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ATNOTATION

The present issue of the sclentific works consists of two parts. The
results of the flow around wings, the determination of the optimal forms, and
the interaction of the wake with the cocurrent low at supersonic and hypersonic
speeds of the free-stream flow are given in the first part.

The second part comprises methods of numerical and analytical calculation of
one~dimensional ungtendy and two-dimensionel steady motions of fuel-gas mixtures
with exothermic reactions.



FORTWORD

The present collected papers are dedicated to the aerodynamics of the super—
and hypersonic flows end thsories of th.: supersonic motion of & gas with waves of
detonation and combustion. In these trends, investigstions are performed and
seminares are made in the Institute of Mechanics during many years under the
leadership of the associate member of trz Acadsuy of Sciences of the USSR,

GoGe Ch2rmove During the last time; a number of new results were obtained,
comprising the contents of the given issue of the scientific works. In the
first part, problems of the flow around triangular and V-shaped wings with
gas flow of high supersonic velocity are investigated (A«Le Gonor, N.A. Ostapenko
and V.I. Lapygin)e Purther, in the paper of L.V. Gogish and G.Yu. Stepanov, an
integral methed of calculation of the interaction of turbulent wake with a flow
in a canal or a jet is suggested. Froblems of the optimum forms of a body at
hypersonic velocities; in the frame of the approximation laws of resistance, are
resolved in the works of A.Les Gonor and VeIl. Lypygine The results of an
axperimental investigation of supersonic flow around a right—angled wing, in a
wide range of elongation and angles of attack, are given in the paper of

MePo Falunine GeSs Ulyanov studied the effect of the penetrability of a plate
on the power action of the supersonic flow.

The second part of the issue, comprising the methods of calculation of the
motion of fuel mixtures, is started with the paper of S.A. Kedvedev. In this
paper, the problem of the decay of the burst is resolved in non-self-similar
arrangement, taking into account the ignition delay and the final reaction rate.
VeP. Xorobeinikov, VeA. Levin and V.V. Markov use similar model: of fuel medium
to solve the probles of point explosion with plane, cylindricsal and spherical
wavese In the paper of L.I. Zak and VoA« Levin, the gas motion, caused by a
piston, is investigated assuming that the heat effect of the reaction is small
and that a linearization; relative to the adiabatic flow in front of the piston,
can be produced. The flow around a body by a stationary supersonic flow of fuel
mixture is investigated in the last three works of the collection. In the first
one of them, S.M. Gilinskii investigates the growth of the initieal disturbances
and the possible nonstationary conditions of combustion at the hupersonic flow
around the bow of a blant body. The seccnd papser of S.M. Gillinckii and
M.L. Khaikin is dedicated to the use of the beundary layer method for the
composition-of an analyticel solution of the supersonic flow around z wedge
and a cone oy a fuel mixture., The third work of SeMe Gilingkii "Linearized
supersonic nonequilibrium flow of 2 fuel mixture of gas<:s near a wedge"
compyises an anelytical solution of flow around e wedge in the case of a small
heat-effect of reaction; obtained, as in the work of L.I. Zak and V.A. Levin,
on the basis of using linearization relative to the corresponding adigbatic
flow.
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PART I

SJPFR= AND HYPFRSONIC GAS FLOW

CALCULATION OF THE ENTROPY LAYER ON THE SURFACE
OF & TRIANCULAR WING

By

AeLe Gonory N.&e Ostapenko

On solving the problem of hypersonic flow around a triangular wing [1], a
singularity in the diszribution of the surface speed 1s involved. IFor this reason
the obtained solution must be corrected in the region of the location of these
singularities, adjoining to the plane of symmetry. A similar situation already
arised in the general theory of the supersonic conical flow, when such singularities
appeared in the solution on the surface of the body and it was necessary to make a
specific solution in a region, called th: eniropy layer [2, 3, 6~8]s The calculation

__of the entropy layer on a wing has many things in common with the mentioned

investigations; however therc are important differences as a result

of taking the sgpecific features of surface solution into account. The
problem of the flow around a plane triangular wing is analyzed below
in detail, although this method can bhe %

transposed also for the: general
case.
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ls The formulac of a conicel flow in the coordinate cystem ¢ T, 90, cp

ﬁ (Fige 1) after transition to the new variable ¢ =y (£, ¥)  satistying the
_ formula v epg # W izcd - <0 according to reference [1] will have the rollowing
form: .

SB':‘.—‘E p

W av L2t ..t o

opar Y 4e ARy oy
‘ 2 2 2

. UV

z P, -C

TS 2

5 1 P 7.
3¢ 3‘,:&']—{7 ,
5%;‘2}703%(/ 959)4'2"'!!‘ cos B -:?’.

g W@lp =VCG:9 .

(4.1)
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Here u,v, W~ are the corresponding veloclty projections on the axes ¥ ,0,<p
relative to the velocity of the free—=stream flow ., ;P> £ » ¥ are the
pressure, density end ratio of speciiic heats. The density and pressure are
relative to the quantities R, and £, U2, resp:ctively. The coordinate

v u const determlnes the stream surfac:, The prejection of the Eulerien equation
on the direction of the axis <2 (1.2) is written for further direct use.

In the system {1.1) and_in the boundary_cenditions on the shock wave E; L’k@)
after the substitujzion of  p*Ef* ,p::TpH, ViEV the terms, having
the order of € 1#%¢ are neglected ( ¢ is tne charaeteristic ratio of the
densities in front of the shock wave and behind it, 1'> 0). From the
solution in reference [1], the formla for the pressure will have the following
form:

-

Pusin®t +EP 7{%’)*‘65 (<, ¢, ‘!’)", Uy

where:
p’*(q))::in 24[‘9‘(&94’-5; wn ¢ )= sin%t |
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Here the bar of #* is omited; o< i3 the angle of attacke The value of P,
and the other parameters of the flow are expressed as [ by the soluticn of
the integral-dirferential equation decermining the form of the shock wave.

The surface of the wing in the solution of reference [1] is the stream
surface &= 2 (3 is the half-angle of the triangular wing at the top).
However, in the small interval 0. ¢p £ ¢p, the stream surfaces cross the
surface of the wing (a weak flcying of —~ g2 takes place). Consequently, it is
necessary to moke a correction fcr the solution in cervain surroundings of
the origin of the coordinate.

Let us introduce the variables A and 7 instead of u and w:

u=DcostT

, W=lsint .

Formula (1.2) by using (1.1) with the new variables will have the form:

ed

. s 9T v vy

‘J'T(cozaaw S g feor T + PEVARCEE

é__ ! [_E?_I_J_ s 2P '
. Pﬁf(’cs@ Iy Oy (;L[';] ’ C’LL\)

It is easy to ascertain that, according to (1.3) and (1.4), the pressure
gradient will be taken into account only with terms of « g£2 . Therefore with
an accuracy f values of _. ¢2? , we will have

95l )0 (1.5)

Accordingly the equality of the formula in the brackets to zero, by using the
condi‘gic]m on the shock wave, gives the following solulion which 1s coincident
vith {1

KZ’-(",_“’ZY'/{'&’}7 (106)

Wwhere o<, ( Qp/) is determined from the condition on the shock wave at

S ERY (Fige 2) o
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In the surroundings of the shock wave, the second possible solution T=U
contradicts with the boundary conditione. Therefore the surface solution can be
only formula (1.6), at the same time the transverse component of the veloc1ty W
has a singularity on the surface of the winge. This shows that in the region of
the {low where ¢=0, s the small correct“ons, neglected in the derivation of
formula (1.5), wecome comparable with the remaining terms. In particular, the

“-pressure gradient appears-essential along the wing span. Let us show thig,-—
introducing for convenience the following designation:

; : o T2 ' ‘
\:D Vﬂ:ﬁzgﬁmsf-x- @T,; (1.7)

Then, puttlng T Tar gt T Ebelow, the upper index (R)
will denote the coefficient, standing at 2_.1 y where T°© corresponds to (1.6),
for T(* we obtain the following relations

n) m? |
(S -+ )08, :
) Vm | /(')2 -
p (A{g) H CD.;; A(D)Z )tg

o 1 rar? gf') gPﬂ)]

8 7=
rorcirie

(1:9)
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From equation (1.8), it is shown that ' 9T'79p has a singularity at the points
where ‘TY becomes zero. Hereby, the essential term is determined by the
pressure gradient (%7, S o

At Bw¢ 0  the singularity certainly exists; at B(2) = 0 (plane of symmetry)
it may be not existing and therefore a special investigation is needed here. Thus,
in the-solution of [1% (below we shall call it the surface solution), on approaching

to a certain critical surface = ¢..., /,,,7)’7 a special term appears in the
formula of <¢ , namely: . o

T ij)“,'m,) bl () ¥]

This inequality in the solution indicates the presence of a certain terme.
Although this termn is negligibly small in the surface flow and evenly small in
all the region, a quantity of a "principal" order appears in the region, where
nonuniform convergence exists. From the foregoing, it is shown that such term
iz a function of 3. ~

2. The equation (1_'.5)' has two solutionss

. ¢
_(9_?.': Q.ﬂla - o T=0 . '

The first solution has a singularity near <¢°= 0 « Therefore in the
investigation of the . ynuniform cenvergence of the solution, the analysis of
the expansion, chtained from the second solution of [7], is completely reasonables

Let us represent T, (where [~ denotes the inside solution) by the form

Z('- =-£z'[‘-‘{z)+..' (2 1)

Substituting formula (2.1) in equation (1l.4), we obtain after a gsimple
calculation:

22
) L) () ( 2)

¢ 1 A
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By means of (1.8), we find that D; ..o[k]

gbn) _1 rom f')?w Y- Ll
" (IJAIO) 69'7 -7} (’[ ] : (203)
hence it is clear that,  p[” A, “’P’”\ must be determined for the

determination of e €?),

Let us assume that these quantities can be determined, and let us consider
the question of coupling of the inside and surface solutlonse. To prove that the

_two solutions are coupled, it is necessary to ascertain that they have a common

region andzme’asymptotically equivalent in their common region. On the basis of
the second of these “wo conditions, i+ is possible to conclude that the inside
and surface sclutlons are not coupled, bscause these solutlons intersect and the
slope of the curves has a dlscontinulty at the point of intersection. Thus,

the first terms of the expan°10n can not be asymptotically equivalent in any
common reglone

Th;s might have been expected for two reasonss the scale.¢f the independent
variable is the zame in every region and the arbitrary constant (or, moreover,
the arbitrary function of < )y by which the coupling of solutions might have
been realized, is absent.

The problem of coupling can be investigated by several methods [4,7]e

The method, used below, is closely related to the behavior of the surface
solutlion. On. analyzing the surfacz solution, it was clear that the term of
second order of smallness has g logarithmic singulsrity at po—s~ 2%y (ce’)-
The terms of the next order have still more essential singularitye. It is possible
to show that the ratio of the succuzsive terms is an indefinite quantity in the
surroundings of the singular pointe It is possible to eliminate this divergence
of expansion by the modification method of expansion, as shown in the method of
PLG (5], in which the dependent and -independent variables are expressed by an
additional variable and are decomposed in series of g o Thls gives additional
freedom, which can be used to a certain extent for the control oi the behayior
of cxpan31on near the singularity.

"If we consider equation (1e4) for small values of T and 1ntroduce the
following approximations:

- !

e ]
tggz-’_.— l/’ 627(2) ' whew ,(p=-’a-,o"f[¢7
T g”” o T
Cos 9 7- 5 3 oo 'J:/m.n_ue.._ohtwin
' 0(0

| e
(0" ”)} i "” p". v
J¢” . :
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C\‘ This equation: indicates the possibility of using the method of PLG:

Let us rewrite the equation (le¢4) in the forms

_%__(fg't-bc)cose . WYPQW: c=8-D .
- _ to T > T

Let us introduce the auxiliary function of 2(z) and the veriable 2 and change the
previous equations to the equivalent system of the equationss

[2) T . =“(l‘ﬂ"‘+C)
/[ am lz‘

The function off(z) is selected in such a manner that the expansion forT
and «g begins with the tems COou-3-of (yl) and z,respectively. Thus,

r’/r) tg,r

The principal set of equations will take the following form ¢ °

& 9 Ll
CARF PRy I | (244)

All the variables cen be represented in the form of the following series:

T e _n )

C’Z 6 C N b
an

),

T < z+£t

(f’z*g n {n)[-'/ -

n:1 °

The functions of €' - and cos 9 wi_l be expressed by Z:

O c )

+ ..
: 9{1)2
Cos 8= {6 +
( ; ' 1)
B (/) ]
| ') =8"1z)+ ¢ di, (2) A
2
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At the same time C(e)=0 and { v)-0 because the principal
term of the pressure is constant along the wing. Substituting the expansions
in equations (2.4), we shall have, ufter integration:

"0, 7%zt (7]

; ' R 8
f”=f9[?*°‘:f*")]/ t92[z[:<) (¢')] =

z ¢ /Z) 2 vl fw)]czvS[z*dJ vl]
=~ 2. .
ot suz[z +d, [x,ﬂ)]:t:s[z +ol, (¥ 7 C‘Z +5)

It is clear from formulae (2.5) and (1.8) that it is enough to know the solution
of [1] for the determination of <~(2> and c<i7>in which we are interested.
According to (245) the formlae for T and cg will have the following form:

. 7 R e =
o v % a ,

T——

—— 3
=g Ey 7, 9%. SZn[:vmt,/s!")]Cas[zJ.o(,/? _7 s
stnfx wolyf )] cosfz+:, ()] (2.6)

wl

The obtained relations enable-to extend the uniform convergence of the
initial solution to a small region -in the surroundings of the singularity.

If we denote ‘ a' .PW94’ then :{‘or 'the new varlable /A
we have° . L .

1,...:--*—'
cusd f

Y L"

‘o | 1ot cfgz h

The equation continuity (-1.1-5) can be written' in the form

‘- —i +};'@b;7?
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from which we obtain

d(‘i’ 2)= a"s‘”[f/z)] :

Slnz‘['c" 1]

here (') denotes that the value of the variable is taken on the shock wave or

_ pwBsinfrz)
* sin?Tofy )

owl ,

where, for example,

————

ZD":H)/
E=pl

After integration, it is possible to find the corrected formula for the line
of flow

_ N w’® iin [To{z)] d
g.jgsmi“/ WL .}?Sin[‘-’:o{z}+c’1 «53:77 Y

! . 4
R.—_;I+(B“L‘o;(p’—Q:S:chp')cf'?e(*m(P P P)

wo's W(Zo)/z o !

In this manner, the convergent solution in the whole outsme region,

including the critical surface and the small reglon around it, is performed
uwniformly.

i
i

3. To obtain the expansion in tle vhole region it is necessary to
find the total inslde solutione.

The principal term for <T° in the inside region has the form

L

';TL=£?T£(2)=-{2C @ : (3'1.)
Consequently, W 0(5 ).

Using these rel at:.ons in the exact equation (1.1) ‘for the variables of the
inside region, we obtain:
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ad, 24

e A I
8= Ae)eofe) . (3.2

It is clear from equatlon (3+2-2) that the pressure with an accuracy ceaching, ¢?
across the entropy layer is constant. Consequently, the value of C; (®) can be
determined by the pressure on the critical surface, l.ee by the va.lue of the
pressure in the surface solution, because D{*’~ £ and only the term B{*
containing the pressure gradient, remains. These considerations can be applied
also to the quantity C( If we investigate the asymptote from ¢’ of (2.5),
then on the critical surface, we have° ' ‘

—— e e -

T C -[d, (e')] .

So,' the surface solution, performed by the method of PLG, is asymptotically
coupled with the inside solution.

From equation. (3.2-1), we obtain

o, expf- p/ ]

Further we flnd that

/ Ar ) “p/ / u)]d‘f’v 5.3

where dy 1is determined from the condition of coupling with the surface solution
in a certain sectioncp.. .

SR 2 P —

=a’e.rp[/ fj a’z]

Substitutlng the formula for dr in (2.9), we  obtain ‘

e S

stnel

14
g, = — exp[ “)-zfcl‘gr dz/dy’,
¢ / A / ‘. (30 ,)
Further, taking into account (3.1) end (1.3), we will have
e . e
TL(): W)[Sin&( sun 1.9(8 +89"\")—

(3.5)
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The calculation, performed by the formula (3.5), showed that the value of’t&z)
is negative and the first component in the =guare bracket is much larger than
the value of P;zc,g which, in turn, is proportional to the variable < « An
analogous derivation can be obtained if the method of disturbance given in
reference [1] is used for the determination of ihe form of the shock wavee
Then, for the small values of <p 4 the equation of the shock wave and pressure
gradient allow simple analogous representations, from which it follows that <P
has a higher order of smallness in comparison te the first component in the
square bracket of (3.5).

Now, taking into account (3.4) and (3.5), it is possible to draw a conclusion
that 6, > 0 and  0¢ ,uwr—— O when <050 ,

So, the performed solution, consisting of two asymptotic conjugated derivations,

is valid in the whole region of the bad flow and totally satisfying the Fery's
scheme.

1
{

0,06 % T
N

Fige 3

The graphs of the transverse compoaent of the velocity w at' B = 45°, M=o
® = l.4; ©< = 20° and 30° are shown in Fige 3. They are calculated by:
formulae (246) and (3.5) (solid line) end by the corresponding formula of
reference [1] (dashad line). The comparison shows that, without taking account
of the entropy layer near the planz of symmetry, the velocity distribution on the
wing at big angles of attack is appreciably decreased. '
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ABOUT THE MODE OF FLOW_ARQUND V-SHAPED WINGS WITH
SUPERSONIC LEADING EIGES

By
V.I. Lapygin

It was shown by experimental investigations [1,2] that on flowing around
V-shaped = wings, a complex system of shock waves is fermed in the field of thne
flow., In the present work, a system of shock waves formed on flowing around a
V-shaped wing by an ideal gas, is investigated by means of performing numerical
calculations on the EVM BESM-6, using the method discussed in reference [3].
We shall consider the - flow around a V-shaped wing at an angle of attack o<
(Fig. 1). In the conical coordinates L =fn= 5 2= Y/x y Bz Z /¢

the system of equations of gas dynamics (for an ideal gas) in the divergent fomm
will be as follows:

R .
2 _ .
_q_f +_592_(;s-3,p)+5€5(; -&f)+2f=0 @
Where
.P“ Pv \ .Pw
pepu’ s z e
/- puv ,Fys P*.Pv'z ! Fr=qpvv 2 '
) Puw. . ~p1)21)' p;})w
£ £V £V

2 2 2
_ xp . ur v+ W , 2=C./r ,
£l T ) &

here u, v, w are the components of the velocity vector on the axes x,y;z; p and f
are the pressure and density.

Using the condition that the supersonic flow around a V-shaped wing is a conical
flow, the method of determining & with the use of the difference scheme proposed in
reference [5] is used tor the numerical integration of system (1), The calculations
were performed for different values of Y, and fﬁw « The analysis of the performed
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calculations allowed to reveal several modes of flow around as a function of the
expansion angle of the V-—shaped wing, with qualitatively different systems of shock
waves from one shock wave anttached to the leading edge of the wing to a system of
four waves and more. In particular, the performed calculations showed that there
are flow modes with a reflection of a strong shock from the symmetry plane of the
wing. In the plane case, as it is known, & strong reflected shock is not reglized. -
The marks used in the text sre clear from the consideration of Fig. 1.

The results of the calculation for ¢ = 29°30; M_, = 3.95, angles of  Frem
100° to 150°%,e¢. = 15° and Y=< 1609, o< = 10°, are represented in Figs. 2 and 3.
The values of the parameters ¥ s 160° z1d o< a 10° correspond to a flow
around with a mode close to the outgoing shock wavee The forms of the shock
waves are given in Fige 2, and the diapijuQiogmgf the pressure coefficlent
Co. =(P= )/ oOn the wall (8= F PooVes)- is given in Fig. 3.
In the graphs, ¢ 1is the distance.from the plane of symmetry to the given point
on the wall of the wing, R is the distance from the plane of symmetry to the
leading edge.
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The values glven below in the graphs and tables are dimensionless. These values
are namely: the component of the velocity vector, relative to the modulus of the
velocity vector of the undisturbed flow; the pressure, relative to the doubled dynamic
pressure of the undisturbed flow; the density, relative to the density of the
undisturbed flowe.

On treating the results of the numerical czlculations, the position of the shock
wave 1ls determined as the region of the sudden variation of the parameters of the flow.
The results of the calculation of the configuration of the shock waves are represented
in Fig. 2, ‘

The relations of Cp = £(T/R) are given in Fig. 3, and the analysis of the field
of flow, performed for different angles of Y at M, = 3.95, show that with
decreasing Y , a transition from a flow around with a convex shock wave, through a
mode of a plane shock [4]y to a flow around with a concave shock wave occurs. In the
case of the existence of the concave shock wave, an increase of the pressure takes
place towards the center of the wing. At % = 120°, this increase can already be
identified by the presence of an internal shock wave: i.e., the flow around a
V-shaped wing occurs with a formation of Mach configuration of the shock waves.

The question about the formation of an internal shock wave abt once at the transition
from a mode of a flow around with a plane shock to a flow around with a concave
shock wave, remains open. As an example, the field of the isobar for Y = 120°

and o< = 15° is given in Fig. 4. The character of the isobar indicates the flow
around with a Mach configuration of the shock waves. The position of the plane
shock, formed on the lesding edge, is represented by a dashed line in Fig. /.

On decreasing the angle ¥ to 40°, the character of the isobars (Fig. 5a)
indicates & regular reflection of the shock, incident from the leading edge, {rom
the plane of symmetry of the wing. It is known that the reflection is theoretically
possible with both a strong and weak reflacted shock, but in the plane case, the

- reflection with a strong shock is not realized. In the present work, to determine
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the type of the reflected shocks, and also the character of the reflection (regular
or Mach), the results, obtained by numerical calculation, are compared with the
calculation of the systen of the shock waves performed by the formula of the oblique
shocke Such analysis showed that for ¥ = L0° and o< = 15°, a regular reflection of
the plane shock, incident from the leading edge, from the plane of symmetry of the
wing, occurs with a strong reflected shock. In this case, the values of the density
and pressure, obtained in the numerical calculation and by the formula of the oblique
shock, differ by not more than 2%. The system of the shock waves in that case is
given in Fig. 5a by a dashed line. S
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With decreasing the angle ¥ , the system of the shock waves, formed on
flowing around the wing, is changed, and at ¥ = 20°, the field of the isobars
(Fig. 5 b) indicates the presence of a shock wave, reflected from the plane of
the wing. The comparison with the calculation performed by the formula of the
oblique shock, showed that a system of shocks is realized. This system is represented
in Fig. 5 b by the dashed lines, and namely: the incident shock wave, from the
_ leading edge, is reflected from the plane of symmetry of the wing by the regular
way with a weak wave which.is regularly reflectedq from the plane of the wing with
a weak reflected wave., The latter is reflected from the:plane of symmetry with the
formation of a Mach configuration. As for -.¥ .= 40% the difference of the values of
the veclocity, density and pressure obtained by the numerical means and by the:formula
of the oblique shock did not exceed . :

With further decrease of the angle ¥ ( ¥ = 10°), the number of reflections
from the plane of the wing and the plane of symmetry is increased. In this case,
the last reflection from the plane of symmetry is regular with a strong reflected
shock. All the rest rcflections, observed in that case, are regular with weak
reflected shocks. The systen of the shock waves is given in Fig. 5 c. The
difference of the values of velociuvy, density, pressure, obtained by the numerical
means and by the formula of the oblique shock, as for the previous variant, did
not exceed 2%. It is necessary to mention that in the numerical calculation, the
region of the flow, designated in Fig. 5 b, ¢’ by the number 2, is poorly studied
and is not practically defined in view of the small number of the points of the
calculated net, falling in it. This case is caused by the small dimensions of* the
region 2, in comparison with the calculated region of the flow. As an example,
the results of the numerical celculation are given in Table 1, and the results,
obtained by the formula of the oblique shock are given in Table 2 for Y = 10%

Table 1
Homep oG-
nacte @ u v w 14 F
1 0,846 o} 0,223 3,004
2
- 3 0,5500 -0,2143. | © 0,0783 1,444
4 0.,8223 ~0,2276 | -0,01894 (10,0878 1,320
5 0,9574 -0,23%4 &) 0,0598 | 1,211
6 C,9617 -0,2484 | —©,02182 |0,0522 | 1,098

Xevy:

1) Region number.



Table 2
Homep oG~
necTH o. u ¥ w 12 1 P
1 0,8995 ~-0,00579 @ 0,222 3,620
2 0,8472 ~0,2017 -0,01759 | O,08L0 1,577
3 .0,9507 -0,2169 o) 0,0764 1,443
4 0,8544 -0,2283 -0,01988 | 00,0678 1,325
5 0,9576 ~O,24(55 o) 0,0598 1,213
6 0,9617 ~0,2494 -0,02184 0,08522 1,093

Keys
1) Region number.

As evident from the comparison of the tables, the coincidence of the results
of the performed calculations is good, which allows to establish uniquely the
system of the shock waves formed on flowing around a wing. The numbers of the
regions mentioned in the tablss, correspond to the numbers mentioned in Fig. 5 c.
The values of Uyv, Wy 2 5 f  for the region 2 are not given. The values of
comporients of the veloc:.ty v for the region 1 (Fig. 5 ¢) in Table 1 are not given,
because in this reglon the velocity V smoothly decreases to v = 0 on the X-axis.
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The relations Pz F>42q¢° on the axis of symmetry (1) and on the wall of the
wing (2), obtained in the numerical culculation, for ¥, = 10°, o< = 159,
= 29° 30%, M, = 3.95 are given in Fig. 6. In this figure, the ratio (T/A)
for the axis of symmetry is the ratio of the distance from the intersection point
of the planes of the wing to the flowing point on the axis of symmetry to the value
of the projection of the leading edge on the plane of symmetry. The dashed lines
represent the solution obtained by the formula of the oblique shock for the system
of the shock waves shown in Fige 5 ce The character of the curves confirms the
exigtence of the system of the shock waves mentioned above.

The relation, given in Fig. 6, shows an enough big spreading of the fronts of
the shock waves at the points of regular reflections This is related; on one
hand to the presence of two fronts, the spreading of which is increased approximately
twice in comparison with a singls front, and, on the other hand, to the small
intensity of the shock waves.

Calculations of the flow around a V-shaped wing at ¥= 140° o< = 15°, at
different values of Mach number M_,, were also performed. The results of these
calculations' are not given here. ‘he analysis of the calculations showed that
with increasing the Mach nurber M,y a transition occurs from a {low around the
wing with a convex shock wave to a flow around with a concave shock wave and Mach
configuration, i.e., the transition is qualitatively as on flowing around at
M.o= const with decreasing ¥ and with values of “Y thet are not too small.
In this case, at <Y = 140° a regular reflectlion is not observed for any Mach
number M_, up to M= o<, and a system of shock waves of Mach type is realized.
In this manner, the performed analysis shows that at sufficient big angles of ¥
(in the considered case for %~ = 29° 30f the angle ¥ > 80-100°), a complex
system of a large number of shock waves is not realized, and namely these angles
are of greatest practical importance cn constructing aircrafts with high aero-
dynamic quality. '

The results obtained in the present work agree qualitatively well with the
experimental investigations given in reference [1].

The author is grateful to A.L. Gonor for ' suggesting the problem and for hig
attention to the work. :
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QUASI-ONE~DIMENSIONAL THRORY OF THE INTERACTION OF A TURBULENT
WAKE WITH A SUPERSONIC FLOW IN A CANAL AND JET

By

v

LeVe Gogish and G.Yu. Stepanov

Interactions of the turbulent layer of a flow with the outside flow are
observed for outside flow around aircrafts, flow in canals,- nozzles, diffusers,
gratings of the blade engines. These interactions determine to a considerable
degree the properties of theze apparatus and installations. '

Starting with the work of Krokko and Liz [1], the investigation of the inter—
action of the turbulent layer with the outside flow is performed by the integral
methods of the theory of the boundary layer. These methods are used together with
an assumption of the profile of the velcecity in vhe turbulent layer. They secure
a satisfactory colncidence of the calculated pressure distribution in the region
of the interaction with the experimental data.

Due to the complexity of the phenomena, occurring during the interaction, the
most simple of these phenomena are studied experimentally and theoretically, such
as the flow around a step (projection) with « plane supersonic flow or the interaction
of a shock with a turbulent layer, when the outside {low is represented by a simple
wave (Prandtl-Maler flow). The respective theoretical solutions in which the outside
nonviscous flow is described by the Prandtl-Maier functions sre actuelly one
dimensional, which considerably decreases the calculatlon difficulties connected
with their derivation.

However, it is found that these simple solutions are insufficient for epplication.
Great attention is paid to many practical problems, for example +to the
caleulation of the interaction of flows -~ arising from the glow around a step
with a supersonic free jet (Fig. 1z)or in a canal at its sudden widening (Fige 1b).
In these cases, in the outside nonviscous flow, a complex and previously unknown
structure of shocks and rarefaction waves existe. Such a structure ‘interacts with
the layer and determines its growth on the whole length up to the so-called choking
cross—section (wake throat). The use of :xact methods for the calculation of such
nonviscous tlows is associated with a big waste of time and effort and is inadequate
for an approximate (essentially not tnedimensional) description of the flow in the
layere.

, A simple approximate method of the calculation of the flows, represented in

Fig. 1 a and b, is discussed below. In this method, the average quasi-one~cimensional
method of the description of complex nonviscous flow z1d the method of the one-
parametric turbulent layer or wake* are used simultansouslye.

* The weke differs f{rom the more general case of the layer by the absence of
friction on the wall limiting the flow. '



To complete the discussion, the previously obtained solutions of
the more simple limiting problem of flow around a step by & steady supersoni~ flow
in the presence of a single shock or a rarefaction wave, incident on the neighbouring

wake, and a blowing into the bottom region [2-6], are briefly described.

