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AN ADAPTIVE TRACKING OBSERVER FOR FAILURE-DETECTION SYSTEMS®
M. Sidar®

NASA Ames Research Center
SUMMARY

The design problem of adaptive observers for failure-detection purposes, applied
to linear, constant and variable parameters, multi-input, multi-output systems is
considered here. It is shown that, in order to keep the observer's (or Kalman filter)
false-alarm rate (FAR) under a certain specified value, it is necessary to have an
acceptable proper matching between the observer (or KF) model and the system param-
eters. An adaptive observer algorithm is introduced here in order to maintain the
desired system-observer model matching, despite initial mismatching and/or system
parameter variations. Only a properly designed adaptive observer is able to detect
abrupt changes in the system (actuator, sensor failures, etc.) with adequate reli~
ability and FAR. Conditions for convergence for the adaptive process are obtained,
leading to a simple adaptive law (algorithm) with the possibility of an a priori
choice of fixed adaptive gains. Simulation results show good tracking performance
with small observer output errors and accurate and fast parameter identification,
in both deterministic and stochastic cases.

I. INTRODUCTION

The use of the analytical redundancy approach for failure detection in complex,
dynamic control systems is by now widely accepted as a viable concept for redundancy
management (refs. 1-5). Besides an appreciable saving in cost, volume, and weight,
the analytical failure-detection systems have to provide at least the same high per-
formances as the classical voting systems based on simple threshold examinations and
some crude decision logic. In aeronautical designs, in particular for flight-control
purposes, figures such as 10-%4 to 10-5 for MAP (mission abort probability) per flight
hour, associated with false-alarm rates such as 10~3 to 10'4, are rather common re-
quirements (ref. 1) imposed by the necessity of operational needs. -

In order to compete successfully with the triple and quadruple redundant systems
based exclusively on voting schemes, the analytical-redundant failure-detection sys-
tems have to exhibit some basic features such as:

a. simplicity and fault-tolerant properties in both the software conception
and the hardware implementation; :
b. high reliability and high probability of failure detection;

c. 1low false-alarm rates, despite external disturbances such as wind gusts,
abrupt maneuvering (in flight-control systems), instrumentation noise,
and, in some cases, process noisej;

d. ability to determine, as precise and rapidly as possible, the failure source,
the extent of the failure, and in some cases, the time of occurrence;
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e. ability to reorganize and readjust itself after a major failure occurred;

f. 1in addition to abrupt failures detection (mainly for sensor and actuator
failures), the analytical-redundancy schemes have to handle the problem
of soft-failures detection, such as the detection of biases and/or scale
factor changes in the instrumentation, some degradations in actuator per-
formances, etc. :

Two analytical concepts are mainly used, in particular, in guidance and flight
control, for analytical failure-detection purposes:

a. Linear observers (refs. 1-3)(full- and reduced-order) in which the error
between the measured output and the reconstructed one, e.g., the so-called
residual errors Eft)’ are tested for failure assessment. The gains of
those observers are determined such that €(t) will reveal the occurrence
of a specific failure.

b. Kalman filters (ref. 3-8) where the innovation sequence Vv(t) is tested
for (1) unbiasedness and (2) whiteness (orthogonality condition test).

In both cases, research results published in technical papers are based on the
assumption that the dynamic system has fixed and known parameters (refs. 1, 2, 3,
9, 10). .

Associated with the failure-detection function provided by the observers (or by
Kalman filters), are the decision algorithms which are used, in particular for soft-
failures detection and failures-extent assessment. Most of the decision algorithms,
such as:

a. SLRT (Sequential likelihood ratio test) for mean values and functional
compatibility (refs. 8, 11, 12, and 13). -

b. GLR (generalized likelihood ratio) approach (refs. 4 to 7).
c. Recursive GLR (refs. 7, 8, 12), etc,

assume (with the exception of ref. 7) that the dynamic system is known and constant.

In order to be of practical value in applications and to provide reliable sys-
tems, the major concern of failure detection and analytical redundancy theory is to
combine in a judicious manner, the state estimation capability considering noise,
with an adequately high failure-detection capability.

As will be shown later in this report, it is absolutely necessary that, when
using either observers or Kalman filters, those devices be "matched" to the dynamic
system in order to obtain low observer output errors and, therefore, low false-alarm
rates. A good matching will also provide adequate properties to the decision algo-
rithms in order to assess the time, the place, and the extent of the failure without
errors.

