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The present issue of the scientific works consistn of two parts. The 
results of the flm'l around wings, the determination of the optilflal. forms, and 
the interaction of the \-lake vlith tho cocurrent i"lOi'l at supersonic and hypersonic 
speeds of the free-strecm flO'.'l are given in the first part. 

The second part comprises methods of numerical a.."ld analytical calculation of 
one-dimensional unste£.l.dy and two-dimensional steady motions of 1uel-gas mi:ctures 
.vi th exot hernuc reactions" 
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KORE.WRD 

The present collected papers ar0 dedicated to the aerodynamics of the super­
and r.ypersonic flo;,/s and theories of th.:: supersonic motion of f. gas with waves of 
detonation and combustion. In "Chese trends, investigrc1.tions are performed and 
seminares are made in the InstitU"C8 of .Mechanics during many years under the 
leadership o:!.' thc' associate member of tr..:: Acacelil:r of Sciences of the USSR, 
G.G. Ch;=rllov.. During the last timer a number of nei'l resultc were obtained, 
comprising the contents of the give.n issue of the scientific Horks. In the 
first part, problems of the f'lml around triangular 2,.'1d V-shaped wings with 
gas nOh' o.:!.' high supersonic velocity ar'e investigated· (A.L. Gonor, N • .I\. Ostapenko 
nnd V.I. Lapygin). Further, in the paper of L.V~ Gogish and G.Yuc> Stepanoy, an 
integral method of calculation of tho interaction of turbulent i~nke wit,h a flow 
in a canal or a jet is suggested.. Problems of the optimum forms of a bod:,' at 
hypersonic velocities r in the frame of the approximation 1m-IS of resistance: are 
resolv8d in the ':lorks of A .. L. Gonor and V.I. LBpygin.. The results of an 
e:·:perimental i.'westigation of supersonic flow around a right-angled wing, in a 
Hide rang~ of elongation &i.d angles of attack, are given in the paper of 
H.Po" Falunin. G.S .. Ulyanov studied. the effect of the penetrability of a plate 
on the pOh'er action of the supersonic noV! .. 

The second part of the issue, comprJ.sJ.l1g the methods of calculation of the 
motion of fuel mixtures, is started Hith the paper of SuA. Nedvedev. In this 
paper, the problem of the decny of the burst is resolved in non-solf-similar 
arrongement, taking into account the ignition delay and the finl11 reaction rate. 
V.P. Korobeinikov, V.Ae Lev-'...n B11d V .. V. Harkov usa similar model::: of fuel medium 
to solve the problc,j of point explosion with plane, cylindric;J.l. and spherical 
W[:'VdS. In the pa.per of l.I. Zak ru1d VoA. Levin, the gas motion, caused by a 
piston, is investigated assuminG that t:1e hent effect of the rt:action is small 
nnd thnt a linearization, relative to the (J.c.iabatic flml in front of the piston, 
can be produced. The flow [u'ound a body by a stationary supersonic flOi~ of fuel 
mixture is investigated. in the last three :~orks of the collection. In the first 
one 0 l' them, S.H. Gilinskii inVestigates the grmvth 01' the initial disturbal1ces 
and the possible nonstationClJ'Y conditions of combustion at the hupersonic flO\i 

around the bO'.v of a b}.~mt body. The second paper of S .11. Gilinsl<.:ii and 
M.1. Khaikin is dedicated to the use of the bo:,;'.dary lnyer method for the 
composition of an a..l1.s>].y'ticc·:;' solution of the ;:,'_'-9crsonic flow e.rotmd <'. Hedge 
and 3. conc "oy a fuel mixture. 'l'he third \'lor:-: of S .. !~ .. Gilinskii "Line;;U'ized 
supcrsonic non equilibrium fiml of a iue~ mixture of gas ".:3 near a wedge" 
comprises an anelytical solution of flo\'[ around a. ';ledge in the case of a small 
heat. effect of renction; obtained, as in the work of L.I. Zak and V.Ai> Levin, 
on the basis of using l:Lncf'xizatio;1 relative to the corl'e9pondinB adi6,batic 
£lou" 
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STJP:<:R- AND HYPERSONIC G~E-X!::Q.!i 

CALCULATION OF' THE ENTROPY LAYER. ON THE 9JnFACE 
OF ;~ T1U;\l,:CUlJ.:". ';lING 

By 

A .. L. Gono'C, N ~.~. Ostnpa'1ko 

On solving the problem of hypersonic flow around a triangular wing [lJ, a 
singularity in the d:i.S'::l~ibution of the surface speed is involved. For this reason 
the obtained solution must be cOl'rected in the region of the location of these 
singularities, adjoining to the plane of sYlT1rnetry~ A similar situation nlready 
arised in the general theo17 of ·the supersonic conical now, ~~hpn such singularities 
appeared in the solution on the surface of t.he body and it \laS necessary to make a 
specific solution in a region, called tr,:: en~ropy layer [2, 3, 6-8J. The cnlculation 

.. _01' the e:nY.ropy IB7:~r: on a \r~g ha_s_IJ~@y._~_~e.s __ .ill._ COffi.'110n. \vith the mentioned 
investigations; however there are important differences as a result 
of tnldng the specific :features o:f "ciurfnce solution into account. The 
probloln of' the flow around a p~nne triangular wing is analyzed below 
in detail, although this method Can bo trnnsposed also for the' general 
case. 
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1. The fornul2c of a conicd flow in the coordinate system of·c., a;} cp 
(Fig. 1) after_t_ransition to the ne'11 v£J'iab::.c '+'::: 'Y (rh c..{J) satisi'yine the 
formula VC-{J()+W2?cfJ;-y:_;0 o.ccording; to reference [lJ \'l'i11 have the following 
form: 

~---- -----------_ .. _--_ .. _. 

r "u 2 : 0 
VI ?--v - w = • 

ro~ e (;jc{J 1 ap 
"'8 -, VI <'3'/ -<-w/.t;/w'r:g =-pe,yat.!' 

-;;;0 J i' ~ 
~ 2 

U2~V-"'\/ ::Ie 
:2 

,t, p 
.- -.-. +- _. ---...:... 
.~- f / 

~[:£]=o, 
d 'e ) U _ n("'w8, ~2---: case ,,0 

aq if, 'Y'.: ' 

___ . wGo.p :: vC15~ rJ • 
(-1. t) 

- -aW-··-1---- JP '{J JP - .. ---. ( ) 
.~ - -I-uw-vwiD 6 :: ___ " {_ - ~ - ] . 1.2, 

co l 9 :, 'f1 :J'.p CO! ~ -.:; ~1 0 j' (J!f 

Here u, v, W - are the corresponding '{clocity projections on the axes "'C/O, cf 
relative to the, velocity of the free-stream flow TJoa.l ; p) JJ ,'( are the 
pressure, density end ratio of spec.:'..f:i.c heats. The density and pressure nre 
relative to the quantities P-c and..roo V~., resp~dively. The coordinate 
y ... canst determtnes the stream surfac~ > The prcjection of the Eulerian equation 

on the direction of the axis (p (1.2) is \'lritten for fl..U'ther direct use .. 

*' In the syste:n (1.1) tJnd_-.in-the.,_hound,.'l1'y_cQndi~ions on the shock wave G(L{') 
after the substi tu+ ion of e..;- -=- c O;J, , Y = ~ -I'p tV: C v the terms, huving 
the or-del' of t: -{ "'/! are neglected ( E :"f; tne ch8l".1cteristic ratio of the 
densities in front 01' the shock \'lave and bdc..nd it, 1 '> 0) _ l~rom the 
solution in reference [lJ, the form\~l.J. for the pressure \·rill ha'f~ the follm'ling 
form: 

-- --...•. --- ~-- !f .. _.- -._- - ... _-

P»si.n:!j~C~ (Y')+f.(,((~ ,!"f./J), U·3) 

where: 
P*(<f)T!!.in2d.(e*ctstf-D Il 

,,;;, f)- ~in2d 
( ~ 
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Here the bar of ()* is omiteci, 0<. is the angle of attack. Tho ve.lue of P;l., 
and the other parameters 0:: the flo' .... are expressed as ~," by the solution of 
the integral-clifferential equation deC81'mining the form 'of the shade Have. 

The surface of the i'ling in the solut~_on of reference [lJ is the s~ream 
surface '-f'::::.ft. (fJ is the 1k".lf-angle of the triangular iring at the top) ~ 
HO\'lever, in the small ,interval 0 ~ c..p ~ c,ot the streom surfaces cross the 
surface of the I'ring (a weak i'lC'.:P-ng of '-'" £~ "Cakes place). Consequently, it is 
necessary to mn.'<e a correction fo]' the solut:~on in ct.:y0ain surroundings of 
the origin of' the coordinate. 

Let us introduce the variables /). and ?; instead of u and w: 

.--·~~c~~ 7: .'-:- .. -w~L1·~ in '~-.. 

Formula (1 4 2) by using (1.1) \dth the ne"T varinble~ will h:::.'re the form: 
-"--_.-. -"- "-- .. - --- _. - - .--

,;)7: V V'!) 
:.~ 'TJ + f - - tq Oco~ 1: .. -. = - B , 
.J (cc~ eCJtp, Ll cJ c: 

f 
B = /b ro < (J 

,P'"" • ~ 
[

dP D"" JP ] 
J~' - 01( ol( ( 1.li) 

It is easy to ascertain that, according to (1.3) and (l.h), the pressure 
gradient \'lill be tat:en into accotmt only idth terms of '-'" [. ~ .. Therefore with 
an acc'..;.racy of values of --'"' E ~ ,'.Ie 1;;ill have 

.' 

to '[ (dr: ,'1) = 0 
d J y}' • (1.5) 

Acco,~·(hr.gI~ the equality of the fornr.tlC1. in the brackets to zero, by using the 
condidon on the shock wave, gives the i'ollovring so1.ut1.o\1 which is coincident 
'.:ith [lJ . 

r a - 'f -elf rep'} , (1.6) 

\<fhere ex:. 1 ( cf) is determined from the condition on the shock Have at 
cf:= cp (Fig. 2) Q 
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J 

Fig. 2, 

In the surroundings of the shock wave, the second possible solution rz::::-tJ 
contradicts with the boundary condition. Therefore the surface solution can be 
only formula (1.6), at the same time the transverse component of the velocity W 
has a singularity on ~.he sur face of the wing. This ShOVIS that in the region of 
the flow '([here r -;:: 0 ,the small corrections, neglected in, the derivation of 
formula (1.5), become 7 comparable \nth the remaining terms. In particular, the 
pressure gradient appears essential along the wine spon. Let us shm'l this,'· 
introducing for convenience the folloHing designation: 

-_._--. - ---... ---.--- . -.'---. 
I V2) V '. 'JJ=(iJ. t:;Bco!".'i- Lrz ljr:.: (1.7) 

• ' --.. .. _ 0-;- r (i/----·· 
Then, puttmg 7:" L ~ C 1: ~... [bclo,y, thc uppc:J:" indcx (It) . 
will denote the coefficient, standing at t: 1< J t whero ro corresponds to (1.6) t 
for 7: V) \ .. e obtain the following relation: 

(~) (1)%.- -.----

J. ..,. oren e) , ]) (z) (z) 
LJ~ JrjJ -2 :: -8 

. z 
(2) vfr' (I} ",/1») _ 0 

lJ ': ({o) B CDS:'- - 1\ (0)2 ~ I- , . 11 Ll 

(z) f a p (t) e :t) d p (f) 

B = p(IJ/::pJ r y;; - ~1J -::- -J 
~ T bY' r;l'f' (1,~j 
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From equation (1.8), it is shown that' 'C' Idtp has a singularity at the points 
where 'C" 0 becomes zero • Hereby, the essential term is determined by the 
pressure gradient Gl'2). . 

At 9<.2)* 0 , the singularity certainly exists; at B(2) a 0 (plane of symmetry) 
it may be not existin~ and therefo,re a special investigation is needed here. Thus, 
in the' solution of [lJ (below we sh~ll call it the surface solution), on approaching 
to a certain critical surface<t~ ~d.~ (cp-')-:-- a special term appears in the 
formula of <-r, , namely: 

rr (1)~ B (zJ ln t;.L (cOl).,. 'fJ .,.ol, {f'} LC, T J . 

This inequality in the solution indicates the presence of a certain term. 
Although this terry; is negligibly small in ·c.h~ surface now and evenly small in 
all the region, a quantity of a "pri.'1cipal" order appears in the region, \-There 
nonuniform convergence Cyj:sts. From the foregoing, it is shol'nl that such term 
is a function of B. 

2. The equation (1.5) has tl'lO solutionst 
I 

dT =1 
~'f 

ar\~ ,,( 1:.,,0 

The first solution has a singularity near C-C 0
::= 0 • Therefore in 'the 

investigation of the . "nuniform convergence of the solution, the analysis of 
the expansion, obtained from tho second solution of [7J, is completely reasonable. 

Let us represent '1: c: (\'Ihere 'L- denotes the inside solution) by the form 

Z (l) 
1:.=[1,. + ... 

~ j, (2.1) 

Substituting formula (2.1) in equation (1.4), \'le obtain afte~ a simple 
calculation: . 

--------- (2.2) 
r .(Z) ~ ]).(Z). B :1) 

(. /. f, • 



CI 

C,'I 

(-

s-

.. ~~~------
By means of (1.8), we find thatJ]).":'o(cz).",::", 

. L • . • 

. I B tzl _ l' rrl p. (fJ B:rfJ-:iP.li, .. : 
.,. i. . - pp) IJ (v) La;' - - ~~ --!. } 

£ £ r. '.' __ .0 i. If f) rt, -
(2.3) 

hence it is ~lear that, 
determination of rr;'{:1.). 

~~i1~(D}-p (i}. 
.! ~ , ." ~ : 

must be determined for the 

Let us assume that these quantities can be determined, and let us consider 
the question of coupling of the inside and surface solutions. To prove that the 
two solutions are coupled, it is necessary to ascertain that they have a corrunon 
region and Cltf! asymptotically equivalent in their common region. On the basis of 
the second of these ':\/0 conditions, it is possible to conclude that the inside 
and surface solutions are not coupled, because these solutions intersect and the 
slope of the curves has a discontinuity at the point of ~1tersection. Thus, 
the first terms of the expansion can not be asymptotically equivulent in any 
common region. 

This might have been expected for t\>10 reasonSf the scal~ .. of the independent 
variable is the 30me in every region and the arbitrary constant (or, moreover, 
the arbitrary function .01.' 'P ), by \'1hich the coupling of solutions might have 
been realized, is absent. 

The problem of coupling can ·be investigated by several methods [4, 7J. 

The method, used below, is closely related to the behavior of the surface 
solution. On. analyzing the surfac2 solution, it was clear thc .. t the ter-ri'l of 
second order of smallness has a logarithmic fJingularity at '-f~-:::><"1 C q:> .... ) . 
The terms of the next order have still more essential singularity. It is possible 
to show that the ratio of the succc"Jsiv0 terms is an indefinite quantity in the 
surroundings of tho singular point 411 It is possible to eliminate this divergence 
of expansion by the modification method of expansion, a8 shown in the method of . 
PLG [5], in which the dependent and . .independent variables are expressed by an 
additional variable and are decomposed in series of E:. e This gives additional 
freeq.om, 'tlhich can be used to a certain extent for the control of the behavior 
of expansion near the singularity~ ., , 

If we consider equation (1.4) for small values of c-r; and introduce the 
following approximations: 

'/ 

I --------... 

fj'r-'L '[:"!f0 -loG 21: (z) wh~~'·~ I{J0: -.,0 -ol ('I' ,l .. ., J 
----- (-;;2------

t z B . 
COl: e:, -C T + ••• ., ·.j-~IJe....oJ,J:oJ.n 

. (z) , eM2 

r ° ~.~ (Z~ dT:. _ R(Z) Drz.) ,oe_ ep fr r --. - .. ' - -r •. .J ~> • . 2 
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This equation; indica.tes the possibility of using the method of Pill: 

Let us re~Tite the equation (1.4) ~n the form: 

_ (tg-r + C)cosB 
- --- ts'C 

d7: , w~· C '" B .j) 
ar.p 

Let us introduce the auxiliary function ,,£, .f-( z) and the variable -z. and change the 
previous equations to the equivalent system of the equa.tions: 

:r-,-;-)J7:. . . 
. I Z az =. - (t:') r + C) , . : 

• 
. I(z) dCl'= !£! 

ch. Co, e 

The function of $( z) is selected in such a manner that the expnnsion for rz::: 
and (.f begins with tho. terms ·7;o~~-"J.-;;;'7;P;) and z:,respectively. Thus, 

!~-.--. .-

/'(1): &; '! /I • 
~ . ," 

The principal set of equations will take the follO'.-ring form 

r---._. . crr;--------------
~1;0 02 =-(t~'!:~C) t -

J. TO at/' fg r: 
UJ ~].=~ (2.h) 

All the variables can be represented in the form of the follo~-ng series: 

c.l li1C-(i~] 
/1.0 

o 1: Z (2) 'C ,=7: +c; t' .. ...{I ••• 

tf '" Z + r t n '/")("1. ) 
11:1 '. .. I 

( n) 
The functions of C . and CO"; e will be expressed b~r Z: 

-·C-~~~· oJ - C-·~~J(: ·-)--;-dC(;;J(~)=---(~) .--. t" - :z + c; .a + . d?!. T ••• 

Cos 8 = f _ c z. !!.,}Z 
Z + 

-:/''l oJ de (t/r. ) 
;:, (If) -= 8 '6) + c ( Z (fJ 

d"l cP + 
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(0) "C ((}(ef) ~ a 

At the same time C (.,):. 0 and (" because the principal 
term of the pressure is constant along the "Ting. Substituting the expansions 
in equations (2 .h) \ ~m shall have, t.:.:fter integration: 

------------

If (tl .. a (0) ( 'I 
'L =-Z-cl.," / , 

................. 

P 11)(i) a2 
'Crt} -= t~[l ~,('f')]J t,2[Ud.,{f')] 

.,,' --;-

z 
'{'(t) = -J 

c.p' 

7:(l}. B(Pz~ s~n[1. .el,r"''ljC05[l~otdr.t')J 
2 d2 
si.n [! ~r:L, {'I")]COS{1. ~cl, (Cf'1] (2..'5) 

It is clear from formulae (2.5) and (1.8) that it is enough to 'know the solution 
of [lJ for the determination of .:z;-(Z) and c:.0.:n in which we are in~erested. 
According to (2.5) the formulae for?: and Cf ,,/ill have the following form: 

. 2-(:(Z] 6)-
'[=-2-o(f(1.f'1~cZt9[z+o!1('f1J! tf/[Hel'{'f')J dz , 

- .. -.----'-.---.----.~-

1~ Z ?:r:t)+B(Jt.)';ll7[z.oC,(rp?lcos[z~olf('f~] d. 
1/'=2-l l (2 6) sir![z +riL,N?] r:c;c[~ ... :ltfV")] • 

'i" 

The obtained relations enable to extend the uniform convergence of the 
initial solution to a small region in the surroundings of the singul~ity. 

If we denote 
we have~ 

'd= ,PW()'I' , then 
,---_.- -----, 
'Jri ' ~'t to; .... ," 
1 _ = ---- C(I 1: ' ' 
,.,." ,..,,<8 iT 
o~ .",,,,,... " , 

" l" '~....f, ~. 

for the new'variable Z -.~ 
•• ,1 

The equation continuity (1.1-5) can be written in the form 

. " ., -acr~ 2 d--;;;ro~ 0-,-
.J:.!J 
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from Hhich vIe obtain 
---------_. __ . 
d(cp:;:) =d'!in2[r: tI

(z)] 
Sin f1: o1 

here (.) denotes that the value of the variable is taken on the shock wave or 

}" L/'8' .:z 61 pwlJ = TY 'I';i.r/ t' (z) 
• r' stn Zt 0 (If' ') 

where, for example, 

w':wl 
Iz.": '" I 

After integration, it is possible to find the corrected formula for the line 
of now 

, 
." a 

() =c Si.rttl.J ~~ 
, .. W 

~ 

R ;~n [7: "(z)] 
Sin[r; O(2} + , : t !:JT d'f/ , 

, .~' c *' if 
R =t+{e~CD' cp'.e., Sin rp')d:?eI. 0/. r;;;;;:(P, -P, .Pl)' 

wO':: !;/(-c
tl

) /7." 'P' 

In this manner, the convergent solution in the whole outside region, 
including the critical surface and tht:o small Ngion arO'l.md it, is performed 
tLY1iformly. 

" 

3. To obtain the expansion in tr:e '.ihole region it is necessary to 
find the total inside solution. . 

The principaJ. term for 1;' in the inside region has the form 

. 2 (z) 2 (l.) 
·:C. =C'r. =-E C. 

(" C, 
(3· i ) 

Consequently, W"O(Ez] • 

Using these relations in the exact equation (1.1) 'for the variables of the 
inside region, \'le obtain: 
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d~ . 2d· - '--. ---JP. 
a tp + c ~ !ZI = a • , d; =- 0 (F. 1) 

lJi :: tJ(cp') + Ore:!) ( 3 . 7.) 

It is clear from equa.tion (3.2-2) that the pressure with an accuracy l"enc:m.n(. tt 2 
across the entropy layer is constant. Consequently, the value of CI(~)can be 
determined by the pressure on the critical surface, i.e. by the value of the 
pressure i.'1 the surface solution, because D t'lJ"" [;l. and only the term Bf';:) 
containing the pressure gradient, rem~ins. These considerations can be applied 
also to the quantity C (~: If we investigate the asymptote from i: (.:2) of (2.5), 
then on the critical surface, we have: .-._._-_ .... - ------

. (t) ) , . 
c: (t) -.c-. C [cI, (ep' j. . 

So, the surface solution, performed by the method of Pta, is asymptotically 
coupled with the inside solution~ 

From equation (3.2-1), \'le obtain 
------.----

. 2 'Pd ] 
d. "d e xp!. ---;- J ..L 
~,. f~ !.(Z) 

"PI" ~ 

F.urther we find that 

- 1 .p d,. O--J-i. - E 1 () A r. (Z) 

.13 .T ~ 

f- ----y d" ] ~xp - ,22 J}l) dtp 
l c: :r:~ . 'f',.' (3.3) 

where d~ is determined from the condition of coupling \'nth the surface solution 
in a certain section C:(>'(' • 

---------. --i .-. ----

. dl' r:d'exp{-2/t~t;7°dzJ 
.,' 

Substituting the formula for d!, in (2.9), we obtain 
.. ·-····---~f'--··--··--------·-·-.;-·-··-- '::;- ---'-j.' --.-.--

sin t:i. R 2 d.p 0 1 
8. t: -J--::::-Ti)e:t.p{?j::-rz)-2j ct9T dz dcp , 

" C (j(.. f c· /1 L 'f'r L ",' 

Further, taking into account (3.1) and (1.3), He will have 

r _ .' iI If-~ _ -:7iJ'ATo) S~n U. SUl ~? (8 + 8 ) - p ] 
(2) ··-r-r-·----------····----

Jl lJ 'tV' 21/ 

(3.Lf) 

(3 -5) 
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The calculation, performed by the formula (3.5), sho'fed thut the value of \:~.:/) 
is negative and the first component in the :,q,uare bracket is much larger than 
the value of P;2 c-f which, in turn, is proportionrJ. to the variable <.:p • An 
analogous derivation can be obtained if the method of disturba."'lce given in 
reference [lJ is. used for the determination of '.:.he form of the shock 'vlave. 
Then, for the small values of q' , the equation of the shock wave and pressure 
gradient allow simple analogous representations, from \'lhich it folloll's that P..l. c..p 
has a higher order of smallness in comparison to the first component in the 
square bracket of (305). 

Now, taking into account (3.4) and (3.5), it is possible to draw a conclusion 
that ~i '7 0 and 8c:, W"-!> 0 when Cf~O. 

So, the performed solution, consisting of two asymptotic conjugated,derivations, 
is valid in the Hhole region of the bad flow and totally satisfying the Feryl s 
scheme. 

-.-----~.-----' 

'W' 

"' ..... ,J ·~5· , , , 

O,0511:-t--i-+---l-_~L, 

0,04 

0,02', )-" 

o OW) ,- . D,Ot; 

_Fig. ~ 

The graphs of the transverse compo;'lent of the velocity w at' J3 ... 45° 1 MeJO::'oC) 

CB a 1.4'; D<'. ." 20 0 and 300 are shm-m, in Fig. 3. They are calculated by' 
formulae (2.6) a."'ld (3.5) (solid line) ~,nd by the corresponding formula of 
reference [lJ (dashed line). The compa.rison shows that, Without taking account 
of the entropy layer near the pla.IH of sywmetry, the velocity distribution on the 
wing at big angles of attack is appreciably decreased. 

" 
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ABOUT THE MODE OF FLOH AROUND V-5HAPED ',UNGS ~{[TH 
SUPERSONIC LEADING EL)'}ES 

By 

V.I. Lapygin 

It was sh~wn by exper:i..niental investigations [1,2J that on flowing around 
V-shaped rdngs, a complex system of shock waves is formed in the field of the 
flow. In the present \ ... ork, a system of shock waves fonned on flowing around a 
V-shaped wing by an ideal gas, is investigated by means of performing numerical 
calculations on the Ev}l BESM-6, using the method discussed in reference [3J. 
\'1e shall consider 't he flow around a V-shaped vd.ng at an angle of attack ol: 

(Fig. 1). In the conical coordinates "f;,:::.~-x:. -' ~-::: 'd/:x-,) 's-= ';Z.!?C 

the system of equations of gas dynamics (for an ideal gas) in the divergent form 
will be as follows: 

. at + 2-(FY-i!)~jL(F2_~/)+2f=O 
2; at ac; 

('1 ) 

~,hefe 

JU fV" 1 J'W 

P+fu 2 f'.:" 'pUU! 

! = ~ 'puv F'i,=, pi-JlI''! F"l= JV"W' , 
'puw pvur P + pUJ"z 

£ [V/a [W/u 

E=fU(~.} U%.}V'Z+1[J-7) 

(2e-f).P 2 
, ~.,Cp/cv 

here u, v, w are the components of the velo.city vector on the axes x,y,Zj p andJ 
are the pressure and density. 

Using the condition that the supersonic flow around a V-shaped 'nring is a conical 
flow, the method of determin:i:ng I; with ,the use of the d:'fference scheme proposed in 
reference [5J is used 1'01' the numerical integration of system (1). The calculations 
were performed for different values of '{ and M' The a'1alysis of the performed 

00 
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calculations allowed to reveal several modes of flow around as a fimction of the 
expansion angle of the V-shaped \'l'ing, 'Nith qualite,tively different systems of shock 
waves from one shock wave uttached ~o the leading edge of the wing to a system of 
four waves and more. In particular, the performed calculations shm/ed that there 
are flow modes with a ref:sction of a strong shock from the symmetry plane of the 
wing. In the plane case, as it is knm'l'l1, a strong reflected shock is not realized. 
The marks used in the text ~.re clear from the> consideration of Fig. 1. 

fiR. 1. 

The results of the calculation forer I'f 29°30; Hoo.m 3.9?, ~gles 'ofyffom 
1000 to 150 0 ,eX. t:: .15 0 and ~:: 160 0 , ~.= 10,0, are represented ~n hgs. -- 2 and 3. 
'rhe values of the parameters ~ IS 1600 El':'1.d ~ a 10{l correspond to a flOH 
around with a mode close to the outgoing shock \'i'ave. The forms of the shock 
waves are given in Fig. 2, and the d.is.:t.t~~u~i.ol}_.Q.f the pressure coefficient 
Cp .. :::; C.P- ?oo)/CYoO on the.wall (9-co:-ZPoo v

<y'»' is given in Fig. 3 •. 
In: the graphs, >(; is the distance. from the p.Lane of symmetry to the given pomt 
on the 'flall of the wing, R is the distance from the plane of sym'1letr'Y to the 
leading edge. 

YI C'" 
i L= ___ . __ ~ -::;t<d:.,<,r;, 

.... -~.=-::::..:c::_:- ~'/30' 

~
.:(r. " /' ("'_~ " ''''':0'' .. -/ ---;.-<-. ~. 

~"""",.'''.''''''~::::E:':.< · ISO

o 

/~~I'~~' ~~ a ,,~,~~~~"~"? .£.,."0,«"0' 

r'''i!',,<);:;:;;''fI~ .-.~ l 

Fig .. 2. 
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~ 
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q q o "IR 

Fig. 3. 

The values given belo'tl in the graphs and tables are dimensionless. These values 
are namely: the component of the velocity vector, relative to the modulus of the 
velocity vector of the un~tsturbed floWi the pressure, relative to the doubled dynamic 
pressure of the undisturbed flow; the density, relative to the density of the 
undisturbed flow. 

On treating the results of the numerical c~lculations, the position of the shock 
wave is determined as the region of the sudden variation of the param,eters of the flow. 
1'he results of the calculation of the configuration of the shock waves are represented 
in Fig. 2. 

The relations of Cp f!!J i- (7:/ R) are given in Fig. 3, and the analysis of the field 
of flow, performed for different angles of ~ at Mo<:.l '" 3095, show that with 
decreasing '6 t a transition from a flow around with a convex shock wave, through a 
mode of a plane shock (h], to a flow around Hith a concave shock wave occurs. In the 
case of the existence of the concave shock \>tave, an increase of the pressure takes 
place towards the center of the \'ling. At ~ b 1200 , this increase can already be 
identified by the presence of an internal shock ""lave ~ i.e., the nml around a 
V-shaped wing occurs with a formation of Mnch configuration of the shock waves. 
The quest~on about the formation of tUi internal shock Havo at once at the transition 
from a mode of a flow around \'1ith a plane shock to a flow around with a concave 
shock wave, remains open. As an example, the field of the isobar for '( = 1200 

and 0<. "" 150 is given in Fig. 4. The character of the isobar indicates the flml 
around with a Mach configuration of the shock wnves. The position 'of the plane 
shock, formed on the ler..cling edge, is represented by a dashed line in Fig. h. 

On decreasing the angle Y to 400 , the character of the isobars (Fig. 5a) 
indicates a regular reflection of the shock, incident from the leading edge, from 
the plane of. symmetry of the 'fling. It is knmm that the reflection is theoretically 
possible with both a strong and v-leak reflected. shock, but in the plane case, 'the 
reflection ':1ith a strong shock is not reatized. In the present work, to determine 
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Fig. 4. 

the type of the reflected shocks, and also the character of the reflection (regular 
or Mach), the results, obtained. by numerical calculation, are compared with the 
calcula.tion of the syst('::: of the shock waves performed by the formula of the oblique 
shock. Such analysis showed that for ~. D 40° and 0< a 15°, a regular reflection of 
the plane shock, incident from the leading edge, from the plane of symmetry of the 
wing, occurs with a strong rel~ected shock. In thi5 ca.se, the values of the drnlsity 
and pressure, obtained. in the numerical calculation and by the formula of the oblique 
shock, differ by not more than~. The system of the shock Waves in that case is 
given in Fig. 5a by a dashed line. 
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With decreasing the angle 'C, the system of the shock waves, formed on 
flowing around the Hing, is changed, and at '0,.. 200

, the field of the isobars 
(Fig. 5 b) indicates the presence of a shock wave, reflected from the plane of 
the wing. The 90mparison ,nth the calculation performed by the formula of the 
oblique shock, shm1ed that a system of shocks is realized. This system is represented 
in Fig. 5 b by the dashed lines, and namely: the incident shock wave, from the 

____ . leading edge t is ~ej.'lected .. from the. pla,n.e of symmetry.o.f _"t!.l:l_~_if~f. by the _?-,_egttlar 
way with a weak wave which'is regularly refle·c··t"e-tffrom the plane of the wing with 

"_1~' 

Ci 

c. 

a weak reflected wave. The latter .. isreflectedfrom the,:plane of s:rmmetry with the 
formation of a Mach configuration. As for' .'t'.';"40~ the difference of the values of 
the veclocity, density and pressure obtained by thenmnerical.means and by thelformula 
of the oblique shock did not exceed Z/o. 

With further decrease of the angle 't ( ~:: 100
), the number of reflections 

from the plane of' the wing and the pl~~e of symmetry is increased. In this case, 
the last reflection from the plane of symmetry is regular with a strong reflected 
shock. All the rest reflections, obsel'ved in that case, are regular with \"leak 
reflected shocks. The systun of the shock waves is given in Fig. 5 c. The 
difference of the values of veloc10Y, density, pressure, obtained by the numerical 
means and by the formula of the Oblique shock, as for the previous variant, did 
not exceed 2%. It is necessary to mention that in the numerical calculation, the 
region of the flow, designated in Fig. 5 b, c· by the number 2, .is· poorly studied 
and is not practically defined in view of the small number of the points of the 
calculated net t fallin~ in it. This case is caused by the small dimensibns of' the 
region 2, in comparison with the calculated region of the flow. As an example, 
the results of the numerical calculation are given in Table 1, and the results, 
obtained by the formula of the oblique shock ore given in Table 2 for 'I.' I:Z 10°. 

Table 1 

HOMep 00-
u V' UJ>' P .P 1II1CTH CO 

1 0.8946 ° 0,223 3,004 

.. 2 I I I I 
~ 3 I 0,9500 I -0,2143:, I ° [0I07~8 1.444 

4 0.9:33 -O,227EX ! -0.01894 0,0878 1,320 

", 5 0,9574 -0,2394 ° 1°,0598 1 1,211 ! 
6 0,9617 -0,2494 -0 102183 0,0522 1,098 

, 

~ 
1) Region number. 
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Table 2 

HOMep 06-

I 
I 

118CTH CD. u ;; .. w- P .P , 

I 1 I 0,8995 I -0,00578 I ° 0,222 3,020 
I 

2 0,9472 -0,2017 -0,01769 0,08eS 1 jjT,' 

3 0,9507 -0,2169 ° 0,07(34 1,443 

4 0,9::;<---1 -0,2283 -0,01988 0,0678' 1,325 

5 0,9576 -0,2403 ° 0,0599 1,213 

6 0,9617 -0,2484 -0,02184 0,0522 I 1,:)98 

.K)~: 
1 Region number. 

As evident from the comparison of the tables, the coincidence of the results 
of the performed calculations is good, \'lhich allows to establish uniquely the 
system of the shock waves formed on nO~ii.l1g around a wing. The r..w-nbers of the 
regions mentioned in the tablc~, correspond to the numbers mentioned in Fig. 5 c. 
The values of u:; v) \.I.r / P ) .p for the region 2 are not given. The values of 
components of the veloc~ty v for the region 1 (Fig. 5 c) in Table 1 are not given, 
because in this region the velocity V smoothly decreases to v = 0 on the X-axis. 

----- - - --_.------ ----. - ' .. -_. 
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Fig. 6. 
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The relations· P;;:. p/;:2'C!roO on ,the axis of symmetry (1) and on the wall of the 
wing (2), obtained in the nu.merical clllculation, for Yj t3 10°, oC. '" 15°, 
<f'D 29° 30', Ito III 3.95 are given in Fig. 6. In this figure, the ratio eL/A) 
for the axis of,symmetry is the ratio of the distance from the intersection point 
of the planes of the wing to the flOidng point on the axis of symmetry to theyalue 
of the projection of the leading edge on the plane of symmetry. The dashed lines 
represent the solution obtained by the formula of the oblique shock for the system 
of the shock waves shown in Fig. 5 c. The character of the curves confirms the 
existence of the ,system of the shock "laves mentioned above. 

The relation, given in Fig. 6, sho\'1S an enough big spreading of the fronts of 
the shock waves at the points of regular rei'l~dion. This is related, on one 
hand to the presence of two fronts, the spreading of which is increased approximately 
t"Tice in comparison with a sint::1a front, and, on the other hand, to the 'small 
intensity of the shock wavesa 

Calculations of the nm'l around a V-shaped wing at '( == 1400 , ex: a 15 0 , at 
different volues of Mach number Z>I.,.o, were olso performed. The results of these 
calculations' are not given here. 'l'he analysis of the calculations showed that 
with increasing the Mach ntL'T:ber Moc ' a transHion occurs from a now around the 
wing with a convex shock Wave to a now around with a concave shock wave and Hach 
configuration, i.e., the transition is qualitatively as on flow~g 'around at 
M <><:p const with decreasing "'6 and with values of -'( that .are not too smell. 
In this case, at -y; E2 140 0 a regular ref"J.ection is not observed for any· I'Iach 
number MoO up to Moo'" ex:. , and a system of shock waves of Mach type is realized. 
In this manner, the perfol~ed analysis shows that at sufficient big angles ofo 
(in the considered case for 'f' u 29° 30 f the angle 'D ~ ro-1OOo), a complex 
system of a large number of shock waves is not realized, and namely these angles 
are of greatest practical importance on constructine aircrafts with high aero­
dynamic quality. 

The results obtained in the present work agree quolitatively well with the 
experimental investigations given in reference [lJ. 

The author is grateful to A.La Gonor for' suggesting the pl'oblem and for M£ 
attention to the ,,:ark. 
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OUASI-ONE-DIMENSIONAL THEORY OF THE INTERACTION OF A TURDUL&~T 
}il'.KE :'H'l'H A SUPEF~SONIC FLOW IN Po CANAL AND JEI' 

Bv v 

L.V. Gogish and G.Yu. Stepanov 

Interactions of the turbulel'lt layer of a flm'l with the outside flow are 
observed for outside flow around aircrafts, flow in canals,·nozzles, diffusers, 
gratings of the blade engines. These interactions determine to a considerable 
degree the properties of theca apparatus and installations. 

Starting Hith the work of Krokko and Liz [lJ, the investigation of the inter­
action of the turbulent layer with the outside flow is performed by the integral 
methods of the theory of the boundary layer. These methods are used together with 
an assumption of the profile of the velocity in ~he turbulent layer. They secure 
a satisfactory coincidence of the calculated pressure distribution in the region 
of the interaction with the experimental data. 

Due to the complex;tty of the phenomena, occurring during the interaction, the 
most simple of these phenomena are studied experimentally and theoretically, such 
as the flow around a step (projection) with ~ plane supersonic flow or the interaction 
of a shock with a turbulent layer, when the outside i~ow is represented by a simple 
wave (Prandtl-Naier flow). The respective theoretical solutions in which the outside 
nonviscous flow is described. by the Prandtl-J·1aier functions ro-e actually one 
dimensional, which considerably decreases the calculation difficulties cormected 
with their derivation. 

However, it is found that these simple solutions are insufficient for application. 
Great attention is paid to m~~y practical problems, for exmnple to the 
calculation of the interaction of £ loVis· arising from the flow around a step 
\-lith a supersonic free jet (Fig. 1 Ci)or in a can...~ at its sudden widening (Fig. lb). 
In these cases, in the outside nonviscot'.s flow, a complex and previously unknown 
structure of shocks ar.cl rarefaction waves e.tist\:. Such a structure 'interacts \vith 
the layer and determines its gro'llth on the whole length up to the so-called choking 
cros&-section (wake throat). The use of ~xact methods for the calculation of such 
nonviscous nOV/S is associated. 'tlith a big Haste of time and' effort end is inadequate 
for an approximate (essentially not ~n3dirnensional) description of the flow in the 
layer. . 

