for lealing with icing thermodynamics and the analysis of separated flows.

While some aircraft icing areas such as thermodynamics have receivod recent attention, the analytical prediction of the deronynamic performance of iced airfoils has not been stuaied. Litto experimental vork has been done since 1953 a:d no attempt has been made to predict the performance degradation experienced by iced airfoils since Gray's empirical method [3] of 1964. The analytical prediction of the aerodynamic effects of ice accretion on airfoils is then an important gap in our knowladge of the icing problem. In a joint wast ard YAA worksho on aircraft icing hela at Lewis fesearch center in 197\%, the needs for new icino research were liscussed. In his presentation Milton A. Beheim stated [4]
... a renewed effort on icing effects on airfoils is neenta $=$ not so much to refine icf rrotection systems as was done in the early 19s0's but to determine the performance owisitivity to. ice accretiun effects so that airfoil selections can be made to avoid, using a protection system whenever possible. particularly for
general aviation applications it ay even be possible to evolve new airioil qeometries that minimize the possibilities of ice accretion and itss deleterious effects on rerformance.

This naper focuses upon the analytical treatment of two dimensional airfoilsexposel to a rimp icina environment. New aircraft technology has yenerated reguirements for an increased understandina of the icina rhenomena. This re-examination of the icing problem, this
time with the aid of $h i$ in speed computers and modern numerical methoas, pronises the improvements in icing technology necessary to increase the utilization of general aviation aircraft and helicopters in adverse weather.

The qrowth of ice on airctaft comfonents results in a ---decrease in performance and a softey hatard which has been the subject or scientific research for over fifty years. Onfortunateiy most of this work was conductedin one ten year period which was concludeu almost twenty-five years aqo. Inly now is there an atterpt to orgenize and coordinate adaitional research. In an attempt toclarify the proaress made by early researchers, and document the need to continue this work, this review of aircraft icing Iiterature is presented in a historical perspective.

Early researchers disagreed on the physical phenomena responsible for ice accretion. This is quite evident in the review of early work by Blecker [5] in 1932 and a later Prench report [6] in 1938. Much of this early work was performed in Germany and other western furopean Countries. The u.S. made limited contributions to the study of aircraft icimg before 1940; probably the most important heina tho develonment of mechanical de-icing systems. These inflatable de-icina boots were designeä and built by the E . F. Goodrish Company and vere installed on aircraft booining in the 1930's. This sametype of
zustell is still in use toadar.
A major step forward was made in 1940 with the first mathenatical forwulation of water droplet trajectories. G. I. Taylor [7] developed the differential equation - governing aroflet trajectories for the special cases of constant draf conficient and stokes law drag. Calculations were performed and the appopriate similarity varanetors extrerted for a few simple cases. Taylor suggestef a scheme for the numerical solution of the equation for more complicated cases such as the flow about an airfoil. This vork was continued by Glauret [8] who porformed the numerical solution of Taylor's equations by hand calculation. Glauret furthered the work of Taylor by combining aroplet trajectories to determine the local mass flux on the airfoil surfice and the total collection efficiencies.
the publication of icing research in the open literature was aiscontinued during the war years of 1941 to 1.945, However immediately after the var, perhaps due to the need for all weather military aircraft made clear by the wat, icing research flourished until the mia 1950 's. After the Second World War the United states' National Advisory Comultee for Aeronatics, NACA, began an anbitious program. The bulk of this work was conducted at the NACA's lewis Research Center from 1945 to 1955 . The
research was directed toward defining the ratural icing fovironment, determining its effects on representative aircraft compunents, and desiuning techniques for ice protection [4]. Greal progress was wale in understanaing the icinc procese and in proteding the aircraft fromits hazards. The classic reference in the area of aroplet trajectory calculations was published by lanomuir and shoaqett [9] in 1946. Here the droplet trajectory equation is pressater for an arbitrary drac cofficient. The entire promer of trajectury calculations is presented in a form siailar to that used today. Using a differentinl analyser the aroflet trajectory about a cylinder, suthere, and fibton were solved numerically and the collection efficiencies were rresented fur several cases. In alaition, the nolified inertia parameter was vresented as e means to singlify the amalysis by reducing the inertia parameter anl the free strean Raynolds number into a sinole dimensionless paradeter.

This methon of numerically deternina aroplet impingenent on aixcraft components was used extensively by the Nhen in the late 40 is and early 50 's. These researchers were greatly hamered by the lack of high spewe diaitul computers and numerical solutions for the flow hhout an arbitrary body. As a result calculations were often made about boxies for which the flowield coula

Uo solvel analytically. Droplet trafectories were calculated about cylinders [10,11]. spheres [12]. and Noukovski airfoils [13,14]. AThitrary airfoil sections wore first handled by Bexarun [15] usina an empirical apmroach basor on droplat trajectories about joukowski airfoils. Mrungadilaghor, and vogt [96] used a vortex substitution mathod to gnomrate the flowfiela about an arbitrary airfoil. This approach required a wino tunnel test to measure the surface velocities on the airfoil before the vortex stronoths could be determinct. The method was used extensively by the NACA [17-19] to analyze the droplet impinament charactoristics of airfoils. Fxtensions of this analysis were made by Strafini [20] to a supermonic airfoil and by borsch and Rrun [21] to a swept wing. Droplet trajectory calculations rere also performed about axisymmetric bodies [22-24] to simulate the nose of an aircraft or missle. The trajectory calculations maide by NACA researchers provod to be very accurate and provided valuabe in: ght into aircrart icing, data for the aesion of ar-icing svateus, ami quidance to the experimentalists. Raxly in the NACR iring prouram an extensive study was made or the nitural icing ravironment. vumetous experimental :ituites vere yerforgen to determine typical combinations of cloucipmpertipssuch as horizontal and
vertical size, droflet diameter, liquia water content, and ait tomperature experiancerd by aircraft. These data were compiled and summarized in three reports [25-27] which were ultimately usud to compile the FAli Part 25 Appendix C [28] icing onvelope. This icing envelope is still in use ane fefines the ranac of conditions over which any aeicing system must function to odtain FAA certification. Meny experimental studies were conducted in the $N A C A$ six by nine foot icina tunnel located at NASA Lewis. one important test proaran developed the dye-tracer technaque for exnerimontally obtaming inpinuenent characteristics of arnjtary bodies [29]. In the dye-tracer technique a boty is confiqured with blotter paper and exposed. to an airetrean containino a dyed-water spray cloud. The blotter parer is then calorimetrically examined in order to obtain local collwction efficienciwes, total collection ffficiencies, and maximum rearwardextents of impingement. This technique has vech used on airfoils [30,31] and other bodies $[32,33]$ and pruvides the only direct experimental uata for use in the verification of aroplet trajectory calculations.

Aiffoil icing experiments conducted in the icing rind tunnel servea two main objectives. Thestr tests documented the change in airioil performance characteristics due to io accretion wile also serving as test beds for new de-
icing and anti-icing systems. In the first test [34,35] no quantitative measure was made of the ice growth. Aerodqnamic lata was obtained from a heated wake survey probe measuring the changes in arag, while lift and moment -cefficient chanyes were not measurea. The tests were - primarily to evaluate the ice protection systems. Bowien [36] in 1956 fresented a fairly complete aerodynamic evaluation of icing effects on a NACA 0011 airfoil. A six conimont furce balance system vas-useu to enable the measurement of changes ill lift, arag, and pitching. moment. As in earlier test: the documentation of the ice shapes from which the aerodyramic peanlties resulted was only described aualitatively.

The most complete airfoil icing analysis performed is reported by Gray [1,37]. Here theorttical and experimental impingerent efficiencies, ice shape measurements, and an aerodynamic analysis vas performed on an NACA 650004 airfoil section. The experimental and theoretical impingement characteristics compared vell for some cases. but the failure of the predicted values in some situations was not understood. Gray [34] presented the first pmurical relation to be used to predict the changes in drag coefficient due to icing. This equation was based on the NACA 650004 icing data and was good only for this particular airfoil.

In approximately 1950 icinu research at the NaCA was stopped. The aivent of jet enqined aircraft reduced the icing hazard and requirw that research efforts be shifted to new areas. At its confletion the NACA prouram had urovided dood ice protertioll for the aircraft of the day. The analytical meatiction of impinqement rates had begun, wut no methois for ice shape calculation or the resultina airfoil performance degradation were develofea. Exuerimental zesults were confined to unly a few suecialized airfoils anc had consisted primarily of ice protection systefi evaluation. Two compilations of NACA data rere published in 1964. Gray [3] compiled all the iced airfoil drae data to expand his empirical equation and povien et. al. [38] presented an exhaustive sumary of existing aircraft icing technolug.

Interest in aircraft icing research was rempued in the early seventies in furope anc Canada. Thest studies have been primarily involven wi.th the thermodynamics of the ice accretion procers. Lozowski, Stallabrass, and Hearty [39] in 1070 presented a sumary of thermolynamic modelling and their current state-of-the-art approach. All of these sturies are happered by the lack of goul droplet impinuement mothods. Revearch has been conducted in Wertern furop, in several areas which are sumparized in reforence 40. Recent aerchynamic studies have been
conducted in Sweden and the Soviet Union [2] to determine experimentally the performance of iced airfoils. Similar tosts conducte3 in the onited states have in general not benn publishew since they were conducted by manufacturers for icing cortification and not qovernment sponsored. One rocent excention is the work by Wilder [41] from Boeing. Wiluer presents the resules of theoretical impingement calculations, experinental ice shape correlations, and ioef airfoil tests. Unfortunutcly litule inforadion is nrovided as to the analytical or experimental methods used to obtain these fata.

Recoqnizind the need for an orqanized icing research effort in the United States, NASA Lewis Research Center established a program of icing resenrch in 1980. The nasa froqram includes a broad range of research objectives. The waluation of de-icing systems and anti-icing systems [42] has recently hegun in the Lewis Icina Iunnel. Analytical efforts include a three dimensional droplet trajectory code [43], and preliminary results of this - d-issertation [44]. Hopefully the need to apply current technology to the icina problem. as revealea by this. reviow of past research efforts, will be met by the current N-AsA icing research pruyram.

Before the apronynaic wiformance of an airfoid with rime ice can be determined, the yeometry of the ice accretion must first he calculated. This section presents the theoretical method for the prediction of rime ice shapes which accrete on unprotected airfoils. Therefore the first stel in the theoreticul analysis is to formulate and analyze the equation governing the trajectory of a single spherical particle in a noving fluid... .

Trajectory Equation
sircraft rime icing occurs when super couled water droulets impact the lwaling edge of an aircraft component. Thesededfoplots have dianeters o: 10 to 50 microns [28] and pxoerience neynolis nuabers low enough to ensure that the particles renain spherical in shape [43]: Por rime icing clouds the liquid water content which exists rarely exceedes 2.0 arams of water per cubic meter of air. Due to this low concontration of water droplets in the free stream, the flow may be consicicied uncoundea [45] and the influence of the droplet on the flowfeld ianored. By applying Nowton's Second Law. $P=m a, ~ t o ~ t h e ~$ Particle, the qovernang equation can be derived. This
equation has been piesented by soo [46] and Rudinger [47] as

$$
\begin{equation*}
m\left(\frac{d^{2} \overline{\bar{x}}}{d t^{2}}\right)=\bar{D}+\bar{P}+\bar{M}_{a}+\bar{B}+m \bar{g} \tag{1}
\end{equation*}
$$

This equation may be significantly reduced for the present application. For a water aroplet moving in air the density of the particle is much greater than that of the fluid. Therefore, the pressure gradient tern, $\overline{\mathrm{P}}, \mathrm{and}, \overline{M a}$, the apparent mass term may be neglected [46,47]. The fourth term in equation (1), \bar{B}, represents the Bassett force. This term accounts for the deviation of the flow pattern around the particle from tnat of steady state and represents the effect of the history of the motion on the instantaneous force [47]. This term is significant if the particle density is of the same order as that of the fluid, or if the particle experiences large accelerations. Droplets can experience large accelerations when in the leading edge region of an airfoil. Norment [43], using -..the work of keim [48] and crow [49], has shown that for the icing problem the accelerations experienced by the droplets are not large enough for the Bassett term to be sianificant: Therefore the Bassett term, \bar{B}, can also be aropped from the analysis. With these assumptions, eq.
(1) reतuces to.

$$
\begin{equation*}
m\left(\frac{d^{2} \bar{x}}{d t^{2}}\right)=\bar{D}+m \bar{g} \tag{2}
\end{equation*}
$$

For the small water droplets considered in the icina problem, and for the small time scales involved, the arapity or set.tlina term may in aeneral be dropped from the analysis. Howeytr, it will be retained here to allow a more qeneral application of the method. The viscous - drad term, \bar{D}, can be expressed in the conventional manner as

$$
\bar{D}=\frac{1}{2} \rho C_{D} S\left|\bar{u}-\frac{d \bar{x}}{d t}\right|\left(\bar{u}-\frac{d \bar{x}}{d t}\right)
$$

Where S is the cross sectional area of the sphere and C_{D} the drag coefficient derived frow experimental results. Note that here the draa is evaluated usina the slip volocity, that is the velucity between the droplet and the Local airstream. Substituting in for the dray and dividing through by the mass, eu. (2) becomes

$$
\begin{equation*}
\frac{d^{2} \bar{x}}{d t^{2}}=\frac{3}{4} \frac{\rho C_{D}}{\delta \sigma}\left|\bar{u}-\frac{d \bar{x}}{d t}\right|\left(\bar{u}-\frac{d \bar{x}}{d t}\right)+\bar{g} \tag{3}
\end{equation*}
$$

Nondimensionalizina eq. (3) yields

$$
\begin{equation*}
\frac{\ddot{\eta}}{\eta}=\frac{1}{\bar{k}}\left(\frac{C_{D} R}{24}\right)(\bar{u}-\hat{\eta})+\frac{1}{F_{F}} 2 \frac{\bar{g}}{g} \tag{4}
\end{equation*}
$$

Which is the doverning equation for a droplet trajectory. The nondimensionalization was performed vith respect to the characteristic velocity, U, the free stream velocity. and the characteristic length, $c, ~ t h e ~ a i r f o i l ~ c h o r d . ~$ Differentiation is with respect to nondimensional time, τ.

Where $\tau=U t / c$.
In eq. (4) tro dimensionless parameters occur. The inertia parameter,k, is

$$
\begin{equation*}
K=\frac{\sigma \delta^{2} U}{18 c \mu} \tag{5}
\end{equation*}
$$

and is essentially a nondimensional particle mass. The second parameter, Pr, is the froude number

$$
\begin{equation*}
F_{r}=\frac{U}{\sqrt{c g}} \tag{6}
\end{equation*}
$$

Which is the ratio of ipertia to gravitational forces. A third similarity parameter appears due to the form of the car/24 term in eq. (4).

The drag coefficient of a sphere in a non-accelerating stream has been measured as a function of Reynolds number by many researchers. Sphere drag is also in general a function of particle mach number. However, for rime icing Which occurs at low fight velocities, the particle kach numbers are low and the compressibility effects on sphere. drag are not significant. Here Reynolds number is based on droplet diameter and the relacive velocity between the stream and the particle. Reynolds number as used here is given by

$$
\begin{equation*}
R=\frac{\rho \delta U|\bar{u}-\dot{\bar{n}}|}{\mu} \tag{17}
\end{equation*}
$$

[^0]results and is presented in Schlichting [50]. For low Reynolds numbers the well known classical stokes solution for sphere drag is
$$
C_{D}=\frac{24}{R}
$$

However this theoretical result is for creeping motion and is not valid for the hiuher Reyuolds numbers experienced by icina droplets. Stokes drag law is however a limiting case used to establish enpirical fits to the standard sphere drag curve good for hiqher Reynolds numbers. Langmir [9] presented one of the earliest empirical fits of the standard sphere draq curve diven by

$$
\begin{equation*}
\frac{\mathrm{C}_{\overline{\mathrm{B}}} R}{24}=1+0.19 .7 \mathrm{R}^{0.63}+2.6 \times 10^{-4} R^{1.38} \tag{8}
\end{equation*}
$$

This equation provides qood drag coefficients up to a Reynolds number of 1000 . A somewhat simpler form proposed independently by klyacho [51] in 1934 and putnam [52] in 1961 is

$$
\begin{equation*}
\frac{C_{D} R}{24}=1+\frac{1}{6} R^{2 / 3} \tag{9}
\end{equation*}
$$

Botheq. (8) and (9) represent good fits to the experimental results as do several other similaf equations proposed by other researchers. The standard drag curve. Stoker law, eq. (8), eq. (9), and the recent and-more accurate measurements of Reard and Pruppacher [53] are
compared in Table 2.
Table 2 Comparison of Particle Drag Coefficients, C_{D}

r					
0.01	2400.	2400.	2426,	2420.	
0.1	243.	240.	251.	249.	242.7
1.	26.9	24.0	24.5	28.0	26.45
10.	4.33	2.40	4.43	4.26	4.149
100.	1.09	0.24	1.14	1.10	1.073
500.	0.568	0.048	0.588	0.552	
1000.	0.469	0.024	0.477	0.424	

The empirical fits.for the sphere drag coefficient including equations (8) and (9) are of the general form

$$
\begin{equation*}
\frac{C_{D} R}{24}=\sum_{i=1}^{N} C_{i} R^{\gamma i} \tag{10}
\end{equation*}
$$

Osing eq. (7) for P , eq. (10) can be witten as

$$
\begin{equation*}
\frac{C_{D} R}{24}=\sum_{i=1}^{N} C_{i} R_{U}^{Y i}|\bar{u}-\bar{\eta}|^{Y i} \tag{11}
\end{equation*}
$$

Where R_{U} is the free stream droplet Reynolds number

$$
\begin{equation*}
R_{\mathrm{TJ}}=\frac{\rho \delta U}{\mu} \tag{12}
\end{equation*}
$$

Therefore, since the droplet drag coefficient can be expressed in the form of eq. (11), the Stokes parameter. cdR/24, appearing in eq. (4), yields the additional similarity parameter K_{U}, the free stream aroplet Reynolds number. \qquad
The trajectory of a liquid droplet, for the rime icing problew, has been shown to be governed by the differential equation (4). Eq. (4) contains the three similarity
\qquad parameters $R_{U, ~} K$, and $P r$. In the next section R_{U} and K are combined into a single parameter which greatly simplifies the analysis. The flowfield which enters equation (4) as u, will also be discussed in a later section.

