


TECH LIBRARY KAFB, NM 

NASA 
Technical 
Paper 
1983 

1982 

National  Aeronautics 
and  Space  Administration 

Scientitic  and  Technical 
Information  Branch 

Application of 
Modal Control 
to Wing-Flutter 
Suppresslon 

Aaron J. Ostroff 
Langley  Research  Center 
Hampton,  Virginia 

Samuel  Pines 
Analytical  Mechanics  Associates,  Inc. 
Jericho,  New York 



SUMMARY 

This  paper  describes  a  discrete  modal-control  design  approach  that  is  applied to 
a  single-control-surface,  unswept  aircraft  wing  subject  to  bending-torsion  flutter. 
The  modal  approach  is  a  mathematical  method  to  decouple  the  equations  of  motion  into 
isolated  differential  equations.  In  this  paper,  a  pole-placement  approach  is  then 
applied  to  determine  stability  gains  in  the  discrete  plane  using  only  the  two 
complex-conjugate  flutter-mode  equations.  A  fixed-gain  Kalman  filter  is  used  to 
estimate  the  modal  amplitudes  using  three  measurements.  Results  are  presented  for  a 
full-state  estimator ( 3 6  states)  and  two  reduced-state  estimators  using  two  different 
closed-loop  pole  locations.  The  control  law  is  designed  for  a  dynamic  pressure  that 
is 50 percent  greater  than  the  uncontrolled-flutter  dynamic  pressure.  With  constant 
control-law  gains,  the  closed-loop  system  remains  stable  over  the  dynamic-pressure 
range  from  flutter  onset  to  approximately  an  80-percent  increase  in  pressure. 

INTRODUCTION 

In  the 1960's and  early 1970's,  research  in  controlling  the  primary  mirror  of  a 
large  orbiting  space  telescope  was  conducted.  The  goal  was  to  control  the  figure 
error  of  the  primary  mirror  to  a  fraction  of  a  wavelength  with  many  actuators  mounted 
at  the  rear  of  the  mirror  and  with  a  figure-error  sensor  located  at  the  center  of 
curvature. A modal-control  technique  was  developed  (ref. 1) to decouple  the  equa- 
tions  of  motion  representing  the  plant.  The  technique  allowed  each  controlled  mode 
to  be  individually  compensated  €or  in  the  modal  domain.  Additional  research  applying 
the  modal-control  approach  to  the  mirror  problem  is  described  in  references 2 and 3. 
Subsequent to this  work  there  has  been  renewed  interest  in  applying  modal  control  to 
other  areas,  particularly  to  the  area  related  to  large,  flexible  spacecraft  control 
(refs. 4 to 7). Another  area  in  which  modal  control  could  have  a  significant  impact 
relates  to  flutter  suppression.  This  paper  describes  a  discrete  modal-control  design 
approach  that  is  applied  to a single-control-surface,  unswept  aircraft  wing  subject 
to  bending-torsion  flutter.  One  advantage  of  the  modal-control  approach  is  that  the 
flutter  mode,  as  well  as a l l  other  flexible-wing  modes,  can  be  mathematically  repre- 
sented  by  two  isolated  complex-conjugate  equations.  The  decoupled  nature  of  the 
modal-control  approach  allows  additional  insight  into  the  control  problem,  and  it  is 
possible  to  use  either  classical  control  techniques  or  modern  control  theory  to 
design  feedback  gains.  In  this  paper,  a  pole-placement  approach  is  used  to  calculate 
the  stability  feedback  gains,  which  are  analytically  designed  by  using  only  two 
complex-conjugate  flutter-mode  equations. 

Several  other  approaches  have  been  applied  to  the  flutter-suppression  problem. 
These  approaches  include  an  aerodynamic  energy  method  (refs. 8 and 9 )  and  optimal- 
control  approaches  (refs. 10 to 12) .  A  modal-control  analysis  is  used  in  refer- 
ence 12, but  the  design  is  for  a  continuous-control  law  and  the  performance  index  is 
expressed  in  terms  of  a  quadratic  cost  function  that  is  related  to  all  of  the  modal 
amplitudes. As described  above,  the  main  thrust  of  this  paper  is  to  isolate  and 
control  only  the  flutter  mode,  influencing  the  higher  order  modes  as  little  as  possi- 
ble.  The  modal-control  approach  appears  to  be  a  good  method  to  meet  this  goal. 
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The f i r s t   s e c t i o n  of this   paper   includes a br ie f   descr ip t ion  of t h e  wing and the 
various  subsystems  that  comprise  the  open-loop  plant.  Detailed models of a l l  subsys- 
tems are  given  in  appendix A.  

The second  section  includes  the  equations  for  transforming  the  physical  domain 
t o   t h e  modal  domain and includes  the form  of the  var ious matrices. A t heo re t i ca l  
so lu t ion   fo r   t he  modal equations of motion is presented  for  a d i s c r e t e  sampling 
period. The analysis   carr ies   through  to   the  use of the  flutter-mode  equation  to 
design  the  stability  feedback  gains. 

While the  research w a s  being  conducted, it became obvious  that wind gust and the 
external  disturbance  states  should be  estimated. The approach  used i n   t h e   t h i r d  
sec t ion  is t o  augment the modal equations and solve a convolut ion  integral   to  deter- 
mine the eEEect  of t h e s e   s t a t e s  on the  modal amplitudes. The d i sc re t e  form f o r   t h e  
t o t a l  system  with 36 s ta te   equat ions is shown. 

The fourth  sect ion of t h i s  paper shows how the  discret ized  f ixed-gain Kalman 
f i l t e r  is  calculated.  The symbology i l l u s t r a t e s   t h e  matrices t h a t   a r e   t o  be approxi- 
mated both for  off-design  analysis a n d  for  reduced-state  estimation. Two methods a r e  
presented  for  calculating  the  reduced-state  estimator.  Also included are the equa- 
t ions  t o  calculate   the  es t imator   c losed-loop  s tabi l i ty  and the  total   closed-loop- 
system  s tabi l i ty .  