At this point it is worth remarking that when the plant parameter variations
are themselves due to some kind of failures, the matching of the observer to the
plant may unintentionally "cover up" these failures. For this reason, it is ex-
pected that a complete failure-detection system would include also some on-line
parameter identification procedure in order to support the failure-detection algo-
rithm. We will not elaborate more on this topic here, since it is beyond the purpose
of this paper.
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A short overview of observers and/or Kalman filters for failure-detection pur-
poses and the effect of "mismatching" conditions is presented in sections II and ITI
of this paper as an introductory motivation for the adaptive observer design.

In sections IV and V, an algorithm for adaptive and tracking observer design is
presented, together with the appropriate conditions for convergence and stability.
The proof for the necessary conditions for convergence and stability is given in the
Appendix. : : ‘

Simulation results for deterministic and stochastic multi-input, multi-output,
linear, constant and time-varying systems, are presented and discussed.

The last section of this report contains concluding remarks and offers some
suggestions for further study and research.

II. FAILURE-DETECTION SYSTEMS (FDS) BASED ON OBSERVERS

As pointed out in the introduction, various analytical redundant schemes for
FDS are based on the utilization of observers of full or reduced order (refs. 1-5,
10, 13). The present section gives a short presentation of some basic netions re-
lated to the observer theory for the sake of completeness. We shall assume first
the following mathematical model for the linear dynamic system under consideration:

x(t) = A x(t) + B u(t)

(1)

y(t) = C x(t)

where x(t) is the (n x 1) state vector and y(t) is the (m x 1) measurement vector,
with m < n. The system is assumed both completely controllable and observable.
The well-known observer model ("matched" case) (ref. 9) is described by equation (2):

R(t) = A %(t) + K[y(t) - C £(£)] + B.u(t) (2)

where gﬁt) is the (n x 1) estimated (or reconstructed) state vector, and K 1is a
fixed-gain matrix, (n x m), with constant entries. This model does not take into
consideration various external perturbations and noises that affect the observer
output and can cause high false-alarm rates. The observer error, e(t) (residual),
is defined by equation (3):

e(t) & x() - x(t) (3)
and the observer output error (output residual) is defined as:
() & y(e) - 3(0) (4)

The output residual vector e(t) is the quantity used for failure detection (FD)
and assessment. A block-diagram of a FD scheme with an observer is presented in
figure 1.



From equations (1) to (3), the following differential equation is obtained:
e(t) = (A - KC) e(t) | (5)

One method of choosing the gain matrix K 1s to place the eigenvalues of the
matrix (A-KC) so that all of them have negative real parts (refs. 9,10). Under these
conditions, the observer will be stable and, as t -+ o, e(t) and e(t) will go to
zero. Therefore, after a short initial transient, the estimated state gﬁt) will
follow x(t) such that x(t) = x(t), »t elty»~], although the only measurable vector
is y(t). A second method of choosing K 1is to enhance the observer's probability
of failure detection. After the transient has died out, and if a hard failure of
one of the actuators or sensors occurs at t = T,, then a jump in e(t) will be
observed at T,;, and the vector e(t) # 0, for all ¢t > T, (see fig. 2).-

In order to better illustrate the second method, let us examine the case of an.
actuator failure (i-th actuator), and the possibility to enhance the detection of
this event. From equations (1 to 3), one obtains the following result:

e(t) = (A-KC) e+ by + uy (6)

where by 1s the i-th column of the time-invariant matrix B, and ujy 1is the i-th
control of the system. The solution of equation (6) is given by:

e(t) = exp [(A-KC)(£-Tp)] - e(Ty)

t (7)
+ {fexp[(A—KC) (T—TO)]ui(T) d'r}gi .
Ty

The first term is negligible in both the deterministic and the stochastic cases,
since we assume that the failure occurs at some time Tp during the system's operation,
‘after the initial transient has died-out. Let us assume that the effects of measure-
ment noise and other perturbations on e(t) are small. Therefore, the term
containing the abrupt failure information is the second one. Choosing (for C = I):

A 1 .
(A-KC) = -1 - T (8)

where I 1is the (n x n) identity matrix and T is a convenient, arbitrarily chosen
time constant (ref. 10), one gets:

¢ :
(1 -Tp)
ET(t) = h’jl: [ exp -[—TO—]‘ u; (t) de (9)
To

n Therefore, the error vector e(t) will point in a specific direction in the
E space, e.g., the direction defined by gi, associated with the failure of the



i-th actuator. Since the only access one has to the system is by measuring the vector
£(t), the measured residual will point in the direction of Cby. Since the matrix C
is known a priori, and, by assuming no-failures in the measurement set-up, one is

thus able to infer from ¢(t), when rank C = n, what actuator failed.