Trajoctory Similarity Analysis
In the derivation and discussion of eq. (4) it has been shown that the droplet trajectory, ignoring the flowfield, is a function only of the three similarity. parameters $\mathrm{R}_{\mathrm{U}}, \mathrm{K}$, and Fr , and the initial droplet conditions. to simplify this ancysis the froude number, Fr, will be dropped, since it can be shown to be neqliqible for the rime icing problem. The scaling of the gravity force and other terms in eq. (1) will be discussed later. Nealecting the qravity tera eq. (4) becomes

$$
\begin{equation*}
\ddot{\bar{\eta}}=\frac{1}{\mathrm{~K}}\left(\frac{\mathrm{C}_{\mathrm{D}} \mathrm{R}}{24}\right)(\overline{\mathrm{u}}-\dot{\bar{\pi}}) \tag{13}
\end{equation*}
$$

Now the trajectory depends only on F and K, assuming the initial conditions in nondimensional form are constant.

The identification of the proper similarity parameters for a probleri is very important. Not only do the parameters simplify the analysis, but they also aid in the presentation of experimental and numerical data, and serve as scaling parameters in the design of scale model tests. For -aircraft icing scale model tests, using R_{U} and K to
establish test conditions violates other similarity parameters. For example, often only the model speed and droplet diameter can be varied. Holding R_{U} and k constant then requires that

$$
\delta_{m}=\left(\frac{c_{m}}{c}\right) \delta \quad \text { and } \quad U_{m}=\left(\frac{c}{c_{m}}\right) U
$$

is a result, for small scale models the test velocities are very large and violate the mach number scaling of the flowfield. Similar problems in the scaling. of drops in aircraft wakes have bern reported by ormsbee and Bragg [54]. Recent icing tests by a Swedish-Soviet research group [2] chose to iọnore the Reynolds number scaling and hold only the inertia parameter constant in an attempt to avoid this problem.

Methods are available to alleviate this scaling problem by reducing the number of similarity parameters. Cominning the similarity parameters R_{U} and k into one parameter would also gieatly simplify data presentation. The first attempt to combine R_{U} and K was made by Langmuir when he presented the modified inertia parameter, K_{0}. This parameter will be discussed here and a new derivation presented which for the first time yields an analytical solution. In addition, a method is presented which is much simpler to use, and in many cases mere accurate.

Modified Inertia Patameter : The modified inertia जaramoter, Ko, was presented by Lanumuir [9] in 1940 to be usped to-present airciaft icing_data. In fact, this parameter is still in wide use in the aircraft icing commanty athoum no theuretical proof of its validity is available [39]. Currontly no closed form solution for the paramoter exist:s and a quaphical technique or curve fit to the numerically generated data is used. Here the k_{0} yaramoter will be derivid from the qoverning differential equation and a clospa form solution obtained.

The modified inertin parameter, Ko, is detined as

$$
\begin{equation*}
K_{o}=K\left(\frac{\lambda}{\lambda_{S}}\right) \tag{14.}
\end{equation*}
$$

Where k is the inertia parameter and t / λ_{S} is the ratio of the trafectory of a droflet in still aif, with an initial Reynolds rumber of R_{U} amd qravity neglected, divided by the same trajectory of the droplet if the drag is assumed to obey stokes law. So K_{o} combines K and $\mathrm{K}_{\mathrm{K}} \mathrm{J}$ into a single parameter since N / λ_{S} is a function of $k U$ alone. lanamuir showore that λ / λ_{S} is given by

$$
\begin{equation*}
\frac{\lambda}{\lambda_{s}}=\frac{1}{R_{U}} \int_{0}^{R_{U}} \frac{d R}{C_{D} R} \frac{24}{2} \tag{15}
\end{equation*}
$$

llsing the stamiard spherr arag curve tor car/24, Langmuir performed this interiation numerically ter qenerate λ / λ_{s} as a Eunction of RUWich is still in use today.

By using the differential eq. (13) we can examine more carefully the origin of langmir's Ko parameter. It is not clear fron reference 9 if Langmuir derived K_{o} in this way, but the basic relationship between K_{0} and the governing differential equation was suggested in 1952 in reference 55.

By rearranging eq. (13), it becomes

$$
\begin{equation*}
\left(\frac{\frac{K}{C_{D} R}}{24}\right) \ddot{\bar{\eta}}=(\bar{u}-\dot{\bar{\eta}}) \tag{16}
\end{equation*}
$$

 along the particle trajectory, If some suitable average of the term on the left hani side of eq. (16) could be found, the R_{U} and K paraneters can be combined into a single similarity parameter. Assume that the particle experipnces Reynolds numbers from zero to $R^{\prime} U^{\text {t }}$ the value based on the free stream velocity. Then averaging this term yields

$$
\begin{equation*}
K_{0}=\frac{\tilde{k}}{R_{U}} \int_{0}^{R_{U} \frac{d R}{C_{D} R}} \tag{17}
\end{equation*}
$$

The modified inertia parameter is merely the average value of the single coefficient which appears in the droplet trajectory equation (16). Ko is not an exact similarity parameter, but does have valid theoretical justification as it is a straiqhtforvard simplification of the governing particle trajectory equation. The modified inertia
faramoter provioes qood data correlation, provided the rango of Reynolds numbers experienced is consistent with the range zero to $\mathrm{R} U$ -

A closed lorm solution for K_{0} can be found if an inteqrable lorm of the droplet arad coefficient is used in oq. (8). Futna: r5i? and Klyacho [51] developed such an fquation valit uptolds number of 1000 as

$$
\begin{equation*}
24=1+\frac{1}{6} R^{2 / 3} \tag{18}
\end{equation*}
$$

Following the work of Putnam, and after considerable inteqration and alyobra, a closed form of K_{o} is given as

$$
\begin{equation*}
K_{o}=18 K\left[R_{U}^{-2 / 3}-\sqrt{6} R_{U}^{-1} \operatorname{Tan}^{-1}\left(\frac{R_{U}^{1 / 3}}{\sqrt{6}}\right)\right] \tag{19}
\end{equation*}
$$

This rouation is within one percent of Langmuir's calculated values until R_{U} apricoaches 1000 where Lanamuir's values deviate from those of ey. (19). This is due in part to the different droplet arag values used. eg. (3) and (13), and prohably some accumulation of er ror in the numerical procedurp.

The lower limit of ev. (19) can be used to check the derivation ot K_{o}. ny definition K_{o} wist appreach the inertia parameter for small values of the Reynolds number where the particle drag is essentially governed by stokes 1aw. By expanding the inverse tanaent function and taking the limit as k_{U} approaches zero, eq. (19) reduces as
expected to Ko equals K. By examining eq. (19) as \mathbb{R}_{U} approaches infinity K_{o} takes the form

$$
\begin{equation*}
\ldots K_{0}=18 \mathrm{~K} \mathrm{R}_{\mathrm{U}}^{-2 / 3} \tag{20}
\end{equation*}
$$

It is also interestinu to compare the curve fit developed by Stallabrass and Lozowski [39] for K_{o} where

$$
\begin{equation*}
K_{0}=\frac{K}{1+0.0967 R_{\dot{U}}^{.6367}} \tag{21}
\end{equation*}
$$

This compares well to eq. (19) ; note the similarity in the $1 / R_{U} .6367$ termin eq (21) and the $R_{U}{ }^{-2 / 3}$ expression in eq. (19).

The use of eq. (19) should improve the usefullness of the existing icina data correlated with K_{0}. Eliminating interpolation or curve fits to Lanqmuir's tabulated data should also improve accuracy. Eq. (19) coula be used to reduce other droplet trajectory data, however, the analysis to fullow will result in a parameter which is easier to use and more accurate and versatile than the k_{o} parameter.

Trajertory Scaling Parameter : An alternative approach can be taken to simplify the single coefficent appearina in the trajectofy eq. (16). Instead of assumina that Car/24 is a constant, as was done to derive K_{0}, here assume that

$$
\begin{equation*}
\frac{C_{D} R}{24}=C R^{Y} \tag{22}
\end{equation*}
$$

Which is the first term of the general equation (10). This appears as a straight line on the log-log plot of Car/24 vs. R, fiquie 3. A-similur approximation has been made before by ormsbereand Bragg $[54,56]$ and by Armandet. al. [57] to scale aroplet trajectories. The trajectory equation becomes

$$
\begin{equation*}
\ddot{\ddot{n}}=\left(\frac{C R_{U}}{K}\right)|\bar{u}-\dot{\bar{n}}|^{\gamma}(\bar{u}-\dot{\bar{\eta}}) . \tag{23}
\end{equation*}
$$

Now define the trajectory similarity parameter, \bar{K}, as

$$
\begin{equation*}
\overline{\mathrm{K}}=\frac{\mathrm{K}}{\mathrm{CR}_{\mathrm{U}}}{ }^{\gamma} \tag{24}
\end{equation*}
$$

Where the cofficient in eq. (23) has been inverted to follow the convention established by the monified inertia parameter.

The apperarane of the $\left|\bar{u}-\frac{\dot{\eta}}{}\right|^{\gamma}$ term in eq. (21) simplifies the use of this parameter while decreasing the expected increase in accuracy over the K_{o} parameter. since a occurs outside of the \bar{K} terin, C and Y cannot in qeneral be functions of 'U, but must be chosen from a sinule best fit of car/24 $=\mathrm{CR}^{\text {' }}$ over the entire range of Reynolas number: to be experienceri by all particles under consiberation. Then after C and γ have beren chosen for a particular application, a simple paramuter combining k and ${ }^{R} U$ is available to be used for data presentation or cotablishiny scalo model test conditions. Note that if
the aravity term need be included, this requires only that the Froude number, Pr, also be considered in addition to \bar{K}.

A careful analysis of the modified inertia parameter, K_{0}, and the trajectory scaling parameter, \bar{K}, shows that the two parameters are related. If the approxinate drag -. law of eq. (22) is assumed and used in eq. (17) the result is

$$
K_{0}=\frac{K}{C(1-Y) R_{U}^{Y}}
$$

For this special case then K_{0} differs from \bar{K} by only a constant. While the general form of k_{o} given by eq. (19) is more compicated, it too can be seen to be in a functional form similar to that of \bar{K}. Taking the limit of both Ko and \bar{K} as R_{U} approaches zero yields just K in both instances. As R_{U} approaches infinity the limit of K_{0} is

$$
K_{o}=18 K R_{U}^{-2 / 3}
$$

as given earlier in eq. (20). This is exactly eq. (22) for \bar{K} if $\gamma=-2 / 3$ and $1 \wedge=18$. Therefore it has been shown that K_{o} and \bar{K} are the same within a constant if a simple drad law is assumed in deriving K_{o}. So K_{o} and \bar{K} are certainly closely related but 30 vary slighty in their working range.

A method for selectind the γ to be used in the \bar{K} narametor must be deternitus. The selection of a γ depends on the ranoe of neynolds numbers to we experienced by the warticles during the ir trajectories. since a γ term occurs in the differential equation outside the \bar{k} torn (see en. 23) only one γ may be selected for each apolication of \bar{h}. Sofor a scaina application a different Y mav be selected for each particle considered, however, wher \bar{Y} is used to prosent data, an average valur of f ghet be use? which is youd over all possible particle trajectories to be presented. The value of the constant C appearing in the \bar{K} paralleter has no etfect on the use of the term ant is considered to be equal to one for convenience.
sofore γ can be dotemines the peymolas umber range experionce? by a rime icing pastacle must be estimated. The suber coule? wathr dronlets are dssumed to be at rest with respect to the atinuspere initially, and therefore the lower bount on the neynolas number rance is zero. The - Apantetexperiances it:; maximum revnoles number when it is in the immodiate proxinity of the airfoil luaina edae Where the velocity gradients, and therfore the relative volocity betwern the drap and the fluid, dre larae. In figure 4 the leynolds numbers experienced by droplets along their tiajectory ir shown. This iatordation was qenerated using the rembuter code lesoribed in section IV.

The droplets wore startad five chords in front of a typical qeneral aviation airfuil operatina at a cruise condition. Note that all the farticles experience Roynolds numbers in the stokes law range for the first \therefore - nintey percent of their trajectories. Only as the aroplets apmeach the boxy do the keynulds numbers increase dramatically. Tnis analysis has shown that the droplets usually experience maximum Reynolds numbers of luss than ont half Pu.

Using this information on the typical meynolds number ranue along with firure 5 a value of γ can be determined. Fiqure 5 summarizes the results of a least syuares fit program which calculates the value of γ which provides the best fit of the approximate sphere drac expression of eq. (22) to the stanaard sphere dray curve. Thw fit is perfoxmed from a Reynolde number of zoro to f . It has been found that for the airaraft iring prollem a γ of 0.35 represents a youk averave value to he used for preliminary scaling calculations and for data presentataon. To select a y to uet in scalino a particular droplet, the average value of R for the full scale and scaled particle is found and then fiqure 5 can be used to detexinine γ. In deneral this is an iterative pruceaure, but hy using $y=0.35$ to select the initial scaled k_{U} it converaes ravidly; usually the tirst stol is sufficiontly accurate.

- A systematic procedure has been presented to reduca by one the number of similarity parametors governing this class of particho trajectories. The method of langmuir, nreviously little understoos, has bern derived from the qovernina iditierential equation and a clostr form solution har beon urerented. This mearult should clarify the
 make the existing data correlated using-k. easier to interpret.

A new aimensionless number, \bar{K}, the trajectory scaling farameter is derived. This parameter is more accurate and varsatile than the modified inertia parameter. The trajectory scalind parameter may be used to simplify any trajectory andysis. All that is required is the deternination of the exponent, , in the approximate drau lay usa.? in atriving \bar{K}. The exporient mav be found by the following procedure:

1) Devermine the range of heynodus numbers oxerifenced by the class of particles for which the K parataeter $i s$ to be used.
2) By using a least squares or other best fit schere, deternint the γ for which tho aproximate drag law hest Eite the stanaira dran rurve in the Roynoles number ramat of interesit.

Fanerimental and numerical rosultsi in suppott of the \bar{K} fararoter, and a comparison of fo and \bar{r} will be presented in sertion VI.

Plowfield

To calculate the trajectory of a particle in the vicinity of an airfoil the detailed flowfield must first be determined. The dimensionless flowfield velocity appears in the differential equation (4) as $\overline{4}$, and also in the Roynolds number, F. The effect of a conpressible flowfield on water âroplet trajectories has been studied [10] and found to be negligible for cases up to the critical Mach numher. In addition, the viscous effects near the leading edge of an airfoil are confined to a very thin boundary layer. Since for most applications the water aroplets only impact the airfoil near the leading edue, the effects of the viscous reqion near the airfoil are assumed negligiblt. It is therefore sufficient for this purpose to describe the flowfield about the airfoil by an inviscia, incompressible, potential flow solution.