The f i f th   sect ion  ("Resul ts"   contains   several   f igures  showing the  performance 
fo r  two design  eigenvalue  locations. One eigenvalue  has a low damping r a t i o  of  0.14 
and  the  other a higher damping r a t i o  of  0.62. Performance is determined by normal- 
iz ing   the  root-mean-square ( r m s )  value of each  variable  about a zero mean with  the 
rms value of wind gust  about a zero mean.  The p l o t s  shown compare a base run  using 
per fec t  modal feedback and s tabi l i ty   gains   adjusted  for   each dynamic pressure  with 
severa l  r u n s  using  three  output measurements  with  an estimator.  Both f u l l - s t a t e  
estimation and reduced-state  estimation  runs are presented. The "Results"  section 
a l so   conta ins   f igures  showing some typica l   da ta   s igna ls   for   severa l  states a n d  s t e p  
responses due t o  an ex terna l  command input.  

DESCRIPTION OF MODEL 

An unswept a i r c r a f t  wing ( f i g .  1 )  subjec t   to   bending- tors ion   f lu t te r  was used a s  
a  model for   appl ica t ion  of the  modal-control  concepts. Most  of t he   da t a   fo r   t h i s  
wing a r e  i n  reference 13. The semispan f o r   t h i s  wing model is 5.08 m ( 2 0 0  i n .  ) and 
the  chord  varies  l inearly from 2.54 m (100 in . )  a t  the  root  t o  1.52 m ( 6 0   i n . )   a t   t h e  
t ip.  Five  grid  points,   excluding  the  root  section,  are  located  along  the  elastic 
axis  at  the  corresponding  40-percent-chord  location. The aerodynamic center  is 
l o c a t e d   a t  25 percent  chord. 

The wing model has the   capabi l i ty  of incorporating one o r  more control  surfaces 
a long  e i ther   the  leading  or   the  t ra i l ing edge or  along  both  edges. For a l l   a n a l y s e s  
in   t h i s   pape r ,  a single  trail ing-edge  control  surEace is used. The equations of 
motion that   descr ibe  the complete  system are  derived from severa l   de ta i led  models 
described and  de.€ined i n  appendix A .  These de ta i led  models inc lude   the   s t ruc tura l  
equations of motion,  unsteady  aerodynamics  with  Jones'  approximation of the  Wagner 
func t ion   ( re fs .  14 and 151, an external-disturbance model using  the KGssner Eunction 
( r e f .  16) t o  relate the wind gust to  Eorces and moments on the wing, a Dryden wind 
model ( r e f .  17) fo r   t he   ve r t i ca l   d i r ec t ion ,  and  an in- l ine  compensator t h a t   r e l a t e s  
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the  feedback  control  signal  to  the  actuator  input  signal.  When  all OP these  models 
are  combined  as  in  appendix  A,  the  state-space  equation of motion  for  the  complete 
system is 

. 
'm AmXm 

with X, defined 

+ BmAc + DmXd 

as 

(2) 

where \ is the  open-loop-model  state  matrix, Rm is the  open-loop-model  co2trol 
input  matrix, Dm is  the  open-loop-model  disturbance  input  matrix, X, and 
represent  the  state  vector  and  its  time  derivative  for  the  open-loop  model, A, is 
the  control  feedback  signal, Xd is  the  external-disturbance  state  vector,  Xw  and 
X  represent  the  wing  state  vector  and  its  time  derivative, X, is the  unsteady 
aerodynamic  state  vector,  and Xf is the  compensator  state  vector. (A list of sym- 
bols  used  in  this  paper  appears  after  the  references.)  A  block  diagram of the  open- 
loop-system  model  is  shown  in  figure 2. 

xm 

W 

MODAL  ANALYSIS 

Modal  analysis  is an approach  for  transforming  the  system  (eq. (1)) into an 
equivalent  number  of  decoupled  state-space  equations. The rationale  for  this 
approach  is  that  the  decoupled  equations  allow  added  insight  into  the  control  prob- 
lem.  Stability  feedback  gains  can  be  calculated  with  only  the  two  complex  unstable 
flutter-mode  equations  by  either a classical  control  approach  or  modern  control 
theory.  Since  the  equations  are  decoupled,  theoretical  solutions  are  known  and  can 
be  used.  These  ideas  are  illustrated  in  this  section. 

'm - 'mCm - 

Inserting  equation ( 3 )  into  equation (1) yields  the  modal  equation of motion 

= Amcm + GmAc + [Urn Dm]  Xd -1 
m 

where 

Am = Urn 'ArnUm 
- 

Gm = Urn -1 Bm (6 1 
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Matrix Am is composed of the  system  eigenvalues  in  block  diagonal  form  as 

' h  
m,i. 

h = a  m, i  i 

and  for  complex  eigenvalues, 

where a and w are  the  real  and  imaginary  parts. i i 

The  discrete  solution  to  equation ( 4 )  at  time Tm of 

Tm = to + T 

€or  period T is 

'm,i . 
*'m,n O I  

The  block  elements  are  assumed  to  be  distinct  eigenvalues,  either  real  or 
complex-conjugate  pairs.  For  real  eigenvalues, 
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and 

The 

Gm 

solution  and  form 

The  solution  for 

with block element 

for 

@m 

+m 

is 

are 

for 'm, i real  and  distinct  and 

shown later. 

cos w.T sin w.T 

COS w . T  'I 1 1 

$m,i = exp(aiT) 
1 

for Am, i complex. 