It was ascertained on the basis of the experimental data that, in the
separating flows (Fig. 1) directly behind theé end, an isobaric bottom region is
arranged; the flow of interaction is strictly studied, starting from a certain arbiﬁﬁrj
"lacing" cross-~section I up to thé choking cross—section, the wake throat II,
behind which the whole flow can be considered supersonic. In the limits of the,
integral methods of the boundary layer theory applicahle here, onewparametric
femily of solutions is obtained. These solutions describe the flow of the interaction
at a finite distance from the ends The condition of the selection of the real
solution lies in the fact that this solution must be a singular one (must pass by
the saddle point, corresponding to the physical throat of the wake)e

¢

1+ The One-Parametric Turbulent Wake

In the general case, the turbulent wake is characterized by the profiles
of the velozity and temperature. These profiles comprise a finite number of free
parameters n; (i = 1, 2,¢eee)y the velues of which determine the character of flow
in the wake. As & result of the calculation of the interaction, the functions of
the longitudinal coordinate x; the characteristic width of the wake ng{ » the
parameters of the profile of velocity n:(JQ, the parameters of the.out51u§
nonviscous flow on the boundary of the wake, the value of the velacity G (<)
and its inclination to the X axis must be determined in the plane of flow.
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In the integral methods of calculation, the turbulent wake is defined only
by the integral values, generalized by the dimensionless widths of the displace-
ment H, , the loss of momentum H{* and the friction &y (K = 0, 1, 2, cees)s
For the determination of the unknown functions, different integral relations of
the boundary layer and other auxiliary equations, and in particular the conditions
on the axis of symmetry of the wake, are used [2, 4]. The existence of a certain
arbitrariness in the selection of the number of the parameters and the form of
equations leads to a certain difference in the results, specially, if the rumber of
the equations is smalle.

In the pracgice_of the calculations in reference [4], a one~parametric profile
of the velocity U = W (Y) in the free turbulent layer and wake was taken.

u o _dg-u _Ug-Us =_£/ '
@-f-mffe).f/?)-ua_uovm- TR (1.1)

The indices ‘8" and "O" refer to the parameters on the boundary of the
wake Y =D and on its axis Y=0 , respectively.

As most simple equations, describing the flow in the one-parametric turbulent
weke, the equation of momentum and the condition on the axis of symmetry are taken:

dnC (12)
(J'*’),_{T Fnrg”_*ﬂ*”""‘z)g;' =0,

du dp . ) 3!"
- —— +7{“"‘ Cy
Pty * 7z TGy ) (1.3)

in which j = O in the plane case, J = 1 in the axisymmetric case,

Col[Wmay =M (S5 5 W) is the reduced velocity of the outside flow
on the boundary ofxthe wake 0 (X) , The turbulent tangential stress T is
expresse¢ by the Prandtl formula. ’

=py = - .
T-P"t&y VI 2fug-u)d | = const

Taking acgount of (1.1)

ENRLOrN
TPl 2m —— *— ,
vL & d(z) 5./5 (
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here a =-d7' Y/d ),the value (-2 ¥ )ie 2 free parameter (0,012 for the
nelghbourmg plané wave). The parameter H= X /u™", where

*

K = __.

)2 d

is the reduced

width (area) of the'displacement,

W (__ "{J”)/oau [7-_.)2-"012 .'rs* the veduced

width (area) of the loss of momentum; all are tabulated functions of the

parametric form m of the profile of velocity in the wake and of the numbers
of C or M on its outside boundarye.

It is suitable to select cither the sbsolute widnt DCX) , or the integral
width $¥(x) of the displacement, as the characteristic width of the turbulent
wake. These represent the principal paremeter of the interaction of the viscous
and nonviscous flow, since the surfaces Y = §(X) or Y=§*(x) cen be considered
as lower boundaries for the outside nonviscous flow. S

Equations (1.2) and (1.3), after transformstion, take the forms:

3t H dm aan daC ) atd* 1.5)
Im dx / - -M!/—- ( )

?.'i
m mf2-m) dinC *

am -/ m2 (H") 2
e e Rl ’)('”“)777”"@7

(1.6)

In the two equations (1.2) and (1.3), there are three unknown functions of
x:my Cand g

In order to close the problem, it is necessary to build an additional system
of equations for the nonnscous flows For this purpose, the equation of continuity

in the form of Krokko-Liz [1] is used for the most simple case of an isoentropic
plane Prandtl-Maier flow. This equation has the form:

g ;
dé - 1o
%f?“dfﬁfﬁu);(;; - tg 6:) I (1e7)
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where g ’9/5;}-9{0) is the angle of inclination of the nonviscous flow on the
(j“ boundary of the viscous layer %,)(C)

is the Prandtl-Maier function.
Taking into account that fb19§1(ﬁ557?L3*), the equation (1.7) can be
written in the form )

(1.8)

In this case equations (1.5), (1.6) and (1.8) form a closed system; its solutions
describe the flow of interaction in the plane turbulent neighbouring wake.

Equation (1.8) differs frem the known Prandtl equation:

@8 .
7x T 190

’

(1.9)

which is usually applied to perform more accurate calculation of the velocity
distribution on the outside limit of the boundary layer.

It is possible to show
that equations (1.8) and (1.9) agree with the accurate boundary layer theory.
From the point of view of calculation, the difference between the equations

of Krokko=Luz {1.7) and Prandtl (1.9) is connected only with the selected boundary
Y= U x)y or K (x) , for which the parameters of the nonviscous flow are
(:) given.

2« Flow Behind the Step in Unbounded Flow

In references [4y 5], a system of the equations (1.5), (1.6) {at J = 0)
and (1.8) is applied for the investigation of plane flow in the turbulent neighbouring
weke behind the sbep (Fig. 1 c)o

Solving this gystem of equations relative to the
derivatives of the functions % (x),m (x)

and C () we bbtain:
dgng = -A—' irz z E_Z dtn 4z (2.1)
dxoe ldxoa T gx Tpov
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] wWhere "W._A,”u_;-,_mvmw e e e
C | s 8(1-m) , ., _m-m) 7

) tg & mf2-m)  3bal  ,1-pmt
2 foa)miHY  t-C? * 3enl ~[

= [(a )mZH‘ [/-m}+ ajnyj

m

The system of equations (2.1) is reduced to one differential equation
concerning m = m (c :

o,
3
t

¢ — 2

a, (2.2)
C |

and the two first integrals.

At the given parameters Ceo and (%)  equation (262) has a singular
solutlon, pessing by the singular saddle pointe The coordinates of this peint
in the plane (m, c) are determined by the equations by = by =
(Hereby, simultaneously, &, =& =0 « As was shown in £he work [4],
the singular solution corresponds to the flow in the undisturbed neighbouring
wake, and the singular point ccrresponds to its throat. The nonsingular integral
curves of the system (2.1) or the equations {2+2) describe the flows of the
interaction of the turbulent wake with the supergonlc flow in the physical plane
or in the plane (m, ¢) in the existence of iseniropic shocks or rarefaction waves,
disturbing the neighbouring wake,

The initial conditions for the system (2.1), X = X Sz &% m=m®  and
C = C°, are determined as a result of the gluing in cross section I (Fige 1) of
the flow of the interactlon in the wake with the isobaric flow of the displacement
in the bottom region, on the basis of certain integral conditions. The



_ B
continuity of the absolute width 8 of the layer and the displacements D
and also the conservation of the mass of the gas in the bottom region were taken
in the works [4y 5] as such conditions. In this case, the initial value of
the parametric form m°, the length of the isobaric bottom region x® and the
initial width of the neighbouring wake 3° are determined as a function of the,

beforehand, unknown bottwa pressure p° and the given blowing parameter B . by the
equations:

1-#(m,C)  1-H7(1,C7) (2.3)
Glm,c°)  H*M1,c°) -8

o [aop o o H¥m, ) o) 2.
x ={3 {5059/"//“{/?.(7,)G—/-,iﬂz—__)-ﬁ-t?)*tg@] , (2.4)

S lutn e ) -

In equations (2.3) - (2.5), B and G are denoted as follows:

__.....A) e i . _' . -1
5=%;%§[ﬁthﬁ7ﬁw9)'x] '

()

=- oY 1 =;m-1 1
G- J (,ou)gdz ,//?,)

-]

where G (m,c)— the relative rate of the returning flow in the wake (0 < % < b
B = the blowing paramcter, & = the empirical cos’ficient of the expansion of
the isobaric turbulent jet. ‘

7

The value of the bottom pressure ° ( and its corresponding velocity C°
of the outside flow) is found from the condition of the reelization of the
singular solution of equation (2.2), for which “he initial condition m°® is
determined from equation {2.3).

For simplicity of calculation, it was assumed that there is no initial
boundary layer in the stepe. The location of the outside boundary of the iscbaric
mixing layer y, > O with respect to the boundary streamline of the equivalent
nonviscous flow (Y = 0) was simply determined, as for the ordinary boundary layer,
by the formula Y,-§-§* (for the unbounded flow behind the step, from the
condition of the conservation of momentum Yy, =3 -37-%7 5 in the *
bounded flow, this condition is complicated and for supersonic velocities (df << d )
it can be disregarded. :
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C) . If the equation of continuity (1.9) is used in the form of Prandtl, then

. the continuity of the width ¥"*  of the momentum loss must be used instead of
the condition of continuity of the absolute width § of the layer (taxing account
of the returning flows).

3H”(M,C) =5(£asc’},?i'hfr.;é'{{,f)x

(2.6)
Then equation (2.3) will have the form:
K" (m, ) "G'/!’mé c) (2.7)

Formulae (2.4) and (2.5) will be written in the previous form.

The value of the free parameter Go®) of essentially constant turbulence
depends on the assumed equations, gluing conditions and the profile of the
velocitiese The above.mentioned value of (-® ) = 0,012, was selected in
work [4] from the comparison of th: calculated snd experimental data with respect
to the bottom pressure P° behind a plane step in the condition of gluing of
and with a profile of velocity (1.1) at F(%)=1.7342,., 23[ 3] -

For plotting the dependence of the relative bottom pressure P"/ s  behind
C‘ a plane step in an unbounded supersonic flow on the Mach number Moo of the
undisturbed flow and the blowing parameter Pu= (Pug,/ (FUW) o > it is
sufficient to use the family of the singular integral curves of the equation (2.2) :
my (C,CL) and the family of the solutions of equation (2.3) or the curves of
the initial conditions ms(C, B). The intersections of these curves determine the
two—parametric relation ¢°(C, ) or PYP.L( M ,Pu)represented in Fige 2.
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The calculated curves of Fige 2 satisfactorily agree with the experimental
data in the case of existence of blowing ( fo ¥ 0) or suction ( PU < 0)
however, for clarity, the results of experiments (taking account of the dispersion
of the data of the different authors), related only to flows with _pu =0
are given in the graph, i.e., in the case of sbsence of blowing (suction). The
curves in Fig. 2 are limited at certain maxims of blowing and suctionse. The first
limitation is related to the accepted assumption of the isobaric flow of the
displacement in the zone of separation and, in principle, it cen be removed if
the interaction of supersonic and secondary subsonic flows is studied. The second
limitation is more essential and is related to the existence of = limiting line for
the solutions of the system (2.1) when the denominator in the right sides of the
equations vanishes: ‘

8(m,c)=0

or

SlaH _1__@’ -i-H mf2-m) . aH
dbnC - H* (1-c¥(1-m) am =~

which indicates the impossibility of the existence of separating flows, if the
flow rate exceeds a certain critical value.

In Fige 3, the calculated distributions of the pressures P=P_(X) on the
axis of the neighbouring wcke, are compared with the experimentsl data at different
Mach numbers ™ of the supersonic flow in front of the step:

! - Mg=1,56

2-My, =184
3 -My=2,03 4-M_=23D
5 -M,=3,02

The numbers correspond to experimental data from the five different sources
shown in the work fb]. :

The family of the nonsinguler integral curves of equations (2.1) or (2.2)
corresponds to the different flows in the neighbouring wake. These flows are
disturbed by a shock or a rarefaction wave at finite distances from the beginning
of the wakes They are represented by segments of nonsingular integral curves,
which can be studied directly, or jointed with segments of other singuler curves.



The flow in neighbouring wske, disturbed by a shock wave of finite’ intensity

é; > yx » has two values. For given boundary conditions of the Mach number M _,
in front of the step, the intensity of the shock %5 and the place of its
location in the wake g +two possible flows exist in the neighbouring wsake.
These flows are characterized by the velues of the bottom pressure P3 and p
which can be arbltrarrly called the strong and weak disturbances. This corresponds
to hysteresis in physical flows of SUuh a typee In the case of existence of
blowing or suction in the bottom reg on, the flow in the neighbour.ng wake is
two-valued in the whole range of the values of the bottom pressure 13 < P4 P,
The flow in a wake with bleowing in the bottom region can be studied as quasie
steady, when the wake acts as a source or drain for the subsidiary flow rate,
and the bottom region beccmes a storage for the mass. On this basis, a gerieg of
change of the parameters of the bottom region was performed in the work [5].
This region supposedly characterizes the low-frequency oscillations in the wake.
Such oscillations are really observed, and their amplitude and.frequency in one
example satisfactorily agreed with the calculated valuess

3¢ Quasi-One-Dimensional Egqautions of the
Supersonic Jet,

For the approximaste quasi—one—dimensiongl method of calculation of plane
and axisymmetric thin jets, having a small curvature, of a nonviscous gas, all
the parameters f of the flow ( P,  the longitudinal u and transverse \-
velocity components) are assumed continuous and slightly changing across the
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cross—section of the jet, x = conste At the boundaries of the jet the parameters
at Y=y, and Y =Y,  are marked by f, and f, , respectively. The variation

of all tthe parameters f-Fs and also the value of v are considered small of
the first order.

Applying the operation of averaging to the anglytical functions of the
parameters of flow, it can be ascertained that the mean value of a function,
correct up to the squares of the small quantities,  is equal to-the same function
from the average values of the arguments. In particular, for the mean parameters
with the mentioned exactness, the usual gas dynamic relations of one-dimentional
flows hold; at the same time, taking into account the small value of v, it can be

‘baummdtha,<C>,~(4u>/<uma>y

tge -dy‘/dx = /u 'v::/:-“ > {L:G,I) vte.

The differential equations of motion after averaglng with respect to y are
reduced to the ordinary ones with respect to-x, which is the main purpose of the
developed approximate method. On the basis of a speclal investigation and of
the practice of calculations, it was advisable to use the following
system of equations (the signs of averaoing are omltted)

¢ quakion of  continuity

d o :
Py (CATN UWJ o, L (3.)
equation of momentum in the longitudinal direction
. /*’ J&I /dyo
dx[(y -4, )(p*yu)](,n/[py,d °.,;,—] (3.2)

equation of momentum in the transverse direction

L4 I”- l” + '
__[_PU {f/ y )] 0 ,}[¢ P yr [p p)g"] (303)

‘equation of the boundaries of the Jet

e PUSSUSREESES S s}

dy; fdz v fu, s 0,0 (3.4), (3.5)

Equations (3.3), with the above_mentioned accuracy, can be dlvided into two
equations with respect to dvy /dx and dv;/dy 5 (This physically corresponds
to the division of the jet into two and to the appllcation of each of them of
the equation of momentum at the step change v =v(Y) ).
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Performing this lelsa.on and solmg the equatlons with respect to the
derivatives, we obtain, after some transfomations, a system of six equations,
This system descrlbes the gas i'low in the nonv:Lscous curva.linear jet.

Vd

oy e nfu dy, 'v/u . (36) @7
t Ty
du‘/J*’ y(f+ =7 )4 (17 f)y, o G -
v, - . , - (3g)
,d; . —_—,(M -1)(_1/,"'- S/a' 1)
. 2 7[" .
da v[?'M (!' .)]yg'”[fM -(--7-]-)]%/
Tl R : ’ 3.9
| L (- wy: -90") &)
el e L)y ~ (3.10)
J L ]- M[y'JN ,vl)
do, , 4 a (1-T/T)yl | (3.11)
a—-;-c-:(li-’);"'_ ‘——————-—-. Py ,.” .
— ' ! ’ M(yy - Y, ) ‘
In the written equations, C =M(2/(r -1)+ Mz).w is the reduced velc\.ity,

M = U./a. o oa is the velocity of sound; q_ {, Cz)r/(r-i)_ ‘ "[7*"12(7 ,)/2] Tl-1)

v:dvid 7}

The coei‘ficients o<y in the case of a circular jet ares o fy,*zyo)/3/£/, ey, )

and for a plane jet Lo = 0<1 = 1/2. The system of the six equations (3.6)=(3.11)
is complete, because it contains eight functions of X, two of which( ‘77 and 7y
or Y, and 7T ) are given. The initial conditions are known in the cross.
section x =0-

The obtained system of equations is used for the approximate construction
of the boundaries of the nonviscous curvilinear jJets Y. (x) in the sections,
where there are no strong shocks inside the jet and the " angles of inclination of
the boundaries to the axis of the jet are small. It is obvious that the greatest
error in the determination of the boundary.of a jet arises near the edge of the
nozzle and the points of fall of the shocks, in which the boundary of the jet
undergoes a sharp bend. Therefore, the reduced system can be used for the
approximate calculation of the plane and circular curvilinear supersonic jets
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at small degrees of unrated outflow. Examples of contours of plane curvilinear
supersonic jets are shown in Fige. 4. These contours are obtained by means of the
integration of the system (3.6)-(3.11). Examples of contours plotted by the
method of the characteristic features for the most simple configuration of the
Jet, when ¢, =C, are given also in Fig. 4, ( (_ is the reduced Velocity
in the first section of the jet)e

N ,r’:—i a
a Y, 2l W\ H.‘/.S
A/
N A/R-a7s

In order to emphasize the wave (barrel-shaped) configuration of the jet in
the quasi~cne dimensional calculation, it was assumed that the nozzle has a small
expansion angle X 00=0,X1,In the correct construction it was assumed for
simplicity that 60 = 0. It is obvious that on the average, the boundaries of
the correct and quasi-one-dimensional jJets satisfactorily coincide. In the case
of the most sharp bend of the boundary (Fige 4 b) the quasi-one~dimensional jet
is limited by the section <=~ 3.5 where M = 1.

- As applied to the calculation of the flow of an interaction, we notice that
only the integral properties of the complex outside flow up to the throat of the
neighbouring wake are of interest. Examples of such properties are the number
and the dimension of the "barrels" of the Jet, which remain in one.dimensional
approximation in a "spread" form. Moreover, the angles of inclination of the
velocity vector of the outside flow on the boundary of the turbulent layer in the
whole region of the interaction do not exceed 20°, So, the case of Fige. 4 b
does not belong to the calculation of such a flow,
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The discussed quasi-one-dimensional method of calculation is distinguished

- by sufficient simplicity, and it is similarly applicable for subsonic and supersonic
. nonviscous flows, both in the thin bounded jets and in the narrow canals. For the

developed theory of interaction, it is particularly important that, by using this
method, the problem as a whole obtains a closed analytical description that does not

contain unnecessary informations about the flow and conyenient for the programming
of the numerical calculations.

L+ Interaction of a Jet with a Wake

The flow of the interaction of a qua81-one-dimensidnal Jet ‘and one-parametrlc
turbulent wake is described by a system of six equatilons for the nonviscous jet,
(3e6)=(3+11), and two equations for the wake, (1.5) and (1.6) In the last two
equations, one should assume that §" =Y, and deye =% . It is
necessary to add an auxiliary formula to the system’of these equations for the

determination of the length (surface) of the outside and inside boundaries of the
nonviscous Jjet.

Z O et P =gl 0

This is necessary for the calculation of the width of the Jet turbulent layer of
the mixture.

The initial conditions of the neighbouring wake are determined, as previously,
from the conditions of the gluing of the isobaric flow of the mixture in the bottom
region with the flow of the interaction in the wake. On calculating the turbulent
layer of the mixture behind the axisymmetric end, one should proceed from those
approximate relations that exist in the plane flow: the profile of the velocity
in the layer of the mixture is universal

. 0

_,:__”m;“,
where 7 -{)+I)5g y the area width of the cross~section of the zone
of the mixture, mixing coefficient

50 =(/'+7);/:Fyaj|//+/zfo/u)zc/x x[/t/}fr%ja’x (403)

is the area (length) of the ejector surface of the jete
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.
The conditions of continuity of 8 and h in the section of gluing and of
conservation of mass in the stagnant region are written in the form:

| f'th g (=)1-ne,0)] =80 T T aay
90)11(::) =5}”/1"(m,6',/'} , (4.5)
§7'6(m,C.j)=(1-8)8°H" (1,67 0)s  I=) , ' (4.8)

Where . , e po,, *% ¢
8:(ﬁu/‘59/(~pu‘/5’.‘/ (i,C,U)SO(I) ,
8, /m)

G(m,C,/)='0*’}! (;ch/z Fl2)=m”

The relative integral widths are expressed as functions ‘of three arguments,

. the parametric form m, the reduced velocity C and the parameter j. - The last

argument, as shown previously, is equal to O or 1 in plane or axisymmetric layer,
respectively.

From equations (h.h) (Le6), it follows that the initial value of the parametric -
form m® is determined as a functionf ¢ from an equation analogous to (2.3):

L BN IGOR (
G(m,C®, 1) = H**“,CO,U){I'B) "’ h.'])

The coordinate x =% of the section of gluing is determined from the equation

S e e

gt e uy 1-H*(1,0%0) :
T'—S(C)H (m,C71) o (4.8)

The calculation of the flows of the interaction, which are represented in Fig. 1 a
and b, consists of two parts. Originally, for a given value of the bottom pressure
P° (or C°), the flow on the isobaric region behind the step up to the section of
gluing, determined by equation (4.8), is calculated by integrating the system
(346)=(3+11), complemented by equation (4e1)e Further, by the integration of the
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v 8ame system of equations,the flow in the region of the interactions is
‘ calculated, , The real value of the bottom pressure P° or C° and the actual
flow of the interaction are determined, as in the most simple case in work
(4], by the condition of passing the,integral curve through the singular
point (wake throat). The numerical construction of the singular solution
- in the neighbourhood of the saddle singular point,whose position is only
determined in the .operation of the calculation,is’connected with known
calculating difficulties.: In practice; it seems sufficient to construct
two nonsingular solutions related to.the different.families. The difference
of the values of the bottom pressure in them is, beforehand, less than the
given value, [5° .__pz"/< 0.01."
H

m

13

14

as

ar

25

The results of a successive integration (by the method of Rungo-Kutt)
of the described system of equations for a plane flow at Mo = 3.0, Y, = 1,
¥, = 2y 0,=-0.1, B,= 0.1, P/R = O for different values of the relative
bottom pressure . f /p, (P, 1s the pressure in the outside medium) are
represented in Fig. 5. The integral curves in the plane (m, c) are shown in
Fig. 5 a. These curves characterize the change of the parameters in the viscous
layer. The contours of the nonviscous Jets are shown in Fig. 5 b. The lower
boundary of the jets 4 (X) in the region of the interaction corresponds to the
width of the displacement of the viscous layer d™(x)-
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‘Fig, 5 b

The nonsingular integral curves, given in Fige 5 a, do not correspond to
any actual flowe All the curves begin on the line of the initial data (in the
absence of blowing, B = 0), which is determined by equation (2.3). The right
branches end on a limiting line which is determined by the condition & (m,C)=0.
The left branches are limited satisfactorily conditionally by the separated
section .= 10, beyond which the solution has physically unreal singularities.

From the study of Fig. 5 a, it is obvious that, at given initial conditions,
two singular curves are found. These two singular curves are plotted simply as
averages between the nonsingular curves, related to the different families,
and until these nonsingular curves are sufficiently close to each other. The two
stationary flows of the interaction corresponding to them are represented in Fig. 6.

———
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As in the case of the interaction of a single shock with a wake, a flow
with lower bottom pressure, P1 = 0.375 and a flow with higher bottom pressure
P, = 0455, can be called weak and strong disturbances, respectively. The
transition from one flow to the other is connected with the essential change
of the configuration of the reglon of the returning flows and of the location
of the critical points (m = 1) in the wake from X = 5 (at P. = 0.375) to

842 (at P°= 0455)

The existence of the double=value in the flow of the interaction in the
considered, more complex, case also attests the possibility of quasi-stationary
ascillations with a relative amplitudes

205, -pfp + B, ) = 0.38

5+ Pseudoshock in a Canal

As shown in rectilinear long caenals, a complex system of weak oblique shocks
and flow separations, interacting with the turbulent layer near the wall, arises
instead of a normsl shock in such a way that the transition from a supersonic to
a subsonic flow in-the canal and the corresponding loss of the total pressure in
the flow are distingulshed by a viscous mechanism, which is commonly ecslled pseudo-
shock. Following work [7], we assumed that the effect of the shocks on the flow
in the core of the canal, outside the layer of mixture, can be neglected, and this
flow can be considered one-dimensional and lsentropic. We assume also that the
friction on the wall can be disregarded. The corresponding sketch of the pseudoshock
is represented in Fige. 7.

In section 1, the flow consists of a uniform core and a thin ordinary turbulent
boundary layer. This layer achieves a separating state under the action of the
positive pressure gradient. Between sections 1 and 2, a layer of mixture with
returning flows of fluld grows on the wall., In section 2, the layer of the mixture
absorbs the isentropic core, after that a balencing of the flow takes place in the canal
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A second critical point, behind which the asymptotic incresse of the pressure to
the maximum occurs, is located in section 3 when taking account of the friction on
the walls in a certain section "4", the pressure reaches a maximum [8].

Since the effect of friction on the wall is not taken into account, the pseudoshoc

can be considered as a flow of interaction of one~dimensiongl outside flow with &
layer of mixture (with a wake)e.

In the layer of mixture between sections 1-4,aone-paramstric profile of
velocities of. ordlnary form (1.1) is received. The three unknown functions of the

problem in the region 1~2 will be the reduced velocity c(x) the width of the boundary

layer J(X) and the parametric form m (x), and in the region 2-4, where S =1
will be the pressure p (x), we have as previously €(X) and m (x). The original

system of equations consists of two equations of conservation; the equation of
continuity iss

(PU) = pu(1-8H*) < const | (5.1)

and the equation of monentum isz

df . e
d é’n(SH”) [2 H- m‘) = =0, - 62
and also the differential equation on the axis of the viscous layer ig:
e e |
et -f-—-: —J—‘- ' (5'3)
.pouo;r_:g t GI (ay )0 ,

In the case of the isentropic flow, we have in the core of the flow (in the
section 1=2)::

JSH g /c;(c) g f“/(f“)* . (504)

For the calculation of the final increasse of pressure in the pseudoshock,
it is sufficient to use the equations of continuity and conservation of momentum.
It is obvious that the mean parameters in the final and initial sections of the
pseudoshock are connected with the relations of the normal shock.

For the calculation of the pressure distribution in a canal the equations of
conservation, (5.1) and (5.2), should be used in the differential form,
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The original systeﬁ of equations of the pseudoshock for the region 1-2
(:) A with the isentropic core can be reduced to two ordinary differential equations of
’ the first order with respect tom (x) and C (x):

——-aan afn// anc

dm :
- - 5,
dm | mfZ-m) dfnC‘ B} (-aze) H*m?
X (1'"7)(1—[.‘2) dx ]-900/9[0) 1-m . (5.6) |

Equation (5.5) determines the integral curve m (C) in the plane (m, C)

dn 1 Wt (W) (15 [y (O))- dnhjotnt (5:7)

dc. ¢ aan/c?m

From equation (5.6)z the pressure distribution cen be calculated in the physical

plane C (x) or 1T x):
dm m/2 m) '(5.8)
SR, S N N JET 0% b
(:3 Equations (505) and (5.6) are valid up to section 2 of the coupling viscous layers,
Where ) = 1, or
g g
H =1- .
(%) (549)

For the calculation of the balancing flow, one should proceed differently.
The dependence of m on C, (C, is the reduced velocity on the axis of the canal)
is more conviniently determined in this case from the transcendental equation,
which is obtained from equations (5.1) and (5.2):

| I-H*/m.co-)-"f;;. Co) [7 ’C ,_.____’ : é (5010)
| A mC) g o IH*/m )] -
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The value of the constant is determined from the datg of integration of equation
(547) in section 2.

The distribution of the velocity C,(X) is obtained from equation (5.6).
The distribution of pressure P()/p* is calculated by the equation of
momentum

P T[f Z‘M (7 H" H")]
Y - (5.11)
P TegME(1-H*- H*¥)

For the simplification of calculations, the integral parameters of the turbulent
layer of the mixture were assumed to correspond to the linear proflle of the
velocity f = 1 2 in the nonviscous fluid:

“emfe | H* /m/e)(s 2m) , H=3[(3-2m) .

Then from equation (5.7) the following equation is obtained:

_'—{2 (z r-gw/;{c) ]} FSJZ)

m
m 2\ 7 14
2
1y z\ 12
i N \
2 { 3 3N, 3 10
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Fig. 8 a Fig. 8b,
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The integral curves of equation (5.12) at M_ e 3 in the plane (m, C) are

represented in Fig, 8 a, They are valid in the region 1-2 up to the section
of the coupling of yiscous layers at § -1

The different curves correspond to different conditions in the initial
section of pseudoshock 1 or to a different width of the displacement of the
initial boundary layer 6{ + This consequently leads to a change ofthe initial
parameters of the flow in the nonviscous core and of the mean-nass velccity of
the flow in the section 1, Apq (Table 1),

The curve 0 = 1, corresponding to equation (549)y is now determined by the
equation:

rn-2[7"72.7] (5.13)

The integral curves in the region 2-3-/ were plotted by the formula (5.10),
taking account of the assumed simplifications,

The distribution of the pressures P (X) and the parametric forms m (x)
for three variants of calculation are shown in Fig. 8 bes It was assumed that
my = 0,85 in the final section of the pseudoshocke. The obtained parameters
of the flow in the'pseudoshock and the comparison of 1ts length with the
experiment in work EB are given in Tgble 1 (the linear dimensions are relative
to the hight h, stated in Fig. 7).

Table 1
[ - Bapné}n'r proyeTa 1 4 ! ! i "
| {puc, 8) (D T 1 -4 ' -4
[
Crlanamerpel 0OTOKE P NANEILUOM
CCOUCHKI NCeRAOCKEYKA; @ o , , ~
b7 0,064 0,212 0,353
g, | 0,018 - 0,053 0,088
Py 1,82 1,76 1,5
Onwima’ ncemnocrauka: - pacyer 22,5 38 29
afcuepuneur | 22,5 38 ' 29

Key:

e
1) Variant of calculation (Fig. 8); 2) Parameters of the flow in the initial section

of the pseudoshock; 3) Length of the pseudoshock: calculation experiment.
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It is obvious from the table that there is a totally satisfactory agreement between
the experirgex)ﬁ; and the approximate calculation (at one and the same value
Of m\‘ - Oo 5 .