Both sinqularity and conformal wapping methods are currently in use for predicting the flowfield about an airfoil. Both methoas vere used in some form by the NACA to make droplet calculations in the 1950's. This present analysis uses a mouified version of a transformation schome for arbitrary airfoils first presented by Theotorsen [58.59]. This method as formulated by woan [60], rmplaces the Joukowski transformation used by Theodorsen for the first step by a Rarman-Trefftz
transformation. This nrovides a better near circle for airfoils with finite trailing tugs angles. The second important feature of this metnoa is in the sclution for the exact circle. For most applications only tre velocity on the airfoil surface is desired. To obtain only the surface velocities a simplified approach is available Whirn eliminates, the need to caleulate all the coefficiente in the complex Fourier series which transforms the hear circl: to an exact circle however, the Fourier coef:icients are newdea to determine the velocity in the flowfiple at some point not on the airfoil. The analysis of Wuan frovides for the Aereraination of sufficient pourier coefficients to solve for the entire flowifols.

The Theodomern methoil has beon criticiznu in the past for tailing to reproduce the flowiteld acrurately, yarticularly in the vicinity of the leading edae. It now arpears that this was a characteristic of early numerical schomes and unt of the methor itself. The veloeity distribution comruted about a typical general aviation airfoil by this method is compared to the sophisticated sinumbarity mothod of fryer [61] infiaure e. only the leadindedut radion is shown where the calculated velocity distributions are practically iofentical. the comparison of the surfacr velocities over tha rest of the airfoil is
also excellent. This demonstrates the validity of the Theodorsen flowfield code.

The method provides an accurate velocity anywhere in the flowfield. This information isused in the solution of eq. (4). $2 n$ addition this method has proven to be zery successful in handiing leadinq edge shapes required later in the analvsis.

Droplet Impingement parameter

By analyzing the information gathered from several droplet trajectory calculations much useful information can he extrapolated. Glauert [8] Eirst combined droplet trafectories to determine the mass of water strikina a circular cylinifer as a function of theta, the angle moasured from the stagnation point. Lanqmuir [9]extended Glallert's anflysis to dptermine the inass striking an arbitrary body as a function of S, the are lemqth along the surface. The analysis presentor here will follow that of lanamuir with some extensions, particularly in the area of clouds containing distributions_of_droplet sizes. Assuming the droplet trajectory information is available, the Eirst step is the calculation of $\%$, the impingement efficiency. The impingement efficiency is a dimensionless mass flux of the material impinging at a particular point on the airfoil surfacf. β is nondimensionalized with respect to the mass flux in the
free stream. An impingement efficiency of one is just that in the free stream, or it is the dimensionless mass flux on an imayinary flat plate, which does not alter the free stream flow, placed perpendicular to the free stream.

The impingement ef.ficiency on an airfoil surface can be deduced from fiqure 7. The position on the-airfoil surface is given by s, the arc length along the surface measured from the leading edge. S is measured in chords and is positive on the upper surface and negative on the lower surface. The vertical position, dimensionless with c, in a plame perpendicular to the free stream is qiven by Yo. The mass of water droplets between the two particie trajectories a 3 istance δy_{0} apart in the free stream is distributed over a length $d S$ on the airfoil surface. As the lenath δs approaches zero, the local impingement efficiency becomes

$$
\begin{equation*}
B=\frac{d y_{0}}{d s} \tag{25}
\end{equation*}
$$

Note that in the frees stream δy_{0} equals δS so that $\beta=1$ as equire β. β can nov be calculated by taking the derivative of the y_{0} as a function of s curve derived from indiviaual droplet trajectory calculations.

The total mass flow rate of water caught per unit
span by the airfuil is then given by

$$
\begin{equation*}
M=U \lambda_{c} \int_{S_{L}}^{S_{U}} \beta \mathrm{ds} \tag{26}
\end{equation*}
$$

Here the limits S_{U} and S_{L} are, respectively, the waximum limits of droplet impingement on the airfoil upper and lower surfaces. By substituting eq. (25) for β in eq. (26), M becomes

$$
\begin{equation*}
M=U \lambda_{c} \Delta y_{0} \tag{27}
\end{equation*}
$$

The total mass collected by the airfoil then depends on ΔY_{0}, the distance in the free streall betwern the upper and lover tangent trajectories, figure 7. It is convenient to define an overall collection efficiency, E, to evaluate and compare the impingement or catch rates af various airfoils. The collection efficiency is defined by the rate of mass caught divided by that of the free stream

$$
\begin{equation*}
E=\frac{\Delta y_{0}}{h} \tag{28}
\end{equation*}
$$

Here h can have two different values. Some researchers take h as the maximum airfoil thickness to chord ratio, while others use the maximum projected frontal height, - which is a function of angle of attack. This paper uses the later definition unless othervise specified.

The preceding discussion describes the calculation of B where the icing cloud contains only a single droplet size. In general cloutis contain a distribution of particle sizes about some volume nean diameter, vmb. To represent the total impingement efficiency. Bt,for a point on the
airfoil including the particle size distribution effect, the equation is

$$
\begin{equation*}
\xi_{t}(s)=\int_{\delta_{\min }}^{j_{\max }} R(\delta, s)\left(\frac{d V}{d \delta}\right) d \delta \tag{29}
\end{equation*}
$$

Here $B(\delta, 5)$ is the impinoment efficiency at a point S on the airfoil surface due to a farticle size fe Langmuir [9]_har-definen four particle size distributions about the VMD Which are fairly representative of actuad icing clouns. The distributions are defined by v, the cummuative volune of watef in the cloud, as a function of δ, the aroplet diameter. The (av/do) term in eq. (29) is the derivative of this curve and is a function of only δ. Considering the entire range of droplet sizes also complicates the calculation of the total mass and collection efficiency. the total mass beeomes

$$
\begin{equation*}
M_{t}=U \lambda c \int_{S_{L}}^{S_{U}} \int_{\delta_{\min }}^{\delta} \max \beta(\delta, S)\left(\frac{d V}{d \delta}\right) \mathrm{d} \delta \mathrm{dS} \tag{30}
\end{equation*}
$$

and the collection efficiency is

$$
\begin{equation*}
E_{t}=\frac{1}{h} \int_{i_{\text {min }}}^{\delta \text { axax }} \Delta y_{d}(\delta)\left(\frac{d V}{d \delta}\right) d \delta \tag{31}
\end{equation*}
$$

Here $\Delta y_{0}(\delta)$ is the difference in the y_{0} values in the free stream betwen the tangent trajectories for a particle of size δ. The valur $\Delta y_{o}(\delta)$ can be determined directiy from the analysis of is qiven by

$$
\begin{equation*}
A y_{0}(\delta)=\int_{S_{U}}^{S_{L}} \beta(s, S) d S \tag{32}
\end{equation*}
$$

The impingement efficiency, β, and as a result the total mass caught, M, ana the collection efficiency, E, can now be determined by combining the results of several droplet trajectory calculations. Por the riwe ice case, knowing β as a function of S and the free stream conditions permits the prediction of an ice shape. Ice Shape Calculation

Using the information provided by the β curve an ice shape can be predicted for the case of dry accretion fime ice). Glauret [8$]$ recognized this relationship betwenn and the rime ice deposit. However he was only able to give a pictorial representation of the shape by measuring out from the surface a distance proportional to an arbitrary scale) to the local rate of aroplet impingement. wilder [41] has calculated rime ice shapes assuming the ice grows out normal to the airfoil surface, but has ignored the local curvature of the airfoil surface. Bere the equation for ice growth will be derived including the effect of surface curvature and an arbitrary directicn of ice growth.

Consider an area dA perpendicular to the free strean velocity vector. The mass of water passing through this area in a time Δt is

$$
m=U \lambda \Delta t \beta d A
$$

Note β is the collection efficipncy on the surface $d A$. The volume of ice- $l^{\prime} d A^{\prime}$, represented by m is \qquad $l^{\prime} d A^{\prime}=\frac{U \lambda \Delta t \beta d A}{\rho_{i c e}}$

Rearranging and nondimensionalizing l^{\prime} by

$$
\begin{equation*}
\ell=A c^{\beta} \tag{33}
\end{equation*}
$$

Where $A C$ is a new similarity parameter qiven as

$$
\begin{equation*}
A_{c}=\frac{U \lambda \Delta t}{\rho_{i c e}{ }^{c}} \tag{34}
\end{equation*}
$$

The accumulation paraseter can be interprettca as the lenyth of the ice yrowti in airfoil chords that would occur on an imaninary flat plate place perpendicular to the free strean in a time Δt. Note that $\beta=1$ on this flat plate. The arcumulation parameter qoverns the rine icing process once a β curve has been determined. It is convenient to represent the cross sectional area of an ice shape in terms of ac uning the expression

$$
A=\int_{S_{U}}^{S_{L}} A_{C} \beta d S
$$

Performing the incodration the area becomes

$$
\begin{equation*}
A=A_{C} \wedge Y_{O} \tag{35}
\end{equation*}
$$

Since Ac and iyo are both dimensionless, the area given by eq. (35) hati units of square chords.

Now using the concepts of accumalation parameter, Ac, and local impinuement efficiency, β, the ice shape can be determined. Fiụure 8 shows the ice growth (cross-hatched) on a small segment of the curved airfoil surface dS. Here ϕ is the assumed direction of ice growth and I^{\prime} the effective radius of curvature of the surface. (The effective radius of curvature will be defined later.) From geometry and noting that the ice area must equal Ac $\beta d S$,

$$
\begin{equation*}
\ell+\frac{\ell^{2}}{2 r^{\prime}}=\frac{A_{c} \beta}{\cos \phi} \tag{36}
\end{equation*}
$$

This may be solved for l, and is the general expression for the length of the rime ice accretion, for a qiven $A C$, at a point, S, on the airfoil surface. Here β, ϕ, and r^{\prime} are all functions of S. Two special cases of eq. (36) are of particular importance.

The first case is to allow the ice to grow out normal to the surface. Here $\phi=0$ and I^{\prime} is just I, the local radius of curvature of the airfoil surface. Eq. (36) then becomes for-normal growth

$$
\begin{equation*}
\ell+\frac{\ell^{2}}{2 r}=A_{c} \beta \tag{37}
\end{equation*}
$$

Here a nonlinear term arises due to the radius of curvature of the airfoil, r. This term has been dropped by other researchers when calculatino l. This assumption is justifiable for suall values of AC or for àirfoils with
a large leading edge radius. Note that when is large, eq. (27) shows that the length of the ice is just ac B. The importance of the nonlinear term can easily be evaluated by comparing the integrated area of the ice shape to the exact area $A C \Delta y_{0}{ }^{\circ}$

A second node of ice growth has been suggested in which the ice prows back out along the particle trajectory [39]. In this case ℓ is directed along the tangent to the particle trajectory and is given by eq. (36). Here ϕ is the angle between the normal to the surface and the tangent to the incoming trajectory, figure 9 . The r^{\prime} in eq. (36) is the equivalent radius of curvature. It is a measure of the rate at which the trajectories are converging or diverging as they intersect the airfoil surface and is given $k y$

$$
\begin{equation*}
r^{\prime}=-\frac{d S}{d \psi} \tag{38}
\end{equation*}
$$

Here s is the arc length along the surface and the direction of growth Ψ is as shown in figure 9. It is not unusuat for I^{\prime} to be negative for tangent ice growth. This occurs when two adjacent trajectories are diverging as they intersect the airfoil. In this case ℓ will be imaginary for ac larder than some critical value and this limits the amount of ice growth that can be predicted in a single step.

Two modes of ice growth, noralal and tangent, have been discussed in relation to the solution eq. (36). However eq. (36) can be used for any ice qrowth scheme if the trajectory tangent in figure 9 is replaced by the assumed direction of arowth and r^{\prime} and ϕ are determined occordingly. No matter what scheme is used, after eq. (36) is solved for ℓ, it is easy to calculate the ice -shafe by moving out from the airfoil surface a distance in the ψ direction.

Time 开fects

As the ice accumulation builds on the leading edge of afr airfoil, the flowfield must slowly adjust to the ney boundary conditions imposed by the change in shape. This change in the airfoil shape, anc the resulting change in the flowfiela, will naturally alter the impingement rates on the surface. As the inpinqement rates chanqe, the shape of the resulting ice agcretion vill also change with time. Therefore the ice accretion process is a function of time, and wust be modelled accordingly if accurate analytical predictions are to be realized. The failure of initial icing rate calculations [37], or shapes based on them, to accurately predict the experimental results reinforces the need to include time dependence in the model. One method of modelling the effect of time is a timestepping approach. The time-stepping method assunes
that the ice accretion can be broken down into a series of steady state processes. The accuracy of the method is due in part to the step size chosen.

The scheme used to priform the time stepping is itself relatively straight forward. kach time step can be broken down into three parts:

1) The flowfield is gencrated
2) The β curve is calculated from the particle trajectories
3) An ice shape is generated

These steps are then repeated until the desired icing time is reacher. If ractice the procedure may be very difficult rince the iced airfoil coordinates qenerated in stef 3 way be too "rough" to fermit the calculation of a flowfield. A scheme for smoothing these courdinates is discussed in Section IV along with the numerical formuation of the problen.
IV. NUMERICAL FOMMULATION

The theoretical analysis presented in section III has been proarammed for commuter solution. This section describes the numerical procedures and computer codes used to predict the rime ice growth on airfuils. The solvtion is formulated into three steps which utilize four computer frograms. The three steps are:

1) Droplet trajectory calculation including flowfield yeneration and the determination of impingement rates
2) Rime ice shape calculation
3) Iteration and coordinate smoothing

Step 1 contains two computer proqrams, while step 2 and 3 contain one each. A flow chart for the entire rime ice methodoloqy is qiven in figure 10. Only the flowfield code vas not vitten especially for this study. Droplot Trajectory Calculation

To calculate the droflet trajectory reauires the numerical solution of eq. (4). Eq. (4) is solved in the cartesian coordinate system shown in figure 11. The x-y axis is used for the trajectory calculation while the x^{-2} y^{*} system is usert in the flowfield code. all inputs and
outputs to the trajectory code are in the $x-y$ system. the initial conditions needed to solve eq. (4) are the droplet velocity and position in the free stream. The particle is assumed to be travelling with the free stream at some finite distance in front of the airfoil, usually five ehord lenaths. The initial y coordinate is selected so tne particle either strikes or misses the airfoil as desired.

Eq. (4) is a second_order, nonlinear, ordinary differential equation. Rquations of this type are generally witten in component form and reduced to first order for numerical solution. This results in a system of four simultaneous differential equations which can be solved by a step inteqration method. However this system is stiff, and requires special numerical treatment for a stable solution.

A stiff system has in its general solution eigenvalues which may be orders of magnitude different in absolute valun and therefore pach dominates the solution in different regions. If not handled properly this leads to unstable solutions [62]. This numerical formulation uses a variable step size, predictor-corrector scheme suitable for stiff systems by Gear $[63,64]$. When compared with the Adams method on this system of equations, the stiff method reduces the computation time by at least a factor of two.

The system of differential equations can now be solved if a local velocity vector, \bar{u}, and a droplet draq law are provided. The flowfiela velocity calculation will be discussed in detail in the next section. This program calls a subroutine which provides the velocity at any point (x, y) in the flowfiela. Several droplet arad equations are available as discussed in Section IIl. This program uses the drag law of Langmuir [9] given in eq. (8).

A trajectory calculation is terminated when the particle strikes the airfoil surface or misses and moves past the body. Polynomial fits to the trajectory and airfoil surface are used to determine the exact impact point, θ as shown in fiaure 9 , and the surface lenqth S as in fiqure 7. The tangent trajectories, figure 7, are calculate3 using an extrapolation procedure based on the impingement angle.

Usina this method the proqram can supply the Δy_{0} and $y_{0}=$ _ _ $Y_{0}(5)$ needed toncalculate_the local and urerall collection efficiencies. Mll these calculations are controlled internally by the conputer proqram, by error limits input by the user.

Pinure 12 shows a typical y_{0} versus S flot generated by the prodrar. The symbols are the results of actual droflet trafectory calculations. These points are curve
fit using a cubic spline which forces the slope to zero at each end point. This scheme for spline fitting the yo vs s curve must be modifieã for certain special cases. For larye values of \bar{K} the airfoil upper or lower surface, dependina on the angle of attack, may collect ice all the Way to the trailing edge. In this case β does not equal zero at this limit of imuingenent and therefor the second derivative, rather than the first, is set equal to zero at this endpoint.

Another special casemesults when ar area of the airfoil, between the maximum limits of impingement, collects no ice. This results in a discontinuous Y_{0} vs s curve. In this case the curve is fit in two pieces which are connected by a region of zero impingement, $\beta=0$. This second case occurs on airfoils with cusps, such as the NACA six series airfoils. Here the most forward region of the cusp may collect no ice for large \bar{K} 's and high a's, while the aft segment does collect ice. This may also occur near the leading edge when time stepping leats to a concave region in the ice shape.

The spline fit is then used to calculate the local impingement efficiency, B, which is the slope of the curve, fiqure 13. The β distribution and airfoil geometry are stored on disc to be used for the ice shape calculation.