A simple approximate method of the calculation of the flows, represented in 
Fig. 1 a and b, is discussed beloW. In this method, the average quasi-one-{:jlnensional 
method of the description of complex nonviscous flow ",;nd the method of the one­
parametric turbulent layer or Hake*' are used simultaneously. 

"" The \,/ake differs from the more general case of the layer by the absence of 
friction on the wall limiting the flow. 
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fig. 1 

To complete the discussion', the preV'lo1:lsly obtained solutions of 
the more simple limiting problem of flow around a stop by a steady supersoni~ flO'fl 
in the presence of a sin'gle shock or a rarefaction wave, incident on the neighbouring 
\-lake, and a blowing into the bottom region [2-6J, are briefly described. ' 

It Was ascertained on the basis of the e~l)erimental data that, in the 
separating flows (Fig. 1) directly behind the end, an isobaric bottom reeion is 
arranged; the flow ~r interaction is strictly studied, starting from a ~ertain ~~bitrarj 
"lacing" cress-section I up to the choking cross-section, the \'lake throat II, 
behind , .... hich the whole flow can be considered supersonic. In the limits of the, 
in!-egral methods of the boundary layer theory appl:~c,lhle here, _ one-pararnetric 
fe.rn.i1y of solutions is obtained. These solntions describe the flo\,1 of the interaction 
at a finite distance from the end. The condition of the selection of the real 
solution lies in the fact that this solution must be a singular one (must pass by 
the saddle point, corresponding to the physical throat of the 'flake). 

1. J'he One-Pararn~tric ~rbulent Wake 

In the general case, the turbulent \-lske is characterized by the profiles 
of the velo~:l.ty and temperature. These f!rof'l-1es comprise a finite number of free 
parameters nt (i c 1,2, •••• ), the values' of which determine the character of flow 
in the wake. As a result of the calculation of the interaction, the i\:nctions of 
t.l)~_ longi tumnal coordinate x s the characteristi,c _ width of the ~'lake b (x) , tl:1e 
paramet~rs ~f the profile of velocity n. (,r.), the parameters of the outsic.te 
nonviscous flow on the boundary of the HMe, the value of the velocity C ()o::) 
and its inclination to the X axis must be determined in the pla..'1e of flow. 
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In the integral methods of ctlJ.culation, the turbulent wake is defined only 
by the integral values, generalized by the dimensionless vlidths of the displace­
ment H~ , the loss of momentum H~?f and the friction D..'(.. (1\ l1:li 0, 1, 2, •••• ). 
For the determination of the Un.tmo\ffi functions, different integral relations of 
the boundary layer and other auxiliary equations, and in particular the conditions 
on the axis of symmetry of the wake, are used [2, 4J. The existence of a certain 
arbitrariness in the selection of the number of the parameters and the form of 
equations leads to e. cer-t-ain difference in the results, specially, if the number of 
the equations is small. 

In the practice of the calculations in reference [4J, a one-parametric profile 
of the velocity u ItS U. (~) in the free turbulent layer and wake vias taken. 

!:!..-f If) /i{:) lJt- U UJ-U o Ij ".- -m {t, ? :-- ,m=-- h "'-
" lJ3-Uo uJ ,( 0 (1.1) 

The indices Ii ~.\ and "0" refer to the parameters on the boundary of the 
wake ':J -:: b and on its axis Y '::. 0 ,respectively. 

As most simple equations, describing the flow in the one-parametric turbulent 
wake, the equation of momentum and the condition on the axis of symmetry are taken: 

(1.2) 
" ) d f) ~... z)dfnC 
(J + 1 d"J: (no ,+(2+H-M dx '" 0 

du.o dp , 1 Of') 
fo u - + - = (/ r 1;f - . 

" dx dx d • alj" ' (1.3) 

in which j a 0 in the plane case, j = 1 in the axisymmetric case, 
G.:. U I LA-rrv::v, ::: N (~i -;- 'M'jo) - ~ is t::e reduced ve::..ocity of the outside flow 

on the boundary ort the wake . O' (X) • The turbulent. tangential stress "C is 
expresseci by the Prandtl formula. . 

'f=pv au I ~ ':,;;elu.-u)l £=rond,' t oy t I' 0 a , 

Taking ac~ount of (1.1) 

2 Z df{~) L 
r =-Jt uc;.em d(2) Y& 

.. - .,.~.- .- .-- 2 

( o'r) ( )' t m
2 

1- C 
dy a ': "at?' feU! T 6'~) 
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here a c~c.r2. tid (~) "the value (-a..l£ )is a freepararneter (0.012 for the 
neighbouring plune wave). The paramet.er H ;:; H-I< IH1'"" I where 

----;---8 If ;1-7--- I; f fU }.i 
H =(0.) =0+1)1:(1-'-:":10 'cdz is the reduced 

width (area) of the displacement, 

• f 7. 
JIHf if ! fJu u i 

,/"':: (T) =(; f flu PoUt (1- uJ ) Z dz i'S' the. Y'eoluc:.e..d 

width (area) of the loss of momentum; all are tabulated functions of the 
parametric form m of the profile of velocity in the \vake and of the numbers 
of C or M on its outside boundary. 

It is suitable to select either the absolute 'didllt 1> (:x.) , or the integral 
width b ~ ex) of the displacement, as the characteristic width of the turbulent 
wake. These represent the principal parameter of the interaction of the viscous 
and nonviscous Dovl, since the surfaces :J .,. 5 (:x:.) or ~.:: S '''C:x) can be considered 
as 10\'1er boundaries for the outside nonviscous flow. .. . 

Equations (102) and (1.3), after transformation, take the form: 

ae~'H---d-;;'-f-de~H (. _.- 2Jji£n-C /~')--df~J* 
--+---2+H-M -:()ff-

am dx JtnC dx C d:r 

2-j 

dm + m{Z-m) dent =-{j.l)(-a~)':::':" (11")'2-
dx (1-mlf1-C<) dx J 1-m' S"" 

(1.5) 

(1.6) 

In the two equations (1.2) and (lG3), there are three unknown functions of 
Yo: m, C a11d 'Zl' 

In order to close the problem, it is necessary to build an additional system 
of equations for the nonviscous flow. For this purpose, the e~ua~ion of continuity 
in the form of Krokko-Liz [lJ is used fo~ the most simple case of un isoentropic 
plane Prandtl-Maier nowo 'rhis equation has the form: 

d 8 . dB 
-jfudy=(pu)8(--- - to D) 
dx a;",' J 

(107) 

o 
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where 8 = Y (c 0-0) - ~ (c) is the angle of inclination of the nonviscous flow on the 
boundary of the viscous layer ~)J (. C) is the P:randtl~1aier i\,mctiono 

Tak:'l,g into account that 
written in the fOl~ 

o . - .----- .. -'--'- . . 
J pudl/ = (PL:,'· (0- 8*) 
o .. 0 .' 

the equation (1.7) can be 

'~8':(d~Cr:} d!;~~)J- +~;'BJ 
ex (1.8) 

In this case equations (1.5), (1.6) and (1.8) form a closed system; its solutions 
describe the flow of interaction in the plane turbulent neighboux·ing wak~. 

Equation (1.8) differs from the kno~1n Prandtl equation: 

d ~ " tJ . 

dx : ii eo" (1.9) 

which is usually applied to perform more accurate calculation of the velocity 
distribution on the outside limit of tho boundary layer. It is pos'sible to shoii 
that equations (1.8) and (1.9) agree with the accurate boundary layer theory. 

From the point of view of calculation, the difference between the equations 
of Krokko-Luz (1.7) and Prandtl (1.9) is connected only with the selected boundary 
'j.:.; 8 eX.) 01' ~1'" l x) , fo:· which the parameters of the nonviJcous flml' are 

given. 

2 • flo't{ Behind the Step in Unbounded Flow 

In references [4, 5J, a system of the equations (1.5), (1.6) (at j ... 0) 
and (1.8) is applied for the investigation of plane flo'fT in the turbulent neighbouring 
\-Iake behind the s'bep (Fig_ 1 c) 0 Soh'ing this system of equations relative to the 
derivatives of the funct.ions ~ (y) ) m Lx..) and C (::l.:.) He bbtain: 

------- ------- ~-- _. --. __ .. -
denb t., 
--=-
d:r: ~ 
I 

dm = ~2 
I dx [j 

dtnC _ ~. 

dx - L1 
(2.1) 
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Cl Where 
:S(1-m) [ m(2-m} J~ 

c 

c 

t:.=- - ~z"( I( 1) Ll3 I_rn I_t' 

afnf.l*'* aenj-{*"- Z] ~ :: -f-- /Jz.fo( -1-2 +H-M )11
3 1 L dm din C ' 

t98 m(Z-m) aenl-l (r_M l 
) 

j= +-----+H+! 
~ (-C!<~)m2f{~ f-C 2 afnC H* 

L1 3 ::- (t-m)+-[ 
~8 atnflJ 

fa~)m2H~ Jm 

The system of equations (2.1) is reduced to one differential e~uation 
concerning mum (c) , 

elm !J. z 
d[;C = -;;;; (2.2) 

and the two first integrals. 

At the given parameters Coo and (a. (t., J equation (2 0 2) has a singular 
solution, pass~1g by the singular saddle point. The coordinates of this point 
in the ple..Yle (m, c) are determined by the equations b 1 -:;: .b,,": 0 
(Hereby, simultaneously, t::., -:. ~ ~ 0 ). As Was shmm in the \iOrk [/+J, 
the singular solution corresponds to the flow in the undisturbed neighbouring 
wake, and the singular point cGrresponds to its throat. The nonsingular integral 
curves of the system (2 0 1) or the equatio!".s (2 .. 2) describe the flows of the 
interaction of the turbulent wake with the supersonic flow in the physical plane 
or in the plane (m, c) in the existence of isentropic Ghocks or rarefaction waves, 
disturbing the neighbouring i1a'-<e ~ 

" (". t <. " 
The initial conditions for the system (2.1), x. = x. , r.J-::. CJ , m: m and 

C III Co t are determined as a result of the gJ.c:i11g in cross section I (Fig. 1) of 
the flow of the interaction in the wake wit!1 the isobaric flO\1 of the displacement 
in the bottom region, on the basis 01' certain integral (;onditions. The 
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c ~~ 
continuity of the absolute \ddth (\ of the layer and the displacements l) 

C) and also the conservation of the mass of the gas in the bottom region were taken 
, in the works [4, 5J as such conditions~ In this case, the initial value of 

Ci 

c. 

the pe.rametric form mO
, the leneth of the isobaric bottom region ~'C0 and the 

initial width of the neighbouring w~:e t~ are determined as a function of the, 
beforehand, unknO\m bottO::l pressure pO and the given blowing parameter B .. by the 
equations: 

1-H~(m.C·) 1-H~(1,CO). (2.3) 
G(m,C·) = HH(I,CO) 1-B 

.'fr( C') , 
° {BOr "oj-'H*'*f ~)h{m. I() 1-x = [COS 0 J . (!.c ,--- 1-8 I- t~ () 

G(m,C") t1 ' 

(2.4) 

_ ... - .. _------- .-.- ... - -_ .. 
~/"[H'It(m,cO)rf(f-X·tJ Be). (2.5) 

In equations (2.3) - (2.5), B and G are denoted as follows: 

~ ,,(PU)SA [t"HH(1 ,C~)(ros O-;-i ;roT' , 
(9 11)00. . 

~~ 

J flU d / 1 )._1 G:- - ~, {2 ~ m 
. 0 (flU)" f 

where G (m,c)- the relative rate of the returning flow in the wake (0 <: ~ ~ 't >i ) 1 

B - the blowing para.'1lcter, ·S.-. the empirical co<;;.:~ticient of the expansion of 
the isobaric turbulent jet. 

The value of· the bottom pressure po ( and its correspon~tng velocity Co 
of the outside floW) is found from the condition of the reelization of the 
singular solution of equntion (2.2), for wpich ~he initial condition mO is 
determined from equation (2.3). 

For simplicity of calculation, it '(las assumed that there is no initial 
boundary layer in the step_ The location of the outside boundary of the isobaric 
mixing layer y\>- 0 Hith respect to the boundary streamline of the equivalent 
nonviscous flow (Y a 0) v1as simply determined, as for the ordinary boundary layer, 
by the formula Y1=~-&~ (for the unbounded i~ow behi~ the step, from the 
condition of the conservation of momentum Yl '::" '& - e,"f' -~.".,. j in the ~ >1< 

bounded flow, this condition is complicated and for supersonic velocities Cd <<. c\ ) 
it can be disregarded. 
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If the equation of continuity (1.9) is used in the form of Prandtl, then 
the continuity of the ... ridth 't>~,.. of the n:omentum loss must be used instead of 
the condition of continuity of the absolute ~'l'idth S of the layer (taking account 
of the returning flows) • 

. _---------_ .... _----
Q lI',*{. ) 8/· ,-I "Of· ) . oH m,C: (cosD,· h' (t,C x (2.6) 

Then equation (2.3) HEl have the form: 

---.------ - -----_ .. _--
ltlE- G' 0 

H (fTI, c,= ~ C) 
1- B 

(2.7) 

Formulae (2.h) and (2.5) will be written in the previous form. 

The value of the free parameter (-Q?t.-) of essentially constant turbulence 
depends on the assumed equations, &luing conditions and the profile 0' the 
velocities. The above-l!Ient:loned value of c...-?C) UI 0.012, \Jas ·selected in 
work [4J from the comparison of th;; calculated .~,nd experimentul data with respect 
to the bottom pressU!'e po behind a plane step in the condit:lon of gluing· of 'b 
and with a profi~e of velocit.y (1.1) at f (-It)::..1._ ? '?,"-r:< '23[3] . 

For plotting the dependence of the relatiYe bottom pressure poir..;) behind 
a plane step in an unbounded supersonic flm ... on tho Mach n:lmber M 00 of the 
undisturbed flow and the blowing parameter j5 U -::: (j 1.1) GA / (J~ u.)..a./ it is 
sufficient to use the family of the singular integral curves of the equation (2.2) 
rn1 (C )Coc ) and the family of the 8olutions of equation (2.3) or the curves of 
the initial conditions ml(C, B). The intersections of these aL~ves determine the 
twc>--parametric relation (O(CoO ,1)) or P"/P<""( N.,o,pu.JreprcDented in Fig. 2. 

o '- ? , .1/ 11<><> ( ~ ~ 

.Fig. 2 
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The calculated c.urves of Fig. 2 satisfactorily agree with the ~perimental 
data in the case of existence of blowing (pLl.. T (,)) or suction <- pu.. < ())? 
however, for clarity, the results of e:cJ'Jeriments (taking account of the dispersion 
of the data of the different authors), related only to flows with pu.. -= 0 
are given in the graph, i.e., in the case of absence of bloHing (suction). The 
curves in Fig. 2 are limited at certain maxim&. of blo\'1ine and suctions. The first 
limitation is related to the accepted assumption of the isobaric flOi'1 of the 
displacement in the zone of separation and, in principle, it can be removed if 
the interaction of supersonic and secondary subsonic flm-1S is studied. The second 
limitation is more essential and is related to the existence of fc limiting line for 
the solutions of the system (2.1) when the denominator in the right sides of the 
equations vanishes: 

t.(m,f) =0 

or 

afnll _1~M'_f=~ _m(i:-mj"--ae;ii-:.
O <len C . H'Ii (f-CZ)(t- m) dm 

which indicates the impossibility of the existence of separating flows, if the 
flow rate exceeds a certain critical valueo 

In Fig. 3, the calculated distributions of the pressures p" p (x) on the 
axis of the neighbouring w[·Jm, are compared Hith the expi}!'imentol data at different 
Bach numbers Mw of the supersonic £10\'1 in front of the step: 

- Mro" f,55 

3 - Moo" 2,03 

5 -M oo =3,02 

2 - Moo -:. f,8 tl 

it -Moo -= 2,30 

The numbers corresEond to experimental data from the five different sources 
shown in the work L4J. . 

The family of the nonsingular integral curves of equations (2.1) or (2.2) 
corresponds to the different fiO\fS in the neighbouring wake. These flows are 
disturbed by a shock or a rarefaction wave at finite distances fr'om the beginning 
of the wake. They are represented by segments of nonsingular integral curves, 
which can be studied directly, or jointed \'lith segments of other singular curves. 
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r The flow in neighbouring wake, disturbed by a shock wave o'f finite' intensity 
()s > §~~ :; has two values. For given boundary cond.itions of the .Mach number Moo 

in front of the step, the intensity of the shock ~s and the place of its 
location in the \-Take Xs two possible flows exist in the neighbouring wake. 
These flows are characterized by the vr~ues of the bottom pressure P1 and ~o 
which can be arbitrarily called the strong and weak disturbances. This corresponds 
to hysteresis in physical fl0l1S of stH.:h a type. In the case of existence of . 
bloHing or suction in the bottom reg:~on, the flow in the neighbouring vlake is 
two-valued in the wl:01e range of the values of the bottom pressure pi'" P<' -< p~ 
The flow in a vlake with blo'fling in the bottom region can be studied as quasi-
steady, when the wake acts as a source or drain for the subsidiary flow rate, 
and the bottom region becomes a storage for the maS3~ On this basis, a series of 
change of the parameters of the bottom region \,las performed in the work [5J. 
This region supposedly characterizes the 10·,i-·frequency oscillations in the ,."ake. 
Such oscillations are really observed, and their amplitude and. frequency in one 
example satisfactorily agreed with the calculated valuese 

3. Quasi-0ne-Dimensional Eaautions of the 
Superson~Lc J,et 

For the approximate quasi-one-dimensional method of calculation of plane 
and axisymmetric thin jets, having a small curvature, of a nonviscous gas, all 
the parameters f of the flow ( P,.f the longitudinal u and transverse V­
velocity components) are assumed. continuous aYld slightly changing across the 
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cross-section of the jet, x - const. At the boundaries of the jet the parameters 
at !:J = Yo and !:I -:.!:Ii are marked by J" and 11 , respectively. The variation 
of all tthe parameters J -f ~ and also the value of v are considered small of 
the first order. 

Applying the operation of averaging to the analytical functions of the 
parameters of flow, it can be ascertained that the mean value of a function, 
correct up to the squares of the small quantities,' is equal to·the same function 
from the average values of the arguments. In particular, for the mean pa,rameters 
with the mentioned exactness, the usual gas dynamic relations of one-dimentional 
nows hold; at the same time, taking into account the small value of v, it can be 
assumed that < C>2 ~ (t.: u '> / 4 U mq,x >)Z 

---_ ... - .... --------. 
if> 8. = du. /d::c .: 1J-. lu. ~ '11". /< U > ?, J' ,~,. 

( i ; 0, f) c:t c . 

The differential equations of motion after averaging with respect to 'J are 
reduced to the ordinary ones with respect to 'x, \olhich is the main purpose of the 
developed approximate method. On the basis of a special investigation and of 
the practice of calculations, it was advisable to use the following 
system of equations (the signs of averaging are omitted): 

e ~uati"JL or continuity 

d r( j+' il-') '} 
d::c L I '1, - Y ~ J U . = 0 , 

equation of momentum in the longitudinal direction 
--_._-----_ ....... . 

d r( j'" /*'11 z)17_r. )J! jdlj j dYe] 
dx.~1 '1 -ljo )[pfj'tl 'j-rJ+- 1'L P,Lj, dx -PSo dx ' 

equation of momentum in the transverse direction 

--i----- ·-;-;;-·~t- --- IfI---' ---... ----. _.­
d;x;[JUU-(IJ, -Yo' )]:Q+I}l~-P,)y:-(p·pJll] , 

equation of the boundaries of the jet 

--- .-.-- .•.. - ------
dYi /d;c :7J'ju , i = P,! 

(3.1) 

(3.2) 

(3.3) 

(3.4), (3.5) 

Equations (3.3), with the above_mentioned accUracy, can be divided into two 
equations with respect to d..1T1 /d::t:- and cL 1/;../ d.-x j (This physically corresponds 
to the division of the jet into two and to the application ot each of them of 
the equation of momentum at the step change V-::. V- (fJ J. ). 
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Performing this division and solving the equations with respect to the 
derivatives, we obtain, after some transformations, a system of six equations. 
This system describes the gas flow in the nonviscous curvilinear jet • 

. - --.. _----------
/,,-, 

-dYo/dx = V-o ju , dy,jdx:: v, / u 
f 7i,) i (Yto ~ 

11: f+-- -71 f+-- I au =t +1) l t-t 1i Y', or ~-1 rr)'Jo , 
,dx J L (M2_ f)( u,~t_ '.') r-' ;/1 Yo 

Z ( Y; 17 j { Z f lit)17 " 
da _(, 1) "Vo{r M - f-lf"·)lJo-~ 1M -(f-1fJIJ, 
-- J+ 
d:r:. 21 (Z )( i" ;.,) -M-1 Y _u 

T- f ' 70 

a~o 'J t a -:-{j+1-­
dx 01.0 T 

( 1 'to) j -Jr Yo· 

M{yt'-y,,'''j 

d;i =( +fJ~ !!.. (f-7T,/rr)y/ 
d;c I ci , r . M(y/" _ y/t'j 

(3.6). (3.7) 

. (3.8) :., 

(3.9 ) 

(3.10) 

(3.11) 

In- the written equations, C = M(2j(r- f) 1'Mzt
r
/, is the reduced velocity, 

M -:: ':::.1 0.. _~ __ CL- is the velocity of sound'-r;r:: (f_C·z)rlrj-f)-;- ;-~-i;~·M2i;~ij/2j-iiil~ 1) ; 

C V' " "', 'l1', ... eX z V-z 

( 

!!!~ .:..co~ffJ.:ci_e~~~_~.t ______ ¥.t __ ~~~ __ c~se_()£..1.l: c~_~.?ular jet are: oLo~ (y, ~ 2Yo)/3(Yt +ljo) = 
.. 1/3 + flz, ot, ;,(2y, r !/o}/3(tjt ... Y,):: 2/34- t/2 ) 

and for ~. plane jet aC~ ,:;c.1 ::: 1/;1.. The system of the six equations (3.6)-(3.11) 
is complete, because it contains eight functions of x, two of which ( '17;. and 111 
or Yo and -rr; ) are given. The initial conditions are known in the cross­
section :r -= O· 

The obtained system of equations is used for the approximate construction 
of the boundaries of the nonviscous curvilinear jets Yt:. (X). in the sections, 
where there are no strong shocks inside the jet and the 'angles of inclination of 
the boundaries to the axis of the jet are small. It is obvious that the greatest 
error in the determination of the boundary.of a jet arises near the edge of the 
nozzle and the points of fall of the shocks, in which the boundary of the jet 
undergoes a sharp bend. Therefore, the reduced system can be used .for the 
approximate calculation of the plane and circular curvilinear supersonic jets 
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at small degrees of Wlrated outflow. Examples of contours of plane curvilinear 
supersonic jets are shown in Fig. 4. These contours are obtained by means of the 
integration of the system (3.6)-(3.11). Examples of contours plotted by the 
method of the characteristic features for the most simple configuration of the 
jet, when C'r = CeO are given also in Fig. 4, (C is the reduced velocity 
in the first' section of the jet). . QO 

2/P 

a 
M .. -IS 

/!/P, '07S 

b 

, 
?I M -J 0 

~~J;II!'07S .-:-===--- ...... .:::::-~ 
~ .. ~~" 
1 ~---- .... .:::::" 

--===-+ ---Y . d 
:? 

Jig. 4 

In order to emphasize the wave (barrel-shaped) configuration of the jet in 
the quasi-one dimensional calculation, it Was assumed that the nozzle has a small 
expansion angle ", 8.,0 = 0,,- .. In the correct construction it was assumed for 
simplicity that $Q(:) -:: 0 • It is obvious that on the average, the bOWldaries of 
the correct and quasi-one-dimensional jets satisfactorily coincide. In the case 
of the most sharp bend of the bOWldary (Fig. 4 b) the quasi-one-dimensional jet 
is limited by the section :x. ~ 3.5 where M .,. 1. 

As applied to the calculation of the flow of an interaction, we notice that 
only the integral properties of the complex outside now up to the throat of the 
neighbouring wake are of interest. Examples of such properties are the number 
and the dimension of the "barrels" of the jet, which remain in one.-dimensional 
approximation in a "spread" form. Moreover, the angles of inclination of the 
velocity vector of the outside flow on the boundary of the turbulent layer in the 
whole region of the interaction do not exceed 20°. So, the case of Fig. 4 b 
doe's not belong to the calculation of such a fio\o[. 
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The discussed quasi~ne-dimensional method of calculation is distinguished 
by sufficient simplicity, and it is similarly applicable for subsonic and supersonic 
nonviscous flows, both in the thin bounded jets and in the narrow canals. For the 
developed theory of interaction, it is particularly important that, by using this 
method, the problem as a whole obtains a closed analytical description that does not 
contain unnecessary informations about the flow and convenient for the programming 
of the numerical calculations. 

4. Interaction of a Jet with a Wake 

The flow of the interaction of a quasi-one-dimensional jet and one-parametric 
turbulent wake is described by a system of six equations for the nonviscous jet, 
(,3.6)-(,3.11), and two equations for the wake, (1.5) and (1.6). In the last two 
equations, one should assume that &'" -;. Yo and rl Q'" =- d'1,- = 11./ • It is ct"X cr'i:" ~ necessary to add an auxiliary formula to the system of these equat10ns for the 
determination of the length (surface) of the outside and inside boundaries of the 
nonviscous jet. 

. ;:i::O~f)Y/lf+("i/ul~(j+l)lj/ ' i:: 0,1 
(4.1) 

This is necessary for the calculation of the width of the jet turbulent layer of 
the mixture. 

The initial conditions of the neighbouring wake are determined, as previously, 
from the conditions of the gluing of the isobaric flow of the mixture in the bottom 
region with the flow of the interaction in the wake. On calculating the turbulent 
layer of the mixture behind the axisymmetric end, one should proceed from those 
approximate relations that exist in the plane flow: the profile of the velocity 
in the layer of the mixture is universal 

df = C(e) , 
ds 

(4.2) 

where j = (j d) !If 8 
of the mixture, g 

the area width of the cross-section of the zone 
mixing coefficient . 

--- .. -- .. ~----- - .. ----_. 

So =(j I-I)J y/ /1 f(~/[/;Zdx r::.(i+f);X y/dx 
o 0 

(4.,3) 

is the area (length) of the ejector surface of the jet. 
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The conditions of continuity of 3 and ~ in the section of gluing and of 
conservation of mass in the stagnant region are written in the form: 

Where 

--~/;'(x-j-;-g·;or~)[I- HYt. C ,OJ]; J/~-'---­

i t '()=3 il 'H"f C 'J Yo . % 1m• • J ' 
8iHG(m,(j)=(t-B}8"HH(I,C~ O)So(x) • 

• 1 /, ,·So" .... (. c )s ( l B : (fu)5~/l'pUJ .'7 I,e ,0 0 X) • 

~ (m] 
* . 

G(m,C ,j};-Q+I}J E ~'d~ ,1ft) =m-I 
, 

o (,Pu); If 

(4.4) 

(4.5) 

(4.6) 

The relative, integral widths are expressed as functions'of three arguments, 
the parametric form m, the reduced velocity C and the parameter j •. The last 
argument, as shown previously, is equal to 0 or 1 in plane or axisynunetric layer, 
respectiv~ly. 

From equations (4.4)-(4.6), it follows that the initial value of the parametric 
form rno is determined as a function~Cfrom an equation analogous to (2.3): . 

The coordinate 

l-H*(m.Co,tl _ 

6 (m, Co, 1) -

f-H*(T,C:O) . 

H " it ( 1, C ", a )( 1- B ) 
r 

, (4.7) 

x = -:c" of the section of gluing is determined from the equation 

----.-, --- '-'-H*(f,c~-~):: 0 
!1

o'+_ 8(CO)H,*(m,C:'t) 1- H*(m,CQ,O} 
So (4.8) 

The calculation of the flows of the interaction, which are represented in Fig. 1 a 
and b, consists of two parts. Originally, for a given value of the bottom pressure 
po (or Co), the flow on the isobaric region behind the step up to the section of 
gluing, determined by equation (4.8), is calculated by integrating the system 
(3.6 )-(3.11), complemented by equation (4.1). Furt.her, by the integration of the 
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)1' same system of equations",the flow in the region o~ the interactions is 
calculated. "The real value of the bottom pressure po or Co and the actual 
flow of the int~raction are determineq, as in the most simple case in work 
[4J, by the condition of passing the,integral curve through the singular 
point (wake throat). The numerical coristruction of the singular solution 
in the neighbourhood of the saddle singular pOint,whose position is only 
detennineq. il1 the,op~r8:~i?t:l of the calc,ulation ,i:;; connected with known 
calculating difficulties. I In.practice~ it seems sufficient to co~struct 
two nonsingular solutions related to-.the different .families. The difference 
of the value-LQj.' the~l>()t1om pressure in them is ;' beforehand, less than the 
given value, /p

z
o ~p; 1<: O.Of .~. 

ml I P"h> • oHI-

,·JI ~-' ~.-c-/_+-' ----l 

If 

0~1-1--

01/ ~. '''~ p.. " ,,'\. i· 
~'" <: -~~ 

HI ! ii' I I 
070. 0.72 07+ 076 0 ~6 (l8O 081 "", x 

Fig. 5 a 

The results of a successive integration (by the method of Rungo-Kutt) 
of the des~ribed system of equations for a plane now at MoO" 3.0, Yo .. 1, 
~ ... 2, go=-O.l, 8 1 " 0.1, \;}PH =- O,'() for different values of the relative 
bottom pressure Po / PH (PH is the pressure in the outside medium) are 
represented in Fig. 5. The integral curves in the plane (m, c) are shown in 
Fig. 5 a. These curves characterize the change of the parameters in the viscous 
layer. The contours of the nonviscous jets are shown in Fig. 5 b. The lm'ler 
~oundary of the jets ~ (~) in the region of the interaction corresponds to the 
width of the displacement of the viscous layer b ""(:x:). 
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':JI~-- ------------
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Fits. 5 b 

The nonsingular integral curves, given in Fig. 5 a, do not correspond to 
any actual flo.". All the curves begin on the line of the initial data (in the 
absence of blowing, B • 0), wnich is determined by equation (2.3). The right 
branches end on a limiting line \~'hich is determined by the condition A (m)C)=O, 
The left branches are limited satisfactorily conditionally by the separated 
section ~. 10, be!ond which the solution has physically unreal ·singularities. 

From the study of Fig. 5 a, it is obvious that, at given initial conditions, 
two singular curves are found. These two singular curves are plotted simply as 
averages between the nonsingular curves, related to the different families, 
and until these nonsingular curves are sufficiently close to each other. The two 
stationary flows of the interaction correspondine to them are represented in Fig. 6. 
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Y,p 
H 

2 
P,/p. -0375 

1- '> OL 2 J I; 5 6 x 

____ EJ.a:. 6 a 

~ 

2 

• 

6 7 B 9x 



- 40-

As in the case of the i!:!\eraction of a single shock with a wake, a flow 

Cl w_ith lower bottom pressure, P1 .. 0.375 and a flm'1 with higher bottom pressure 
, p~ - 0.55, can be called weak and strong disturbances, respectivelyo The 

o 

( 

transition from one flow to the other is connected with the essential change 
of the configuration of the region of the returning flows and of the location 
of the critical points (m .. 1) in the wake from :c.. .. 5 (at p" • 0.375) to 
::x:.. 8.2 (at pO. 0.55). 

The existence of the double-value in the flow of the interaction in the 
considered, mor.El complex, case also attests the possibility of quasi-stationary 
ascillations with a relative amplitudes 

Z(PZo -P/o} {p,o + fzo ) ~ 0,3 B 

5. Peeudoshock in a Canal 

As shown in rectilinear long canals, a complex system of weak oblique shocks 
and flow separations, interacting with the turbulent layer near the wall, arises 
instead of a normal shock in such a way that the transition from n supersonic to 
a subsonic flow in,the canal and the corresponding loss of the' total pressure in 
the flow are distinguished by a viscous mechanism, which is conunonly called pseudo­
shock. Following work [7J, we assumed that the effect of the shocks on the flow 
in the core of the canal, outside the layer of mixture, can be neglected, and this 
flow can be considered one-dimensional and isentropic. \'1e assume also that the 
friction on the wall can be disregarded. The corresponding sketch of the pseudoshock 
is represented in Fig. 7. 

-------------------

E.lU!~~ tID ;' K 
2 3 . 4 

Fig. 1 

In section 1, the flow consists of a uniform core and a thin ordinary turbulent 
bOW1dary layer. This layer achieves a. separating state under the action of the 
positive pressure gradient. Between sections 1 and 2, a layer of mixture with 
returning flows of fluid grows on the wall. In section 2, the layer of the mixture 
absorbs the isentropic core, after that a balancine of the flow takes place in the canal 
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A second critical point, behind which the asymptotic increase of the pressure to 
the maximum occurs, is located in section 3 when taking account of the friction on 
the walls in a certain section "1+", the pressure reaches a maximum [8J. . 

Since the effect of friction on the-wall is not taken into account, the pseudoshoc 
can be consi<iered- as a floH of interaction of one-d.imensional outside flow with a 
layer of mixture (with a: wake). 

In the layer of mixture between sections '1-4,aone-paltalih:~tric profile of 
velocities of. ordinary form (1.1) is received. The tru-ee unknown functions of the 
problem in the region 1-2 will be the reduced velocity Cb:) the width of the boundary 
layer ~ (x) and the parametric form m (x), and in the ,region 2-4, where ~ :1 
will be the pressure p (x), we have as previously C (:r.) and m (x). The original 
system of equations consists of two equations of conservationj the equation of 
continui ty is s 

(Fu)~ -~ J~ (i ---Eli* F= con;t (5.1) 

and the equation of monentum iSI 

'd e (t' " if) (. Z) dfnC . 
d- n oH +(2"H-M - =0 x ~ , 

(5.2 ) 

and also the differential equation on the axis of the viscous layer lS: 

duo dp (;jT) 
pu-+-=(-
.0 "dx a'r. ay 0 

(5-3) 

In the case of the isentropic flow, we have in the core of the flow (in the 
section 1-2) s; . 

._._- - -.--- ._-- --.--------. 

8 * • 8 H 'I: d - ~co /~ (el , ~ = SJU I (fu ) * . (5.4) 

For the .calculation of the final increase of pressure in the pseudo.shock, 
it is sufficient to use the equations of continuity and conservation of momentum. 
It is obvious that the mean parameters in the final and initial sections of the 
pseudoshock are connected with the relations of the normal shock. 

For the calculation of the pressure distribution in a canal the equations of 
conservation, (5.1) and (5.2), should be used in the differential form. 
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The original system of equations of the pseudoshock for the region 1-2 
with the isentropic core can be reduced to two ordinary differential equations of 
the first order with respect to m (x) and C (x): 

- -------------
(

aenH) dm f : 1- MZ 
. aen H ) dl;C-

---+(Hd+ - --:0 
am dx f-~oo/9(c)' dent d:r. 

d m m (Z - m) den c (- a CIt!) H '1< m 2 
- + -- :: ----=--~-
d:c (t-m)(f_CZj dx. f-~oo/~(C) f-m 

(505) 

(5.6) 

Equation (5.5) determines the integral curve m (C) in the plane (m, C) 

-=-
dm- ~---'-~--+~;:r-'=-M2)/[,t ~-fJoo /9 (c )}- den H}~en-C-

(5.7) 
de c aen H/am 

From equation (5.6), the pressure distribution can be calculated' in the physical 
plane C (x) or rr. ~x) I . 

---- ---c. ---. )7--'- Ii-d~' -;;'(2-~)]- c (5.8) 
(-aiJ:)(:C- ;Cf) =J [f -9".J~(c ~ H*mzLlI-m) de + rt-c 2)c d . 

c 

C: Equations (505) and (5.6) are valid up to section 2 of the coupling viscous layers, 
where ~l. 1, or 

( 

9-00 flo 1 ~ __ _ 
Hz = - ~ fez) 

(5.9) 

For the calculation of the balancing flow, one should proceed differently. 
The dependence of-m on Co (Co is the reduced velocity on the axis of the canal) 
is more conviniently determined in this case from the transcendental equation, 
which is obtained from equations (5.1) and (5.2): 

[ 
f-H1f«m.CJ-IfYm, Co) +r-' I-Co

2 

1 ]~const 
C. 1- H*(m,Co ) 2/ c: l- H'I(m,C o ) 

(5.10) 
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The value of the constant is determined from the data of integration of equation 
(5.7) in section 2. 

The distribution of the velocity CQ(X) is obtained from equation (5.6). 
The distribution of pressure PC~)/~~ is calculated by the equation of 
momentum: 

---------------

p* 
a 

p : Jr. [ 1-1 M :"(1- H If - H If.)J 
1+-1 Mo

Z (I-H*'-H'*'f) 
(5.11) 

For the simplification of calculations, the integral parameters of the turbulent 
layer of the mixture were a~sumed to correspond to the linear profile of the 
velocity f = '1- i in the nonviscous fluid: 

.. _------ -

H*"'m/2 ,'H'H=(m/6)(3-2m), f/=3/(3-2m) . 

Then from equation (5.7) the following equation is obtained: 
-_.- - ---'-. ._--_., ". - "_A. _ .. _. ___ ~--- _._~_-.- .. -. - __ . 

dm. 1 {3 . (3 )[ ! - !1 ]} 
de = c '2 +- 2: - m 1- 900 /~ (c) +- f 

(5.12) 

r-'"T 1m 

f.l1 

(2 
1.0 

.,J I J/L.'I ~a. 
aUA II 11~ 

O.tO 

0.05 

Fig. 8 a Fig. 8 b 
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The integral curves of equation (5.12) at M~. 3 in the plane (m, C) are 
represented in Fig. 8 a. They are valid in the region 1-2 up to the section 
of the coupling of viscous layers at S ~-1 

The different curves correspond to different conditions in the initial 
section of pseudoshock 1 or to a different width of the displacement of the 
initial boundary layer o{ • This consequently leads to a change orme initial 
parameters of., the flow in the nonviscous core and of the mean-mass velocity of 
the flow in the section 1 t A rn1. (Table 1). 

The curve 11 a 1, corresponding to equa.tion (5 ~ 9), is now determined by the 
equation: 

rn = Z [ 1 _ CJ.ct) ] 
9'(c) • (5.13) 

The integral curves in the region 2-3-4 were plotted by the formula (5.10), 
taking account of the assumed simplifications. 

The distribution of the pressures P (J:.) and the parametric' forms m (x) 
for three variants of calculation are shown in Fig. 8 b. It was ass~ed that 
mit • 0.85 in the final section of the pseudoshock. The obtained parameters 
of the flow in the'l?seudoshock and the comparison of its length with the 
experiment in work L8] are given in Table 1 (the linear dimensions are relative 
to the hight h, statod in Fig. 7). 