6. The Finsl Remarks

In conclusion and first of all, one must emphasize that the essentially developed
one-dimensional theory, in spite of the sufficiently rough initial assumptions and
with the minimum number of the empivical constants, totally satisfactorily describes
all the main properties of the investigated separating turbulent supersonic flows,
including the hysteresis phenomena and the quasi-stationary oscillations. The
good sgreement of the calculated and experimental data is remarked also in other
analogous workse. This is explained, .¢n . one hand, by the existence of certain
universal properties of the separating flows,slightly depending on the general
configuration of the flows and enabling to use its simple calculating models, and
on the other hand, by the smoothing characteristics of the integral methods of
investigatione. These methods guarantee at the same time the conservation of the
principal properties of the phenomenon.

The first universal properties of the separation of the turbulent boundary
layer and the combination of the turbulent wake at definite critical pressure
ratios R /P, which are, with a high precision, functions only of the Mach
number My of the incident undisturbed flow, were ascertained experimentally in the
works of I.P. Nekrasov, Ge.l. Petrov and other authorse. The properties of the
separation, taken phenomenologically, enabled to construct more complex flows by
the investigation of the local separations and combinations of the turbulent flow
in the case of achievement of the conditions of the critical increase of pressure
or the critical angle of turn of the supersonic flow. These conditions obtained
satisfactory explanation within the limits of the theory of nonviscous fluids,
taking account of a definite reconstruction of the velocity profile of the
separating or adjoining vortex 1layers and the satisfaction of the integral
conditions of conservation of mass and momentum. Another explanation was connected
with the assumption of conservation of the total pressure at the separating line
of flow. This pressure, in the case of combination, must be more static for the
magnitude of the increase of pressure in the region of combination. This assumption
enabled Koyst and Chepman to determine the bottom rarefaction’behind the step in
the plane flow, including the effect of the low blowing, in the case of good agreement
with the experimental data. However, as the more detailed investigations in works
[9,3] show, the method of Korst~Chepman is essentially connected with the local
properties of the selected profile of velocity and of the flow of the nonviscous
fluid along the line of flow of a constant rate, which must be considered the
principal disadvantage of the method.

- Further progress in the theory of the separating flows is due to Krokko and
Liz [17] who extended the integral method of the theory of the boundary layer in
the viscous fluid to these flows, taking into account the separating profiles
of the velocity and the essential interaction of the layer with the outpide
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supersonic flow. Unlike the previous approach , this approach enabled to study
in detail the growth of the layer, to obtain the pressure distribution and the
location of the points of separation and combination, and to show the effect of
the initial .conditions, disturbances and friction in the flow.

The use of the integral methods of the theory of jets and wakes represents
at present the most promising direction in the investigation of the separating
flowse.

Among the most important problems for further working out, one should point
out the extension of the range of the investigation of Mach number M and Reynolds
number Re; the consideration of the effect of the initial boundary layer and the
friction on the walls; the study of the flow around more complicates space
configurations; the introduction of consumption and thermal effects; the changes
of the design model and working medium, corresponding to the conditions of the
hypersonic velocities at high altitudes and to the cavitation flows of the
incompressible fluid.
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OPTIMUM FORMS OF PLANE AND AXISYMMETRIC BODIES AT
HYPERSONIC VELOCITIXES

By
A.L+ Gonor

The solution of a variational problem in a statement, using the resistance
law of A. Buzeman, was proposed in the works [1-3]. Hcwever, as Kheiz had pointed
out' in work [2], in the more exact statement, the contour of a body of a minimum
resistance must have a discontinuity of the inclination of the tangent at the end
pointe This is so because, according to the law of A. Buzeman, an infinite negative
pressure is created at this point, which decreases the resistance in the final value,
Physically, the pressure can not be negative, and the change of the inclination
of the tangent at the end point in the supersonic flow must not ahead affect the
pressure distribution and, consequently, the resistance. The mentioned discrepancy
with the physics of the supersonic flow requires a new statement of the variational
problem.

There are two possibilities. One of them is the use of the so-called the

thrust ring and leads to the conception of the absolutely optimum body [2,3].
The second possibility involves an additional requirement of limiting the class of
the bodies so that the pressure is positive everywhere on the contour. With such
a statement the variational problem was strictly solved in work [4], for bodies of

a given elongation and in work [6] for thin bodies with different boundary
conditions. A number of questions, connected with the statement of these problems,
is investigated in work [5]e The solutions of this problem in case of arbitrary
isoperimetric conditions and without limitation on the thickness of the body are
cited below.

Q1. Problems with Arbitrary Isoperimetric Conditions

The solution of the variational problem about the form 6f a body of a
minimum drag with a given length and diameter does not cover all the possible
cases- of interest for practice.

We shall take in conslderation, beside the length of 1 and diameter, the
following quantities: in the two-dimensional case—the area A, enveloped by the
contour of the profile and the moment of inertia M of the contour; in the axisym-
metric case—the wetted surface S and volume V. Their values are equal tot

e - —————— e+ J— PO

X
A=2f ydx ;M= zj y'd
Xo Y

o

. r'x'f'_/i"' O 2 (101)
ST [ylteyTdx 1 vaT[ yldx |
X, _

o
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Any two values are most frequently given, while the rest are considered free.
For example £ and V, V end Sy t and S etce The general problem is formulated
as follows: find the minimum drag Xp in the condition that the pressure on the
contour is nen-negative and the values of (1.1) are given. The principal theorem
of work (4] about the existence of a section of zero pressure on the optimum
contour is, according to the argument method, not related to the form of the
boundary conditions; therefore it can be extended without difficulty to the
general case.

As a result,the problem is reduced to a detection of the minimum drag

{ —_—

-—_—}“ X a1 T
top =2 et e L I

) 7, 2\ 1/

ST e )
in the condition of fulfilling, on the length Xo < x X, , the
inequality: :

2 yll y y
Y dx >0 .-
"1y )" O/(u'y’z)”’ (1.3)

Here 9 - 135 the dynamic pressure; n = O and 1 for the plane and axisym-—
metric flows, respectively. The variable X is the coordinate in the direction
of the incident flow; y= in the perpendicular directione The index O- refers to
the initial point, index 1- to the end point (Fige 1). The drag arises only
from the section OC of the contoure. On the arc CF, called the free layer, the
pressure is equal to zero.

y

il
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Let us turn to the investigation of a set of curves of zero pressure.

On this set, the inequality (1.3) converts to equality and represents a
derivative from the formula.

X 1 a :
y' gy dx =const
YY) 121/ )
(1¢y )20/ (14")

) (1.4)

Hence, it follows in particular that it is impossible to carry out a contour of
zero pressure from the initial point X = Q.

Eliminating the integral from the formulae (1.3) and (1.4), we obtain a
simple differential equation of the second order for the function Y (x)

3 L ! "0
£y 470 (1:5)

where Yc¢ - is the ordinate of the corner point, and the parameter K is found
from the formula

n 1

yl xc y y d
K="r.r—c"','z')’sz_/ (1+¢')" L
9: (1+y¢: X0 g ’ (1'6)

As it is evident from (1.6), the geometry of the free layer depends on the
geometry of the initial section, called the regular form. The general integral
of equation (1.5) contains two arbitr constants, which can be so determined
that the free layer has no inclinatioiry{ in the point C(x¢.Y.)

and passes by the point (x,;Y/) As a result we obtain the equation

]

f - ne nt
(':,.‘)(,'MZ) * {Jc Z; -ﬂv.’)(y’-y )-Kyc (x'-x ) =0 ?

(1.7)

determining the geometry of the free layer.

Applying (1.7) to the corner point, we obtain the relation

neg el i
y Y ,':o.'/}{ ! net
Y. Ye LA . -K (x.-x ):0.
metine2) Y] mer 9l e (¥ (1.8)
Taking into account (1.7), we rewrite the conditions (1.1) in a more suitable
forms '

o #..xc__ L . - R . e
5/277 :R/ yu’#ylz dx "5(’(:.9’5-,‘/2,'(1.: y’ ® K)J

XC
2
Viz sy e vix, kg, g Yo b)

X elc.

where J, V,.eee— are known functions of their arguments.
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Let us formulate the éuxillary mnctn.onal

y.xn/,gzr%u}- ,z):, {.2 n[f {l+y ) dx+s//r,xc,y,, ]

+A n[_f y dx+ v(x, Xer e .. )]+1 {1-,,)[5' ydxeafK, tryc,...)]*
+2 (1- n)[f y dxa-rn(x X, )]/ (1.9)

where Ay -~ constant numbers. .The minimum functional of (1.2), in the above
enumerated conditions, coincides with the minimum of (1.9). Hence the unknown
solution must satisfy the condition 9% :=0. Expanding the latter, we obtain:

X : Xe
55s uj'(;y-dfgydx)aydx «SH[ Fdx « H[(F-yFy')8x +
xO . : xo .
Xe
+* Fy'Jy] 1 4 35
. '

!

: ynyl n vlz " L ' N
F“ﬁ:’;ﬁfﬁ”:ﬂ’ﬂ) tey K

et
,y:

! n n
- n+t B (]J-Héz)'ll [Af S(K’ xC ? yc 1‘°°)+ﬂaz V_(xyx.e,...)*

fl-n) (1-n)

+2 a(,;.x .)¢}1 mfk, Xo,.. )]

Repeatlng the usual argument we find that the extremum satlsfles the Euler
equation, which assumes the first mtegral,

[nj +{1 n)l,,]y *[(7 ")} +n3 “yfz)rs/,z
N

The condition of transversality is represented in the form

(1.io)

M/j I-dx*H[CJﬂFy 5y] +86:0 (1.11)
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According to (1.6) and (1.10), the coefficient XK depends on the arguments

(Y, ’ Ye 5Ye) i consequently ¢ .g(y X, YerYes 112 4,) -
The form of integral (1.,10) is such that the equation of the extremum in the

general case can be written in quadratures. Actually, solving (1.10) with respect
to the variableY and taking into account the parameter Y’ , we obtain

- - e y' /5 ‘f , C d , g S ——— e ' .
. iy, yeor y !
getly e,y xef DY ey )
< yo y (1012)
/
Writing (1.12-1) in the initial point* it is possible to express Y» by
the parameters in the point of conjugation and in the point (%,,;Yy) If equation

(1.12-1) is now applied to the point of conjugation and C is eliminated, then the
following relation will take place o

):0 .

! x’
¢ (Xe YerYer ¥ o (1.13)

The variation (1.13) gives the condition

S0, 80 080 0, B ey B (2.1

The condition of transversality (1.11) is reduced to an analogous form.
Investigating it together with (1.14), it is possible to eliminate any one
variation and, by (1.13), the corresponding variable, for example, Xc « AS a
result we obtain a condition connecting four variations with coefficients that
are dependent on four variables. Finally, the variation of the equation of the
free layer (1.8) enables to decrease the number of the independent parameters to
threes The latters are determined from the equality of the corresponding
coefficients in the independent variations to zero. The discussed shceme gives

the possibility to find the values of xc Y, , ¥ 5 X49Yy 5 Yl - TTne ,
constants "A; , entering in these parameters, are calculated from the relations
(1.1) . Thus, the solution of the general problem is closeds

* If the extremum does not pass by the origin of the coordinates, when the class
of the bodies with plane nose [5] is engaged in the investigation. The condition
of the transversality gives an auxiliary relation for the elimination of the
variable ¥ -
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§2. Investigation of the General Solution

On performlng the solution, certain moments, which require special investigation,
were omitted. First, it was not proved that the inequality (1.3) will be realized
for the regular form of the body. Second, it nowhere follows that the optimum
contour contains a free layer only at the end and that it cannet be composed from
some sections of the free layer and regular form. We shall carry out the proof
of these situations for the case of a body with a given relative thickness. The
correctness of the condition (1.3) is most easy to verify by a direct calculation
of the pressure distribution on the nose of the contour. In the plane flow, the
regular form is the wedge and the condition (3) is certainly fulfilled. In the
axisymmetric flow, the pressure distribution is determlned by the follow1ng formula:

CP P/‘; zsmld[f--—sm gsi,,”d 4.3 ’:’SZ g tg ] whare fyd y

The corresponding graph, represented in Fige 2, shows that a positive pressure is
always realized in the regular form.

O <
L0 \\ e
\\\
%0 80 3 S:'

Let us now determine the succession of the arcs of the regular form and free
layere. As already shown, the extremum cannpt start from the free layer. Therefore,
the initial section is the regular form or the arc of the boundary extremum. One
may ask: does the transition from a regular form to a free layer occur directly at
the end or we have intermediate arcs of a free layer and regular form by means of
which the conjugation of the initial and final sections takes place? If the latter
situation is assumed, a reverse transition from the free lagyer to the regular form
will certainly take place at a certain pointe. Such point is denoted by the letter C
in Fig. 3; the arcs of the free layer are shown by the dashed lines and the arcs of
the regular form by the solid lines.
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To reduce the calculation, we shall limit the investigation to the plane
problem. The drag coefficient of a body consisting of two arcs of the regular
- form (Fig. 3) is determined by the formula.

& ldx { ya'x
C 2{% (”y-ff(“y;z)r/z Y% (hy‘z)'/? my.z)yfz +

f ! 1
+y°z-(1+yé )'/Zj (1+g'2)72__} -57 : (2.1)
X a
Calculating and equating the total variation (2.1) to zero, it is in - particular

received that at the point C, a condition of transversality of the following form
must be fulfilled:

" e H(E-yFy Py, B - o

1]

'
1 y .

P U T A |

(14%2)'2 " (,+yll)’/z ? & e . (22)

On calculating the first term, it is necessary to take into account that the
integral of the function F is taken both on the regular form and the free
layer. As a result, (2.2) will have the form:

e
PRSI

. T -
Hyc . eg” ey ¢ . (2.3)

On the other hand, the equatlon of the free layer (1.7) reduces to the
relation: e e e

y%“’“*‘/(y )(9 ) )0 oy
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Hence, the variations at the point C are related with the following conditions

Lot )50 s, 9840 (2.5)

It is easy to set also a relation including the variagtion of the angle of the
inclination of the tangent 2t the point Cs Therefore, changing beforehand tt
indices "1" to "C" and "C" to "C4", we differentiate (1.7) with respect to the
variable X. Then, we obtain the formulas

f{;[;ﬂ;;’)-yq 55'2]19:, firo, © (2.6)

the variation of which gives the condition:

o

g
-[(“yc"’)y‘t’y*y('*yc,’)-yc, g, 84c ] =0 (2.7)

Equations (2.3)y (2.5) and (2.7) form a linear one~-dimensional system with respect
to the variations. Therefore, the determinant from the coefficients must become
zeroe This leads to the relationz

{y [y(f*y )y y”] Zyy e oy (1vd' /2)[51/’*9 }s/ A ]*

R 2
yyc,yc (”ff’)} =0
We shall rewrite the latter in the form:

yl= ytyc,(“y‘/?)( / Elc (l*_l/ ‘ﬁ) -
[
. (l+yc )5'c 9c.7 o, (’*.‘/'2/2) . (2.8)
If we now consider (2.6) and (2.8) together, we have Yo > jc1 at the
point C, which contradicts the initial inequality - )rj In this way, it is

proved that the free layer can not occupy the intermedlate p051t10n and be alternated
with the regular form.
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§ 3. The Second Method of the Solution of Variational
Problems with Inequalities

In work [6], the above discussed problems are reduced, in the case of thin
bodies, to the solution of general problems of a variationgl calculation of the
Mayer-Lagrange typees The principal idea of the solution is borrowed from work

aﬁ and includes the insertion of an auxiliary function, enabling to replace the
inequality by an equivalent relation. We extend this method to the case of bodies
of arbitrary thickness. The strong and weak sides of the solution will be seen
in the course of its performing.

Let us consider the general problem of minumum wave drag in the case of the
inequality (1.3) and arbitrary initial and isoperimetric conditions. We shall
write the formula of the drag in the form:

a Y ! Yy dx
X =27 (ne! — -
D/q ’ ) aef (hy,'z)’/lx (1+ y'Z)’/Z ] . (301)
]

According to [7], we replace the inequality (1.3) by the relation:

o T T
dx 2

"(I-Iy’:)'llf(l#y’z)z - ’ (3'2)

,l

LA

i
Q

~ Where P is areal variable

Differentiating (3.2) with respect to the variable X and eliminating the
integral from the both relations, we obtain:

yy”(3*2y”){ [ﬂf’*y )+y9]( o)
2pp g.
y"

Tey' y(1 (3.3)
Introducing the designations.
PO
the relation (3.3) will be equiyalent to the following system:
JEE T R A,
W ¢, & y'-1:0
%:tts=o
L%5$5m=0 (3-4)
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As a result, we come to the formulation of the Lagrange problem: in the
class of the functions 3(x)) t (0,5 (X)omx)yP(x) compatible with the conditions
of the relation (3.4), the isoperimetric conditions (1.1) and the conditions on
the end points, we find such a system of functions, which would be reduced to the
minimum functional ef (3.1). .

We set up the auxiliary functionalz

g ; [T ———
Y= mm'/z f Fdx |
fo 97t 3 (3.5)
m+21 [x) +d,ny %2 nyﬁt_'u {y,,)y;) (1- ,,)y

The vanishing of the function Y gives the following necessary conditions:
1. The Euler equations::

{
Foo gy Foe 0 (3.8)
takes placé along the optimum contour.
2. The conditions of Weierstrass-Erdman'
(Fy') ~(6y') i (E-Ey F )
5, ). =(Fy!) ; (i yy)(FZyFyK) (3.7)
are achieved at the cormer points.
3a Finally- the,mdhions of transversality ares
¢, 8t 4
8t B S FyL 8 ]
(y y) (’ t? )5/2f (1 tl)g (F 29 Fy X 9:( Yx
Cheve
(3.8)

00, %=L gy, y st g8, 4 =m, yp .
Expanding the Fuler eqpations (j.b), we obtain the system:

———

P

”y“ #3,(p*t ——)+zz nge2gnlIet? 42 (1-n) 23y (1-n)y -4, =0

“ t;)'h ) (1 t) s fs fs
n s(3e3te2t FUIE ___] -Zt[ s B ]
(r:tz)’/z d{ (1 t’)’ 60 )[(m‘)‘ Y 1et? Y

-31,-2, e 25(;:?577

ﬁ
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————————

p[l,[m.-,-’—t;—‘ti-.n%)d's]=0'

42
1'[ Jlt’(i;it)-( o tz {pz tz)] 2, it -J -0

EXGACE (3.9)

S ———

The absence of the independent variable enables to write out the first
integral:

o tz)'b -1,t-2,3- 2 m+23,ny +25y;} 1+t +2 {r-n)yu,{: n)y .
(3.10)

Equation (3.9~3) enables to draw the conclusion that in the general case,
the extremum can be discontinuous, and it consists of arcs, along whichs:

s? !
L 18 . <0
a (m n ¥ )f205 0 or P . (3.11)

We shall name the first arcs the reg\}lar forms,and the second arcs the free layerse

The conditions of (3.7) in the corner points necessitates that the
multipliers A, A, , A; should be continuous and the constant C,
of integration, should have the same value for all the arcs formlng
the extremum. Moreover,
(p1,).=(p2,
p 0)_ P )+ - (3.12)

The -.form of the conditions (3.8) depends on whether they are recorded in fixed
points or in points of the natural type. In the last case we have:

ce0: x 034 - "/f f’)” -0 -

n ?

(iat’)tfl—'a’x =A,<0;p3 =P, =0 .

TN

(31

If the end points are fixed, then the first three conditions of (3.13) disappear.
We shall illustrate- further solution on the example of a plane contour with a given
relative thickness.

The first equation of (3+9) in the case gives the integral A, =C,

In the p01nt of conjugatlon oi‘ the re ;.Llar form d i
o (3 1) the multlplier(\o) s g an the free layer, according
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The forms of equation (3.11) and of the boundary condition for the Lagrange
multiplier A.€X) enable to suppose that this multiplier is identically equal to
zéro along the regular form. Such supposition gives the possibility to solve the

system (3.9) and satisfy all the boundary conditions. Actually, the second equation
is written in the form:

(Pl e T gy

’

This solution satisfies the system (3.9) at any values of 7\1 and 9‘3'
We obtain the equation of the free layer from (3.3) at P = O. Performing the
integration, we have: .

911+Cayﬂ= a .

The constant C1‘=}(Qc - The functions A, > A, end A along the
arcs of the free layer are found from the solutions of the second, fourth and fifth
equations of (3.9) at the conditions (3.12) and (3.13).

The composition of the ares forming the_optimum contour needs a special
investigation, similar to that performed in § 2

In conclusion, it 1s possible to draw the conclusion that both methods give
an identical solution. Nevertheless, the second method, even in the most simple
case, leads to the necessity of the investigation of a complex system of
differentisl equations, the solution of which is performed in a heuristic way.
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BODIES OF MAXIMUM AERODYNAMIC QUALITY IN A HYPERSONIC FLOW

By
Ve.l. Lapygin

In the present work, the form of a conical body having the maximum value of
aerodynemic quality is determined. It is supposed that the pressure distribution
is determined by the Newton formula and that the coefficient of local friction is
constant; the length and area of the mid-section of the body are given. However,
such statement does not give the possibility to perform an analytical solution.

An essential simplification of analysis was attained by auxiliary limitations for
the class of the permissible surfaces. Till now, the procedure of Strend [8)

has obtained the maximum spread. Strend solved the first problem about the form of-
a minimum—-drag wing that is thin in both the longitudinal and transverse directions.

Subsequently, the optimization of the mentioned class of surfaces at different
auxiliary conditions was investigated in the works [1, 9, 10]. In particular, the
problem of a thin wing of maximum aerodynamic quality was discussed in detail in
works [1, 10]. The simplicity of solution in such a statement is attained owing
to the reduction of the three~dimensional problem of the form of the wing to the
finding of the optimum profile in the longitudinal cross section. On the other hand,
it is known that the form of the cross section of a wing strongly affects the value
of aerodynamic quality [2, 11, 12]. Therefore, a more exact statement of a
variational problem may give essentially new results for the optimum form of a
hypersonic winges In the below= cited solution of the variational problem of the -
form of a conical wing having a maximum quality, the assumption of the thinness of
wing is removed.

The solution represented below was discussed initially in work [6]. At the
moment of its completion, the investigations [13, 14], in which similar results
are obtained, became known. However in contrast to work [14], the results of the
given work are obtained for a more general statement of the problem, not limited
by an auxiliary assumption of the form of the lee of the winge Work [14]
involves the same trend. In this work, for the first time, the method of the local
variations is-used for the variational problem of a wing in the Newtonian
approximation. ‘ '

1 i

-

1. Derivation of the Calculating Formulae, Statement of the
- Variational Problem

]

We shall consider the hypersonic flow of gas around a conical body. Let the
axis of the cylindrical coordinate system Py Po X be selected along the
flow, the velocity of which is U (Fig. 1). The surface of the conicel body in
the assumed coordinate system is given in the forms

e |
ARLA 1.1)
£ (1.1)



Fipe 1.

We shall consider that the total drag of the body consists of two partss
the wave drag and the frictional drag. We shall neglect the portion of the
frictional force in the 1lift force. We shall determine the pressure distribution
on the body by the Newton formuls

s keos?(7,T)
P ’ (12)

where Cp -~ the coefficient of pressure on the body, relative to the dynamic
pressure of the incident flow.

K =« the proportionality constant.

n - the normal to the surface of the body.
Below, we shall assume that k = 2, £ = 1,

‘ We assume that the value of the local coefficient of friction is constant
along the surface. With the assumed allowances, we obtain the following formulae
for the coefficients of the aerodynamic forces (in view of the symmetry of the
problem with respect to the plane ‘¥ = 0, the half of the body, OX AN )

is investigated):

, scx':f{_,:—;z_%:_fk_z' +az|/l+z'z/tx]a'¢p , (1.3)
0 + ]

W 3 1 .
2/ $in )
SC =j’(‘°”“/“ dy
i % ]4-224;;’/2 (l /4)
whegv a:-;-CT, ’

ms.j’;zd, —-1s the area of the stern cross section of the body.
[

ft  =is the local coefficient of friction,
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On investigatingthin bodies, these formulse are simplified. Actually, at
T 1 introducing a new dependent variable, ¢ :«¥3 ¥  we obtain:

R

I ) VI (1.5)

A
. -/3 y ycosq’#ysmy’
IZ Cy '/ y +5/ dtf ’ (1.6)
-2 2
S, =Sa =f d
' s yay (1.7)

The coefficient C, evidently does not enter in the right sides of formulae
(145) and (1.6), which simplifies the investigation.

The statement of the problems: to find the function Yp) at the given value
of (1.7), along which the ratio

. -I ..
A= 22 .
1, (1.8)
takes the maximum value.

The coupling between A and the aerodynamic quality of the body is given
by the relation

»
k=2xa "
(149)

2, The Algorithm of the Numerical Solution and the Results
of the Calculation

The analytical investigation of the problem encounters considerable difficulties
connected with the fact that the Eulerian equation in this case is essentially
nonlinear and has a second order. .

A direct method is used for the solution of the problem, It is known by the
name "method of local variations" [6, 3], in which the isoperimetric condition,
S4 = const, is fulfilled in every stepe. The convergence of the method in the
case of absence of the isoperimetric condition is shown in work [5]. Because Sy
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is maintained constant in the process of calculation, it is possible to hope
that the used method coincides with the Eulerian equation for this case also;
the calculations confirm this assumption.

The calculations were performed on the EVM- BESM~3M. The interval of P
Wwas selected to be 4°, the initial value of the variation of the radius h = 0.0l

Flg. 2

For checking the convergence of the method to the unique solution, the contours
shown in Fig. 2 are selected as a first approximation. These contours have the
same area, but they differ in the form and the position of the maximum radius Y, .-
We denote the angle corresponding to the maximum radius by 7 . It was found
that. the angle Lf'* at a sufficient big number of interaction (h in the process of
the calculation is decreased in 8 times), remains as it was in the initial
approximation, with the exception of the case of the triangular contour. The
forms of the contours are obtained qualitatively similar. For the explanation of
this condition , some contours were selected., These contours are close in form
to the optimum, and have the same area, but they differ in the angle QP” « It
was found that the dependence of quality on ‘-P”‘ in the vicinity of the optimum
angle is very week (Table 1).

Table 1

| .
p* 72 64’ 0°  58°  48°  36°

X 0,3304 00,3977 0,4018 04015 0,3963 0,373

Analogous dependence of A on \P' takes place at other values of
The fact of variance of the angle P* at S¢ = const is evidently due to the
insufficient accuracy of calculation (at a moderate number of interaction).
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One must mention that the velocity of the convergence to the solution
essentially depends on the selection of the initial approximation.

In the calculation, the value of the aerodynamic quality is determined
considerably more quickly, than the contour of a transverse cross-section,
and, starting from a certain moment, is changed extremely insignificantly.
Therefore the obtained dependence A (S4) has a high accuracy; the forms of
the optimum contours are found with less accuracy. We notice that in the
process of the calculation, a decrease of the interval of  was not performed,
because the time of the calculation considerably increases in this case, and the
accuracy of the determination of A is practically not changed.

K

5

5

005 o008 007 o008 T

Fig. 3

The dependence of the optimum aerodynamic quality K at Cy = 1073 on the
parameter of the volume T =V/S¥? where V= is the volume of the body, and
S~ is the area in _the plane,is shown in Fige 3. The maximum values of K for
V-shaped wings [2] are given by the small circles in the graph. The value of K
for the V-shaped wing practically coincides with the value of K for the optimum
bodye. We notice that these points correspond to wings with a cross—section close
to a triangle, the base of which is directed to the windward side. ‘

Let us cite data on the value of the_aerodynamic quality of the bodies,
investigated in works [11, 12]. At a given length of a half-cone body with %
cross—gection in the form of a semicircle has a quality K = 3.6 at C, = 10~
and v/€3 = 0,0727; with an elliptical cross.section, the maximum increase of the
quality is 2%; with a sine cross-sectionw-12.5%; with a triangular cross-section
with the lateral sides facing the flow, the quality approaches the value for
optimum bodies; for all the remaining cases, the increase is‘noticeably less,

If we consider the triangle cross-section, with the base turned to the side of the
flow, then, as the calculation shows (Fig. 4), the quality of the optimum body
will practically coincide with the quality of the body of the mentiocned form.

We notice that the triangular contour, with the base facing the windward side,
consists of the extrema of the Eulerian equation for the investigated problem.
However, this contour is not the solution because in the place of conjugation of
the two arcs of the extrema (half-line and straight line, parallel to the 0Z axis),
the condition of Weierstrass— Erdman is not fulfilled. The forms of the optimum
transverse contours as a function of 31 are represented in Figs. 5 and 6,
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It is noteworthy that the whole volume of the body is limited from above by
surfaces representing, within the limits of the calculation error, two planes
located along the flow. The lower surface of the wing, receiving the whole load,
has a small convexity to the side of the incident flow. In the vicinity of the
angle P=T there is a very small elevation, the hight of which decreases with
increasing the number of iteration. The obtained numerical results confirmed with
high accuracy the hypothesis that the upper surfaces of the optimum wing are planes
Jocated in the flow. As a whole, the form of an optimum transverse contour is close
to a triangle, with the base facing the windward side. Hence, it becomes clear
whey the quality of a wing with an optimum triangular cross-section almost coincides
with the quality of the optimum. ' ‘
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For checking, a calculation was zperi‘ormed mth the use of formulae (1.3)
and (1.4) for S =T.10% s"= 29 , 10 47 at a = 10~3, without
an assumption about the thinness of the body. rne results are obtained identical
with the above-mentioned. In particular, the form of the body and the value of the
aerodynamiq quality for the same values of S are practically the same.

3« Remark About the Convergence of the Solution

The problem under cons:Lderatlon is equivalent to the problem of the absolute
extremum of the functional. I- fqbd(p ,

. [
b= y”,—————yww Ails {y_zi,y,z efyres fonyt

yiey'

‘where'

M =const |
If the obtained solution will satisty, with the given accuracy, the Eulerian
equation for the function ¢ and the boundary conditions, then the numerical
convergence of the method does not arcuse doubts. In order to be convinced 7>y this,
it is necessary to checks

1. The mlfillment of the boundary conditlons at the extremum,
2, The fulfillment of the Eulerian equation.

3+ The fulfillment of the conditions of the conjugation of extremum arcs in
the corner point.

A direct numerical check of these conditions was performed for Sy =7 9?’*=60‘-

1. The boundary conditions at the points =0, =T (the condition of

the trgnsversality) Pyi(0) = d> (M)=o0 are fulfilled exactly, because Y10)0

'TT ‘s
l )2., The fulfillment of the Eulerlan equation was checked only in the interval
O < ¥ <Y because the half-line of P= P¥ is' an extremum. At every
point of the contour the value of 2t was calculated in the mterval (0, 7).
The results of calculation are represented in Fige. 7. For O< ¢y X 43°,
the deviations from the mean value do not exceed 6e5%; in the vicinity of <= to>
the variance of the values is slightly increased, which is explained by the
difference of the actual angle ‘fl from the assumed angle in the calculation k{» =bo -
(As shown in Table 1, 56°< LPopi‘<6°)
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3. The conditions at the corner point:

‘The condition AL ®Py:J = 0 is satisfied with an accuracy of 3%; the condition
a[d Py] =0 is satisfied with an accuracy of 10%.