The  solution  for is rm 

The block element  is 

and  distinct  and is 



for X complex,  where m,  i 

YI lm,  i = (exp(aiT)) (ai cos wiT + w i sin w.T) 1 - a i  (21) 

'1 2m,  i = (exp(aiT))  (ai sin w.T - w cos w.T) + w 
1 i 1 i (22) 

The  modal  equations  are  now  in  explicit  decoupled  form  and  can  now  be  used to 
design  stability  feedback  gains.  Putting  equations  (121,  (131,  and (14) into  equa- 
tion (11), neglecting  the  disturbance  term  since  it  does  not  affect  stability  gain 
design,  and  partitioning  the  equations  relating to the  unstable  flutter  mode  yields 
the  block  equation 

The  control-feedback  signal A, is  related  to  the  modal  amplitude c ~ , ~  by  the 
control-feedback  gain  matrix  Dc  as 

where 

since  there  is  one  control  surface  and  two  modal  amplitudes  relating  to  the  complex, 
unstable  flutter  mode.  In  this  paper,  a  pole-placement  technique  is  used;  the  deri- 
vation of the  feedback  gains  for  the  pole-placement  approach  is  given in 
appendix B. 

The  closed-loop  equation  €or  the  controlled  mode  is  determined  by  substituting 
equation  (24)  into  equation  (23)  as  follows: 

For stability,  the  eigenvalues  of  the  2 x 2 closed-loop  matrix  must  have  a  magnitude 
less  than  unity.  It  is  assumed  that all ( J ~ , ~ ,  except  the  term  relating  to  the  flut- 
ter  mode,  have  open-loop  eigenvalues  located  within  the  unit  circle.  This  design 
procedure  assumes  that  higher  order  modes  are  influenced  as  little  as  possible. 
Stability  of  the  total  closed-loop  system  is  described  in  a  later  section. 
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ESTIMATOR MODEL FOR WIND GUST AND EXTERNAL-DISTURBANCE  STATES 

If  the  modal  amplitudes c ~ , ~  of  equation  (23)  could  be  measured  directly,  the 
stability  problem  would  be  solved.  Unfortunately,  only  physical  states  can  be  mea- 
sured,  and  these  states  are  related to all cm  (eq. (11)). Therefore,  an  estimator 
is  required  to  obtain  the  modal  amplitudes  in  the  feedback  configuration  described 
previously. 

During  the  period  of  this  research,  it  became  obvious  that  the  wind-gust  veloc- 
ity Wg and  the  external-disturbance  state  vector  xd  must  be  estimated  to  get a 
good  approximation  of  the  two  unstable  modal-amplitude  coordinates.  One  approach  is 
to  augment  the  states  in  equation  (2)  with  Xd  and  Wg  and  then  solve  the  modal 
equations  as  described  previously.  The  approach  used  in  this  paper  is  to  augment  the 
modal  equation  (eq. (11)) after  solving  for  the  discrete  solutions  for  Wg  and  Xd 
and  the  effect  of  Wg  and  Xd on cm,  given  as  matrix  in  that  equation. +m 

The wind  gust  is  assumed to have a first-order,  slowly  varying  time  response 
with  time  constant 7; defined  as 

57 

with  the  solution 

The  differential  equation  representing  the  external  disturbance  is 

0 

X d = A X   + B W  d d   d g  

where Ad and  Bd a r e  the  external-disturbance  state  matrix  and  forcing-function 
input  matrix.  The  solution,  for a step  input W applied  to a zero-order  hold,  is 9 

for  Ad  nonsingular.  The  two  eigenvalues  of  Ad  are  defined as hld and h2d and 
are  used  in  the  solution  for Gm. For  simplicity,  we  can  define 

and 

rd = Ad -1 [exp(AdT) - I]Bd (32) 
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and  substitute  into  equation (30) as follows: 

The  general  solution  for Grn in  equation ( 1 1 )  results  from  solving  the  forcing- 
function  disturbance  term  in  equation ( 4 )  as follows: 

The  solution  to  this  equation  requires t'ne use  of  equations ( A 2 1 ) ,  (A23), ( 2 8 ) ,  
and (33) and  the  solution to three  convolution  integrals.  The  derivation  is  given in 
appendix C. For the  text of this  paper, +m is  defined  as 

where and + relate  the  initial  wind-gust  velocity  and  external-disturbance 
state  to  the  modaf-coordinate  states.  Using  these  augmented  states  from  equa- 
tions ( 2 8 ) ,  (33), and (35) and  inserting  them  into  equation ( 1 1 )  yields  the  equation 
for  the  discrete  modal  state  vector X,: 

+g 

X (T ) = A X (t ) + BoAc(to) + LoE(to) o m  0 0  0 
( 3 6 )  

where 

'I 'd 
R 



and Lo is  a  vector  relating  the  external  wind 5 to  the  state  vector X,. For 
this  paper, Lo is  defined  as  the  middle-column  vector  in  equation (38). The  aug- 
mented  states Wg and  xd  also  cause  changes  in  the form of  equation ( 1 ) .  By 
making  use  of  equation ( 3 ) ,  the  acceleration  at  time Tm is 

where Wm and Fm are  part of the  derivation  given  in  appendix C. 

The  measured  acceleration  output Yo(Tm), assuming  negligible  sensor  dynamics, 
is  dePined  as 

Y (T ) = C X (T ) + DoAc(to) + B0(Tm) o m  0 0  m 

where eo is  measurement  noise, 

and Go is  a  transfer  matrix  with  the  number. of rows  equal  to  the  number of measure- 
ments.  Each  row of Go has  all 0 ' s  and  a 1 located  in  the  column  corresponding  to 
the  state  that  is  being  measured. 