'fable 1 

l " BUPHCUIT P~'':·;i.!TEI 

\ I 
I 

4 1 1/1 _ 4/1 
(puc, S) cD 1 - 4 1 -

! 
, fla:J,l:.W':·PW ili)'I'OJ,a p It;)·!a:ljJ~!O:'i I 

CC<IUlUUl nCeBAOCKu'iKEI: (J) ~ 

'~ .. 
0.064 . 0.353 ql 0,212 

I 

o .,0 0.016 0.053 0,088 ·1 

X'mt 1,82 1.76 . 1,5 

.lJ,lUlC;;P nCp.MOC:KllQKn: pac<te'l' ' 22,5, 36 28 
:,)~c UepUMell'r 22.5 38 29 

, 
-~ 

~ 1) Variant of calculation (Fig. 8)j 2) Parameters of the flow in the initial section 
of the pseudoshockj 3) Length of the pseudoshock: calculation experiment. 
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It is obvious from the table that there is a totally satisfactory agreement between 
the experiment and the approximate calculation (at one and the same value 
of m~ • 0.85). 

6. The Final Remarks 

In conclusion and first of all, one must emphasize that the essentially developed 
one-dimensional theory, in spite of the sufficiently rough initial assumptions and 
with the minimum number of the empirical constants, totally satisfactorily describes 
all the main properties of the investigated separating turbulent supersonic flows, 
including the hysteresis phenomena and the quasi-stationary oscillations. The 
good agreement of the calculated and experimental data is remarl<d also in other 
analogous works. This is explained, _L'r1 _ one hand, by the existence of certain 
universal properties of the separating flows,slightly depending on the general 
configuration of the flows and enabling to use its simple calculating models, and 
on the other hand, by the smoothing characteristics of the integral methods of 
investigation. These methods guarantee at the same time the conservation of the 
principal properties of the phenomenon. 

The first universal properties of the separation of the turbulent boundary 
layer and the combination of the turbulent wake at definite critical pressure 
ratios P,.I P.t which are, with a high precision, functions only of the Mach 
number Mi of the incident undisturbed flow, were ascertained experimentally in the 
works of I.P. Nekrasov, G.I. Petrov and other authors. The properties of the 
separation, taken phenomenologically, enabled to construct more complex flows by 
the investigation of the local separations and combinations of the turbulent flow 
in the case of achievement of the conditions of the critical increase of pressure 
or the critical angle of turn of the supersonic flo\i. These conditions obtained 
satisfactory explanation within the limits of the theory of nonviscous fluids, 
taking account of a definite reconstruction of the velocity profile of the 
separating or adjoining vorteK layers and the satisfaction of the integral 
conditions of conservation of mass and momentum. Another explanation was connected 
with the assumption of conservation of the total pressure at the separating line 
of flow. This pressure, in the case of combination, must be more static for the 
magnitude of the increase of pressure in the region of combination. This assumption 
enabled Ko~st and Chepman to determine the bottom rarefaction'behind the step in 
the plane flow, including the effect of the low blowing, in the case of good agreement 
with the experimental data. However, as the more detailed investigations in works 
[9,3J show, the method of Korst-Chepman is essentially' connected with the local 
properties of the selected profile of velocity and of the flow of the nonviscous 
fluid along the line of flow of a constant rate, which must be considered the 
principal disadvantage of the method. 

. Further progress in the theory of the separating flows is due to Krokko and 
Liz [lJ who extended the integral method of the theory of the boundary layer in 
the vi~cous nuid to these flm'1s, tciking into account the separating profile 5 
of the~' velocity and the essential interaction of the layer with the out~ide 
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supersonic flow. Unlike the previous approach, this approach enabled to study 
in detail the growth of the layer, to obtain the pressure distribution and the 
location of the points of separation and combination, and to show the effect of 
the initial.,conditions, disturbances and friction in the flow. 

The use of the integral methods of the theory of jets and wakes represents. 
at present the most promising direction in the investigation of the separating 
flows. 

Among the most important problems for further working out,one should point 
out the extension of the range of the investigation of Mach number M and Reynolds 
number Re; the consideration of the effect of the initial boundary layer and the 
friction on the walls; the study of the flow around more complicates space 
configurations; the introduction of consumption and thermal effects; the changes 
of the design model and working medium, corresponding to the conditions of the 
hypersonic velocities at high altitudes and to the cavitation flows of the 
incompressible fluid. 

References 

1. Krokko L., L. Liz·, "Teoriya smesheniya dlya opredeleniya vzaimodeistviya 
dissipativnogo i pochti izentropicheskogo potokov" (Theory of 'mixing for the 
determination of the interaction of dissipative and nearly izentropic flows).--­
Vopro raketnoj tekhniki, sb. perev., No.2, 1953. 

2. Gogish L.V., GeIu. Stepanov" IIIntegral'ny;i metod rascheta turbulentnykh 
otryvnykh techenii" (Integral method of calculation of the turbulent 
separating flows) .--- Tretii vsesoyuznyi s"ezd po teoreticheskoi i prikladno1 
mekhanike, .. Mos}t;vai19 6 '6. 

3. Ginevski i A.S. "Teoriya turbulentnykh strui i sledov" (Theory of turbulent 
jets and wakes) .-.... "Mashinostroenie", 1969. 

4. Gogish L.V., T.S. Sobaleva, G.Yu. Stepanov "Vzaimodejstvie turbulentnogo 
sleda s vneshnim potokom" (Interaction of a turbulent wake with outside 
flOW) .--- IzV. AN SSSR. MZhG, No.3, 1969. . 

5. Gogish L. V. ''Relaksatsionnye kolebaniya v turbulentnoin blizhnem slede" 
(Relaxation oscillation in the turbulent neighbouring wake) .--- Izv, AN SSSR, 
MZhG, No.6, 1969. 

6. Gogish L.V. ''Raschet kriticheskikh davlenii prisoedineniya i otryva turbulentnogo 
pogranichnogo sloya v sverkhzvukovom potoke" (Calculation of the critical 
pressures of the combination and separation of the turbulent boundary layer in 
the supersonic flow).--- Izv. AN SSSR, MZhG, No.4, 1968. 



CI 

c 

( 

- 47 -

7. Krokko L. "Odnomernoe rassmotrenie gazovoi dinamiki ustanovivskikhsya 
techenii" (On~imensional investigation of the gas dynamics of steady 
now).--- V. knige:: Osnovy gazovoi dinamiki, IL, 1963. 

8. Zubkov A.I. and L.I. Sorkie. "Vliyanie vyazkosti na techenie v oblasti 
pryamogo skachka uplotneniya" (The effect of viscosity on flow in the region 
of the direct shock wave) .-- - Izv. AN SSSR, Hekhanika i mashinostroenie, 
No.1, 19610 

9. Gogish L. V ~ and G.Yu. Stepanov "K raschetu donnogo davleniya v dvumernykh 
8verkhzvukovykh techeniyakh" (Calculation of bottom pressure in two-dimensional 
supersonic nows).--- Izv. AN SSSR MZhG, No.3, 19660 



c' 

c 

c. 

- 48-

OPTIMUM FORMS OF PLANE AND AXISYMMETRIC BODIES AT 
HYPERSONIC VELOCITIES 

By 

A.L. Gonor 

The solution of a variational problem in a statement, using the resistance 
law of A. Buzeman, was proposed in the works [1-3J. H~ever, as Kheiz had pointed 
out in work [2J, in the more exact statement, the contour of a body of a minimum 
resistance must have a discontinuity of the inclination of the tangent at the end 
point. This is so because, according to the law of A. Buzeman, an infinite negative 
pressure is created at this point, which decreases the resistance in the final valueo 
Physically, the pressure can not be negative, and the change of the inclination ' 
of the tangent at the end point in the supersonic flow must not ahead affect the 
pressure distribution and, consequ~ntly, the resistance. The mentioned discrepancy 
with the physics of the supersonic flow requires a new statement of the variational 
problem. 

There are two possibilities'. One of them is the use of :the so-called the 
thrust ring and leads to the conception of the absolutely optimum body [2,3J. 
The second possibility involves an additional requirement of limiting the class of 
the bodies so that the pressure is positive everywhere on the contour. With such 
a statement the variational problem was strictly solved in work [4J, for bodies of 
a given elongation and in work [6J for thin bodies with different boundary 
conditions. A number of questions, connected with the statement of these problems, 
is investigated in work [5J. The solutions of this problem in case of arbitrary 
isoperimetric conditions and without limitation on the tldckness of the body are 
cited below. 

§1. Problems with Arbitrary Isoperimetric Conditions 

The solution of the variational problem about the form 6f a body of a 
minimum drag' with a given length and diameter does not cover all the possible 
cases, of interest for practice. 

We shall take in consideration, beside the length of J- and diameter, the 
following quantities: in the two-dimensional case -the area A, enveloped by the 
contour of the profile and the moment of inertia M of the contour; in the axisym­
metric case-the wetted surface S and volume V. Their values are equal tOI: 

)(. 

A = 2j ydx , 
XCI 

XI 

S"Z7Tj y~dx 
10 

V 
AI 

/1=2J yZdt ;, 
'/.0 

A, 

1/ = ri j !/d'J 
'1.0 

(1.1) 
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Any two values are most frequently given, while the rest are considered free. 
For example.Q. and V, V and S, t and S etc. The general problem is formulated 
as follm'ls: find the minimum drag X 0 in the condition that the pressure on the 
contour is nQ~negative and the values of (1.1) are given. The principal theorem 
of work [4J about the existence of a section of zero pressure on the optimum 
contour is, according to the argument method, not related to the form of the 
boundary conditions; therefore it can be extended without difficulty to the 
general case. 

As a r.esult, the problem is reduced to a detection of the minimum drag 

-;./~ =;'(":1)[ J;"'~:::')~2 rJ::'~:/' } 
Xo 

, (1.~) 

in the condition of fulfilling, on the length Xo ~ x ~ Xc ) t ne 
inequality: 

._-_ ... _-_._--. 
,2 y" ;{ , n 'r" '-'-

y .,. J Ij Y 
fjn{f4-IjIZ)'f2 a (t+'y'%)'/z dt ~O •. 

(1.3) 

Here 'J, - is the dynamic pressure; n • 0 and 1 for the plane and axisym­
metric flows, respectively. The variable X- is the coordinate in the direction 
of the incident flow; ~r- in the perpendicular direction. The index 0- refers to 
the initial point, index 1- to the end point (Fig. 1). The drag arises only 
from the section 00 of the contour. On the arc OF, called the free layer, the 
pressure is equal to zero. 

y 

1 

Xc x, x 

rig. 1 
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Let us turn to the investigation of a set of curves of zero pressure. 
On this set, the inequality (103) converts to equality and represents a 
derivative from the formula. 

---;---t-,-ird'J. _Y_J lj lj = canst. 
(1 ~ 'l)'lz (1 + 'f 12) I/Z 

If a (1.4) 

Hence, it follows in particular that it is impossible to carry out a contour of 
zero pressure from the initial point X - o. 

Elimir:ating the integral from the formulae (1.3) and (1.4), we obtain a 
simple differential equation of the second order for the function j (x) 

(3 n nt' II a 
If If + K Yc '1: I (1.5) 

where ';Ie. - is the ordinate of the corner point, and the parameter K is found 
from the formula 

/ 'I.e ---------
Ijn y' 
-- dx 

(1 H,/)'Iz K - IJc J 
lJ
c
'" 1 (1 + 'J 'l)'h , to (1.6) 

As it is evident from (1.6), the geometry of the free layer depends on the 
geometry of the initial section, called the regular form. The general integral 
of equation (1.5) contains two arbitrary constants, which can be so determined 
that the free layer has no inclination Y{ in the point cC Xc }deJ 
and passes by the point ll:.l ) Yt ) As a result we obtain the equation 

-;:~Z~--;;;fl-:-·~-~:I(.!.. __ 1_)(u -Ij )-HYcnl-f(xf -x ) = 0 
• C " I n f J, 

";J: .,.. (1.7) 

determining the geometry of the free layer. 

Applying (1.7) to the corner point, we obtain the relation -_ ..... _-.-----_. -----------"- .. _-._------- -. - -_.----
:-: .. , n.2 

If, -I.!c .,.t/li r (~+1)(n+2) ~ijc (lJd - n.,)(Y,-Yc)-KYc
n
·'(x1 -tc )=D 

(1 0 8) 

Taking into account (1.7), we re\irite the conditions (1.1) in a more suitable 
form: 

- --" c - . 1 . -.- - - 1 • '- -- -

S/27i = J IJR ex" ~(xc.Yc'Yc ,.\, Y,. K), 
Xc 

lc ') V/JI:/ l/dX+V(K,~C'.lJtlljC,X"Yf . (!~c. 
)(0 

where j, V, •••• - are known functions of their arguments. 
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Let us formulate the auxiliary functional 

'~"'/~-zirn-:~:;:'~;,},~ (l,n [ !,Y(I~ l}\ldX+~rK, X,: y, .... )} + 
• Xc Xo Xc 

+.Azn [f 'id x + V(K. Xc, ~c, .. J] -#- ).it -n)[ r !/dt+a{K, te,!/c, ••• ;} + 
Xo te J x" 

·t_~,,(I-n}[£ yZdt+m(K;x~, ... )] t 

(1.9) 

Where i\ i.. -- constant numbers. . The minimum functional of (1.2) t in the above 
enumerated conditions, coincides with the minimum of (109). Hence the unknown 
solution must satisfy the condition ~!j =O~ Expanding the latter, we obtain: 

.. __ ._-_ ... _---
Xc . Xc 

.~j = Hf (FJ-elF y,/dx)Oljdx +SH f Fdx + H[(F -'IFlj')ax + 
Xo • -':0 

Xc 
.,. F y'J lj ] + 86 , 
. lI" 

!Jn y , n ,l)'11 
f= .. , .. i.+I.,!/{I+YI f· .. , 

1 
H = .. (, + ~c'ZT'1z 

IJ n+' 1 n ) 
($=. I! - _u ["tl(l(,tc,ljc, ... )+";V[K,~c, ... + 

ft-,,) (r-n) ] 
+..la a(~.te, ... }4oilli m(I(,Xc ,"') • 

Repeating the usual argument we find that the extremum satisfies the Euler 
equation, which assumes the first integral, 

[nA z4o(I-n))'I(]I/+[(t-n)). +n,i,+y,l_y'· + 
J_' 11 + 'll)'h 

ny'J ··!I,3 
+ --Jy + (1- n) - C - 0 (1+yll) (1 + lj/z}J/l -. 

The condition of transversality is represented in th~ form 

-~ -_. ......... . .. -.--... - .. _.-_. 
t . t 

JHjc/-'elt+H[Cot+Fy8yT rS6 c O. 
Xc Xc 

(1.10) 

(1.11) 
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According to (1.6) and (1.10), the coefficient K depends on the arguments 
(~() ,'de) ue' ) i consequently --6--:~-(!I---t--'I----'~' --t-;;)---

- ;I- _ \l 0' c. C' 7C' "7' . 

The form of integral (1.10) is such that the equation of the extremum in the 
general case can be written in quadratures. Actually, solving (1.10) with respect 
to the variable ~ and taking into account the parameter Y I , we obtain 

Ij=/{tj', C,,,.) ; -J!I.' ty,&: C, ... )dlJ' :: f(Y: c, lJ: ,,,:;. X = I 

If' Ij o (1012) 
I 

Writing (1.12-1) in the initial point* it is possible to express Ye by -
the parameters in the point of conjugation and in the point ('j.. 1 7 :11) If equation 
(1.12-1) is now applied to the point of conjugation and C is eliminated, then the 
following relation \'Ii11 take place 

'" (Xc • Yc , Ij c' , x" Ij,) ; 0 (1.13) 

The variation (1.i3) gives the condition 

_.--.-.. _. 

I/'. 8x +'1'. 8lJ ~r8Ye'-+ t 81 #1/1 -S!! :0. 
Xc C 'Ie C 1, , '1, I (1.14) 

The condition of transversality (1.11) is reduced to an analogous form. 
Investigating it together with (1.14), it is possible to eliminate anyone 
variation and, by (1.13), the corresponding variable, for example, Xc. As a 
result we obtain a condition connecting four variations with coefficients that 
are dependent on four variables. Finally, the variation of the equation of the 
free layer (1.8) enables to decrease the number of the independent parameters to 
three. The latters are determined from the equality of the corresponding 
coefficients in the independent variations to zero. The discussed shceme gives 
the possibility to find the values of )i.e ~~c. :lYe } x1 ,!J1 ') y~ 1I1e 
constants A~ ,entering in these parameters, are calculated from the relations 
(1.1) ~hus, the solution of the general problem is closed. 

~l~the extremum does not ~ass by the origin of the coordinate5~when the class 
of the bodies with plane nose LSJ is engaged in the investigation. The condition 
of the transversality gives an auxiliary relation for the elimination of the 
variable Yo'· 
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§2. Investigation of the General Solution 

On performing the solution, certain moments, which require special investigation, 
were omitted. First, it was not proved that the inequality (1.3) will be realized 
for the reguiar form of the body. Second, it nowhere follows that the optimum 
contour contains a free layer only at the end and that it cann~t be composed fro~ 
some sections of the free layer and regular form. We shall carry out the proof 
of these situations for the case of a body with a given relative thickness. The 
correctness of the condition (1.3) is most easy to verify by a direct calculation 
of the pressure distribution on the nose of the contour. In the plane nov,', the 
regular form is the wedge and the condition (3) is certainly fulfilled. In the 
axisymmetric now, the pressure distribution is determined by the following formula: 

-CP---:P/-~-:2s~i~{t.15in-2~.1 s~"~d. + l U;'cl e~-fll d "J- -"~:~.-,"e- to d~ ;':.-
"-r "B 8 cos c<. (f 2' d 

The corresponding graph, represented in Fig. 2, shows that a positive pressure is 
always realized in the regular form. 

-- .. _----_._-----_._--_ .. 
c, 

to 

!JO &0 30 ",0 

Fig. 2 

Let us now determine the succession of the arcs of the "regular form and free 
layer. As already shown, the extremum canYlot start from the free layer. Therefore, 
the initial section is the regular form or the arc of the boundary extremum. One 
~ay ask: does the transition from a regular form to a free layer occur directly at 
the end or we have intermediate arcs of a free 1 ayer and regular form by means of 
which the conjugation of the initial and final sections takes place? If the latter 
situation is assumed, a reverse transition from the free layer to the regular form 
will certainly take place at a certain point. Such point is denoted by the letter C 
in Fig. 3; the arcs of the free layer are shown by tne dashed lines and the arcs of 
the regular form by the solid lines. 
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1--:-----___ _ 
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/ ........ T'II 
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o x, x 

,Fig. ;3 

To reduce the calculation, we shall limit the investigation to the plane 
problem. The drag coefficient of a body consisting of two arcs of the regular 
form (Fig. 3) is determined by the formula: 

--'--' -------x------------ x-----
J. 1 jC'Ij'dt 1 .l y'd" 

CD- 21 Yc,- rt + 1j~)'7z {1~ y'z)'1z -!1c +(f+'i~Z)'lzJ (l+t/)'7~ + 
o 0 

• x 
1 Cz Ij'dlt ) 1 

+ 'fez· (1~'1~ )'lzJ (1+ y"y/z ~.' 
- Q 

(2.1) 

Calculating and equating the total variation (2.1) to zero, it is in : particular 
received that at the point C, a condition of transversality of the follovring form 
must be fulfilled: 

- - -----1'-- .- ----.... - --.------ '-.' ---

~Hf cfcix+H[(F-Ij'Fy')ax+FIj'oy] f8ti = 0 
Q C, 

H = 1 F _ '1' 
(1+ y~Z)'~ -(t+y/~'/l 5= Yc (~ .2) 

On calculating the first term, it is necessary to take into account that the 
integral of the function F is taken both on the regular form and the free 
layer. As a result, (2.2) will have the form: 

_ ... -----

[ 
, 
~ 
1 + ~C;l, 

,3 (12)2 1 ,I Ij 8 f+1j -tv -0 
DU----- t~ oy-
~ (fl/

Z t+']'% c (2.3) 

On the other hand, the equation of the free layer (1.7) reduces to the 
relation: , ~---- ... ---.----.-­--- - --- _ .. 

z z - X . 
!Je-Yc, +/j (_ -t)(lJ -IJ )-1<1} (xc-xc) =0 

2 ',y I ", c, , 
- " (2.4) 
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Hence, the variations at the point C are related with the following condition: 

.{rlJ(t~y.'I)-!:J 'lj'2]Sy_~c '1' Bt} : a • L: c, C, c, , c, c (2.5) 

It is easy to set also a relation including the variation of the angle of the 
inclination of the tangent ~t the point C. Therefore, changing bef'orehand U 
indic.E:S "1~' to "c" and "C" to "Cl'" we differentiate (1.7) with respect to the 
variable X. Then, we obtain the formula: 

-{IJ'[~if~'!/ 11) _-~--;'2J :- 'J --;' } :-:0--- .. 
C, c, c, c, c, c (2.6) 

the variation of which gives the condition: 

.-[r; +!/ ,% r~'i!l-:!I(I + 'J ,if-Y -y-;l8-!l~] ,,0- ~-
" c, c, c:, c 

(2.7) 

Equations (2.3)-, (2.5) and (2.7) form a linear one-dimensional system with respect 
to the variationso Therefore, the determinant from the coefficients must become 
zero. This leads to the relatiom: 

. {!I'l[;(I~;~~li~~c-y";ljZ_-;!I'y y'r;:y,2/zJ[y(f-ly,l)_-1j u,2]+ 
I , c, c, c, C, C',Jc 

.,. '1'1 ''J'l(1+'}'Z)} : a . 
Cf c, c 

We shall rewrite the latter in the form: 

~-:-Y"Y:. (,. Y;'lzJ{t­
Y
c (f+lJc:2)'Jc-lJc"j~; 

I-.i.:. (f+!lc'l.) 

Ye, (Itye,llzY ) 

, 

(2.8) 

If we now consider (2.6) and (2.8) together, we have Yc. > LJc1 at the 
point C, 't/hich contradicts the initial inequality 'Yc >Yc In this way, it is 
proved that the free layer can not occupy the intermediate 1position and be alternated 
with the regular form. 
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~ 3. The Second Method of th~ Solution of Variational 
Problems Hith Inequalities 

In work [6J, tho above discussed problems are reduced, in the case of thin 
bodies, to the solution of general problems of a variational calculatiOn of the 
H~er-Lagrange type. The principal idea of the solution is borrowed from work 
[7J and includes the insertion of an auxiliary function, enabling to replace the 
inequality .. by an equivalent relation. We extend this method to the case of bodies 
of arbitrary thickness. The strong and weak sides of the solution \~i11 be seen 
in the course of its performing. 

Let us consider the general problem of minumum Wave drag in the case of the 
inequality (1.3) and arbitrary initial and isoperimetric conditions. We shall 
write the formula of the drag in the form: 

--.. ---- ... ---....-.- --- t, 

[ "., , f lJ"ld~ ] 
XD/9- = 27rYntl) n~f -(ltlJ.1l),lz (tt 1//2)'/2 • (301) 

)(0 

Accordine to [7J, we replace the inequality (1.3) by the relation: 

-;;-- -: x ----- -'--
!I'l-#- y y'y"dt ---;-- ~ 

yfl{I+IJIZ)'1z J (f""j'ZJ'lz -p =0 , 
x. 

(3.2) 

Where f is a real variable 

Differentiating (3.2) with respect to the variable X and eliminating the 
integral from the both relations, we obtain: 

y'y"(3+ ZIj' Z) {'I'd y'[n(tH/l}-#-IJIJ"j! l /2) Z ,_ 0 
';"-:;"-~2- + -; - z (p -y - pp - . 

1.'1' If IJ(I.,./) , 

Introducing the designations: 
, t ~ M !/_ Ijd lj"m 

the relation (3.3) will be equivalent to the following system: 

_.. . .. _--_ .. _" 

----~-~·tJ(3 + 2t 2r~-[;" ~ tJ--~~~ J(l_tZ)_zpp': a 
Y!.;: 1+ t Z S l~tZ lj 

f, • Ij'. t .. 0 

'1'1. Ii t'· ~ " 0 

'f
3

55 '.m=O 

(3.3) 

(.3'4) 
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As a result, we come to the formulation of the Lagrange problem: in the 
class of the functions 'j()()) t {X),s(,x}, m(x), PC>:) compatible with the conditions 
of the relation (3.4), the isoperimetric conditions (1.1) and the conditions 021 

the end points, we find such a system of functions, which would be reduced to the 
minimum functional Of (3.1) • 

We set up the auxiliary functional: 
,,<t,-----t,--------__ 

'J = IJ, - 1 J f cit 
"./ (u.t/)'Iz ' 

XCI 

f 'Jnt 3 (3 5) 
:, .... 1 ttalJx}V', ~').llnl.).sny/l.tl'.).6('.n)lJd;ft-n)yZ . • 

The vanishing of the functionY gives the following necessary conditions: 

1. The Euler equations:: 

~ ~-:--(j- F If' " .. 0 
U dx K 

takes place along the optimum contour. 

2. The conditions of Weierstrass-Erdman: 
.---.,-- ----- _._--_.-

(Fy') =(F'I') ; (F·EIj' Fy') = fr·E.tj' FIJ:) 
1(. I( + I( I( 1(. l' I( I( ,,+ 

are achieved at the corner points. 

3-- Firrtl,l.J,:y~.J;.M.-e.ondJtions-oftran.5.ver..5.ality .. a.r.e.' ... -A, . , 

(ynJy) + t,8t, JFdX. 1 fz ft(F.r'l'rlj')JHLFy~8IJK] ~O , 
f (f. t Z) liz (t. t Z)' L I I( II J( If 0 

f Xo ' 
, ha \"O! 

x".o , ':, = l , Y,c Ij , IJ:· t , Y
J 

II J, !III" m, iJs = p . 
Expanding the Euler equations ~J.6), we obtain the system: 

. ~~.i~'t- r~ (pz.tz!!!.)~ZJ, ny:i5~J,+t2i":I.~(t.n)+ij7(f-n)y-}.~'-~O 
(ffot2)'/z 0 '12 II "1l 

syn r {4%{3 1>3t
Z

l> ztIt) _~t.t'l~(I-tzZ)I· n$J -2t[m. ,:;: .. n ~$lJ· 
(t • t 2) 3n ) ~ ( ,. t ZJZ L (t + t) . 'J . 

., 'It $ - 0 -. 
- 5)',·"z! + ).S {t#-tzJl/z -

<3~6) 

(3.7) 

(3.8) 
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, t!i .t~) '] . 
p[~ f m. - • n - of. ~ oS = 0 

0(4 " 1+tl, 'J D 

----.. _---

1 [4Z
((3+2eJ .Im+ f!l)lpZ_tZP_A ,sz_.l' ~/=O 

" 1 + t z l 4 1.,. t z ! j 'J l J 

).Jp' l
• tl}---"j :S .. 0 •. 

The absence of the independent variable enables to write out the first 
integral: 

... - --- ~ .. _-----
ynt ' 

(f~t2)'k -A, t -AI5-~Jm +J." ni+J.sIJJr +t2i+).6(t-n)!I+~/f.n)I/= C • 

(3.9) 

(3.10) 

Equation (3.9-3) enables to draw the conclusion that in the general case, 
the extremum can be discontL~uous, and it consists of arcs, along which~ 

. - -_. t i Z"- -t ~ I -_.-

l Im __ .n-)+J. 3"' 0 or 
a l4 I+tl Ij 0 

pr:O • 
(3.11) 

____ ...::W:.;::e. shall nam~ the first arcs the regular forms,and the second arcs the free laytlrso 
.-- __ .~._ _ ______ ••••••• _ •••• _ ...... ___ .- _____ 0. ~ •• _._ ••• ____ • ____ • ____ ••• _ •••• _ - • 

c 

""-"_.'---.. 

c 

The conditions of (3.~) in the corner points necessitates that the 
rnul tipliers A, A 1 , A J should be continuous and the constant C, 
of integration, should have the same value for all the arcs forming 
the extremum. Moreover, 

(plot = (P).o)+ 
(3.12) 

The' . farm of the conditions (3.8) depends on whether they are recorded in fixed 
points or in points of the natural type. In the last case we have: 

.... " ..•. -. ,.' ... _.- ..... ,. - " 

n( t l)'1z CeO' A =0' A ;1.1 f+ '.1 .. 0 
, III ' '''/ I , ZD 

Xf 

l (f+t l):t J Fdx' ~ =A -0' p)., = P J '" 0 
ZI t, , JD Jt ' 0 00 I Dr 

'0 (}.13) 

If the end points are fixed, then the first three conditions of (3013) disappear. 
We shall illustrate'further solution on the example of a plane contour with a given 
relative thickness. 

The first equation of (3.9) in the case gives the integral Al ~ Ci 
. -_ .. -.-- . 

In the point of conjugation of the regular form and the free layer, according 
to (3.13) I the multiplier (Ao )_c: O. 
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The forms of equation (3.11) and of the boundary condition for the Lagrange 
multiplier A~(~) enable to suppose that this multiplier is identically equal to 
zero along the regular form. Such supposition gives the possibility to solve the 
system (3.9) and satisfy all the boundary conditions. Actually, the second equation 
is written in the form: 

7r".t l)J/i-:"i/c,-- or '1:-" -----;j':llj/ 

This solution satisfies the system (3.9) at any values of A;L and A3 • 

We obtain the equation of the free layer from (3.3) at P • O. Performing the 
integration, we have: 

,l " !J + Cl Y .. 0 

The constant C,,-;:;' K Yc..· The functions 1\, i\").. and A 3 

arcs of the free layer are found from the solutions of the second, 
equations of (3.9) at the conditions (3.12) and (3.13). 

along the 
fourth and fifth 

The composition of the arcs formine the optimum contour needs a special 
investigation, similar to that performed in ~ 2. 

In conclusio~, it is possible to draw the conclusion that both methods give 
an identical solution. Nevertheless, the second method, even in the most simple 
case, leads to the necessity of the investigation of a complex system of 
differential equations, the solution of which is performed in a heuristic way. 
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BODIES OF MAXIMUN AERODYNA]lIC QUALITY IN A HYPERSONIC FLOH 

By 

V.I. Lapygin 

In the present work, the form of a conical body having the maximum value of 
aerodynamic quality is determined. It is supposed that the pressure distribution 
is determined by the Newton formula and that the coefficient of local friction is 
constant; the length and area of the mid-section of the body are given. However, 
such statement does not give the possibility to perform an analytical solution. 
An essential simplification of analysis was attained by auxiliary limi'tations for 
the class of the permissible surfaces. Till nO~/, the procedure of Strend [8J 
has obtained the maximum spread. Strend solved the first problem about the form of, 
a minimum-drag wing that is thin in both the longitudinal and transverse directionso 

Subsequently, the optimization of the mentioned class of surfaces at different 
auxiliary conditions was investigated in the works [1, 9, 10J. In particular, the 
problem of a thin wing of maximum aerodynamic quality was discussed in detail in 
works [1, 10J. The simplicity of solution in such a statement is attained owing 
to the reduction of the three-dimensional problem of the form of the wing to the 
finding of the optimum profile in the longitUdinal cross section. On the other hand, 
it is known that the form of the cross section of a wing strongly affects the value 
of aerodynamic quality [2, 11, 12J. Therefore, a more exact statement of a 
variational problem may give essentially new results for the optimum form of a 
hypersonic wing. In the below- cited solution of the variational problem of the, 
form of a conical wing having a maximum quality, the assumption of the thinness of 
wing is removed. 

The solution represented below was discussed initially in work [6J. At the 
moment of its completion, the investigations [13, 14J, in which similar results 
are obtained, became known. However in contrast to work [14J, the results of the 
given work are obtained for a more general statement of the problem, not limited 
by an auxiliary assumption of the form of the lee of the wing. Work [14J 
involves the same trendo In this work, for the first time, the method 9f the local 
variat~ons is" used for the variational problem of a wing in the Newtonian 
approximation. . 

;of 'f 
). 

• 1. Derivation of the Calculating Formulae, Statement of the 
Variational Problem 

I 

W~ shall consider the hypersonic flow of gas around a conical body. Let the 
axis of the cylindrical coordinate system .p) 'f, X , be selected along the 
flow, the velocity of which is 1J (Fig. 1). The surface of the conical body in 
the assumed coordinate system is given in the form:' 

"X"e(cfr­
f=-t (1~1~ 

, . 

\ . 
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y 

~ 

Fig_ 1. 

We shall consider that the total drag of the body consists of two parts! 
the wave drag and the frictional drag_ We shall neglect the portion of the 
frictional force in the lift force. We shall determine the pressure distribution 
on the body by the Newton formula 

·C
p 
~7(~osZ(#--iJ )--

I , (1.2) 

where C p - the coefficient of pressure on the body, relative to the dynamic 
pressure of the incident now. 

K - the proportionality constant. 

n - the normal to the surface of the body_ 

Below, we shall assume that k = 2, £ a 1. 

We assume that the value of the local coefficient of friction is constant 
Slong the surface. With the assumed allowances, we obtain the following formulae 
for the coefficients of the aerodynamic forces (in view of the symmetry of the 
problem with respect to the plane 'f' .. 0, the half of the body, O~ '-f ~ 1'r) 
is investigated): 

1 wne,'" 

1f It 
sc -i{ ~ (i ,II. ') x -0 1+l!t" c,zh z +a't 1 .. 'Z (t dtp 

SC =j ,,3(coSIf'+z,/'t'l-intf) dcp 
'i 0 l+'lz+'t'ljr:z 

f 
Qr:- C1: 

2 • 

S.~Zd~ _·is the area of the stern cross section of the body. 
o 

C-r; -·is the local coefficient of' friction. 

(1.3) 

(1.4) 
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On investigat~thin bodies, these formulae are simplified. Actually, at 
1;1<..<..1 introducing a new dependent variable, 't. ::Q1J; !I we obtain: 

----. -. ,I en .... -·6----· .- .---.. -

I -2/3 (!I 0 ') , .. e t a S, =~ ,2 Z + yZ + ylZ dcp 
o y +y. 
:r , . 

I - .'I3.J" !Ices", + !I SLn 'f 
z·C'Ja 5'·0 !I y,z+gZ dCf. 

., '1i 
·"'3 J Zd S, ::Sa :: Y 'f 

o 

(1.5) 

(1.6) 

(1 .7) 

The coefficient C~ evidently does not enter in the right sides of formulae 
(1.5) and (1.6), which simplifies the investigation. 

The statement of the problemJ: to find the function y(~) at the given value 
of (107). along which the ratio 

J .. /1. 
It (1.8) 

takes the maximum value. 

The coupling between A and the aerodynamic quality of the body is given 
by the relation 

}( : ..l a -'6 

2. The Algorithm of the Numerical Solution and the Results 
of the Calculation 

(1.9) 

The analytical investigation of the problem encounters considerable difficulties 
connected with the fact that the Eulerian equation in this case is essentially 
nonlinear and has a second order. 

A direct method is used for the solution of the problem. It is known by the 
name "method of local variations" [6. 3J, in which the isoperimetric condition. 
S1. const. is fulfilled in every step. The convergence of the method in the 
case of absence of the isoperimetric condition is shown in work [5J. Because S1 
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is maintained constant in the process of calculation, it is possible to hope 
that the used method coincides with the Eulerian equation for this case also; 
the calculations confirm this assumption. 

The calculations were performed on the EVH- BESM-3H. The interval of tp 
Was selected to be 4°, the initial value of the variation of the radius h - 0.01. 

'I 
I 

Fig. 2 

For checking the convergence of the method to the unique solution, the contours 
shown in Fig. 2 are selected as a first approximation. These contours have the 
same area, but they differ in the form and the position of the maximum radius 'j1l)(IJ(' 

We denote the angle corresponding to the maximum radius by "P'" 0 It was found 
that the angle lp-)I' at a sufficient big number of interaction (h in the process of 
the calculatio~. is decreased in 8 times), remains as it was in the initial 
approximation, with the exception of the case of the triangular contour. The 
forms of the contours are obtained qualitatively similar. For the explanation of 
this condition , some contours were selected. These contours are close in form 
to the optimum, and have the same area, but they differ in the angle ~ l' • It 
was found that the dependence of quality on Lf"f in the vici.r:ity of the optimum 
angle is very weak (Table 1). 

Table 1 
0----------

a ------ . ---.--. ----.- . 

If'" 
0 72 64 IX) 56° 48° 36° 

A 0,3904 0,3977 0,4018 0,4015 0,3963 0,3739 

Analogous dependence of A on 'f" takes place at other values of ";)1 w 

The fact of variance of the angle 'f'" at "51 - const is evidently due to the 
insufficient accuracy of calculation (at a moderate number of interaction). 
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One must mention that the velocity of the convergence to the solution 
essentially depends on the selection of the initial approximation. 

In the calculation, the value of the aerodynamic quality is determined 
considerably more quickly, than the contour of a transverse cross-section, 
and, starting from a certain moment, is changed extremely insignificantly. 
Therefore the obtained dependence A (S-d ms a high accuracy; the forms of 
the optimum contours are found with less accuracy. We notice that in the 
process of the calculation, a decrease of the interval of tp was not performed, 
because the time of the calculation considerably increases in this case, and the 
accuracy of the determination of ? is practically not changed. 

Krr ---r---.----~~ 

4 I r r 
0.05 0.06 0.07 0.08 'r 

fig. :3 

The dependence of the optim~ aerodynamic quality K at . G"t - 10-3 on the 
parameter of the volume 'to :; v /s 3):t where V - is the volume of the body, and 
S- is the area in the plane,is sho\ffi in Fig. :3. The maximwn values of K for 
V-shaped wings [2J are given by the small circles in the graph. The value of K 
for the V-shaped wing practically coincides with the value of K for the optimum 
body. We notice that these points correspond to -wings with a cross-section close 
to a triangle, the base of which is directed to the windward side. 

Let us cite data on the value of the_aero~ynamic quality of the bodies, 
investigated iri works [11, 12J. At a given length of a half-cone body \'lith ~ 
cross-section in the form of a semicircle has a quality K = 3.6 at Cr - 10-J 
anq. V/23 • 0.0727; with an elliptical cross-section, the maximum increase of the 
quality is 2%; with a sine cross-section--12.5%i with a triangular cross-section 
with the lateral sides facing the flO\,l, the quality approaches the value for 
optimum bodies; for all the remaining cases, the increase iS'noticeably less. 
If we consider the triangle cross-section, with the base turned to the side of the 
flow, then, as the calculation shows (Fig. 4), the quality of the optimum body 
will practically coincide with the quality of the body of the mentioned form. 