Plowfield \qquad
The flovfield velocities required for the solution of eq. (4) are generated using the Theodorsen method. A modified versjon of the flowield coae by hoan [60] is run once and tie transformation results are stored on disc. Input to the flowfielc code are the airfoil coordinates in the $x^{\prime-y}$ ' coordinate system, figure 11. The droplet trajectory code reads in the results of the transformation.

When the velocity at any $x-y$ point is required, the velocity subroutine in the droplet trajectory code first must rotate to the $x^{\prime-y}$ system, then transform the $x^{\text {e }}$ - y^{\prime} point to the circle plane of the transformation. The transformation to the circle plane is nonlinear and therefore a Newton-Raphson iterative technique is used. Once in the circle plane the velocity calculation is straiqhtforward. Note that this method calculutes the velocity from the transformation at each point requirea by the stop integration differential equation solver; a matrix of stored velocities with an interpolation scheme is not used by this proaram.

A second program by woan [60] is available to calculate an inviscid $C_{f}, C m$, and $\alpha_{\text {L }}$ if desired. This prooram also generates a Cp plot which is useful in ensurina smooth airfoil coordinates.

Io shave Calculation

Eq. (36) must be solved for ℓ to duternine the rime ice shape. The ice shape prediction code reads in β as a function of S, θ (see figure 9) as a function of S, and the the airfoil coordinates from the disc file written by the droplet trajectory code. The accumulation parameter, Ac, is the only physical variable read in directly by the program. Internally the program must calculate ϕ, ψ. and ε, figure 9 , and either the surface radius of curvature, r, or the effective radius of curvature, r ', in order to-solve for ℓ and calculate the ice shape coordinates.

For normal ice growth, eq. (37), the surface radius of curvature, and the direction of the outer normal, ε, are needed as a function of S. Both terms can bu found from a polynomial fit to the airfoil coordinates. For airfoils with rough coordinates, ε is calculated at the droplet impact points and ε vs. S is fit asing a cubic spline. From the cubic spline ε and $r(r=-d s / d \varepsilon$) can-be calculated at any s location. This procedure provides smoother values of ε and r.

POE non f ormal ice growth, eq. (36). r', ϕ, and ψ must be determined. Por the tangent case θ is known at each particle impact point and ε can be calculated from a polynomial fit of the airfoil. Then $\psi(\psi=\varepsilon+\pi / 2-\theta)$
versus S can be spline fit and I^{\prime}, eq. . (38). ψ, and ϕ cal be found for any s lucation. The code allows for ice qrowth directionsother than normal, ε, and tangent, ψ. By redefining the angles ψ and ϕ to be measured with respect to the assumed ice arowth direction,instead of the trajectory tangent, the same method that was used for the tangent cane can be used here. Then the assumed ice growth direction ψ can be chosen afbitrarily.

Hith ℓ and the direction of growth determined, each airfoil coordinate affected by the ice is recalculated. This qenerates the iced airfoil coordinates. A
trapezoidal inteyration is used to determine the ice shape area to be checked aadinst the exact area, ey. (35). The original and iced airfoil coordinater are uritten on disc for input to the next code. Iteration and smoothing

Airfoil analysis codes are in qeneral very sensitive to-both the first and second deaivatives of the airfoil shape as provided by the input coordinates. After the airfoil has been iced, the coordinates are of ten too rough to run well in these prowrams. Existing airfoil coordinate smonthing prugrams were not designed for, and therefore can not handle the typer of airfoil shapes that result from the icing analysis. Therefore, a coordinate smoothing progran was written specifically for the icing
problem.
Tha smoothing is accomplished by force fitting a \qquad polynomial of the form [65]

$$
\begin{equation*}
y=C_{N+1} X^{P}+C_{N} X^{N}+C_{N-1} X^{N-1}+\ldots+C_{1} X+c_{0} \tag{39}
\end{equation*}
$$

to both the upper and lower surface of the ice shape. The exponent p is a fraction to allow the matching of the leading edge radius of the ice, and N is the order of the polynomial. The desired first derivative is automatically satisfied at the leading edge, and the function is forced to match the slope of the airfoil surface just. aft of the ice accretion.

An adidional smoothing routine is available when the ice shape is not of the form of eq. (39). In this case the ice shape is essentially smoothed by hand with the help of an interactive computer graphics program. The program displays the original airfoil leading edge and the new iced airfoil shape. By using the cursors the iced airfoil coordinates can be adjusted to provide the desired smoothing and coordinate distribution.

When time-stepping an ice build-up the smoothing proqram is available to qenerate iced airfoil coordinates to be used in the flowfield code. Depending on the value of the accumulation parameter, coordinate smoothing may or may not be required for every time step. On the last tine
sten smoothiny may be rajuired wefore the acrodynamic analysis of the rosulting iced airfoil can beaccomplishot.
v. aEfodynamic analysis

The most serious pfferts of ice formations on airfoils are the reductions in maximun lift coefficient and a sianificant rise in aray. Rige ice changes the airfoil goometry and adds roughness to the airfoil. These two effects are primarily responsible for the chane in airfoil verformance due to rime ice. Existing airfoil andysis codes are able to analyze the iced airfoil shape, but do not properly handle the roughness effects. As a result, the effect of the change in airfoil shape and surface roughess must be handled separately. The new airfoil shate will be handled analytically, while the roughness effecte will be accounted for using empirically based corrections.

Io Shape Añalysis

Rime ico accretions are streamlined in shape but do not blend smonthly into the airfoil shape. In adaition the shape itself may not be "smooth" with respect to the requirements for good airfoil leading edge geometries. Due to the qeonetry of the ice shape severe adverse pressure qranients occur in the leading edge region. These gradients triquer the Eormation of small zones of
separatea flow (separation bubbles) which at hiqher angles of attack may lead to massive separation and stall. Thile -surface rouahnese may al: o triguger premature stall, This analysis assumes that the reduction in maximum lift - cofficient of iced airfoils is due to the chanqe in leading edge shape alone.
— The Eppler [61] airfoil analysis code is used to predict the effect of the ise shape. The code uses a sophisticated potential flowfield model of distributed surface singularities with parabolic strengths on curved surface panels. The version of the code used has been modified to include the compressibility efferts on the potential flow. Under this potential flow an integral boundary layer method is used to calculate the skin friction. A rouchness factor is included but its only effect is to cause early transition fyom laninar to turbulent flow. A special feature of the proaram is an approximate calculation of the maximum lift coefficient. The lift is calculated by usina the two dimensional lift curve slope and a corrected absolute angle of attack. The correction reduces the angle of attack based on the size of the separated zone.

The airfoil analysis proaram is used to analyze both the original airfoil and the airfuil with the rime ice shape: The proqram provides the lirt, dray, and pitchinu
momont coefficinnts for both cases as well as detailed fressure distributions. The drat preaiction for the ice chade must still he corrected for roughness effects. Roughness- Effects
_. - The roughness caused by rime icing is large compared to the boundary layer thickness. This roughnoss not only increases the local skin friction, but it can remove a considerable amount of kinetic energy from the boundary layer. This increases the skin friction drag and adds pressure drag due to the hase drag of the rouchness elements and the reduction in pressure recovery due to the thickening of the boundary layer [2]. This reduction in pressure fecovery can lead to premature stall due to boundary layer separation at lower than expected angles of attack.

In a recent paper arumby [06] has compiled the existing data on the effect of roughness on maximum lift cofficient. This summary is shown in fiqure 14 . The data shows the rather dramatic reduction in maximum lift aue to relatively moderate levels of roughness. also presented in Brumby's payer is a yood discussion of the operational aspects of wing surface roughness. Although fiqure 13 will not be used directly in this analysis, it does provide a good check on the analytical results.

Gray [31 presenten an empiricol correlation to predict drad increments due to airfoil icing.

$$
\begin{align*}
& \Delta C_{d}=\left[8.7 \times 10^{-5} \frac{t U}{c} \sqrt{\lambda \operatorname{smax}}(32-T)^{0.3}\right](1+6\{11+ \\
& \left.2.52 r^{0.1} \sin ^{4} 12 \alpha .\right) \sin ^{2}\left[543 \sqrt{\lambda}\left(\frac{\mathrm{E}}{32-\mathrm{T}}\right)^{1 / 3}-81\right. \tag{40}\\
& \left.\left.+65.3\left(\frac{1}{1.35^{\alpha i}}-\frac{1}{2.35^{\alpha}}\right)\right]-\frac{0.17}{r} \sin ^{4} 11 a_{j}\right)
\end{align*}
$$

This equation was, however, developed primarily for the glaze ice case which was felt to be the more serious problem. The rorrelation is linear with time which does not accuratolv refresent the rime ata. therefore a new correlation is neefien which is developed specifically for the rime icn case.

The a mount of good data available for the drao of airfnils with rime ice is very limited. Therefore the problem was formulated to take advantage of the data on aicfoils with leading edge roughness. (When good iced airfoil drad data is available, this currelation could be easily modified to inclume this new information.) Figure 15 shows the dran incrense versus ire decumulation da function of tire) for both alaze and rime condions [36]. Note that the increase in araq for the alaze case. is aporoximately lintar as fredicted by Gray's eq. (40). Howner for the rime case, the dran increases rapidly at first, then levels off and incranses linoarly at a reduced
rate. This analysis, as shown by the dotted line, ignores the initial rapid increase and matches the linear section assuming a step increase in $\begin{gathered}\text { rag } \\ \text { as soon } \\ \text { as } \\ i c i n g ~ b e g i n s . ~\end{gathered}$ The intercept of the linear drag law proposed can be obtained from figure 16 . These empirical curves were obtained from published experimental results on airfoils with leading edye roughness. Note that different types or families of airfoils are affected differently by roughness. These differences are due primarily to the amount of laminar flow the clean airfoil experiences. Gray allowef for this change by including terms based on the airfoil leadina edge radius. Given a particular airfoil, figure 16 can be used to estimate the step arag rise. A value of $k / c=0.001$ is representative of the initial roughness of the ice.

With the constant term in the proposed draq correlation determined, the form of the time dependent term must be deyeloped. The independent variable must be dimensionless to remove the scale effect. For example, two airfoils of different chord lenaths which have the same scaled ice accumulations should have the same increase in draq. Representing the draq rise as a function of ice accumulation wold hovever give these two airfoils-different drag increments. A better choice of the independent variable is the dimensionless collection
parameter, AcF. This is just the cross sectional area of the ice shape divided by the projected height of the airfoil. Hers the initial value of E from the theoretical analysis is used and note Ac is linear with time.

Figure 17 shows some of the available rime ice data plotted versus the collection parameter, AcE. Note that for all the airfoils the slope of the curve is the sane. The predicted results shown on figure 17 use the values from figure 10 for the $A C E=0$ drag increments. Expressing the results of figures 16 and 17 in.equation form

$$
\begin{equation*}
\Delta C_{d}=.01\left[15.80 \ln \left(\frac{k}{c}\right)+28000 \mathrm{~A}_{\mathrm{c}} \mathrm{E}+\mathrm{I}\right] \tag{41}
\end{equation*}
$$

where I is the constant which depends on the airfoil type, Table 3.

Table 3 Constants For The Drag Equation

Airfoil Type	Drag Constant, I	Typical k/c
4 and 5 Digit	184	.001
$6-3$ Series	218	.001
64 Series	232	$.001-$
65 Series	252	.001
66 Series	290	.001

The new drag of the iced airfoil is then given by

$$
c_{d_{\text {iced }}}=\left(1 .+\Delta C_{d}\right) c_{d}
$$

Note that in all cases $\triangle C A$ is based on the Ca for the
hydraulically smooth airfoil at the given angle of at tack. This removes a possible source of error since all models may have different roughness levels due to the construction techniaues or condition of the surface. Analysis procedure

The aerodynamic analysis can be summarized as:

1) Calculate the icing characteristics and rime ice shape using the procedures described in Sections III and IV
2) Dee the airfeil code to analyze the clean airfoil
3) use the airfoil code to analyze the smooth iced airfoil to predict the change in maximum lift cowfficient
4) Use eg. (4 1) to correct the draq analysis for roughness effects

Step 1 not only predicts the ice shape but the collection efficiency, F. which is needod to determine the drag in step 4. Next the clean airfoil performance is analyzed to provide a baseline and also to generate the value of cd wich the correlation of step 4 is based. The smooth ice shape is then analyzed using the airfoil code to determine the maximum lift and pitching moment. Finally the empirical corrections are wade to yield the effect on drag due to the rime ice. This correlation relies upon published data and the results of steps 1 and 2. This method for analyzing the aerodynamic effects of
rime ice on airfoils uses the analytical methods which are available or have been developed here, and supplements these with emfirical results when needed. --

The purpose of this study wasto develop an analytical wethod to analyze the rime icing-of airfoils. Therefore, this section deals primarily with the validation of this method. The analysis will be compared to other analytical results and to the experimental data which are available or were generated specifically ror this validation. In addition, limited use of the method has been made to analyze the effects of certain parameters on icing rates. Trajectory Analysis Validation

Lanamuir [9] first formulated the droplet trajectory equation for numerical solution on differential analyser. Several calculations vere made for the case of a circular cylinder, since this flowfield can be expressed in closed form. lanomuir's results vere often used as test cases for the $N A C A$ and other trajectory calculation methods.

Table 4 is a summary of some of the analytical predictions of icina rates on circular cylinders.

Table 4 Comparison of The Present Method to That of Langmuir [9] and Lozowski [67] for Cylinder Icing Rates

	Langmuir		Lozowski		Bragg	
Case No.	1	2	1	2	1	2
R	600	100	600	100	600	100
K	18	0.5	18	0.5	18	0.5
V X	1.056	0.494	1.056	0.477	1.026	0.425
V^{y}	0.193	0.725	0.196	0.650	0.196	0.623
E	0.819	0.156	0.814	0.170	0.812	0.155
$\beta_{\text {max }}$	0.885	0.348	0.898	0.376	0.900	0.363
$\theta_{\text {max }}$	79.8	34.2	79.5	35.6	79.1	34.4

Included in the table are the results of Langmuir and Blodgett [9], Lozowski and 0leskiw [67], and the present methou. The results of two test cases are shown. Here vx and V_{y} are the dimensionless velocity components of the tangent trajectory particie as it strikes the cylinder. $\beta_{\text {max }}$ is the maximum impingement efficiency wich for a circular cylincer with no circulation occurs at $\theta=0$ degrees. Mere θ is the angle which defines a point on the cylinder with $A=0$ being the forward stagnation point. The limit of impingement for the symetric case is then θ_{m}.

As indicated, all threr methods agree very well on the first test case, table 4. The agreement is within one percent on the value of F and θ_{m}, while the values of $\beta_{\text {max }}$ are within two porcent. However for case two, while the agreement is good, there are sowe more significant differences. Case 2 is a more severe test than Case 1
since the value of K is almost 20 times smaller. This small value of K results in particles which are much rore affected by the flowfield and therefore their trajectories are more difficult to calculate accurately. Here Langmir's method and the present method agree closely. while Lozowski's calculations are about ten percent higher in collection efficiency.

The source of the differences is not obvious. All three methods use different equation solvers, drag laws, and flowfield models. The allowable errors in the numerical schemes may also be different. The present method was run with the allowable error in not to exceed one percent. No error tolerances vere reported by Lanamuir or lozowski. The most likely explanation of the difference in Lozowski's calculations is the drag law chosen. Since these particles do have low inertia, a small change in the assumed ca culd have a large effect on the results.

Droplet trajectory calculations can also be conpared to early NACA results for impingement on a NACA 65A004 airfoil. Pigure 18 shows the early calculations [19] compared to the present whod for the airfoil at zero degrees angle of attack. The comparison is quite gooi considering the errors involved in the early calculations. Erun [17]estimates the error in β for the Nach methou to

be about ter. percent. This is due to the severe velocity qradients around the small leading edue radius and the difficulty in curve fitting, and determining the slope of, the y_{0} versus s curve to get β. The present method ferforms this calculation routinely to within one or two percent.

Pecently analytical results of airfoil aroplet impingement have been published by Lozowski and Oleskiw [67]. Lozowski's general numerical scheme is the same.as the present analysis, while the details of the solution varies in several areas. Fiqure 19 is a comparison of Lozowsxi's results anj the present method for a NACA 0015 airfoil at eight dearees angle of attack. The results of the two methoris are in good agreencot in all areas. The limits of impingement, $\beta_{\max }$, and the β curve itself are practically identical. Lozowski's reported collection efficiency of 0.501 seems high when compared to the two curves and the value of 0.473 for the present method.