"AN-FILTER MODEL 

The  discretized  model of the  system  dynamics  and  output  measurement  is  described 
by  equations (36 )  and ( 4 1 )  and  is  shown  in  the  upper  portion  of  figure 3. Initial 
conditions  €or  this  model  are  explained  below.  The  initial  state  vector ~ ~ ( 0 )  is 
assumed  to  be  a  random  vector  with  Gaussian  distribution  and  has  an  expected  value 

A 

where X, is  the  best  estimate of the  initial  state  vector. 

The  covariance P is  defined  as 

cov[~o(o); x, "T (0) J = P ( 0 )  r01 
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where  the  variance X. is 
N 

x. - x. - XO(O) N - 

With  similar  notation  for  other  variables,  the  Gaussian,  discrete  white  plant 
noise 5 is 

E{S(t)) = 0 (47)  

and  the  covariance  is 

& t z  
= 1  

%-T 
= o  

where 5 is the  plant-noise  intensity  and is the  Kronecker  delta  defined  as 
n 

&t z 

(t = -TI } ( 4 9 )  
(t f 7) 

Similarly,  the  Gaussian,  discrete  white  measurement  noise 

and  covariance is 

8 is 
0 

where 8 is  the  measurement-noise  intensity. In addition, Xo(0), F,(t), and 
eo( 7) are  mutually  independent for  all  t  and T. 

n 
0 

With  equations ( 4 8 )  and ( 5 1 1 ,  the  state  process  noise R is  defined  as 

R =  L EL n T  
0 0  

and  the  variance  of  measurement  noise 8, is  defined  as 

Q, = eo n 

Both R and Qo are  assumed  to  be  constant  during  a  run. 
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With  the  above  definitions  and  the  definition  for  conditional  probability,  the 
equations  €or  the  predict  cycle  are 

P(Tmlto) = AoP(to~to)AoT + R ( 5 5 )  

A A A 

where X, represents  the  estimated  value  of X, and A, and Bo represent  approx- 
imate  matrices  for A. and Bo. The  approximated  matrices  have  been  used  both  for 
off-design  cases  and  for  cases  with  less  than  full-state  estimation. 

The equations  for  the  update  cycle  are: 

Gk = P~Tm~to~CoTICoP~Tm~to)Co T + Q0]” 

(T = 6 2 (T It ) + C0Ac(to) o m  0 0  m o 

where Gk is  the  Kalman  gain  matrix.  The  structure for the  discrete  Kalman-filter 
model  is  shown  in  the  lower  portion of figure 3.  

A The  one  remaining  link  is  the  relationship  between  the  estimated  state  vector 
X, and  the  control-Peedback  signal A,. The  equation  relating  these  variables  is 

where  Gc is a  matrix  with  two  rows  of  elements  that  are  all 0 except  for  a 1 in 
each  row  located  in  the  columns  that  allow  the  two  modal-amplitude  estimates  of the 
unstable  mode  to  be  controlled. 

Closed-Loop  System 

A closed-loop  stability  check is made  by  looking  at  the  stability  of  the  Kalman 
loop by  itself  and by looking  at  the  complete  closed-loop  control  system  that 
includes  both  the  plant  and  the  Kalman  model. ,By using  equations ( 4 1 1 ,   ( 5 4 ) ,  ( 5 7 1 ,  
and ( 5 8 ) ,  the  updated  estimated  state  vector X, becomes 
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Stability of the  Kalman 
within  the  unit  circle. 
system  are 

where 

loop requires  that  the  eigenvalues  of [io - G ~ C ~ A ~ ]  lie 
A A  

The  state  equations €or the  complete  discrete  closed-loop 

s11 = A0 

S 1 2  = B D G o c c  

s21 = GkCoAo 

Stability  requires  that  the  eigenvalues  of  the  matrix Fi: lie  within  the 
unit circle. 

Suboptimal  Filter 

The  optimal  Kaiman  filter  for  a  plant  produces  a  time-varying  gain  in  which  the 
entire  state  is  estimated  and  sufficient  observations  are  processed  to  ensure  that 
all  the  required  states  are  observable.  Moreover,  in  the  presence of random,  unknown 
error  sources,  process  noise  must  be  added  to  maintain  an  adequate  estimate of the 
state  uncertainty.  Since  this  requires  the  propagation  and  correction of the  state 
covariance  matrix  for  each  observation,  it  is  not  always  practical to use  an  optimal 
filter  in  a  real-time  control  system.  The  usual  alternative  is  to  simulate  the  opti- 
mal  process  of€-line  until  the  Kalman  gain  stabilizes,  and  then  use  the  steady-state 
Kalman  gains  as  a  constant-gain  complementary  filter.  However,  even  this  approach 
requires  the  updating of a  large  state  vector  and  the  processing of a large  number of 
observations.  It  thus  becomes  pertinent  to  seek  a  smaller  state  vector  and  fewer 
observations  which  could  be  used  to  generate  a  smaller  dimension,  constant  yet  stable 
gain.  Such  a  system  is  defined  to  be  suboptimal,  and  the  equations  used  .€or  the 
suboptimal  system  in  real  time  are  equations (541,  (571, (581, and (60). The off- 
line  calculati2ns  for  the  optimal  Kalman  gain % are  made  assuming  full-state  esti- 
mation,  with A,, io, eo, and 6, equal  to Ao, Bo, Co,  and  Do. 
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The  results  for  two  different  methods of reducing  the  number  of  estimated  states 
are  presented  in  this  paper.  The  first  method  is  to  partition  the  matrix  after  solv- 
ing  for  the  optimal  gain  Gk.  In  particular,  the  method  involves  calculation  of  the 
reduced  matrices  by  partitioning  both  rows  and  columns  of Ao, partitioning  only  rows 
of Bo, partitioning  only  columns  of Co, and  leaving Do unmodified.  The  second 
method  involves  zalculation  of  the  reduced  Gk  directly.  This  is  accomplished  by 
using A. and Co in equations (551, (561, and (59). Results  for  both  methods  are 
described  hereinafter.  The  actual  states  used  are  presented in  the  "Results" 
section. 