We notice that the triangular contour, with the base facing the windward side, 
consists of the extrema of the Eulerian equation for the investigated problem. 
However, this contour is not the solution because in the place of conjugation of 
the two arcs of the extrema (half-line and straight line, parallel to the OZ axis), 
the condition of Weierstrass- Erdman is not fulfilled. The forms of the optimum 
transverse contours as a function of Sl are represented in Figs. 5 and 6. 
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It is noteworthy that the whole volume of the Qody is limited from above by 
surfaces representing, within tha limits of the calculation error, two planes 
located along the flow. The lower surface of the wing, receiving the whole load, 
has a small convexity to the side of the incident flow. In the vicinity of the 
angle Cf=Tr there is a very small elevation, the bight of which decreases with 
increasing the number of iteration. The obtained numerical results confirmed with 
high accuracy the hypothesis that the upper surfaces of the optimum wing are planes 
located in the flow. As a whole, the form of an optimum transverse contour is close 
to a triangle, with the base facing the windward side. Hence, it becomes clear 
whey the quality of a wing with an optimum triangular cross-section almost coincides 
with the quality of the optimum. . 
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For checking, a ~~q~~t~on_was_~er!ormeq witb_~lhe use of formulae (1.3) 
and (1.4) for S .. :n.10.; S = 211" • 10 ; S = 4~ .10 at a a 10-3 , without 
an assumption about the thinness 01" the body. 'rne results are obtained identical 
with the abo\le- meY\tu,Vle-d... In particular, the form of the body and the value of the 
aerodynami~ quality for the same values of S are practically the same. 

3. Remark About the Convergence of the Solution 

The problem under cons~g~r~t;i.on ';s e@iv:~~nt-±'Q._the problem of the absolute 
extremum of the functional: I .. jcf:Jdl(' , 

",h;:ie. --_. a 

. , . 6 
,+, "yeos 'f + 'J 51.11 cP {Y ~ I 2 
'fJ ~ 9,.2 -1 yl+ y,Z + '1'1 ~ 9 J ~ JLY 

.fL" c:onst • 
If the obtained solution will satis1y, with the given accuracy, the Eulerian 

equation for the function ¢ and the boundary conditions, then the numerical 
convergence of the method does not arouse doubts. In order to be convinced bj this, 
it is necessary to check: . '. . 

1. The fulfillment of the boundary conditions at the extremum. 

2. The fulfillment of the Eulerian equation. 

3. The fulfillment of the conditions of the conjugation of extremum arcs in 
the corner point. 

A direct numerical check of these conditions was performed for "51 =-'7r Jep-'f =60·' 

1. The boundary conditions at the points Cf::. 0 , l\l := 11 (the condition of 
tne transversality) cp~ICO)::. r:P \ ('If ) -== 0 are fulfilled exactly, because j'(O)O 
y ('T7') -; 0 " ~ 

20 The fulfillment of the Eulerian equation was checked only in the interval 
o <.. ~ <. if"';J because the half-line of <...p ~ c.p 1<' is' an extremum. At every 

point of the contour the value of":J...J4 was calculated in the interval (0) 'f "). 
The results of calculation are represented in Fig. 7. For 0<.. i' ~ l{1>0) . b 

the deviations from the mean value do not exceed 6.5%; in the v~cinity of ~)~~D~ 
the variance of the values is slightly increased, which is explained by the 
difference of the actual. angle 'f :pt from the assumed angle in the calculation Y' "': 6~ . 
(As shown in Table 1, 560 ~ Lp;pr -<. ~c). 
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:1 p~IarI~~jf@J§§Ll· -1-1 
o 6 16' 21J 32: 40 48,. 56 If 

Fig. 7 

3. The conditions at the corner point: 

The condition A [~rJ::.O is satisfied with an accuracy of 3%;- the condition 
.6 [¢-IJ' cp ~iJ = 0 is satisfied with an accuracy of 10%. , 

Here 6. C. .. J denotes the difference of the values on the left and right 
from the corner point. 

In conclusion, we mention that the accuracy of the method, as clear from the 
result of work [4J, has the order of the interval of ~ • In the performed 
calculations, the, interval of q::, was equal to 0.0698. Thus, the obtained above 
valuations of the convergence of the solution coincide with the accuracy of the 
method. 
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SUPERSONIC FLOW OF AIR AROUND A RECTANGULAR PLATE 

By 

M.P. Falunin 

A considerable quantity of works is dedicated to the aeroqynamics of wings 
of different forms at high velocities. An extensive bibliography of this 
problem is ~omprized in the works [1- 4J. 

In the present work, the pressure distribution on the windward side of a 
rectangular plate of infinite elongation is experimentally investigated, a 
study of the spectra of· the flow around is also carried out on wide angles of 
attack for a wide range of change of elongation values (0.025~ ,,' ~ 40). 

§ 1. Pressure Distribution on the Windward Side of an 
Infinite Rectangular Plate 

The study of the pressure distribution on a rectangular plate with cutters 
on the ends, decreasing the influence of the end effects, permitted the 
determination of'the diagrams of the pressures along the chord of the plate, and 
also the location of the center of the pressure of the plate. The'pressure was 
measured in three cross_sections in the central part of the plate. These cross­
sections are located at a distance of 15 rnrn from each other. In each cross­
section, 6 drains Here located. The distance between the drain points along 
the cross-section was equal to 5 rnrnj the distance from the edge of the plate 
was equal to 2.5 rnrn. A sketch of the location of the drain points is represented 
in Fig. 1. 

~. 
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The experiments were carried out at an incident flow velocity correspondiQ6 
to a Mach number of M = 3.0. The obtained results shown in Figs. 2- 4 indicate 
the following: 

1. The pressure at the drain points located at the same distance from the 
leading edge is the same in all three cross-sections. Therefore in the 
graphs, the pressures are shown at one point for every value of n (the distance, 
along the,r~rd from the leading edge relative to the length of the chord). 

2. At narrow angles of attack (0< ~ 30°), the pressure along the chord 
practically does not change and agrees with the theoretical value for a 
rectangular plate of infinite speed at the corresponding angle of attack 
(Fig. 2). ' 

3. Beginning from ot.. ~ 350 , when the leading wave withdraws' from the 
leading edge, the pressure at that edge obviously increases, and by increasing 
the angle of attack, it approaches the value of the stagnation pressure behind 
the normal shock at M = 3. The pressure at the trailing edge sli~htly increases. 
The pressure distribution has an unsymmetrical form (Fig. 3, 1- V). 

4. By increasing the angle of attack, the zone of the increased pressure 
shifts from the leading edge to the .middle of the plate and a,t ~ .. 90~ 
the maximum pressure corresponds to h .. 0.5 (Fig. 3, VI~. The pressure near 
the zone of the increased pressure begins to decrease in proportion to the 
displacement of this zone from the leading edge. At the angles of'attack 
35°~ 0< < 90°, near the trailing edge (at a distance -::::::::: 0.1 of the chord), 
the pressure is less than that at the leading edge at the same distance. As 
the drop between the maximum pressure on the windward side and the pressure 
op the leeward side of the plate is supercritical, the velocity and pressure 
at the edges themselves must be critical. 

(iJ 

/'1. 3,0 , .A.oo 
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Fig. 2. 

~ 
1) Experimental;2) Calculated. 
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1 Experimenta12) Pressure behind the normal shock. 
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5. Owing to the change and displacement of the region of the increased 
pressure, the center of the pressure (in the condition that considers the 
pressure on the leeward side is equal to zero) also shifts from the center 
line of the ~late to the side of the increased pressure. The graph of the 
relation Cd t~) is represented in Fig. 4. The data are obtained for the angle 
of attack ~ such that 0 0 ~ o<-~ 90 0 • It is obvious that as long as the 
leading wave is attached to the leading edge, the pressure on all the faces 
is the same, and the center of the pressure is located on the cent.ral line of 
the plate (C cl = 0.5). After the detachment of the shock wave from the l,eading 
edge and the appearance of the zone of the increased. pressure near it, the 
center of pressure shifts forward by about afo (C d mlYl ~ 0.46; c;-<:.. ~ 35- 45'"). 
On further increase of the angle of attack, the center of pressure shifts to 
the middle of the plate, at .x.. = 90 0

, C c\ C 0.5. The increase of the angle 
of attack from 900 to 1400 leads to the displacement of the center of pressure 
to the trailing edge (C d n\CI:'t. ~ 0.54). The attachment of the shock wave to 
the trailing edge of the plate necessitates the decrease of Cd to 0.5. Thus, 
the relative coordinate of the center of pressure of the forces acting on the 
windward side of the rectangular plate may be changed for the range of the 
angles of attack 0 0 ~ c.< ~ 1800 by about 15- l'lfu. 

6. The dependence of the relative coordinate of the poi,'\t o~ ~<l)( irflult\ PY'{'S5UYe -h "" 
on the angle of attack is represented in Fig. 5. In Figs. 4 and 5, the curves 
for the angles of attack, 900~ c><.. ~ 1800 , are drawn on ,the basis of the 0 

synunetry of the flow around the plate at angles of attack c;l:: and 1800 _~ • 
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Fig. 5. 
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Spectra of Supersonic Flo\'l Around Rectangular Plates 
at Large AnBles of Attack 

The s.tudy of the spectra of supersonic nO\'l around rectangular plates 
was carried out within a wide range of change of the angles of attack from 
200 to 900 and of elongation from 0.025 to 40. 

General remarks on the form of the shock wave: The analysis of the 
spectra of flow around and their quantitative treatment point to a sharp 
qualitative difference in the form of the shock wave* for small and big 
elongations. First of all, for such characteristic features of the form 
of the shock wave, it is possible to refer to the following (Fig. 6): 

IC) 
o{=90D 

, 

Fig. 6. 

.,\ 

fa) 

oI..~ 

Q037S - 1 
0,6 - ~ 1,o -..3 
2,S -" 

~~o - 5 

* All the data shown in the sketch graphs and tables are relative to the 
vertical plane of symmetry. 
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a) The presence of two straight segments of shock wave in the case of plates 
of small elongation and narrow angles of attack; one segment is attached to 
the leading edge, the other- at a certain distance from it. In the case of 
a plate with an elongation of the order of one or more, there is only one 
straight segment adjacent to the leading edge. b) At wide angles of attack, 
when the shock wave is totally detached, the shock wave is curvilinear in the 
case of plates of big elongation while it is, for the most part, equidistant 
from the windward side of the plate in the case of plates of small elongation. 

The values of the quantities from which it is possible to judge 
the form of the shock wave and its variation with the angle of attack =-<- and 
the elongation ). -= (j/n are given in Table 1, where g is the length 
(spread) of the plate, and h is its height (chord). All the quantities are 
relative to the height of the plate h. The quantities in Table 1 correspond 
to the following geometric characteristic of the shock wave (Fig. 7). 

Fig. 7. 

1) X n, 2) '11'\ - the distance from the leading edge of the plate to the shock 
wave along the plate, upstream and in the perpendicular direction, respectively; 
3) 'jc- the distance from the center of the plate to the shock wave 
perpendicular to the plate direction; 4) X') , 5) ~3- the distance from the 
trailing edge of the plate to the shock wave along the plate, downstream and 
in the perpendicular direction, respectively; 6) X" , 7) l;\(\ - the coordinates 
of the end of the straight segment of the attached shock wave with respect to 
the leading edge; 8) X \{ , 9) ':I), - the coordinates of the end of the 
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curvilinear segment of the detached shock wave with respect to the leading 
edgej 10) X*, 11) ~* - the point grid reference of the shock wave with 
maximum departure from the surface of the windvard side of the plate, with 
respect to the leading edge. 

For illustration, the graphs of the quantities 1- 11 (except 6 and 7) 
are represented in Figs. 8 and 9 for a plate with an elongation A = 0.0375. 
The numbering of the curves corresponds to the enumerated quantities. 

Model No.2 " = 0.0375; h = 80 mm ~ M = 3.0 

- . __ . ----- -.-~--.--

I ~ I 1- cUt' \Ie.! S t 2 
0,02 ,1 17 - CUrV(/S3;5,tl Jd 1 

2 

0,01 

01 161<?1 ~ I I I ~ 
20 30 1(00 60 70' 800(· 90 

Fig. 8 

K)Y: 
1 Curves. 

We have to do some explanations in connection with the quantity XI, : 
a) if the curvilinear segment of the shock wave, adjacent to the leading edge, 
converts afterwards to a rectilinear one, which, in its tur.n, is already 
curved because of the effect of the trailing edge, therl . X. I, denotes the 
distance from the leading edge to the projection of the end of the first 
curvilinear segment on the windward surface of the platej b) if the shock 
wave is tot'ally curvilinear, then the quantities X \~ and x* coincide; 
c) in the case of a symmetric flow around a plate (~= 90), the quantities 
of X K and x* coincide. The dash in Table 1 denotes that the corresponding 
quanti ties could not be measured in the limits of the visual field. This 
refers to the quantities X3 ' X"' ~i\' X"' ~K' X*, ~*. In individual cases, 
this denotes the absence of truth worthy data about the corresponding 
quantities (X YI ' lj'\i). 
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Model No. 2; 0.0375~ h = 80 mmi ~ = 3.0 

K)Y: 
1 Curves. 

_. -- ---~- ------------~ 
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Fig. 9. 

Analysis of th~ straight segment of the shock wave:: The straight segment 
adjacent to the leading edge of the plate corresponds to flow around ? plate 
with attached shock wave. In this case, in the vertical plane of symmetry, the 
straight segment of the wave proportionally increases with increasing the 
elongation of the plate, until one achieves the elongation of the length 
at which disturbance from the trailing edge reaches the wave more quickly than 
from the lateral ends. At M = 3.0 and angle of attack 0< = 30°, the 
proportionality is broken for 1\ > 0.75, and at the angle of attack c:>Z = 20°-­
for ;... > 0.125 (see Table 1 and Fig. 10). Lint''> 1');.' ;1' i., Fig. 10 
correspond to the experimental data for the relative length of projection of 
the straight segment of the shock wave on the plane of the plate. The solid 
lines vlere calculated with Mach disturbances from the lateral ends of the leading 
edge'. 

The results of the analysis of the spectra of flow arounq indicate that 
the rectilinearity of the attached shock wave in the vertical plane of 
symmetry is broken at values of X 1\ that are smaller than implied from the 
mentioned calculation. 

Dependence of the form and dimensions of the leading shock wave on the 
angle of attack and edge effects: The angle of attack and the elongation of the 
plate essentially influence all the geometric structure of the shock wave, 
namely the length of the straight segment, the magnitude of withdrawal, its 
departure from the leading and trailing edges of the plate, etc. 
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K)Y: 
1 Calculated; 2) Experimental. 
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The corresponding data are given in Table 1. In the case of narrow angles 
of attack, when the shock wave is attached to the leading edge, plates with an 
el!)ngation exceeding a few units 'w:Ul ~t flowed a 1'&-\1.,.t\.:i.n t.ho< ;:-(~ _I.tl'al. ~i1rt oZ thl:.:. 
windward side by a translational now along the whole height. The shock wave 
has one straight segment, which is curved because of the disturbances running 
from the trailing edge. This bend of the wave is observed downstream at a 
considerable departure from the plate. The slope of the straight segment 
corresponds to the calculation. In the case of plates with small elongation 
( /\ <. 0.1), the structure of the shock wave at certain angles of attack is 
different: the translational flow occupies a small segment adjacent to the 
leading edge; the shock wave at the edge is rectilinear, then it is strongly 
curved, converting to the second straight segment, which is almost parallel to 
the face of the plate (Fig. 6a). 
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At angles of attack, occupying an intennediate location between the nonnal 
flow around ( eX.. .,. 90°) and different angles of attack, the sharp difference in 
the form of the shock wave is retained for plates of different elongation 
when the wave is attached to the leading edge. In the case of plates with an 
elongatiqn A:::::' o·? ,. the shock wave in the plane of synunetry is totally 
curved. The distance from the windward side to the shock wave in the perpendicular 
direction is variable: it is minimtun at the leading edge, and maximtun at the . 
trailing edge. It is characteristic for plates of small elongation ( .>. <. 0.1) 
at the mentioned angles of attack that, for the most part, the shock wave is 
equidistant from the force; at the same time, the distance between them is 
approximately the same as in the case of synunetric flo\,1 around (0<.. .,. 90°, 
see Fig. 6b and Table 1). 

At last, the difference in the fonn of the shock wave for a plate with 
small and big elongation, in the case of flow around perpendicular to the 
windward surface is shown in Fig. 60, Plates with small elongation have a 
straight segment of shock wave on the whole extension, with the exception of 
the range adjacent to the edges. In connection with the influence of the finite 
dimensions of a plate on the form of the shock wave7 we should add that in the 
case of narrow angles of attack, this influence may be extended to considerable 
distances. At angles of attack ~ = 60-90°, the ends of the plate exert an 
influence on the form of the shock wave at a departure approximately equal to 
4- 3 times the magnitude of the spread (width) of the plate; respectively. 
Therefore, if . A > 8 or 1\ < 1/8, the middle part of the plate will 
e",hihlt c.~ Elow qr':\lI.,;J liS a plate of infinite spread. That is to say,' the relative 
geometric parameters of the shock layer will not depend on the location of 
the fairing segment of that part of the plate. 

Determination of the magnitude of the withdrawal of a shock wave in the 
case of a flow around a plate which is perpendicular to the flow: We shall 
relate the magnitude of the withdrawal of the shock wave to the height (chord) 
or to a side of a square equivalent in area to the plate. If at a fixed height 
of a plate, its elongation is changed, the relation _of the magnitude of the 
withdrawal of the wave to the height of the plate (0) gives a clear idea about 

.the dependence of this relation on the elong~ion. In particular, in the case 
of elongation exceeding 6- 8, the quantity c5 approaches a constant value. 
The corresponding data are given in Table 1 and in Fig. 11 (solid line). If 
we relate the magnitude_ of withdrawal to the square root bf the area of the 
plate, this quantity ( :;' ) will enable to reveal the equality of withdrawal 
of the shock wave for the quantities A and 1/A • The max1mtun is attained 
at A c: 1 (Fig ~ 11, the dashed line). In connection_with the great range 
of change of the elongation of plate, the relations 6 (A) and "6" ('A) are 
represented in a logarithmic scale on the axis of ~. According to the 
data (Table 1, Fig. 11), in the case of th~ change of the elongation of the 
plate from 0.025 to 0.125, the value of S is linearly changed, and at 
~ 5: 8, it remains constant and is equal to ~ 0.72. Thus, in the case 

of the change of elongation by more than two ordet:s, the withdrawal of the shock 
wave chang es forty times. The maximtun value 0 f S I is one half of ¢ m a. x • 
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On the basis of the given discussion, it is possible to draw the 
following conclusions. In the case of a supersonic flow around a'rectangular 
plate, the structure of the shock wave strongly depends on the elongation of 
the plate and the angle of attack. In particular, in the case of a perpendi­
cular flow around a plane plate, the withdrawal of the shock wave may be 
changed by ten times. 

In the case of narrow angles of attack, the influence, of the leading 
and trailing. edges may be transferred to comparatively great distances downstream. 
At angles of attack close to c-:. c 900

, this influence is extended along the 
plate to distances exceeding its width by three-four times. Plates with 
elongation A ':2 1/8 and A ~ 8 are flowed around in their central part 
as infinite plates. 

In the case of an attached leading wave, the center o'f pressure of the 
forces acting on the windward side of a rectangular plate with infinite 
length is located at the centera.l lir1l!. In the case of a detached wave, the 
center of pressure is shifted to the side facing the flow. The magnitude 
of the displacement of the center of the pressure may attain 15- 17%. 

In conclusion, the author expresses sincere thanks to G.S. Ul'yanov, 
A.F. Masin, A.A. Makshin and L.V. Filyand for their help in carrying and 
working out the experiments. 
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Xn 

1 

0 
0 

-
0,0020 
0,0052 
0,0080 
O,u085 
0,0087 
0,0090 
0.0110 
0.0150 
0 
0 
0,0022 
0,0072 
0.0100 
0.0110 
0,0120 
0,0 1 30 
0,0150 
0.0200 
0,0220 

Yn Y" XJ 

2 3 4 

0 0,064 -
'0 0,038 0,700 
- 0,020 0,280 

0,0010 0,018 0,150 
0,0033 0,019 0,110 
0,0045 O,018 O,Offi 
0,0048 0,018 0,052 
0,0052 0,018 0,044 
O,OOtA 0,017 0,040 
0,0080 0,018 0,021:) 
0,0098 0,018 0,015 

0 0,079 -
0 0,053 0,890 

- 0,041 0,500 
0,0061 0,037 0.280 
0,0087 0,032 0,110 
0,0092 . 0,031 0,150 
0,0092 0,021:) 0,]21:) 
0,0094 0,028 0,110 
0,0105 0,028 O,Offi -
0,0121:) O,OZl 0,035 
0,0140 . O,OZl 0,022 

Table 1 

---
?1J XapSKTepaCTHKU Yl1spHoll BOnllbl 

YJ 
x ~ y-. XI( 

I 
YK 

Xtf y* 
II II . 

6 6 7 . 8 ~ 10 11 

0,094 0,048 0.0113 - - - -
0,048 0,027 0.008 -- - 1,200 0,054 i 

0.026 - - - - -1,083 0.028 I 

0.018 - - 0,220 C,018 1,046 0,021 
0,017 - - 0,130 0,017 . 0,021 0.018 I 
0,018 - - 0,1:20 0.016 I.CXXJ 0,019 I 

0,015 - - 0,090 0,017 0,978 0.018 
0,014 - - 0,080 0,018 0,957 9,018 
0,014 - O,C70 0.018 0,£'50 0,017 
0,012 - - 0.065 0.017 0,945 0,018 
0,010 - - 0,065 0.018 0,935 0018 
0,113 0,069 0,024 - - - -
0,067 ,),034 0.013 - - 1,480 0,078 
0,048 - - 0,250 0,033 1,200 0,058 
0,038 - - 0,240 0,030 1,1D 0.040 
0,032 - - .0,220 0,026 1,121:) 0,032 
0.032 - - 0,180 0,027 ],080 0,031 
0,031 - - 0,180 0,026 1,043 0,031 
0,028 - - 0,130 0,026 1,030 0,021:) 
0,024 - - 0,150 0,027 0,957 0,030 
0,020 - - 0.130 0.026 0,935 0,028 
0,014 - - 0,097 0,027 0.903 0.027 

u '0 
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70 
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90 

20 
3J 
34 
36 . 
38 
40 
60 

'90 

20 
3J 
34 
36 
38 
40 
60 
90 

30 
34 
38 
90 

3J 
34 
38 
90 

1 

0,040 
0,075 
0,125 

0 
0 
0 
0,012 
0,017 . 
0,018 
0,031 
0,187 

0 
0 
0 
0,013 
0,015 
0,018 
o,on 
0,345 

0 
<:) 

0,021 
0,490 

0 
0 
0,026 
0,500 

2 3 4 

O,02D 0,100 0,39 
0,050 0,107 0,22 
0,072 0,116 0,125 

0 0,154 -
0 0,138 -
0 0,130 -
0,083 0,127 -
0,015 0,130 -
0,018 0,133 -
0,032 0,139 0,740 
0,107 0,154 0,187 

0 0,162 -
0 0,180 -
0 0,190 -
0,008 0,192 -
0,009 0,193 -
0,018 0,196 -
0,067 0,221 1,150 
0.186 0,243 0,345 

0 0,194 -
0 O,21S -
0,011 0,225 -
0,250 0,310 0,474 

0 0,206 -
0 0,240 -
0,034 0,262 -
0,0315 0,365 0,500 

5 6 7 8 9 10 11 

0,111 - - 0,72 0,102 0,87 0,115 
'0,104 - - 0,67 0,111 0,67 0,111 
0,072 - - 0,5 . 0,116 0,5 0,116 

0,235 0,30C> 0,140 - - - -
0,198 0,180 0,054 1,100 0,196 1,76 0,23 
0,172 0 0 1,070 0,174 1,65 0,19 
0,166 - - 1,070 0,170 1,56 0,19 
0,165 - - 1,040 0,170 1,54 0,19 
0,164 - - 1,020 0,170 1,46 0,19 
0,163 - - 0,70 0,160 1,17 . 0,17 
0,107 - - 0,5 0,154 0,5 0,154-

0,292 0,630 O,20C> - - - -
0,280 0,370 0,143 - - - -
0,276 0,174 0,089 - - - .. -
0,273 - - - - - -
0,288 - - 1,22 0,276 1,70 0,322 
0,264 - - 1,17 0,265 1,59 0,200 
0,260 - - 1,00 0,260 1,15 0,260 
0,186 - - 0,5 0,243 0,5 0,243. 

0,324 0,566 0,215 - - - - ! 
0,336 0,262 0,132 - - - -
0,325 - - . - - - -
0,251 - - 0,5 0,310 0,5 0,310. 

0,363 0,630 0,254 - - - -
0,383 0,087 0,083 - - - -
0,390 - - - - - -
0,312 - - 0,5 0,365 0,5 0,365 

- --

o i \J 



}.. dO I 2 3 4 5 6 7 8 9 IO . II 

0,075 20 0 0 0,104 - 0,157 0,168 0,052 - - - -
X) 0 0 0,072 - 0,100 0,065 0,025 - - 1,52 0,122 
39,5 - - O,OED O,8ED 0,076 - - 0,410 0,056 1,28 0,087 -46 0,001 0,001 0,054 0,490 0,064 - - ,0.380 0,055 ' t .15 0,064 
48 0,001 0,001 0,053 0,435 0,060 - - 0,360 0,054 1,12 0.060 
50 0,002 0,004 0,055 0,420 0,060 - - 0,340 0,054 1,10 0,055 
60 0,005 0,006 0.054 0,240 0,080 - - 0,320 0,055 1,07 0.055 

, . 70 0.012 0,014 0,054 0,165 0,057 - - 0,270 0,055 0,97 0,055 
80 0,028 0,020 0,053 0,111 0,047 - - 0,220 0,054 0,93 0,054 
90 0,045 0,032 0,054 0,045 0,036 - - 0,200 0,055 ,0,80 0,055 

0,125 20 0 0 0,121 - 0,175 0,217 '0,074 - - - -
30 0 0 0,102 - 0,127 0,087 0,037 - - 1,59 0,152 
38 0,001 0,001 0,092 1,180 0,112 - - 0,68 0,089 1,41 0,104 
40 0,004 0.004 0,092 1,140 0,105 - - 0,50 O,08~ 1,35 0,113 

~ 
I 

42,5, 0,008 0,007 0.090 0,940 0,098 - - 0,46 0,090 1,28 0,098 
50' 0,008 0,009 0,088 0,620 0,096 - - 0,43 0,087 1,18 0,094 
60 0,015 0,011 0,088 0,480 0,093 - - 0,39 0,085 1,06 0,093 

I n 0,032 0,024 0,087 0,250 0,085 - - 0,37 0,087 0.94 0,089 I 

80 0,076 0,035 0,088 0,160 0,072 - - 0.35 0,088 0.37 0,088 I 

90 0,101 0.060 0,088 0,101 0,060 - - 0,34 0,088 0.07 0,088 

0,875 20 0 0 0,181 - 0,213 0,286 0,095 - - - -3) 0 0 0,145 - 0,162 0,13) o,oro - - - -
38 0,001 0,001 0,113 1.3IO 0,142 - - 0,90 0,135 1,39 0,150 
40 0,010 0,010 0,107 1,25 0,140 - - 0,86 0,126 1.37 0.146 
44 0,020 0,020 0,107 1,04 0,119 - - 0,82 0,115 1,32 0,133 
50 0,020 0,020 0,093 0,82 0,110 - - 0,80 0,103 1,22 0,122 
OC) 0,031 O,O::n 0,096 0,51 0,110 - - 0,77 0,103 0,98 O.IIB 

I 

( -
U u 



1 0(" I 2 3 4 5 6 7 8 9 10 11 

1,5 30 ° 0- 0,214 - 0,403 0,76 0.363 - - - -
34 ° ° 0,2-;{) - 0,447 ° ° - - - - ! 
38 0,036 0,056 0,309 - - 0,479 ... - - - ... 

- I : 
-90 0,706 0,350 0,406 0,706 0.350 ... - Op 0,406 Op 0,406: 

2,0 ~ 0 0 0,218 - 0,431 0,95 . 0,434 - - - - I 

34 ° 0 0,294 - 0,490 ° ° - - - - ! 

.38 0,042 0,052 0,341 - 0p32 - - - - - - I 

90 0,87 0.400 0,485 0,87 0,400 - - 0.5 0,460 0,5 O,4ED 

2,5 30 ° ° 0,230 ... 0,447 1.1 0,480 - - '. ... -
.34- ° ° 0,309 - 0,524 ° ° - - ... ... 
38 0,048 0,086 0,383 - OpM - - - - . - -
90 1,020 0,502 0,542 1,02 0,500 - - 0,5 0,542 0/5 0,542 I 

0,050 90 0,040 0,023 0,036 0,040 0,023 ... - 0,5 0.036 Op 0,036 
0,055 90 0,042 0,026 0,040 0,042 0,026 - - 0,5 0,040 Op 0,040 

tl 0,063 90 0,050 0,029 0,044 0,050 0,029 - - 0,5 0,044 0,5 O,OIA 
0,071 90 0,057 0,033 0,051 0,057 0,033 - - 0,5 0,055 0.5 0,051 
0,084 90 0,067 0,039 0,000 0,067 0,039 - - 0,5 O,OED 0,5 0,o60! 
0,100 90 0,080 0,047 0,072 0,080 0,047 - - 0,5 0,072 0,5 0,072 
0.125 90 0,100 0,054 0,088 0,100 0,054 - - 0,5 . 0,088 0,5 0.088 
0,167 90 0,119 0,065 0,065 O,1I9 0,065 - - 0,5 0.ll5 0,5 0,115 
0,250 90 0,165 0,095 0,150 0,165 0,095 - - 0,5. 0,150 0,5 0,150 
0,400 90 0,275 0,170 0,210 0,275 0,170 - - 0,5 0,210 Op 0,210 
0,50 90 0,313 0,192 0,245 0.313 0.192 - - 0,5 0,245 0,5 0,245 
0,667 90 O,4~8 0,254 0,280 0.428 0,254 - - 0,5 0,280 0.5 0,280 
1.000 90 0,556 0,261 0.360 0,556 0,261 - - 0.5 0.360 0,5: 0,360 

I 

1.5 90 0,644 0,386 0,116 0,644 0,386 . ... - 0,5 0,416 0,5 0.416 
-- -

u o u 
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jr-- ~ dO , 2 , • 
! 

I 2,0 90 0,335 0,480 
2,5 90 O,eD 0,486 

I 
4,0 00' 1,010 0.575 
6,0 00 1,18C) 0,690 
8,0 00 1,220 0,625· 

10,0 00 1 ,220 0,025 
12,0 90 1,220 0.625 
14,0 ·90 1.220 0,626 

\ 
16,0 BO 1,220 0,625 
18,0 90 1,220 0,626· ; 

\ 20.0 90 1,220 0,625 

Kr: 
1 Characteristics of shock waves. 
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3 

0,485 
0p.42 
0,618 
0,000 
0,720 
q.720 
0,720 
0.720 
0,720 
0,720 
0,720 

4 5 6 7 8 9 10 11 

O.8~5 0,480 - - 0,5 0,480 0,6 O,4ro 
O,8n 0,486 - - 0,5 0,542 0,5 0,542 
1.010 0,575 - - 0.5 0.610 0.5 0.610 
1.180 0,590 - - 0,5 0,654 0,5 0,654 
1;220 0,625 ':'" - 0.6 0.720 0,5 0,720 
1,220 0.625 - - 0.5 0,720 -0,5 ·0.720 
1,220 0.825 - - 0,5 0,720 0,5 0.720 
1,2...'"'0 0.825 - - 0,5 0,720 OJ) 0.720 
] ,220 0.625 - - 0.5 0,720 0,5 0,720 
1,?20 0.625 - - 0,5 0,720 0.5 0.720 I 

I 

1 ;~20 0,825 - - I 0.5 0.720 0.5 0.720 
I -

o 'J 
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SUPERSONIC FLOVI AROUND PENETRABLE PLATES AT NARROW 
ANGLES OF ATTACK 

By 

G.S. Ul'yanov 

The development of the aviation and space technology raises a whole series 
of important scientific-technical problems in the stabilization, deceleration, 
descent and landing of different objects. For these purposes, parachutes of 
different constructions and other stopping devices acting at supersonic velocities 
are used to a large extent. The supersonic flow around penetrable bodies has 
a whole series of specific aspects and peculiarities, to which, the works [1 - 3J 
are dedicated. However, a whole series of problems are still open at the 
present time. For example, in the case of supersonic flow around ~ penetrable 
plate with a finite thickness under an angle of attack, the necessity arises to 
estimate and point out when one should take into account the tangential component 
of the aerodynamic force. For this purpose, it is necessary to determine 
experimentally the value of the tangential component relative to the normal 
component, its dependence on the degree of penetrability, angle of attack, Mach 
number M, and relative geometric dimensions. This enables to work out in a 
physically substantiated way the equations of conservation of mome~tum and energy 
for the penetrable surface, 

The present work is dedicated to experimental study of supersonic flow around 
penetrable plates at narrow angles of attack. 

1. Models aI)d Techniques of the Experiments 

Squares plates of 100 x 100 mmwith a thickness of 2.5 mm and symmetrically 
sharp leading and trailing edges, were investigated. The perforatio~ of the 
plates was attained by uniform boring of holes of diameter 3 mm along the whole 
surface of the plate. The penetrability of the plates was 9-5 fo11ov/S: 0, 8.5, 
16.0, 25.5,51.5%. The ratio of the sum of the areas of the holes So to the' 
total area S is known as the penetrability factor W of the plate ~ 
(W = (So/S) 100 [%J). 

The experiments were carried out in a supersonic wind tunnel a~ Mach numbers M 
of the flow from 1.5 to 3.0 and Reynolds numbers Re e .. 2.5 - 4.10 (e .. 0.1 m). 
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The gravimetric investigations of the penetrable plates were carried out 
in the range of angles of attack from 0 to 17°. The plates were fastened in 
the working section of the wind tunnel on two belt suspensions. The aerodynamic 
coefficients C x and C'j - were determined. The correction for the suspension 
device was determined by a separate experiment, in which the belt suspensions 
were blown through without plate. The calculation of interference had not been 
considered. The relative error in measuring the drag force X and lifting force .~ 
was in the limits of 0.5 - 3%. 

2. Results of the Experiments and their Analysis 

We consider that the aerodynamic coefficients C x and C ~ are determined, 
with the forces X and ~ related to the total area of the plate, and·the 
coefficients with index "P" (C xp , C 'jP ) - to the area taking account of the 
degree of penetrability. The coefficients C n and C'"!: for the normal and 
tangential components of the aerodynamic force were determined by recalculation 
and were related to the total area of the plate. 

The relations C X? (.;><) and C ~p (0<-) at the Hach number M a 2.5 and at· 
different values of the penetrability parameter W are represented in Figs 1 
and 2. It is obvious from the given graphs t\1at the resistance coefficients 
C xp (C '< ) nonlinearly increase with increasing the angle of attack. A similar 
pattern of monotonic nonlinear increase of the resistance coefficients with 
increase of the angle of attack was observed in the range of Mach number 
M = 1.5-3.0. 

.11 

~ M -2,5 ,r 

w% w% 
/' 

t-- 0-0 e-25,5 
V 

t--
6-8,5 .-51,5 
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0.2 ...... ~' ~ ~ .... ~ 
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~ l-- ~ ftr-: ~ t::::: ~ ~ f-" 
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~ 
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Fig. 1 
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0.5 

a 5 fa 
M·2.S; W% a 8.5 15 25.5 5/.5 

0 A , 0 • • 
Fig. 2. 

The aerodynamic coefficients of the lifting fore e C 'j il (C 'i) for the 
penetrable plates are linear functions of the angle of attack of the plate. 
Their values are conveniently calculated by the followine formula: 

--
C~ = Key (w, M)·.(. , 

where ~ is in radiants and the coefficients K c 'i1 and.K c. 'l r are given 
in Table 1. 

Table 1 
- --. _ ... 

Cy : Key (W,M). "'-

M 1.5 2,0 

w% 0 8,6 16,0 25,5 51,5 0 8,5 16,0 25,5 51,5 

K~y 2,522 2,064 1,682 1,204 0,401 2,064 1,882 1,318 1,032 0,344 

Kc,p 2,522 2,236 1,948 1,605 0,917 2,064 1,834 1,548 1,378 0,745 

2,5 3,0 . 
W·/' 0 8,5 lE\O ~5 ?1,5 0 8,5 1£\0 25,5 51,5 

KfJ 1,834 1,480 1,146 O,~60 6,287 1,433 1,148 0,86 0,688 0,228 

IKe 1,834 1,605 1,376 1~04 0,631 1,433 1 ~61 0,874 0,8598 0,51 E 
lp . 
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The graphs of the aerodynamic quality K =~ -= J (oL-) for plates 

with different penetrability parameters W and Mach number M = 2.5 are given 
in Fig. 3. It is obvious from these graphs that the quality of the penetrable 
plates strongly depends on the degree of penetrability. For example, the ph.te 
with a penetrability W = 51.5% has a maximum quality approximately eight times 
less than that of the solid plate. The maximum aerodynamic quality for 
penetrable plates at a Mach number M :: 2.5 is observed approximately at angles' 
of attack c;><::. &: 6- 7°. One should also notice that K max (o~:) slowly depends 
on the degree of penetrability. Similar relationships in the behavior of the 
aerodynamic quality are observed at other Mach numbers M. The values of 
K max lex) for Mach numbers M c 1.5- 3.0 and plate penetrabilities W &: 0- 51% 
are given in Table 2. 
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Table 2 

8,5 16 25,5, 51,5 

3,55 2,95 2,05 0,55 
3,45 2,60 1,80 0,55 
3,05 2,25 1,70 0,55 
2,80 2,10 1,53 0,55 
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The relations ex (w) and e'j (w) at different values of the parameter o-c:. 
and Mach number M = 2.0 are shown in figs. 4 and 5. The increase of the degree 
of penetrability of the plate at a fixed angle of attack strongly decreases 
the lifting force coefficient and slightly increases the resistance coefficient. 
The influence of the degree of penetrability on the resistance coefficient C~y 
at narrow angles of attack is more strong than in the case of wide angles. For 
example, for M = 1.5 and angle of attack ~ c 5°, the value of e..,.. p increases 
five times with the increase of the penetrability factor from 0 to 51.5%, and 
at p<. ... 15° - only by two times. One should also notice that the coefficient 
ex (w) is a linear function of W. As a consequence of linearity, the resistance 
coefficient C I< ('1'1) can be calculated by the formula: . 
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In the mentioned formula, the penetrability factor of the plate is taken 
in the form of the ratio ~ • The values of the coefficients Kc 
and ~c)r.. are given in Table 3. )C 

Table 3 

...... - .. - -_. --

e.: K
Ct 

(M,.l.). W+BC1 

M 1,5 2,0 

J.. 0 5 10 15 0 5 10 15 

Kelt 0,06 0.06 0.08 0,04 0,10 0,07' 0,06 0,05 

Be" 0,020 0,045 0,105 0,195 0,025 0,045 0,095 0,166 

M .2,5 . 3,0 

ol." 0 5 10 15 0 5 10 15 

Xc, 0,035 0,050 0,070 0,090 0,025 0,040 0,080 0,100 

Be. 0,010 0,030 0,085 <?,155 0,015 0,035 0,065 0,115 
.. 