Fiquie 20 shows a similar comparison at a slightly different conditicn. However here Lozowski [67] has included the Eassett unsteady memory term which was A Lopped from the differential equation used in this method. The comparison is still good, with Loz'wski's results showinc re droplet impingement. The addition qreatly complicates the droplet trafectory calculation and
results in only a small chanae in β. This correction is, hownery, within the the error caused by the difficulty in measuring the droplet. size distribution in a cloud, and also the error inherent in a sphere drag curve fit.
limited experinental data is available for water droplet impingrment rates on airfoils [30]. These data were taken using the aye tracer techniguc in the NACA ICing Research Tunnel. Inpingement data taken on a $N A C A$ 65-212 airfoil at four degrees angle of attack are conpared to the theoretical results of this method in fiqure 21. The comparison betveen the theoretical and experimental results is quite good. The absolute value of β from the experinent may not be accurate due to the problems in the calibration of the free streain conditions. llowever the limits of imfingement and overall character of the curves compare very well. It should be noted that in the experiment the droplets were not of a single uniform size as was assumed in the present calculation. This point will be discussed in the next section.

The present methud and computer code for calculating droplet trajertories and ultimately impingement rates has been compared to earlier rorks. Results from two very early analvtical methods and a recent Canadian method compare very well to the present results. These comparisons ware made on both airfoils and cylinders.

Comparison of the present method to experimental results was also shown to be very qood. The priesent method has therefore been shown to be valid and yield very_accurate aroplet impinqement results,

VMD Apnroximation
Actual icing clouds contain a distribution of water droplet sizes. Fiqure 22 shows thr resulting β curves for aroplets from 10 to 50 mictons impinaing on a NACA 0012 airfoil at an ande of attack of five dearers. The trafectories of the smaller particles are dcainated by the draa term in the differential equation since the inertia is small. The droplets follow the streamlines more. closely and therefore few imninae on the leaina edae. For the lafaer droplets the inertia term dominates and a larqe percentade of the particles impinae on the airfoil leading eage. Note that the area under the B curve is proportional to the total mass striking the airfoil. therefore clouds of larger particles will increase the mass of ice accreted.

Osing the method of section III and a Langnuir r distribution of particle sizes, a β curve fo.: the entire cloud of nonuniform iroplet sizes can be predicted, fignre 23. Also depicted in fiqure 23 is the β curve for a single droplet size, the volume mejian diameter, VmD. The ∇ mD is the iroplet diamster for which half the volume of water in
the cloud is made un of droplets larger than the VMD, and half the volume from dioplets smaller than the vMD. As seen in the figure, the VMD β curve is a very good approximation to the actual icinq cloud results. The VMD anproximation slightly over predicts the β max and has reduced maximullimits of impingement. However these errors are acceptable in exchange for the reduction in computer time. Ianoring the droplé size aistribution effects saves an order of magnituae in computer time by reducing the number of droplet diameters which must be run. In aadition it eliminates completely the calculations needed to combine this information into one Mrve. Therefore, unless stateù otherwise, all imningenent calculatinus presented here will use the VMD anñoximation.
Scaling Paraneter validation
The simplified sinilarity parameters K_{0} and \bar{K} have been derived in section III. Buth parameters combine R_{U} and K into a single dimensionless quantity wich greatly sitplifies the icina probiem. These parameters can be uspd to facilitate data prosentation and to define test conditions; for scale model tests. Here experimental and numarical data aro used to compare and evaluate the modified inertia parameter, K_{o}, and the trajectory similarity parameter, \bar{k}.

Historically icing data has been presented using the modifipd inertia parameter. The dearee to which K_{0} compresses this data to a single curve provides a measure of the accuracy of the approximation. Fiqure 24 shows the airfoil collection efficiency, E, for three different free stream Reynolds numbers and for various values of k ploted versus K_{0}. The results are from an early naca analytical study [17] of a NACA 65A004 airfoil at four degrees_ande of attack. The same data art plotted as a function of \bar{K} in fiqure 25 . Here \mathcal{C} is taken as one and $\gamma=0.35$ as discussed earlier. Both parameters reduce the data toward a sinqle curve, but the \bar{K} parameter shows somewhat less deviation from the curve. It is not clear from these results if the scatter in the data is caused by the similarity parameter approximation, or if the error is in the numerical results for I .

To attempt to resolve this uncertainty the present aroplet trajectory code was used to qenerate similar data. Here a NACA 0012 airfoil at zero degrees angle of attack was analyzel at thre different values of R_{U} and five values of K. These results, ploted as a function of K_{0} and \bar{K}, are given in figures 26 and 27 , respectively. Here both K_{0} and \bar{K} do an excellent job of reducing the data to a single curve. This sugaests that the scater in figures 24 and 25 is error in the eariy numerical data, and not a
reflection upon the accuracy of k_{0} and \bar{k}.
Both the modified inertia farameter and the trajectory similarity darameter simplify the droplet trajectory data presentation. An additional numerical check on the validity of the paraweters can be made by comparing scaled droplet impinuenent efficiency curves. The results of using K_{0} and \bar{K} as scaling parameters for a one-sixth scale model are shown in figure 28. These curves were generated using the method and computer code described earlier.

For scalina droplet trajectories the \bar{k} parameter has a arfinite edge over K_{o} since γ may be optimized for each droplet size the VMI if a distribution is considered). The procedure used for determing γ described earlier yielas a γ of 0.30 for the 15 micron full scale droplet and 0.39 for the 30 micron size droplet size droplet. The values of F_{U} and K used as well as the droplet diameter, are given in table 5.

Table 5 Scaled Variables for Analytical Icing Test Using_K and K

	Pull scale	one-Sixth Scale moal \bar{k} K_{0}	
$\delta(\mu \mathrm{m})$	15.0	5.23	5.05
	115.6	40.30	38.93
K ${ }^{\text {U }}$	0.0393	0.0286	0.0267
	30.0	9.86	9.60
R_{U}	231.2	75.77	73.98
K	0.1572	0.1018	0.0966

Note that for this example it was assumed that only the particle dianeter would be changed to provide the scaling. All other variables such as the aircraft velocity, droplet density, air density, etc would be held constant. This fields an equation for the aroplet diameter of

$$
\delta_{m}=\left(\frac{C_{m}}{c}\right)^{\frac{r^{-}}{2-\gamma}} \delta
$$

The important results of the scaling comparison of figure 28 are summarized_in table 6 .

Table 6 Results of The Droplet Trajectory scaling Comparison

While K_{o} does a reasonable job of reproducing the full scale teajectories, the added flexibility in the \bar{K} parameter allows for an excellent trajectory scaling. No experimental results are available to evaluate the similarity pramoters for the airfoil icing scalina problem.

Hovever, recently published experimental results by Orinsbe and Fragu [54] are available for a similar aroplet trafectory case. In these tests conducted in the NASA Lanuluy Vortex Reseatch facility, three yeanetrically scaled aaricultural airctaft models were used to inject scaled spherical particles into the model wake. using the complete set of similarity parameters for the droplet dynamies \mathbb{R}_{U}. K, and fr results in a unique scaled test
particle of low density and large diameter. Relaxing the constraints on the scaled partioles by replacina E_{U} and $K \ldots$. by \bar{K} vields an infinite number of candidate test particles. This greatly simplifies the task of obtainina the test particles. - While ormsbee and Bragg did not use \bar{K} in the same form as it was derived here, their method is completely equivalent in that they made a similar scaling apdroximation.

In these tests a hypothetical full scale aircraft and droplet test conditions were chosen. These were then scaled to detormine the equivalent test conditions for a $0.10,0.15$, and 0.20 scale model. Table 7 shows the full scale and model test conditions while the particle trajectory results are summarized in figure 29.

Table 7 Scaled Physical Variables for Droplets in Aircraft kake

	0.10	Model sc̄ale		
		0.15	0.20	1.0
Fing semisoan, im	1.22	1.83	2.44	40.0
Model velocity, m/sec	16.8	20.6	23.8	53.3
Altitude, m	. 622	. 933	1.24	20.4
Angle of attack, deg	2.00	2.00	2.00	2.00
Farticle diameter, μ m 3	105.	125.	105.	490.
Particle density, $\mathrm{g} / \mathrm{cm}^{3}$	2.42	2.42	3.99	1.00

Presented in the fiaure is the lateral transport of the particles by the wake vortex system as a function of the
initial injector location. For all three models the lateral transport of the scaled particles is the same, verifying the $\overline{\bar{r}}$ scaling analysis. Scaling_tests were also conducted [54] in which other lift coefficients, aircraft altitudes, and full scale droplet sizes were used and in all cases the particle trajectories scaled well. Trajectory Results.

Although the objective of this study was to generate rime ice shapes and evaluate their aerodynamic performance, the trajectory calculation: llone provide much useful information. The droplet trajectory computer proqram can be used to conduct a sensitivity analysis and provide physical insight into the impingement process. The information provided by the analysis such as the overall collection efficiency and maxirum lifits of impinaement can be used directly in the desian of ice protection systems.

Fioure 30 shows the paths of water droplets around a NACA 0012 airfoil. Trajectories are shown at both zero and five dearees anqle of attack. Note that at five degrees the droplets which impingement on the airfoil start out below the airfoil in the free stream. This is of course dup to the upwash in front of a lifting airfoil. The particles which miss the airfoil by passing over the lading edge gain a large amount of kinetic eneray in the
leading edge region. These particles are therefore less influenced by the flowfield over the aft part of the airfoil. Although little quantitative information is obtained from-the trajectory plots, some physical feel for the problein can be gained from them. for example, droplet trajectory plots proved very valuable in identifying_.... reqions on_the_airfeid where no particles hit the surface. This led to modifications in the spline fitting program as aescribedi in section IV.

The effect of airfoil angle of attack on droplet impingement efficiency is shown in figure 31. As expected the area of impingement moves more toward the lower surface as thange of attack is increased. Also the area under the β curve, the total mass collected, increases with angle of attack. A slight change in the location and value of β max, the gaximum local impingement, occurs with the increase in angle of attack. This effects the shape of the leading edge ice shape which may cause large differences in the aerodynamic performance of airfoils iced at oifferent angles of attack.

A sensitivity analysis may also be perfurmed by varyina the value of k, the inertia parameter. varying R while holding R_{U} constant curresponds physically to subjecting airfoils of different.chord lengths to the same icing conditions. Notr that the airfoil chord, c, appears
in the denominator of K, so reducing c increases the value of K. Increasing K wile holding R_{U} constant means that \bar{K} increases linearly with k.

Figure 32 demonstrates the effect of varying K, or equivalently \bar{R}. Here the caso of a NACA 0012 of chord six, threp, and two feet (increasing K) is shown. Then as the airfoil chord decreases the overall collection efficiency, area under the β curve, increases. Since the smaller airfoils have more severe velocity gradients near the leading edge, the droplets are not able to follow the streamlines as well, and nore droplets impinge on the airfoil. This is observed in flight when tail surfaces, vecause of their smaller chord. accrete proportionately more ice than the main wing. It is interesting to note tiat for the range of \bar{K} represented by figure $32, \bar{x}=.003$ to . 025, the collection efficiency as given in figure 27 is almost linear. In fact for this special case as \tilde{K} increased 200 pefcent, su did the collection efficiency, E.

Figure 27 also represents another use of the method. Osing R as the independent variable, the initial icing ratos and other results may be generated to evaluate the susceptibility to icing of a particular airfoil. Here only E is oresented as a function of \bar{K}, but a complete
airfoil analysis would include plots of β max ${ }^{\prime} S_{U}$. $S_{\text {I }}$ and the actual β curves. $\quad-\quad \cdots$.

Ice Shape calculation
Before the aerodynamic yerfurmance of an airfoil with rime ice can be determined, the ice shafe must be accurately predicted. This involves the time-stepuing procedure outlined in stretion IIJ. Having shownthat the. initial icing rates predicted by the method are valid, the accuracy of the time-stelping model to predict rime shapes -. will now be examined.

First the assumed direction of growth out from the airfoil surface must be deteruined. Fiqure 33 shows a normai and tangent growth predicted from the same initial droplet impingement information. Both shapes represent one large icing step, that is no time-stepping was performen. The predicted tanqent shape qrows out into the oncoming droplets. With its increased maximum growth and reduced leadina edge Iadius it has the general shape of a measured ice accretion. Hovever physical intuition would suquest the normal growth to be the correct wode. In the limit as the icing tine gues to zero, the tangent growth approaches tife same shape as the normal mode. It is felt thet the normal growth model is the physically correct solution for a time-steppina procedure. The tangent growth anpears to be an approximation to the time-stepping
methoimas willme more obvious later.
--
The time-stepping prucedure is demonstrated in figures 34 and 35 on a modified NACA $64-215$ airfoil at a cruise condition. Here the angle of attack is 0.7 degrees and h_{U} $=115.6$ while $K=0.044$. Three time stepswere taken, each representing five minuter of icing with the accumulation parameter, Ac, equal to 0.0133 . Figure 34 shows the predicted ice shapes-from the β curves of figure 35. Note that in the time-stepping method first the impingement efficiency is calculated on the clean airfoil. step 1 figure 3b. Then this β curve is used to predict the first ice shape figure 34 . The flowfield is then recalculated, the step 2β curve aenerated, the new ice shape 2 predicted, and the iteration is continued. Therefore fiqures 34 and 35 are intimately related.

Examing figure 35 the changing airfoil shape is seen to have a sianificant effect on the droplet impingement characteristics. This supports the need for a timestepping approach. The change in the impinuement values with time are summarized in table 8.

Table 8 Tine Step Farameters

Step	$\bar{A} C$	$B_{\text {max }}$	Δy_{0}	ΔS
1	0.0133	0.358	0.00983	0.0495
2	0.0133	0.411	0.00909	0.0379
3	0.0133	0.472	0.00910	0.0342

The maximun inpingement efficiency β max, increases with tine while the iced surface length on the airfoil, Δ. decreases. Themoverall collection efficiency decreases slightly for this case. Another interesting_feature is the development of the second peakin the curve on the third time step.

All these effects of time are also reflected in the predicted ice growth, fiqure 34 . The increase in β max and reduction ir Δs qenorates the reduced leading edqe radius of the ice and the mere pointed shape. The second peak in the β curve results in the reflexed upper surface "bump" on the thire tioe step. The effect of timesteprina is then apparent from the chanqe in the curpes ficm steps 1 to 3.

The accuracy of the time stepping model will be-a function of the size of the time step taken. Figure 36 shows the predicted ice shape for the same modified 64-215 airfoil with one, three, and six time steps. Here the corresponding Ac's are 0.04, 0.0133, and 0.067
respectively. The β suryes for the six time step-case are
given in fiqure 37. A sianificant change in shape is seen betwern one and-threw steps, while the change trom three to six steps is relatively small. In fact the change in shape from thwer to six steps is probably aue as much from numerigal error as from an improvement in the physical modeling.

A similar study on the effact of step size was coniucted using a NACA 65A4 13 airfoil. The airfoil was analyzed at one degree angle of attack with $R_{U}=147$ and $K=0.113$. The length of the icing. encounter is eight minutes, which for the free stream conditions assumed. gives an accumulation parameter for the total time of 0.044. The predicted ice shapes for one, two, and four time steps are shown in figure 38 . Figures 30 and 40 are the corresponding B curves. Here the shapes do chanae from the two to four time step case. The maximum amount of ice growth, and the shape of the ice near the limits of inpingenent, do not agree. The four time step case has essentially taken mass from near the limits of impingement and shifted-it forward by extending the leading edge arowth.

From these two cases, and other experience with the method, some quidelies in selerting the step size can be formulated. The critical area is the region near the maximum limits of impingement. The ice in this reaion
should not be allowed to grow more than that which generates a shape that blends in smoothly with the airfoil. A rule of thumb is that the maximumgrovth in a single step shoula not exceed one-half of one percent chord, $x=0.005$. This corresponds roughly to holding Armax. < 0.005 . The allowable step size is actually a function of the leading edge geometry and the shape of the β curve. Hith airfoils with small leading edge radii requiring the smaller step size. The rule of thund given, however, pruvides guidance in selecting in acceptable step size. The lower bound on the step size is governed by the anount of computer time required per step and the accumulation of numerical error. Error accumulates primarily due to the courdinate smoothing process. The smoothing required is due in vart to the discontinuous surface radius of curvature of sume airfoils and this problem is aggravated as more steps ara taken. From experience the step size suggested appears to be an optimum for reducing computation time and increasing ancuracy.

With the time-stenping procedure established, this method for predicting ice shapes can now be compared to some experimental results. Experimental tests completed recently in the $N A S A$ Icing Research Tunnel have generated experimental rime ice shapes for the moditied NACA 64-215
airfoil [68]. The experimental rime ice shape for the cruise condition is combred to the present analytical method in figure 4_1. Twe ice accretion is small and therefore only the first one percent of the airfoil is shown. the experimental_shape and the time stepped prediction (fron figure 36 compare very vell.- The no time step case is also-shown to demonstrate the improvement in the prediction when the time effects are included.