. h  

RESULTS 

This  section  presents  the  results  for  two  different  sets  of  closed-loop  design 
eigenvalue  (pole)  locations  for  the  flutter  mode.  For  each  set  of  pole  locations, 
the  statistical  accuracy  of  several  state  variables  resulting  from  wind-gust  distur- 
bances  is  plotted  as  a  function  of  dynamic  pressure.  Plots  are  presented  for  the 
case  in  which  perfect  modal  feedback  is  used,  for  the  case  in  which  full-state  esti- 
mation  is  used,  and  for  a  few  cases  in  which  reduced-state  estimation  is  used.  In 
addition,  some  typical  data  signals  and  step  responses  are  presented.  Stability  of 
the  filter  and  total  closed-loop  system  has  been  checked  with  equations (61) and (62) 
for  every  case  considered. 

The  system  defined  by  equation (1) has 33 states:  has 1 1  s$ates  defined  by 
5 bending  states, 5 torsional  states,  and 1 control-surface  state;  has 1 1  states 
defined  by  the  derivatives  of  the \ states; X, has 10 states,  since  the 
unsteady-aerodynamics  terms  are  modeled  by  a  second-order  differential  equation  for 
each  wing  panel;  and  Xf  has 1 state.  The  unsteady  aerodynamics  is  based  on  Jones' 
theory  for  two-dimensional  incompressible  flow  (ref. 14) and is a  good  approximation 
to  the  lift-deficiency  function.  State  Xf  is  always  included,  but  the  compensator 
can  be  effectively  nullified  by  setting  the  numerator  and  denominator  frequencies 
approximately  equal  and  large  compared  with  the  flutter-mode  frequency.  Figure 4 
contains  a  plot  of  the  open-loop  eigenvalues  as  a  function  of  dynamic  pressure  for 
the 10 flexible-wing  modes.  The  first  flexible  mode  is  the  flutter  mode,  with  flut- 
ter  onset  occurring  at  approximately 54.0 kPa.  All  modes  have  a  structural  damping 
ratio of 0.03. Table I contains  the  open-loop  eigenvalues  at  the  design  dynamic 
pressure  q  of 82.7 kPa.  The  eigenvalues  are  numbered  for  reference.  The  equiva- 
lent  open-loop  eigenvalues  are  also  shown  for  the  discrete  plane  with  a  sampling 
period  of 0.005 sec,  which  is  the  period  used  for  all  runs  in  this  paper.  For  this 
sampling  period,  modes 19 and 20 have  a  frequency  greater  than  one-half  the  sampling 
frequency. 

Stability  is  the  most  important  aspect  in  flutter  control,  and  it  must  be  main- 
tained  throughout  the  flight  regime. A second  important  aspect  is  the  wing  response 
and  control-surface  activity,  resulting  from  a  random  wind-gust  input  disturbance 
(eqs. (A29) and ( A 3 0 ) ) .  The  approach  used  in  this  paper,  for  each  of  the  variables 
recorded,  is  to  normalize  the rms value  about  a  zero  mean  by  the rms value  about  a 
zero  mean  of  the  wind  gust uw . The  recorded  standard  deviations  are  for  the 

wing-tip  bending  Oh5,  wing-tip  angular  rotation u , control-surface  deflection 
g 

ug, control-surface  angular  velocity ai, and  the  control-torque  input  command 
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TABLE I.- OPEN-LOOP EIGENVALUES 

[q = 82.7 kea] 

Mode 

Flexible I 

NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

T 

Actuator/ 
control  surface 

Unsteady 
aerodynamics 

23 
24 
25 
26 
27 
28 
29 
30 
31  
32 

Wind gust I 33 

External 
disturbance 

Compensator 

" 

Continuous-plane 
eigenvalue 

... .~ ." - ." . . ~- . 

Real 
~ 

15.98 
15.98 

-38 - 4  1 
-38.4 1 

-5 -42 
-5.42 
-6.31 
-6.31 
-8  -68 
-8.68 
-8.93 
-8.93 

-1 1.19 
-11.19 
-13.93 
-13.93 
-17.34 
-17.34 
-21.10 
-21.10 

~~ 

-357  -6 
-357.6 

-72.11 
-7  1.80 
-70.27 
-69.18 
-33.16 
-10.96 
-10.93 
-10.84 
-10.71 

-5.78 

-0.6992 

-31.1 
-240.0 

-500.0 

Imaginary 

47.1 
-47.1 

61.4 
- 6 1   - 4  

. - ". " 

139.8 
-139.8 

214.0 
-214.0 

263 5 
-263.5 

306 1 
-306.1 

379.8 
-379 - 8  

450 1 
-450.1 

605.8 
-605 a8 

729.5 
-729.5 

365.1 
-365.1 

Discrete-plane 
eigenvalue 

Real Imaginary 
~~ 

.. . . 

! .0530 
- -2527 1.0530 
0.2527 

.4361 -. 7872 
- -436 1 -. 7872 
-. 1030 - .9111 

.1030 -.9111 
-. 7253 - .5864 

-7253 - -5864 
- -895 1 -. 3050 

.895 1 -. 3050 
- -9556 .O 384 

.9556 .0384 
- .9270 .2 399 

.9270 .2399 
- .8499 .4653 

.8499 .4653 
- -6264  .7449 

.6264 .7449 
- -2493 7867 

- 2493 .7867 

-0 -04216 
-.1619 -.04216 
0.1619 

0.6973 
.6987 
.7037 
.7076 
.8472 
.9467 
.9468 
.9473 
.9479 
.9715 

0.9966 

0.8559 
.3011 

0.08208 
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Two sets  of  closed-loop  pole  locations  are  evaluated.  One  location  is  for  a 
low-damped  control  mode ( c  = 0 . 1 4 )  and  the  other  is  for  a  higher  damped  control  mode 
( c  = 0.62); both  pole  locations  have  approximately  the  same  damped  natural  frequency. 
The  two  design  locations  are  given  in  table I1 for both  the  continuous  and  discrete 
planes.  The  relationship  between  the  continuous-plane  and  discrete-plane  eigenvalues 
is  given  in  appendix B. 