Here &L--J  denotes the difference of the values on the left and right
from the corner point.

In conclusion, we mentlon that the accuracy of the method, as clear from the
result of work [4], has the order of the interval of <p . In the performed
calculations, the interval of was equal to 0.0698¢ Thus, the obtained above

valuations of the convergence ol the solution coincide with the accuracy of the
method. S
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SUPERSONIC FLOW OF AIR AROUND A RECTANGULAR PLATE

By
M.P, Falunin

A considerable quantity of works is dedicated to the aerodynamics of wings'
of different forms at high velocities. An extensive bibliography of this
problem is comprized in the works [1- 4],

In the present work, the pressure distribution on the windward side of a
rectangular plate of infinite elongation is experimentally investigated, a
study of the spectra of the flow around is also carried out on wide angles of
attack for a wide range of changs of elongation values (0.02545 N g 40).

) 1, Pressure Distribution on the Windward Side of an
Infinite Rectangular Plate

The study of the pressure distribution on a rectangular plate with cutters
on the ends, decreasing the influence of the end effects, permitted the
determination of the diagrams of the pressures along the chord of the plate, and
also the location of the center of the pressure of the plate. The pressure was
measured in three cross-sections in the central part of the plate., These cross-
sections are located at a distance of 15 mm from each other. In each cross-
section, 6 drains were located. The distance between the drain points along
the cross-section was equal to 5 mm; the distance from the edge of the plate

was equal to 2,5 mm, A sketch of the location of the drain points is represented
in Fig. 1.
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The experiments were carried out at an incident flow velocity corresponding
to a Mach number of M = 3.,0. The obtained results shown in Figs. 2= 4 indicate
the following:

1. The pressure at the drain points located at the same distance from the
leading edge is the same in all three cross-sections. Therefore in the
graphs, the pressures are shown at one point for every value of h (the distance.
along thechord from the leading edge relative to the length of the chord) .

2. At narrow angles of attack ( =< << 30°), the pressure along the chord
practically does not change and agrees with the theoretical value for a
fectang§lar plate of infinite speed at the corresponding angle of attack

Fig. 2). '

3. Beginning from o< ~= 35°, when the leading wave withdraws from the
leading edge, the pressure at that edge obviously increases, and by increasing
the angle of attack, it approaches the value of the stagnation pressure behind
the normal shock at M = 3, The pressure at the trailing edge slightly increases.
The pressure distribution has an unsymmetrical form (Fig. 3, I- V).

Lo By increasing the angle of attack, the zone of the increased pressure
shifts from the leading edge to the middle of the plate, and at ~—< = 905,
the maximum pressure corresponds to h = 0.5 (Fig. 3, VIj. The pressure near
the zone of the increased pressure begins to decrease in proportion to the
displacement of this zone from the leading edge. At the angles of attack
350 o< < 90°, near the trailing edge (at a distance =~ 0.1 of the chord),
the pressure is less than that at the leading edge at the same distance., As
the drop between the maximum pressure on the windward side and the pressure
on the leeward side of the plate is supercritical, the velocity and pressure
at the edges themselves must be critical. B
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5. Owing to the. change and displacement of the region of the increased
pressure, the center of the pressure (in the condition that considers the
pressure on the leeward side is equal to zero) also shifts from the center
line of the plate to the side of the increased pressure. The graph of the
relation Cy ) is represented in Fige. 4. The data are obtained for the angle
of attack o< such that 0° < &< <90°, It is obvious that as long as the
leading wave is attached to the leading edge, the pressure on all the faces
is the same, and the center of the pressure is located on thecentral line of
the plate (Cd = 0.5). After the detachment of the shock wave from the leading
edge and the appearance of the zone of the increased.pressure near it, the
center of pressure shifts forward by about 86 (C 4 wmin = Odkbd; &< = 35= L5°).
On further increase of the angle of attack, the center of pressure shifts to
the middle of the plate, at o< = 90°, C4 = O.5. The increase of the angle
of attack from 90° to 140° leads to the displacement of the center of pressure
to the trailing edge (Cgmay = O.54). The attachment of the shock wave to
the trailing edge of the plate necessitates the decrease of C 4 to 0.5. Thus,
the relative coordinate of the center of pressure of the forces acting on the
windward side of the rectangular plate may be changed for the range of the
angles of attack 0° & =< <. 180° by about 15- 17%.

6. The dependence of the relative coordinate of the fomt of Mdax lmum pressuyve };
on the angle of attack is represented in Fig. 5. In Figs. 4 and 5, the curves
for the angles of attack, 90°<= o< =< 180°, are drawn on the basis of the
symmetry of the flow around the plate at angles of attack o< and 180° o<,

h* — /
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Fig. 5.
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% 2« Spectra of Supersonic Flow Around Rectangular Plates
at Large Angles of Attack

()

The study of the spectra of supersonic flow around rectangular plates
was carried out within a wide range of change of the angles of attack from
20° to 90° and of elongation from 0.025 to 40.

General remarks on the form of the shock wave: The analysis of the
spectra of flow around and their quantitative treatment point to a sharp
Qualitative difference in the form of the shock wave* for small and big
elongations. First of all, for such characteristic features of the form
of the shock wave, it is possible to refer to the following (Fig. 6):

Fige 6.

* All the data shown in the sketch graphs and tables are relative to the
vertical plane of symmetry.
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a) The presence of two straight segments of shock wave in the case of plates
of small elongation and narrow angles of attack; one segment is attached to
the leading edge, the other—at a certain distance from it. In the case of

a plate with an elongation of the order of one or more, there is only one
straight segment adjacent to the leading edge. b) At wide angles of attack,
when the shock wave is totally detached, the shock wave is curvilinear in the
case of plates of big elongation while it is, for the most part, equidistant
from the windward side of the plate in the case of plates of small elongation.

The values of the quantities from which it is possible to judge
the form of the shock wave and its variation with the angle of attack <= and
the elongation QA =8/n are given in Table 1, where § is the length
(spread) of the plate, and h is its height (chord). All the quantities are
relative to the height of the plate hs The quantities in Table 1 correspond
to the following geometric characteristic of the shock wave (Fig. 7).

Fig. 7.

1) Xn, 2) Yn — the distance from the leading edge of the plate to the shock
wave along the plate, upstream and in the perpendicular direction, respectively;
3) = the distance from the center of the plate to the shock wave
perpendicular to the plate direction; 4) Xy, 5) ﬂ3- the distance from the
trailing edge of the plate to the shock wave along the plate, downstream and

in the perpendicular direction, respectively; 6) X, , 7) Y. — the coordinates
of the end of the straight segment of the attached shock wave with respect to
the leading edge; 8) X s 9) M, — the coordinates of the end of the
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curvilinear segment of the detached shock wave with respect to the leading
edge; 10) X*, 11) Y* ~ the point grid reference of the shock wave with
maximum departure from the surface of the windward side of the plate, with
respect to the leading edge.

For illustration, the graphs of the quantities 1- 11 (except 6 and 7)
are represented in Figs. 8 and 9 for a plate with an elongation A = 0.0375.
The numbering of the curves corresponds to the enumerated quantities.

Model No. 2 A =0.0375 ; h =8 m;M = 3.0
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We have to do some explanations in comnection with the quantity X :
a) if the curvilinear segment of the shock wave, adjacent to the leading edge,
converts afterwards to a rectilinear one, which, in its turn, is already '
curved because of the effect of the tralling edge,then.)ék denotes the
distance from the leading edge to the projection of the end of the first
curvilinear segment on the windward surface of the plate; b) if the shock
wave is totally curvilinear, then the quantities X  and X* coincide;
c) in the case of a symmetric flow around a plate (o< = 90), the quantities
of X, and X* coincide., The dash in Table 1 denotes that the corresponding
quantities could not be measured in the limits of the visual field. This
refers to the quantities X_, X, Y,, Xy Yy X*, Y*. In individual cases,
this denotes the absence” of truthworthy data about the corresponding
quantities (X, , %h).
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Model No. 2; 0.,0375, h = 80 mm; M = 3.0
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Analysis of the straight segment of the shock waves: The straight segment
adjacent to the leading edge of the plate corresponds to flow around a plate
with attached shock wave. In this case, in the vertical plane of symmetry, the
straight segment of the wave proportionally increases with increasing the
elongation of the plate, until one achieves the elongation of the length
at which disturbance from the trailing edge reaches the wave more quickly than .
from the lateral ends., At M = 3,0 and angle of attack < = 30°, the
proportionality is broken for A > 0.75, and at the angle of attack &< = 20°—
for A > 0,125 (see Table 1 and Fig. 10)s Lines 1', 2' ,3' in Fig. 10
correspond to the experimental data for the relative length of projection of
the straight segment of the shock wave on the plane of the plate. The solid
lines were calculated with Mach disturbances from the lateral ends of the leading
edge.

The results of the analysis of the spectra of flow around indicate that
the rectlllnearlty of the attached shock wave in the vertical plane of
symmetry is broken at values of X, that are smaller than implied from the
mentioned calculation. :

Dependence of the form and dimensions of the leading shock wave on the
angle of attack and edge effects: The angle of attack and the elongation of the
plate essentially influence all the geometric structure of the shock wave,
namely the length of the straight segment, the magnitude of withdrawal, 1ts
departure from the leading and trailing edges of the plate, etc.
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The corresponding data are given in Table 1. In the case of narrow angles
of attack, when the shock wave is attached to.the leading edge, plates with an
elongation exceeding a few units ‘will ke Floywed aceund 2n the wettral part of thc
windward side by a translational flow along the whole heighte The shock wave
has one straight segment, which is curved because of the disturbances running
from the trailing edge. This bend of the wave is observed downstream at a
considerable departure from the plate., The slope of the straight segment
corresponds to the calculation. In the case of plates with small elongation
( A< 0.1), the structure of the shock wave at certain angles of attack is
different: the translational flow occupies a small segment adjacent to the
leading edge; the shock wave at the edge is rectilinear, then it is strongly
curved, converting to the second straight segment, which is almost parallel to
the face of the plate (Fig. 6a).
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At angles of attack, occupying an intermediate location between the normal
flow around ( o< = 90°) and different angles of attack, the sharp difference in
the form of the shock wave is retained for plates of different elongation
when the wave is attached to the leading edge. In the case of plates with an
elongation A =2 0-5 , the shock wave in the plane of symmetry is totally

curved. The distance from the windward side to the shock wave in the perpendicular

direction is variable: it is minimum at the leading edge, and maximum at the
trailing edge, It is characteristic for plates of small elongation ( N < 0.1)
at the mentioned angles of attack that, for the most part, the shock wave is
equidistant from the force; at the same time, the distance between them is
approximately the same as in the case of symmetric flow around ( o< = 90°,

see Fig. 6b and Table 1),

At last, the difference in the form of the shock wave for a plate with

" small and big elongation, in the case of flow around perpendicular to the

windward surface is shown in Fig. 6C, Plates with small elongation have a
straight segment of shock wave on the whole extension, with the exception of
the range adjacent to the edges. In connection with the influence of the finite
dimensions of a plate on the form of the shock wave,we should add that in the
case of narrow angles of attack, this influence may be extended to considerable
distances. At angles of attack o< = 60-90°, the ends of the plate exert an
influence on the form of the shock wave at a departure approximately equal to
L- 3 times the magnitude of the spread (width) of the plate, respectively.
Therefore, if ‘A > 8 or A < 1/8, the middle part of the plate will
exhibit & Flowareund as & plate of infinite spread. That is to say, the relative
geometric parameters of the shock layer will not depend on the location of

the fairing segment of that part of the plate,

Determination of the magnitude of the withdrawal of a shock wave in the
case of a flow around a plate which is perpendicular to the flow: We shall
relate the magnitude of the withdrawal of the shock wave to the height (chord)
or to a side of a square equivalent in area to the plate. If at a fixed height
of a plate, its elongation is changed, the relation of the magnitude of the
withdrawal of the wave to the height of the plate (8 ) gives a clear idea about

.the dependence of this relation on the elongation. In particular, in the case

of elongation exceeding 6~ 8, the quantity & approaches a constant value.
The corresponding data are given in Table 1 and in Fig. 11 (solid line), If
we relate the magnitude of withdrawal to the square root of the area of the
plate, this quantity ( 8’ ) will enable to reveal the equality of withdrawal
of the shock wave for the quantities A and 1/) . The maximum is attained
at A = 1 (Fig. 11, the dashed line). In connection with the great range
of change of the elongation of plate, the relations & (%) and & (\) are
represented in a logarithmic scale on the axis of A« “According to the
data (Table 1, Fig. 11), in the case of the change of the elongation of the
plate from 0,025 to 0.125, the value of § 1is linearly changed, and at
A5 8, it remains constant and is equal to = 0.72. Thus, in the case
of the change of elongation by more than two orders, the withdrawal of the shock

wave changes forty times. The maximum value of &' is one half of &,,,-
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On the basis of the given discussion, it is possible to draw the
following conclusions. In the case of a supersonic flow around a rectangular
plate, the structure of the shock wave strongly depends on the elongation of
the plate and the angle of attacke. In particular, in the case of a perpendi-
cular flow around a plane plate, the withdrawal of the shock wave may be
changed by ten times,

In the case of narrow angles of attack, the influence, of the leading
and trailing.edges may be transferred to comparatively great distances downstream.
At angles of attack close to o< = 90°, this influence is extended along the
plate to distances exceeding its width by three—four times, Plates with
elongation X =& 1/8 and A 2 8 are flowed around in their central part
as infinite plates,

In the case of an attached leading wave, the center of pressure of the
forces acting on the windward side of a rectangular plate with infinite
length is located at the centeral lipne. In the case of a detached wave, the
center of pressure is shifted to the side facing the flow. The magnitude
of the displacement of the center of the pressure may attain 15- 17%.

In conclusion, the author expresses sincere thanks to G.S. Ul'yanov,
A.F. Mosin, A.A. Makshin and L.V. Filyand for their help in carrying and
working out the experiments.
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Table 1
I _@Xapaxrepae’rum yRapHO®& BOJUIN
1 o xn yn ya XJ yJ A yA-_ Xx yx X“ y*
1 2 4 5] 6 7 8 10 11
C,025 | 21 0] O 0,064 - 0,084 0,048 0,013 - - - -
’ 305 O O 0,038 10,700 |0,048 0,027 0,008 - - 1,260 0,054
41 - - 0,020 | 0,280 0,028 - - - - 1,083 0,028
50 0,0020 | 0,0010 | 0,018 | 0,150 | 0,018 - - 0220 | C,0I18 {1,048 | 0,021
60,5 0,0052.10,0033 | 0,018 | G,110 0,017 - - 0,130 0,017 . | 0,021 0,018
66, | 0,0080|0,0045 | C,018 | 0,065 | 0,018 | - - 0,120 | 0,018 | 1,000 | 0,018
68 O,u085 {0,0048 0,018 | 0,052 0,015 - - 0,080 0,017 | 0,978 0,018
70,51 0,0087 | 0,0052 0,018 | 0,044 0,014 - - 0,080 0,018 | 0,957 | 0,018
e 0,0090 | 0,004 | 0,017 | 0,040 | 0,014 | -~ o,c70| 0,018 | 0,50 | 0,017
80 0,0110 | 0,0080 | 0,018 | 0,030 | 0,012 | - - 0,065 | 0,017 | 0,045 | 0,018
! 80 00,0150 | 0,0088 0,018 | 0,015 0,010 | - - 0,065 0,018 | 0,935 0,018
10,035 [ 20,5 O 0] 0,079 - 0,113 0,068 0,024 - - - -
30,5 O o) 0,053| 0,890 0,067 2,034 0,013 - - 1,480 0,078
41 0,0022 - 0,041 | 0,500 0,048 - - 0,250 0,033 1,200 0,058
50 00,0072} 00,0061 0,037§ 0,260 0,038 - - 0,240 0,030 1,10 0,040
. 56 0,0100| 0,00867 0,032 | 0,10 0,032 | - - 0,220 0,026 1,130 0,03
I 58, 0,0110{0,0082 -| 0,031 | 0,150 0,03 | ~ - 0,180 | 0,027 | 1,080 | 0,031
60 00,0120 | 0,0002 0,030 | 0,130 0,031 | - - 0,160 0,026 1,043 0,031
64 0,030 | 0,0084 0,028 | 0,110 0,028 - - 0,130 | 0,028 1,030 | 0,030
70 0,0150 { 0,0105 0,028 | 0,065 | 0,024 | -~ - 0,150 0,027 0,957 0,030
80 0,0200|0,0130 0,027 | 0,035 0,020 | - - 0,130 0,028 0,035 0,028
20 0,0220 {0,0140 0,027 | 0,022 0,014 | - - 0,097 0,027 0,803 | 0,027
O Q ~/
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5

p\ 1 2 3 4 5 7 8 8 10 11
70 | 0,040 |0,030 |0,100 | 0,38 |O,l11l - - 0,72 | 0,102 0,87 0,115
80 0,075 0,050 |0,107 | 0,22 [0,104 | - 0,67 | 0,111 0,67 O,l111
g0 | 0,125 |0,072 |0,118 | 0,125|0,072 | - - 0,5 | 0,18 05 0,118
0,25 20 o) o) 0,154 - 0,235 0,140 - - - -
30 o o 0,138 - 0,198 0,054 | 1,100 0,196 1,76 0,23
34 o) o 0,130 - 0,172 o) 1,070 0,174 1,65 0,19
36 0,012 {0,083 |0,127 - 0,168 - 1,070} 0,170 1,56 0,19
38 0,017 10,015 (0,130 | -~ 0,165 - 1,040 | 0,170 1,54 0,19
40 0,018 0,018 |0,133 ~ 0,184 - 1,020| 0,170 1,468 0,19
60 0,031 {0,032 |0,139 | 0,740| 0,163 - 0,70 | 0,160 1,17 0,17
*90 0,187 |0,107 |0,154 | 0,187 | 0,107 - 0,5 0,154 0,5 0,154
0,50 20 0 o) 0,162 - 0,292 | 0,630 | 0,260 - - - -
30 o} o) 0,180 | - 0,280 | 0,370 | 0,143 - - - -
M4 o] o) 0,180 | - 0,276 | 0,174 | 0,089 - - - -
38 0,013 (0,008 |[0,192 | -~ 0,273 | - - - - | =
33 0,015 {0,008 [ 0,183 | = 0,288 | - - 1,22 {0,276 1,70 0,322
40 0,018 | 0,018 |0O,188 | - 0,264 | ~ - 17 [0,265 1,59 0,280
60 0,00 | 0,067 | 0,221 | 1,150 | 0,260 - 1,00 | 0,260 1,15 0,260
80 0,345 |0.188 | 0,243 | 0,345 | 0,186 | - - 056 |0,243 0,5 0,243
0,75 30 o) o) 0,184 | —- 0,324 | 0,568 | 0,215 - - - -
3 o o) 0215 | - 0,338 | 0,262 | 0,132 - - - -
38 0,021 | 0,017 | 0,225 | - 0,325 | -~ - - - - -
80 0,490 | 0,250 | 0,310 | 0,474 | 0,251 | - - 0,5 (0,310 0,5 0,310
1,0 30 o o) 0,208 | -~ 0,363 | 0,630 | 0,254 - - - -
34 (o) 0 0,240 | - 0,383 0,083 - - - -
38 0,026| 0,04 | 0,262 | ~ 0,390 - - - - -
90 0,500 | 0,0315| 0,365 | 0,580| 0,312 - 0,5 | 0,365 0,5 0,365
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Q

A ot I 2 3 4 5 6 7 8 9 10 I
0,075 20 o) o 0,104 - 0,157 0,168 0,052 - - - -
30 o o 0,072 “ = | 0,100 | 0,085 | 0,025 - - 1,52 0,122
38,5 - - 0,060 0,860 | 0,078 - - 0,410 0,056 1,28 0,087
48 0,001 | 0,001 | 0,054 | 0,490 | 0,084 - - 0,380 0,055 | 1,15 | 0,084
48 0,001 0,001 | 0,053 | 0,435 | 0,080 - - 0,360 0,054 | 1,12 | 0,060
50 0,002 | 0,004 {0,055 0,420 | 0,080 - - 0,340 0,054 { 1,10 | 0,055
60 0,005 | 0,008 {0,054 |0,240 | 0,080 - - 0,320 0,055 | 1,07 | 0,055
.| 70 0,012 | 0,014 [0,03¢4 | 0,165 | 0,057 - - 0,270 0,055 | 0,97 0,055
80 0,028 | 0,020 {0,053 | 0,111 | 0,047 - - 0,220 0,054 | 0,93 | 0,054
80 0,045 0,032 [0,054 0,045 | 0,036 - - 0,200 0,055 |.0,80 | 0,055
0,125 | 20 (o} o} 0,121 - 0,175 | 0,217 0,074 - - - -
' " 30 o o . |0,102 - 0,127 | 0,087 0,037 - - -} 188 | 0,182
38 0,001 | 0,001 {0,082 {1,180 0,112 | -~ - 0,88 0,083 | 1,41 | 0,14
40 0,004 | 0,004 |0,082 {1,140 0,105 | - - 0,50 0,002 | 1,35 | 0,113
425 0,008 | 0,007 {0,080 (0,840 | 0,098 | - - 0,48 0,080} 1,28 | 0,088
50 ° 0,008 | 0,008|0,08 |[0,/&0 | 0,088 | - - 0,43 0,087 { 1,18 | 0,084
60 0,015 0,011[0,088 |0,480 | 0,093 | - - 0,39 0,085 | 1,06 | 0,083
ge} 0,032 0,024 | 0,087 | 0250 | 0,08 | - - 0,37 0,087 | 0,064 | 0,089
80 0,078 0,035 | 0,088 {0,160 | 0,072 | -~ - 0,35 0,088 | 0,837 | 0,088
80 0,101 | 0,050 0,08 [0,i01 | 0,050 | - - 0,34 0,088 | 0,67 0,088
0,875 20 o o) 0,181 - 0,213 | 0,288 0,085 - - - -
30 o} o) 0,145 - 0,162 | 0,120 | 0,060 - - - -
38 0,001 | 0,001 O,113 {1,310 | 0,142 | - - 0,80 0,135 | 1,39 0,150
40 0,010 | 0,010} 0,107 | 1,25 0,140 | - - 0,86 0,128 1,37 0,148
4 0,020 | 0,020 | 0,107 |1,04 0,118 | - - 0,82 0,116 |1, | 0,133
50 0,020 | 0,020 | 0,083 |0,82 0,110 | - - 0,80 0,103 |1,22 0,122
80 0,031 | 0,030 | 0,088 |0O,51 0,110 | - - 0,1 0,103 [0,98 | 0,118
( W, W/
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b oL® 1 2 3 4 5 8 7 8 9 10 11
1,5 30 o) o} 0,214 - 0,403 0,78 | 0,383 - - - -
34 0) e} 0,20 - 0,447 o} o - - - -
38 0,036 0,058 0,309 - - 0,479 - - - - - -
180 0,706 0,350 0,406 0,708 0,350 - - 05 0,408 | 05 | 0,408
20 | 30 o (o) 0,218 - 0,431 0,8 |-043%4 - - - -
H o 0 0,284 - 0,480 o) o - - - -
.[38 0,042 0,052 | 0,341 - 0532 - - - - - -
g0 0,87 0,400 | 0,485 0,87 0,400 - - 0,5 0,480 | 0,5 | 0,460
2,5 |30 (o) (o) 0,230 - 0,447 1.1 0,480 | - - - -
3 0 ) 0,308 - 0,524 ) 0 - - - -
38 0,048 0,086 | 0,383 - 0,594 - - - - - -
80 1,020 0,502 | 0,542 1,02 0,500 - - 0,5 0,542 | 05 |0O,542
0,050 | 90 0,040 0,023 | 0,038 | 0,040 0,023 - - 0,6 0,038 |05 |0,038
0,055 | 80 0,042 0,026 | 0,040 0,042 0,026 - - 0,5 0,040 | O5 {0,040
0,063 | 90 0,050 0,029 | 0,044 0,050 0,029 - - 0,6 0,044 |05 |0O,0M
0,071 | 90 0,057 0,033 | 0,051 0,057 0,033 | - - 0,5 0,055 0,6 0,051
0,084 | 80 0,067 0,038 | 0,060 0,067 0,038 - - 0,6 0,060 0,5 |0,060}:
0,100} 90 0,080 0,047 | 0,072 0,080 0,047 - - 0,5 0,072 (0,5 |[0,072
0,125 | 80 0,100 0,054 | 0,088 0,100 0,054 - - 0,5 0,088 |0,B 0,088
0,187 | 90 0,118 0,085 | 0,065 0,119 0,085 - - 0,5 0,115 | 0,5 | 0,115
- 0,250 | 80 0,165 0,085 | 0,150 0,165 - 0,005 - - 0,6 0,150 |0,5 0,150
0,400| 80 0,215 0,170 0,210 0,275 0,170 - - 0,5 0,210 |05 0,210
0,50 | 80 0,313 0,182 0,245 0,313 0,192 - - 0,5 0,245 |0,5 0,245
0,667 | 80 0,428 0,254 0,280 | 0,428 0,254 - - 0,5 0,280 | 0,5 | 0,280
1,000| 80 0,558 0,281 | 0,360 0,556 0,261 - - 0,5 0,380 | 0,5: | 0,360
1,5 80 0,844 0,386 | 0,416 0,844 0,388 " - - 0,6 0,416 0,6 {0,418
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! . .
;”‘ A % ! 2 k! 4 5 8 ) 10 11
[l 20| e0 0,333 | 0,480 0,483 | 0,835 | 0,480 0,5 0,480 0,5 0,460
1 2 80 0,87 0,488 0542 | 0,80 0,488 0,5 | 0,542 0,6 0,542

4,0 | e0 1,010 0,578 0,616 | 1,010 | 0,575 0,5 0,810 0,6 0,610
6,0 | 80 1,180 | 0,680 0,880 | 1,180 0,580 0,6 0,654 0,6 0,654
80 | g0 1220 | 0,625- 0,720 | 1,220 0,625 0,5 0,720 0,5 0,720
10,0 | 80 1,220 | 0,825 Q720 | 1,220 0,625 0,5 0,720 | 05 -0,720
12,0 | 8O 1,220 | 0,626 0,720 | 1,220 0,825 0,5 0,720 05 0,720
14,0 |80 1,220 0,626 0,720 | 1,220 0,625 0,5 0,720 05 0,720
16,0 | 80 1,220 | 0,625 0,720 | 1,220 0,625 0,6 0,720 05 0,720
Il 18,0 | 80 1,220 0,625 - 0,720 | 1,220 0,625 0,5 0,720 0,56 0,720
|| 20,0}80 1,220 0,625 0,720 | 1,220 0,625 0,5 0,720 0,5 0,720

Key:
1) Characteristics of shock waves.
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SUPERSONIC FLOW AROUND PENETRABLE PLATES AT NARROW
ANGLES OF ATTACK

By
G.S. Ul'yanov

The development of the aviation and space technology raises a whole series
of important scientific ~ technical problems in the stabilization, deceleration,
descent and landing of different objects. For these purposes, parachutes of
different constructions and other stopping devices acting at supersonic velocities
are used to a large extent. The supersonic flow around penetrable bodies has
a whole series of specific aspects and peculiarities, to which the works [1 - 3]
are dedicated, However, a whole series of problems are Still open at the
present time, For example, in the case of supersonic flow around a penetrable
plate with a finite thickness under an angle of attack, the necessity arises to
estimate and point out when one should take into account the tangential component
of the aerodynamic force. For this purpose, it 1is necessary to determine
experimentally the value of the tangential component relative to the normal
component, its dependence on the degree of penetrability, angle of attack, Mach
number M, and relative geometric dimensions., This enables to work out in a
physically substantiated way the equations of conservation of momentum and energy
for the penetrable surface,

The present work is dedicated to experimental study of supersonic flow around

penetrable plates at narrow angles of attack.

le Models and Technigques of the Experiments

Squares plates of 100 x 100 mm -with a thickness of 2,5 mm and symmetrically
sharp leading and trailing edges, were investigated. The perforation of the
plates was attained by uniform boring of holes of diameter 3 mm along the whole
surface of the plate. The penetrability of the plates was as follows: 0, 8.5,
16.0, 25.5,.51.5%. The ratio of the sum of the areas of the holes S, to the:
total area S is known as the penetrability factor W of the plate )

= (5,/8) 100 [%]).

The experiments were carried out in a supersonic wind tunnel ay Mach numbers M
of the flow from 1,5 to 3.0 and Reynolds numbers Re , = 2.5 = 410 (€=0.1m).



- 88 - -7

The gravimetric investigations of the penetrable plates were carried out
in the range of angles of attack from O to 17°. The plates were fastened in
the working section of the wind tunnel on two belt suspensions. The aerodynamic
coefficients Cx and Cy ~ were determined. The correction for the suspension
device was determined by a separate experiment, in which the belt suspensions
were blown through without plate. The calculation of interference had not been
considereds The relative error in measuring the drag force X and 1lifting force Y
was in the limits of 0.5 = 3%.

2; Results of the Experiments and their Analysis

We consider that the aerodynamic coefficients C, and Cy are determined,
with the forces X and ‘) related to the total area of the plate, and the
coefficients with index "P" (Cxp 1 Cyp )=~ to the area taking account of the
degree of penetrability. The coefficients Cn and Co for the normal and
tangential components of the aerodynamic force were determined by recalculation
and were related to the total area of the plate.

_ The relations Cyxp(e<) and Cyp(e<) at the Mach number M = 2.5 and at-
different values of the penetrability parameter W are represented in Figs 1
and 2, It is obvious from the given graphs that the resistance coefficients
Cxp(Cx ) nonlinearly increase with increasing the angle of attacke A similar
pattern of monotonic nonlinear increase of the resistance coefficients with
increase of the angle of attack was observed in the range of Mach number
M = 105"'3.0- :

] M5 ' -
04 wi w P
—— ©-~0 *-255
a-85 wu-515 A
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Fig. 2.