By a similar treatment one is able to show how sensor failures can be detected,
but, in this case, e(t) lies in a two-dimensional plane. In such a case, it is pro-
posed to use two (or more) observers, so that the detection of the failed sensor
will be feasible, simple, and unique. By processing the information of (at least)
two observers in an optimal way, a failure direction will be determined, even in the
presence of measurement noise. Besides the possibility of enhancing the detectabil-
ity of certain specific failures in a unique way, the analytical redundancy FDS based
on the use of observers leads also to important hardware savings.

As shown schematically in figure 3, a substantial saving in measurement instru-
mentation (a saving of from three up to six sensors in this case) can be obtained by
the use of three simple comparators and only two observers (in software) in this
particular failure-detection system. The logic table from figure 3 shows that there
is a unique condition for every sensor fallure that may occur, and therefore every
failure source is uniquely determined.

When the measurement noise cannot be neglected, it is possible to take for K,
instead of the values obtained from equation (8), the steady-state value of the
Kalman filter optimal gain matrix K*¥. 1In this case, given an i-th actuator failure,
for instance, the vector e(t) will not point in the b direction, but rather will be
contained in a particular subspace defined a priori, 51nce the matrix (A - K*C) is
given. By measuring the observer's output residual, together with the utilization
of an appropriate decision algorithm, we can also determine the nature of the failure
and the time of occurrence in this case.

If the Kalman optimal gain is used in the Analytical Redundant and Failure-
Detection System and the filter is matched exactly to the dynamic system parameters,
the innovation vector sequence YV, 1is tested for detection of abrupt failures. For
no-failure condition, the following condtions must exist:

Ely ] =0 ok =1,2,. .. (10a)

E[Ele] =0 i §=1,2, ... (10b)

An additional test to perform is the test for the "orthogonality'" between the
innovation vector and the (optimal) filter estimates. For detection probability en-
hancement, it may be wiser to use another gain matrix instead of K*, but in this
case one cannot use the innovations sequence test in a simple way. Finally, it is
worthwhile to point out again that in principle any matched observer or Kalman filter,
in association with an appropriate decision algorithm, carries the necessary informa-
tion that enables one to detect and infer sensors, actuators, and other system
failures.

In the next paragraph, an analysis is carried out to show the influence of non-
matching conditions on the false-alarm rate of failure-detection systems. This con-
dition occurs when the observer, or KF parameters, do not match or track the dynamic
system parameters but are time varying, as in navigation and flight-control systems.



III. THE "MISMATCHING" EFFECTS OF ANALYTICAL-REDUNDANT FDS
ON THE OBSERVER FALSE-ALARM RATE (FAR)

Various methods presented in many references dealing with analytical redundancy
system (refs. 1-13) are based on the assumption that the observers (or KF) used in
connection with the FD systems are matched to the parameters of the dynamic system.
A notable exception is Willsky's method (ref. 7), wherein an attempt is made to pro-
vide for some adaptive features together with the solution of the failure-detection
problem. In aeronautical engineering applications of FDS and analytical -redundancy
concepts there is a particular interest taking into consideration the unavoidable
plant parameter variation caused by large dynamic pressure variations encountered by
flying in different flight conditions. In references 4, 5, and 6, such changes are
indeed taken into account, but the solutions proposed are complex. It will be shown
in the sequel what the effects are on the FAR caused by mismatching between the ac-
tual plant and the analytic observer (or FK). '

First, the mismatched observer case will be treated, and we shall assume that
the analytical implementation of the observer is according to the following observer
model: :

X(t) = (A+ 88) 2(t) + K[y(t) - C &(6)] -

(11)
+ (B + AB) u(t)

Accordingly, the observer residual error will be the solution of the following lin-
ear differential equation:

&(t) = (A - KC) e(t) - MAL.X(E) - AB.u(t) (12)

where AA and AB represent the difference between the parameters of the real plant
and those of the observer. It is easy to see that the last two terms in equation (12)
will cause a high residual e(t), even after the initial transient died out. The
large value of e(t) is directly responsible for an unacceptable high FAR. Accept-
able values of FAR will be obtained only for observers that are matched to the plant
dynamics. Using design methods based on the "robust observer" approach will not be
of much use, because this approach will lead to insensitive observers with respect to
failure detection. Therefore, it is easy to see the need for adaptive observers that
can track the plant parameter variations in FDS applications. Also, in the Kalman
filter case, a notable change in the basic characteristics of the innovation se-
quence will be caused by mismatching conditions. Let us define the dynamic system
(plant) equation by:

x(t) = Ax(t) + Bu(t) + Tw(t) (13)
where w(t) is the (q x 1) noise input vector assumed white and Gaussian. The mea-
surement vector y(t), (n x 1), is contaminated by white noise n(t), with E[n] =0
and E[E(t)g?(s)] = Q,8(t - s)

y(t) = C.x(t) + n(t) - (14)