With increasing the Mach munber M, the aerodynamic coefficients C x and C'j 
of the penotrable plates,' at constant angle of attack and degree of penetrability, 
decrease in a linear fashion (Figs. 6 and 7). 
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Fig. 6 
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The relations C" (M) and C~ (M) for different values of the penetrability 
parameter W and at an angle of attack o-c:: = 100 are shown in Figs. 6 and 7. 
For other angles of attack, the observed relationships are similar. The 
quantit~ C j (M) can be calculated by the. formula; 

_ .. _----- .- -----
C :; -K. (IN ol.)·M ~ B 
~ c1 • c, 

Table 4 

.. ~. ----- . .- . -- . - -.. --- - -... .. -.- -_ ... -. ..-.. 

C
1 

,.. KC
1 

(W,.t.)·M + 5c1 
, 

wot. ° 8,5 16,0 25,5 51,5 I 

I 

• 
of. - 5 

K~j. 0,047 0,040 0,033 0.027 0,013 

Be') 0,280 0,240 0,200 0,160 o,on 
K, 0,127 0,097 0,003 0,070 0,008 

10 ~ 

8ey 0,630 0,480 0,430 0,290 .o,OBO 

KCI 0,100 0,147 0,120 0,093 0,033 
15' 

Be:! 0,910 0,740 O,E05 0,440 0,146 

Tho polars C~ ... f (C". ), for penetrable plates at a Mach number M = 1.5, 
and C \1P = f (ex ), at a Mach number M ;:; 3, are shown in Figs. 8 and 9. One 
should notice so~e peculiarities in the behavior of the integral carachteristics 
of C n and C."t for the penetrable plates. In the case of the penetrable 
plates, with increasing the degree of penetrability and angle of attack, the 
coefficient of the tangential component of the aerodynamic force C'I; increases 
and approaches in 'value the coefficient of the normal component C n' and even 
exceeds it. For example, for the penetrability W = 51.5%, c-:;. = 150 and Mach 
number M·= 3.0, C"t' is approximately twice C" • The coefficient C.z: nearly 
does not depend on the Mach number M and it is <l linear function of the penetra­
bility (W) of the plate. It can be approximately' calculated by the formula: 

Cr; = Kef:' '../ + 0.025 , 

where Kc"C. = 0.32 for D<.. = 150
; 0.23- 100

; 0.19- 50; 0.08- 0 0
• 
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The relations C n (p<.) and C'1; (0£.) for different values of the penetrability 
parameter W at a Mach number M c 2.0 are shown for illustration in Figs. 10 and 11. 
The values of the coefficients C 11 and C"1: for the mentj oned ranges of the Mach 
numbers M, angles of attack and penetrability of the platos, are given in Table 5. 
The obtained experimental data show that in the case of supersonic flow around 
penetrable plates under an angle of attack, it is impossible to neglect the value 
of the coefficient C,t , in comparison with C n • The appearance of the tanger.tial 
component of the aeroqynamic force is connected with some physical peculiarities 
which take place in the case of flow around a penetrable plate under an angle ,of 
attack. ______ . _________ ._ ----••.. - -------_._.-

0.5 

r--o eN M'2,O j....-1 
~ w% w% ..,., V 1-...-:-::1> - o 0 0 25,5 

~ 
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~ f.-A 8.5 • 51,5 • .0 r- o 16 
~ k....- I-'"t> 

~ I--I-" j.o ........ 0 

~~ ~ ~ :--f- ...... fo-f-~ ~ """ 
~~ t::::: ~ l-f- -14 

... r- eI. 

o 5 10 15 
..-

Fig. 10 

~ l~ttJ:lJ~l~itJ~+t~ft~~t*Ii . .I· 
Q . 5, fa IS.", 

M· 2.0; w% a B,5 f6 25,S 51,5 
o A 0 • • 

Fig. 11 

The essential pecularities are the following : on the passage of gas through 
the holes of a plate, the velocity of the flow changes in value and direction 
and as a result, an auxiliary force arises. The increase of the thickness of 

\ the penetrable plate leads to an appreciable reconstruction of the flow and to a 
change of the pressure distribution on the walls of the holey. 



Table 5 

r= ;,.\ I 1 •. -, 

C(0 I n 
.j 

n 15 Q 
• 10 I" 

2,0 2,5 
~ 

,,0 10' IS" ., 5' 15' G 10
0 

15
0 0" 5" 10' 0" 

I 
I 

IN· O~. 10 O,:.!:, o,w 0,69 \.·,1-1 0,26 0,39 

P,II 0,21 0,22 
(I,on 0,17 0,25 
0.06 0,12 0,19 
n,O~ 0,05 0,01 

----------------
0.02 0.025 O,OJ 
0,03 0.0-1 0,05 
0.04 0,05 0,065 
ops 0.07 0,00 
0.01 0,105 0,11 

-.0 
0', 

I 

C 8,5 ~'I 0,00 0,1:-' 1J,3A 0,51 
fT ~eO'O ".""~ u,o C)I~.I: O.~I 0,47 

-",5 ,,0,0 0,,_ n.:H 0,36 

___ , __ ~1~5 _.\,_ tO~- ___ O~): __ ~,~o ___ ~,~6 __ 
a 'l!. 0.02 n,') 1 0,uJ5 0,0-1 
11,:; • • 0,02 u.o:l:' l1,015 0,055 

C I G,U '" I n,025 0.01 0,06 0,065 
-r 25,S "0 (',O:xJ 0.05 (' ,07 0,09 

51;> '1u 0,05 np~ 0,13 0,18 

0,00 0,19 0,38 0,51 I 0,00 0,11 0,32 0 .. 18 0,00 

0,0) 0,16 0,32 0,48 0,00 O,i4 0,28 0,41 0,00 
0,00 0,13 0,:<6 0,38 I 0,00 0,12 P,2J 0,33 O,cx.) 
0,00 0,10 0,20 0,30 0,00 0,00 0,11 0,26 0,00 
0,00 0,05 0,10 0,15 r O,co 0,04 O,OS 0,12 O,CX) 

------------------ ----------------~-------
0,02 0,02 0,025 0,03 0.01 0,015 0,025 OPJ O,O.! 

I 0,02 O.OJ 0,0-1 0,05 0,02 0,03 0,0-1 0,05 0,02 
0,025 o,o-t 0,055 0,01 I 0,025 0.035 0,05 0,065 0,02 
0,030 0,05 0,075 0,10 0,03 0,045 0,01 O,to O,O:!'> 
0,015 0,075 0,125 0,115 0,035 0.065 0,11 0,115 0,0,' 

I 
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PART II 

HOVEHENT OF GAS WITH EXOTHERHIC REACTIONS 

FORHATION OF PLANE DETONATION WAVE AT THE DECAY OF DISCONTINUITY 
m FUEL GAS 

By 

S .A. Medvedev 

The problem of the formation of a detonation wave in an inflammable medium 
with a finite reaction rate and instantaneous energy release in a finite or semi­
finite volume of reacting gas, is solved. 

The problem of the decay of the initial discontinuity in a fuel gas [lJ is 
one of the problen1s whose solution is necessary for the answer of the question 
about the possibility of formation of detonation waves from. physically practicable 
inltial conditions. The self-similar problem of the decay of arbitrary disconti­
nuity, in the case when a heat supply takes place in infinitely thin fronts of the 
combustion or detonation waves, was solved in the work [2J. In the present work 
we use a model of an inflammable medium in which the ignition decay is taken into 
account, and the heat release is described by relaxation equation in which the 
characteristic time of the heat release may depend on the gas-dynamical parameters. 
The finite difference numerical method is used for solving the system of equations 
of the gas dynamics and chemical kinetics. This method enables the direct 
calculation of the discontinuities and their interactions. The calculations, 
which were performed for the cases when the density of the energy supply in the 
case of instantaneous heat release ("explosion") is comparable with the 
density of the energy release in a gas with a finite reaction rate, showed that 
the intensity of the initial shock wave generated as a result of the decay of the 
discontinuity is less than the intensity of the leading front of the detonation 
wave in Chapman - Jouguet system. They showed also that ttle detonation wave in 
the undisturbed gas is formed as a result of the fusion of the shock wave with 
the heat-release zone formed on the contact surface, with the initial shock wave. 
From the obtained numerical solutions for the cases· when the specific energy of 
the explolive gas is less or equal to the speCific energy of a gas with a finite 
reaction rate and when the dependence of the rate of the heat release on the 
pressure is taken into account, it follows that the shock wave generated behind 
the initial shock, with a react~on zone behind it on fusion with the initial shock, 
is more intensive for small energies of explosion than a similar wave at high 
specific energy of explosion. The velocities and pressures behind the fronts 
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It consists of simple waves, progressive flows and crossed simple waves. 
The trajectory of the shock wave consists of rectilinear and curvilinear 
parts. If the rarefaction wave did not succeed to prevent the ignition 
on the c~ntact surface, then during the expansion of the gas in the combustion 
process, compression waves (or shock waves) should be formed. These waves 
propagate on both sides from the place of ignition through the products of 
the explosion and through the heated gas of the initial shock wave. The 
detonation wave, generally speaking~ may appear before the compression wave 
(or the shock wave of the reaction La]) reaches the initial shock wave (and 
in such case may not be fUlly compressed). Investigation of the flow, after 
co-flowing of the wave of reaction occurs with the initial shock wave, is 
of special interest. 

The model of the medium, which is used for solving the problem of the 
formation of detonation during the decay of discontinuity in a fuel gas, is 
set in the following system of equations I 

-.---.~-. ---_._---- -- -----------------_ ... --- -.-

dp -
dt + fdLV' V = a 

dG !!...di~V=O 
dt + .P 

tis.. _ a P m-' _L 
dt - e itT 

dV + 9:ad P =0 
dt Jl 

G=2-.~nA 
p(r 1) Uf"" 

d :i. 1-/3' / ) 1=p -r I,C-f dt 

I(C-1)={O.C':1;f,C~IJ . (1) 

Here v- the concentration of the fictitious component determining the time 
,of induction (0 ~ C ~ 1) i J3 -the concentration of the product of the reaction 
determining the heat supply Q.j3(t) to the mass Wlit (O~~ ~ 1), Q- the 
calorific power of the Wlit mass of the gas, r - the characteristic time of 
recombination, m and ~ - constants characterizing the order of the reaction. 
a- factor, E - activation energy. The remaining signs are standard ones. 
As follows from system (1), the transfer process i~ negl~cted. 

Let us calculate the veloci'ty of the propagation of the primary shock 
wave Mo and consider some properties of the solution of the stationary 
progressive wave type [7J. . 

As we assumed that the density and pressure before the explosion on the 
right and left from the membrane are equal, the Mach number of the shock wave 
Me is found from the following equation z _ 

.. ···_·z· -' .................. z·· ...... ""J'ti 
(,-1)(Ms -f) 2,MB-(T-1) 21 (2) 

'f - I = a 
"'. (p 'JIrf,- ')Q ,t' Dr' ,J[ 7fr. l)q., ) 

whe"e, 
- I Z q::Q,a, Mo =1JS / a1 
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De - the velocity of the initial shock wave, 
a j - the velocity of sound in front of the initial shock wave" 

The relations Me. M 9 (1' ,e ), obtained by solving this equation, are 
drawn in Fig. 2. 

---_._- ._-----_.-•. _- "-. 

Hi 

-M, 
f21 --- M i Q 1 L ;;# 

81 )( 7"" 1 / 1 ==-1 

o. 20 ItO ~o 

fig. 2. 

Let us now calculate the velocity of the detonation wave, which is the 
solution of equation (1). Let a plane shock wave with Mach number Mi 
propagate in the fuel gas~ After the transformation of' equations (1) to a 
coordinate system moving with the shock wave, for a stationary one-dimensional 
flow behind the shock, the following equation is valid s' 

--_ ...... - .. - ............ _- '--2'"-'''-''' 

d1? J1·' -).(TM f -I- 1 ) 
d.t T'ft q. (T+tlM.-1J' 

This equation combines the velocity ~relative to the shoc~ with the concentration 
of the product A. By integrating this equation and satisfying the conditions 
for the shock, the following relation is received .. 

--"-i-' .-..... ... .. . .. --
rMt +1 fiM; -1 ]2 ,.1 _ 

21::--- -- -2- A 
. (T~I)M, (Tft) M, 1+ 1 fi 

From this equ~ion, it follows that in the case of a complete heat release, a 
steady state solution behind the shock wave may be present only for Mach number 
M1 ~ M~, where M~ is the Mach number in Ch.-J. system, and is determined by 
the formula: 

113 :0 ([1 + (rz.t}q tlo+(r z• f}QJ2 -1" • 
:~ .. . . ,. 

... .... -. 
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Thus, the distribution of the parameters inside the detonation wave 
depends only on the specific form of kinetics, whereas the velocity of 
propagation of the stationary wave of Ch.-J. depends only on --r and Q. 
In particular, the velocity of propagation of the stationary ~ouble-front 
wave in the Cha:pnan-Jouguet system at given values of 0' and Q coincides with 
the velocity of the wave of Ch.-J o with a distributed heat release. The 
stationary progressive wave with any number of reactions has a similar propertyo 

The re~ation M ~ • M~ (r, Q) is drawn in Fig. 2 together with the 
relation M~= He- (0" Q)o 

20 To obtain a quantitative information about the formation of detonation 
and about the gas movement after sufficiently big intervals of time, it 
is necessary to integrate numerically system (1) at the corresponding initial 
and boundary conditionso The one-dimensional equations reduced to the 
dimensionless form, in Lagrangian coordinates, are written in the form:: 

.. _--_..-.--_ .. _.- -------_._----_._- ._----_ .. _- --_._. 

ax = u 
at 

au . JP . a - ... -. 
at axo 

8%0 

f= ax 

at ~ P aax/axo .:: ° 
at· at 

, G ~ pax -
(r')iJxo - Q/3 

aC P m-t (ip [p) a} P Jd 1-,/J _ ;(_) exp ~ -- ,-=(- ~ I{e-f) 
at Po Po p at Po r 

Initial conditions:: 

.... _------_.---
O'Xo~L e(o,xo):,ro,.%(J):1 

L " ::Co '00 
e(o, ,1:0) s~(o,:Xo) .. a 

. 1 
u(O,Xo)=o , ~(o,r.)= l(r f) OLXo ,00 

.%::1:0 • 

The boundary conditions I u(t, 0) .0.· 
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The dimensionless quantities are expressed in dimensional quantities 
Cmaked by da'ihes)in the form: 

--;-~---;--~----:---. - -.--- .... -

Ii .. U 1;;--:--t = t Js ,.;c = :r;'fl/a, If;; if?, 
P=p/!p, , t=G'/a/ ij:Q'ja/ , 'l. :£/rRT, , 

l. = L 'Blat , f = r'B 

Here, at' )'1 , p~ , Tt. - are the velocity of sound, density, pressure and 
temperature in tne undisturbed gas on the right, respectively. 

----------:,.-----
tn-I .,(E.fe) 

B =a Pe etp Po 

The quantities behind the primary shock wave are marked by index 9. The 
velEcity of this wave is calculated by formula (2) tor Q 0 on the left, equal 
to Qj on the right. The relation QO/Qi- K is also a characteristic parameter 
of-the problem. Thus, the formulated one-dimensional nonstationaryproblem 
contains the following dimensionless determining parameters, .. 

---------

r.m,cJ.,£,q,K, l.. ,r 
The one-dimensional variant of the conservative obvious numerical scheme 

of the second order of accuracy with direct calculation of the discontinuities 
WaS used in the calculations after it was fitted to problem with distributed 
heat supply. This one-dimensional variant was worked out in the works [9 and 10] 
for the solution of the elastic-plastic problems and problems of gas dynamics. 

The ~<?wn _9,uantities are calculated by the formulae I 
---------. ---. .-.. -- -------- .. ---

n.~ n·tIz de ("" An ) 
U - U - - p -p" 

IC _ - J{ 6.1:.. ~.~ 1(.'11 ' 

nf' n t fit- Yz 
XIC -:XI( "4 'U/t 

" n n II' liz 
P =p +9--

/(+ flz I("k K. '/z 
n }.%o(,-I) [ n - n ] 

p(''/z = X n -X" 'f(tl/z + q A /0 '/z 
1(', I( 

,,·tfz- n''/l Z 
n-f/z {c Z (UK" -Ut( ) 

Ij, ,/ = d dXQ 11 II 
l(f 'Il .:x I( 4o' - :r; I( 

n.~ n· ~ 
1I ~U 

I(H It 

n· ~ n.~) a u ~U -
'I(H f( 

n" ~ II At n~'/z n.tfz II - n. '/Z e = ~ + - (tl -u )(p + 0 ) 
K,'!Z ttl-liz dX/ H 1( .. , ""1: 1'1(''/1 
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n~'--~- (PK:-~Z--)~~-ft--·--·-·{··lf9 . E(u:'~(~::,'h) ~t } 
C = C f - t.. exp - + -
I(+~l 1(.'/2 . P P pn AX 

8 {J 1(, 'Iz 0 

. n r:J 

(Ht n t(PK .,Iz ) 
j;K~'/Z =}K.1h + A P 

B 

n n ) '-PII.1Iz lIe _ I 
.• (' K~ '/2 r 

The integral lower indices are given to the boundaries of the particles, 
the half-integral-- to the particles. The upper indices designate the numbers 
of the temporary layers. The quantities ~ and u are determined for the 
boundaries of the particles, the quantities G. , 0, ~ - inside the particles. 
The velocity is calculated at half-integral instants. 

The interval of time was selected from the requirements of the sta~tlity 
of calculation. 

3. The calculations were carried out at E • 10, Q • 24, f. • 0.3, m • 1, 
L • 3 for 0<.. 0 and 0<.. 1 and for K • o.a, K • 1.0, K a 1.5. The value of 
l' Was taken equ~ to 1.4. From 100 to 150 particles were placed in the section 

with leneth L. The coefficient of the artificial viscosity d ~ was equal to 
five. All the particles in the calculating range were originally the same, 

The slightly smoothed profiles of the velocities for differ,ent instants in 
the case of ~. 1, K • 1 were given in Fig. 30 At t • 0.146,. the profile -, 
consists of a compression shock on the right, linear part in the ra~efaction wave 
on the left, and constant velocity between the shock and the rarefaction wave. 
At t - 0.761 this simple distribution is disarranged. because heat release started 
on the contact discontinuity (marked by circles) and it led to the generation of 
an internal shock wave (the mark * indicates where the time of induction elapsed) 
in the gas behind the initial shock wave, whereas in the 'strongly heated products 
of combustion, where the density is small and the velocity of sound is high, a 
compression wave propagates. As a result of the compression wave, which is 
propagated in the gas behind the initial shock wave until the second shock wave 
arises, the velocity level between the shock waves is higher than the value 
U 9 "" 1.77 obtained by the exact formulae of the decay of the discontinuity. 
On·the velocity profile at t • 1.236, two shocks of velocity corresponding to 
two shock waves are recorded. The second shock wave is the leading front of 
the formed detonation wave and behind it there is a heat rel~ase zone. The 
particle, in. which 0.5 Q was separated out is marked by a pointer, and the 
particle, in which 0.9 Q. was separated out - a pointer with two lines. The 
heat supply between the contact surface and the wave .front leads to the 
intensification of the compression wave going from the zone of the heat supply 
to the products of the explosion. Therefore, the velocity of the gas flowing 
from the zone of explosion decreases and a gap appears on the velocity profile. 
The curve of t a 1.439 represents the distribution of the velocities after the 
occurrence of interaction between the initial shock wave and the shock wave with 
the following zone of heat supply behind it, and the shock wave with the zone of 
release behind it went out in the stationary gas. We notice that the velocity 
behind the shock exceeds the velocity behind the shock front of the wave of Oh.-Jo, 
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. and the products of the explosion by then slowed down still more stronglyo 
At t D 1.762 and t • 2.048, the velocity behind the shock is practically 
equal to the velocity behind the front of the wave of Ch.-J., and a portion 
of the products of detonation and explosion has a negative, that is to say, 
the gas flows inine Qfposite directiono The steepness of the parts of 
negative slope in the profiles of the velocity increases with increasing the 
time. Taking into account the relatively high temperature of the products 
of the explosion and the established artificial viscosity in the scheme, it 
is possible to consider that the retonation shock wave was formed at the 
moment t • 2.048. 
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A fragment of the graph in Fig. 3, where all the boundaries of the units 
are drawn, is represented without smoothing in Fig. 4. This fragment gives a 
concept about the magnitude and character of the oscillations of numerical nature 
for the investigated wave propagated in the Ch ... if •... system • 
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Fig. 4. 

The x-t diagrams for the shock waves and the leading edges of the detonation 
waves (points or points connected by lines), of the contact surface e.(t) 
(triangles) and of the trajectory ~ (t) of the retonation wave (rhombs) are 
shown in Figs. 5-90 The dependence of the pressure and veloci tr behind the 
front of the shock and detonation waves on time, poet) and Up(t), are also 
drawn in these fiL~res and are marked by crosses and circles, respectively. 
In the figures, there are also the reference values of the velocity Uy and 
pressure p~ behind the detonation wave in Ch.-J. system, and the velocity 
Ue and pressure Pa behind the initial shock wave, which are obtained from 
the exact relation. The initial slope of the trajectory of the contact surface 
is drawn by dot-dash line; the exact slope of the trajectory of the initial 
shock wave - by double dots-dash line; the slope of the trajectory of the 
detonation wave in the stationary gas in the Ch.-J. system - solid line. 
Let us return to Fig. 5. The aupper succession of the black points represents 
the trajectory of the initial shock waveo On the lower series of the points and 
triangles, the finned pointer shows the place, where for the first time on the 
contact surface, the time of induction elapsed and the combustion started. Since 
that moment, the contact surface begins to lag behind the trajectory of the 
ignition, on which the time of induction elapses; however, the shock wave with 
the zone of heat release behind it, does not still arise for some time. The 
formation and acceleration of the shock wave with 'heat supply begins there, 
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where the graphs of the pressures and velocities behind the initial wave and 
on the trajectory of the ignition bifurcate. Till that instant, the greater 
part of the yielded energy is carried away from the zone of heat supply by 
the compression waves going in the direction of the light products of the 
explosion, which are stopped at that time. After the generation of the internal 
shock wave with a sufficient intensity in the compressed gas behind the initial 
shock wave, the time of induction of the particles quickly elapses on passing 
through this internal wave and the movement of that wave gets a self-accelerating 
character. The trajectory of the shock wave with heat release behind it is bent 
upwards and intersects with the trajectory of the initial wave; after that only 
the shock with heat release behind it (detonation wave) remains. Here, the graphs 
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of u and p behind the'initial shock are cut off. In the graphs for the 
shock wave with heat supply, it is obvious that the pressures and velocities 
are greater behind the front of that wave than behind the' front of the wave 
of Chapman-Jouguet in the stationary gas. However, they rapidly decrease to 
the values corresponding to the parameters behind the front of the wave of 
Ch.-J. as soon as the detonation wave goes out in the stationary gas • 

• 

u. .. s.oo 
Uj xr----·---.....-· .----_.---, 

! «"0 m·t . I 
sl I ~.:~ ~:~~ _______ ., .?~';9.9 P 

I J r:v.:' L:J ; , 

I :····.t.D It) 
, :AAAA!/Cj 

"'~ io;"~: ilt} 
i f~ ""' .. x PIt),! ...... j 
I 0000 U~(t) I 
I /.; =Mt:A~ "r ~-'-/.I" 'I.rr 
~-"-"'.:~ 

2 

--
.­-' .--' v- . - ~ t " " A:-!fl ~ 

L-. o 

, 
~ ..... ~ I 

----.:-:::'L._.!1 __ .. ~~ _ _ B:.5J7 .• 
, "~ 

-t: ... 
v~ .... 

,~ 

1"-'''- . 2" '.' '-"- .. ~ 

Fig. 6. 

The trajectory of the shock and detonation waves', of the contact surface 
and retonation wave, and also the graphs poet) and Uc(t) for the case of 
0< _ 0, K m 1 are drawn in Fig. 6. It is obvious from the given data that 
although the internal shock with zone of heat supply behind it is generated 
at ihe same time as in the case of 0< ~ 1, K • 1, it is accelerated afterwards 
more slowly than in the case of ~a 1, K • 1, and at the fusion with the 
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initial shock, the developed detonation wave does not form. In the graphs Po(t) 
and Uo(t), there are no bursts of pressure and velocity, and subsequently a 
relatively slow acceleration of the shock wave with zone of heat supply behind it 
is observed. In the investigated section of time, the velocity of the shock and 
the velocity and pressure behind it are still far from the corresponding values 
for the ~ave in the Ch.-J. systemo 

We notice that even in that case, when the resulting wave is relatively slow, 
the retonation compression wave did not succeed yet to reflect from the wall, 
and thus it is possible to neglect the influence of the wall en the flow in the 
neighbourhood of the shock with heat release behind it. 
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The x-t diagrams and the graphs pp(t) and U oCt) for the case of .x - 1, 
K ; 0.8 are given in Fi~. 70 As was expected, the beginning of the heat release 
on the contact surface (finned pointer) is protracted in comparison with the 
case of ~ D 1, K = 1. The beginning of the generation of the internal shock 
with zone of heat release behind it i&accordingly drawn back. In consequence, the 
generated internal wave with heat supply behind it may be for a sufficiently 
long time accelerated in the gas behind the initial shock wave before it Ilows 
with ito At that time, a detonation wave generates with a leading front that is­
more intense than that in the case of 0<. 1, K - 1. It is obvious from the 
comparison of Figs. 5 and 7 that the waves of pressure and velocity generated 
behind the front exceed the corresponding values for the case of ~ ~ 1, K - 1. 
As in the case of P( - 1, K = 1,-after the exit in the stationary gas, the 
velocity of the detonation wave rapidly de~reases doWQ to the velocity of the 
wave of Cho-Jo, and the velocities and pressures behind the front of the wave 
approach to the corresponding values behind t~e front of the wave ot Ch.-J. 

The x- t diagrams and the graphs of poet) and Uo(t) for~ -1, K -1.5 
are given in Fig. 8. In this case, the initial shock wave is the most intense 
and the internal shock with heat supply generates more quickly than at K • 008 
and K - 1. However, its intensity by the moment of the fusion with the initial 

.. -~-.--~-.----.--- . - .. "- ----.---

U IX U =5.65 ----1- ___ -
p 

•• 0 •••• 
0 

~:3!J.9 

I-- V '3d 

1- Q 1...0< .... 4 ./ 120 

... 4 4 

-=2.222 
2 

,. J J J ~. 
I ~ d J. 1_ _ _ _ -liD 

Pff138f-

I 
a5 fa t 

Fig. 8 



/ 

c 

c 

c 

- 111 -

shock wave, as in the oase at ~ • 0, K • 1. is insignificant, .and the 
detonation wave goes out in the undisturbed gas with a leading front 
is more slow than that in the system of Chapman-Jouguet. Subsequently, the 
velocity of the detonation wave of eX. 1, K • 1.5, increases more rapidly 
than that 'for the case of o...:'~ 0, K • 1. We notice also a different ,form 
of the trajectories of the contact discontinuities for the two cases. 

---_._-----------
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x 
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4. The relief of the velocity in x, t coordinates for the case ofR< = 1, 
K • 0.8 is given in Fig. 9. It is clear how the internal detonation wave ~ses, 
and how also the retonation compression wave, from which the retonation shock 
wave is subsequently formed, arises. Finally, it is clear how the detonation 
wave transits to the system of Ch.-J. after going out in the stationary gas. 
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This pattern may serve as one of the illustrations of the process of the 
formation of detonation on the ignition of the gas at the closed end of the 
tube and as an example of the autonomous flow which arises in the 
unconstrained gas in the absence of external influences owing to the released 
energy in the chemical reaction which is characteristic for the movement 
occurring iri the self-sustaining detonation waveso 

1. 

2. 

3. 
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EXPLOSION IN FUEL MIXTURE OF GASES , 

By 

v oPe Korobe'~oVt V.A. Levin, V.V. Markov 

Let in an infinite mass of stationary gas, in which chemical reactions 
may proceed ,instantaneous energy release Bit occurs at a point along a plane or 
straight line. Let us consider that the gas is ideal, nonviscous and non-heat­
conducting. The density,;g and pressure Po in the stationary gas are constants. 
One-dimensional motions of the gas with different forms of symmetry are 
investigated 0 

The strong shock wave generated as a result of the energy release initiates 
the chemical reactions in the fuel mixture of gases. On calculating the 
combustion process, a model is assumed, which takes into account the time 
delay of ignition and the subsequent simultaneous proceeding of the direct and 
reverse reactions. . 

The equ~t,ions describing the proceeding of the chemical re.~c~iona are taken 
in the form of Arrhenius relations. The reaction determining ,the period of 
induction is described by the equation in Cl, 8, 9]. -

-dc------- E '. 

dt :- K!(p..p)e -iir (1) 

and the reaction with heat release - by the equation in rer~rence [2J: 
:-'--'--'''-''---;i

f
'-) --_ •.. ·---"·-i.Q 

'j3 m, n, ~ ,";;. tnz " E - -'-
dt~-K,p P .p e +/(z(l-j3) Pfze RT 

(2) 

where C - virtual concentration, p - mass portion of the unburned gas, 
Q - calorific power of the unit mass of the fuel mixture, E - activation / 
energy,of the induction period, El - activation energy of the direct react~on, 
R - um.versal gas constant, K '> 0, k\ > 0, k > 0; mt , nt' et. , rn ll , ..t...~ 
-are constants. The quantity C III 1 is on the front Of the shock wave. /The 
vanishing of C denotes the end of the period of induction and beginning ;the 
reaction with heat release. . / 

The motion of the fuel gas generated as a result of the explosion, will be 
described by equations (1) and (2) together with the equations of motion. 

------ --. -_._ .• 
~"1) ( ~-I ) (~ Pt. l2' pv Z '" 0 (3) 

)-"'\' 

""" 
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----~-:;- ~-,------------"'---
(z f1!}t +(~ !,V'l+p), =(~-1)p _ lif) 

{ ~-'r 1 1. J} (,)_1 [' Z }'I ~ L"if1/' +fh-P t + t fV ZZl" .. h J't -=0. (5') 

-- r P --- - -- • ------.--~ 

Here h = f-T f +fiQ P :0 l' R T I II = 1, 2, 3 ... for motion with plane, 
I •• • ...... _'" _. • 

cylindrical and spherical waves, respectively. The p~ametersof the gas 
must also satisfy the boundary conditions in the center of the explosion and 
on the shock wave. The velocity vanishes in the center of the explosion, and 
the following relations are fulfilled for the shock waver 

J'olJ-:.f,(:D-v,) 
-----_._-------

. J)2 r Po , t )'Z T - p.. • 
f'. t - - = - D-v. -, -- -' 

o ,- I Po 2 ' T -, .Pt 
fo D' f Po • p,( J) - V,)2 + P, (6)" ' 

, ' 

Where D - the velocity of the shock wave, and the indices 0 and 1 are related to 
the values of the parameters before and after the shock wave, respectively. 

The system of equations (1) - (5) is linear, and the problem in the given 
statement is not self-similar. Therefore, it is possible to carry out the complete 
investigation only by the method of numerical integration of the equations in 
partial derivatives. 

Similar to work [2J, we shall study the motion of the gas at an instant near 
to the initial motion. 

It is possible to obtain an approximate analytical formula for the time 
of induction. In order to do that, we write the thermodynamic functions 
in adiabatically expanding particle behind the shock wave in the' form given 
in work [4J: 

----- ----------- . ---

!. = ~ + ~ e (1 ) _ (E.!)Z& _ t", Z6,-: 
r T. Ttl:' n t. '.P-.Pfto t ,p-p~(t) , (7) 

where the index * - is related to the value of the function at the moment of 
passing by the particle of shock wave, which is marked by t .. , a and & -
are constants. 
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An analytical solution of the problem about a strong point explosion was 
used for the determination of a and~. The values of a and ~ were determined 
from the condition of equality of the first derivatives with respect to V, 
from the exact solution and formulae (7). The values of a and ~ for certain 
)J and --1: are given in the table: 

------- -------.. ----------------------------

~v 1 2 3 

r"" a 8 a 8 a· 8 

1 ,1 0.095 0,476 0,141 0,703 0,168 0,839 

1,2 0,183 0,455 0,284 0,661 0,3]4 0,785 . 

1,3 0,261 0,435 0,374 0,624 0,442 0,750 

1,4 0,333 0,417 0,472 0,590 0,556 0,694 

3,0 1,000 0,250 1,250 0,313 1,400 0,350 

Substituting formula (7) in equation (1) and integrating it, we obtain • 

where 

..... _---------_. ----_ ..... ,..,.--"'---~. -.. _ .•. -

c:l- til: [1 (t,,)A] 
'Co(t ~)" - T ' 

E/Rr" e 
.af f r (t )=- f tf A=28lfn+e;~flT~- I 0 * J(f,.P" 

(8) 

It' t 0 is the instant at which C vanishes, the difference to - t. gives the 
, value of the period of induction crt as a function of t f. From (8) we 

obtain:: ----
-. -~-

'C.Jt,J=t~{[I-1:Jtlt)A/tlo] -1]. 
(9) 

Previously, for example in work [7J, the following formula taken from work [lJ 
was used for the induction time: 

.. t ind = % etp (E/Rr) . . (10) 
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Below, for the investigation of the initial stage of the explosion, the next 
formula is used, following work [3]; 

N . 
ti.nd = -3 ~ exp(£IRT) 

.p. . I': 1 

(11) 

where Ni ,.N~ - . are constants. Both these formulae give the value of the 
period of induction on combustion of stoichiometric ~ixture of hydrogen with 
oxygen, initiated by a shock wave. 

Fig. 1 is presented for the comparis9n of the g~aph of the dimensionless 
values of '"("It- (t Jo- ), calculated by formula (9) (curve 1) with those obtained 
by integrating equation (1), taking account of (11) along the streamline and 
using the exact solution of the problem about a strong point explosion . 
(curve 2}, for the case of '0 • 1.3 and lJ • 30 It is obvious that the 
approximate formula is in good agreement with the calculation. 

r.(t.) 1'1'2 
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Fig. 1 

The performed analysis showed that already ~t the instant close to 
the initial, the time of the ignition delay abruptly increases, which leads to 
the separation of the ignition zone from the shock wave. 
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The results of the calculations showing the influence of the different 
determining parameters of the problem on the withdrawal of the ignition front 
from the shock wave front are represented in figs. 2-4. The value of the time, 
at which the shock wave passes through the particle, relative to the characteristic 
time of induction is plotted on the ~bscissa. The dimensionless distance from the 
shock wave, at which the period of induction is completed in that particle, 
is plotted on the ordinateo 

Fig. 2 illustrates the influence of the adiabatic ·index r on the decay 
of the detonation front for the case of )J • 3, Eo • 10 10 erg, (E/Q) .. cr .. 10. 
The dependence of this process on the form of the symmetry for "(' .. 1.3, 
Eo· .. 10 erg/cm 3 -

1J and (J""' .. 10 is rewesented in Fig. 3. The influence 
of the magnitude of the energy E of explosion and the activation energy E of 
the induction period when 't a 1.3 and V .. 3 is represented ,in Fig. 4. The 
curves 1,2,.3 are for CEc .. 10 10 erg, r:f'" ... 13), (Eo .10 10 erg, cY .. 10), 
and (Eo .. 10 J{ erg, a- .. 10), respectivelyo 

Two curves are shown for comparison in Fig. 5. One, represented by solid 
line, is obtained in the present \<lork by the formula for the time of induction (11), 
and the other, dotted,- in work [5J, on the basis of formula (10). In the 
initial stage of the explosion, it is possible to obtain a distribution of all 
the unknown functions on the coordinate at certain instants. Such distribution 
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lig·ft 
is necessary for the continuation ot the solution at still later instants, 
at which it is already impossible ·to neglect the 1nnuence ot the energy 
released by the reaction and of the pressure in the undisturbed gas_ The 
calculation ot the initial distribution shows that the value ot C monoto­
nically decreases from 1 to O. 
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The value ot j3 rapidly decreases at once atter the ignition front" 
and then it increases to the equilibrium value in the center of the explosion, 
which is calculated by the formula, . 

--------
N, _ (I-fi/ 
1(~ - fi2 (12) 

The mode of the curve ot f3 i8 represented in Fig. 6. 
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The calculation of the later stages of the explosion, taking account of 
the energy released by the chemical reaction and the conterpressure, was carried 
out for the case of the cylindrical symmetry using the differential method ot 
S .K. GodWlov [6J. Direct application of this method near the center of the 
explosion is difficult because of the high temperatures. Therefore we are 
obliged here to carry out the calculation by another method. The central 
interval, representing the standard calculating unit, is introduced in the 
investigation j one of the boundaries of this unit coincides with the center 
of the exploaion. On this boundary, besides the condition of the equality of 
gas velocity to zero, some other conditions are set out. The value of P.is 
supposed to be equal to the value cal'Culated by (12), density- to zero, 
pressure- to the pressureffrom the lower temporary layer. The validity oftthe 
first two conditions is secured by the fact that the equality of the.density 
to zero and the infinity of the temperature in the center ot the explosion 
remain at all the time of the gas motion, because this takes place in the case 
of ordinary explosion with counterpressure in view of the conservation of 
entropy in the zone ot continuous now [7J. In our case, because ot the 
chemical reactions, the entropy may only increase (it is assumed that the 
reactions as a whole are exothermic). The dimensions of the neighbourhood of 
the center of the explosion were automaticaly selected ~o that a small amount 
of mass and energy was included in it. The ignition front was included in 
the boundary of tije calculated unit. Its position was deterndned so that the 
values of the moduluB C extrapolated to it trom the ne1ghbOur~ units was 
smaller than the small positiye ~ber ,_ 8,p • Env.ations (1-5 were ,s~lved tor 
the dimensiEnless !'unc~ion~1 p= (t.Po , ,P ':':'y." V--';:; Ji ,a n t.he. . 
variables: t:: ~ ) ~ -::'w=i" The parameter8, by which the numerical 
calculation were carried out by the differential method, were as fo11oW8' 

. . 