The aerodynamic coefficients of the lifting force C . P(C\j) for the
penetrable plates are 1inear functions of the angle of at;oack of the plate.
Their values are conveniently calculated by the following formulas

Cy : KC, (;'V' M)'ﬂ‘

’

where << is in radiants and the coefficients KC‘J and,Ké_‘w are given

in Table 1.
Table 1

| CyzKey (W,M)-
M 1,5 2,0

9
w/. o 86 16,0 255 51,5 o 85 180 255 51,5
2,522 2,084 1,862 1,204 0,401| 2,064 1,662 1,318 1,032 0,344
2,522 2,236 1948 1,605 0,917) 2,064 1,834 1,548 1,376 0,745

2,5 3’0

w/ O 85 180 255 515| O 85 180 255 515
1,834 1,480 1,148 0,860 0,287 1,433 1,146 0,86 0,688 0,229
., 1,83 1,005 1,376 1,204 0,631]1433 1,261 087 0,859 051
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The graphs of the aerodynamic quality K :n%%— =§ (s¢) for plates
with different penetrability parameters W and Mach number M = 2.5 are given
in Fig. 3. It is obvious from these graphs that the quality of the penetrable
plates strongly depends on the degree of penetrability. For example, the plate
with a penetrability W = 51,5% has a maximum quality approximately eight times
less than that of the solid plate. The maximum aerodynamic quality for
penetrable plates at a Mach number M = 2.5 is observed approximately at angles
of attack o< = 6= 7°., One should also notice that K max (04 slowly depends
on the degree of penetrability. Similar relationships in the behavior of the
aerodynamic quality are observed at other Mach numbers M. The values of
K max (e<) for Mach numbers M = 1.5~ 3,0 and plate penetrabilities W = O- 51%

are given in Table 2.

Xl wYiM=25 ==
4] o-0 . A —
a-85 7 / ™
o-16 ™
J *-255 e 3] ™ <
=515 Z
2 AViE=S et | |
// A L= ] ~g
A ¢ ——] .
dayss I~
é» :=] =
0 5. 10 15 o
Fig. 3
Table 2
W % o) 8,5 16 25,5 51,5
B M=1,5 4,65 3,55 2,95 2,05 0,55
K &) 2,0 4,55 345 | 2,60 1,80 | 0,55
2,5 4,45 3,05 2,25 1,70 0,55
3,0 3,70 2,80 2,10 1,53 0,55
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The relations Cx (w) and Cy(w) at different values of the parameter o<
and Mach number M = 2.0 are shown in Figs. 4 and 5. The increase of the degree
of penetrability of the plate at a fixed angle of attack strongly decreases
the 1lifting force coefficient and slightly increases the resistance coefficient.
The influence of the degree of penetrability on the resistance coefficient Cx,
at narrow angles of attack is more strong than in the case of wide angles. For
example, for M = 1.5 and angle of attack o< = 5°, the value of C,p increases
Five times with the increase of the penetrability factor from 0 to 51.5%, and
at e< = 15° — only by two times. One should also notice that the coefficient
C, (w) is a linear function of W. As a consequence of linearity, the resistance
coefficient Cx (W) can be calculated by the formula: ’

Coihe (Md)weB,

e |
0,5 A - M=1,5
- N
~J
\\:
e
I~ '\1
e 0o
— e
T 8:
0 20 ) WY
Fig. §.



N

- 92 -

In the mentioned formula, the penetrability factor of the plate is taken
in the form of the ratio % .+ The values of the coefficients ch

and ch are given in Table 3.

Table 3
Co=k (ML) W+B,

Ml 15 2,0
o o] 5 10 18 O 5 10 15
ch 0,06 0,06 0,08 0,04 0,10 0,07 0,06 0,05
B‘.x 0,020 0,048 0,105 0,185 0,028 0,045 0,085 0,165
M 2,5 . 3,0
oL’ 0] 8 10 15 @) 5 10 15

0,035 0,050 0,070 0,090 | 0,025 0,040 0,080 0,100
0,010 0,030 0,08 0,158 | 0,015 0,035 0,08 0,115

Ke,
8

Cy

With increasing the Mach number M, the aerodynamic coefficients Cx and Cy
of the penetrable plates, at constant angle of attack and degree of penetrability,

decrease in a linear fashion (Figs. 6 and 7).
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Fg. 7,
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The relations Cx (M) and Cy (M) for different values of the penetrability

parameter W and at an angle of attack << = 10° are shown in Figs. 6 and 7.
For other angles of attack, the observed relationships are similar. The
quantity Cy (M) can be calculated by the formulas
Cy ke, (D6,
Table 4
Cy == Key (W,L)-M+ 8.,
w % o) 8,5 16,0 25,5 51,5
L m 5 |Key 0,047 0,040 0,033 0,027 0,013
ey 0,280 0,240 0,200 0,160 | 0,00
ol 0,127 0,097 0,003 0,070 | 0,008
Bc, 0,830 0,480 0,430 0,280. | 0,080
15‘K°’ 0,180 0,147 0,120 0,083 | 0,033
8, 0,810 0,740 0,605 0,440 | 0,145
’ The polars Cy = £ (c, ), for penetrable piates at a Mach number M = 1.5,
and C,p = £ (C, )y at a Mach number M = 3, are shown in Figs, 8 and 9. One
some peculiarities in the behavior of the integral carachteristics

should notice
of Cn

exceeds it.

number M-= 3.0, Co 1is ap
does not depend on the Mac
bility (W) of the plate.

and C .
plates, with increasing t
" coefficient of the tangen

and approaches
For example, for the penetrability W

proximately twice Cn o
h number M and it is 2 linear function of the penetra-
It can be approximately calculated by the formula:

for the penetrable plates.

Ct=‘Kct. wralozs’

where K__ = 0.32 for o< = 15°; 0,23~ 10°; 0,19~ 5°; 0.08- 0°%

In the case of the penetrable
he degree of penetrability and angle of attack, the

tial component of the aerodynamic force C.g

in value the coefficient of the normal component Cn , and even
= 51,5%, &< = 15° and Mach

The coefficient CT

increases

nearly
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The relations C, (<) and C, (o<) for different values of the penetrability
parameter W at a Mach number M = 2,0 are shown for illustration in Figs. 10 and 11.
The values of the coefficients Cy and C+ for the mentioned ranges of the Mach
numbers M, angles of attack and penetrability of the plates, are given in Table 5.
The obtained experimental data show that in the case of supersonic flow around
penetrable plates under an angle of attack, it is impossible to neglect the value
of the coefficient C¢ , in comparison with C, . The appearance of the tangential
component of the aerodynamic force is connected with some physical peculiarities
which take place in the case of flow around a penetrable plate under an angle .of
attack. . —— - -

FN— A ' -
WY wY . L1 Lo
Py
0.5 © 0 0255
™1 & 3_65 " 55 1/'°)//T
L 1o
- 0 0 e I o e
P at sy
e o i Bl ] o
0 5 10 15
T a2 —F;l-»g-'—,-];Q - :
Ce I
8 -+ — 17 . = .
vy e e — e —.:' b — ot - o— oin o — b e -
e S 2 T o A i L5 gt iy e pedie e el ekt sl sl et U
Q 5 10 15
M220; w% ] 8,5 16 25,5 515
o a - o] [ ¥
Fig. 11

The essential pecularities are the following : on the passage of gas through
the holes of a plate, the velocity of the flow changes in value and direction
and as a result, an auxiliary force arises. The increase of the thickness of
the penetrable plate leads to an appreciable reconstruction of the flow and to a
change of the pressure distribution on the walls of the holesg.



Table 5

Iy I 2,0 2,5 30

o« eio” 5° e 15° G’ 5’ 10 15° o’ 5° 10 15 o’ 5° 10 15
w=0% |O 02 0,18 0,69 000 o049 0,38 057 000 0,17 o, 0,48 0,00 v 028 0,3
85% 000 040 0,38 057 0,00 0,6 OX 048 000 0,4 028 04l 0,00 ol 021 022
160 %] 00 O 0.31 0,47 000 0,13 028 0.38 000 0,12 0.23 0,33 0.0 0,00 o417 - 025

255 % {00 0.:2 0.21 0.38 0,00 010 020 00 | oo o000  our 0.2€ 0,00 0.06 o2 0.9
515 % |00 Con 0,10 0,18 000 005 0,10 0.15 0,00 0,04 0,08 0,12 0.00 0,03 0cs 0,07
ox ooz o0t o0ul 004 002 002 002 003 001 0015 0025 003 0,02 002 0,05 0,03

853’ |002  00¥  0ms 0055 o2 003 004 003 002 003 0.04 0.05 0.02 0.03 004 0,05
16,0 ‘s 1002 004 0.08 0065 | 0,025 001 0055 - 007 0,025 0.0% 0,05 0065 | 002 0.04 0.05 0,065
255% |00X 003 .07 0,08 0030 005 005 0,0 003 0045 007 o.10 0,025 0.05 0,07 0,09
s5i5% |005 003 043 0.18 0,015 0075 0,125 0,175 0035 0065 Ol 0.1% 0.0s 0,07 0,105 0,1
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PART II

MOVEMENT OF GAS WITH EXOTHERMIC REACTIONS

FORMATION OF PLANE DETONATION WAVE AT THE DECAY OF DISCONTINUITY
IN FUEL GAS

By
S.A. Medvedev

The problem of the formation of a detonation wave in an inflammable medium
with a finite reaction rate and instentaneous energy release in a finite or semi=-
finite volume of reacting gas, is solved.

The problem of the decay of the initial discontinuity in a fuel gas [1] is
one of the problews whose solution ls necessary for the answer of the question
about the possibility of formation of detonation waves from. physically practicable
initial conditions. The self-similar problem of the decay of arbitrary disconti-
nuity, in the case when a heat supply takes place in infinitely thin fronts of the
combustion or detonation waves, was solved in the work [2]. In the present work
we use a model of an inflammable medium in which the ignition decay is taken into
account, and the heat release is described by relaxation equation in which the
characteristic time of the heat release may depend on the gas~dynamical parameters.
The finite difference numerical method is used for solving the system of equations
of the gas dynamics and chemical kinetics. This method ensbles the direct
calculation of the discontinuities and their interactions. The calculations,
which were performed for the cases when the density of the energy supply in the
case of instantaneous heat release ("explosion") is comparable with the
density of the energy release in a gas with a finite reaction rate, showed that
the intensity of the initial shock wave generated as a result of the decay of the
discontinuity is less than the intensity of the leading front of the detonation
wave in Chapman - Jouguet system. They showed also that tle detonation wave in
the undisturbed gas is formed as a result of the fusion of the shock wave with
the heat-release zone formed on the contact surface, with the initial shock wave.
From the obtained numerical solutions for the cases when the specific energy of
the explosive gas is less or equak to the specific energy of a gas with a finite
reaction rate and when the dependence of the rate of the heat release on the
pressure is taken into account, it follows that the shock wave generated behind
the initial shock, with a reactjon zone behind it on fusion with the initial shock,
is more intensive for small energies of explosion than a similar wave at high
specific energy of explosion, The velocities and pressures behind the fronts
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It consists of simple waves, progressive flows and crossed simple waves.

The trajectory of the shock wave consists of rectilinear and curvilinear
partse If the rarefaction wave did not succeed to prevent the ignition

on the contact surface, then during the expansion of the gas in the combustion
process, compression waves (or shock waves§ should be formed. These waves
propagate on both sides from the place of ignition through the products of
the explosion and through the heated gas of the initial shock wave. The
detonation wave, generally speaking, may appear before the compression wave
(or the shock wave of the reaction [8]) reaches the initial shock wave (and
in such case may not be fully compressed). Investigation of the flow, after
co-flowing of the wave of reaction occurs with the initial shock wave, is
of special interest. ' : ’

The model of the medium, which is used for solving the problem of the
formation of detonation during the decay of discontinuity in a fuel gas, is
set in the following system of equationss

dp . 5 v gedP .
&—t-+fduzrV—0 dt + P
9 P hirV-=0 E'=—£———Qﬂ
dt °? elr-
dc m-t £ dp _# 8.
;/—t- :ap e ki at =p r I{c {)
Ic-1)={0, c<1; 1, catr } .

Here V = the concentration of the fictilioys component determining the time

.of induction (0 < C £ 1) B —the concentration of the product of the reaction

determining the heat supply Q. B(t) to the mass unit (0<H & 1), Q= the
calorific power of the unit mass of the gas, ' = the characteristic time of
recombination, m and o¢ — constants characterizing the order of the reaction,
a~ factor, E— activation energy. The remaining signs are standard ones.
As follows from system (1), the transfer process is neglected,

Let us calculate the velocity of the propagation of the primary shock
wave My, and consider some properties of the solution of the stationary
progressive wave type [7].

As we assumed that the density and pressure before the explosion on the
right and left from the membrane are equal, the Mach number of the shock wave
M, is found from the following equations T

Ty o
(7-1)(/‘1: -I) ZIM:-(]- 1) 2y
===+ . . -1=0, ()
Mo (e Nrfp-19+1™ e )ly(g+1)d+1]

‘7=0/‘1i y Me=Dg/a '

whevre
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D, = the velocity of the initial shock wave,

a, = the velocity of sound in front of the initial shock wave.

The relations Mg = My (7,6 )y obtained by solving this equation, are
drawn in Figo 26 )
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Let us now calculate the velocity of the detonatlon wave, which is the
solution of equation (1). Let a plane shock wave with Mach number Mj
propagate in the fuel gas. After the transformation of equations (1) to a
coordinate system moving with the shock wave, for a stationary one-~dimensional
flow behind the shock, the following cquatlon is valid:

Tdw gt 2\ pMEed
E{T }rn )(2,;),«4 )

This equation combines the velocity v- relative to the shock with the concentration
of the product A + By integrating this equation and satisfying the conditions
for the shock, the following relation is receiveds

e /[Mz—i] 7l -
v\-
)-ol)M, (re1) M, ZT',@J !
From this equation, it follows that in the case of a complets heat release, a

steady state solution behind the shock wave may be present only for Mach number
My > My, whereM\3 is the Mach number in Che-J. system, and is determined by

<

the formula.

My = V01 G2 )G +Crer =g -1
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Thus, the distribution of the parameters inside the detonation wave
depends only on the specific form of kinetics, whereas the velocity of
propagation of the stationary wave of Che-J. depends only on <« and Q.

In particular, the velocity of propagation of the stationary double-front

wave in the Chapman-Jouguet system at given values of ¥ and Q coincides with
the velocity of the wave of Che=Jo with a distributed heat release. The
stationary progressive wave with any number of reactions has a similar property.

The relation My .'Ma (v, Q) is drawn in Fig, 2 together with the

‘relation M '= Mg (T v Qe

2, To obtain a quantitative information about the formation of detonation
and about the gas movement after sufficiently big intervals of time, it
is necessary to integrate numerically system (1) at the corresponding initial
and boundary conditions. The one-dimensional equations reduced to the
dimensionless form, in Lagrangian coordinates, are written in the form:

dx | du. | Q.E.;. o L
3? =u -, o9t *axo a ’ dx .
ag - _ ddx[ax, -0 - Piz = .
TIAMT: » € (7-1)3= @

- r F d g
o (2 ep(Ehe L) L2 L2 ufe-).
at “lp, P, p/'at ‘Pl T

Initial conditionss

--'0‘_,_.0..4[, c{a’xo)sf(o,zo)=1
L £x,<oo c(0, z,) = B(0,%.) =0

: : 1
0¢x, <@ u(0,x,)=0 , é(o’x.)=;(—l'_'7)— y E0E

The boundary conditions 3 u(t, 0) = O."
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The dimensionless quantities are expressed in dimensional quantities
(maked by daches)in the form:
y : SR
teta x=xpla, f”f”/f’r

C) u»ula,

Pblih,  &-6la}, G-qlat  E<£/pAT,
L =L18/a,

r=r's

Here, a,, y T¢ = are the velocity of sound, density, pressure and
temperature {n the undisturbed gas on the right, respectively.

Bza P,m- e.rp°'/ )

The quantities behind the primary shock wave are marked by index & « The
velocity of this wave is calculated by formula (2) for Q, on the left, equal
to Q, on the right, The relation Qo/bi- K is also a characterlstic parameter
of the problem. Thus, the formulated one-dimensional nonstationary -problem
contains the following dimensionless determining parameters:

-

Itm.dlgvé‘lK‘L’,.'.

(:7 ' The one-dimensional variant of the conservative obvious numerical scheme

: of the second order of accuracy with direct calculation of the discontinuities
was used in the calculations after it was fitted to problem with distributed
heat supplye This one-dimensional variant was worked out in the works [9 and 10]
for the solution of the elastic~plastic problems and problems of gas dynamics.

The unknown quantities are calculated by the formulae:

————— et — - o

m/z n~'/z at an an

u, =u, -—-(P

p ) n¢!  a av'fe .
Az, xeth " n-th

y X =X, *‘t'“x

Aan _ n » n"/} ﬂ' AXx /a- ]) n - n
Peot “Fe *Seiy Py ~—[g‘u'/¢~ A ] ’

!
xx,, x, K+

n-%

' nth
- 2 xor -y nth  a-% a-% n-%
q’m’/ 4% -x] v Yo 24 30, U, U 0y
Tuar ~

net a no’/z nelly : netf;
51'1/2 =£x";$ ( Yot )( n/, ,,'/:) !
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e _ T el
e (p"”"’z )m 'At exp{_ﬂv . Elug "oy ) 28 ]
= ¢ | —— .
St *Creny” . P F&f% 8%

8

on o n
net n pxo’/z) 1-Pusty Cn -1
“6'“',/2 -ﬁxoi/z +At( pg ,:l 1( K"/z ) .

The integral lower indices are given to the boundaries of the particles,
the half-integral— to the particles, The upper indices designate the numbers
of the temporary layers. The quantities x and u are determined for the
boundaries of the particles, the quantities & , C, P =~ inside the particles.
The velocity is calculated at half-integral instants.

The intervel of time was selected from the requirements of the stability
of calculation,

3. The calculations were carried out at E = 10, Q= 24, T = 0.2, m = 1,
L=3for ©<a 0 and @<= 1 and for XK = 048, K = 1,0, K = 1,5, The value of
v was taken equal to 1,4 From 100 to 150 particles were placed in the section
with length L, The coefficient of the artificial viscosity d# was equal to
fives All the particles in the calculating range were originslly the same,

The slightly smoothed profiles of the velocities for different instants in
the case of o«m 1; K = 1 were given in Fige 3. At t = 0,146, the profile
consists of a compression shock on the right, linear part in the rarefaction wave
on the left, and constant velocity between the shock and the rarefaction wave,

At t = 0,767 this simple distribution is disarranged because heat release started
on the contact discontinuity (marked by circles) and it led to the generation of
an internal shock wave (the mark * indicates where the time of induction elapsed)
in the gas behind the initial shock wave, whereas in the'strongly heated products
of combustion, where the density is small and the velocity of sound is high, a
compression wave propagates. As a result of the compression wave, which is
propagated in the gas behind the initial shock wave until the second shock wave
arises; the velocity level between the shock waves is higher than the value

Uy = 1.77 obtained by the exact formulae of the decay of the discontinuity,
On'the velocity profile at t = 1.236, two shocks of velocity corresponding to
two shock waves are recorded, The second shock wave is the leading front of

the formed detonation wave and behind it there is a heat release zone. The
particle, in which 0.5 Q was separated out is marked by a pointer, and the
particle, in which 0.9 § was separated out~ a pointer with two lines. The

heat supply between the contact surface and the wave front leads to the
intensification of the compression wave going from the zone of the heat supply
to the products of the explosion., Therefore, the velocity of the gas flowing
from the zone of explosion decreases and a gap appears on the velocity profile.
The curve of t = 1.439 represents the distribution of the velocities after the
occurrence of interaction between the initial shock wave and the shock wave with
the following zone of heat supply behind it, and the shock wave with the zone of
release behind it went out in the stationary gas. We notice that the velocity
behind the shock exceeds the velocity behind the shock front of the wave of Che-Jo,
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.and the products of the explosion by then slowed down still more strongly.

At t = 1.762 and t = 2,048, the velocity behind the shock is practically
equal to the velocity behind the front of the wave of Che~J., and a portion
of the products of detonation and explosion has a negative, that is to say,
the gas flows inthe opposite direction, The steepness of the parts of
negative slope in the profiles of the velocity increases with increasing the
time. Taking into account the relatively high temperature of the products
of the explosion and the established artificial viscosity in the scheme, it
is possible to consgider that the retonation shock wave was formed at the
moment t = 2.048,
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A fragment of the graph in Fige. 3, where all the boundaries of the units
are drawn, 1s represented without smoothing in Fig. 4s This fragment gives a
concept about the magnitude and character of the oscillations of numerical nature
for the investigated wave propagated in the Ch,~J, system.
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The x~t diagrams for the shock waves and the leading edges of the detonation
waves (points or points connected by lines), of the contact surface #(t)
(triangles) and of the trajectory r (t) of the retonation wave (rhombs) are
shown in Figs. 5~9, The dependence of the pressure and velocity behind the
front of the shock and detonation waves on time, B,(t) and Uy(t), are also
drawn in these figures and are marked by crosses and circles, respectively.

In the figures, there are also the reference values of the velocity U, and
pressure Py behind the detonation wave in Ch.~J. system, and the velocity

Ug and pressure Pg behind the initial shock wave, which are obtained from

the exact relation. The initial slope of the trajectory of the contact surface
is drawn by dot-dash line; the exact slope of the trajectory of the initial
shock wave — by double dots~dash line; the slope of the trajectory of the
detonation wave in the stationary gas in the Che=J. system = solid line.

Let us return to Figs 5.  The aupper succession of the black points represents
the trajectory of the initial shock wave. On the lower series of the points and
triangles, the finned pointer shows the place, where for the first time on the
contact surface, the time of induction elapsed and the combustion started. Since
that moment, the contact surface begins to lag behind the trajectory of the
ignition, on which the time of induction elppses; however, the shock wave with
the zone of heat release behind it, does not still arise for some time., The
formation and acceleration of the shock wave with ‘heat supply begins there,
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where the graphs of the pressures and velocities behind the initial wave and

on the trajectory of the ignition bifurcate. Till that instant, the greater

part of the yielded energy is carried away from the zone of heat supply by

the compression waves going in the direction of the light products of the
explosion, which are stopped at that time. After the generation of the internal
shock wave with a sufficient intensity in the compressed gas behind the initial
shock wave, the time of induction of the particles quickly elapses on passing
through this internal wave and the movement of that wave gets a self-accelerating
character. The trajectory of the shock wave with heat release behind it is bent
upwards and intersects with the trajectory of the initial wave; after that only
the shock with heat release behind it (detonation wave) remains., Here, the graphs
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of u and p behind the initial shock are cut off. In the graphs for the
shock wave with heat supply, it is obvious that the pressures and velocities
are greater behind the front of that wave than behind the front of the wave
of Chapman-Jouguet in the stationary gas. However, they rapidly decrease to
the values corresponding to the parameters behind the front of the wave of
Che~J. as soon as the detonation wave goes out in the stationary gas.
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Fig, 6.

The trajectory of the shock and detonation waves, of the contact surface
and retonation wave, and also the graphs R,(t) and Ug(t) for the case of
o< m 0, K = 1 are drawn in Fig, 6, It is obvious from the given data that
although the internal shock with zone of heat supply behind it is generated
at the same time as in the case of <= 1, K = 1, it i1s accelerated afterwards
more slowly than in the case of e<= 1, K = 1, and at the fusion with the
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initial shock, the developed detonation waye does not form. In the graphs Po(t)
and Up(t), there are no bursts of pressure and velocity, and subsequently a
relatively slow acceleration of the shock wave with zone of heat supply behind it
is observed. In the investigated section of time, the velocity of the shock and
the velocity and pressure behind it are still far from the corresponding values
for the wave in the Ch.-J, systemo

We notice that even in that case, when the resulting wave is relatively slow,
the retonation compression wave did not succeed yet to reflect from the wall,
and thus it is possible to neglect the influence of the wall ¢n the flow in the
neighbourhood of the shock with heat release behind it,
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The x-t diagrams and the graphs P,(t) and Uy(t) for the case of = = 1,
K = 0.8 are given in Fig, 7. As was expscted, the beginning of the heat release
on the contact surface %finncd pointer) is protracted in comparison with the
case of < = 1, K = 1, The beginning of the generation of the internal shock
with zone of heat release behind if isaccordingly drawn back. In consequence, the
generated internal wave with heat supply behind it may be for a sufficiently
long time accelerated in the gas behind the initial shock wave before it flows
with ito. At that time, a detonation wave generates with a leading front that is
more intense than that in the case of o< = 1, K = 1, It is obvious from the
comparison of Figse 5 and 7 that the waves of pressure and velocity generated
behind the front exceed the corresponding values for the case of o< = 1, K = 1,
As in the case of < = 1, K = 1,.after the exit in the stationary gas, the
velocity of the detonation wave rapidly decreases down to the velocity of the
wave of Cho=Jo, and the velocities and pressures behind the front of the wave
approach to the corresponding values behind the front of the wave of Che=J.

The x~ t diagrams and the graphs of Pp(t) and Up(t) fore< = 1, K = 1.5
are given in Fig. 8. In this case, the initial shock wave is the most intense
and the internal shock with heat supply generates mors quickly than at K = 0.8
and K = 1, However, its intensity by the moment of the fusion with the initial

o S L

p
0
5 10 g a0 ® 00e®® / [{0
K t5 dsf R385/
m:={ §44| o -
@=2¢ E:40 eaxd’E

4 703 L=3| xx% _
- 30

° Ms=20055]

oo . g [
3 5 / ’r'/ 20
L -
.~ o) 024
,¢§;§§§2?1344444 ‘
A20.00 3.‘.*} ______ | L=2.222
2 |10
»agplxxxx ——— ] = —
: Rp7381
!
o5 10 ¢
Fig. 8




- 111 -

shock wave, as in the case of «< = Oy K w 1, is insignificant, and the
detonation wave goes out in the undisturbed gas with a leading front A

is more slow than that in the system of Chapman-Jouguet. Subsequently, the
velocity of the detonation wave of X = 1, K = 1,5; increases more rapidly
than that ‘for the case of o<'w 0, K = 1, We notice also a different form
of the trajectories of the contact discontinuities for the two cases.

Fig, 9

L+ The relief of the velocity in x, t coordinates for the case of << = 1,
K = 0.8 is given in Fig, 9« It is clear how the internal detonation wave axrises,
and how also the retonation compression wave, from which the retonation shock
wave is subsequently formed, arises. Finally, it is clear how the detonation
wave transits to the system of Ch.~J, after going out in the stationary gas.
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This pattern may serve as one of the illustrations of the process of the
formation of detonation on the ignition of the gas at the closed end of the
tube and as an example of the autonomous flow which arises in the
unconstrained gas in the absence of external influences owing to the released
energy in the chemical reaction which is characteristic for the movement
occurring in the self-sustaining detonation waves.
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EXPLOSION IN FUEL MIXTURE OF GASES
. By _
VoPe Korobewnikov, V.A. Levin, V.V, Markov

Let in an infinite mass of statlonary gas, in which chemical reactions
may proceed, -instantaneous energy release E, occurs at a point along a plane or
straight line. Let us consider that the gas is ideal, nonviscous and non-heat~
conducting. The density: /4 and pressure P, in the stationary gas are constants.
One—~dimensional motlons of the gas with different forms of symmetry are
investigated.

The strong shock wave generated as a result of the energy release initiates
the chemical reactions in the fuel mixture of gases. On calculating the
combustion process, a model is assumed, which takes into account the time

delay of ignition and the subsequent simultaneous proceeding of the direct end
reverse reactions.

The equ:tions describing the proceeding of the chemicel reactions are taken
in the form of Arrhenius relations. The reaction determining the period of _
induction is described by the equation in (1, 8, 9]. _

:tc—-Kf(p$)e A v (1)

and the reaction with heat release - by the equation in reference [2]:

. N
dp L LR Y AL
JE“W'"'P"ﬁe ) )w(r-ﬁ) P ‘ﬁg‘e AT 2)

where C - virtual concentration, B = mass portion of the unburned gas, .
Q - calorific power of the unit mass of the fuel mixture, B ~ activation ,ﬁ
energy of the induction period, E;, ~ activation energy of the direct reaction,
R ~ universal gas constant, K > O, ky s Oy k > Oy my, n, y My oy A
~~are constantse. The quantity C = 1 is on the front of the shock wave. The
vanishing of C denotes the end of the period of inductlon and beginning thc

reaction with heat reloase. //

The motion of the fuel gas generated as a result of the explosion, will be
described by equations (1) and (2) together with the equations of motioni

e T

¥ - .
Zv.’.P)c +(Z ,pv)z 0 ! (3)

Y
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(2 J"”) (e prteg) (-l “*’
{zi-l[_zl ,PVz*fh'p]}t‘{z -ﬁlf[?vth]}z=q . (5)

T _ _ ' _
Here =77 3 —*./30 L PepRT V= 1,2, 3 =for motion with plane,
cylindrical and spherical waves, respcctlvely. The parameters of the gas
must also satisfy the boundary conditions in the center of the explosion and

on the shock wavee The velocity vanishes in the center of the explosion, and
the following relationg are fulfilled for the shock wavet

—_—

P Ty ) B
Lo Ly LB
PD I’Po_Z(Dzv') T’?; !
,Po ‘P .PI(D—VI) "'px ] (6) -

where D - the velocity of the shock wave, and the indices O and 1 are related to
the values of the parameters before and after the shock wave, respectively.

The system of equations (1) - (5) is linear, and the problem in the given
statement is not self-similar, Therefore, it is possible to carry out the complete
investigation only by the method of numerical integratlon of the equations in
partial derivatives.

Similar to work [2], we shall study the motion of the gas at an instant near
to the initial motion.

It is possible to obtain an approximate analytical formula for the time
of induction. In order to do that, we write the thermodynamic functions
in adiabatically expanding particle behind the shock wave in the form given
in work (4]: _

!