Assume, for simplification, only plant-parameter variations causing the following
mismatching conditions: '



>

A2 A+ 0A

(15)

ne>

KA4K + AK
where K;‘ﬁ are the matrices used in the Kalman filter implementation. The equation
of the Kalman filter is given by:

#(t) = K.&(0) + K[y(t) - € (D)) (16)

Define gﬂt) as the best estimate for the ideal matching condition and Ax(t) the
change in the estimate due to mismatching:

F(t) & 2(t) + Ax(t) : (17)

Denote also V(t) as the innovation vector for the mismatched system and v(t) as the
innovation of the ideal-matched KF-system. Based on linearity property, one can
write: '

J(t) & v(t) + av(b) (18)
From equations (14), (17), and (18) one obtains:
V(t) = v(t) - C.ox(¢t) (19

where Ax(t) is the solution of the following differential equation:

Ax(t) = (A - KC) Ax(t) + AK + V(t) + 8A + F(t) (20)

It is clear from equations (19) and (20), and also shown explicitly in figure 4, that
the stochastic process E(t), which is the actual innovation vector, will be a
colored noise process with E[V(t)] # 0. Therefore, no adequate test can be made on
Vv(t) in order to detect a failure in a reliable way, e.g., with very low, admissible
FAR.

In conclusion, in order to obtain adequate FAR in a FD system, it is absolutely
mandatory to have a good matching between the observer's (or KF) model parameters and
the parameters of the dynamic, real plant.

IV. AN ADAPTIVE, PARAMETER-TRACKING OBSERVER ALGORITHM

'This section develops an algorithm for an adaptive observer design. The adapta-
tion law provides also for parameter identification and tracking. The adaptive ob-
server design problem was treated previously in the technical literature, and a number
of algorithms were proposed. In reference 14, a scheme for simultaneous estimation
of states and parameters for single-input, single-output linear, constant-parameter
systems is presented. The proposed algorithm is based on a particular canonical form
and makes use of Kalman filter equations. But, it can be shown that such canonical
forms cannot be obtained in the general case. In reference 15, an adaptive observer
for single-input, single-output linear systems was discussed. The algorithm intro-
duced in reference 15 makes use of some additional filters and is intended for the



_ constant parameter case. In references 16 to 22, various schemes and algorithms of
adaptive observers were presented. Those algorithms are mainly variations of a cer-.
tain integral adaptation law, making use of the solution of sensitivity functions
differential equations and/or the so-called state-variable filters. In addition, a
common feature of those algorithms is the time-varying adaptive gain used in the
adaptive law. Those features lead, necessarily, to a quite complex algorithm and

a large computational effort. In reference 23 an algorithm for parameter identifica-
tion was introduced and in principle, offers also the possibility for the implementa-
tion of an adaptive observer.

The approach presented in this paper is based on a simple, yet effective,
adaptive law (algorithm) for linear, possibly time-varying multi-input, multi-output
systems, which makes use of a priori determined adaptive gains and does not require
solution of additional differential equations. Therefore, the computational effort
fits the practical needs and objectives for real-time, on-line simple adaptive ob-
servers for failure-detection systems.

As shown previously in equations (11) and (12), the model of mismatched‘observer
leads to an augmented observer output residual e(t), which is given by = C e(t),
where e(t) will be the solution of the differential equation:

&(t) = (A - KC) e(t) - AA.x(t) - AB.u(t) (21)

In order to compensate for AA and AB, it is proposed here to change the entries
of the observer matrices Ay and By according to the following adaptation laws
(algorithm):

AAg = M e(t) x (t) (22a)
By = N e(t) u(t) (22b)
or, in the discrete case:
pg(k) = M e(k) XI(K) | (23a)
BB (k) = N e(k) u (k) © (23b)
with:
k=1,2,...n

The algorithm (22) is based on measurable values, such as the observer output
(the estimated state) —-x(t), the plant (and the observer) input wu(t), and e(t)
the observer output residual vector. The matrices M(n x m) and N(n x m) are to be
chosen in such a way, that convergence and good tracking are provided. As shown in
the next two paragraphs, the adaptive algorithm introduced here makes possible:

- maintaining a low value of the observer output residual error, in spite of
plant parameter variations
- fast adaptation of the observer parameters to those of the dynamic plant

- tracking of the varying dynamic plant parameters by the adaptive observer
parameters.