The results of this comparison, and other test cases, permit some important conclusions to be drawn. The timestepning was done for this case assuminq normal ice arowth. Compurinc figure 41 tu the normal and tangent growth in figure 33 a similarity is seen. The tangent Growth has the same deneral shape as the time stepped prediction. This suggests that the tangent growth is an approximation to the time effects. Also note that the time stepped shape predicts the reflexed upper-surface redion and buqpas seen in the experimental shape. The upner node resembles the begiraning of a second horn as on a alaze ice shave. However here it occurs solely as a result of the time effects on the flowield and droplet dynamics. Hhile alaze ice af̃owth is certainly a thermodynamic process, this result suggests that impinument characteristics may also be very important.

For accurate alaze ice shape predictions, the time effects on the impingement rates should also be cunsidered.

This methoa has also been compared to the experimental results reported by Gray [37] on a NACA 65A004 airfoil. The airfoil is at two dearees anqle of attack, $R=113$ and $K=0.341$, and the icing tine is five minutes, $A C=$ 0.0215 . The experimental and analytical ice shape is shown in figure 42. The time-stepping improves the ice Shape prediction over the no tine stepped case, but the shape is off considerably along the lower surface.

The overall collection efficiency parameters, however, compare very well, Table 9.

Table 9 Comparison of Theory and Experiment on the NACA 65 AOU4 Airfoil

	Experiment	Analysis
W (lh ice/ft span)	0.404	0.331
E-	0.208	0.162
S_{U}	0.0035	0.0040
$\mathrm{S}_{\text {Le }}$ area ft ${ }^{2}$	0.090	0.10 0.0062
Ice Density ($\%$ of $\mathrm{H}_{2} \mathrm{O}$)	0.0207 31.	0.0062 85.

The total mass collected, the collection efficiency, and the limits of impingement are very close for both the experiment and the analysis. However larye discrepencies occur in the cross sectional area of the ice and the ice dehsity. The error ariste due to the assumed ice density,

85 percent the density of water. This value is within the range of 75 to 91 reforted by H ilder [41] and close to the value of 89 used by Lozowski and Oleskiw [67]. All these values are far from the 31 percent measured in the icing tunnel test.

The very low measured value of ice density can be attributed to the formation of rime feathers on the lower surface ice shape. These ice formations can be seen in the photographe and sketchs of reference 37. Rime feathers are thin layers of ice separated by layers of air which sometimes form during rime ice accretions. the occurence of rime feathers, which drastically reauces the overall ice density, is difficult to predict. These feathers cause the effertige ice lensity to be a function of s. If the correct ict density could have been used in the prediction of figure 42 the agreement woula hape been much better. The prescit method does not handle the rime feather case. Hokever, when nethods are available to predict the furmation of rime feathers, this could easily be incorporated in the procedure.

Anrodynamic analysis
The details of the frediction of iced airioil
performance is aiven in section γ. As noted there, little aerodynamic data is available for use in verifying the method. Therofore an airfoil test was performed on a
\qquad
simulater rime ice shape to generate data for this purpose. the analytical method will first ve comparea to the simulated ice shape data. Then for the ioe shape _- : predictions already discussed, the predicted airfoil performance will be compared to the experimental data. The simulated ice shape test was conducted on a NACA 654413 airfoil with the shape being that predicted by the analysis in fiqure 38 . The tests wereconducted in the 6 by 22 inch transonic wind tunnel located at The Ohio state University's Aeronautical and Astronautical Research Laboratory. Pour different configurations were tested to separate out the roughness and shape effects as are done in the analysis. Complete details of the experiment can be found in Appencix A. Here the data are compared to the analysis.

No detailed pressure data can be found in the literature for airfoils with ice shapes, real or simulated. Even the most recent work by the Soviet Swedish group [2] on simulated ice shapes contains no airfoil pressure distributions. These data are necessary for a detailed evaluation of the airfoil analysis cole. Pigure 43 shows the measured dind predicted Cp distribution on the clran airfoil. Here the comparison is made at a lift confficiant of 0.52, Reynolus number based on chord langth of thran million, and mach number of 0.40 . The
pressure distribution predicted by the Eppler code is very close to that measured in the tunnel. The leading edge -_ discontinuity on both the upper and lover surfaces is predicted, although the upper surface is off somewhat in maqnitude. The rest of the pressure distribution also adrees vell. A slight deviation is seen near the trailing edge where the boundary layer thickness affects the pressures. This is not accounted for in the current version of the eppler analysis code.

Fiaure 44 compares the measured ard predicted pressure distributions on the airfoil with the s.mulated rime ice shape. The lift coefficient for this comparison is 0.45 . The most noticeable feature of the experimental $C p$ distribution are the discontinuous pressure spikes on the upyer and lower surface of the leading edge. These spikes are predicted fairly well by the analysis. The presence of the spikes will cause early boundary layer transition and probably the formation of leading edge sefaration bubbles. Therefore the ability of the airfoil code to accurately preaict this pressure disteibution is the first stey toward the accurate analysis of airfoils with rime ix.

The comparison betwen the medsured and predicted lift cofficients is shown in figure 45. The predicted angle of zorolift compares very weli while the lift curve slope
is slightly greater than that measured in the tunnel. The maximum lift-confficient compares well when the prediction of eppier is corrected for the airfoil roughness effects. The "clean" airfoil was actually slightly rough due to tarnish on the brass model. This is seen in the drag data Here the hydraulically smooth airfoil would have a drag coefficient of 0.0055 while the model tested had a minimum drag of 0.0086 . Prom the work of Brumby [66] even small amounts of surface roughness are seen tomeduce $C_{\ell_{\text {max. }}}$ figure 14. Therefore, using the results of figure 16 , the roughness height on the clean airfoil was estimated as k / c $=0.0001$. using this value of k / c in Brumby's plot of figure 14 a correction of -10 percent in the maximum lift coefficient is found. This is the correction that has been applier to the analytically predicted $C_{\text {max }}$ for the clean airfoil in figure 45.

The iced airfoil $C_{\ell_{\text {max }}}$ results compare reasonably well with the predicted value veiny slightly less than that measured in the tunnel. The iced airfoil had a measured $C_{\ell m a x}$ of about 1.0 vile the theory predicted a more conservative 0.90 . The theoretical maximum lift coefficient was reduced from the clean case by a leading cage separation bubble which causer massive separation from the leading edge. Apparently in the tunnel the separation was delayed and the airfoil stalled at a
slightly higher $C_{\ell_{\max }}$ and anal of attack. The method appears to do a reasonable job of predicting $C_{\ell_{\max }}$ aeqradation due to rime ice accretion.

The experimental and -theoretical dray molars are shown in figure -46. Here three sets of experimental and theoretical predictions are presented; the clean airfoil, the airfoil with roughness on -the first three percent $(k / c=0.0025)$, and the airfoil with the same roughness on the simulated rime ice shape. The clean prediction is from Eppler with transition moved forward using his roughness parameter. Isis result compares well to experiment. When roughness is added to the airfoil the dray increases as expected. using eppler to determine the hydraulically smooth airfoil drag and eq. (41), the predicted drag values are very close to the measured ones. This provides a good check on the empirical roughness data used in developing eq. (41).

The drag of the simulated rime ice shape pith roughness) his also shown in figure 46 . Here the roughness extends back to $x=0.03$ on the airfoil and covers the entire rime ice shape. The drag prediction using eq. (41) with ACE $=0.03616$ is conservative compared to the experimental results. The measured value of Cd is 0.0155 compares to a probictea value of 0.0185 . This is an increse of 244 percent and 311 percent respectively over
the smooth value of 0.0045 . Considering the difficulty of the analysis, this represents a reasonabl e comparison. Note also that the theory is based on actual iced airfoil data and a simulated ice shape was tested. Therefore, the error-may be due in part to the way in which the ice shape was simulated. This errur in the simulation can not be deterrined from these tests, and it suggests that an -- -experimenta? proaram is needed to develop ice simulation techniques.

The analytical method for calculating icec airfoil performance has been compared to actual airfoil icing tests. The predicted ice shape of fiqure 34 has been amalyzed and the results are shown in figures 47 and 48. The airfoil used is the modified NACA 64-215. The lift coefficient curve, figure 47, shows the expected reduction in $C_{l_{\text {max }}}$ due to a leadina edqe bubble. Unfortunately no lift cofficient data was taken on the actual iced airfoil to be used for comparison. Tris reduction in maximum lift coefficient dues however seem reasonable when compared to similar airfoil results.

The analytically predicted dray polars for both the clean and ired airfoils are shown in fiqure 48. Here experimental values of i qg coefficient at 0.7 degrees ande of attack are available for the clean and iced airfoil [68]. Since no ice rughness was reported, the
results are shown for values of k / c of 0.001 to 0.005 which bracket the usual ranqe of rime ice roughness. Here the comparison between theory and experiment is very good, especially the increment in the arag due to the ice. Aatin the clean value is calculated using the Eppler proaran with his roughness correction and the increase in drag is based on eq. (41).

The NACA $65 A 004$ airfoil has been analyzed using the rime ice shapt predicted in figure 42. The predicted drag Folar and the measured values are shown in fiqure 49. Here again the experisental arag values are only available at one angle of attack. The analysis does an excellent job of predicting the drag increase for values in the cruise range.

The effect of the ice shape on the maximum lift cofficient is very unusual for this particular airfoil. As seen in figure 42 the ice shape forms a leading edge flap for this thin airfoil. The measured increase for this case is approximately 23 percent while the analysis shows a 12 percent increase in maximum lift coefficient. Although numerically this comparison may seem less than desireable, it actually lends a great deal of confidence to the method. The 65A004 is a very seyere test of the analusis since the airfoil is so thin. To prexict an increase in $C_{\text {q max }}$ inich is conservative denonstrates that
the leadina edqe region in being handled correctly by the analysis.

The areodynamic analysis has been compared to both simulated and actual rime ice on three very different airfoil sections. All theresults, both lift and draq, have compared very well considering the dificulty in performing the analysis. The method for the aerodynamic analysis of airfoils with rime ice presented here has been. shown to be a reliable procedure. Hop\&fully the empinical corrections to the dran predictions can eventually be replaced by analytical methods when they become available.

A methodology has been developed to predict the growth of rime ice, and the resulting aerodynamicmenalty, on unprotected airfoil surfaces. This. method has for the first time included the time effects into the icing analysis. A large portion of this study was involved in the numerical formulation of the problem for digital... computer solution. However, the derivation of two new similarity parameters was primarily an analytical exercise, while some experimental work was performed in a wind tunnel evaluation of the aerodynamic analysis.

The calculation of water droplet trajectories was performed by a step integration of the governing stiff system of ordinary differential equations. The required flowfield was provided by a modified theodorsen method. Although calculations of this type have been perforued earlier, by using state of-the-art computational facilities and numerical proceedures a large improvement has been made. The present procedure was faster, more ancurate, and more generally applicable than earlier methods.

An in depth analysis of the governing differential equation has lead to a simplified similarity parameter for the problem. By using a reduced form of the droplet drag equation the two similarity parameters, R_{U} and k, were combined into a single prater, \bar{K}, the trajectory similarity parameter. This greatly simplified the analysis \qquad
By making a further simplification to the droplet drag equation the modified inertia parameter, K_{o}, first suggested by langmuir, was derived in the samemanner. As a result of this analysis a closed form solution was found for Ko. This was the first derivation of K_{0} from the governing differential equation and the first time a closed form solution for it has ever been found. Experimental and numerical results have been presented in support of K_{O} and $\overline{\mathrm{K}}$. The new trajectory similarity parameter has been found to be superior to K_{0}. especially in scaling applications.

Using the results of droplet trajectory calculations rime ice shapes have been predicted. In the derivation of these equations a similarity parameter has been identified, the accumulation parameter, Ac. For a given geometry and \bar{k} the accumulation parameter governs the growth of rime ice on airfoils.

$$
C-?
$$

As rime ice builds up on an airfoil leading edge the effective airfoil shape becomes a function of time. This then results in the surface flux of impinging water droplets also being a function of time. Tho present method has included these effects into the ice shape prediction. A time-stepping procedure was employed where the airfoil geometry, flowfield, and droplet impingement efficiencies were upaated periodically during the ice accretion process. Comparison of predicted rime ice shapes to those measured in a icina wind tunnel compared well. A sicnificant improvement was seen in the theoretical shapes when the time-stepping procedure was used.

The time-stenping procedure has provided insight into the ice accretion frocess. Some researchers have suqaested that the ice actually grows out froin the surface tangent to the incoming uroplet trajectories. This tanaent ice qrowth has been shown to be merely an approximation to the time effects where the usual grovth out normal to the surface was used. With the importance of inclufing time $\leftrightarrow f$ fects in the rime icing analysis demonstrated, the method is expected to provide similar inprovements to glaze icr-predictions.

The aerodynamic effects of rime ice accretions on airfoils includes a reduction in maxinum lift coefficient
and an increase in तiraq. Eailier methods for predicting the degradation in airfoil performance with ice relfed totally upon empirical correlations. These methods, hōever, dealt only with the changes in drag and vere based on initial icing rates. The present method for evaluating the iced airfoil performance was based on an analytical analysis of the resulting airfoil shape after ice accretion. The mehtod postulated that the aerodynamic effectr of rime ice were aue to: 1) the surface roughness of the ice, and 2) the change in leading edge geometry due to the smooth ice shape. These two mechanisms were then handled separately by the analysis.

The smooth ice shape was analyzed using existing airfoil analysis codes. The surface roughoess effect was handled by correcting the analytical results based on an empirical equation which was developed here.

Since no detailed aerodynamic data on an airfoil with rime ice was available, wind tunnel tests on an airfoil with_simulated_rime_ice were_conducted. The experiment inentified the effect surface roughness and ice shape have on airfoil performance. In addition to lift and drag data, these tests generated the first detailed pressure measurements ever taken on an airfoil with simulated ice. The predicted pressure distributions compared well with the experimental_results as did the values for C_{ℓ} and $c d$.

The aerodynamic analysis was verified further using values Of lift and dran from icing wind tannel tests of actual ico accretions.

The present study has identified areas where \qquad additional work is noeded. The analytical method could be improved by either femoving the need to smooth the shape or inproving the smoothing procedure. This would increase the accuracy of the ice shape prediction and allow swaller step sizes. In addition better information on the ice density would greatly improve the mettred. Puture analytical research on rough airfoil drag could remove the neea to use an empirical-drag correlation. Experimentally the need is to expand the old, and very limited, data base in terms of accurate ice shapes, ice densities, and airfoil aerodynamic performance penalties. However the most serions nead is to extend this work to the qlaze ice case where a flowfield with large zones of separated flow mast be accurately predicted.

In summary the rime icing-methodology presented here har advanced the state-of-the-art in four major areas. Pirst, the effects of time on the ice accretion process have been includea in the analysis. By using the timestepping method-very accurate rime ice shapes can be preùicted. Secont, an aerodynamic analysis has been formulated wich is based on the actual iced airfoil
geonetry. Onlike early methods which estimated ca from only initial icing rates, thi-s methou predicts \mathbb{C}_{ℓ} and co from the new airfoil geometry with some empirical corrections.

The third major contribution came from the wind tunnel test of the simulated ice shape. Here for the first time detailec aerocunamic data, including surface pressure distributions, were taken on an-airfoil with simulated rime ice. The data provided a great deai of insight into the mroblem and an excellent test case for the present, and for future aprodynamic analysis. The similarity analysis frovidea the final contribution. Two new parameters, \bar{K}, the trajectory similarity parameter, and, Ac, the accumulation parameter have been derived and shown to guvern the accretion of rime ice on airfoils. In adतition, K_{0}, the modified inertia parameter has bean तerived from the governing differential equation and the first closed form solution for K_{o} has been presented.