TABLE 11.- DESIGN  POLE  LOCATIONS  FOR  CONTROL  MODE 

_ . _  , .  . -  ~~~ ~~~ 

Continuous-plane  location 1 Discrete-plane  location 1 Damping  ratio 1 
~ ~ 

-10 f 70j 0.89 f 0.33j 
62 .70 f 0.27j -58 f 74j 

0.14 
~ ... 

~~ ~~ . .  - ~- 

Four  different  cases  have  been  simulated  for  each  design  pole  location.  The 
first  case,  which  serves  as  a  reference  case  for  all  other  data  runs,  assumes  full- 
state  feedback  to  get  a  perfect  estimate of the  unstable  modal-amplitude  coeffi- 
cients.  In  addition,  the  control-feedback  gains Dc are  recalculated  for  each 
dynamic  pressure  q  in  order  to  maintain  the  controlled  mode  at  the  design  pole 
location.  Figures 5 and 6 show  the  feedback  gains  used  to  maintain  the  controlled 
mode  at  the  design  eigenvalue.  For  all  other  runs  described  in  this  paper,  the 
feedback  gains  are  kept  constant  with  the  values  at  q = 82.7 kPa, shown by  the 
dotted  lines  in  figures 5 and 6. 

The other  three  cases  use  three  output  measurements:  wing-tip  acceleration 
(grid  point 5 in  fig. 11, control-surface  position,  and  control-surface  angular 
velocity.  All  feedback  numbers  that  would  be  manipulated  in  a  computer  (estimator 
model  and  stability  feedback  gains)  are  maintained  constant  over  the  complete  range 
of q. 

The  second  case  is  for  a  full-state  estimator  design (Xo in eq. (37)). For 
this  case,  the  open-  and  closed-loop  eigenvalue  variations  of  the  first  two  modes  are 
illustrated  in  figures 7 and 8. These  figures  are  shown  in  the  continuous  plane  for 
ease  of  understanding.  For  the  design  eigenvalue  at 0.89 f 0.33j, the  mode 1 closed- 
loop  eigenvalue  shows  a  small  variation,  although  damping  is  very  small  at  low  values 
of q. The  mode 2 closed-loop  eigenvalue  illustrates  a  larger  variation  than  the 
open-loop  case  for  off-design  values  of  q.  With  the  design  eigenvalue  of 
0.70 f 0.27j, both  the  mode 1 and  mode 2 eigenvalues  illustrate  a  wide  variation  over 
the  range  of  q. 

The  last  two  cases  are  for  reduced-state  estimators  (suboptimal  filter)  and 
represent  different  states  for  the  two  design  pole  locations.  The  partitioning 
method  is  used  whereby  rows  and/or  columns of nonestimated  states  are  removed  from 
the  full-state  estimator  design.  The  goal  for  reduced-state  estimation  is  to  reduce 
the  number  of  computer  calculations  while  maintaining  a  stable  system  over  the  range 
of q.  Table I11 has  the  total  number  of  estimated  states  and  the  eigenvalue  number 
as  given  in  table I for  each  design  eigenvalue. 
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TABLE 111.- REDUCED-STATE ESTIMATION 