Subsfituting equation (22) into equation (21), one gets:

&(t) = (A - KC) e(t) - 118G e()

2 (24)
. - llull NC e(t)
Equation (24) can be put in the more compact form: -
. A 2 2
e(t) = [(A - KC) - lixll-MC - lull NC]e(t) (25)

In order to obtain for the time-varying, nonlinear differential equation an
asymptotically stable in the large (ASIL) solution, several approaches can be taken.
The first approach is a heuristic one; although the matrix included in the square
bracket is time-varying because of the time-dependent positive scalars llgll2 and
'ﬂg"z, it is conjectured here, that by an appropriate choice of M and N, based on a
priori knowledge of x(t) and u(t), the adaptive algorithm (22) can be made asympto-
tically convergent. Loosely speaking, the M and N matrices allow us to locate the
eigenvalues of this square matrix so that all of them will have negative real values,
providing us with the result: e(t) >0 as t-~>® A second way to obtain an ASIL
solution for equation (25) is to make use of a version of Perron's Theorem (refs. 24
and 25) and to determine, accordingly, the entries of the gain matrices M and N. A
more appropriate way to obtain a convergent adaptive law is to determine the gain
matrices M and N by making use of Lyapunov's second method (ref. 26) and this
approach will be presented in the next paragraph.

In figure 5, a schematic block diagram of the adaptive observer is presented,
pointing out the simplicity of the adaptive law and the fact that this algorithm
makes use of only accessible measurable functions. a

1f measurement noise is to be taken into account, the filter gain matrix K and
the adaptive gain matrices M and N will have to meet requirements in addition to
those imposed by the appropriate convergency conditions. In this case, a trade-off
is to be made in the choice of M and N, between fast parameter-tracking requirements
and minimal noise susceptibility. Finally, the gain matrices M and N, particularly
the gain matrix K, have to be chosen such that the observer sensitivity for failure
detection will be maximal. This topic which is of considerable importance, is the
subject of further research and is not discussed herein.

To summarize, besides the necessary convergency conditions, the triplet {K,M,N}
is to be judiciously determined by taking into account such considerations as:

(1) minimum parameter alignment time (rate of convergence), (2) fast tracking
capabilities, (3) minimum noise susceptibility for minimal FAR, and (4) maximum
sensitivity for high-probability failures detections.

V. CONDITIONS FOR CONVERGENCE AND STABILITY

In the previous section, a procedure for the choice of M and N matrices based
on a heuristical approach was discussed briefly. Here, a procedure to determine the
matrices M and N, based on Lyapunov's theorem for asymptotic stability, will be
developed. It will be shown that for a system described by a differential equation
such as (25), and having a general form such as equation (26):

9



&(t) = W(e,t) e(t) (26)

where:

~ 2 2
W(e,t) 4 [(A - KC) - lixll MC - llull NC] (27)

the solution is uniformly asymptotically stable in the large, about the zero solution
e(t) = 0, which is the equilibrium point, if the entries of the matrix W(e,t) satis-
fy certain requirements, provided by some inequality conditions. Let's consider the
following positive definite scalar quadratic function V(e) as a candidate for a
Lyapunov function:

V(e) = e'Qe (28)

with Q an arbitrary, constant, diagonal, positive definite matrix, such that:

=0 ife=0 )
V(e) (29)
>0 ~e# 0, %t

In addition, equation (28) provides us with:

lim V(e) = =
fell»ew (30)

In order to obtain ASIL conditions for the system in equatlon (26),_ in addition
to conditions in equations (29) and (30), it is necessary that V 2 dV/dt meet the
following condition

V(e) <0 , xwe#0 , wt (31)

We will now proceed to obtain the necessary conditions to be fulfilled by
W(e,t) in order to satisfy conditions in equations (29) to (31). If those conditions
are satisfied, than V(e) from equation (28) will be an adequate Lyapunov function
for the system in equation (26), and the ASIL property will be obtained.

From equations (26) and (28), we get the following expression for V:

V= el [Qule,t) + W (e,t)Qle | (32)

In order to satisfy the condition in equation (31), the matrix P & [QW + WTQ]
has to be negative-definite (ref. 26). The symmetric matrix P 1is a function of
the triplet {K,M,N} and depends also on Q,u(t) and e(t) We shall proceed further
to seek the necessary conditions for the elements of P such that V < 0. By
expanding the quadratic form given in equation (32) t%e following expression for
V is found:

n

[qiiw 14 + (qii 13 + quwji)e e,

j=1

,4

(i , (33)
*ayy9y505°]
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where qjj and wi; are the elements of the matrix Q and W, reépectively, and we
take 1 # j 1in tﬂe crossterms of equation (33).