;- Lo\ 28r .
O .,f_fn{*),w(—-) (BT

where the index * — ig related to the value of the function at the moment of
passing by the particle of shock wave, which is marked by t_, a and & -
are constantse .
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An analytical solution of the problem sbout a strong point explosion was
used for the determination of a and B, The values of a and b were determined
from the condition of equality of the first derivatives with respect to V,
from the exact solution and formulae (7). The values of a and B for certain
Y and g are given in the table: '

v 1 2 3
r \ a g a 8 a . 5
1,1 0,085 0,476 | 0,141 0,703 | 0,168 0,839
1,2 0,163 0,455 | 0,264 0,661 0,314 | 0,785
1,3 0,261 0,435 | 0,374 0,824 0,442 0,750
14 0,333 0,417 | 0,47 0,580 | 0,556 0,604
3,0 1,000 0,250 | 1,250 0,313 1,400 0,350

Substituting formula (7) in équation (1) end integrating it, we obtaini

ert-r [1-(2)"] Q

To(t A
where
‘ 3 esﬁrx
p=28fpnsb)s = -1, Tolt) = —5—,
T T kpaps

If t, is the instant at which C vanishes, the difference to= ts glves the
value of the period of induction T, as a function of t, ,» From (8) we

obtaine e ———

(9)

Previously, for exampie in work [7], the following formula taken from work (1]
was used for the induction time: ‘

< tigm GewERT) 40)
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Below, for the investigation of the initial stage of the explosion, the next
formila is used, following work [3]:

| Cimg = %'EXP.(E/I{T) , (11)

where Ny , N, = "are constants. Both these formulae give the value of the
period of induction on combustion of stoichiometric mixture of hydrogen with
oxygen, initiated by a shock wave, ‘ '

Fig. 1 is presented for the comparison of the graph of the dimensionless
values of T, (¥, ), calculated by formula (9) (curve 1) with those obtained
by integrating equation (1), taking account of (11) along the streamline and
using the exact solution of the problem about a strong point explosion
(curve 2}, for the case of ¥ = 1,3 and ¥ = 3, It is obvious that the
approximate formula is in good agreement with the calculation.

(%)

A il
[HEER
|

0,06

et

The performed analysis showed that already at  the instant close to
the initial, the time of the ignition delay abruptly increases, which leads to
the separation of the ignition zone from the shock wave,
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The results of the calculations showing the influence of the different
determining parameters of the problem on the withdrawel of the ignition front
from the shock wave front are represented in figs. 2-4e The value of the time,
at which the shock wave passes through the particle, relative to the characteristic
time of induction is plotted on the abscissa. The dimensionless distance from the
shock wave, at which the period of induction is completed in that particle,
is plotted on the ordinate, o

Fige. 2 illustrates the influence of the adigbatic -index ¢ on the decay
of the detonation front for the case of ¥ = 3, E, = 10% erg, (E/Q) = o = 10,
The dependence of this process on the form of the symmetry for vy = 1.3,
Eo = 10 erg/ecm®> Y and ¢~ = 10 is represented in Fig. 3. The influence
of the magnitude of the energy E  of explosion and the activation energy E of
the induction period when ¢ = 1.3 and ¥ = 3 is represented in Fig. L. The
curves 1, 2,.3 are for (E, = 10! erg, o =13), (BEo = 10" erg, o = 10),
and (Eo = 10 erg, < = 10), respectively,

Two curves are shown for comparison in Fig, 5. One, represented by solid
line, is obtained in the present work by the formula for the time of induction (11),
and the other, dotted, — in work [5], on the basis of formula (10). In the
initial stage of the explosion, it is possible to obtain a distribution of all
the unknown functions on the coordinate at certain instants. Such distribution
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is necessary for the continuation of the solution at still later instants,
at which it is already impossible to neglect the influence of the energy
released by the reaction and of the pressure in the undisturbed gas. The
calculation of the initial distribution shows that the value of C monoto-
nlcally decreases from 1 to Q. '
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Figg 5

The value of 43 rapidly decreases at once after the ignition front,
and then it increases to the equilibrium value in the center of the exploaioh,
which is calculated by the formulas

K, (8) |
oo - (12)

The mode of the curve of )3 is represented in Fig, 6,
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The calculation of the later stages of the explosion, taking account of
the energy released by the chemical reaction and the conterpressure, was carried
out for the case of the cylindrical symmetry using the differential method of
SeKe Godunov [6]e Direct application of this method near the center of the
explosion is difficult because of the high temperatures. Therefore we are

- obliged here to carry out the calculation by another methods The central

interval, representing the standard calculating unit, is introduced in the
investigation; one of the boundaries of this unit coincides with the center
of the explosion. On this boundary, besides the condition of the equality of
gas velocity to zero, some other conditions ars set out. The value of J.is
supposed to be equal to the value calculated by (12), density- to zero,
pressure— to the pressureffrom the lower temporary layer. The validity oftthe
first two conditlions is gecured by the fact that the equality of the density
to zero and the infinity of the temperature in the center of the explosion
remain at all the time of the gas motion, because this takes place in the case
of ordinary explosion with counterpressure in view of the conservation of
entropy in the zone of continuous flow [7]e In our case, because of the
chemical reactions, the entropy may only increase (it is assumed that the
reactions as a whole are exothermic)e The dimensions of the neighbourhood of

' the center of the explosion were automaticaly selected so that a small amount

of mass and energy was included in it, The ignition front was included in

the boundary of the calculated unite Its position was determined so that the
values of the modulus C extrapolated to it from the neighbour units was
smaller than the small positive r}gnber . o _Emations (1=5) were .solved for
the dimensionless i‘unction 8t P=g3 5. P 3 )y W=i% and the
varisbles: t= % % oot The parameters, by which the numerical
calculation were carried ﬁvi-:y the dii‘fe;'qntial method, were as follows:

m
6,2 TH Py ~20
E =10" evélem P o

6,:=£,/9=25
10 2 2 375t ‘
f =7.10 cm/sec 6 <rx Pl""’@"‘—za
gLk, = ‘
- —3 3 !
fo = 107¢/cm P-t,-4,=0
6 ,
P, =10 dingkw’ = 1 ain m, em, =2
Eon n 3
6° = 'Z'Kﬂo 0 = IO n"r,z:z n:{
6, =10 Fo=1,5:001429, 7,:0 (3)
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Control of calculation was carried out by the laws of conservation of
mass and energy, The values of the relative errors ¢ and ¢ .,  were
calculated: 3 .

Ev'zo
) E‘= 3 y
15 -2 o"
L Y ~ iy P
< -+ — (=P *( -1 7dz?
E, ZW{[PZ +I"(P o)f’ A )P] —  the total energy

of the gas being in motion after the deduction of the internal energy of the
original state.

[ ,—the dimensionless energy of the explosion.

M,-M,
fM = "'—_"—D )
o

Iy —— o

where M, : 2% oj pidz — the mass of the disturbed gasy m, - YT-Z,Z N
the mass of the undisturbed gas in the volume limited by the shock wave.

The calculation was carried out from t = 10 to t = 500, It was discovered
that beginning from the instant t = 19, the ignition front merges with the
streamline and then it follows together with ite. Oscillations of the ignition
front were observed beginning from the instant t = 50, Some results of the

calculation are shown in Figse 6=7. It is possible to judge about the calculation

accuracy of the gas dynamical functions from the following datae The initial
error (t = 10)s: € = = 3.%; €mw = Oclibs The error at the instant t = 19;
Eg = = 3e3%; €y == 04,066, For still later instants, the error did not
increase. ' ’ - '
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Thus the motion of the gas, in which exothermic chemical reactions,
generated as a result of the instantaneous release of energy Eo in a point,
can proceed on a straight line or a plane can be divide into two stages.
The first stage is that where the quantity of the energy released in the
region bounded by the front of the flame is small compared to the energy E,
of the explosion. In this stage, the flow is described by the formulae giving
the solution of the problem of a strong point explosion. The chemical reactions
occur at the background of this flowo At the seme time, in the case of
explosion, the generated supercompressed wave of detonation decays on the
ordinary shock wave and ignition fronte The increase,with time,of the distance
between the shock wave and the ignition fronts essentially depends on the form
of the symmetry, the energy E, of the explosion, the activation energy E for
the induction period, and the adiabatic index ¥ .

The second stage differs by the fact that it is necessary to take
into account the energy released by the chemical reaction. The .numerical
investigation of the flow in this stage for the values”of the parameters
mentioned above (13) showed that in spite of the energy supply, the ignition
front continues to lag behind the shock wave and flows together with the
trajectory of a determined particle of the gas, i,e. in the present case, the

‘detonation combustion is not regeneratedo
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ONE~-DIMENSIONAL NONSTATIONARY MOTIONS OF A FUEL MIXTURE OF
GASES IN CASE OF SMALL HEAT EFFECTS OF THE CHEMICAL REACTIONS

| By
L.I. Zak and VeAs Levin

The one-~dimensional . unstationary motions of a fuel mixture of gases,
accompanied by the presence of shock waves, and n involving exothermic chemical
reaction mechanisms are investigatede As a result of the proceeding of the
chemical reactions in the gas flow behind the shock wave, heat is released.
This heat affects the motlon of the shock wave and the gas flow behind it. The
quantity of the heat energy reserved in a unit mass of the fuel gas mixture is
supposed to be a sufficiently small valuee. In an analogous statement, the
propagation of a shock wave in an ideally=~ dissociable gas was investigated in
work [ 5], in which the problem of a piston moving with a constant velocity was
solved,

Moyement of a Piston in a Fuel Mixture of Gases

Let at the initial instant a piston starts to move in g stationary gaseous
fuel medium, A shock wave is formed in front of the pistone This wave initiates
the chemical reactions occurring with a release of heate We shall consider the
case when the heat effect of the chemical reactions exerts a small influence on
the gas motione This assumption will be achieved in the case of impoverished fuel
mixtures. If Q denotes the quantity of the heat energy released by complete
combustion of a unit mass of the fuel, then, in the present case, the following
relation must be fulfilled::

—P—’i-fz << {

(1)

Here A~y = the density of the burning gas, £ = the total density, a, - sound
velocity behind the shock wavee The superscript "O" corresponds to the parameters
of the gas in front of the shock wavee. ,

It is necessary to mention that the unequality (1) will be also fulfilled
in the case of piston movement with a sufficiently high velocity and for
high~grade fuel mixtures.
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Lat us write the system of the equations describing the motion of the gas
in the form:

RGN du 94y 3P
at* 9 , J’(at ”‘51) E 0,
ah 9P 3P '
P( ) at +U5;—t),=0 ,
he L 2ep0 ®

i

Here h, P, £ =~ the enthalpy, pressure and velocity of the medium, respectively,
P = the mass concentration of the unreacted gas, Q = the total heat release in
the unit mass of the gas and assumed to be of a small value in the above-mentioned
gsensej; ¥ - the adiabatic index.

Let us write the equation simulating the proceeding of the chemicél reactions
in the form: -

2 %, Lk fp e rlop-B)" L0

For the investigation of the gas motion, it is convenient to convert from the
Buler variables x, t to the Lagrange variables t, T , where T - the instant at
which the given particle is set in motion when the shock wave passes through it.
With these variables, the system (2,3) has the forms:

. .
= P:—f =P D(f)

at
)du apP aP yP ap 98 W
PD(fa—t 270 St Hr e =0
2k o)™ o (PpN1A)™ | (5)

Here D(t)=— the velocity of the shock wave front. The parameters of the flow
must satisfy the conditions on the shock wave at t = T

""'o e e 3 .2._...

“ r*f( DZ) : p‘=-}77p mf’ﬂ ,
. od“'f 2 a‘z -1 A
=8t 57 77 ) (@

and the condition on the piston at T = 0

U(t,O):U*(t) .
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Let the velocity' of the movement of the plston slightly differs from the
constant value U, ' i.e.,

v, (1) U[/+<‘V/t)] (€ <1) |
In connection with thiq, we shall seek the solution of the system (4 5) in the
forms
U (1+€u,) PP (1+eP,) |

_p=f’°('7+éf',)‘, ﬁ:ﬂﬂffﬂf !
D=D,(1+€D,) . ' (7)

The values with the subscript "O" correspond to the common gas-dynamical flow
from a piston moving with a constant velocity, and are determined by the

formulaes o - o
U-_(,-“) Lot
J‘&I 2 aiz -1 T
P 3 J""“(/ "‘,”:D_z) : '. ) _

Substituting formula (7) in equation (4) and using the assumption f p
we obtain for the values Uy P, P .

e - e —— e
-

aur Dopp o U, P, aP,_o
4 POU at ’ It P°D U, ot i} !
GP, rf)' ‘
31 (e I ’) =0 (5)

At the same time the chemical reactions will proceed in the given field of the
gas~dynamical parameters, and, ingtead of equation (5), we have the equations:

"4

at -'?{/801 porfo) .

(30)

For tje parameters of the gas on the shock wave at ¢t = T , we obtaini




Mot a,M
Uy = ;Tz—'_’ 1 v g n_—‘_"‘
o 7 J [f 1)

D, ,

4 | |
P Grmra h v Al (11)

On the piston at T = 0, the following condition will be fulfilled

Cuy(t,0)<V,(t) .

The equation describing the proceeding of the chemical reaction is integrated
irrespective of system (9), and its solution taking account of the boundary
condition on the shock wave, will be 5, = Ftt— T)e The specific form of the
function F(t~T) depends on the constants m, and m, entering in equatien (5)

Excluding the parameters P, and £ in equations (9), we obtain the
following equation for the quantity 'y

ot o MISlp) B, ) 2pMl-lr-1) 9B,
at? (p-1)MIe2 at? I 2(M2-1) atdt ° (12)

The general solution of this equation will be:

4,(¢,7)= 4, (wtft)'/z{ut-t)fﬂF{t°T)_'_-- (13)

vwhere

Z_ZJ-N.Z'/]") _/ ’)23'”:'(7‘7}

'[I_y)qu AT 2M-1)w-1)

For pressure P; we obtain

Py/t»'[) 2lte ’)7)[w/[wt+z)¢uf,wt t)?jtf[t 7:)] (11+)

2pMi-y

Using the boundary conditions on the shock wave, (11) we find that:

amie)-2m?

/(} 20(ME-1 (w”) 2w !

RYGHCLELN &\ wer
ey e
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Using the relations (15), it is easy to obtain the relation between the functions

fq and £, 3

-T~_; 2M°-uﬂM:+U .ﬂﬁ”f'd
/3(6)-1;,1; ,m:u)ﬂ/w ¢)- 2miswfmi+1) 0 (16)

This relation shows how the disturbance of the pressure changes when it is
reflected from the shock wave. The quantity A=[2Ad - w(M '+ 1)]/[2 M3 v (M +8)
is called the reflection coefficient of small disturbances, and it concides
with the corresponding coefficilent on reflsction of disturbances from the shock
wave in the common gas dynamics [1=3]

Substituting formulae (15) in formulae (13) end-(14), we express the
increment of the gas velocity and pressure by the increment of the shcck wave
velocitys:

). 2HE sfM, *f) wt- 2M:-U(M:4l)_ ot o
U(t r)= 2es (M7 1) ( t)' ZQ(M:_,),D, il )ﬂ[l Eft- t)_}

) z,m’-r)' Miewmlier)  jot-t
p{t ) 2J'M [f 1) Z{M:") /‘J_] )

2M: (Ml +1)

4 ° t"‘
2(M°2~I) (n:uolt [1 F[t ‘E)]j

(17)

For finding the function D, ( £), we use the condition for the pistons: .
u(t,0) = VvV, (t)s From thia .condition, we find the functicnal equation which

. is satisfied by the increment of shock wave velocitys

10,5 szf?ﬁ .’),){[' fe)] - V[wg)} (18)

Thus, the problem of a piston movement with a nearly constant velocity in the
fuel mixture of gases is reduced to the solution of a functional equation.
The solution of this equation, as shown in [ 2 7. can be written in the
forms:

0,6)- Mz“jff;ﬁ,') { Z/\[l F( )]s

+ZlV(—K"c‘f)} (K=§;—,’ . - (18)
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The solution consists of two absolutely convergent series, The first sum
ensures the change of the velocity of the shock wave owing to the heat release
in the gas flow, and the second~owing to the change of the velocity of
movement of the piston (as in common gas dynamics). Let us consider in more
detail that component of the increment of the velocity of the shock wave which
is caused by the proceeding of the chemical reaction. For that, we put

Vs (&) =201n (19)e In t at case, it is easy to obtain the limiting increment
of the velocity from (18), with transition to the limit at € ___ 5 oo

S / .
by, 2afMel) [1-F(=)]
"""’)’zmjm{mj-x) T v (20)

where F (o© ) = B, — the equilibrium value of the concentration which is the
solution of the algebraic equation:

KZ{Po ’ﬁo)(,.ﬂf)m’-”t po ’..Pa)/ac‘m’ =0, (21)

Thus, the limiting increment of the velocity of the shock wave is determined

by the equilbrium value of the concentration of the component participating in
the reaction. The knowledge of the function F (&) is necessary for the
detailed distribution of the gas-dynamical parameters with respect to the
coordinate and time. For example, at m, = m, = 1, the solution of equation (10)
has the formi -

.ﬁ,';ﬁe[he

e ———— e

‘{"t'Kz)ﬂ’t)
L

e'(xv'”z){t'f) (22)

and thereby the form of the function F (£ ) is determined. For that case,
the 1imiting value of the increment of the shock wave velocity as a function
of the Mach number of the shock wave of the main flow M. at ¢ = 1.3 i8
represented in Fige 1+ _The change of the increment of the 'shock wave
velocity with the time t = (k, + k,) t for some values of M, is shown

in Fige 2. - It is obvious from the graph that the velocity monotomically
tends to its limiting value. The change of the pressure on the piston with
time is represented in Fige. 3. That change is . onmotonics There is an
obviously expressed maximum of pressure, which was also discovered on the

| body, on calculating the supersonic flow of a fuel mixture of gases around

a cone [4]e

Let a shock tube in the form of a canal of a constant cross-gection be
filled with two stationary gases separated by a diaphragm. On the left from
the diaphragm, there is an inert gas with a high pressure, the so-called
"driver gas", and the right part of the tube is filled with a fuel mixture
of gases with a high pressure. After the rupture of the diaphragm, a shock
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Wwave will propagate in the fuel mixture and ignite it. Heat will be released
in the gas flow behind the shock wave, and the motion of the shock wave as well
as of the contact surface becomes nonuniforme A Riemannian central wave of
rarefaction propagates with high pressure in the gas. In contrast to the

classical problem of the decay of the arbitrary discontinuity, this wave will
not be self-sgimilar. .

e
Dy (=)

I'o

0.51

Fige 2 Fige 3
Movement of a fuel mixture of gases in a shock tube,
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The flow in the rarefaction wave is described by the formulae:

pea I L) e ()

a=qa -T“z"a . X=ylu)-(a, -r"”u)t . (23)

Here ¢~ W) - tunknown function determined by the continuity conditions of the
velocity and pressure on the contact surface, The awbseript ¥ corresponds to the
state of the stationary gas with high pressure,

Let us use the general solution (17),.0btained previously, for the description

of the movement of the fuel mixture of gases. The following condition must be
fulfilled on the contact surface. ) '

ey T —— —_

—— Z.r.

p[l- re-! U(l#éu {t)] Ty ~1 =P, (l+£p,{t)) (210

w[U (1veu, )]+ f U, f1eee, /‘)/d" ' (25)

Reforming condition (24) and expanding in a series through orders of the small
parameter £ , we find the relation between the increment of the pressure and
the increment of the velocity of the contact discontinuity in the forms

2y, Mo -.L)i'
MZ
P/t)+ I+1_1 aoo * ! a![t) =0 .
-J" — M [1- —
! Pl e Moz) ' (26)

Here the value of M, is a function of the decrease of the pressure and
temperature and it is determined by the relation:

27« ‘ (27)

° TI‘" 2

) ] =
fa) °M

o ~r¢1 M 2

Substituting the corresponding formulae for P, (t) and u, (t) in the condition.
(26), we obtain the functional equation for the unknown function D, (€).

P,
BTZ




e — e . (23)
DLE)-12 D (4 e)- 2walM,-1) w-1
A 1 '(“'7'75)_2/‘121'«)[/%201) [{-F[.F‘E)] ’
where: e e |
T T Lya
A= 27M:-(7-1) LT n
- 2pim; - 1) han Too! a° f ’
T Lo -2 —(m,- L
ZJM‘,-{J-I) re! a*(m" /‘10)
21{“5")
2yME-(r-1
A= I "7
f‘ 23-{/‘1:-7)
‘o 3
Zr/'fo-/a"-l) *

Using the equations (13) and (14), we find the relation between the function
£, and £3 on the contact discontinuitys

hl6)=-3, (&) - a-F (£)
(29)
From this relation, the physical meaning of the quantity A; becomes clear.

It is the coefficient of reflection of the compression wave going backward from
the shock wave, from the contact surface of the wave. .

The solution of the functional eqaution (28) will be:’

YL g e RS

TaMi M) maa

For the limiting increment of the velocity of the shock wave, we obtains:

Dfe) ZQA(M-:“——;) 18,
LI .
2Mj4w[Mf+1) 1-21, . (31)
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The final veloclty of the shock wave, both in this case and in the case of the
movement of a piston, is determined by the equilibrium concentration of the
component participating in the reaction. The change of the velocity of the
shock wave with time for the values ., = 1466 7 = 1.3 and for some Mach

mumbers Mo at the temperature drop 4" = 4 1is represented in Fig. 4« The

velocity of the shock wave monotonically tends to its limiting value. The

change of the velocity of the contact discontinuity and the pressure on it with
time are shown in Figse. 5 and 6. The velocity of the contact discontinuity
nonmonotonically decreases. It has a velocity minimum, The character of the
change of the pressure is the same as on the piston, i.e. the pressure nonmonoto-
nically increases, tending to its limiting value,

-
.

Fige 5.
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(j] The knowledge of the increment of the shock wave velocity in the experiment

- enables to determine some functional relations between the constants determining
the proceeding of the chemical reactionse Thus, in the case of a single reaction
of type (3), it is possible to determine the affinity constant from the relation
(31). One should also mention that the discussed method of the construction of
solution can be generalized for the cases of many chemical reesctions proceeding
both simultaneously and successively.

0.8

0.6

0.4

0,2

Fig. 6
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HYPFRSONIC NONSTATIONARY FLOW OF A FUEL MIXTURE OF
GASES IN THE NEIGHBOURHOOD OF THE CRITICAL LINE OF
A BLUNTED BODY

By
S.Me Gilinskii

On shooting a body with high velocities in hydrogen~air and hydrogen-oxygen
mixtures, some characteristic modes of flow around were observeds stationary-with
plain shock and thermal fronts; nonstationary-of pulsating character with a
strictly periodic structure of the combustion region in the form of circular waves;
modes with a complex structure, with the formation of internal exploisons inter-
acting with the leading shock wave and bending it. The theoretical investigation
of the stationary modes was carried out previously, and the main results are
discussed in [6].

In the present work, the pulsating nonstationary modes of combustion
generated at hypersonic flow around the leading part of blunted bodies are
investigatede The investigation is carried out numerically. The flow is
studied in the neighbourhood of the critical line. The method of "termination
of series" is used and the solution is searched for in the form of a first
approximation. The integration of the two-dimensional equations in partial
derivatives is carried out by the finite difference method with the use of the
characteristic relations for discontinuities and for the contour of the bodye
. The initisl stationary flow 1s determined from the solution of the boundary-

Ialue problem for the system of ordinary differential equations by the method of
teration.

The growth of finite disturbances artificially inserted in the boundary and
initial conditions, and also of the small disturbances generated because of
numerical errors is studied with time. It is ascertained that the inserted
disturbances lead to the formation of the oscillations of the leading shock
wave and the parameters of the gas behind ite The amplitude and frequency of
oscillations depend on the magnitude of the activation energy.

The detected modes are near to self-oscillating ones with constant
amplitude and frequency, The region of stability, with respect to the small
and finite disturbance, for the two-dimensicnal flow 1s significantly larger
than that in the case of the propagation of one-dimensional detonaticn.

§ 1.Let a supersonic flow of a fuel mixture of gases with the parameters:
velocity V.,  pressure Poo and temperature To , runs against an axisymmetric
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blunted body. We shall assume that ignition does not occur in the incident
flow, and that an exothermic irreversible reaction A-—B proceeds behind the

shock wave because of the increase of temperature end pressure according to
Arrhenius law: ' ‘ - |

(1.1)

Here, as usual, B -~ the concentration of the unreacted gas, m~order of reaction,
Eactivation energy, L=-reaction rate constant, R=~gas constant,

The system of gas dynamic equations together with the kinetic one (1 1)

gor the axisymmetric flow can be written in Eulerian variasbles in the following
orms: .

-;g{Ztl + vcl“g 8)=0,
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where 7 s © =~ the polar coordinates with the origin in the center of the
curvature of the body in the critical point at zero time; u, v~ the projections

. of the velocity vector W in the direction ¢ and © as shown in Fige 1,

B, £, h, T ~ the pressure, density, enthalpy and temperature, respectively;
o¢ = adisbatic index, Q = energy release of the reaction.
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We interpolate the dimenasionless variablas (with index 1), with the help
of the following relationas :

zf=_:e_° ' ’ Vinax 2
R z; '
u's ::" ) v"':_z;
Vinax V max ?
1 P 1 P
Pe% » P o
'P°° ’ .Paavm! ’
: N
1 £ r
E.='—°‘ =
lmee " VT,
e gL ~
L =LZ‘(P,°) [Vmax) ) ] T' = 7—-‘;; . (1.3)




Here the subacript "©° " refers tb the parameter of the incident flow, and the
superscript "O" denotes that the value of the parameter is considered at zero
time, Vmax == the maximum velocity of the gas in front of the shock wave.

The form of equations (1.2) remains in the dimensionless variables (below
we shall omit the index "1"), The boundary conditions on the surface of the
body are given ~ conditions of non-flowing and in the incident flow for V.. ,
Poo 9 Teo and o¢ o The shock wave is considered a discontinuity, where
Hugoniot relations are fulfilled.

Thus, the solution of the problem in the dimensionless variables is
determined by five main parameters M., 4 v 4 q y Ey Ly and the parameters
characterizing the disturbance. The heat release q of the reaction at a fixed
Mach number Meo characterizes the degree of the supercompression of the _
stationary detonation wave. It is coupled with the ordinary used contraction
coefficient ) by the relation: :

[ e F]
g mE - 1)f P—;f;\

—

Y g Zmis LM

v

 (1a4)

where M, - the minimum Mach number M of the propagation of the detonation wave
(Mach nulber M of Chapman—Jouguet)e - .

The integration of the threse-dimensional equations (1.2) can be reduced to a
successive integrstion of two-dimensional equations if we use the so-called
method of "termination of series" suggested by Van-Dike, This method was used
in a m[untier of works for the calculation of the flow of viscous [1] and ideal
gases [2 .

/
. Let us represent the unknown functions in the neighbourhood of the critical
line in the form of series with various powers of gin 6 .« Taking account of
the eveness of the functions we shall havet -

plt,z,8)=plt, z)fpz(t, ¢)sin’0 *psft,z)sin"'g e

ult,z, 9)='U,C0$9‘uzcosﬂsin28 e
v(t,t,9)=v,sin64vzsan’e ...
.P(t'lzla):up' +stm29*vot

plt28)=p, + 5 sin%0 + ... C\' 5)
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The first "termination" (the term termination" is universally recognized)
includes all the first terms of expansion (1.5), with the exception of the
expansion for pressure in which the first two terms are taken; the second
"termination"~ the first two expansion terms of (1.5) ‘plus three- in the
expansion for pressure, etce.

The first "termination" is substituted in the system of equations (1.2),
and in each equstion the coefficients with powers of sin © are equated to zero.
A system of equations concerning the variables t and T 1s obtained for the
coefficients of expansions (1.5)s This system contains seven equations with six
unknown functionse. Following work (1], we shall omit the equation, obtained by
equating the coefficients with sin? 6 in the energy equation to zero. -

The fingl system of the equations of the first "termination" in the
variables t and & dis: .

z-7g(t)

“fr e_{t)= Zy(t)- ’5#}

can be written in the following forms
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(1.8)
Here, Ts=¢s (t) ~ and Tg= T, (t) — are the equations of the

contour of the shock wave and the body respectively.
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The system of equations (1.6) has the following characteristics:

along the Mtrajectoryy
e T,
. (1e7)
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The boundary conditions on the contour of the body tske the form:

at T ?g_“'.) [a) o (}:10 U'VZ“:;O
(1.15)

For the caleculation of the functions behind the shock wave, it is necessary
to substituts expansions (1.5) in the Hugoniot relations, using the scheme of
"termination" described above. Analogous expansion should be written for the
contour of the shock wave and the bodys

2, (t,8) =2, (t) ¢ g (&) sin’6 ¢ ... (1416)

We shall be limited by the first two terms in expansions (1.16) and shall
assume that the coofficient with sin?@ does not depend on time, This is
equivalent to the assumption that the shock wave (and body) in any point in the
neighbourhood of the critical line moves in the direction of the normal with the
same velocity, and that it is near to a sphere.

The relations coupling the parameters of the gas in front of and behind
the shock wave (at © w 1) are as follows: ' :

- ) 2r Pa, . Ny
e %[(Vwﬂsl)l’ﬁ};(%*zh) ]'zs: ’

2 .2 r-t
pl’}:—iﬂn[v@o'ah) -%pw ?

Pz p, Yetlu
1 e u,+és,

-1 .
P =%P,(”1'Vm [U,+V,,,- ) ’

'I),‘ = Vm-[Vm-U,)Z 352/251 ’ ﬁ=1 N (1.17)

For the solution of the system of equation (1.6) with the boundary
conditions (1.15) and (1.17), it is necessary to know all the functions at
zero timeo
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The main calculations were carried out from the distributions obtained
by solving the stationary equations (1.6)c The system of the stationary
equations for the system (1.6) is solved with respect to the derivatives of

du, " ¢

o y-u m !
7 ol T e s AR e p )]

33 _ o ,mM m-l ~ \
25T Aoh ewlEpp)

f_ﬁ_é.[ P2, 2*,/”,-“,)] ,

d& " u lpifiede)  r+de,

dp, . ' dp, . d
7~ﬂ=f_'[goz'_u_'-.‘i‘ﬁ , iz:e'p,u,z'-f'-’- L

dé  «, 1e&e, d&J47 d& f+€e, d§

P =-pu du, [dE (1.18)

(1.18)

The solution of the boundary value problem for the system of the ordinary
differential equations (1.18) is obtained by the iteration method. The Cauchy
problem is repeatedly solved from the initial data behind the shock wave before
the bodyo. The unknown parameter €, is determined by the Newton method from
the condition of non-flowing (1,15)e The indeterminate form in the point © = O,
for some equations of (1.18) is treated by extrapolation of the functions from
a certain distance from the body. The integration of equations (1,18) is carried -
out according to the. clear Eulerian scheme,

The system of the nonstationary equations (1.6) with the boundary
conditions (1.15) and (1.16) is solved by the finite-difference method within
the interval © < & ¢ 1 and with using the characteristic relations
(1e7=1414) for the dstermination of ths functions at the boundary pointse .
The space interval (Oe1) is divided to (N + 1) nodal points at equal intercepts,
and the values of the functions for the following time~layer in the internal
points are determined by the clear scaling circuit of Lax with a second order
of accuracy (Fige 2 a)e At first, the values of the functions in the two
half-integral points 5 and 6 are calculated for the layer (J +4%) and then,
by the obtained values of the functions in the half-~integral points, all the
functions in point 4 on the layer (Jj + 1) are obtained.