REFERENCES

- - . Gray, vernon H. and Von Glahn, owe H., "Aerodynamic Effects Caused By Icing of an Urswept NaCA 65A004 Airfoil", NACA TN 4155, 1957

2. Ingelman-Sundbera, M., Trunov, 0 . K.. and Ivaniko, A.. "Methods for Prediction of the Influence of Ice on Aircraft Plying Characteristics", a joint report from the Swedish-Soviet Horking Group on Plight Safety, 6th Meeting, 1977
3. Gray, Vernon H., "Prediction of Aerodynamic penalties Caused by Ice Formations on Various Airfoils", NASA TN D - 2166, 1964
4. Peheim, Milton A., "Executive Sumary of Aircraft Icing Specialists horkshopn, Aircraft Icing, a workshop held at Lewis Research Center, July 19-21, 1978, NASA Conference Publication 2086. Fp. 1-16
5. Eleeker, W., "Einige Bemerkungen uber Eisansáz an Fluazeugen", Meteoroloaische zeitschrift, September 1932, pp. 349-354 (also available as NACA TM No. 1027)
6. Conite d Etude du Givrage fapport dul9mai 1938 , Bulletin des Services Techniques no. 85, publications Scientifques et Techniques du Ministere de lar (also available as NACA IM No. 919)
7. Taylor, G. I., nNotes on Possible Equipment and Technigue for Experiments on Icina on Aircrafin. F: E M No. 2024. British A.R.C., Jan. 1940
8. Glauret, Muriel; ${ }^{-\quad A}$ Method of Constructing the Path of Kaindrops of Different Diameters Moving in the Neighbourhood of (1) a Circular cylinder, (2) an Aerfoil, Placed-in a uniform Stream of Air: and a Determination of the Rate of Deposit of the Drops on the Surface and the fercentage of Drops Caughtn, $R E$ M No. 2025, British A.R.C., Nov. 1940
9. Langmuir, Irving, and Blodyett, Katherine B.. m_{A} Mathematical Investiqation of Hater Droplet Trajectoriesn, Army Air Porces Technical Report No. 5418 (Contract No. w-33-038-ac-9151). Feb. 1946
10. Brun, Rinaldo J., Serafini, John S.. and Gallagher, Helen M., "Impingement of cloud droplets on Aerodynamic Bodies as affected by Compressibility of Aif flow around the Botyn, NaCA ${ }^{2} \mathrm{~N}$ 2903, March 1953
11. Brun, Rinaldo J. and Mergler, Harry H. " "Impingement of Water Droplets on a Cylinder in an Incompressible Plow pield and evaluation of Rotating Multicylinder Method for Measurement of Droplet-Size Distribution, volume-Median Droplet Size, and Liquid-Water Content in clouds", NACA TN 2904. March 1953
12. Dorsch, Robert G., Saper Paul G., and Kadow, Charles F., "Impingement of water Droplets on a Sphere", NACA TN 3587, November 1955
13. Sergrun, Norman R., "A Method for Numerically Calculating the Area and Distribution of water Impingement on the Leading Eage of an Airfoil in a Cloudi, NaCA tw 1397, August 1947
14. Brun, R. J. and קugt, Dorothea E., "Impingement of cloud Droflets on 36.5 -Percent-Thick Joukowski Airfoil at zero Angle of Attack and Discussion of trse as Cloud heasuring Instrument in Dye-Tracer Technique", NACA TN 4035, September 1957
15. Berarun, Norman R., n An Fmpirical Method Permitting Rapid Determination of the Area, Rate, and Distribution of hater -Drop Impingement on an Airfoil of Arbitrary Section at Subsonic Speeds. ${ }^{n}$, NaCA TN 2476, September 1951
16. Brun, Rinaldo J.. Gallagher, Helen M., and Vogt, Dorothea E., nImpingement of Water Droplets on NACA 65-208 anj 65-212 Airfoils at 4 angle of Attackn, NACA TN 2952, May 1953
17. Brun, Rinalá J., Gallagher, Helen M., Vogt, Dorothra E.. "Impingement of Hater Droplets on NACA 65 A004 Airfoil and Effect of Change in-Airfoil Thickness from 12 to 4 Percent at 4 Angle of Attack", NACA TN 3047, November 1953
18. Brun, Rinaldo J., Gallagher, Helen M.. Voat, Dorothea E., "Impingement of Hater Droplets on NACA 65A004 Airfoil at 8 Angle of Attack", NACA TN 3155, July 1954

-

19. Brun, Rinaldo ${ }^{2}$. and Vogt, Dorothea E., "Impingevent - of. Water uroplets on NACA 65 A004 Airfoil at 0 Angle of Attackn, NACA TN 3586, November 1955
20. Serafini, John S., "Impingement of Water proplets on Wedaes and Diamond Airfoils at Supersonic Speeds". NACA TN 2971, July 1953
21. Dorsch, Robert G. and Brun, Rinaldo J.. "A Method For Determining Cloud Droplet Impinqement on Swept Wings", NACA TA 2931, April 1953
22. Dorsch, Robert G., Brun, Rinaldo J., and Greqq, Iobn I., "Impingement of Water Droplets on an Ellipsoid with Fineness Ratio 5 in Axisymmetric Flown, TN 3099. March 1954
23. Brun, Rinaldo J. and Dorsch, Fobert G., NImpingement of Water Dejplets on an Ellipsoid with Fineness Ratio 10 in Axisymmetric Plow", NACA TN 3147, May 1954
24. Brun, Rinaldo J. and Dorsch, Robert G., "variation of Local Liquic-water Concentration About an Fllipsoid of Pineness Ratio 10 Moving in a Droplet Field", NACA TN 3410, April 1955
25. James, Alun F. and Lewis, William, mecommended Values of meteorological pactors to be considered in the Desian of Aircraft Ice-Prevention Equipment n, NACA $T N$ 1855, March 1949
26. Hacker, Paul T. and Dorsch, Robert G., "A Sumary of Meteoroloaical Conditions Associated with Aircraft Icing and a Proposed Method of Selecting Design Criterions for Ice-protection Equipment", NACA TN 256.9, November 1951
27. Lewis, William and Bergrung .Norman R., mA^{2} Probability Analysis of Meteorological Pactors Conducive to Aircraft Icing in the United States". NACA TN 2738, 1952
28. Airworthiness Standards: Transport Category Airplanes, Part 25, Federal Aviation Regulations, Dffective 2/1/65
29. Von Glahn, Uwe H., Gelder, Thomas P.. and Simers, Williar 4 . Jr., "A Dye-Tracer Techaique Eor Experimentally obtaining Impingement Characteristics of Arbitrary Bodies and a Method for Determining Droplet Size Distributionn, NACA TN 3338, March 1955
30. Gelder, Thomas F.. Smyers, William H. Jr., and von Glahn, Twe H., "Experimental Droplet Impingement on Several Two-limensional Airfoils with Thickness Ratios of 6 to 16 Percent", NACA TN 3839, December 1955
31. Von Glahn, Uwe H., "use of Truncated Flapped Airfoils for Impinaement-and Icina Tests of FullScale Leading-Eäge Sectionsh, NACA KM E56E17, July $24 \quad 1956$
32. Lewis, James D. and Ruggeri, Robert S., "Experimental Droplet Impingement on Pour Bodies of Revolution ", NACA TN 4092, December 1957
33. Gelder, Thomas F., ndroplet Impingement and Injestion by surersonic Nose Inlet in Subsonic Tunnel Conditions", NACA TN 4268, May 1958
34. Gray, Vernon H. and Von Glahn, Owe H.. Effect. of Ice And Prost Pormations on Erag of NaCA 65-212 Airfoil for Various modes of ${ }^{\text {Thermal }}$ Ice protection", NaCA TN 2962, June 1953
35. Von Glahn, Uwe H. and Gray, vernon H.. Weffect of Ice Pormations on Section Drag of Swept NACA 63A-009 Airfoil with Partial-Span Leading-Edge slat for Various Modes of Thermal Ice Protectionn, NACA RM E53.130, March 153954
36. Bowden, Dean T., Meffect on Pneumatic-De-Icers and Ice Pornations on Aerodynamir Characteristics of an Airfoil", NaCA tN 3564. February 1954
37. Gray, Vernon H., "Correlations Among Ice Measurements. Impingement Rates, Icing conditions, and Drag Coefficients for Unswept NaCA 65 A0.04Airfoiln, NACA TN 4151, February 1954 _ -
\qquad :
38. Bowien, D. T., Gensemer, A. E., and Skeen, C. A.. "Enyinefring Summary of Airframe Icing Technical Data", Federal Aviation Agency, Technical Report ADS-4, March 1964

3\& Lozowsk: E. P., Stallabrass, J. R., and Hearty, P. F.. "The Icing on an Dnheated Non-Rotating Cylinder in Liquin Water Droplet-Ice Crystal Cloủs". National Research Council of Canada, Division of Mechanical fingineering, Report LTR-LT-96. February 1979
40. Pierre, Marcel and Vaucheret, Xavier, nicing Test Facilities and Test Techniques in Europen, AGARD Advisory feport No. 127. November 1978, pp. 6-1 to 6-11
41. Wilder, Raymond. W.. "A. Theoretical and Experimental Means to Predict Ice Accretion Shapes for svaluating Airccraft Handiing and Performance Characteristics", AGARD Advisory Report No. 127, November 1978. pp. 51 to $5-20$
42. Kohlman, D. L., SGhweikhard, W. G., and Evanich, P.. "Icing tunnel rests of a Glycol-Exuding Porous Leading Edqe Ice Protection System on a General Aviation Airfoiln. Paper 81-0405 presented at the ATAA 19th Aerospace sciences Meeting. St. Louis, Missouri, January 12-15 1981
43. Norment, Hillyer G., "Calculation of Hater Drop Trajectories to and About Arbitrary Threedimensional Bouies in potential Airflown, NASA Contract Report 3291. August 1980
44. Braga, N. B.. Greuorek, G. M., and Shaw, R. J.. NAn Analytical Approach to Airfoil Icing". AIAA Faper No. 81-0403 prosented at the 19th Aerospace Sciences Meeting, St: Louis, Missouri, January 12-15 1981
45. Korkan, Kenneth D.. "Theoretical and Experimental Studies of yulticomponent flow Systems". Phd uissertation, The Ohio state university, 1975

```
46. Soo. S. L., "pluid.Dynamices of Multiphase
    Systems", \laiscell, Haltham, Mass.., 1967,
    pv. 31-33
```

47. Rudinger, G., "Plow of s lid Particles in Gases", AGARDograph No. 222, 196), pp. 55-86
48. Keim, S. R., Pluid Resistance to Cylinders in Accelerated Motion", J. Hyãaulics Div., Proc. Amer. Soc. Civil Eng., Vol 0 , 1956, paper 1113
49. Crowe, C. T.. Nicholls, J. A., and morrisun, R. B., ndrag Cofficients of Inext and Rurnina Particles Accelerating in Gas Streams", Ninth Symposium (Int'l) on Combustion, Academic Press. 1963, pp. 395-405
50. Schlichting. H.. MBoundary Layer Theory", 6th Edition, MCGrav-Hill, 1960. pp. 15-19
51. Puchs, N. A., "The Mechanics of Aerosols". Macmillan, 1964
52. Rutnam, A., "Intearable Form of Droplet Drag Coefficient", AFS J., Vol. 33. 1961, pp. 1467-1468
53. Beard, R. V. and Pruppacher, H. R., nA Determination of the Terminal velocity and Drag of Small water Drops by Means of a Hind Tunneln, J. Atmospheric Sciences, Vol. 26, 1969. VP. 1066-1072
54. Ormsbee, Allen I.. Bragg, Michael B.. Maughmer, Mark D., and Jordan, P. b., "Scaling Wake Particle Interactions for Aerial Applications Researchn, Paper $8 \theta-7873$ presented at the AlAA Aircraft systems Meeting, Anaheim California, Augrst 4-6 1980. AIAA Journal of Aircraft, Vol. 18 No. ; pp. 592-596, July 1981
55. Sherman, P., Klein, J. S., and Tribus, Mo. "Determination of Drop Trajectories by means of an Extention of Stokes Lawn. Project M992-D, Air Research and Development Command, oSAp, Contract Ap 18(600)-51, April 1952
56. Ormsbee, A. 1. and Bragg, M. B.. "Trajectory Scaliny Laws for a Particle Injected into the wake of an Aifcraft", University of lllinois at urbanaChampaign, Aviation Research Laboratory, Report ARL 78-1, June 1978
57. Armand, claude, et. al., "Techniques and Facilities Osed at the oner Modane Centre for Icing Tests", AGARD Advisory Report Nu. 127, Noverber 1978, pp. A6-1 to A6-23
58. Theodorsen, T.. "Itheory of Wing Sections of Arbitrary Shapen, NACA Rept. 411, 1931
59. Theodorsen, T. and Garrick, I. E., ngeneral Potential Theory of Arbitrary Hing Sectionsn, NACA Rept. 452, 1933
60. Woan, C. J., "Fortran Proqrams for Calculating the Inconpressible potential flow About a Single Element Airfoil Using Conformal mappingn, The ohio Stae Oniversity, Aeronautical and Astronautical Research Laboratory, TR AARI. 80-02, January 1980
61. Eppler, Richard and Somers, Dan M., NA Computer Program for the Desiqn and Analysis of Low-speed Airfoils", NASA TM 80210, Rugust 1980
62. Lapidus, Leon and Seinfield, John H., "Numerical Solution of orãinary Differential Equations". Academic Press, New York, 1971, pp. 267-293
63. Gear, C. H., "The Automatic Integration of ordinary Differential Equations". Comin. ACM 14. March 1971. pp. 176-179
64. Gear, C. $\mathrm{H}_{\text {. }}$ "IIPSUB for Solution of Ordinary Differential Equations", Comm. ACM 14. March 1971, pp. 185-190
65. Szelazek, C.A. and Hicks, Raymond Wo, "Upper Surface Mocifications for C Improvement of Selected NaCA 6-Series Airfoilsn, NASA TM 78603. August 1979
66. Rrumby, Ralph E.., nhing Surface-Roughness, Cause and Effect", DC Plight Approach, January 1979, pp. 2-7
67. Lozowski. E. P. and Oleskiw, M. M.. "Computer Simulation of Airfoil Icing Yithout Runbackn, AIAA Paper No. 8 1-0402 presented at the 19 th Aerospace Scipnces. Meeting. St. Louis Missouri. January 12-15 1981
68. Shaw, R. J.. Private Commnication with M. B. Bragg, November 1980
69. Lee, Juhn D.., Gregorek, G. M., and Korkan, K. D., "Testing Techniques and Interierence Evaluation in the OSU Transonic Airfoil Facility", AIAA Paper No. 78-1118 presented at the 11th Pluid and plasma Dynamics Conference, Seattle Hashington, Jily 10-12 1978
70. Preuler, F. J. and Petrie, S. L., "an effective Mix of Mini computer Power and Larye Scale Computers for Complex Pluid Mechanics Calculations". Paper presented at the joint Conference of the American Chemical Society and Chemical Institute of Canada, June 1977
71. Freuler, F. J., "State-of-the-Art Data Acquisition and-Reduction Techniques for Transonic Airfoil Testinq", Daper presented at the International Congress on Instrumentation in Aerospace Simulation "acilities, Ottawa Canada. Sept. 1975

RIME

FIGURE 1. TYPICAL RIME AND GLAZE ICE AGCRETIONS ON AN ATRFOIL

C_{t}

FIG才RE 2. EFFECT OF ICE ON THE AERODYNANIC CHARACTERISTICS OF A NACA 65A215 AIFFOIL

FIGURE 3. STANDARD SPHERE DRAG CURVE AND APPROXIMATION

FIGURE 5. APPROXIMATE DRAG LAW EXPONENT FOR BEST FIT IN REYNOLDS NUMBER RANGE 0 TO R.

FIGURE 6. COMPARISON OF PREDICTED LEADING EDGE VELOCITY DISTRIBUTICNS FROM EPPLER AND THEODORSEN COMPUTER CODES

FIGURE 8. GEOMETRY OF THE ICE GROWTH CALCULATION

FIGURE 9. DEFINITTION OF THE GEOMETRY INVOLVED IWHEN A PARTICLE IMPINGES ON THE AIRFOIL SURFACE

FIGURE 10. FLOWCHART FOR THE KIME ICE METHODOLOGY

FIGYRE 17. COORDINATE SYSTEMS USED IN THE TRAJECTORY CALCULATION

FIGURE 12. DROPLET INITIAL Y COORDINATE IN THE FREE STREAM AS A FUNCTION OF IMPINGEMENT POINT ON THE AIRFOIL
i

FIGURE 13. IMPINGEMENT EFFICIENCY AS A FUNCTION OF AIRFOIL SURFACE LENGTH (Derivative of the Curve in Figure 11)

FIGURE 14. REDUCTION OF MAXIMUM LIFT COEFFICIENT DUE TO WING SURFACE ROUGHNESS

FIGURE 15. MEASURED INCREASE IN AIRFOIL DRAG FOR RIME AND GLAZE ICE
COMPARED TO THE RIME ICE DRAG MODEL

ROUGHNESS HEIGHT, K/C

FIGURE 16. EFFECT OF LEADING EDGE ROUGHNESS ON AIRFOIL DRAG

FIGURE 17. EMPIRICAL FIT TO ICED AIRFOIL DATA

FIGURE 18. COMPARISON OF THE PRESENT METHOD TO NACA TN 3586 FOR IMPINGEMENT EFFICIENCY ON A NACA $65 A 004$ AIRFOIL

SURFACE LENGTH, S

FIGURE 19. COMPARISON OF THE PRESENT METHOD TO THAT OF LOZOWSKI FOR THE IMPINGEMENT EFFICIENCY OF A NACA 0015 AIRFOIL
i

FIGURE 20. PRESENT METHOD FOR CALCULATING IMPINGEMENT EFFICIENCY COMPARED on TO LOZOWSKI'S WITH DRAG DUE TO DROPLET ACCELERATION

FIGURE 21. COMPARISON OF THEORETICAL IMPINGEMENT VALUES WITH EXPERIMENTAL RESULTS

Went

FIGURE 22. EFFECT OF DROPLET DIAMETER ON IMPINGEMENT EFFICIENCY

FIGURE 23. EVALUATION OF THE VOLUME MEDIAN DIAMETER APPROXIMATION FOR PREDICTING IMPINGEMENT EFFICIENCY

FIGURE 24. COLLECTJON EFFICIENCY OF A NACA 65A004 AIRFOLL AS A FUNCTION OF K_{o}.