_ In order to obtain appropriate conditions for convergence and ASIL stability of
the adaptation algorithm from equation (22), it is necessary that the conditions
established in the following theorem hold.

Theorem
For the time-varying system in equation (27):
y ~ 2 2
W(e,t) = [A - KC = Ixl” MC - llul” NC]

to be asymptotically stable in the large, about the singular stable point e = 0, the
following conditions are to be satisfied:

V>0 , =e#0 , »t (34a)
95i%i4 £-C<0 i=1,2,...n (34b)
,.W,.<-C<0 i =1,2,...n 34e
944Y5 5 h , (34c)
(q,.,w,. + q..w,.)
ii i jj ji
Vayi¥s954%55 2 3 (34d)
i=1,2,...n

j=1,2,...n (i # j in the crossterms)

If the conditions of the theorem are satisfied, it is guaranteed that the time
derivative of the Lyapunov function will be negative definite everywhere in the
n-dimensional vector space EI' spanned by e, i.e.,

V<0 , we#0 , *t (35)

the function V(e) being, therefore, an admissible Lyapunov function for the system
in equation (27).

The conditions established in (34) are not difficult to meet, since the values
of C, SERE and those of the gains mjj and nys; (contained in wjj) can be arbitrarily
chosen. ~The proof of the theorem is given in the Appendix; it is also shown that
if the conditions given in (34b), (34c), and (34d) are satisfied, the value of the
function V will be:

n
05—sz[e§+e§']<0 (36)

n
i=1 j=1

From equation (36), it is easy to see that, by an appropriate choice of the matrix

Q and of the constant C, it is possible to accelerate the convergence rate of the
adaptation process. But as pointed out before, a trade is to be made between high

convergence rate and susceptibility toward possible existing measurement noise.

11



It is worthwhile to remark here that similar conditions to those in equa-
tion (34) can be obtained by applying Sylvester's theorem for negative definiteness
directly to the system matrix P, This alternative approach is not explicitly shown
in this paper, since the establishment of the ASIL conditions following this approach
is associated with a lengthy and tedious algebraic manipulation.

VI. DISCUSSION OF SIMULATION RESULTS
In order to illustrate the utilization of the adaptive observer algorithm intro-
duced in this paper, the results of two examples are shown in the sequel.
(a) First Example: The adaptation process of two observer parameters ag and b, is

shown in figure 6. The observer parameters are converging, respectively, toward the
two system parameters ap = 1.0 and b, = 2.0, of the following second- order system:

X, = —an x, + X,

1

with one output measurement:

The initial values of the observer parameters were ag(o) = 1.5 and by = 1.5.
The observer poles were placed at: S1,2 = -5 % j5. The input was of a persistently
exciting type:

u(t) = sin nt +-% cos t
One can see in figure 6 the simultaneous transients, due to mismatching in the ob-
server initial conditions [xl(o) = 1.0; %1(0) = 0.8; x2(0) = 0; x2(0) = 1,0] and to
parameter mismatching. The absolute value of the observer output error becomes less
than 4 x 103 after 3.5 sec. The two observer parameters agy and by converged to the
true parameter values ap and b, within 957 accuracy, after 8 sec. (160 steps). The
values of m and n, according to conditions in equation (34), were chosen 10 and 5,
respectively.

In figure 7, for the same system as above, the system parameters were varied
deliberately as follows:

1.0 for 02t 21 sec
a = 1.0+ 0.2(t - 1) for 1< t £ 12 sec

3.2 for t > 12 sec

2.0 for 0 2 t £ 4 sec
bn =<¢2.0+4+ 0.2(t - 4) for 4 < t g 12 sec

3.6 for t > 12 sec

12



In the tracking of a, and b,, following a,(t) and b,(t), as shown in figure 7,
we can observe some time lag and a characteristic frequency of the adaptive loop of
about 0.5 Hz. During the tracking phase, the observer output error was less than
2.5 x 1072, One second after the end of the parameter variations, the observer output
error was less than 4 x 1073, and the accuracy of the parameter identification was
better than 90%. The accuracy in parameter identification while in steady state was
of the order of 98-99%. -

(b) Second Example: In figure 8 the simultaneous adaptation process of three
observer parameters a,, b, and ¢, is shown. Those three parameters converge,
respectively, toward the nominal system parameters values: ajp = 1.0, b, = 1.0, and
cnp = 3.0, of the third-order system:

X

-a x, +x
n

1 1 2

x2=x3—cnx1

X, = bn u
with two output measurements:
= X
y1 1
Yo = %

The starting values of the observer ‘parameters were: ag(o) = 0.5, by(o) = 0.5,
co(0) = 2.0. The observer poles were placed at s; = -10 and sp,3 = -8 * j8. The
following mismatching conditions in the initial values were used:

x,(0) = 1.0 §1(o) = 0.5
x,(0) = 0 x,(0) = 1.0
xa(o) =0 ﬁg(o) = 1.0

The norm of the observer output error vector dropped to less than 5 X 1072,
after 2.75 sec. The norm of the error vector in the parameter identification was
less than 10%, after 10 sec. The values of the adaptation gains were all chosen as
unity. Observe in figure 8 that after a very short observer transient, one can see
a smooth and uniform convergence of the triplet (a,, by, co) to the (aps bps cpn)
values. In figure 9 the adaptive tracking of parameters ag, and by, following rapid
variations in a, and b,, as in the first example, is shown. After t = 12 sec, when
the variations of ap, and b, stopped, the norm of the error vector in the observer
parameter identification (with respect to the corresponding system parameters)
dropped to less than 10%, within 2.5 sec. The observer output error norm was less
than 1072 within 1.4 sec, and during the tracking period the error norm was less than
2 x 102, this fact being the dominant property that one asks for in the application
of observers in failure-detection systems.

The same adaptive observer was simulated under various output measurement noises.
In figure 10, the effect of 10%, white, output measurement noise in y; is
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represented. Although the noise value was chosen deliberately (unpractically) high,
the effect on the adaptation process was rather minor. It is clear from figure 10
that the same adaptive algorithm could be used in adaptive Kalman filters in a more
efficient and simple way than other proposed methods.

CONCLUSIONS

It is shown in this paper that for a useful and proper utilization of observers
and/or Kalman filters for the purpose of the failure detections in linear systems, it
is necessary to adapt the observer (or the Kalman filter) to the parameters of the
dynamic system. If this is not done, it is shown that the mismatching conditions may
cause prohibitive false-alarm rates.

An algorithm for a tracking-adaptive observer for multi-input, multi-output
linear systems is introduced, and conditions for convergence and asymptotic stability
were developed. Those conditions are established on an a priori base, such that the
use of the algorithm is simple and effective. In the examples shown, in both deter-
ministic and stochastic cases, the adaptive law exhibited satisfactory accuracy and
tracking capabilities by maintaining a very low observer output error and, simultane-
ously, identifying the system paramters in an accurate manner.

An important topic for additional research is the development of an adequate
synthesis technique for the optimal choice of the matrices K, M, and N in order to
maintain low false-alarm rates associated with high sensitivity of failure detection
in a stochastic environment.

. Another topic for further research is the possible reorganization of the adaptive
observer (or KF) after a major failure has occurred. An alternate way is to design
robust adaptive observers for failure-detection systems which are able, without
structural change, to survive an abrupt and major failure in the system, but still
exhibit high sensitviity and sufficiently low false-alarm rate. -
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APPENDIX

Proof of Stability Theorem

In this appendix, a proof of the theorem stated in paragraph V, where the con-
ditions in equation (34) for ASIL are established, is given.

From equation (33), the following expression for V 1is obtained:

n n
2
jz% ;g; [Siiwiiei +olaggviy t9y4vy10%58
(1#3)

2
+ ,.w
q 33 J]

where qij and wij are the elements of the matrices Q and W, respectively, and
i # j is to be taken in the crossterms of (Al).

(Al)

For V to be negative definite, at a first glance it seems that a good choice
will be to take:

434943 S C <0
(A2)
< =-0$<0

caWo . S
9353733
and try to get the rest of the right part of equation (Al) to form a square. The
constant C in equation (A2) is an arbitrary, positive constant. We shall examine,

in the sequel, three different cases (I - III).

Case I: We can choose to satisfy the following conditions:

. A
Va33953¥i4Y55 = 2000%e5 9559540 (A32)
together with: -
944933 =~ C <0
(A3b)
q.,.w,. =-C<0
3333

for:

i=1,2,...n

j=1,2,...n (i # j in the crossterms)
~e(t) and *t .

In this case, equation (Al) becomes:
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n

n
{7=ZZ(—Ce%+2Cee—Ce2.)
I =1 5= i ij j

1
(1#3)

—
.

(A4)

M-

=-C

A
(@]

n
2

(e, - e,
sraE 3

s
It

1]
Since VI 1is, in this case, a negative, semi-definite function (61 < 0), the Lyapunov
stability conditions for ASIL are not met and, therefore, conditions in equation (A3)
are not satisfactory. Despite this fact, it is indicated to use conditions in equa-
tion (A3) as an initial, starting condition, in order to obtain a better feeling for
the choice of the gains mij and njj.