Eo 
fD 

'" 10 eY'€/c,rt1 

---.----($~~ 'C I<'f},-;-n'r,n~ ~ 20-· --------

rf 
TO 2 2 

~ 7 • 10 CIfli'Se<: 

-3 
fa 10 g/crn 3 

Pa 
6 . z 

10 dlne,l6l11" 1 BIN 

6
0 

t.n n 3 
'CKpo Q = 10 

6 = 10 
1 

6'!J =£,Iq ,. 2,5 

~ t ion n. 
o,,='CKz.p z 'q'=2lJ 

f = l, :lz = a 
m, r.m2 = 2 

n,-n2 =2 n=( 

fa:' ( , ~ = 0,01"29, V-o = 0 (13) 
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Control of calculation was carried out by the laws of conservation of 
mass and energy. The values of the relative errors £ and £ M were 
calculated: f 

_._-----; _ £,- £-;:-
c;, - _ , 

_ Eo 
ts Z -

E r: 21iJ [pi!. + _I (~ -p )j ~(~.I}f }idi 
1 0 Z T-1 P 0 the total energy 

of the gas being in motion after the deduction of the internal energy of the 
original state. 

where 

f 0- the dimensionless energy of the explolSion. 
---·-~i{~-M:> 

eM - -, 
Mo .-.--_._-_. 

t, --.-

M,:21il p~di 
o 

- the mass of the disturbed gas, Mo = 'If isZ 

the mass of the undisturbed gas in the volume limited by the shock wave. 

The calculation was carried out from t • 10 to t • 500. It was discovered 
that beginning from the instant t • 19, the ignition front merges with the 
streamline and then it follows together with it. Oscillations of the ignition 
front were observed beginning from the instant t • 50. Some results of the 
calculation are shown in Figs. f>-7. It is possible to judge about the calculation 
accuracy of the gas dynamical functions from the folloWing data. The initial 
error (t • 10) I: £tj • - 3.4%; tM. - 0.14%. The error at the instant t • 19, 
E f • - 3.3%; f M • - O.O~. For still later instants, the error did not 

increase. . 

}$ 
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-- ~-. ---------_ .. 
fl T 1 C npw t· 500 
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'lk1 

Thus the motion of the gas, in which exothermic chemical reactions, 
!enerated as a result of the instantaneous release of energy Eo in a point, 
can proceed on a strai!;ht line or a plane can be divide into two stages. 
The first stage is that where the quantity of the energy released in the 
region bounded. by the front of the nama is BlDall compared to the energy Eo 
of the explosion. In this stage, the noW' is described by the formulae giving 
the solution of the problem of a strong point explosion. The chemical reactions 
occur at the background of this nOWo At ,the seme time, in the case of 
explosion, the generated supercompressed wave of detonation decays on the 
ordinary shoek wave and ignition front. The increase,with time,of the distance 
between the shock wave and the ignition fronts essentially depends on the form 
of the symmetry, the energy Eo of the explosion, the activation ener!y E for 
the induction period, and the adiabatic index r • 

The second stage differs by the fact that it is necess8.l7 to ta"e.. 
into account the energy released by the chemical reaction. The ,numerical 
investigation of the noW' in this stage for the values" of the parameters 
mentioned above (13) showed that 10 spite of the energy supply, the ignition 
ll'oi'lt continues to lag behind the shock wave and nows together with the 
trajectory of a determined particle of the gas, i.e. in the present case, the 
detonation combustion is not regenerated. 
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PNF-DIMENSIONAL NON STATIONARY KlTIONS OF A FUEL MIXTURE OF 
,GASES IN CASE OF SMALL HEAT EFFECTS OF THE CHEMICAL ¥ACTIONS 

By. 

L.I. Zak and V.A. Levin 

The one-dimensional . unstationary motions or a tuel mixture or gases, 
accompanied by the presence of shock waves, and n involving exothermic chemical 
reaction mechanisms are investigated. As a result ot the proceeding of the 
chemical reactions in the gas !.low behind the shock wave, heat is released. 
This heat affects the motion of the ahock wave and the gas !low behind it. The 
quantity of the heat energy reserved in a unit mass of the fuel gas mixture is 
supposed to be a sufficiently small value. In an analogous statement, the 
prop~ation or a shock wave in an ideally- dissociable gas was investigated in 
work L5], in which tho problem of a piston moving with a constant velocity was 
solved. ' 

MOTement ot ! Piston in a Fuel Mixture ot·Gases 
,~-~ 

Let at the initial instant a piston start8 to move in .Il- stationarygaseou8 
fuel medium. A. ahock wave is tormed in tront of the piston. This wave initiates 
the chemical reactions occurring with a release of heat. We shall consider the 
case when the heat effect of the chemical reactions exerts a small in!luence on 
the gas motion. This assumption will be achieved in the case of impoverished fuel 
mixtures. If Q denotes the quantity of the heat energy released by complete 
combustion ot a unit mass of the fUel, then, in the present case, the following 
relation must· be ful.filledt: .. , __ . _____ _ 

° ~ f..!._ .(.( { 
POa % 

• 0 (1) 
o 0 

Here -P.., - the density of the burning gas, .P - the total density, a o - sound 
velocity behind the shock wave. The superscript "0" corresponds to the parameters 
of the gas in front of the shock wave. 

It is necessary to mention that the unequality (1) will be also :fulfilled 
in the case of pistOn movement with a 8ufticiently high velocity and tor 
high-grade fuel mixtures. 



,.,-

' ...... , 

C,' 

( 

- 125 -

Let us write the system of the equation8 describing the motion of the gas 
in the forms . 

ap af' au 
-+u-+jJ-=o at a.:r. c3;x; (au au) JP 

'p-+u- +-=0. 
Jt ax ax 

ah ah ~P ap) p(- + u - ) - - + u - = a at CJ::c. Jt ax· 
1 P, rJ h=--Tj31!i r- f p (J.) 

Here h, P, .Y - the enthalpy, pressure and. velocity or the medium, respectively, 
f3- the mass concentration of the unreacted gas, Q - the total heat release in 
the unit mass of the gas and assumed. to be of a small value in the above-mentioned 
sense ;i 1i - the adiaba~ic index. 

Let us write the equation simulating the proceeding ot the chemical reactions 
in the forms 

dJ3 cJj3 a" m m dt = at 4- U ax :. - K,(p ,p)/J ' + K2 (p,p)(f-;) l • . .. (3) 

For the inveetigation ot the gae motion, it ie convenient to convert trom the 
Euler variables Xt t to the Lagrange variables t, "'t , where -r; - tho instant at 
which the given particle is set in motion when the ehock wave passes through it. 
With these variables, the system (2,3) has the forma: 

(Lx ax a ( ) - =u 0_ = 0 D « at I J-a~ J- , 

• ()aU aP JP oP Jp cfi .P 'D ~ - of - =0 - -- - +oIT_I)n_ =0 
dt ar; I at P .at ,,,Iv 'f at 

(4) 

iJ,o m ' . m 
Jt = - K'(P,f)J3 ' + KdP.p)(I-j3) Z • (5) 

Here D(t)- the velocity of the shock wave front. The parameters ot the now 
must satisfy the conditions on the shock wave at t • v 

-- ---iD --, '-a"z .- ,. (--o--Z-;-z-" 
Us=p,{l- ])2) , p .. =--,;tP + pf f JJ , 

a lrt( 2 a Ol
)_, 

.Ps =.P (-1 f .. if-f ])2 (6) 
and the condition on the piston at ~. 0 

u(t,O)=U",(t) • 
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Let the velocity of the movement of the piston slightly differs from the 
constant value Uo , i.e., 

U~Jt):l7o[l+tV,(t)] ({~<1). 

In connection with thi~ we shall seek the solution of the system (4, 5) in the 
form: 

u ~ Vo (J +c u.,), P : Po (1 + c P,) , 

f' ~ f 0 (1 + C f 1) , } = j1 tI ~ t ft f 

JJ : D a (t +c]),) . (7) 

The values with the subscript "0" correspond to the common !as-dynamical now 
from a piston moving with a constant velocity, and are determined by the 
formulae: ----- ------------i - ------ ----- ----

_ 2 JJ 0 ! _:::.... ) :;_ 1'-1 pO + _2_ D J) l , 
~- pI II lJo

l ,Po r
' 

{+IP 0 

f 
.~ 

• {+ 2 a )_r 
'.Po=,P 0(1+ 8-1 Po' l~) 

Substitutin! formula (7) in equation (4) and using the assumption :~~ f 
o 

we obtain for the values u', P,.f • 
_ 1 '1 1 

i 

- ~ ----
au, IJopoap, 
-+- -~O 
Jr .Po Uo at 

du, Po aPt 
- +-- - =0 
Jt p°J)oU .. at 

a~ Jy • __ r 1 I ) d} 
Jt II Jt +{({-f _0 ': 0 

Jt (:J) 

.. 

At the same time the chemical reactlona will proceed in the' given field of the 
gas-dynamical parameterl3, and, instead of equation (5), we have the equation.: 

~o:_ ,,(,s. , Po, p.) . 
Jt (~9) 

For tbe parameters of the gas on the shock waVe at t ,,-Z; • we obtain. 

',' 
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Mo + f 
U,S"- D 

M Z _I ' o . 

z 
"1 M• lJ 

P,s=Zl rt oz-fr- t) , 

o = .f{ D Il = I (11) 
J IS (1'- 1}M: +2 ' ,. "". .• 

On the piston at 't'. 0, the following cOt?-dition will be f\1lfUled 

tI, ft, 0) "' V,(t) . 

The equation describing the proceeding ot the chemical reaction is integrated 
irrespective of system (9), and its solution, taking account of the boundar,y 
condition on the shock wave, will be pC,) • F\ t- 't').' The specific form ot the 
function F( t- t') depends on the constants m t and m ~ entering in ,equation (5). 

Excluding the parameters P t and Ji in equations (9), we obtain the 
following equation for the quantity ~~..L.----- ___ . ____ _ 

-azu----2iM~z Ji:/raz~, 2rMoz -(rot) ijJ,. - -
d t~ - (,- ,)M;:2 J'C z =(r- f) Z(M; -1) Jtd'C (12) 

The general solution ot this equation will bel 

- ------_ .. ---_.----
u,(t.'C)=I,(wttr)~f/wt-t)+.fLF{t-'C) , (1:3) 

Where 

c.l: 21 Mo%-(r- f)-
(T- I)M; ,2 • ft· (r-1) 27

M
! -(1-1) 

-For preseuf'e P 1 we obtain 
--·--------z ----------------------- ----------. -. --

2rf
M

o - f) E/,' J p,(t,Z)= Z -c.J,(c.Jt+t)tc.Jfz(c.Jt-t)",flf{t-z:). (14) 
2!M o -(r- 1j . 

. Using the boundary conditions on the shock wave, (11) we find that&: 

--- Z----)---- z--------·-----·-
GJ(Mo+f- 2M o . /~) c..J-f 

/,(~)f: 2(.J(M;-t) .DdW '" - 2w fo t 

I (l,)= w(M~2 dJ,+2 f'if: 1J I...i._)_ c.J+1 . 
,Z 2w(M; -f) Ilw_1 2(.) fo (15) 
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Using the relations (15), it ie easy to obtain the relation between the functions 
f.1 and f" 1.___ . 

1.(~)=- 2M;-c.J(M;+I) P (!:!2.t,)- JL(M;-I) 
r . 2M c' 1(11:+1) Tz w+l 2M;+l.J{J.1; + t) (16) 

This relation ahows how the disturbance ot the pressure changes when it is z 
renected from the ehock wave. The quantity ').:: [~}iJ - w("t,'l-+ 1)J/[;1. M; "" w(Mo;-i)] 
is called the reElection coefficient of small disturbances, and it concides 
with the corresponding coefficient on renection ot disturbances !'rom the shock 
wave in thecorrmon gas dynamics (1-3J. 

Substituting formulae (15) in formulae (13) and,(14). we express the 
increment of the gas velocity and pressure by the increment of the sh~k wave 
veloci ty I:' 

u (t r)~2M~z-:~(Mol + t) (c.Jt-tj· _-z~: ~~-(~-.. -(wt +t') _ b-F(t-'dj'--' 
, \' ZG.J(M.,z-t) P, c.J-' 2G.J{MoZ-l) O'w+(:fo t 

(t r): 2,(M;-t) (Zltf:+W(Mo
2
,.,) ]) (cJt-t)+ 

P, I ,21Mol-fro1} 2(M;-I)f w-t 

2MoZ-w(M;+1) (CJt+T:) [ ( )171 
+ ''0 -- -~ f - F t - 1: J Z (M;. t) t c.J + T . 

(17) 

For finding the function D I (~), we use the condition tor the piston.: 
u(t,O) • V 1 (t). From this .. condition, we find the functional equation which 
is satisfied ~Y the increment of shock wave velocity.' 

---.----- .-- .. -.. --.. ------_.-._-_._-------------_ ........ -_._-_ .. . 

(€.J-t) 2C-J(M!-1) J. [ (&.J o 1)] V. (c.J-t ~),l 
D,(~J- )'DI wtf ~ =2Ml ~c.J(M~+t)lfL 1- F -;:;t. +, u J' (18) 

Thus, the problem of a piston movement with a nearly constant velocity in the 
fuel mixture of gases is reduced to the solution of a functional equation. 
The solution of this equation, as shown in [ ~,.] 0 I!an be written in the 
fumt 0 

... ~ (t.)--:-2~i;:;:~~)-V--i-;~~1-F(~-1 nf')17 . -.---.---- ....... ---
, 2Mz+wfMz+l) Jl Lo c..J I( to Jf 

o I' II ,,.0 

+ f. A n VJc~:/ X n t. ) 1 (K = 5:!.:..!.) . 
"'0 'j c.J+1 0 

(19) 
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The solution consists of two absolutely convergent series. The first sum 
ensures the change of the velocity of the shock wave owing to the heat release 
in the gas now, and the second-owing to the change of the velocity of 
movement of the piston (as in common gas dynamics). Let us consider in more 
detail that component ot the increment of the velocity of the shock wave which 
is caused by the proceeding of the chemical reaction. For that, we put 
V 1 (~) :: 0 in (19). In t at case, it is easy to obtain the limiting increment 
of the velocity frollt (18), with transition to the limit at ~~ c::>O 

.... --~ --.--.--.-~~-.--

n/)- 2w(M;-t) [1-F:t:a)}'·--
"""pOl - -- (' 

2M; i'£.I(M:-:tJ j<. (20) 

where 11' (00 ) • ~ - the equilibrium value ot the concentration which is the 
solution of the algebraic equation I 

----------- . 

Klpo ,,f.)(I-fie)fTl1 - K,(po,"fJ,Et:
fTI

, sa . (21) 

Thus, the limiting increment of the velocity of the shock wave-is determined 
by the equilbrium value of the concentration of the componerit participating in 
the reaction. The knowledge of the function F (~) is necessary tor the 
detailed distribution of the gas-dynamical parameters with respect to the 
coordinate and time. For example, at m1 • m~ • 1, the solution of equation (10) 
haa the forma -

.-- --------.--.. --:... ------
, . .(Ir +K )(t.~) . 

.A c A [,. e ' I J -(K,.Hz)(f.-r) 
, ./"'e ~ e (22) 

and thereby the form of the !'unction F (~) is determined. For that case, 
the limiting value ot the increment ot the shock wave velocity as a function 
or the Mach number ot the shock wave ot the main flow M~ at 't • 1 • .3 i.., 
represented in Fig. 1. The change of tho increment or the'shock wave 
velocity with the time t • (k 1 + kR) t for some values or Mo is shown 
in Fig. 2. " It is obvious from the graph that the velocity monotomically 
tends to its limiting value. The change at the pressure on the piston with 
time is represented in Fig • .3. That change is ,11onmotoiuc', There is an 
obviously expressed maximum of pressure, which was also discovered on the 
body, on calculating ,the supersonic floW' ot a fuel mixture or gases around 
a cone [4]. . . 

Let a shock tube in the torm ot a canal of a constant crose-section be 
fUled with two stationary gases separated by a diapbragmo On the lett from 
the diaphragm, there is an inert gas with a high pressure, the so-called 
"driver gas", and t he right part of the tube is ~ed with a fuel mixture 
of gases with a high pressure. After the rupture ot the diaphragm, a shock 
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D,( .. ) 
, "./Je 

_.---:---

..,1 \ _ 

O.H ~ ------
0' • 

2.5 5.0 7.5 10 1'1, 

Fig. 1 

wa.ve will propagate in the fuel mixture and ignite it. Heat will be released 
in the gas flow behind the shock wave, and the motion of the shock wave as well 
ae of the contact surface becomes nonuniform. A Riemannian central wave of 
rarefaction propagatee with high preasure in the gas. In contrast to the 
classical problem of the decay of the arbitrary diecontinui~y, this wave'will 
not be self-similar. . .. 

+- -_._----------,--_. ._------ --_ ••• 

D,fc) 

1.01 ]),(oo} __ _ 
::;:::::p=;=,-::::=::;:;::;;",-- r.o 

0.5 

o 2 4 6 8 IO . f 0 :1 4 6 8 10 i 

~ Fig. J 
Movement of a fuel mixture of gases in a shock tube. 
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The !.low in the rarefaction wave is described b1 the formulae; 

t ~~. P' 1 . I. r.- U)~ -p .. p \1-~ - ,.,,- ,P=J (-) T. 
• Z Q/t ,* p. 

r .. -' l.,,~f ) a:C( .. - -2-11 • X"'I/J{uJ-fa,.--,-u t (23) 

Here c.r (.u) - tunknown function determined by the continui ty conditions of the 
velocity and pressure on the contact surface. The \ubst.rlpt • corresponds to the 
state of the stationary gas with high pressureo . 

Let us use the general solution (17), obtained previously, for the description 
of the movement of the fuel mixture of gases. The following condition must be 
fulfilled on the contact surface. ' 

.--------.--------~---ir:--
P [1- ,.-fUorlflU,(t)j r",-I = Po (t~Ep,(t)) , (24) 

It Z Cl .. 

t 
G;[TJ,,(I+lU,/t))}=[7JJ/tllJ,ttJ)dt+[a.-'-;' UJ1+EU,(t))]t " " (25) 

Reforming condition (24) and expanding in a series through orders of the small 
parameter E , we find the relation between the increment of the pressure and 
the increment of the velocity of the contact discontinuity in the form I 

---_. __ .-._.- . - ------~~--.-.--- -----
" Cl 

~(1~ ~h) Q. u,(t) -:; 0 
r+ 1 " 0 t ) 

0'* - 1 ~ JII (1 - M"z ,-::-;-; a .. 0 0 
t 

(26) 

p,(t) t 

Here the value of M 0 is a function of the decrease of the pressure and 
temperature and it is determined by the relationl 

-----_._._------
21* 

I " ~ r .. -' 1 P If r r~ ~ a.. 1 2 r z r· 
- f. __ .M._ =-M -_ 
p., [I r + 1 a .. I •. " 1'1.) r. ,or f I , 

(27) 

Substituting the corresponding formulae tor Pi (t) and u i. (t) in the condition· 
(26), we obtain the functional equation for the wUmown function D,. (~). 
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. - z .... ·; .... ·----· .... ··-··---
! ) ((J-I) 2utJ(11 0 -1/ [ ((,J-t)] 

JJ,[~ -n,D, ~~ = 2Moz+w(M~ +1) f-f -;:)~ , 

._- --------------_. -------_._--

12-c.J 2;r(M!-I) 
A."- 2rMZ -(T-fl 

,~ .... .:..; 

_ " CJ ~) 

,..,.(M~_II 
~.~o __ I .. 

21110' -(I-I) 

21(M! - t} 
n + 21M; '(r. l) 

2r",M o f. f) a" 

12 
f:T"-z-• = 110 a .. 

I
f .. - f aO( t 
--- M p' 0lt 0-71) 

!J = P. 2
0

(11: -1) 

.Q +c.J Zr M:-(r.1) 

(28) 

, 

Using the equations (13) and (14), we find the relation between the function 
r J. and f", on the contact discontinuitYJ 

trl;} = -).1 f,(t,) - !J. F (~) 
(29) 

Frail this relation, the physical meaning of the quantity Al becomes clear. 
It is the coefficient of reflection of the compression wave going backward from 
the shock wave, from the contact surface of the wave. 

The solution of the ~ctional eqaution (28) will be:;' 
'-

2G.u.(M!-t} 00 • n[.. (c.J.t n )17 
.D'~);;"u?' . ./M2"'flfa(J.l')LI-F -;;;-x ~ J' (30) 

For the limiting incre!Ilent of the veloc:ity of the shock wave, we obtain,; 

......... _----_ .. __ ..... ---- .. _---
.D/CQ) = . 2c.JI~{/t1!-f) 

2M! + ~(M; + 1) 
1- fie .-
1- J A, (31) 
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The final velocity of the shock wave, both in this case and in the case of the 
movement of a piston, is determined by the equilibrium concentration ot the 
component participating in the reaction. The change of the velocity of the 
shock wave with time for the values if ... 1.66; i • 1.3 and tor some Mach 
numbers ~ 0 at the temperature drop "* •• t is represented in Fig. 4. The 
velocity of the shock wave monotonically tends to its looting value. The 
change of the velocity of the contact discontinuity and the pressure on it wi~h 
time are. shown in Figs. 5 and 6. The velocity of the contact discontinuity 
~onmonotonically decreases. It has a velocity minimum, The character of the 
change of.the pressure is the same as on the piston, i.e. the pressure nonrnonoto­
nically increases, tending to its limiting value. 

D,(iJ 
p{oo) 

I , 0 I .---.:.;;;;; :z;; 

0,5 

a' - .1. 0:- 2 

o 2 4 6 a 

Fig. 4 , 

IO 12t 

~.:::.~. ftf.t£r""~r~' -.-
,. 'O-y 

O,l~ • ~ 4 S B 10 
12 a~l 

o 

:-C'.l ,~ Mo- 4,5 

~:,: ~ Mo" = 
1'1-2 

- 0,' • 

Fig. 5 
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The knowledge of the increment of the shock wave velocity in the experiment 
enables to determine some functional relations between the constants determining 
the proceeding of the chemical reactions. Thus, in the case of a single reaction 
of type (3), it·is possible to determine the affinity constant from the relation 
(31). One should also mention that the discussed method of the construction ot 
solution can be generalized for the cases qf many chemical reactions proceeding 
both simultaneously and successively. 
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HYPERSONIC NON STATIONARY FLOW OF A FUEL MIXTURE OF 
GASES IN THE NEIGHBOURHOOD OF THE CRITICAL LINE OF 

A. BLUNTED BODY 

By 

S.M. GUinskii 

On shooting a body with high velocities in hydrosen-air and hydrogen-oxygen 
mixtures, some characteristic modes ot now aroWld were observedr. zstationary-with 
plain shock and. thermal .!'ronts; nonstationary- of pulsatin! character with a 
strictly periodic structure ot the combustion region in the form ot circular waves, 
modes with a complex structure, with the tormation ot internal exploisonl5 intex­
acting with the leading shock wave and bending it. The theoretical investi!ation 
of the station~ modes was carried out previouaLy, and the main results are 
discussed in [6J • 

In the present work, the pulsating nonstationary modes of combustion 
gene.rated. at hypersonic now around the lead.ing part ot blunted. bodies are 
investigated. The investigation is carried out numerically. The now is 
studied in the neighbourhood of the critical line. ThemethQd'o! "termination 
of series" is used and the solution i8 searched for in the form of a first 
approximation. The integration of the two-dimensional equations in partial 
derivatives is carri~ out by the finite difference method with the use of the 
characteristic relations for discontinuitios and for the, contour of the boiy. 
The initial stationary now is determined from the solution of the boundary­
value problem for the system of ordinary clitferential ~quations by the method. of 
iteration. 

The growth of finite disturbances artificially inserted in the bountlary and 
initial conditionst and also of the small disturbances generated because of 
numerical errors is studied with time. It is ascertained that the inserted. 
disturbances lead to the formation ot the oscillations of the leading shock 
wave and the parameters of the gas behind it. The amplitude and frequency ot 
oscillations ~epend on the magnitude ot the activation enerlY_ 

The detected modes are near to self'-oscillating ones with constant 
amplitude and frequency_ The region of stability, with respect to the small 
and i'inite disturbance, f'or the two-dimensional now is significantly larger 
than that in the case of the propagation of' ono-dimensional detonation. 

§ i. Let a supersonic now of a fuel mixture of' gases with the parameters. 
velocity V 00 t pressure P 00 'and temperatura Teo , runs against an axisymmetric 
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blunted. body. We shall assume that ignition does not occur in the incident 
now, and that an exothermic irreversible reaction A ..... B proceeds behind. the 
ahock wave because of the increase of temperature anQ pressure according to 
Arrhenius law: 

d.B L ff/ m·1 .k/PoT _ ( TJ' -;- = _ Jot) p r;- c.J P, . 
dt (1.1) 

Here, as UBUal, J3 - the concentration of the unreacted. !as, m-ord.er ot reaction, 
E-activation ener,a, L-roaction rate constant, -R-gas constant, 

The system of gas dynamic equations together with the kinetic one (1.1) 
for the axisymmetric now can be written in Eulerian variables in the tollOlfin! 
form,: 

-----.. -.. ---- .-
ilp ofpu) 1. al.p~l +.f(2U +l!Ct9 B);O 
Jt" ott - -I- %' cl(} Z ---_ ..... _--- ...... - -_ .. _-_ .. _. 

au iJu v au V
Z 1 ap 

- +u- +- - --;:-_.- , 
at clz 't aEJ l p c% 

all' a~ v- oV- "V" , iJp 
I-u,-+-_.-:--

at a" 2' ae ~ Jlr J9 

Jp +U ap +3: rJp _.proh fu Jh ... !!:.. iJlr)=o 
at a~ % as at d't ~ JEJ ' 

CJfi ... U d/> +.!: cl.ft ;: -1..j3 m pm·'@xp(.(plp) , 
at a-e '( ae 

r P t:I h=--+)'f r- f P C. 1.l) 

where 'l, 9 - the polar coordinates with the origin in the center of the 
curvature of the body in the critical point at zero timet u, V" - the prOjections 
of the velocity vector "7 in the direction Z' anci () as shown in Fig. 1, 
1?-, Y, h, T - the pressure, density, enthalpy ani temperature, respectively; 
cr ~ adiabatic index, Q --energy release of the reaction. 
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We interpolate the dimensionless variabl~B (with index 1), with the help 
,~t the following X'elations'; , 

~': ~ RO 
t 

, Vmall' t t=--.- , 
't8 

,£I fV' 
lJ=- 11=-

v':aJ' V ;;'a.r 

, .P {p 
S' :: 0° , p = 0° V· , 

J GO .100 mar 

t £ , li 
E·=V Ol ,If=voz , 

mat mat 

L I: L. 't 0(. • )m"rv D

)'" , T , j'"" ma~ r :-r:; 

C0 

(1.3) 
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Here the subscript "~" ref'ers to the parameter of' the incident flow, and the 
superscript "0" denotes that the value of' the parameter is calsidered at zero 
time, V mat. - the maximum velocity of the gas in front of the shock wave. 

The form of equations (1.2) remains in the dimensionless variables (below 
we shall omit the index "1"). The boWldaI7 conditions on the surface of the 
body are given - conditions of non-nonng and in the incident flow f'or V.- • 
P OC> t T c>o and '"f • The shock wave is considered a discontinuity, where 
Hugoniot relations are fulfilled.. 

Thus, the solution of the problem in the dimensionless variab~es is 
lI.etermined by f'ive main parBJlleters M c>o ,"(' ,q, E, 1., and the parameters 
characterizing the disturbance. The heat release q ot the reaction at a fix'ea 
Mach number Moo characterizes the degroe of the supercompres8ion of the 
stationary detonation wave. It is coupled with the ordinary used contraction 
coef.fic~entJ ~Y the relations . 

---_.-_ .. -~ 
---------i------rM! /- t)Z M~ 

q, = 2(,%.1) (M!! ~ :, )M!'1 I; M! · 
(1.4) 

where M~ - the minimum Mach number M ot the proP8!ation of' th~ detonation wave 
(Mach number M of Chapmsn-Jouguet). 

The integration of' the three-climensional equations (1.2) can be rell.uced to a 
successive integration of' two-dimensional equations if' we use the so-callM. 
method of' "termination of series" BUuested by Van-Dike. This method was used. 
in a number of works for the calculation of the now of viscous [1] and id.eal 
gases [2J. 

I 
Let us represent the unknown .functions in the neighbourhood ot the critical 

line in the form of series with various powers of "in e • Taking account of' 
the eveness of the functions we shall haves 

p(t,r ,e}= pJt._ 't}tPz(t, ,,)siftt £! +plt,~)$inlie + ... 

u(t,~.e)=.u,cose .. uzcosesin2e; ... 

11ft r e)::: v, sin e 4o~ sinlS + ..• • , z 

j>(t, oz, e) =.P, + 0 sinz e 4-
J 2 '.' 

p(t, t, e) .. fit + fiz si.nz-e + .••. c.. \.5) 
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The first "termination" (the term\'tennination" is universally recognized) 
includes all the first terms of expansion (1.5), with the exception of the 
expansion for pressure in which the first two terms are taken; the seconGi 
"tennination"- the first two expansion terms of (1.5) plus three- in the 
expansion for pres8Uro, etc. 

The first "termination" is substitute4l in the system of equations (1.2). 
and. in each equL\tion the coefficients with powers of sin e are equated. to zero. 
A system of equations concernin~ the variables t and '?; is obtained. for the 
coefficients of expansions (1.5). This system contains seven equations with six 
unknown functions. Following work [1], we shall omit the equation, obtained by 
equating the coefficients with sin.1 e in the energy equation to zero. 

The final system or the equations of the first "termination" in the 
variables t an. ~ is! 

---~~(t)-- ) 
~ C l"(tr ' e{t : i!s(t) - r, (t) 

can be written in the following !o~. 

"--CJp;---ap, ---[' -au;: ---rv,-~-u~)] . --[jfi~fi--;-] 
-·-A- :1'P - - -2 - -fr-,}of"- -A-
dt de f" E Jt, "l,+et. Q Y at d~ , 

dj3, dfi, L m m-' I ') 
cJt -A a~ =- fi, P, eXPI-EJ'"p, , 

---- ... -- .------ ---------_._---------

au, -A ~u" .. !- apt • 
at at J', E ~~ 

ap, ap, [' au-, z{V','- u,) ] 
d t "- A Je ::.P, E ae - ~, + e l. ' 

a!J" a 11', 2 Pr 
-'-A-=---
Jt de; (r,.l.t.)p, 

v,("., - u, ) 

~t • t; E 

JPz __ .!.(dP,_ IJ au,_ V;-U') _ u,+il+t.i 
de; - 2 Jt:, P, 'de 2tp,"V-,"(c .. t.E. ,A- ~" 

(1.6) 

Here, Z s::: Z's (t) and 'r t: "t 'b <. t ) - are the equations of the 
contour of the shock wave and the bOdy respectively. 
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C'I The system of eq\ta.tiona (1.6) has the !ollow:l.n! oharactcristicISl 

o 

c. 

~) MOn! t~e "trajoctory\' 

--~ ----
·-d~ __ A 

dE-

dpt ~ (Pt dPt .. I. .flop dft, ~"'o 
d t 'p, dt tT r 1 dt ' 

---- ._--- .. _---_ .... -._ ..... 
dv 2pz l1,(7.J,.U,) 0 
-'t + =. J 

dt (", -t~l.)p, ~, r ~ {. 

,---.. _----_.-
-d.fi--;; _ L ~~p, m"f/xp (- El,/P,) 

cit r . 

... ~ , .. 

b) along the characterietices C+ and C-

-----_ .... _- --_._--_._-_. _._-- ...... ----- ~ .. '-'-' 

dt, + a, 
-;-A-­dt ( 

a z _ TP, 
, -p" 

,., ~':' .l aPt _ 2a z 1f,. u, !(J,.,}f.9t>;Tlptm-'pl.p(-£p,/p,) 
~I.:C ~;I =: + , ~,.~{. 

c) glong th~ charact~~i~ticJ 

dt -----­
dE:. ;: q , 

dpz 1 rap, au, v,· u, ) 
dt. +2"ldr. -p,U/de, -uP/V, "l,tC,E ;,0 

(1.7) 

(l.e) 

(1.9) 

-(1.10) 

(1,11 ) 

(1.12) 

0.13) 

0.14) 
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The boundary conditions on the contour of the body take the forma 
---~------.. ---. 

~t t, ~ € t.! or ~.o U t .. i, 0 

(1.15) 

For the calculation of the functions behind the shock wave, it is necessar,y 
to substitute expansions (1.5) in the Hugoniot relations, using the scheme of . 
"termination" described above. Analogous expansion should bl written for the 
contour of the shock wave and the bodys 

--;--(t e}-;--:t7t) + t's (t) lin zjj-;--, , , 
s's, I 

't l (t, 8); 't6,' (t) H:,/t) ~i.nzB + .. , 
. (1.16) 

We shall be limited by the tirst two terms in expansions (1.16) and shall 
assume that the cootficient with sin ~ e does not depend on timeo This is 
equivalent to the assumption that the shock wave (and. body) in any point in the 
neighbourhood of the critical line moves in the direction ot t~e normal with the 
same velocity, and that it is near to a sphere. . 

The relation8 cou~g the parametere of the gas in trppt of and behin4l 
the shock wave (at ~ • 1) are as follows. . .' 

--------------,--- -... --.. --

'(-1 (;( .) -.!L p"" (' ")"t]. 
u, = T'" 1 LI Vog T ~Sl + ,_ I .P1lO Vgo + ~~I - Z$I 

2. r- f 
P 2 o(v.+i )_-p , 

f : 0''' 1 JoQ co ~r '{+' 00 

. 
Vao + ~Sl 

.fJf ::..Poo u, + ~Sr 

,-, )f P z = Z, pJ u, - V 00 I u, + V cO - i ~J ~ 

V;=VOQ-(Voc-u,)2zsz/zs, ,.ft=i . 
(1.17) 

For the solution of the system of equation (1.6) with the bounaar,y 
conditions (1.15) and (1.17), it is necessary to know all the functions at 
zero timeo 
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The main calculations were carried out from the distributions obtainetl 
by solving the stationar,y equations (106)0 The system ot the stationary 
equations for the system (1.6) is. solved with respect to the derivatives ot 

---- ----------------
du,' Co r z V,-£l, ) m m-t ] 
d~ =a/-u/ [Za, I+t.lo -(r- 1 LC{,'p, fit P, exp(-£p,/p,) t 

:::.'.3, LE.o m m-' ! 
d~ ':..-u:; A p, eXPt-£p,/p,), 

dlj :: !.! [ z pz + 11; (V; - CI.{)] , 
dt, U, P,[f;t;eJ f+ t.E.o 

dj, = .P, [2C 71-,-U, _ du,] dp~ =E P u 11;-11, _ dp, 
cit, ... , 0 1t~co d~.' dt, ., (f+t.E.

o 
dS; 

d ;it 

de": :: - p,:.l,du, /d~ (I.H3) 

(1.18) 
.. 

The solution ot the boundary value problem tor the system ot the ordinary 
difterential equations (1.18) is obtained by the iteration method~ The Cauchy 
problem is repeatedly solved from the initial data behin« the shock wave betore 
the body 0 The unknown parameter Eo is determined by the Newton method from 
the condition of non-nowin~ (1,15). The indeterminate form in the point ~. O. 
for some equations of (1.18) is treated by extrapolation ot the functions trom 
a certain distance fro~ the body. The integration of equations (1.18) ia carried 
out according t.o the_ ciear Eulerian scheme. . 

The system ot the nonstationar,y equations (1.6) with the boundar,y 
conditions (1.15) and (1.16) is solved by the t1n1te-ditference method within 
the interval {) <. ~ (1 and with using the characteristic relations 
(1.7-1.14) for the determination of the functions at the boundary pointso . 
The space interval (0.1) is divided to (N + 1) nocial points at equal intercepts, 
anti the values of the functions for the following time-layer in the internal 
points are determine~ by the clear scaling circuit of Lax with a second order 
of accuracy (Fig. 2 a). At first, the values of the functions in the two 
half-integral points 5 and 6 are calculated for the layer (j +.t) and then, 
by the obtained. values of the functions in the halt-integral points, all the 
functions in point 4 on the layer (j + 1) are obtfd,ned. 

The calculation of p~ in the halt-int.egral and integral nodal points 
are performed by the solution of the ord~ary difterential equation (1.14) 
along each time layer, using the clear Eulerian scheme. 
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The withdrawal E of the shock wave from the body and its relative 
velocity £ on the following layer is tound by the Newton iteration methoa. 
The trajectory of the shock wave within one time interval is approximate. by 
a parabola, and the vnlue_ot t is the solution or the characteristic equation 
along the characteristic C drawn backwarcl.s from the boundary nodal point· of the 
upper layer (Fig. 2 b). The scheme of the eecond order of accuracy isrovestigatea 
and the value of the functions in the intersection point of the characteristic 
with the j- m layer is calculated. by equations (1.11-1.12). The parameters in 
the point 9 are determined by linear or quadratic interpolation from the values 
ot the functions in the nearest nodal points. 

On the surtace ot the body (Fi,. 2 B), the calculation 'is performed as 
follows. The presssure PR is ori~inally calculated· .on the layer (j + 1) in the 
point 16 by integrat1n, equation (1.14) at the ~nd oltha interval (0.1). 
The pressure P 1 and the velocity components a.re calculated from equation (1.6) t 
taking account ot the boundary condition (1.15) from the clear formulae, and the 
density is calculated by the iteration method from the equation that is a 
consequence ot the relations along the trajectory and the C + characteristic 
d.rawn backwards from point 16. The values of the functions in point 13 are 
determined by linear or quadratic interpolation. 
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After the calculation or'the density, the concentration B 1 is detennineci 
from relation (loa) along the trajector.1 by the clear formula. 

~ 2- The algorithm, described in 9 1, was programed. on EVM-BESM-3M. 
A standard. net with a number of nodal points N • 40 in the space variable ~ 
was used in most of the calculations. Besides the standard net, a net with 
numbers of nodal points N • 00 and 120 was used to estimate the accuracy of the 
individual variantso 

The main calculations were carried out at Mcoo • 5, or - 1.4, q • 0.3 and 
0.4. The activation energy E and the reaction rate L were simultaneously 
varied 60 that tbo relative width of the nonequil1br1um zone of the stationar,y 
solution comprised about half of the width of the whole shock layer. The 
value of the withdrawal of the shock waves 1s closo. to that observed in the 
experiments in 'tlork [7] and obtained in the calculatione of stationary' now 
around. bodies [6J. . . . ' . 

For the Jm1>ose of studying the influence of the l1ach number MOQ anc1 
comparison with the known investi!ations of "one-<iimensional nowe, the 
following values of the parameters were also considered.a Moo • 7.6, 
q • 00615 (f • 1.6),1 ~ - 1.2, E .' 0.5-1.250 These conditions were partially 
considered ~ work La], where the growth of the disturbances.with·time in the 
one-dimensional now in floont of th8 piston was investigated. The values of 
E • 0.5 and 0.6 corr6spond to the steady ana un8te~ modes of !.lOWD accorQlns 
to the linear theor.1 [9Jo 

Two forms of disturbances of stationary now were investigated. A strong 
aisturbance was originally inserted in the initial clistIi-bution. It lei to the 
assignment of constant values of the i'u."lctions of P 1. , VI , p;\ ,f, and. of a 
linear distribution for the velocity ul with respect to ~ • The bounGiary 
conditions on the shock wave and on the body were satisfied. and the value of 
the wi'~hdrawal Eo .. 0.2 is arbitrarily given. 