Figure 25. COLLECTION EFFICIENCY OF A NACA 65AC04 AIRFOIL AS A FUNCTION OF K.

FIGURE 26. COLLECTI ON EFFICIENCY OF A NACA 0012
AIRFOIL AS A FUNCTION OF K_{o}.

FIGURE 27. COLLECTION EFFICIENCY OF A NACA rO 012 AIRFOIL AS A FUNCTION OF \bar{K}.

FIGURE 28. COMPARISON OF K_{o} AND \bar{K} IN SGALING THE
DROPLET IMPTNGEMENT EFFICIENCY OF AN AIRFOIL.

FIGURE 29. EXPERIMENTAL RESULTS SCALING DROFLET TRAJECTORIES IN AN AIRCRAFT WAKE.

NACA 0012

$$
a=5^{\circ}
$$

FIGURE 30. DROPLET TRAJEGTORIES ABOUT A NACA 0012 AIRFOIL AT ZERO AND FIVE DEGREES ANGLE OF ATTACK
 HJONAT GコVians

$$
\cdot \mid
$$

FIGURE 32. EFFECT OF THE INERTIA PARAMETER OH THE LATPINGEMENT EFFICIENCY

FIGURE 33. EFFECT OF THE ASSUMED DIRECTION OF GROWTH ON ThE PREDICTED ICE SHAPE

FIGURE 34. PREDICTED RIME ICE SHAPES FOR THREE FIVE MINUTE TIME STEPS

FIGURE 35. IMPTNGEMENT EFFICIENCY OURVES FOR THE MODIFIED NACA 64-215 AIRFOIL ANALYZED USING THREE FIVE MINUTE TIME STEPS

FIGURE 36. EFFECT OF THE NUMBER OF TIME STEPS ON THE ICE SHAPE PREDICTION

STEP NO

FIGURE 37. IMPINGEMENT EFFICIENCY CURVES FOR THE MODIFIED NACA 54-215 AIRFOIL ANALYZED USING SIX 2.5 MINUTE TIME STEPS

FIGURE 38. EFFECT OF THE NUMBER ȮF TIME STEPS ON THE PREDICTED RIME ICE SHAPE FOR A NACA 65A413 AIRFOIL

FIGURE 39. IMPINGEMENT EFFICIENCY CURVES FOR THE TWO TIME STEP ICE CALCULATION

FIGURE 40. IMPINGEMENT EFFICIENCY CURVES FOR THE FOUR TIME STEP ICE SHAPE CALCULATION

FIGURE 41. THEORETICAI. RIME ICE SHAPE COMPARED TO EXPERIMENT FOR THE MODIFIFD NACA 64-215 AIRFOIL

NACA 65A004
—— NACA EXPERIMENT, $E=.208$
---51 MIN TIME STEPS, $E=.163$
——— 15 MIN.STEP, $E=.153$

FIGURE 42. THEORETICAL RIME ICE SHAPE COMPARED TO EXPERIMENT FOR THE NACA $65 A 004$
AIRFOIL

FIGURE 43. THEORETICAL AND EXPERIMENTAL PRESSURE DISTRIBUTION FOR THE CLEAN NACA 65A413 AIRFOIL

FIGURE 44. THEORETICAL AND EXPERIMENTAL PRESSURE DISTRIBUTION FOR THE NACA 65A413 AIRFOIL WITH SIMUATED RIME ICE

FIGURE 45. THE PREDICTED LIFT COEFFICIENT COMPARED TO EXPERIMENT FOR A NACA 65A413 AIRFOIL CLEAN AND WITH SIMULATED ICE

FIGURE 46. DRAG POLARS FOR THE NACA 65A413 AIRFOIL WITH LEADING EDGE MODIFICATIONS COMPARED TO THEORY

FIGURE 47. PREDICTED LIFT COEFFICIENT AS A FUNCTION OF ANGLE OF ATTACK FOR THE MODIFIED NACA 64-215 AIRFOIL

FIGURE 48. EXPERIMENTAL AND THEORETICAL DRAG POLARS FOR THE MODIFIED NACA 64-215 AIRFOIL CLEAN AND WITH ICE

FIGURE 49. EXPERIMENTAL AND THEORETICAL DRAG POIARS FOR A NACA 65A0.04 AIRFOIL CLEAN AND ${ }^{\prime}$ WITH ICE

An experimental program has been conducted at the ohio State University's Aeronautical ana Astronautical Research Laboratory to determine the aerodynamic characteristics of an airfoil with simulated rime ice. A wind tunnel test. was performed using an existing airfoil section to gather data to be used in the validation of the iced airfoil analysis method. The experiment was performed not only to. generate simulated rime ice aerodynamic. data, but also to test the hypothesis used in the analytical method that the effects of ice shape and roughness can be handed separately Y.

The tests were conducted using four different model configurations:
1.) Clean airfoil (baseline)
2.) Airfoil with leading edge roughness
3.) Airfoil with month rime ice shape
4.) Airfoil with rime ice shape and leading edge rouanness ad ed (simulated rime ice)
gey evaluating the aerodynamic characteristics of each configuration, the effects of surface roughness and ice shape can be determined. By comparing model two to the baseline a check on the ΔC prediction of figure 15 can be made as well as a check on the $\tilde{D C}_{\text {max }}$ data of Brumby.
fiqure 13. The results of models 3 and 4 compared to the baseline will provile verification of the $C_{\ell_{\text {max }}}$ analysis. Pinally the tests of model 4 will verify the entire theoretical method.

Experimental Facility
The experimental facility used in this study was the oso 6 by 22 Transonic aiffoil wind tunnel [69]. The tungel is designed for two dimensional testing vith a test section six inches wide, twenty-two inches high, and forty-four inches lonq. The side walls are solid, while the top and bottom walls of the tunnel are perforated with a porosity of ten percent. The tunnel operates in a blowiown mode with the mach number controlled by a choke downstrean of the test section. Mach numbers from 0.2 to 1.1 arc available. The total pressure in the stagnation Chamber is varied to control the Reynolds number and provide a range of 1.5 to 33 million per foot.

Lift and moment cofficient data are nornally taken using model static pressure taps. pressure aeasurements are made with a Scanivalve, traped volume system which is sampled with a transducer after the tuncl is shut dom. Drap data are taken using a wake survey probe which traverses the wake recordina the staanation pressure defirit. The data collected is digitized and stored on wanetic tape in the Hacris SiASA 6 Diuital Computational

Facility [70] of the Aeronautical and Astronautical Research Laboratory. The data is then reduced to coefficient form [71] and output as quick look data on a CRT display or hard copy printed and ploted.

The interference effects in the uSV 6 by 22 Hind Tunnel have been investigated [69]. Confinement interference, sfanvise interference from the side walls, and flow quality have been evaluated. . The correction required for six inch chord modelshas been show to be negligible. The correction to tne anqle of attack is on the order of 0.17 . degrees per unit C_{ℓ}. Since this test will use a six inch churd airfoil, no corrections need be made to the data.

Airfoil Model
A NACA 650413 airfoil section was selected for the experiment. The model used in the wind tunnel was a brass andel of six inch chord and six inch span, figure $A-1$. The original airfoil model was instrumented with 46 static pressure taps of which 42 were used in the data reduction. The trailing edge tap is located on the sidewall due to the physical constraints.

The rine shape wich was simulated was that predicted by the time-stepping analysis of figure 37. A comparison of the predicted shape and the shape used on the tunnel model is qiven in figure $\mathrm{A}-2$. Note that since the
objective of the test was to generate baseline data to validate the analysis, the accurate reproduction of the predicted shape is not required. All that is required is that the ice shape simulated be a representative geometry and that it be adequately documented for the analytical comparisen.

A schematic of the airfoil model with the simulated rime ice shape is shown in fiqures $A-3$ and $A-4$. The rime ice shape was simulated by adding a 0.145 inch outside diameter tube to the airfoil leading eage. The mounting blocks were drilled to allow the tube to extend out of the tunnel on both sides. The center section of the tube was replaced by a solid rod wich was drilled through to pick up the existino leading edge pressure tap. The tube, now plugged in the center, was used to add an additional tap on the leading edue uppor and lower surfaces, figure $A-4$. The ice shape was corpleted by building up the area betreen the tube and the airfoil until the desired shape $\dot{w} a s$ reached. Care was taken to ensure that the affected airfoil pressure taps vere extended up through this reqion to the ne airfoil surface. A photograph of the airfoil model with the simulated rime ice shape is shown in figure A-5.

Roughness was added to the model for configurations 2 amalu. This roughess vas intended to simulate the actual
rouahness on a rime ice shape. Rime ice surface roughness is typically in the range of $k / c=0.001$ to 0.005 . Carborundum grit with an average size of 0.015 inches was used. This scales tc a k / c of 0.0025 for a six inch chörd model.

The grit was applied by first coating the surface with Krylon clear acrylic spray to provide the adhesive. The roughness-e lements were then applied to the surface and two or three coats of acrylic were applied to ensure that the particles were firmly adhered to the surface. The roughness was applied to the leading edqe of the airfoil upper and lower surface back to three percent airfoil chord for both confiuurations 2 and 4. The roughness elements were distributed randomly at a concentration of about 250 per square inch of surface area, figure A-b. Results and Discussion

The airfoil section selected is typical of that currently in use on general aviation and business aircraft. To simulate actual operating conditions, a Mach number of 0.40 and a Reynolds number based on chord length of 3 million were chosen for the cruise case. Thesp conditions vere used in testing the airfoil at angles of attark of eiaht deqrees and less. To determine the maximum lift coefficient, conditions more typical of a landina approach were used. for andes of attack greater
than eight degrees a mach number of 0.23 and Reynolds number of 2 million vere used.

Pressure distributions for the clean airfoil and with surface roughuess added, configurations 1 and 2, are shown in figure $A-7$. Here both airfoils are at two degrees angle of attack. Both curves are similar, however the areas, which give the model lift coefficient, are different. The model with roughness experiences a cecrease in lift over the clean model. This is probably due to the eflect of the roughness on the boundary layer. The roughness results in a thicker boundary layer at the trailing edqe upper surface and therefore a larger displaeement thickness. This effectively removes camber from the airfoil and decreases the lift, shifting to a more positive value.

Note also the reduced pressure recovery at the trailing edge for the raugh airioil. This suggests increased draq which can be easily seen in the wake deficit plots of figure $A-8$. Here the roughened airfoil has a larger velocity deficit, and therefore more drag. This result is in good agreement with earlicr experimental work showing increased drag with surface roughness. The airfoil with sinulated rime ice experiences somevhat iifferent surface pressures near the leading edqe, figure A-9. Note that here the chord length is
based on the iced airfoil chord. 1.024 times the original chord. The aft portion of the cep distribution is sinilar to the no ice case, however the leading edge reqion is a]terea by the ice shape. Pressure spikes, severe discontinuities in the pressure distribution, occur on the upper and lower surfaces where the ice shape joins the airfoil contour. Por this ice shape this represents a discontinuity in the second derivative of the surface shape. These spikes veri detected by the two additional pressure taps installed in the tube which forms the leading edge shape of the simulated ice. This demonstrates the importance of the installation of pressure taps in simulated ice shapes. The effects of the pressure spikes will be seen to be more serious at higher angles of attack.

Pigure $A-10$ shows the lift cocfficient as a function of anyle of attack for all four airfoil configurations. Confiqurations 2 through 4 all have approximately the same effect on the lift coefficient. These changes are a shift in α LO and a sizeable decrease in $C_{l_{\text {max }} .}$. The good aqreement hetween the $C_{\text {lmax }}$ for the smoth and rough rime ice shape suggests that the stall is caused by the shape. As seen in figure $A-9$, the severe pressure gradients near the leading edqe probably lead to a leading edge separation bubble. This accounts for the early separation
at higher angles of attack.
The reduced $C_{l_{\text {max }}}$ for the airfoil with only surface roughness is due to a different mechanism. Here the rouahness causes a thickening of the boundary layer and derreases pressure recovery at the trailing edge. This ultimately leads to early trailing edge separation which moves forward as α increses to cause the reduction in. maximum lift coefficient. The apparent aqretment in $C_{\ell_{\text {max }}}$ for configurations 2 and 4 is due to the particular k / c and rime ice shape chosen, and should not be interpreted as a general trend.

Fiqure $A-11$ shows the measured drad polars for all four confiqurations. The smooth airfoil is seen to have a minimum arag coeficient of about 0.086 . This is well above the laminar "dray Lucket" values expected for an airfoil of this type. The brass airfcil model used was slightly tarnished and therefore did not have the surface finish necessary to permit long laminar runs.

An increment in drag was seen due to the addition of surface rouqhoss. This draq increase was certainly expected and is of a reasonable magnitude. The reason for the apparent aqreement between the rough airfoil and the smooth ice shape, configurations 2 and 3 , is not obvious. Most likely this is not a general result, but again merely a coincidence resulting from the roughness and the rine
ice qeometry chosen.
An additional draq increment was measured when roughness elements were adjed to the rime ice shape, configuration 4. This is the simulated rime ice shape. This increase in urag contrasts the maximum lift cocficient case were configurations 3 and 4 behaved similarly. Therefore, while ice shape alone is sufficient to determine $G_{\ell m a x}$, the surface roughness of the ice must. be modeled to simulate accurately the total dray increase due to airfoil fime icing.

The moment coefficient about the quarter point of the original airfoil is plotted as a function of lift coefficient in figure A-12. Configurations 2 through 4 all show a reauction in the nose down pitching monent when compared to the elean model. The leading edge roughness as described before thickens the boundary layer and unloads the aft portion of the airfoil section. Therefore the nose down pitching moment is reduced. Ine smooth ice shape adds area in front of the nose providing morenose up moment, explainina confiauration three's reduction in nose down pitching movent. The rough ice shape combines the two above pffects, resulting in a sliahtly larger reduction in nose down pitching moment than that experienced by the shape alone.

This test not only provided data to verify the andysis, but has demonstrated the feasability of performing simulated iced airfuil tests in a small scale wind tunnel facility. The data show the expected results of decreased maximum lift coefficient and increased drag with the simulated ice shape. In addition a reduction in nose down pitching moment was measured with simulatedrime ice. The pressure aistributions measured for the airfoil with simulated rime ice are believed to be the first such data publishea. These cr plote provide insight into the physical phenomma and detailed information to be used to evaluate and refine current analytical methoas.

BLACK AMD Wh: : womat

1

FIGURE A-2. PREDICTED RIME ICE SHAPE AND THE ACTUAL TUNNEL MODEL FOR THE NACA' 654413 TEST

FIGURE A-3. TOP VIEW OF SIMULATED RIME ICE AIRFOIL MODEL

BRASS
TUBE

FIGURE A-4. CROSS SECTION OF SIMULATED RIME ICE ATRFOIL MODEL
SHOWING PRESSURE TAP LOCATIONS

Hatyoolcha zini:n any yovig

FIGURE A-5. WIND TUNNEL MODEL OF AN NACA 65A413
AIRFOIL WITH SIMULATED RIME ICE

FIGURE A-6. LEADING EDGE OF SIMULATED RIME ICE MODEL'
SHOWING SURFACE ROUGHNESS

FIGURE A-7. EXPERIMENTAL PRESSURE DISTRIBUTIONS TOR A NACA 65 A 413 WITH A SMOOTH AND ROUGH LEADING EDGE

FIGURE A-8. VELOCITY RATIO IN THE WAKE OF THE NACA 654413 AIRFOIL CLEAN AND WITH LEADING EDGE ROUGHNESS

FIGURE A-9. EXPERIMENTAL PRESSURE DISTRIBUTION OF AN NACA 65A413 AIRFOIL WITH SIMULATED RIME ICE

FIGURE A-10. LIFT COEFFICIENT AS A FUNCTION OF ANG!.E OF ATTAEK FOR THE NACA 65A413 AIRFOIL WITH LEADING EDGE MODIFICATIONS

FIGURE A-11. DRAG POLARS FROM THE WIND TUNNEL TESTS OF THE NACA 65A413 AIRFOIL WITH LEADING EDGE MODIFICATIONS

FIGURE A-12. MOMENT COEFFICIENT AS A FUNCTION OF LIFT COEFFICIENT FROM THE WIND TUNNEL TESTS OF THE NACA 65A413 AIRFOIL WITH LEADING EDGE MODIFICATIONS

[^0]: A standard drag curve has been established from these