Case I1: Here, one may choose the conditions

1
v931955%11%45 7 2(qiiqij + qjjwji) (ASa)

or:

=1 2
Vai1%33¥14%55 T 20035%s5 T 95550 Y (A5b)
for:

i=1,2,...n

j=12,...n (1 # j in the crossterms)
~»e(t) and ~t

together with conditions in equation (A3b), whereas y 1is an arbitrary constant.
Substituting, in equation (Al), one gets:

n n
. _ 2 _ 2 _ _ 2]
VII = :E: :E:[ C e; 2(y C)eiej C ej (A6)
i=1 j=1
(i#3)
If the following choice is made:
vi=c (A7)

so that the following equality holds:

qiiwij + qjjwji =0 (A8)

one obtains for VII the following expression:
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n n
CEZ +e)<0 » (A9)

i=1 j=1

This time, VII is an absolute negative definite function and, therefore, conditions
in equations (A3b) and (A8) will ensure asymptotic stability in the large

Case III: In this case, we obtain a set of conditions for ASIL that are easier
to fulfill, and, in the same time, we can fix an a priori, upper bound for V, in-
creasing thn convergence rate of the adaptive algorithm (up to a certain limit,
because of the stochastic measurement noise susceptibility problem). Let us choose:

q44¥33 £-C <0
(A10)
L W,, <=-C< 0
133"13
Instead of equation (AlQ), one writes:
4% =~ ¢~ G
LLW,, ==-C-=-2C (Al11)
133"33 2
i=1,2,...n 3 j=1,2,...n
where: C > 0, C; > 0, C» > 0, are arbitrarily chosen constants. Making use of
equation (All), one obtains:
n n
. = _ 2
VIII' 1Z=:1 ; [ (C + Cl)ei + (qiiwij + qjjwji)eiej
(i#3) (A12)
2
- (C + C2)ej]
or:
n n
. - 2 2
Vi CZ Z (e + ej)
i=1 j=1
n n _ _
-:E: :E: [c e - (q . w,, +q,w Jee, +Ce] (A13)
el SRt 11743 © 3373475455 7 255
(i#3)

Choosing the following condition:

(qiiwij 953 31) G, (A1)

2

one obtains for VIII’ the following value:
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n
——CZZ(ei+e§)

i=1 3=1

. .n (A15)
Z;,/Ce /Ce]
(i#3)

By comparing equation (Al5) with equation (A9), we can easily see that:

n n i
I < - C; Z[ei + e?] (Al6a)

j=1

and, therefore:

<o

<o

1z $ Yz <0 - (A16b)

for «xe(t) and »t.

"From equation (All) one has:

Vag ¥ a 4755 =V + CD(C +Cp) >VEG, (A17)

and, therefore, from equation (Al4):

(q w.. + q..W.,
i1 1j i3 31)
‘/qiiwiiqjjwjj > 2 (A18)

for: i =1,2,...n; 3 =1,2,...n (i # j). Summing up, the conditions for ASIL,
formerly established, can be enunciated by the following:

Theorem

For the time-varying system in equation (27):

a2
W(e,t) = [A - KC - %17 MC - llul?® NC]

to be asymptotically stable in the large, about the singular stable point e = 0,
the following conditions are to be satisfied:

v>0 , ve #0 , ¥t (A19a)
AyqWig S - C<O0 i=1,2,...n (A19b)
W, £-C<0 j = 1,2,...n - (A19c
qJJ Jj J 14y ( )
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(q w,. +q,.w ) ‘
ii 4 i3 i1
V311¥11953%33 2 2 (4194)

i=1,2,...n
j=1,2,...n (i # j in the crossterms)

If the conditions of the theorem are satisfied, it is guaranteed that the time deriv-
ative of the Lyapunov function will be negative definite everywhere in the n-
dimensional vector space Em spanned by e, i.e.,

VIII <0 (A20)

for: «~e(t) and »t, the function V(e) being therefore an admissible Lyapunov func-
tion for the system in equation (27).
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Figure 1.- Schematic block diagram of failure detection system, including an observer.
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Figure 2. - Observer errors (residuals) for a third-order system (ex. 2) with actuator
failure at t = 5 sec.
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Figure 3.- Hybrid, voting system with observers for analytic redundancy management.
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Figure 6.- First example: observer output error and parameter adaptatioﬁ process.
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Figure 7.- First example: parameter-tracking adaptation.
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Figure 9.- Second example: adaptive parameter tracking.
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Figure 10.- Second example: adaptive parameter tracking in stochastic environment.
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