The calculation was carried on from these initial data to the setting of 
the stationary now. The results of such calculation, are represented in 
Fig. 3. Here, for convenience, the dimensionless time -C • t x (1.62)-1 was 
introduced •. This is related to the number ot the time intervals, through which 
the results'were delivered to the printing at the EVM. 

In the case of a perfect gas. and for small activation energies ($ --& 0.5), 
steadiness rapidly occurs. Slowly decayir~ oscillations with a nearly constant 
.frequency are observed. with the increase of the activation enerSY'. Irrespective 
of the reaction rate, at E • 1.0, the generated oscillations due to the strong 
initial disturbance ~adual1y decay, after that the flow i8 des~ribed by the 
stationary solution ~l.la)o 
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The change of the velocity of the incident now by the lawl 

M",,{t) ~ M~ • {!:. (tit" 
t -o • 

t · canst 
to.: con,t (2.1) 

at constant density and pressure was with another form of the given 
disturbance. 

The growth of the diatrubsnce (19) with time for some values of the 
activation energies and for different Mach numbers M is shown'in Figs. 4 
and 50 

In the first case, at }of:a • 5 and for an activation energy E • 1.0, the 
oscUlations always decay with time,so that this range of the values of E can be 
considered as belonging to the region of steadiness with respect to the finite 
disturbance. For an activation energy E w 1.5, the oscUlations intensify with 
time. 
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An analogous result was obtained. at t1.,. 7.6. When the activation energy E 
was t.- 1.0, the oscillations decayed, and at E ~ 1.25 they intensified with 
time. It should be noted that the 9alculations in the last case were carried. out 
on a comparatively ,short time interval. This is connected with the fact that for 
great values of the activation energy, lying in the region of unsteadiness, the 
numerical errors increase owing to the increase of the gradients of the functions. 
For the continuation of calculations, a decrease of the interval of time and . 
space trom a certa:tn moment was required.. 

We investigated also the growth of very small clisturbances connecteti with 
the increase of the numerical errors.' For that, the c, alcu1ation was performed. 
from the stationary solution of equations (l.lS) without introducing anr 
artifici~ disturbances. 

For 'values of the activation energy trom the steady region with respect to 
the finite disturbance, very weak oscillations are observed near the stationary 
solution. These oscillations practically do not increase br widely changing E 
from 0 to 1. The deviation does not exceed ,.... 0.3%. For values of E from the 
unsteady region, a relatively rapid formation of considerable oscillations of the 
leading shock wave and the ""hole flow behind it is observed. The amplitude of the 
oscillations of the shock wave (Fig. 6) grows slowly with time, and. the frequency 
remains almost constant. The qualitative character o,r .the .curve does not change 
by using a more' fine net. The change of the pro!1le of pressure from the shock 
wave to the bodr at '2. 1- ~ with time, shown in the same figure, illustrates 
the oBci~atory characiier of the whole now ~_th. ~.!lock layer. 

£j 1'1.:" ; ~ -UJ /-/.4 : E -1.5; L -o.3·tO S 

N-f20 I I I I 

0, 251 ,,-uv '.. I 1= I -=.=t=~ I I' I I .~ '\ ~. JIll< ~( I 

0.2 11 ;£ '"".,. /; :;;4) /"-<'k /0.75 ,\ y, PI, , 
f.,V .. 

I ' _ I / I :::or 9' ..... Lj 10.70 

a,ts. ! I I 10.65 
a 2.0 4.0 6.0 8,0 10 't' 

fig. 6 
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In order to exclude the influence of the errors ot the numerical method 
on ~ualitative conclusions about th~ growth or decay ot the disturbances, a 
great consideration in the process of performance of work was given to the control 
of the calculation accuracy. 

For the values of the parameters lying in the region of steadiness, besides 
the comparison of the results obtained with different space nets, the comparison 
with the stationary solution of equations (1.18) served as a criterion for the 
accuracy of the numerical scheme. The small fluctuations of the parameters ot 
the nonstationary but near- stationary solution insignificantly depend on the 
value of E (--- 0.35i) for sufficiently large instants. The comparison of the 
results obtained with the standard space net and with a net with half interval 
gives approximately the same eValuation (see for example, Fig. 5). . 

In some cases, the calculation with the standard net led to a physically 
unreal result. Thus, Fig. 3 represents the result of the calculation at E • 1.0 
and. L • 0.14.10'i , obtained with N • 40 (solid line) and N • 00 (dotted line). 
In the first case, the shock wave monotonically moves away from the bod.y, in 
the second-the oscillations decay with time. 

In the unsteady region at E • 1.5 (M 00 • 5), the nonstationary solution, 
on the average, has fluctuations near the stationary. At the same time for the 
standard net, the ~eviation of the maxima of the nuctuations,as a rule, is 
greater than the deviations of the minima •. The relative error, as follows from 
the comparison of tho results with N • 40, 00 anci 120, is the greatest in th 
neighbourhood of. the maxima. On decreasing the space interKal, the curves are 
shifted to the side of smaller values of 7: • In this case one should evaluate 
the maximum error from the difference of the corresponding maxima. This 
eValuation gives a value of ~ 5.7% for the first three fluctuations. 

The numerical errors arise in the first place from the inaccuracy of the 
calculation of the kinetic equations (1.6) and (1.10), where the product of 
the big (L) and the small (exponent) multipiliers is involved in the velocity 
of the process. In the case of the big gradients,-these errors rapidly increase, 
w~ch leads to the physically unraal r!::sult. 

In order to ~xclude the influence of these errors, an ad~itional series of 
calculations .. with a still more simple kinetic model was carried out. It is 
a.Bsumed that the mixture burns instantaneously in the detonation front, and the 
heat release q of the reaction depends on the velocity of the flow in a system 
of coordinates connected with this front. 

9-" q,max 'P(M) .' 
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Such an enthalpy function changes the explicit kinetic process in the gas 
(distributed heat supply, ignition dela1, and others) to an implicit one and 
serves as if it is an average characteristic of that process. The form of that 
function is determined by the parameters of the incident flow V OQ ,P ex> ,Tc:P 
and the dim~sion9 of the body. 

According to theory and experiment, the form of that function is 
qualitatively determined as represented in the left upper angle of Fig. 7. 
Here, a narrow range of the Mach number M is only shown, where the flow is 
reconstructed from an adiabatic one without heat release to a detonation one 
with a complete combustion of the mixture in a relatively narrow zone. 

H 
/'1 

lJlh 'JII un PH ." lJ.5 . 

Fig. 7 

;,:;: 

By carrying out concrete calculationa of the function cp (M), it is 
possible to approximate the analytic relations 

_. __ .----- .... _.----_.- -------_.-.-

If{M): i [1 t fr arct9 K(M - M liz)] 

The curves of the drop-out of the shock wave and the Mach number M of the 
incident flow in a coordinate system connected with the shock wave are plotted 
in Fig. 7 for the following values of the parameters! M PO ' - 5.1, q "'4.)<. - 0.4, 
r - 1.4, K - 10, M~lI1l1)( • 5 corresponds to qm4..)C -,0.4 at Cf • 1, . 

The stationary solution with such parameters corresponds to a now with a 
detonation wave, in which the mi-xture completely burns with the heat release. 
q _ - i - q Ma.x - 0.3. Thus, such solution will be near to the limiting one 
at L _ <><> for the case represented in Fig. 7; the difference here is in 
Mach number M Q() • 
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It is obvious that owing to the numerical errors at ~ ~ 0.75, the solution 
or the system of equations (1.6) becomes essentially nonstationary. It is 
interesting that in this case, self-oscillations with constant frequency and 
amplitude of the leading detonation wave take place. The mechanism of the 
maintainance of such oscillations is similar to that described in the experimental 
work [3J. 

Owing to some reasons, the stationary fiow is led out from the equ1libriwn 
state at which, for example, the shock wave begin to move in the direction of the 
body. At that time, the thennodynamic parameters, pressure and. temperature behind. 
the shock wave, begin to fall in view of the decrease of its intensity. t\c.c.ol"c1-
'ingl~ and because of the high activation energy of the fuel mixtures, the heat 
release sharply decreases and the shock wave acceleratingly moves to the body, 
Then its retardation takes place because of the compression of the gas in the shock 
layer "the renection lt

• As a result, a peak'of' pressure llnd temperature 
is formed; the mixture again "ignites" and the shock wave maintained by ignition 
moves away from the body. Farther, because of the radial expansion of the now, 
it begins to attenuate and it stops at a certain distanceo Arter that, the process 
described above is renewed. . 

All t36se moments of the process are representecl in Figs. 7 and. a. The thre ... 
dimensional diagram of the pressure a8 a function of the two variables t and ~ 
is plotted in Fig. a. " 

-----------_._. 

,Fig. 8 
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The described mechanism of the pulsation of the loading shock wave with the 
periodic generation of the waves of the burnt gas, which after that are carried 
away downstream, can serve in some cases as explanation of the presence of a 
strictly periodic wave structure of the combustion front. The latter in the 
supersonic part degenerates in surface, separating the burnt and unburnt parts 
of the gas. 

In conclusion, we mention that the values of the activation energy of a 
mixture, corresponding to the neutral oscillations in the investigated two­
dimensional flow, are lying far in the region of unstabUity for one-dimensional 
nows in front of a piston. This follows from comparison with the results of the 
linear and nonlinear stability theory both for the strongly-compressed [8, 9] and 
weakly-¢ompresaed [4, 5J detonation waves. This effect is explained by the 
stabilizing influence of the spreading of gas along the surface. In this case, 
disturbances, do not succeed to develop and are carried away downstream. 
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USE OF THE' BOUNDARY LAYER METHOD FOR SOLVING THE PROBIJll.iS 
OF THE MOTION OF GAS MIXTURES WITH EXOTHERl.nC REACTIONS 

By 

S.M. Gilinekii, and M.L, Khaykin 

A great· number of work a [1, 5-8] is dedicated to the analytical investigation 
of the motion of non equilibrium reaction or relaxation mediao 

In the present workt a hypersonic nonequilibrium nbw of a mixture of gases 
near a wedge or 8.- cone, and also in tront of a moving piston is investi!atM by 
the boundary layer method. [2J. The obtained. solutions can be simply used for 
the evaluation of the influence of the oscillatory relaxation or the nonequll1brium 
dissociation. 

§ 10 Hypersonic noneguilibrium now of a fuel mixture of gaeep 
around a wedge or cone 

Let the heat supply to the gas takes place in a combustion wave of a finite 
width and let this process be arbitrarily described by one irreversible reaction 
[3JI ------_._--_._-----

d,a m m-t (E) 
df ::-Lfl P ~'1P -RT ' (101) 

wpere J3 - the relative concentration of the original reacting compon,gnts of 
the mixture, Ill- the order of reaction, p - presaure, T - temperature, 
E - activation energy, R - the universal gas constant. 

.. We shall be limited to the investigation of plane and axisyumetric nows. 
Following work [2J for the variables or the boundary layer, where ')(.!- the 
coordinate along the contour and 'f1 .. the flow function, we shall write the 
gas-dynamic~_~_'l.1:1at:~O::l system 

au (Iv ap 
'pU-,~.PI/'- ~- =0 

ax ax' ex ' 

I all' U ~- f dp 
-- - - -- =-z -

f + Y '/ R B a:(' /? , + !J' I iJ If I 

~ (U
Z

+l1'l + L.!.. +fifi) = 0 , 
a;::' 2 r-1 p 

u oft ' _ _ ,m m·' E.P) 
1+1J1R ax' =-LJ~ p 2Xp(:- ['_ E. 

B P 1 --.ttl 

-'.--: .. ~' :... . ';:':-'''-~ 

, , --

(1.2 ) 

I 
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I . L 
Here, ~ - coordinat.e, orthogonal:J:; u,v"- the components of the velocity vector 
in the'directions ;x:.L, ~l t R~ - radiuB of the curvature of the now line, 
'Y • 1,2, for plane and axisymmetric nows, M - molecular weight of the mixture, 

Q - quantity of heat supplied to the \mit mass of gas at complete combustion. . 
For the axisymmetric nows, t"(, - the distance from the axis of symmetry to 
the considered point of the shock layer, t'[ - the distance from the axis of 
symmetry to the point of the contour (Fig, 1). The now function is interpolated. 
by the relations: . 

/ej--'--, 
- 'I = J-/ a",' 'pu~, (1.:3) 

, ) 'V' ay = (1 +- tj'/Ra 7i 
ax-' . 

(1.4) 

The 8oluti.on of (1.3), (1.4) is written in the torm at series ot powers ot 
the small parameter £ = ~ 

1'+i 

--------, , 
!I ctyo + ••• 

U-Uo+lU,"'" 

P::Po+fp,+- .•• 

f. 
p C 7+P,+- ... 

V:;~Uo " ••• jJ;;. • ep, -t ... 

-------_. ----... --- ---:-.--

't 

_._~._.l. 
Fig. 1 

The variables of the bO\U1dary . layer I diagramatic pattern of 
now near the body . 

.'. 

(1.5) 
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After the performance of the stan~ard operations for the determination 
of the first t~i'm.S' of the seriest we get a system of equations I: 

J r p 
aX'[T~t J':+,sq} :0, 

a.so ' Uo - =--L m m-' I [PO) ax' .s. Pp etpr- Po t 

oy: I· 
------- , 

a'P' : J'.IJoZ' H 
ayo 

Vr:U --,' o 0 i};r: 

aUG =0 
ax' 

£'=£' e 

Uo -1-' apo 
-:t -
R C}Cf' 

(1.6) 

and for the determination of the functions ~1 ~ ~ )"" ' {?l1 _ W. haver. 

' .. ~ .... ----- .. 

au, + apo = 0 
}J,u oax ' ax' 

._----- --_ ... _-_ ... --- .. 

OV'o u, Uo[!lo ( ) Yo' 1 ,-, i}Pt 
- - - :- - - + ~-I - coso( - "( --ax' R ~ R 'l i}f/I' 

d [ r (PI Po p') J - - ---- +/JU + ax',.-' po p/ 0' I,Q :0, 

dfi, f. Uo':lO) Cfl. 0 [ m-' m-' 
110-;-; +IU,- -n --; =-1. m,8o ,sf Po + 

(IX a~ 

• 
r -1) m m-Z _[' mo.",.,/P,_foP')17exp(_EPo) 

+(m '.Po Po P,. fioPo (p" Po') Po '_ 
(107) 

The representation of the concentration~ in the form of (1.5) is ,a 
consequence of the assumption that the limiting now at t ~ 0 is a non-' 
equilibrium one. and. this enables to take into account. as a first approximation, 
the effect 0.1' the nonequilibrium state. 

The arbitrary functions should be detennine4. !rom the boundary conditions 
on the given contour . 
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------
'i'= a '-af' , 

'/' z: a 
(1.8) 

and on the shock wave, where all the functions are expanded in.' po~ler series 
of the form. of (1.5). 

The relations for the shock wave in the considered case coinci.e with 
those given in work [2J for the ordinary adiabatic flow, and it is necessary 
only to add the conditions of concentration (the index S will be attached to 
the parameters directly behind the shock wave). 

·fi~:-:-'-.fllS = -0 at -~'-:7;7~') 

Cf'''(:c')= 'P'" .l</,'·. ot'e l ) :> , ( • (1.9) 

The systems of equations (1.6) and. (1.7) are integrated. in quadratures, 
, but unlike the Case at the adiabatic no~ this procedure is more complicated, 

and the solution is more cumbersome. 

We introduce the dimensionle158 variables 'X., ~ and. t.f •• folloWl1 

,.' I-m-----'--·,-----,-:;;,---
k. Uo Pax Ij = ~ UO P. Y, ; ,'~ 

.x' = 

f f V 00 ( ., ,. m ' ) oJ r: oo~ L Uo Po ii-nol '/I 
(1.10) 

In this form, the functionx. (¥) on the shock wave becomes ~ Vv. 
For a wedge and cone, the integration of the last two equations of (1.6) 

along the line ~ ~ canst gives: 

where 

-.-- . - --.-.----.---- S--· .-.--.---.~------- .. --.. ----- . -
;oexpf._} ,,'; .. J (c - t dt .. :f (p.' - J. (t) rp -:c - . ~ m (,raj m 

. -
S=_f- E 

{f 1 q 
r Pos 

-1+-"---q 
C • rtl Pas 

(l.ll) 

(l.12) 

In the most simple case ,at m • 1, for which all the results will be 
reduced for shortness, the integration of (1,11) gives (see [4J). 
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J, :: eaEi(t; -a)-fT(0 

co l;/C 

£ i. (l;)" en t; +;:;:;! I ~"> 0 , l; - a ')- 0 . 
1<&( (1.13) 

Formula (1.11) gives an unclear dependence of the concentration,8u 
on the coordinates of the point (':(, t t? ) in the shOCK layer to zero, and only 
in the case when the activation energy E equals z:ero (8 • 0), it is possible 
to solve this relation with respect to j3o' 

When the activation energy differs trom zero, it is necessary to select, 
as independent variabltJD, the value of the concentration Po inside the shock 
layer and the value of the concentration A 0 on the contour in such a way 
that the coupling of the old and new variables will be given by the equations I: 

x" :I,rf} -:I, (JoD

) 

tf .. [1,(1.)- :I,{/o·)] II. 
(1.14) 

Further, it is necessary to express all the unknown tunc-tiona in the 
variables Po 'A~ in an obvious forrJ, and then, for example, plot uaphically 
the dependence on :c. and '? • It appea.rs that all the unknown functions of the 
first and second approximations are expressed in a combination of exponential 
integrals, tr~scendentnl and rational algebraic functions of ~ and. PoD. 

The calculation of these functions reduces to a part,ial differentiation, 
or. intogration along the coordinate lines x • const, 'f.J • const, 

where 

Finall.yll.Jf~_Q.l;>_~~ for a wedge in zoro-app~oxj,mationJ 
----- z z z .p sin c( 

Uo:: V.., eosel , Po" Poo Voo £i.n ol • .Po: ..:;:...::;:00:-.../_-. , 

rr'c-.I>. 
v g, .. ) 

V':: ~ (..fill -.aD , 
SLn 01. 

Yo: SinZ~rJ..[CP,(~)- ¢,(t:.)] 

ael: 
cp(t;)=c[ea£i(l;-a)+(a-t)fi(~)- ~] , 

aC 

l!:o :; c +J3: 
. - --L.!L 

I ~ - r+ f V! 

Yolf:Si.n2id.1CP,[~~)- CP,(l;o~] ,'~s;: :_~ 
~: (~) determines the form of the shock wave. 

, (1,15) 
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In the first approximation, we shall havel~ -v-- --.. -------------U;-:u ,J:;T= - c;:~ [c -}Jc" Jt (Y') ]-, 

p, " .reo V ~ 9- {Z c-f -).:)300 exp [-a /(! -,,,Olc) 1 ~ 
/( [J,(} 0) - J, (IJlI -1'00 v~ ~in~ - POQ , 

(1.16) 

,P, ".fto e;:p[ a!(I-fi,'/C) ] [CP (-/:) -¢(-t;J ] . , 
. 2 

; _ Poo un 01.. [ P 
,- ~2(C-.fo.)2. .fo~..! .)3,9- -Js/(,/t/J)] " 

whe.r~ C1 [ [ -II'J cf(-t;)::c. 1~lJ,-'fs.cA('f)l e-rt£i(a-t;)-.~ -
. ~ .. 

-co:: d. [ c -}o·· (If)] [e -0 £ ira -l; y- £ i (- 'f;)]-
~.: .. 

Ii > 0 

.I. r) - 1 [' Pts .fo t:J } (1.17) 
'" _ _ _ S J-'s 

SKA v2 fJ - % 
GO 0, .flo,,· 

It is obvious from the formula that the concentration A along the n~w line 
monotonically decreaseJJ~rr_~_Oll~_ ~~~~_(~ •. ~X •. _. __ . 0 

I I 

J 
{'aU. "-0 

1.0 I..;:-L..-,-

as 

asl \\f\ \Q' i. 

a+1--~ \: '\:: -~~:---+---+-~--...:.; 

0.21 i '\o.~" ~~ I ~ '" -.;;: ___ s::: 

o ,0 JO J 0 • 0 10 60 x 
fiSo 2. 

Distribution of the concentration )'3 (x.) along .tho generating line 
of the body 

_.first approximation 

______ second approximlltion taken into account 
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In the first approximation, we shall have,; 
-v-----------------u,-;U.J tp )--= - c:~ [c -}Jo" If (If) ], ----

P, 1: .Pc.:! V ~ ~ (Z c-f -J.:}o" exp [-a l(f-loDlc) J ~ 
1I[:I,(/o} - ~ (fJlI- foo V~ ~inz", -Poo , 

.p, =}o etp [a/(f-.s"/C) ] [cp (-I;) -¢ (-I:;J J , 
. 2 

.Pao un d.[ P, j f)]' 
.P,: "A - ,2. .Po V'; ".fir ~ - s"" { If ' 

wh8-l'~ a -ir 

cp {- t;) :: 7.[ ! + cy-'jSKA (r)][e-aE. i (a -1;)-. ~ J-
. ~ .. 

-co:Zd. [c -,so··('f)J[e-a 
f ira -1; 5- [ i (- r;) I 

t) > a 

(1.16) 

I;'~ 

.I. 'If) = 1.. [' Pr, _ .POI Prs ] (1.17) 
_ ''''II I ~ v1 Jl Z. 

- 00 QS .PO$ 

It is obvious from the formula that the concentration A along the now line 
monotonically decreases_fr_opl one to zero (Fig. 2). ..0 

. ' ---'------_ .. _- ---.. --_ .. _-_ .. '--'-
j 

ta/J. 'fwa 
J 
lO~~'~~-r---r---+---+--~--~--~ 

l!.St- \\1\ \J~so: !. 

a+1--'t! '\ "\.: '-';;~~'-,-+---+--r--"" 

IJ.:!' ........ ~ .............. ~~ I 
I ~-......~ s:::: 

o to 10 JO ~ 0 fa 6 a oX 
Figo 2 

Distribution of the concentration )3 (x.) along .the generating line 
of the body 

_ first appro::d..mation 

- - - - - - second approximation taken into account 
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Formulae (1.15) and. (1.16) are essentially simpUfied and become evident 
with respect to 'x.., t.p when the e.c~ivation energy is equal to zero. For 
shortness, we shall not give these formulae here, since analogous formulae will 
be written out below. 

It should be noticed that the pressure and velocity in the zero approximation 
are calculated. by the Newton formula. Taking account of the first approximation, 
the velocity u is constant along the flow line, but it changes across the shock 
layer. The pressure changes nonmonotonically and it has a maximum. On increasing 
the activation energy this maximum increases and shifts to the equilibrium region 
of now. The curves P: / }-,' • f (x) along the wall of the wedge are plotted in 
Fig. :3 for the values of B • 0 and O~7; C • 1.:3~ 

.---.---~------.- .. - -. -- ----
j(x) = 1- (2C -1t f

}: fl + l?Xp[a/(f-floo/c)[J,f.P:J- ~(f)] j 
, 

PI£ ' P, 
ill 

11 

a-o 

! ! C-IJ , v-o 
1 

---r--~. •. "f""-~-"" 

V 7 ..... -. 1-- ". ~.~~.,! ~.,.. "'-:r. , 
to 

4~ 

I r I / 
, 
! 
I 

v/ 
p-

a.s 

Q.6 

. 
---- --D.1 

o (0 1.0 lJ) "0' 10.... 6.D 

Fig. :3 
'1.0 dO J: 

(1.18) 

. ., 

Pressure distribution along the side of the wedge for two values 
of the dimensionless parameter 8 

Taking account of the first approximation, the density and concentration 
monotonically decrease along the line ~. const. For the determination of the 
function 'tJo (Po, Pc> ') we haves 



-

CI 

c 

1(-

.. 161 .. 

\ 

2 fl. 
Yo: . 9-

2
_

1 
!(C-t)t-'[X+:J,ft)-:J,{t)]exp( ~t )dt • 

SV/ ... •. c-
.8. 

(1.19 ) 

I 
\ 

\ 
~~et'e ;t(~)aallc{A[a-'ea£i(~-~)-Z£i(t:'fr f~]+ 2~ [eali(~-a)-fi{~)t+ 

. 2q. 
.=. sitrZol[;(.(l;)-"t('=o)] ~ 

\ 
t z e!: Z~ a oJ .. TEi (l;)- ~ fi.(t:)+Z£L(2~)- ~ -e J 

[ 
Cl. /, • 17 • J' Ei. (~ -a) e I: 

I A-:. :c- e E"It:s-a)~E~{l:s)J , j : ". dl:; 
I 

(1.20) 

-~ ~ 
We present the function ~ in an integrand. of the un.atationary inte!I'al 'j 

in the form of a power series in the neighbourhood of the point a. Performing a 
term-by-term integration of this series we shall havel -----_._---_._-

a oa 1(_' I( ", 

J\:.-;X{-t} ~~ 
Q /(0' (1.21) 

where 'J IK is calculated by the recurrent relationsl 

---~- -_ ...... _. -.. _--- --------
I 1(-' ~-a ,I 1 " J ::{t: -aJ e £i (t;-a)-(K-I/J - J 

K 1(-' If-' 
/ ~·a II 

:I, "e fi(l;-a)-£i(2{~-a)/, 

J/: !. e z(J:-a) 
z 2 , 

. 
1/ I (t It-' Z(I:-a) 1/ 

J • - (~-a) e - (K-f)l ] 
I( Z 1(_' • 

(1.22) 

-"-T-;-r- Yo c;. [. !. rJz ) 0 

7' -:. - Y. - cosel ~ -- "sol'? -x -.JJ x -
o 00 X .::t $4nal. 0 

-a'c(Ei(l; .. ~t:)+a2C(f4(~Q)_ :.':o)]} (1.23) 

The position and. inclina~iOl'l o~ the shock wave to the x. direction are 
determined as follows I:: . " " 
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y:= :tl::'J [X(~$)-1-(t;.)] , 
(1.24) 

. ' 
Yo :: V"" sin Zol foo - ~ 

PO $ v., (1.25) 

In the zer,o approximation, the difference of the solution for a wedge 
and cone appears only in the form of the shock wave and the value of the 
velocity va and the velocity L.l o 'i the pressure, density and concentration 
in these solutions coincideo 

It follows' from system (1.16) that in the_r.!~.pt a.PPrQximation for a 
react.ion of the: first order, the parameters P, I P, I "" p, are 
determined for a cone from the same differential equations recorded alon.!;· 
the flow line for a wedge, with an accuracy up to the coefficients which depend 
on !Y-' and are determined in the shock wave. Therefore, for these 
functions we shall not give here the tedious formulae in the case of G;f- O. 

I 

We shall write out the more simple formulae for the case of B • 0, 
when all the functions are ~vidently expressed in x:, ,? .. 

':'"f ~ I--·-----~' -,-,; 
zero approximation 

Po=,FooV:s0zol ,)o·exp('I"Iz.:r) , u ... V ... 'D~!>C , 

f." f«JK"~(I- e'l'1fz-
x jJ-' , 

1 J.. z r:, -~ t.,,1 liz ) )17l 1j.::::X:$i,n2a(lJ<sLl!0{·'i'+~L'f-2e If+:c),e (I/J -1 flJ) 

i'irst approximation 

-'#' 1z 1/.) 
Voo f l I-e 0+'(1 Z } u,:::- - I( sin ex + l1.[1- 2 1 

2 co,o( r 'f', 

P, "f04 VOQl si.n~ K(f -:x: )-(,00 ~\in~ + Poo) + 

+.f, V o{~ _ ·'/I t Z(f-e-x..;re-X
) 

CQ 00 I' l{ 4¥ - -------.: :c X z + 

t e-:A:(;t;2:2; +2) [e oJl '/''I'_3 </I ,!z+ 3)+ !_ 

• e:l;( Xl. j:x ~ 3) - :c l/Z ] } 

( 

(1.26) 
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1 1. r. 2(1 .oI'~~. '1: .«/''1:) Il-~-·- --

,A=2COSZof..lKSin2r:i+9-l.'';' -e;1/' e ge",.,Z(t./I,tz_ X ) 

. t 

~ - ' _ f- s£n Co( ( P 
I [xs£n%,J."rr(t-e",'ll-XJr p""V,.! +fl,9--fsl(alf(~)} (1.27) 

The behaviour of the gas-dynamical parameters in the shock layer near 
a cone, taking account of both approximations, is qualitatively similar to the 
behaviour of th(t corresponding parameters near a wedge. 

As an illustration, a comparison of the position of the shock waves for a 
wed.ge 8IH cone with the same esxpansion angle 2~ • 600 at /"\00= oQ , q • 0.5 
is drawn in Fig. 4. The shock waves for frozen and equilibrium nows are shown 
by the dotted and dash-dotted lines, respectivelyo 

The pressure distribution along the wall of the wedge and the generatrix 
of the cone for these conditions is represented in Fig. 5. It is obvious that 
at the same activation energy the pressure on the wedge tends more rapidly to 
its equilibrium value than on the cone. 

" /61 I { .r 

I~ I V II ! 

12 

31 1/ Ii/ / 

61 Ii //1 /1 

~ I !~. Y I /~ I 

2 I i ,1/ : / <1 1'-"" -< -I 

o 2 " 6_ 8 X 

Fi$.4 

Form of the shock wave for a wedge (lJ • 1) and a cone (J) • 2) with 
expansion angle 2 p4 • l:/Jo, M pO:::: 00 , q • 0.5. 

"\ 
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Cp 

0. 

4 

0. 

46 

q.s 

q./; 
U lI.q ~.O 4.0 If) .% 

:Fig. 5 , 

Pras~re _coefficients for a \leclge and a cone at 2,A ;~. 60°. 
I MDQ== aD ,q" 0.50·· 

\ In the caee of 13 .. 0, the pressure on the wed.ge anci cone i8 calculated. 

by the rormula~1 . .. ··-1- .---------

Cp\ =_P_-_P~ =zsLnZol.{l+ _1'-_'[1+ Z + 
.. ~. 5'.., v~/z {I' (r')M~ sLn2.,( 

I. 

I . • .;J:..- (t - e -J( + X e -X)]' 1 (1.28) 
sln 2o£ J 

C 
-2' 2

1
ft r-1[1(1 2 ) 9- (5 2(1-e-x..xe-

X

) 

p - HI!"" +-- + +---
.IIO,! P t" (,-I)I1! sil1 2...l jinlal," :c: Z -

_ (X2~2X+2~(XZ~3:+3-3e-;C+x'e·:t"/2))J} , 

. x 
(1.29) 

which convert to the known formulae for the adiabatic flow around a wedge 
or cone, if we put in them q • 0 (gee [2]). 
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§ 2. Noneguilibrium flow of a fuel mixture of gases. caused 
by a piston moving with a high supersonic velocity 

I 

Simil~ to § 1, it is possible to investigate the problem of the 
motion of a mixture of gases, generated when a piston moves with a high 
supersonic/velocity. The original system of equations in lagrangian 
variables has the form: 

f 

/' 
I 

,\ 

/ 
1/ 

,II 

I 
aR 
am - .fRO" 

alR Nap 
- r:-R -
Jt 2 ~m f 

fJP '" " ~ {£] at::-Kfl P.f exp - Pip 

d ( P ) '.'fj ) Jfi· - - ::.g T·/~-at Pf J at ( -;.. i) 

wher, "( - the ~.nitial distance of a particle of the gas, by which the 
shock wave did not pass yet, to the plane of the axis of symmetry; 

Q - the quantity of heat released on complete combustion of a unit 
mass of the gas, 

o 
.f - density, J10 - pressure of the unburned gas. 

We shall introduce the parameter £:::~ , following [2J 'We. shall ,., ... , 
seek for the solution of (2.1) by the method. of the boundary layer in the form 
of the fo~ow.L~g series: . 

R"R'~~O(tii)--., , 

P:Po+Ep,+O(E'J , 

J I: :- + S', + o (c) 

) ~j3. tE.J3, + O(E
l
} 

( ;? • A) 
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The boundary values for the zero terms are obtained by the analoguous 
expansion of the boundary values of the unknown functions. For the zero and. 
first terms of series (2.2), we obtain certain systems of equations. 

For the zero terma~ 

aRo '" 0 
am 
aZR ~-, J Po _0 __ /\ _ 

,)tl - 0 am 

~ (..'!.! L ':'f.q c/;o 
at fo / at 
CJfto -,..":: {f ("' ) 

. -:-KP. f' 0 Cip '- , elt r .. 0 J (J P./P. (A.3) 

- -e . 
Where K • K. t • From (2.3), it follows that R 0 • Ro (t.). As R 0 (t), we 
shall take the law of motion of the shock wave. Then the equality Rj • 0 
is fulfilled on the sheck wave. Let us turn from the Lagrangian variable m 
to the Lagrangian variable 1:' using the relation. . 

~-;'R-1H)--
m,= J 0 

Y • 

From this relation, it is obvious that ~ is the time of passage of trie shock 
'tlave by the particle with the coordinate m. The system of equations for the 
first terms haa the following form: 

--YR-, --,-- --_ .. 
am = ~ R t-' , 

o <>.. ~ 

..., ap, ( ) Ro a R, R -:: ~., -R .-
(Jam Ro'dt2 

dj3.j ·1 d[' ( .PI) Po] p.-afo 
-q 'it " "2 J t Jl} P, - Po .p • . ~ .f 0 - Po z at 
a.fi,,, dJo[m fi, ~n .E, tf P, _ EC' (PI _!l)J 
J t () t _.fl. Po fo P.lfo Po Po • (~ '~J 
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Let us write the system for the zero and. firstterma in a dimensionless 
form,: . 

.. .r .t( •• lln _ p • 
K aK·E Tf pa I P= ,p'a'" 

l £ B-.f.. • 
= a oJ .r - ,p' 

- t t ~-
T 

if ;; :E.. 
r 

- R 
R=­a'r 

- Q 
Q==? a 

where T - a certain characteristic time, After simple ccmversions, the system 
for the "zero" terms will have the following forml 

_2 R:!!- !! • 

~=R +~-~R-~(-) 
• 0 ~ - ~.f t' 

~ R. 

- [ P ] ,It ,':.., 
~o= ~(f)-(r: f)Qfi" ,Whu\l. f{f)=(T~ ~Q tfi,z[t t ; •. , 1z ] T 

• 

t -dJ1 - 0- £~o, ) 
;)t" =-R,B:p.n+e[C(f)-(r+~qJo] T exp{-::-_ 

. ~~ 

- - t jt, - 1>0'( ).:.. /:-J _ 
I?" =R,-E. ;;i.It~' ;;8, f R.,!' d-r: • 

" T. 
(2.5) 

Here R u - the law of the movement of the piston. The third and forth equations 
of (2.5) are an integr&l-d!fferential system of equations with respect to the . 
unknown functions )3; and Ro 0 For solving this system, the approximate method 
of solution was used, which is algorithmical1~ realize'!. on the computer as follows I: 
the iteration method was used, in which the value of R n was taken as the zero 
approximation for Ro f Po was_determined from the third equ~tion, and then the 
following approximation for Ro was determined from the forth equation, The K 
approximation forlRois expressed by the formula 

.. ------... -- .- ... -... --------'1'---""' ---: . .!. - 1 • . .• , 

- Mr-} - - r-) 1 J 1 .:.. (11-1) - r- (1(.') - ) ~., -
Ro t -Rn t +c(K(I(.tJr-)),O' -:- Ro (7:)(R. (-r:) d-r:. 

• t "P. 
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Let us write the system for the zero and firsti:erma in a dimensionless 
formi: . 

-.. -~ T .tr • .~n p p. - Q /( .. K'E f fa; =.P~ a.t J Q=~ . 
,. aO 

j 

£ - p - R . ) . 
{= aD' f:: ,p. H: - t I a.°r 

,'1 

- t - 'C 
II 

t :- 'l' = -I 
T r· 

where .T- a certain characteristic time. After simplo conversions, the Dystem 
for the "zero" terms will have the following forma 

p: = t + if.: (_7t ~ ~ (f) 
• 0 ~ 'tlRH 

o 

'p '!r 
~o:[ ~(f)-(r:t}~fio] .(.:.' () ')--'l Z .1]' wh~ I"~ C f :(T~ ';fl t R. 1 t r-" -r: 

d'p. __ - m- n.efc(f)-fjT+f}Q}otf exp{- !l/~ ) "if - K}, P. L' p./fo 

t - - 1 , - .!. 

Rn =/?.-E. Ki .'() !-'K/-'(f) R. (r:}d? . 
. " £ 0 P. (2,6) 

Here R n""" the law of the movement of the piston. The third. and forth equations 
of (2.5) are an integral-dlfferential system of equations with respect to the . 
unlmown functions )3~ and Ro 0 For 601 ving this system, the approximate method 
of solution was used, which is algorithmical1~ realize<!.. on the computer as follows.: 
the iteration method. was used, in which the value of R n was taken as the zero 
approximation for Rot Po was_determined from the third equqtion, and then the 
following approximation for Ro was determined from the forth equation. The K 
approximation forllo·is expressed by the formula 

~--------------- --- -- "- _._, .-... ---
t - (K)r-) - (-) , J f .!. (1/-') _ I-(I/·'} _ ) i·I -

Ro t = Rn t +E (p,(I(_,,(_;),_' -=- Ro ('r:)(R" (~) d'!. 
• toP. 
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The iteration process was cut off on achievement of the conditionl ---._- . 

--------- ----... _-
/((~}(t) _R/l(orJ(i) /" b. Rn 

where 8 - a certain conBtant. 

- t'~) After that, lithe third equation is solved with the found Ro • which is 
taken as the law of motion of the shock wave, i.e. PQtK) is found, and then 
the remaining,te~s of the zero approximation are foun~. 

The system of equations of the first approximation has the following forms I: 
1---------- - -l---- - --- - --0-- ----'----

- 1 J t - ,. 'r-) -K, -:'- -i"(-) -=- Ro 't' dr 
\ R. t 0 Po ) ,. 

'I !! f -. - - ' 
- (; )RoJii ':'(-)R-~"(-)d- f jti'R'.!.{f)d-[t :'Z{)~ P, = 0 To' - n' R t' r: t'. - --::- R 1: r: 0 - - Ii f , R ~ - '0 0 R H _ at tOT • 
'I, o't 0 't 

, 

J, f. PO )-'{ P, P, It I )lliJl iJ} - - } .P' =((0 L'o'- or - -I!~f I.f "t_Omj.dt+Qr,~,)), , 
"I JO 01"0 JO t::i:' fa 
\ " ' 

, 

d\,= ~~o[ m ), +(n+ ~£.r_ ) ~ +(t- !l~')~ ~0)'1PI - P, h 
at, at .fl. Poj.~ P nlo To oT' ar--

,0 ° ro/Jo 01". .T. J 0 t:'j'; 

[ ,~', " 

-q(r+tJl ::·mfodl +qfr~I)I'}}] 
For simplicity, calculations were carried out for the case or piston movement 
with a constant'velocity. 