- ~. - - . . . _. ." " - . .. ". . - .  - - ~ 

Design eigenvalue  Total no. of s t a t e s  Case 
~. l . ~  Eigenvalue  no. 

~~~ -~ ~ . . .. -~ - - - ~ . 

0.89 f 0.33j 1 t o  8,21,22,27,33,34 13 3 
.89 f 0.33j 

1 t o  12,21,22,27 15 4 .70 f 0 . 2 7 j  
1 t o  12,21,22,27,33,34 17 3 .70 f 0 .27 j  

1 t o  6,21,22,27 9 4 

Notice  that  fewer  flexible-wing modes a re   requi red   to   main ta in   s tab i l i ty   for   the  
low-damped control mode. A possible  reason is tha t   the  modal amplitude of t he  lower 
damped  mode is more dominant compared wi th  the  higher  order modes, making t h e  lower 
mode  more observable i n  the  output measurement compared wi th  the  higher damped con- 
t r o l  mode. Both simulation and analysis  have shown tha t   t he  actuator/control-surface 
mode must be estimated  to  maintain  stabil i ty,   while  only 1 of t he  10 unsteady- 
aerodynamics modes requires  estimation. The  .mode selected  has  the  largest  Kalman 
gain  feedback  values of a l l   t h e  unsteady-aerodynamics modes. For s t a b i l i t y  it i s  
poss ib l e   t o   e i t he r  use or ignore  the wind-gust estimate and t h e  external-disturbance 
s t a t e s .  

Simulat ion  resul ts   for   the  four   cases   descr ibed  are   i l lustrated i n  f igures  9 
t o  18. The f i rs t   f ive  f igures   are   for   the  c losed-loop  design  e igenvalue  a t  
0.89 & 0.33j and the   l a s t   f i ve  figures are   €or   the design eigenvalue a t  
0.70 & 0.27j. Numbers  on each  curve  correspond to   the  appropriate   case.  

Two anomalies  are  readily  observable. The f i r s t  is that  curve 2 shows l e s s  
bending and less to r s iona l   s ens i t i v i ty   t o  wind-gust  disturbance  than  does  curve 1 a t  
high dynamic pressures. One possible  explanation is t h a t  because  the  estimator  for 
curve 2 is not  optimized  €or  the  off-design  cases it is probable  that  the  increased 
modal i n t e rac t ion   r e su l t s  i n  modal contr ibut ions  that   subtract  from the   overa l l  
t o t a l .  It is just   as   l ikely  that   these  contr ibut ions add t o   t h e   t o t a l ,   r e s u l t i n g  
i n  a la rger   s ta te   var ia t ion .  The second anomaly is t h a t   a t  low values of q the 
control-surface  act ivi ty  is greater  €or  the  reference  case  than  for  the  other  three 
cases. The reason may be that   the  low-pass f i l t e r   a c t i o n  i n  the  es t imator   resul ts  i n  
a less   sensi t ive  control  system  than  the  case w i t h  per fec t  modal feedback. 

A s  expected,  cases 3  and 4 show g rea t e r   ac t iv i ty   fo r  rms wind gust than the 
f i r s t  two cases. Comparison of the  cases shows tha t   l e s s  rms var ia t ion  is obtained 
by estimating  the wind gust and one of the two external-disturbance  states.  The 
f ina l   da ta   po in t   a t  q = 96.5 kPa is not shown €or  curve 4 i n  f igures  9 t o  13 s ince 
both  the  closed-loop  eigenvalues and the  simulation  data showed an unstable  system. 
I n  f igures  14 t o  18 the  closed-loop  system was ba re ly   s t ab le   a t  q = 96.5  kPa,  and 
the  simulation showed a large  increase i n  the  accuracy of each variable.  

Several  simulation runs  were made for  cases w i t h  measurement noise. A random 
noise  with a standard  deviation of 10 percent of the measurement was used  €or  the 
accelerometer and control-surface  angular  velocity and a noise  with a standard  devia- 
t i o n  of 1 percent was used for  the  control-surface  posit ion.  In addition, a bias  
e r ror  of 0.0259 was used for  the  accelerometer and  a b ias   e r ror  of 0.005 rad/sec was 
used for  the  control-surface  velocity.  The simulation  runs had s t a t i s t i c a l   d a t a  very 
c lose   t o   t ha t  shown for  the  perfect-measurement  cases. 
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Some  typical  simulation  plots  are  shown  in  figure 19 for  the  case  of  full-state 
estimation.  The  dynamic  pressure  was  82.7  kPa  and  the  design  eigenvalue  was 
0.89 f 0.33j  with  random  and  bias  measurement  errors.  The  plots  in  the  first  part  of 
figure 19 represent  the  measurements  of  wing-tip  acceleration h5, control-surface 
angular  velocity 6, and  control-surface  deflection 6, and  wind-gust  velocity 
The second  part  of  figure 19 cont?ins  the  wing-tip  bending h5,  wing-tip  angular 
rotation a5, wing-tip  velocity h5, and  wind-gust  velocity W The  top  two  curves 
in the  third  part  of  figure 19 are  the  actual  modal-amplitude  coefficients  of  the 
controlled  mode  while  the  bottom  two  curves  are  the  estimated  modal  amplitudes  that 
are  used  for  control. 

wg' 

g' 

Figure  20  shows  some  typical  step  responses  resulting  from an external  command 
applied  at  the  same  input  as  feedback  signal A, for  q = 82.7  kPa  with  a  design 
eigenvalue  of  0.89 f 0.33j. The  four  cases  illustrated  are  perfect  modal  estimation 
(fig.  20(a)),  full-state  estimation  (fig.  20(b)),  13-state  estimation  (fig.  20(c)), 
and  9-state  estimation  (fig.  20(d)).  There  are  seven  plots  in  each  figure:  h5, 

modal  amplitude.  In  figure  20(a),  the  estimated  modal  amplitudes  are  set  identical 
to  the  controlled  modal  amplitudes to get  the  perfect  feedback.  For  full-state  esti- 
mation,  the  estimated  modal  amplitudes  are  a  very  good  representation  of  the  con- 
trolled  modal  amplitudes,  but  as  the  number  of  estimated  states  decreases  the  quality 
of  the  estimated  modal  amplitudes  also  decreases.  The  noisy  estimates  cause 
increased  noise  on  the  control-surface  position.  The  basic  responses  of  the  various 
states  are  approximately  the  same  for  all  the  cases,  although  there  is  a  slight 
attenuation  and  a  little  oscillation  in  the  h5  curve  for  the  reduced-state  estima- 
tion  cases. 

a5 6, two  plots  of  estimated  modal  amplitude,  and  two  plots  of  actual  controlled 

A final  set  of  data  was  taken  for  another  suboptimal-filter  case inAwhich the 
A 

Kalman  gain  is  calculated  directly  using  the  reduced  matrices A, and Co. The 
results  from  this  approach  are  generally  not  as  good  as  the  results  from  the  parti- 
tioning  method.  For  the  reduced-state  estimation  cases  €or  a  design  eigenvalue  of 
0.89 f 0.33 j, all  data  are  slightly  worse  than  the  data  shown  in  figures 9 to 13. 