The calculation of P, in the half~-integral and integral nodal points
are performed by the solution of the ordinary differential equation (1l.14)
along each time layer, using the clear Eulerian scheme.
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The withdrawal € of the shock wave from the body and its relative
velocity & on the following layer is found by the Newton iteration method,
The trajectory of the shock wave within cne time interval 1s approximated by
a parabola, and the value of € is the solution of the characteristic equation
slong the characteristic C drawn backwards from the boundary nodal point of the
upper layer (Fig. 2 b)es The schems of the second order of accuracy is investigated
and the value of the functions in the intersection point of the characteristic
with the j= m layer is calculated by equations (1.11-~1.12)s The parameters in
the point 9 are determined by linear or quadratic interpolation from the values
of the functions in the nearest nodal points.

On the surface of the body (Fig. 2 B), the calculation is performed as
follows. The pressure P, is originally calculated '.on the layer (2 + 1) in the
point 16 by integrating equation %1.1&) at the end of the interval (O.1).

The pressure P, and the velocity components are calculated from equation (1.6),
taking account of the boundary condition (1.15) from the clear formulae, and the
dengity is calculated by the iteration method from the equation that is a
consequence of the relations along the trajectory and the ¢ ¥ characteristic
drawn backwards from point 16. The values of the functions in point 13 are
determined by linear or quadratic interpolation.



0-1[4,5- - °

After the calculation of the density, the concentration By 1is determined
from relation (1.8) along the trajectory by the clear formla,

§2~ The algorithm, described in § 1, was programed on EVM-BESM-3M,
A standard net with a number of nodal points N w 4O in the space varisble E,
was used in most of the calculationse Besides the standard net, a net with .
numbers of nodal points N = 8 and 120 was used to estimate the accuracy of the
individual variants.

The main calculations were carried out at Moo = 5, ¢ = 1¢4y q = 043 and
Oelie The activatlon energy E and the reaction rate L were simultaneously
varied so that the relative width of the nonequilibrium zone of the stationary
solution comprised about half of the width of the whole shock layere The
value of the withdrawal of the shock wave is close to that observed in the
experiments in work [7] and obtained in the calculations of stationary:flow
around bodies [6]s o o R o

For the purpose of studying the influence of the Mach number M. and
comparison with the known investigations of "one~dimensional flows, the
following values of the parameters were also considereds Moo = 7.6,
qQ = 00615 (f = 146)y ¢ = 1.2, B mw Os5wle250 These conditions were partially
considered in work f8], where the growth of the disturbances with time in the
one~dimensional flow in front of ths piston was investigated. The values of
E = 0.5 and 0.6 correspond to the steady and unsteady modes of flows according
to the linear theory [9]. | _ ' - -

Two forms of disturbances of stationary flow were investigated. A strong
disturbance was originally inserted in the initial distribution. It led to the
assignment of constant values of the functions of P, 4y v,y Py /i and of a
linear distribution for the velocity u, with respect to ¢ o The boundary
conditions on the shock wave and on the hody were satisfied, and the value of
the wirhdrawal £ = 0.2 is arbitrarily givene

- The calculation was carried on from these initial data to the setting of
the stationary flowe The results of such calculations are represented in

Fig. 3. Hers, for convenience, the dimensionless time T = t x (1.62)" was
introduced., This is related to the number of the time intervals, through which
the results were delivered to the printing of the EVM,

In the case of a perfect gas, and for small activation energies (B < 0.5),
steadiness rapidly occurs. Slowly decaying oscillations with a nearly constant
frequency are observed with the increase of the activation energy. Irrespective
of the reaction rate, at E = 1,0, the generated oscillations due to the strong
initial disturbance gradually decay,; after that the flow is described by the
stationary solution %§'18)o '
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The change of the velocity of the incident rlovi by the laws

T o ¢ -t .
'M,,ft}=M_° *[;' £ { v canst

t.; const (2.1)

at constant density and pressure was with another form of the given
disturbancee. ) ‘

The growth of the distrubance (19) with time for some values of the
activation energies and for different Mach numbers M is shown'in Figs. 4

In the first case, at M:Q w 5 and for an activation energy E = 1,0, the
oscillations always decay with time, so that this range of the values of E can be
considered as belonging to the region of steadiness with respect to the finite
disturbance., For an activation energy E = 1.5, the oscillations intensify with
times .
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An analogous result was obtained al M_= 7.6. When the activation energy E
was < 1.0, the oscillations decayed, and at E > 1425 they intensified with
times It should be notsd that the calculations in the last case wers carried out
on a comparatively short time interval, This 1s connected with the fact that for
great values of the activation energy, lying in the region of unsteadiness, the
numerical errors increase owing to the increase of the gradients of the functionse.
For the continuation of calculations, a decrease of the interval of time and
space from a certain moment was require«d..

We investigated also the growth of very small disturbances connected with
the increase of the numerical errorse. For that, the calculation was performed
from the stationary solution of equations (1.185 without introducing any
grtificial disturbances.

For values of the activation energy from the steady region with respect to
the finite disturbance, very weak oscillations are observed near the stationary -
solution. These oscillations practically do not increase by widely changing E
from O to 1, The deviation does not exceed ~ Q,3%e For values of E from the
unsteady reglon, a relatively rapid formation of considerable oscillations of the
leading shock wave and the whole flow behind it is observed, The amplitude of the
oscillations of the shock wave (Fige 6) grows slowly with time, and the frequency
remaing almost constante The qualitative character of .the curve does not change
by using a more-fine net. The change of the profile of pressure from the shock
wave to the body at %2 = 1~ £ with time, shown in the same figure, illustrates
the oscillatory character of the whole flow in the shock layer.
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In order to exclude the influence of the errors of the numerical method
on qualitative conclusions about the growth or decay of the disturbances, a

great consideration in the process of performance of work was given to the control
of the calculation accuracy.

For the values of the parameters lying in the region of steadiness, besides
the comparison of the results obtained with different space nets, the comparison -
with the stationary solution of equations (1.18) served as a criterion for the
accuracy of the numerical scheme. The small fluctuations of the parameters of
the nonstationary but near-— stationary solution insignificantly depend on the
value of E ( ~ 0.3%) for sufficiently large instants. The comparison of the
results obtained with the standard space net and with a net with half interval
glves approximately the same evaluation (see for example, Fige 5)e

In some cases, the calculation with the standard net led to a physically
unreal results Thus, Fig. 3 represents the result of the calculation at E = 1,0
and L = 0414.104 , obtained with N = 40 (solid line) and N = 80 (dotted line).
In the first case, the shock wave monotonically moves away from the body, in
the second~—the osclllations decay with time, .

In the unsteady region at E = 1.5 (M oo = 5), the nonstationary solution,
on the average, has fluctuations near the stationary. At the same time for the
standard net, the deviation of the maxima of the fluctuationsy, as a rule, is
greater than the deviations of the minimae The relative error, as follows from
the comparison of the results with N = 40, 80 and 120, is the greatest in th
neighbourhood of the maximae On decreasing the space interyal, the curves are
shifted to the side of smaller values of T « In this case one should evaluate
the maximum error from the difference of the corresponding maxima. This
evaluation gives a value of ~ 5.7% for the first three fluctuations.

The numerical errors arise in the first place from the inaccuracy of the
calculation of the kinetic equationg (1.6) and (1.10), where the product of
the big (L) and the small (exponent) multipiliers is involved in the velocity
of the processe In the case of the big gradients, these errors rapidly increase,

‘which leads to the physically unreal resulte

In order to exclude the influence of these errors, an additional series of
calculations with a still more simple kinetic model was carried cut. It is
assumed that the mixture burns instantaneously in the detonation front, and the
heat release q of the reaction depends on the velocity of the flow in a system
of coordinates connected with this front.

9+ % P(M) .



Such an enthalpy function changes the explicit kinetic process in the gas
(distributed heat supply, ignition delay, and others) to an implicit one and
serves as if it is an average characteristic of that process. The form of that
function is determined by the parameters of the incident flow Vo, 4 Poo ¢ T,
and the dimensions of the bodye. .

According to theory and experiment, the form of that function is
qualitatively determined as represented in the left upper angle of Fige 7o -
Here, a narrow range of the Mach number M is only shown, where the flow is
reconstructed from an adiabatic one without heat release to a detonation one
with a complete combustion of the mixture in a relatively narrow zone,
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By carrying out concrete calculations of the function c<p (M), it is
possible to approximate the analytic relation:

‘)"(/"1):—2Z 1+ %azctgx{M-M,/z)]

~ The curves of the drop-out of the shock wave and the Mach number M of the
inciden%, flow in a coordinate system connected with the shock wave are plotted
in Fige. 7 for the following values of the parameterss Mco = 5.1y q vy, = Oelyy

T - 1.4y K = 10, M‘smax = 5 corresponds to Qmax -.Ooh at «¢ = 1, ,

The stationary solution with such parameters corresponds to a flow with a
detonation wave, in which the mixture completely burns with the heat releases
qQ==%~qmax = O0¢3s Thus, such solution will be near to the limiting one
at L ___, .. for the case represented in Fig. 7; the difference here is in

Mach number M .,
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It is obvious that o to the numerical errors at T ~ 0475, the solution
of the system of equations (1.6) becomes essentially nonstationary. It is
interesting that in this case, self-oscillations with constant frequency and
amplitude of the leading detonation wave take place, The mechanism of the
maintfiﬁance.of such oscillations is similar to that described in the experimental
work (3.

Owing to some reasons, the stationary flow is led out from the equilibrium

state at which, for exampls, the shock wave begin to move in the direction of the

bodye At that tims, the thermodynamic parameters, pressure and temperature behind
the shock wave, begin to fall in view of the decrease of its intensitye, Accord-
ingly and because of the high activation energy of the fuel mixtures, the heat
releass sharply decreases and the shock wave acceleratingly moves to the bodye.

Then its retardation takes place because of the compression of the gas in the shock
layer "the reflection". As a result , a peak of pressure and temperature

is formed; the mixture again "ignites" and the shock wave maintained by ignition
noves away from the body. Farther, bscause of the radial expansion of the flow,

it begins to attenuate and it stops at a certain distance. After that, the process
described above 1s renewed. '

All these moments of the process aro‘represented in Figs. 7 and 8, The three=-
dimensional diagram of the pressure as a function of the two variables t and
is plotted in Fige. 8. : o
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The described mschanism of the pulsation of the leading shock wave with the
periodic generation of the waves of the burnt gas, which after that are carried.
away downstream, can serve in some cases as explanation of the presence of a
strictly periodic wave structure of the combustion front. The latter in the

supersonic part degenerates in surface, separating the burnt and unburnt parts
of the gas.

In conclusion, we mention that the values of the activation energy of a
mixture, corresponding to the neutral oscillations in the investigated two-
dimensional flow, are lying far in the region of unstability for one-dimensional
flows in front of a piston. This follows from comparison with the results of the
linear and nonlinear stability theory both for the strongly-compressed [8, 9] and
wegkly~compressed [4, 5] detonation waves, This effect is explained by the
stabilizing influence of the spreading of gas along the surface. In this case,
disturbances, do not succeed to develop and are carried away downstream.
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USE OF THE BOUNDARY IAYER METHOD FOR SOLVING THE PROBLEMS
OF THE MOTION OF GAS MIXTURES WITH EXOTHERMIC REACTIONS

By
S.M. Gilinskii, and HCL, Khaykin

A great number of works [1, 58] is dedicated to the analytical investigation
of the motion of nonequilibrium reaction or relaxstion media.

In the present work, a hypersonic nonequiiibrium flow of a mixture of gases
near a wedge or a cone, and also in front of a moving piston is investigated by
the boundary layer method [2]. The obtsined solutions can be simply used for _
the evaluation of the influence of the oscillatory relaxation or the nonequilibrium
dissociatione

§ 1o Hypersonic nonequilibrium flow of a fuel mixture of gases
around a wedge or cone

Let the heai'. supply to the gas takes place in a combustion wave of a finite
\Eitith ‘and let this process be arbitrarily described by one irreversible reaction
31

dp m_ m-1

g bA P exp-f?-,) '

(101)
where /3 = the relative concentration of the original reacting compongnts of
the mixture, m~ the order of reaction, » ~ pressure, T = temperature,

E «~ activation energyy; R «~ the universal gas constante.

We shall be limited to the investigation of plane and axisymetx;ic flows,
Following work [2] for the variables of the boundary layer, where < w the
coordinate along the contour and a,ui «~ the flow function, we shall write the
gas-dynamical equation system

Puau vav ap '
—_— — —_— -
FPUAC RS IRyl
H v u »-1 3p
T Ry T sy
N A 4 o T
S t——— 4 = 0
ax'/ 2 ]-7 P 1150) v
R - £p £
-/ s /
1+y'/R axl AR P expl p): £- J
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Here, ji-—- coordinatie, orthogonal xl; uyv'w the components of the veloclity vector
in the directions x', Y*j Rg— radiug of the eurvature of the flow line,

Y = 1,2, for plane and axisymmetric flows, M — molecular weight of the mixture,
Q — quantity of heat supplied to the unit mass of gas at complete combustione
For the axisymmetric flows, s -= the distance from the axis of symmetry to

the considered point of the shock layer, 7 =~ the distance from the axis of
symmetry to the point of the contour (Fige 1)e The flow function is interpolated
by the relations: : ’

<Ayl
JgT - puz) T . (1.3)
ay’ v
:9—;'1 =(1*y'/R8)?T .

(1.4)

The solution of (1e3), (1.4) 1s written in the form of series of powers of
the small parameter ¢ = %=t

T+i
y’:CyD'O... P=A, *Ep;?.: .
u.uaquu’-&... ﬁ:-?+f'¢...
vy, ... PPy tEB o

(1.5)

The varisbles of the boundary. layer; diagramatic pattern of
flow near the body.
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After the perforﬁance of the standard operations for the determination
of the first terms of the series, we get a system of equationss

o
‘IU1 _P.U,Z e °9x’,
ou, Uy 3t 3p,
— ___v____,“__,_‘__\___h dx! ' ?-z ;ﬁ; !
3 7
[7*’ Po ﬁa] 0
. m E ° ' | he
u —'—"‘L'B m’exp-_p.f_)' E,__E.._ . - ( . )

and for the determination of the functions w, s F , £ » 3, — we haves

s i e e

du a Tomm— - e e i e 1+ e+ et
U — _f_o_ =0
4 0 ax’ ax’ ?

d
a_:‘_,_'_ u,_ Uo[.‘/o {p 7)—-60 c(] -1 ap,

PR b g (R - B ) ey L )
o o lo z Xp (- —=2

P P )] / Pe (107)
The representation of the concentration B in the form of (1.5) is a

consequence of the assumption that the limiting flow at ¢ — 0 1s a non—

equilibrium one, and this enables to take into account, as a first approximation,
the effect of the nonaqnilibrium state.

The arbitrary functions should be determined from the boundary conditions
on the given contour -
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y : 0 at’

vl (1.8)

and on the shock wave, where all the functions are expanded in power series
of the form of (1.5)e

The relations for the shock wave in the considered case coincide with
those given in work [2] for the ordinary adiabatic flow, and it is necessary
only to add the conditions of concentration (the index § will be attached to
the parameters directly behind the shock wave).

oyl L B0 at ™ (x)

‘l"*(x')= .,,;- . éqI:’ + 0{6‘) ) . (1.9)

The systems of equations (1.6) and (1.7) are integrated in quadratures,

. but unlike the case of the adiabatic flow this procedure is more complicated,

and the solution is more cumbersome.

We introduce the dimensionless variables x, y and ¢ as follows:

! -1 tm t-m
[

X = L u, Po x ’ ylz L-'uop

Y,
OP: ”’;Lnof) ‘// 9 (1 10)
L ]

In this form, the functionx* (¢) on the shock wave becomes ¢ Yo,

For a wedge and cone, the integration of the last two equations of (1.6)
along the line (. w const gives:

',- 'Baexp(i_)'
Jeof E o, )50 @
where ! t : '
]‘ E _ [ pt)s
B: — , L= l+'—— .
AR 7! £0,§ (1.12)

In the most simple case at m = 1, for which all the results will be
reduced for shortness, the integration of (1.11) gives (see [4]).



C

J, =e“£a(;-a)-éE?E) )

L.

File) tag+Z

wn! 1 570, 5-a0.
Ke!

(1.13)

Formula (1.11) gives an unclear dependence of the concentration S
on the coordinates of the point (x, ¢ ) in the shock layer to zero, and only
in the case when the activation energy E equals zero (p = 0), it i possible
to solve this relation with respect to S5,

When the activation energy differs from zero, it is necessary to select,
a8 independent variables, the value of the concentration AFo 1inside the shock
layer and the value of the concentration ﬁ on the contour in such a way
that the coupling of the old and new variables will be given by the equationss:

x- :7(1) .7[_,8‘}
v=[%(.)- 7,085))"- -
(1414)

Further, it is necessary to express all the unknown functions in the
variables B, ; B° in an obvious form, and then, for example, plot graphically
the dependence on x~ and > o It appeary that all the unknown functions of the
first and second approximations are expressed in a combination of expcnential
integrals, transcendental and rational algebraic functions of /? and ,9

The calculation of these functions reduces to a partial differentiation,
or integration along the coordinate lines x = consty ¢~ = conste

Finally. we obtain for a wedge in zero-approximationx

U°=V”cosd ) ’.Poov sin’t » Pt f?(z";o;

L(p-8l) Ly smM[qb{«t) b (¢, )]

sin c(

Pd(e)=cle®Eifs —a)+{a-l)£i(¢’)-

_al S q
";’o'c‘ﬁ. J 2'}‘%? )
b, o [BL5.)- (5] ;---——— , - (1a9)

where Y, ¥ (x) determines the form of the shock wave.
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In the first approximation, we shall haves
e Y P B
C drug(e)=- =2 [c-p2*(¢)]

pue fuVa 925100, exp[-a f(1-57[€) ]+

([5,(p)- 4 (O] -9 VE sinit (126

4, =g, enlalliaf)][#le)-¢(5)]

wsinzo(, P, :
f':‘};}c-ﬁ-)z [.Pov,: ek -‘/‘«n("bj] !

ol8)wl 144 Wl Eila-s)- '5,’?-'] ]
e [cep *(w)][e_'i@(a- ¢5-_§{_/j x)]

whaye

€0

& >0 .
f‘ (%) T — _'_’ - as -P'S
: ‘ V‘: [-Pu ﬂoi ]
C It is obvious from the formula that the concentration £ along the flow line
g monotonically decreases from one to zero (Fige 2)s ;

.“ﬂ Cal3, ¥=0 . 1

/.
]
L

e e e e

N
AN\

Distribution of the concentration 3 (x) along.the generating lins
of the body - .

—— . Pirst approximation
----- — second approximation tsken into account
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In the first approadmation, we shall haves:

C T4 "u's(w} cOsd [C “Be (¢)] o
Pre puVia g [2c148] exp -af(1-p0fc) ] #
L8)- 4 (] -5V g (a8

5, = p,enlallaf)][¢le)-#(8)]

Poo sin?o,

_P': 2(C~J5.)z Vz ./51? -/S“[‘P)]

whaye

la) Tl e Eila5)- -
mm[ £ ([ Eile- o bif r)]

g >0 : :
Py _ Pos £ : (117)
(w) - s J1s
’KA [.P“ Pos ] . . ‘,
C It 18 obvious from the formula that the concentration )3; along the flow line -

monotonically decreases. from one to zero (Fig. 2)e

. Cets -
£ ., ¥=0

$\ .'

as \&x\ ? ;
LN B
NN

0 70 _ \\

Distribution of the concentration )3 (x) along.the generating line
of the body

~—— o first approximation
—————— second approximation taken into account
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Formulas (1.15) and (1.16) are essentially simplified and become evident
with respect to ¢, 4’ when the sctivation energy is equal to zero. For

shortness, we shall not give these formulae here, since analogous formulae will
be written out belows

It should be noticed that the pressure and velocity in the zero approximation
are calculated by the Newton formula, Taking account of the first approximation,
the velocity u is constant along the flow line, but it changes across the shock
layer. The prsssure changes nonmonotonically and it has a maximum, On increasing
the activation energy this maximum increases and shifts to the equilibrium region

of flow. The curves P//¥¢ = f (x) along the wall of the wedge are plotted in
Fige 3 for the values of B = O and 0,7; C = 13

e ol ST

(1.18)

p‘/p" I C'/3 . Vuo

L4

“ ) "'\
. JOR— 8=0 S s :'"\'\ .

10 /7 [ T e g,

avA

05 1///{

02

0 00 20 W -+ S0 s w80
Fig. 3

Pressure distribution along the side of the wedge for two values
of the ¢imensionless parameter §

Taking account of the first approximation, the density and concentration
monotonically decrease along the line ¢~ w conste For the determination of the
function Mo (R s ;3;) We have! :
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B
9 f (c-t)t" [z 9,(t)-3,0)Jexo( 5 )dt = (1.19)

“\ %* sin 2o

1\ = 2 a2

| w\fere 2s)=a c{ [aeEife- a) 2£L[¢}+ ]+ = [e°Ei(¢-a)- EL{Z,')]
\
+TEL'Z[C) EL(C)*ZEL{ZC)- - -8 .7}

| Eift-a)e®
Az[x-e Eu(t,‘s -a)+Eife, ] 7* f_—'——““dc (1.20)
We present tho f\mction & 2 in an integrand of the unstationary integral 9
in the form of a power series in the neighbourhood of the point ae Performing a

term-by~term integration of this serioa we shall hayes

———————

ag

R IOM Ly | ()

kel

where ‘:!'K is calculated by the i'ecurrent relations:
jxl “(2-a)"" £; /¢ a) (K-I)J -—“"** -

x-l '

<o Fi(s-a)-£i(2(z-a)) |

1 2 a) '
A T A e”“”r 07,,].
(1.22)
The component of the velocity v, is calculated as follows:
® =‘Ko['i(—°"05°(' [ﬁo/‘/’ -x)-A, x -
c 5'
-a’c(Ei[c-—e-)+a20(E£(é‘ }~—- )]} . (1.23)

The position and inclinat,ior; of the ahock wave to the x direction are
determined as follows: ' )
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CI ) _ (1.24)
O X sin 2L [I(CS) X(CJJ ’
9,.'= V., sin2ot L= —:} . '

s o (1.25)

In the zero approximation, the difference of the solution for a wedge
and cone gppears only in the form of the shock waye and the value of the
velocity v¢ and the velocity wuw, § the pressure, density and concentration
in these solutions coincide, .

It follows from system (1.16) that in the first appro)d.mation for a
reaction of the first order, the parameters Pey Pir Urs Pi are
determined for a cone from the same differential equations recorded along.
the i‘low line for a wedge, with an accuracy up to the coefficients which depend
on ‘90 and are determined in the shock wave. Therefore, for these
functions we sha.l.l not give here the tedious formulas in the case of 8# 0-

. We shall write out the more simple formulae for the case o:f.‘ B = 0,
when all the functions ars syidently expressed in x, ¢,

e e RS

(i ' zero approximation

U=V col po‘f’.,,V,:SL:nzel , ,ﬂ,-exp[(,p'/’-.r) '

-7

g plrogli-e* 7

el W]
' | first approximation

Vo -e (1
Hr=e 2cmd{l{sm°‘+0[7 2 qJ(“P

'-‘_P“,V sin K -4—-17;:—-) (P—n smo(fp )

w?  2ff-eixe™)
-Fu: eo?{ "'_;‘ - E oy

+

e (x%+2x +2) 1 Wt | .
e (p-3¢"e3)e £ -

-e*(x*-3x +3)- :cz/zj} |
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{ ‘Pﬁ) 1 B
5k 2cos L {Ktu‘lo( ‘}[" ]/ [L‘plz'x)

Poo sin'y P,
H® [x:mzol*l;[f e\b/z x)] vaz Jd?, sx,m["lp); (1.27)

The behaviour of the gas—dynamical'parameters in the shock layer near
a cons, taking account of both approximations, is qualitatively similar to the
behaviour of the corresponding parameters near a wedge,

As an illustration, a comparison of the position of the shock waves for a
wedge an: cone with the same expansion angle 2o¢ m 60° gt Moo= , q = 045
is drawn in Fige. 4« The shock waves for frozen and equilibrium flows are shown
by the dotted znd dash-dotted lines, respectively.

The pressure distribution along the wall of the wedge and the generatrix

of the cone for these conditions is represented in Fig. 5. It is obvious that

at the same activation energy the pressure on the wedge tends more ra_pldly to
i’os 6quilibrium valus than on the cone,

T, /
/

2 / /

1A/
/
;/

0 ’
7y
/

\

) L,
/’1

Fige 4

Form of the shock wave for a wedge (V = 1). and a cone (¥ = 2) with
expansion angle 20¢ = 60%) M _=oc 4 q = Q.5
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Pross@re coefficients for a wedge and a cone at 2 p(-"'-’-" 60°,
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| T
In the c\gae is calculated

of B w0, the prassure on the wedge and cons
by the formulas! : S o :
o
‘ P~ Poa -1 2
1-—-———-——: in’ { L
Ce 2o Vi 2sin‘el{]+ J'”[“(]")Mo: sin’

i : '

9 -x -x

+ = (1-e" +xe )]] (1.28)

. .
Cp =2sLn2a({!+£l[_,.(j, Z )‘ g 5 21-e-xe )
KoK L4 (I")M:, sinid S'U‘!zot 7 .

-(1242::+2){x2-_3:r+3-39",;?3”/26]] o

x4

(1.29)

wedge

which convert to the known formulas for the adigbatic flow around a
or cone, if we put in them q = 0 (see [2])e
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Noneduilibrium flow of a fusl mixture of gases, caused

§ 2.
: by a piston moving with & high supersonic velocity

J

Similar to § 1, it is possible to investigate the problem of the

motion of a mixture of gases, generated when a piston moves with a high
The original system of equations in Lagrangian

supergsonic/velocity.
variables has the form:

9k
// 37;= ;ET?

/
{

% PR3P
/ o at? i om
;i P £
S-=-Kp"p p exp --,;/—

| , st ()" "5 C(2)

l |
where 7 — the initial distance of a particle of the gas, by which the
shock wave did not pass yet, to the plane of the axis of symmetry;

Q =~ the quantity of heat resleased on complete combustion of a unit

mass of the gas;
.Pi-density, F° « pressure of the unburned gas,

' We shall introduce the parameter €= :L—T- y £ollowing [2] we shall
seek for the solution of (2e1) by the method of the boundary layer in the form

of the following seriess

R=R, +eR +0()
p‘:P,‘fp,*O(E‘) ]
‘P:-ef-.+f'+0[,€) ,

BB R ¢ 0{6’}
| | (2-2)
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The boundary values for the zero terms are obtained by the analoguous
expansion of the boundary values of the unknown functions. For the zero and
(:ji first terms of series (2.2), we obtain certain systems of equations,

For the zero terms:

aR,__
STH =0 )
aZR‘.- -1 3P
Tehe 5m
A (B)eg
\ Pol 77 3t ' ,
1 -i'i:- lx ¢ -éi ’
el el o

(2.3)

whers K = K.E'e o From (2.3), it follows that R, = R,(t)e As R, (t), we
shall take the law of motion of the shock wave. Then the equelity Ry = O

is fulfilled on the shcck wave. Lot us turn from the Lagrangian variable m
to the Lagrangian variable T wusing the relation,

PR

. m=
' 9 . -
J .
(:3 From this relation, it is obvious that T 18 the time of passage of the shock

vwave by the particle with the coordinate me. The system of equations for the
first terms has the following form: ’

IR, { T T ——

hap, R 8/(, .
( ) R atz ’
g/_s,' 12 P 1 P 0f,
.'Qat'zn F[P P g, ).P, FIETIRE
N %A a.ﬂ £y A P A ,
FORETY SRS [.ﬂ, p./y,E'E)] . (2.4)
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| Let us write the system for tho Z6ro and firstterms in a dimsnsionless
) forms:

@

. P q
Ry i=—;

-gt ) T ‘
t?,'.’ '?'—‘? '

where Tw= a certain characteristic time., After simple convoraions, t.he system
for the "zero" terms will have the following forms

) 1) ——— ‘
.z, KR, —
ﬁ-'&“T" R“K {f) '

P s w:v‘el :
Wl R )

Nl'\

3 = M« nsg gt
—’; =-Rp " [¢ ) /r*’}‘?ﬂo] exp gL f

O o L . P. [P
." R, - “(6)‘/'—5,“'/?)/{ /r}a"c .

1
ll

(2.6)

Here R n = the law of the movement of the piston. The third and forth equations
of (2.5) are an integrsl-differential system of equations with respect to the
unknown functions 3, and R, o For solving this system, the approximate method
of solution was used, which is elgorithmically realized on the computer as follows::
the iteration method was used, in which the value of R, was taken as the zero
approximation for R,j B, was_determined from the third equgtion, and then the
following approximation for Ro was determined from the forth equatione. The K
approximation for R, is expressed by the formula

e et e o
e

‘_—-.._ .

RGE)= R, (E) e ;ﬁ——— / R "—)/x’“ o) a
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the system for the zero and firstterms in a dimensionless

- forrm:Let qu e
- )
: k“='x~e"7'y"(p'a'z)n ; ﬁ=;$ ; G-f.‘g;: ;
£ _ _
:’) Z.:v-‘;';3 y P= P£ R:;{%, '
S R NI

where T~ a certain characteristic time. After simple converaions, the system
for thc "zero" terms will have the following forms

A .
N — F; ——————
' 7l BB,

| —="/'—‘Ez'——" ' Wcm‘ {
| i [E(‘l")-(pl)(?ﬁo]  where E(E)=(p ) oR 14 —’—,-1-,]’

2 . AR ) ro0an] ’ A _/}’]

=\
n

.- ._ "(t)faﬁw/f“ felaz . (2,5)

B
.
><J|

Here R n ~ the law of the movement of the piston. The third and forth equations

of (2.5) are an integral-differential system of equations with respect to the
For solving this system, the approximate method

unknown functions 3, and R, o
of solution was used, which is algorithmically realized on the computer as followss:

the iteration method was used, in which the value of R, was taken as the zero
approximation for R,j B, was_determined from the third equgtion, and then the
following approximation for Ro was determined from the forth equatione The K

approximation for R, 1s expressed by the formula

s -———

R()= R {t) W—,—/ R )/ﬁ’”" )) 47
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» /&, ”/c) /r/‘ 7 )} ‘5 T’\

()

where §— a certain constant.