----. --.----. --- .--~----, 
P, 

jf 

50 

H 

40 

Jr 
o 2. , 4 l 

Fig. 6 

D~pendence of the pressure on the piston upon the dimensionl 
timet. l.J =1, 2, 3...:..plarie, cylindrical and spherical cases, 
respectively. 
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Fig- 7 

Law of motion of a plane piston. 
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!O I f\..?'.l I 

•. 01 I I :::t=-.I 
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Fig. 9 

Dependence of the de r\ .. it~. on the piston U P0i'l tilY1e.· 
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The graph of the distribution of the pressure on the piston at differentU 
valuea is shown in Fig. 6. 'fne graph of the law of motion of the shock wave at 
different lJ values - in Fig. 7. The distribution of the pressure at a fixed 
instant· on the li coordinate - in Fig. B. The heat distribution on the piston 
nt different y values- in Fig. 9. 

The.' problem Was solved for the following numerical vs.l~e5 of the parameters, 

I') . - -9 " 
., m" 2 ; l '; n '; 0; R n = 6 ; Q s 30.; £ = 10; 7' : 10 se.c. 

For the! investigated ca •• (R.~. ~ D:), from (2.3) w. bave" 

I p. = 0 0 ;'2 + o·RoR~ ~ ~ => o III 2 
./ • J~ 0 J- ~ j{ ~., m j' IJ 

o 

. z 
p, . ) ·z f 2 a } .p: =-2Cl;" fe(,,), ~he-r~ e(r: =2t;+Ro(l+ r-' i?: 

/ fo = po/rC(1:) -ZC?J.) ! 

I Substitutin~ ~o in the forth equation of (2.3), we iobtain.ari equation for 
I t~i d~termina~iori __ ~_f_p!!. __ -~-.. - ____ . 

- =-KA P (C-2t;.A exp ---;).fl. - m ". t )Or {£ EO' j 
at ""0 0 .ro c-Zr;;o' 

The boundary condition for the shook wave is as follow a I: 
------_._---------

~t t -: 'C jJ'C, "C) = 1 

Since Ro • Dt, then C ('1:) is a constant quantity. It is obvious from the 
equation that fie> ==-/30 (t-c-c) therefore all the values of the zero approximatioll 
are functions of t - c-r;. In the zero .form Pc is expressed by the following 
relation I o. 

- _ .. _--------

. .6. ex p{- fe' } J cozQJ3c t 
f m! d p, - -j fI.t 

j3" (C 0 2 Rfi)-e 1'0 --\ Pc dt 
(2.6) 
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At a fixed '"C and. t ---.., 00 the integral on the right side is dropped. 
therefore the integral on the left is also droppedo At m ~ 1 (this case 
will be investigated.) this is possible when at a fixed ~ and t _.0 

we have {3 0 ~ 0 , i.e. any particle burns for an infinite time. From the 
fact that po .. t (t - (;), it follows that for any particle the process of 
combustion will equally proceed if only we take t .. "C as the start of the 
accou~ of time for the particle. As the integral on the right side of (2.6) 
is not taken in an evident form, then for finding Po we take advantage of 
the approximation method, using the following consideration. As J3ott-"C.)~ 0 
at a fixed. val~e of -C and t _ e>Q ,then it follows that for any value of 't: 
and ~ I there is such a value of t that at t '> 1:: + t r it follows that 
130 <. c.f> t t'· does not depend on 1;'" and Po ('1: ~ ~.,.-t I) = y">. In particular, 

we take ~ = £~~ • Therefore, at t > tV + '(; it is possible to neglect )30 
in comparison ~ith 1. Then for such values of .t we obtain the following 
equation for the determination ofjYo . 

I 

----- ---' -_ .. _------_. 
al. - m n e {£ EO'} ji =-Klo Po Po exp - T 

here .It, • c~st. Integrating equation (2.7), we have: 
\. /, .--.. ~------.-----.--- .. , .... ~. 

' .. /'>D=l[RP.,,·ffto1:)4iJ e m{/"I #-f,·mj,:m 
C e1.p -:L . 

c 

I 
hare '2 - a known function of t'. At the interval "'C ~i ~ '7: +t 
Wo approximate )tto a paroblat 

....... -. ... z·· ....... . 
j3o-aft-!"} +C(t-r:). 2 

at b t Z, t' are unknowns. We designate 
---------- -- --- -. ..-. ---'---'--"-------'-

- n l {E E-! } 
I< P. .fo exp -: -c- : l:; • 

(2.7) 

Then the four conditions for the determination of the four unknown constants 
take the formr 

1)t-t w >}.=f 

z)t-"C+t':>I,,:"f, 

. m d.fio~ = -I; 'f 3 -. , 
J il"C t:t:+t 

J)o _ - " (ex __ _ 
{ fl-' lZ 

II) Jt ft:f: --Kpo f. P C·2Qpo .so' 1 
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moreover t t· • ~ + 'to, where ~" - a known constant. 

From equ~tion (2.4), it follows that at ~ • 1 the following relation 
is fulfilled: 

P, -Z,p°C1{J,,-t)-pO_,P0'jJz , 

The third equation of (2.4) is integrated at once if the followint; 
equality is_ tak~n into account. -

BO that 

where 

... ---~.-- ~--- -~. ------_._. ----
, p. a,. d). 
- - :: 2Q-

I, P.z Jt Jt 

\ 

\ 

1 [' ; P, ) p. 1 "2 O"(Pt-poD -p·:-?f:/Jo=-f1J,+j,(r) I 
-. I J 0 J. J -

I 

-J,(r:j:!.f(!.!.)'·: -(~) -_. J~';'Q-'. 
, 2[1 p. t;'( J t:t; 

o 

Let us express ..P1 from the given relation in ,131. and _substitute the known 
"zero'~ and "fi.'t"st" terms in the forth equation of (2.4). We then obtain an 
equation for the determination of ~ 1 

;J), -~-~fi:-[-~(e---E E ~1 p ;rf -~q)}-,~------- --
at at }. Po Po 

_ J). {~ (n d) +(e _£·E.":.t I'o ).[fo• P: (c - 2Q) ~ 1 J} 
Jt P Po P.f'i) 

o 

The solution of this equation at 131 h:.f' 0 has the form 

where 

---,-fi--: c (t-~-}-J}~----- -----" -------- --- ,,-
ft. Jt ' 

C,(t, ,,)'=- t+n (Zf·q I-pOtJ'·'j)~(t-t)+e(t-rJ+ t.n f', 2ft • 
~ ~ 

t t t - t 

x fl. dt -fl.-,! f. dt + l(c-Ul)! f. dt -(c-ZQ)ft-'.I(f. / dt , 
?: 'l: P. - 'C P. t Po 
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Here the formula for /31. is not given because of ita tediousness. With 
respect to .13f we only mention that as *,0 = _ ! J3o'tYI at t ) cr + to 

then f3 -! -0 for any fixed"'; and t -> 00 • The law of motion of the 
piston Rn (t) iS I det_~:r:~e~Lg.JLt.:QUQWSJ - _ 

, - 211 t 

I R (t}=(O +ER )' =1Jt-t£t+E-!P. It 'C)d'C 
II 1\0 ./-r .. o 'n q, r.('. , ~ 0 

tim Rnft); ljJ:. E £.. ;: const . 
t ... oo 1) 

Let us consider now some quQ..litative pecuJ.1arit1es 01" t.ne found solution. 
We shall show that after the lapse of time ~ 0 from the beginning of 
combustion, the' characteristics of flow with an accuracy up to ~~ become 
constants equal :Ifor all the particles r: 

\ 

-------po;;,-·-?/- --;-----P,: - po-.-;'°i z-=2poq +O{t-ij ;---
• \ p ) 

A < l4 \ qt t > '(; ~ '( and 13" O/Ell - p = ~ + ott l • 
.1'. tJ .' Jt C<I'J o C (C, 

f. "Collst + 0('-%) 
f -, Oec .. :t"115\!. f, -f(i, ·10, Po ;p;); 

JR c 2f¥ 
u(it' t}: - =7) -E.- + e ~ A 

'at 1) 1J",ro at t >t + t. • Le. 
u(T:,t)='lJ.EE.. +O(lZ) 

------ CZ)_ 

It should be noticed that since all the functions depend only on the 
argument t -", then after the combustion of the particles the now (with 
an accuracy up to £. 2

) will be isentropic. The equation of the line in the 
plane R, t, by the attainment of which all the characteristics of flow 
become constants with an accuracy up to t'2, is written in, the forms: 

{ 
~~R (t~~T--- ---- T kIt:t ;:'~~j -~:~~~'~hi~~\' --
t.--r: .. t n Dr· R:'!Jt+t-(-z +-t *-'lJ.t-z 

- - • 'l)l 3 0 2· • 'Z.> 0 

The given line (we shall call it AB) is parallel, in the plane Rt tt to the line 
representing the shock wave (Fig. 10). In the region lying on the right side 
.01' AB , it is possible to establish an isentropic flow, assuming that the gas 
is definitely burnt. In order that the solution can be plotted in the region ABC, 
realization of one of the following conditions is necessary~ 
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1) The line AB must be a characteristics as the characteristics in the 
region ABC must not iJ:ltersect.the line AB, because all the functions are. constants 
in:ito~'The relation, 

R = t.L + a 

is realized for the characteristics in the region ABC, Henc?e, it follows that . 
on the line R • D: . 

. -\-'f1 .. u + a ancr------
'rP' 

a f8 = vr Jl : IT (1 ~ ~ ) fcC ~ 0(£ Z) 
i' C 

UI =TJ-e-
AS 'D 

\ 
R 

----rTf, 111 iii iii I rr c 

o 1: 

F j g', 10 

where a-- the velocity of sound. Thus, the velocity of the shock wave. at 
which the line AB is a. characteristic, is uniquely determined ,; 

--------
iJ Z = (l-I)[2Q + ,: f cro

Z
) 

+ z . 21 rI-r (2,8) 

In such a case, instead of the interval ACt it is possible to take 
another law for the motion of the piston, and the solution in the region ABC 
will be a simple rarefaction wave, 
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2) The line AB m~ not be a characteristic. It is possible to plot the 
flow in the region ABC by the use of the characteristics, and as the piston in 
the case of t >?J moves with a constant velocity with an accuracy up to E.~, 
then this flow will be a progressive one. In this case the characteristics 
will intersecf the line AB. In order that the inclination of these characteristics 
was larger than the inclination of AB, it is necessary that the following 
inequality is Irealized: -----.-.. , ·-i -.--- i----- .. --·--·----·-

Z 0. Z • 
'l>~/.J+li··t:. 

i'J\ dR \ z (,- f)[Zq + -, aolJ 
U < dt \ U ~ a 0\' 2l ~ r-

.. \ 2,'+1-, 
In the present case there is an analogy with the detonations, when the 

mixture instantly burns in the shock wave. From the great number of possibilities 
of the propagati,on velocities of the detonation wave, given by detonation 
adiabat, the ve19city, of the propagation of the wave of Ch.-J. is minimum. 
Therefore, it is. possible to make an analogy between the velocity of Ch.-J t 
and the ve1~city~of the shock wave, which is given by (2,8). Since in the 
case of K ~OQ the time of the combustion of the mixture approaches zero, 
then the obtained solution must change to the solution of the problem of the 
motion of a plane, detonation wave, and th~ velocity determined by (2.8) must 
change to the velocity of the wave of Ch.-J.' In the case when the counter­
pressure is not taken into account we have I: . ' 

cz>;=-z!/-tjQ. 

In our case~ the velocity of the wave is calculated as follows: 

where 

7-,0.,' ~ 
':) -;':..!-;- <mel 

-.r ·'-r 
(_.f: 

'DJ 
1) --2 

# 

'''.:r " , ;.'., t ) 
, '-;/'7- ,;1:..7 +1-,. 

... ... , I. 1/ U .. ' 

This discrepancy shows that the method used for the solution of the problem isv 
generally speaking, unfit when the velocities of motion of the shock waves are 
near to the velocity of the wave of Ch.-J. For the highly supercompressed 
waves, the heat release ellll't'ti a. lesser influence on the character of flow. 
Therefore, the solution obtained by the method of the boundary layer [2] for 
such velocities of propagation of the shock wave will give smaller difference 
from the exact solution with a detonation. The velocity obtained after the 
combustion of a substance can be used for the calculation of the limits of 
applicability of the boundary layer method in the case of the solution of a 
problem with chemical reactions. Thus. it is sufficient to compare this 
velucity with the velocity formed behind the ordinary detonation wave. The 
velocity behind the detonation wave in the exact so~ution is: 
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-----". ----

U;: 'D(1-t) ~ n!r-Cl-;E' 
2 

The value of U '3 - corresponds to the wave of Ch.-J. 
--------7)-(i-:(.} 

u = ~:J __ 
:1 Z 

(2.9) 

In the case under consideration the velocity of the gas after its combustion, 
with an accuracy up to £ ~ , is determined by the formula:: 

\ 
\ 

It is easy to 
\ 

see 
\ 

u+ ::. 'rirt -E)- E !.! 
'1l 

that in this case when: 

-- ---. 
r-t(8Q [ .. 3) 
- -+-- «1 at! ~.! r'" 

(2.10) 

(2.11) 

formulae (2.9) and (2.10) coincide with an accuracy up to t ~ i.e. the 
velocities behind the detonation wave and behind the region in which the 
mixture burns asymptoticall~ approach each other at r -, 1. Since"¥ ~ 1.4 
in problems of the considered type,thel'l ~ E: 7; • Thus, inequality (2.~1) can be 
considered as the criterion of the applicability of the boundary layer, method 
[2J in solving problems of the considered class. -

In conclusion, it is worth-noting that the law of propagation of the shock 
wave in the case of spherical and cyl~ldrical symmetry, corresponding to the 
steady mode (R 1\ a const), has the form: 

-""" . 2'4 (r- t) 
r , I \ ' • i IT· I v-rr'} 

Z. 
~J Z( r- 1 ) 

ant! -, ~ fir d} J--';:)~ (+t· 

Thus, the deviation from the mode of Ch,-J. increases with the increase of 
the value of lJ , 
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LINEARIZED SUPERSONIC NONEQUILIBRIUM FLOW OF A FUEL 
MIXTURE OF GASES NEAR A WEDGE 

. By 

S"M. Gllinskii 

Let us· consider a supersonic flow of a fuel mixture around a wedge. 
We shall assume that the maximum quantity of heat, which may be released as 
a result of a chemical reaction, is much smaller than the total enthalpy of 
the mixture in the :incident flow. In thi's case, the "nonequUibrium flow will 
slightly differ from the adiabatic flow near the wedge, and the problem of 
the flow around can be solved analytically in a linear approximation. 

If we consider the profile near to the wedge, the disturbances caused by 
the bend of the profile will interact with the disturbances related to the 
nonequUibrium ': release of heat in the flow. In the linear approximation, the 
total disturbance is determined by a simple superposition of these disturbances. 
Therefore it is sufficient to study independently the two problems of the 
nonequilibrium1flow around the wedge and the adiabatic flowar.ound the profile 
near to the wedg.~. ,f 

The first problem was investigated in works [1-3, 6, 7], the second- in 
works [4, 5, 8, 9J. " 

The solution of the problem of a now of a fuel mixture around a' wedge is 
given below, taking into account the proceeding of one irreversible exothermic 
reaction~ In the general case the solution is presented in the formpf a 
series. For certain particular values of the order of the reaction~this series 
is summed up, and the solution is expressed by finite algebraic functions. 
The latter enabled to analyze the influence of the different laws of supply 
of heat to the gas on the character 0 f the !low behind the shock wave. In 
particular, it is discovered that the solution may have an oscillatory character. 
The amplitude and frequency of these oscillations decrease downstream. 
In the extreme case of hypersonic flow around a thin wedge,. the qualitative 
character of the solution essentially depends on the order m of the reaction. 
Thus at m - 0 and MIX): 00 , "f _ 1, l<f'- i) Q ~ C, the amplitude and 
frequency of these oscillations in~rease. The ampl~tude of the oscillations 
approaches a finite limit, and the frequency approaches infinity. In the 
case of m - i, 2/3, the amplitude of the oscillations approaches zero. 

It is convenient to write the system of the gas-dynamical equations in 
the Cartesian coordinates x ,I.I (Fig. 1). 

1 '£ 
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.fig. 1 

Coordinate system and designations 

Let the parameteres with the index "0" correspond to the aqie.batic (frozen) 
flow near the we~ge. We __ r_epr.esen.td:'he_~.9~ __ f.\¥.lctions in the forms 

u (x 'f):: U [I l-t I I I 0 

1" u(x 1 , y,)] , 

"'i [X t , Y
t
): U,7!' (x, 1 LJ1) • 

- -- .. - - --2"-" .-- ... ----. 

p,(x, ,'1
1

) =Pa +PoUo p(Xf,IJ,), 

f,{X t ,'it) =fJI+f{:!,· 'i,)] , 

_ }, (X" 'f,) =}JXI' 'ff}[tl-}(r., ' IJ,j] ,-
(1) 

where the index "1" is written for the parameters or the unknown disturbed 
and the functions of the disturbances are desig~ate~ without-index. 

now, 

We shall model the kineticea of the chemical reactions by one reaction: 

d} m-f (E) _ : _ L. Amp exp - - , 
dt r R'r 

where jS -- the relative concentration of the original reacting components of the 
mixture, m- the order of the reaction, P- pressure, T- temperature, E- acti­
vation energyv R - the universal ga.s constant, L- -rea.ction rate constant. 
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Substituting (1) in the system of the gas-dynamical equations and 
neglecting the terms of second order of ~mallness with respect to the 
disturbance6 ,W~ obtain the following system of linear equations t: 

Where 

au OJ av-
fl-+u-+jl-=O 

°CJx., °(lx, "alff 

eU -I- ~ ::: 0 
Jx., AX., 

all 
- -I-
ax, 

ap -:. 0 
dy, 

: a p all a" .. 
fl-+-+~- =0 

ax! ay, ' ax, 

J/::MZ-t 
o 

(r" fj Q 
,~ =-, a Z 

II 

M 0 - the, Mach number, a;- the velocity ot the 
behind the shock wave. --

I 

l·---' 

(2) 

Bound of the. \ll'idisturbed now 

Owing to the assumption of the smallness ot the dimensionless parameter qt' 
the system of equations (2) contains a derivative of concentration only 
·}3o Cx l' ~1) which is determined independently from the parameters of the 
disturbanc.e, and it is a function of the undistrubed. nowo 

[' 
dj30 L m m-' (.f 0 ) 

u
p- =- 'p Po etp - - . 

d x, ---. Po 
(3) 

The boundary conditions in the linear theory are set at the boundary of the 
undisturbed now ,_~_!.~_! ___________ • __________ _ 

at ':I, : 0 v; 0 

(4) 

at 'I, : tj Bo x, x > 0 

U:: KuJ'(x,j 1 v-:X"'lrx,), p.d(p!'(X,), 

J :: K i /(x,) , /'.:: f (5) 
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---_ .. _------
.... _Here __ -:-..3.:Ji B. X f + fIx,) the equ;¢ion of the disturbed shock wave, 
K u' K V" , K p 1 X.p - known functions of the Mach number Moo, wedge angle 9 

and the adiabatic index ~ t which are determined from the linearized system 
of the relations in the shock wave. 

I 

For examplet~._ _ _______ _ 

21M! cost8
0 

sin (0. +.8) 
/{=~--------

p 2rM!sinzrBo+B)-(r-r) 

We introduce the dimensionless independent variables x., ~ as follows s 
-----"---- --.---- -_ .. _-------.-----_._-

U o exp((p.!po) 
x :: ----=--;----

I l. pom-t 

Uo exp(fpo/po) 
, 'i, = L. p.m-, (6) . 

Integrating equation (3) taking account of the boundary condition (5). we gets 

I 

--,-­
}. ; [,-( m -1 J( Y elj 8 () - x) 1 ;:;; (7) 

The order m of the reaction determines the different laws of supply of heat to 
the gas. In the case of m ~ 1, the width of the zone of th~ .reaction extends 
to infinity and, according to (7), the profile of the concentration Po i8 a 
contmuouB function. At m < 1 the reaction ends at a finite distance. The 
profile of the concentration as a function of the value of m may have a 
rupture in the end of the zon~ of the heat release. This rupture is either ~ 
discontinuity or the curvature, or of the leading derivative, . (Fig. 2). 

I-A 

D. 5 f } 1#/ :;01 ........ 

o D.S {Q 11 :r 

Fig. 2 

Distribution of the concentration /30 along the line of flow; 
m- order of the reaction. 
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For convenience, we determine the concentration by the function 13 oL ';l...) ~) 
as follows 2 

- --- -- ----- ---- ------- 1 --

!
rl.{m.f)(yc~eo -x)]Nn at 'i,~eo-zsf, 

8 'I ,,'. ,\- '.', f 
a a.t Y'~(]Q-%~;;:t (8) 

Excluding the density.P ,and velocity u from the system of equations 
(2), we obtain nonhomogeneous wave equations for the determination of the 
components p and v' _______ . ___ . __ ---_.-

I ------ --_. ------.------- - , 
". zafv _ d

1
1}'; iSo =_9,mct98"Bozm-

'\ ft ax' a,' ~'JxJy 

,)~ aZ a2 Bo 2m-' 
2 P P --0 _ :-~ rnB 

.jl o;et ,. all - ;'1 Cl::c2. f " (9) 

Solving equations (9) and taking account of (2), the functions will be:: 
. ; ----- -- -------- ------- ._----. --------- -- - ._-;---'---

) 
'I, ctt; eo 

v= ~f_Z(}o-.fLz Bo(!lc~8o-:x:.)+ F(X+fl!l}-G(x-JLYJ', 

p = ctaZ8'Jr~ u z Bo (yct:Je" - x J-; [F (x I- jJ.Ij) ,f G (;c -J1-Ij) } . 
(10) 

For the determination of the unknown functions F and G, we use the boundary 
conditions (4) and (5). From condition (5) for the shock wave it is possible 
to ... rri te, in particular, the follmdng equa.tions s 

Kp _ 
lY. = K". -

p = A if p = Gu 

2cos(eo +8) sineo 

cos(e.Z80)tcosB/M! sinZ(Bo +8) 

8 = .!5.!. : 2cos(e,,+8) sin 8" 

Kv -s~n(8 + 2(0 ) + sir. elM~ sinZ(Bo +8) (11) 
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Conditions (4) and (11) give the following system of functional 
equations I: 

'/ 
I 

9-, :t, B~----' - ------ ---- --;.-;------------ --

r
' z8 z B)ycty9.-X)-f-iX}-G(X}='-O-· 

c ~ 0 -.r- ,t" 

4'~;;:: ;',J -F{ro~B.' p-}g J(I'"J'J~Gt.~-~; p)Y ]ll-~F)= 0 
(12) 

Excluding function G from this system, we obtain one functional equation tor 
the determination of Fz 

where 

:.-.r .. ) -, fOr.) r '\, '-, ~ r . 
, \" _ ,\t.[t<~ = g" ~::_J~~.EQ It< ::;) , 

... c,.,~ .... f) ... t!.! 'T 

, -- t-. f'-' 
" ~ - 1,+ tljJ-

rJ " r 

t JI.('-AC~8o) ] 
r, + Llj- )(ct9Z9o - fL~) 

. 
, ct~ eo -fL = 
.x:: fn[} +}t. 

cd • 

0( = C>" ~w '1M 
" 

sin (c:J.. - 8.) 

si.n (01.. + Bo) 

, (13) 

The functional eg.uation of the form (B) was studied in a most detailed 
fashion in work L4J. The parameter " i~ called the coefficient of reflection 
of the low disturbances from the shock wave, and it is equ~ to the ratio of -
the amplitude of the disturbance of the pressure reflected from the shock wave 
(along the characteristic ::(. + ).k ~ .• const) to the amplitude of the incident 
disturbance of the pressure (along the characteristic x.. - "'-t '1 • const). The 
absolute value of the reflection coefficient ~ does not exceed the unity. 
! ts value strongly depends on the adiabatic index and at M,o -::. OCI ) 'r _ 1, A....., 1· 
'According to (13), the coefficient K is positive and does not exceed unity. -

By solving (13) we shall have the following ~eries ([4]) 
- -------,. /~) _ o",.r (, - tl eto g-)---- ;--f---::e----- oO --::-- ------- -. ,-' 

r [<) _ d 0 rt c7 ° \' . 
, 2(r.t.r/8.-JLZ) \~zB _uZ (.- )'Bo(x~~): 

tI • r 1..1 (14) 

Then from (12) we determine the .function G (~) 

-------- -- ------ -i:-- B - - 00----.-------- -:-------

.- ·-~'JL({-tlc'0eo);. 1, c 9 °z [. }"'B.(X·~) +-
G-(~)= ~/-I_l(:)o-.f'Z} '-t;JZ8o-Jk j,:, . 

9-, ctt; () D B (.;) 
+- t 0 

ct~/80 ~ r- (15) 
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Substituting the functions F and G in the formulae (9) and (10) 
we shall have: 

. --;;: A-::i9 eo 8
0 
(ydlj 8" - x) + ApJI-.l c~ llJ + 

00 , 

+A'~ B
o
8.(X-f'!f}4 Ac~ 8" ~ }'~(Bo [xilx+fLlj)-

,=( 

-Bjt<'(x-f!l)}) ; (18) 

p: ABJ!lct9 8, - .r.}- .. I{t- tlctJ RJ -

• 
-j:;. (A:.=~8D B",·:r.-Jl-tj) ~ 

tAct') Oof ~i{8o[ X '(x. + f'Y)} + Bo[Ki(x-jLyJ]}) 
.,1 

A: ll;. /teils . . Jk Z} , (17) 

It should be noted that formula~ (i6, 17) are equivalent to the formulae 
obtained in' [ 6) '7] in the particular case where m • 1. 

From equation (2), it follows that 

u .p;S(lJr~ 
(I8) 

where S (~)-- a function proportional to the vortex. The function S (~) is 
determined. from the boundary condition on the line 'oj ct~ ~o '::: ::x.. and has the 
following formt: __ ._._ ... ~.. . ... '_"_"_' __ ..... 

(J 01"-'-'·" 
5(1/)= 8~ Actlj8o{p:tl-So[y{cf<j8o-y.)] I- ' 

+[ ).. L[BJI//c~ B. ',1-1-)+ B)y(ciJ 8
0 

• J~))]} , 
... ~ 1 . 

(19) 

One may notice that on the surface of the wedge the function of vorticity 
becomes zero. Across the shock layer this function rapidly increases, 50 that 
in the neighbourhood of the surface of the wedge there is a thin vortical 
relaxation layer, The existence'of such a vortical layer was pre~ou~ly' . 
pointed out iri, [1, 2, 6, 7].' . Tne form of the shock wave i; determ~~. 
if the bounaary condition (5) is used, for example 

p = Kp f'(x} 

setting the following equation in the argument of the functions appearing in 
the fornrula for f (17), 
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Ij" t9 e .x·_, 

The pressure distribution on the wall of the wedge is of particular interest 
as its knowledge enables to calculate the aerodynamic force of the characteristics. 
Below we shall be limited only to the analysis of this function. The qualitative 
character of the behaviour of the remaining gas -dynamical functions on the 
wall of the wedge will be as followss 

Pf(X,o)::P. t fa uo'lq, {p'(ACTfe-;:-i} -------''-' 
JL 1 C'tj Z B • Ji,z 

II _ B.(;c) Zcj80 00 ~ 0 

: ct~e" ~.f - cfn 28. z ~ A Bo (K'X)} OJ 0 Jl ,,::. t ' 
Where '( , ~. (X) , [ H r - m) :r ] ;;;;; 

I 0 

4t 

ltt 

, 
X£:-':-;;; 

I 
:r: ~-;:-;; 

(20) 

The equilibrium value to which the function p (x., 0) tends at :x. ---? oQ 

is equal to t 1. 
--_._._-----

2 /lctg 8" - f 
PIe = Po + jJ" Uo ttl cf9 ZiJo - j<-?' (21) 

Formula (20) is simplified in the case of a flow with a very high velocity 
around a thin wedge, i.e., when the following relations are realized; 

/1 »1 ;.1/]:.>! 0«1 
00 'CQ 

(22) 
Using condition (22), it is possible to determine the limiting 

values of the ch~acteristic parameters of flow 
-- - --.- ---_._ ... -....... - .. --.. ------ ---- .. ----_._---------_.----

= f1::t' A " ~ K = !..:.Y... , 
5 V!.Zl.' 1+25 7 1tS 

p f '1'-1 
fJo 8 ;: S A e : 2 s B + () -; - B a = - e 
.0,0 '0 2'0 Z (23) 

and formula (20) is reformed as follows: 

. ',' ·--,·~-;i-.. l·'· r.1'_1},r --'.")'J 
.... ...._' 'J \;... ( 
. J: v: : I" " 8 1 ---- ... - - '" 'V (:t:.) } r',I,' _<>000 '- 2 2 If/.-' (24) 

where 
co 0 0 

1. (x) = 1· ~ B 0 ( :r:) - !.. [ '}.' B 0 . ( K' x) 
S .5 ,:01 
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At the edge of the wedge at ~ = 0, the floW is approximately 
frozen and.)( (0) = ° . Cl.t -x. ---? 00) X (:x.) ---? 1 . 

The calculation of the function "I- (x.) can be approximately perfoI'llled; 
being limited to a finite number of terms in the series. The particular cases, 
where the sum of the series is calculated in a finite form are of specific 
interest. ObViously, this can be done if the order m of the reaction equalsl 

-----.-.-:-

m:: t- f 
T t::t.2~3J'" n. 

In this case, the width of the zone of combustion is finite and the 
distribution of the concentration in this zone is in the form of a polynomia~ 
of the power 2. The function 'X. (x.) in the points x = +<" (~ • 0, 1, 2, ••• ) 
as a function of ~ has a rupture, either a discontinuity of the cervature or of 
the leading derivatives. 

Performing expansion in the seriesl 
---.-----.--- .... -------.-.----.---~--- .. -------

, e (t-; r =/-X4o £(t-l) x.
2 

_ t({-f)(l-2} x
3 

2! ez 3! [3 + 

and performing the summation at the same powers of x., we obtain the following 
formula for the interval of change 0 ~ ?C ~ €,; 

R -----------
't (x) = L (_ 1) t( ~ _ ~ _'_) --t:;-~--;·-· -.---------

't:1 S S I+AK (25) 

or taking (23) into account, we get: 
--- ---- .".""-_ .. _-------_ .. -

. .! 

Z 2% 3 fl- t} x 2 + ,,/(-1)((-2) x + ] 
t.(X)=(1-sJ[1+25 2 -"2 -e-(1+5S Z) 6[2(1+95 2) ••• (26) 

If the order of the reaction m • 0, then "'X..(x.) is a linear function 
increasing from zero to the maximum value at the end of the z~~e of combustion 

_._------ -- -'--

"f,(x}.: 2(1- c:,Z) 
1+2S2 X 

Xmax(I,$)= 2(I-S
2
) (27) 

( 
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In the case of m • t the curve /l(~) is a quadratic parabola with a 
maximum within the_.~}'-~~Y.~-OJ_ .. ~.Z-~--W~C:h-;-~c;~-~.~ the unity 

1. (x):: (1_S2)[~ _ ~ _X_] I 

1+25 z I{ It5S Z 

1 = !!. ( ~ ____ 3 _ ) (28) 
m c: l 3 L? ., (I + 2 " 2) .. -( . ., 

The abscissa of\the maxi~ increases monotonically with the decrease of the 
parameter S, arici the value of the maximum changes nonmonotonically with 
decreasing S. : 

\ 
In the case of m • 2/3, the curve ~ ('X.) is a cubic parabola, the 

maximum is attaihed also within the interval 0 <: 'X. <. 3 
\ . 
1-,"'- -' .--.. --

, . "2 z" xl 

\1 ~ (xHt - s')[" ,:' -I;~SZ '27 1, 9';;) (29) 

I 

It should be mentioned that in the limiting case S • 0, the inclination of the 
quadratic parabola at the end of the interval is equal to unity, and that of 
the cubic one is equal to zero. 

On further increase of the order of the reaction, the maximum will be 
shifted towards equilibrium and its value will decrease. At the same 'time, 
with increasing the power e of the polynomial t the number of these maxima 
and minima increases. The solution in the zone of combustion has an oscillatory 

. character with rapidly decreasing amplitude and frequency of the oscillations. 
Thus, at m - 1, i.e. in the case of exponential distribution of the concentration, 
the first maximum is attained at x.:::::. 3.2 and it equals 1.062; the second 
minimum at 'X. -;:::. 12 and equals 0.998, •••• 

Th~ existence of weak oscillations for this case was discovered in (11, 

In the case of the determination of ,the function :x. (x) in the interval 
between the discontinuities PJv. VI .!:-")C !: f!/K n·':I. it is necessary to 
equate the first terms n of the series (24) to zeroS' 

{ 

m = 0-" .- ... -----.-.-- -- - ----. ----- ---------- -" ... ---.--. .--.-

00. ZA ntl X"tl -l0} (;c.)~ f- I [ ').'fi·KiX) = 1- _[_' - - xl (3:) 
n,nd & j.n.1 S 1·" 1- KA. 

{
m:~ . 

n., Zn'Z 2 
(liz) 2 flrl 1 K K ;x: 

'J; n ,n .. ,r X): 1· S /. ( 1-) • 1- K). :r: + t _ X 2) !I ] (31) 

(/) X
nt1 KZntZ Z. K3n.3 ... 3 

{

m. Z/3 
2 3 2 n.1 , x ... 

t",n.r (;r.)=t-sA '{-,-l-l.XA;r+ l-K z). "'3 - I-K!.}. n ] . (32) 
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The 'Talues of the functions?:. (x.) in the discontinuity points are determined 
as follows: 

'-

~ {O}r(~~_)n]_1 + 1-4S
l 
{-~) n 

'X ;.. t-S - 1.,2S;: 1t2S ' (33) 

(f/zi{, f + S )n] 2 S (- f- 25 )n 
X L2(1-5 J=1-{1t'Z51.)(f+5S'l.) -1+2.5 ' (34) 

(Zi~]h.( 1+ S )nl_ 15SZ(r-2S){t-1!{(I~X)}. + 'l'x J
] f. 1-2$ )n X 3- _f.. 0 __ _ 

• i. :'1- S I oJ • (:.s)~1I+2s.ntJ)Odi},J(tTKzJ.) I+K3).( It25 J (s'J) 
I 

I 
It is obvious that the values of the functions It(~) in the discontinuity 

points fluctuate about unity and the decay coefficient of these oscillations 
is equal to the reflection coefficient of the disturbances from the shock wave; 
the frequency of the oscillations i5 determined by the parameter K~ ~~~. 

The abscissae of the points of the extrem a - function are equal to a ---;:)--(-;-;;-)--;;--_. -----_._--; -_ .... 
x --- ,- s ' (36) 

(lIz) 1+5)n 1+ 55~ 
X =2--_J~ __ (1+_ S}{1"25Z) (37) 

- ........ 3 --"'k-- ----------- -- .. 
(2/3) 1tS )n 1tlK f.+ 2S( ').J( ) J .. 

X =3(1_5 J.+1KlLl-;;S (ft'nK)(ft"}.K3)' (38) 

and the values of the extrema equal 

- t~~~~,: 1 + ,'~-;:;l~--::~:}) n ---- .. --... --.-... -....... .. (39) 

. (lIz) =1- S(1+5)(f-2S)z(-~)n 0 

~n.n~' f1+2SZ)Z lt25 
(40) 

Therefore, as a function of the order of the reaction, 'the functions ~(x) 
in the intervals between the discontinuities are se~ents of straight lines, 
quadratic and cubic parabola, etc. The function '"X.. (x) fluctuates around a unit 
value with an amplitude and frequency depending on the value of the parameter 
5 (or r ). . 

It is important to notice the different asymptotic character of solution 
at m - 0 and m • t and 2/3 when S ~ O. In the first case, the amplitude of 
the oscillations increases and approaches a finite limit; simultaneously the 
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frequency of the oscillations tends to infinityo In the second caset at 
sufficient small values of S, the· amplitude decreases to zero when S ~ 0, 
and the frequency of the oscillations, as previously, tends to infinity. 

The mechanism of the formation of the oscillations in the two-dimensional 
flow behind the shock wave is illustrated in Fig. 3. Owing to the state of 
nonequilibrium, the disturbances of the pressure come to a point with the 
coordinate"';( along the characteristic):. -,).t'd IS const. At the same time, the 
disturbances formed at the edge of the wedge, ,ropagating along the characteristics 
of both families, repeatedly reflect from the surface of the wedge and the shock 
wave. 

1'1 .. -

Figo ;3 

Diagramatic sketch of the propRgation of the disturbances in the' 
region between the shock wave and the surface of the wedge. 

As the equilibrium zone has a finite width, these disturbances accumulate. 
If the coefficient of reflection from the shock wave is negative, the 
compression wave alternates, on reflection, by a rarefaction wave, which leads 
to an interchange of the local compression and rarefaction on moving downstream 
in the near equilibrium region of the flow. 

The behaViour of tb( function -x.rfI (;x.) is shown in Figs. 4 and 5 for certain 
values or the adiabatic index t • The curves in Fig. 4 for m .. 1, 2, 3 are 
obtained numerically. It is obVious that.· m 'q 2, the pressure along the wall 
of the wedge increases monotonically from the frozen to the equilibrium valueso 
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XI") r~ 

101 I-. ~=---

0.9) i ..... r 

0.8' " r 
o ~ ,10 4.0, 6.0 8.0 :t 

.F:ig.4 

Pres~e distribution along the side or a thin wedge at hypersonic 
flow aroundo The case of smooth solution for m • 1; 2; 3. 

Pressure distribution along the side of a thin wedge at hypersonic 
flow around o The case of uneven solutions for m • O;.~ , :Zl • 

It is easy to see that in the general case, when the wedge is not thin, 
the solution of (20) can have an oscillatory character, and here the reflection 
coefficient ~ and the parameter K will be the determining ·parameters. The 
dependence of the reflection coeffici::nt A on'r is very strong. For 
example, in the case of a sufficiently big Mach number ~ ? the change of the 
reflection coefficient from a positive to negative value occurs on decreasing 
the wedge angle 9 in a very narrow interval of change of e • On further 
decrease of the wedge angle within a Bufficiently big interval of the change of 
e at a fixed Moe , the change of the re.flection coefficient is small. 
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I 
In connection with thief the formation of oscillationein the flow must be 
sensitive for the properties of the fuel mixture ( '( , m) and the outer 
conditions (M ()Q I , 0). The latter conclusion is confirmed in the experiments 
on ballistic il1stallations [5J. 

I 
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