After that, 'the third equation is solved with the found R G » which is
taken as the law of motion of the shock wave, i.e. B, is found, and then
the remaining terms of the zero approximation are found.

The system of equations of the first approximation has the following formss:

f"‘”’"’ ] : ’{t)f _(f)df

".R
£

|

) .

\ P4

F’,=-/r-')-5- JR, R ()R '/f)dr +
N T ‘

1. %P A -5-' -1 - I ' .
3‘% mz'/"‘z/ﬁ )p P/.P ){{ 5. ; Pr/t*r )
C | 'WI*’}/ 7 *Wf"}f"]/]

For simplicity, calculations were carried out for the case of piston movement
with a constant velocity.

A

i AY

50

&5

=3
) T

s

0./ 2 J’ & e. . .

Fige 6

Dbpqué;ce of fh;mﬁ;ggéuféwanvthénﬁiéfon upoﬁ the dimensionl
time t. V=1, 2, 3..plane, cylindrical and spherical cases,
respectively.
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‘ The graph of the distribution of the pressure on the piston at different V
— values is shown in Fig, 6. Tne graph of the law of motion of the shock wave at
. different V valuesw- in Fig. 7. The distribution of the pressure at a fixed

instant ' on the R coordinate-— in Fig. 8, The heat distribution on the piston
at different y values~ in Fige. 9.

The problem was solved for the following numerical values of the parameters

i ) kR - - - O
{ “m=2;l=n=0;Rn=6;0t30_;E=!0;T=!095%.

For tho) investigated case (R, = Dt), from (2.3) we haves:

- o3 ‘Rok.o: LS ' ol 2
/ PPl f = - =m0

lmu

=

Py _ hepe C N
AR URLO NS R WA

/

/ © fetP[(C(x)-244,)
| Substituting A, in the forth equation of (2.3), we iobtain ai equation for
the determination of Bo

| o e
*
b o m nel - Le!
| = "-AKJSO Po /C—Z@ﬁo) exP{.C'ZQ,ﬂo .

The boundary condition for the shock wave is as followsi:

: ;vc t=7  p(T,T)!

- Since R, = Dt, then C (Tr) is a constant quantity. It is obvious from the
equation that LG.=p5, (t-T) therefore all the values of the zero approximation
are functions of t =« + In the zero form P, is expressed by the following
relationt , )

Ee"m
"50 exp{- t
f / C*ZQﬂa-f a,/oz_k.f ono(dt .
1 pl(c- 2@,,60). T (246)
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At a fixed T and t —» oo  the integral on the right side is dropped,
therefore the integral on the left is also droppedoe At m > 1 (this case

will be investigated) this is possible when at a fixed T and t —eo

we have R —>0 , i.e. any particle burns for an infinite time. From the

fact that p, = F (t = 7T), it follows that for any particle the process of
combustion will equally proceed if only we take t = T  as the start of the
accourt of time for the particle., As the integral on the right side of (2.6)

is not taken in an evident form, then for finding 4, we take advantage of
the approximation method, using the following consideration. As B,(t-T)- O

at a fixed value of T and t —s oo , then it follows that for any value of T
and ¢p 4 there is such a value of t that at t > T + t' it follows that

Bo < <p , t"does not depend on T and B (T, 7T +t ‘)= <. In particular,
we take (p — g2 o Therefore, at t > t7 4+ T ~ it is possible to neglect Bo
in comparison with 1+ Then for such values of t we obtain the following
equation for t) ¢ determination of £3, ’

———

‘ aﬂ. - m n | E{"
‘\ é-t- :-Kﬁo pa Pafe,(p -T/ , (2.7) .

\ .
here A = coiz\st. Integrating equation (2.7), we have:

A T ] o —
‘ Bo=1/K AR t-T 1-m
{[ p / )‘Z]Cee‘p[ié—.,/ #lf

/
hsre 2 = a known function of t!s At the interval T<t < T 4t
We approximate A to a paroblat -

A altt) Bl lT)e s

ay, by, Z, t' are unknowns. We desigmf{

o Eet
7ol g, e '_'—:—'/=¢'.

Then the four conditions for the determination of the four unknown constants
take the form: o

ftate>p =1
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moreover, t' w T +%o , where T, — a known consteants

From equation (2.4), it follows that at ¥ = 1 the following relation
is fulfilled:

P =2p°G(B,~1)-p"-p° D

The third equation of (2.4) is integrated at once if the following
equality is taken into account:

P afo_ 0 aﬁo A -
!f‘ it at -
so that
1/ ‘ ,P! 'Dc- 7
?[E@'P.E)-?FT'J -20p.=-Gp, 'ft/r)'
where | |

AL (2) ]

Let us express .#; from the given relation in &, and substitute the known
"zero” and "first" terms in the forth equation of (2.4). We then obtain an
equation for the dotermination of By i

aivﬁﬁ-[; fe-eeTE) L zq]fs, -

. [P oy P,
ﬁ '{n«[) [f Eé’ ) P fﬁz (C ZQ)",]/
The solution of this equation at g3, A_,cs 0 has the form

B c,(t, r)aﬁ"

where

Cft ¢)=- —A—”[Z\p'@ +p°f_p"1)')(t-t)+£’[t-r}¢ ﬁ'f 20 «

¢ t t
«[5 dt-Eef Lo dt o tfe-20) e gt fo-20)pe 1L
Z_fﬁ. ef 5 dt el Q&f 2 dt {czq)ggéffpo) dt
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Here the formula for - B; is not given because of its tediousness., With
regpect to JB, Wwe only mention that as ‘3‘% g'p m at t5>T+7

then Bis=>0 for any fixed T and t .5 oo o The law of motion of the
piston R (t) is detcrmined a8_follows: '

i

N Ry(t) e (R rER ), = DE-ES +e—j,a (t,z)dt

\ fcm R [t) D: E-—:Cﬂ”St

Let us consider now some qua.litative peculiarities or the found solution.
We shall show that after the lapse of time ¥, from the beginning of

-combustion, the charactcristics of flow with an accuracy up to ¢2 become

constants equal 'for all the particles::
l

T TR )
A€t at t>Tez, apd y: tU[EI} A —‘-’*U[éz)

+ z . ’ )
!J’ co?xt 0(6) ) becanse f", -ff/ﬂ’.‘ﬂo,po,'P,);
o 2q
u(t, t)-—-~‘2) 65 + & 2: Ao at t>ter, , i.e.

U[T't):(b-es ¢0[£z)

It should be noticed that since all the functions depend only on the
argument t -7, then after the combustion of the particles the flow (with
an accuracy up to £2) will be isentropic. The equation of the line in the
plene R, t, by the attainment of which all the characteristics of flow
become constants with an accuracy up to ¢?2, is written in the formx

{R T T R frem which
: ) ' a 3 g 2
feter, o R TS ‘7% n) e

The given line (we shall call it AB) is parallel, in the plane R, t, to the line
repregenting the shock wave (Fig. 10). In the region lying on the right side

of AR , it is possible to establish an igentropic flow, assuming that the gas

is definitely burnt. In order that the solution can be Plotted in the region ABC,
realization of one of the following conditions is necessarys



e
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1) The line AB must be & characteristics as the characteristics in the
regien ABC must not-intersect:the 1ine AB, because all the functions are..constants
iniito., 'The relations

R=u+a ’

3

is realized for the characteristics in the region ABC. Hence, it follows that
on the line R « Ds

N Dsu+a  and e —

Aa /T’F{l*‘—) s *0[6")

u) JPERVE e-— ,
R R= D¢
8
A i ¢
0 - z
Fig. 10

where g— the velocity of sound. Thus, the velocity of the shock wave, at
which the line AB is a characteristie, is uniquely determineds:

.Dz:fl")[zf?*"‘- ]
ot 2ptetp : (2.8)

In such a case, instead of the interval AC, it is possible to take
another law for the motion of the piston, and the solution in the region ABC
will be a simple rarefaction wavej
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2) The line AB may not be a characteristic, It is possible to plot the
flow in the region ABC by the use of the characteristics, and as the piston in
the case of t+ > 7 moves with a constant velocity with an accuracy up to £ 2,
then this flow will be a progressive one, In this case the characteristics
will intersect the line AB, In order that the inclination of these characteristics
was larger than the inclination of AB, it is necessary that the following
inequality isérealized:

——— o e o R——

{ ’ 2 L2
IR \ (Z‘- ]}[2[?*_ a® ]
D<= z2u+a \ 2 71 202 .
dt \\ + [8) ‘b > . 2]2*’-'_ . (D‘;(b* g8

In the present case there is an analogy with the detonations, when the
mixture instantly burns in the shock wave. From the great number of possibilities
of the propagatipn velocities of the detonation wave, given by detonation
adiabat, the velocity of the propagation of the wave of Che~J, is minimum,
Therefore, it is possible to make an analogy between the velocity of Che=J,
and the velocity of the shock wave, which is given by (2.8). Since in the
case of K —»oc the time of the combustion of the mixture approaches zero,
then the obtained solution must change to the solution of the problem of the
motion of a plane detonation wave, and the velocity determined by (2.8) must
change to the velocity of the wave of Che~J. In the case when the counter—
pressure is not taken into account we haves: "

=
%g =2/["}Q
In our case, the velocity of the wave is calculated as followss
N - y;JiE"“ T e
T e and =5, =i g g)
RN SR I ARV AR
where o
T 5

+

This discrepancy shows that the method used for the solution of the problem is,
generally speaking, unfit when the velocities of motion of the shock waves are
near to the velocity of the wave of Che-J. For the highly supercompressed
waves, the heat release exerts a lesser influence on the character of flowe.
Therefore, the solution obtained by the method of the bourdary layer [2] for
such velocities of propagation of the shock wave will give smaller difference
from the exact solution with a detonation. The velocity obtained after the
combustion of a substance can be used for the calculation of the limits of
applicability of the boundary layer method in the case of the solution of a
problem with chemical reactions. "Thus . it is sufficient to compare this
velocity with the velocity formed behind the ordinary detonation wave. The
velocity behind the detonation wave in the exact solution is:
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e b — e F

'z>{1 a)d),/(! e)Z ‘b‘ £

I (2.9)

The velue of ugt corresponds to the wave of Che~J.
| "““ifb;(ﬁfy”
\ o

In the case under consideration the velocity of the gas after its combustion,
with an accuracy up to €7 , is determined by the formulaz

29
\ u*='D[I-£)-E—(D—

\ (2010)
It is easy to ses that in this case when:
|
4 1,80 Fesa
‘j ! 50 T ) cet
J*’ le
(2.11)

formulae (2.9) and (2.10) coincide with an accuracy up to ¢2%, 1.e. the
velocities behind the detonation wave and behind the region in which the
mixture burns asymptotically approach each other at ¢ — 1. Since ¥ & 1.4

in problems of the considered type,then €& % o Thus, inequality (2.11) can be
considered as the criterion of the applicability of the boundary layer method
(2] in solving problems of the considered class.

In conclusion, it is worth.noting that the law of propagation of the shock
wave in the case of spherical and cylindrical symmetry, corresponding to the
steady mode (Rz\ = const), has the formz

2
29 (r-1) ?
Temm ?.GT,'I«; and T /f"} “'r’)
Felvely

Thus, the deviation from the mode of Ch,~J. increases with the increase of
the value of y
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LINEARIZED SUPERSONIC NONEQUILIBRIUM FLOW OF A FUEL
MIXTURE OF GASES NEAR A WEDGE

. By
S.M, G 11ingkii

Let us consider a supersonic flow of a fuel mixture arocund a wedge.
We shall assume that the maximum quantity of heat, which may be released as
a result of a chemical reaction, is much smaller than the total enthalpy of
the mixture in the incident flow. In this case, the nonequilibrium flow will
glightly differ from the adiabatic flow near the wedge, and the problem of
the flow around can be solved analytically in a linear approximation.

If we consider the profile near to the wedge, the disturbances caused by
the bend of the profile will interact with the disturbances related to the
nonequilibrium'release of heat in the flow. In the linear approximation, the
total disturbance is determined by a simple superposition of these disturbances.
Therefore it is sufficient to study indepandently the two problems of the

nonequilibrium ‘flow around the wedge and the adiabatic flow around the profile
near to the wedge.

The first problem was investigatad in worka (1-3, 6, 7], the second- in

.. The solution of the problem of a flow of a fuel mixture around a'wedge is
glven below, taking into account the proceeding of one irreversible exothermic
reaction. In the general case the solution is presented in the form gf a
series. For certain particular vezlues of the order of the reaction,this series
is summed up, and the solution is expresgsed by finite algebraic functions.

The latter enabled to analyze the influence of the different laws ofsupply

of heat to the gas on the character of the flow behind the shock wave. In
particular, it is discovered that the solution may have an oscillatory character.
The amplitude and frequency of these oscillations decrease downstream.

In the extreme case of hypersonic flow around a thin wedge, the qualitative
character of the solution essentially depends on the order m of the reaction.
Thus at m = O and M= 4 ¥— 1,(>1) Q — G, the amplitude and
frequency of these oscillations increases The amplitude of the oscillations
approaches a finite limit, and the frequency approaches infinity. In the

case of m = &, 2/3, the amplitude of the oscillations approaches zero.

It is convenient to write the system of the gas-dynamical equations in
the Cartesien coordinates x ,y (Fige 1),
1
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Fig, 1
Coordinate system and designations

Let the parameters with the index "O" correspond to the adisbatic (frozen)
flow near the wedgee We represent the unknown functions in the form:

u, (z,,9,)= u[1+

rulz, y) ],

v (x,y) 07 (2 4)

pl(xt |y1) =P *Pou:P(x'r'“;.')"'” o

P'{x’,y1) =P°[I*f’(x“ yy)] )
e (1)
| PR AT ) AL AT e
Where the index 1" is written for the parameters of the unknown disturbed flow,
and the functions of the disturbances are desigpated without index.

Vle shall model the kinetices of the chemical reactions by one reaction:

dp m m-! £
JZ:—-LJS P EXP[ RT) '

where 3 — the relative concentration of the original reacting components of the
mixturé, m= the order of the reaction, P~ pressure, T temperature, E— acti-
vation energy, R~ the universal gas constant, L- reaction rate constant.
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Substituting (1) in the system of the gas—dynamical equations and
neglecting the terms of second order of smallness with respect to the
disturbances ,we obtain the following system of linear equationss:

du ap dv

hiflad ~ +p— =20 v
$e Ix °3x, i 3y, ?
du P _pg
) ax' ax'
6_1_)_ + ie - 0 [}
! ax' ay'
, .
1 dp  dv dB. .
f Mo 5— + 91 dx o, (2
i dx 4 )
Where 1|
(r-1]
| 2 2 -
| MM, -t g =

Mo = the Mach number, a~ the velocity of the sound of ths undisturbed flow
behind the shock wave. °© "

Owing to the assumption of the smallness of the dimensionless parameter q,,
the system of equations (2) contains a derivative of concentration only
"Bo (x4>Y4,) which is determined independently from the parameters of the
disturbance, and it is a function of the undistrubed flowe. :

me-

aﬂo - m ! ETPO
o, Tl e[ S0

'- (3)
The boundary conditions in the linear theory are set at the boundary of the
undisturbed flow, le.e.

at 4, 0 , -0
| (4)
at y =ty , x>0
us Kuf'[x,). ., vk, flz,), peh.fl=,),
ook fle) ) pott . | | (5)
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Here. . _y,:te8, x +f[x,) the equation of the disturbed shock wave,

Kr , Kpy g —nown functions of the Mach number Mo , wedge angle &
and the adiabatic index ¥ 4 which are determined from the linearized system
of the rclatlons in the shock wave,

P

u

For examples

p ZIM: coszﬂ'l sin (6, +06)
PT 2pMZ sin®(6,+6)-(r-1)
We introduce the dimensionless indcpendent variables x, y as followst

m——————
T —————

- U, EXP{EP./PO) _ 4, EXP[E_PO/PQ

Lp,™! T Lpm! : (6) -
Integrating equation (3) taking account of the boundary condition (5), we gets

-.____‘_

3 Aox[1-(m-1)(yet9 8, x)]"" | o

The order m of the reaction determines the different laws of supply of heat to
the gas. In the case of m > 1, the width of the zone of the reaction extends
to infinity and, according to (7), the profile of the concentration 4, is a
continuous functione At m < 1 the reaction ends at a finite distance., The
profile of the concentration as a function of the value of m may have a
rupture in the end of the zons of the heat release. This rupture is either &
discontinuity or the curvature, or of the leading derivatives - (Fige 2).

[T

Mael ] 0 Z]

ST
g

1

A

27§

W

025

1) s (9 ‘5 x

Fige 2

Distribution of the concentration /3, along the line of flow;
m-- order of the reaction.
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For convenienéa, we determine the concentration by the function )30(3(') ‘3)
as follows:

{ —

[l-(m-l)(ycgao-x)] rm at y’:%ea'-""rﬁ%
BaCI'..‘:‘:
i g at 5/6158—13-1- (8)

Q m-1

~

Excluding the density £ and velocity u from the system of equations
(2), we obtain nonhomogeneous wave equations for the determination of the
componcntls p end v :

! 2 'y v - 32‘-’-:— mcto 8 8B 2m-!
‘\ ﬂ’a—;z"';;'i'g,axay 91 ? L
adp 3’8, zm-!
z__f_,__a__P_i: DL -9, B, (9)
dx y .
Solving eq\tations (9) and taking account of (2), the functions will bes:
. g ctg8, B
} v:c-————tgzg P B,(yelg8,-x)+ Flx f;/.y}-G[x -»y ),
J
P‘—'-—z-?:'--—zBafycfgaa-x}-—’[ﬁ{x+;¢y}+6[x-4uy}] '
<l 8- pt gL T (o)

For the determination of the unknown functions F and G, we use the boundary
conditions (4) and (5)e From condition (5) for the shock wave it is possible
to write, in particular, the following equatlons:

p=av , p=8u

Kp 2cos (6, +8) sin 8,
A= — = .
y» cos(6+28, )+cosBIML sin?(, +86)

§ = Kp . 2cos(6,+8)sin 8,

Ky -sinf6426,) +sin 8/MZ; sin(g, +6) (11)
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Conditions (4) and (11) give the following system of functional
C‘) equationss:

| 2585 g (getys,x ). Fix)-Glx)=0

/ clg 6, - ¢
( ) , et e L e e e i e ——1—»; -: S .
S LA Y iR TR (o

g, - g

Excluding function G from this system, we obtain one functional equation for
the determination of Fi

(12)

/ BT RO, —

/ #z)-iflke)g, [y 4

| Sl R
/ ) . w(1-ach 39)1 ]
S (1+ap)(ctg?8,- 4°) (13)
/,)‘ where EV ctg 91- Ao sinfd- g,)
/ A== feap ~ctgt?‘, tp sin(el+8,)

o =a¥iin ’/Mo

The functional equation of the form (12 ) was studied in a most detailed
_ fashion in work %b,]. The parameter A * is called the coefficient of reflection
O of the low disturbances from the shock wave, and it is equal to the ratio of - -
the amplitude of the disturbance of the pressure reflected from the shock wave
(along the characteristic x + « y' = const) to the amplitude of the incident
disturbance of the pressure (along the characteristic = — & Y = const)e The
absolute value of the reflection coefficient A does not exceed the unity.
Its value strongly depends on the adiabatic index and at Mo =09 ,%—>1, A1
‘According to (13), the coefficient K is positive and does not exceed unity. °

By solving (13) we shall have the following series ([4])
. o i(t-actad) gl &5 i
Fi§)= Q’”(Z 9, 9% 5y (x'g).

T eftg'e, - pf) clfgmpt Ty

] (14)
Then from (12) we determine the function G (§)
Rl g e E
) ) * i iyt B8 ¢
%46,
Foen i U (15)

-~
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Substituting the functions F and G in t -
we shall have: he formulae (9) and (10)

v=A_cl?—8;B—n[ycfy Bg-x}+A.;z«f/-.gc.}§7'9°}+
+Ac - + Ac 92#3 Kofx+ -
Acty 8,6, (x-py)+ rctg 6,2 X8, [K(x19)

-6, [k (z-p9)]) ; (16)

p=AB (yctg§ -x)-Af1-actgd ) -
% [A::?SO B x-py)+

+Aetg 90_512‘{8°[K;{':c+‘uy)]+8°[Ki/x'ﬂ5’}]j)

Ae g flely’s, ) . an

It should be noted that formulae (16, 17) are equivalent to the formulae
obtained in - | 6 , 7 1 4in the particular case where m = 1,

1

From equation (2), it follows that

wep=siy)

(18)

“where S (y) — a function proportional to the vortex., The function S (y) is

determined from the boundary condition on the line y ectge,=x and has the
following form: :

TN T

*in Wb fuicty e, r10)+ 8 (5ictg6, - )]}
: | (19)

One may notice that on the surface of the wedge the function of vorticity
becomes zero. Across the shock 1layer this function rapidly increases, so that
in the neighbourhood of the surface of the wedge there is a thin vortical
relaxation layers The existence of such a vortical layer was previously -

pointed out in [1, 2, 6, 7% 'THe form of the shock wave is determined
if the boundary condition (5) is used, for example

ek, /(=)

setting the following equation in the argument of the functions appearing in
the formula for p (17),
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The pressure distribution on the wall of the wedge is of particular interest
as its knowledge enables to calculate the aerodynamic force of the characteristics.
Below we shall be limited only to the analysis of this function. The qualitative
character of the behaviour of the remaining gas —dynamical functions on the
wall of the wedge will be as followss

SO LS

p(xD

Ctgzg -';.',2 .
| B, (::) thgﬂ = : (20)
T S Z A'B, (x* x)] |
where f v

\ — {

! i-(!-m)x]""' at xé —
Bla[x) - [ | | 1,m

‘\ o at X25Tm .

The equilibrium value to which the function p (x,0) tends at x.——>ﬂ°
is equal to:

T Actga -1
,e_p *8. 4 9’1 cfyza - ;4 ) ' (21)

Formula (20) is simplified in the case of a flow with a very high velocity
around a thin wedge, i.e., when the following relations are realizeds

M >>1 . Moo'9 »>f 0<<1
(22)
Using condition (22), it is possible to determine the 1imiting
valuss of the ch “acteristic parameters of flow

1 125 !- S
S= 2 ’ 2 K=-"—— ]
- I+ZS 1¢

¢!
u8 =5  af,=25 '9°+Q:LE—B , 8

r-1
o 2 8 (23)
and formula (20) is reformed as follows:

L oraEtt redr 1
P' (.*C, vre ?“oo\no a ?.—“2‘- * —2__.‘ 71 ‘x/j ? (2[&)
where ' :

Y(x)=1-528,(z)- £ 5 X8, (K'x)
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At the edge of the wedge at x = O, the flow is approximately
frozen and. X (0) = 0 "at x —> o0y K (x) —= 1.

The calculation of the function "~(x) can be approximately performed;
being limited to a finite number of terms in the series. The particular cases,
where the sum of the series is calculated in a finite form are of specific
interest. Obviously, this can be done if the order m of the reaction equalss:

m - _fz_ £=1,2,3,... n.

In this case, the width of the zone of combustion is finite and the
distribution of the concentration in this zone is in the form of a polynomial
of the power 8. The function X (=) in the points x= \i; (Lm 0y 1y 2ye0e)
as a function of £ has a rupture, either a discontinuity of the cervature or of
the leading derivatives.

Performing expansion :Ln thc serieax

(r-—) glxs 22 o-1)(t-2) x>

+

2! ?E - 3! ?_3 ‘e
and performing ths summation at the same powers ofx, we obtain the following
C ' ~ formula for the interval of change 6 & é g L ,
ps 2 ! ! x¥
X(x) Z(’)( Y ’*AK)([-V.).’ el Pt (25)
or taking (23) into account, we get: L _
of 2= 3 (t-1) = "/"’”“) v ]
E=)= (-5 55 "7 (17559 6014959 ©(26)

If the order of the reaction m = O, then ')L(x) is a linear function
increasing from zero to the maximum value at the end of the zone of combustion

. 2[1 sz)
ta)e o x )
(1-s?
xrnux (1'3): 27,252 . (27)
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In the case of m = % the curve X (x) is a quadratic parsbola with a
maximum within the interval 0 < x. 4' which exceeds the unity

X (x) = (1-5°) -7—’°i-] ,

142582 1¢55?

SRLY E 28
. chl_3L2 \/1‘2\)] ( )
The abscissa of |the maximup increases monotonically with the decrease of the
- parameter S, and the value of the maximum changes nonmonotonically with
decreasing S. 5‘

\
In the case of m = 2/3, the curve X (x) is a cubic parabola, the
maximum is attamod a.lso within the interval 0 < x (3

3

‘ 2
Vo x - “ _z
~‘1!x) (1- S)’—*,'S’?",j“z 27 7+9s2]

(29) |

It should be mentioned that in the limiting case S = O, the inclination of the
quadratic parabola at the end of the interval 1s equal to unity, and that of
the cubic one is equal to zero.

On further increase of the order of the reaction, the maximum will be
shifted towards equilibrium and its value will decrease. At the same time,
with increasing the power ¢ of the polynomial , the number of these maxima
and minima increases. The solution in the zone of combustion has an oscillatory
. character with rapidly decreasing amplitude and frequency of the oscillations.
Thus, at m = 1 ‘1e.e¢ in the case of exponential distribution of the concantration,
the first maximum is attained at x == 3.2 and it equals 1,062; the second
minimum at x = 12 and equals 0998y ess.

The existence of weak osclllations for this case was discovered in (3].

In the case of the determination of the function X (x) in the interval
between the discontinuities P/yn & x & F/yn+t it is necessary to
equate the first terms n of the series (24) to zeror :

m=0 T
ml / Kml .
- £ 1- ;( ‘x !— [——— - ]
Yol (! ‘Zn.,” J: -2 1-K2 * (0
o1 2n+2 H
i mr/ ¢ K’ K x
_.. —_— x _— 31
{xnnd A -1 I-KA ' 1-k%0 4 ] (31)

{ ‘2/3 2nt2 Ine3 k]
(2}3) nrry K™ kT2 Y ]

— _—- _ 392
l A [/-1 KA TR kA 7 d (32)
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The values of the functions 2 (x) in the discontinuity points are determined
as follows:

(o)/(hS)] I+ IZJS ({25) N
1+25°0 1425 ’ (33)
(1/2}[ 1+5 ]_ (!23)
(7'252)[“552) 1+25 . (34)
(z:s;[/us)"] . tssif-as)i-onfoh e k7] 4 251"
-5/ 070 usagsireajfenaliekia) 1okl ms/ ©E)

|
It is obvious that the values of the functions X (x) in the discontinuity
points fluctuate about unity and the decay coefficient of these oscillations
is equal to the reflection coefficient of the disturbances from the shock wave;
the frequency of the oscillations is determined by the parameter K= —II-%

The abscissae of the points of the extrema - function are equal tot

xrd: l:i) ’ .
1-s/ . (38)
I,lm hs) _7*551
e MES T (1eS)e2ST) (37)
7 (zls) (1o5) ﬂ[f 25( - AK )1/1] S T
2e2K3L T 1o s e aK)(14 2K3) (38)
and the values of the extrema equal
o () 1-4st 1-25) )7 e e .
Enaer *1* 77 (— 1425 ) (38)
(12) _,’_ s{us)(r-zs)z( 1-25 )" | (40)
anet (1+28%)2 1429 ‘

Therefore, as a function of the order of the reaction, the functions %(x)
in the intervals between the discontinuities are segments of straight lines,
quadratic and cubic parabola, etc. The function 'X.%m) fluctuates around a unit
value with an amplitude and frequency depending on the value of the parameter

S(OI‘ T )o

It is important to notice the different asymptotic character of solution
at m= 0 and m = % and 2/3 when S — 0. In the first case, the amplitude of
the oscillations increases and approaches a finite limit; simultaneously the
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frequency of the oscillations tends to infinity. In the second case, at
sufficient small values of S, the amplitude decreases to zero when S—> 0O
and the frequency of the oscillations, as previously, tends to infinity.

The mechanism of the formation of the oscillations in the two-dimensional
flow behind the shock wave is illustrated in Fige 3. Owing to the state of
nonequilibrium, the disturbances of the pressure come to a point with the
coordinate x along the characteristic » — iy = conste At the same time, the
disturbances formed at the edge of the wedge, propagating along the characteristics
of both families, repeatedly reflect from the surface of the wedge and the shock
wave.

g

.
L

o

Diagramatic sketch of the propagation of the disturbances in the’
region between the shock wave and the surface of the wedge.

As the equilibrium zone has a finite width, these disturbances accumilate,
If the coefficient of reflection from the shock wave is negative, the
compression wave alternates, on reflection, by a rarefaction wave, which leads
to an interchange of the local compression and rarefaction on moving downatream
in the near equilibrium region of the flow.

The behaviour of the function XM (x) is shown in Figs. 4 and 5 for certain
values or the adiabatic index y* o« The curves in Fige 4 for m = 1, 2, 3 are
obtained numericallye. It is obvious that.  m > 2, the pressure along the wall
of the wedge increases monotonically from the frozen to the equilibrium values.
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Pressure distribution along the side of a thin wedge at hypersonic
flow around. The case of smooth solution for m = 1; 2; 3,
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Fig ® E

Pressure distribution along the side of a thin wedge at hypersonic
flow arounde The case of uneven solutions for m = ;}i > &

It is easy to see that in the general case; when the wedge is not thin,
the solution of (20) can have an oscillatory character, and here the reflection
coefficient A eand the paramster X will be the determining parameters. The
dependence of the reflection coefficiz=nt A on . is very stronge For
example, in the case of a sufficlently big Mach number M. , the change of the
reflection coefficient from a positive to nagatlive value occurs on decreasing
the wedge angle © in a very narrow interval of change of 6 . On further
decrease of the wedge angle within a sufficiently blg interval of the change of

@ at a fixed M, , the change of the reflection coefficient is smalle.



- o= 191 -

. | '
In connection with thisy; the formation of oscillations in the flow must be
sensitive for the properties of the fuel mixture ( ¢ , m) and the outer
conditions (Me,, O)e The latter conclusion is confirmed in the experiments
on ballistic installations [5].
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