The  closed-loop  system  is  unstable  at q = 96.5  kPa  for  the  13-state  estimation,  and 
the,system goes  unstable  at q = 89.6 W a  for  the  9-state  estimation.  For  the 
reduced-state-estimation  cases  for  a  design  eigenvalue  of  0.70 f 0.27j,  the  data 
indicate  slightly  better  results  for  the  15-state-estimation  case  but  worse  results 
for  the  17-state-estimation  case. 

CONCLUSIONS 

A modal-control  design  approach  has  been  used  to  stabilize  a  single-control- 
surface,  unswept-wing  model  subject  to  bending-torsion  flutter.  The  wing  has  five 
panels  with  five  bending  and  five  rotational  degrees  of  freedom  in  addition  to  the 
one  control-surface  degree  of  freedom.  The  complete  model  also  includes  unsteady 
aerodynamics,  wind gust, and external-disturbance  states  relating  the  wind  gust to 
forces  and  moments on the  wing. 

The  modal  analysis  shows  the  relationship  between  the  physical  and  the  modal 
domains  and  the  form  of  the  matrices  in  the  modal  domain.  Since  the  modal  equations 
of  motion  are  decoupled  with  block  elements  of  one  or  two  states,  analytical  solu- 
tions  can  easily  be  used  to  obtain  feedback  gains.  The  modal  approach  used  in  this 
paper  is  to  partition  the  two  complex-conjugate  equations  representing  the  flutter 
mode  and  the  design  feedback  gains to  stabilize  this  mode.  Only  two  numbers 
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are  needed  to  create  a  stable  system.  A  procedure €or calculating  these  gains  for  a 
discrete  system  for  the  pole-placement  approach  used  herein  is  described  in 
appendix B. 

The equations  for  a  fixed-gain  discrete  Kalman  filter  with  a  reduced  number  of 
output  measurements  are  described.  The  analysis  includes  equations  €or  the  estimator 
stability  and for the  stability  of  the  total  closed-loop  system. Two approaches  for 
using  a  suboptimal  filter  are  included. 

Statistical  data  runs  using  a  random  wind-gust  disturbance  have  been  made  for 
two  different  closed-loop  design-eigenvalue  locations  €or  the  controlled  mode.  One 
eigenvalue  location  is  for  a  low-damped  case  (0.14  damping  ratio)  and  the  other  is 
for  a  higher  damped  case  (0.62  damping  ratio).  With  three  output  measurements  (wing- 
tip  acceleration,  control-surface  position,  and  control-surface  angular  velocity), 
the  full-state  estimator  (36  states)  stabilizes  the  wing  over  a  dynamic-pressure 
range  that  is 80 percent  greater  than  that  of  the  uncontrolled  system.  The  design 
point  is  at  a  50-percent  increase  in  dynamic  pressure,  and  the  feedback  gains  are 
maintained  constant  for  all  off-design  dynamic  pressures. 

Stability  can  be  maintained  with  fewer  estimated  states  for  the  low-damped 
eigenvalue  case  than  for  the  higher  damped  case.  For the low-damped  eigenvalue  case, 
a  13-state  estimator  model  allows  stability  to be maintained  over  the  entire  dynamic- 
pressure  range  with  only  a  small  decrease  in  performance,  while  a  9-state  estimator 
model  allows  stability  to be maintained  over  most  of  the  range  (68-percent  increase 
in  dynamic  pressure).  Simulation  runs  were  made  for  both  the  17-state  and  the 
15-state  estimator  models  for  the  higher  damped  eigenvalue  case.  Both  models  allow 
stability  to  be  maintained  over  the  complete  dynamic  pressure  range  with  a  small 
decrease  in  performance.  The  best  performance  results  are  obtained  in  the  cases 
where  wind  gust  and  an  external-disturbance  state  are  estimated.  Random  measurement 
errors  with  a  standard  deviation  of 10 percent  of  the  measurement  for  both  wing-tip 
acceleration  and  control-surface  angular  velocity  and  1-percent  standard  deviation 
for  control-surface  deflection,  along  with  small  bias  errors,  appear  to  have  negligi- 
ble  effect  on  all  of  the  runs  described. 

All  the  data  shown  for  the  reduced-state  estimators  are  for  the  approach  where 
the  reduced  states  are  obtained  by  partitioning  rows  and/or  columns  of  the  matrices 
in the  full-state  estimator  design.  The  partitioning  method  shows  better  stability 
and  generally  less  state  variations  due  to  wind  gust  than  the  approach  where  the 
reduced  Kalman  gains  matrix  is  calculated  directly  using  a  reduced  plant  model. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
March  26,  1982 
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APPENDIX  A 

MATRICES FOR DEVELOPMENT OF SUBSYSTEM MODELS 

This  appendix  contains  the  definitions  and  forms  of  all  matrices  used to develop 
the  structural  model,  the  aerodynamics  model,  the  external-disturbance  model,  the 
wind-gust  model,  and  the  compensator  model.  In  addition,  a  derivation  €or  the 
structural-damping  model  is  included.  Most  of  the  data  for  the  structural  matrices 
and  the  steady-state  aerodynamics  influence  coefficients  come  from  reference 13. 

The  state  vector 

xw - 
- 

Structural  Equation  of  Motion 

X, for  the  wing  is  defined to have 11 states: 

where  hw  is  the  5-state  bending  displacement  with  positive  axis  down, is  the 
5-state  torsional  rotation  with  positive  leading  edge  up,  and 6 is  the  trailing- 
edge  control-surface  displacement  corresponding  to  trailing  edge  down. (A list  of 
symbols  used  in  the  appendixes  appears  after  the  references.)  The  equation  of  motion 
for  the  wing  structure  is 

aW 

.. 
M X  + C ?  + K X   = G u + L   + L d  s w   s w   s w  S a 

where Ms, C s ,  and Ks represent  the  structural  matrices  for  the  mass-inertia 
terms,  damping  terms,  and  wing bending/torsional-stiffness terms,  Gs  represents  the 
control-torque  input  matrix,  u  represents  the  control-torque  input  variable,  La 
represents  the  aerodynamic  lift  and  moments,  and Ld represents  the  external- 
disturbance  forces  and  moments.  The  individual  matrices  are  defined  below. A devia- 
tion  of Cs is  included  at  the  end  of  this  appendix. 

The  structural  mass-inertia  matrix Ms is  defined  as 

Ms = 

where 

MW sW S6 

SW JW H6 
‘ T   - T  
s6 H6 J6 

J 
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and Mw is  a  diagonal mass matrix, Jw is  a  diagonal  inertia  matrix, Sw is  a 
diagonal  mass-unbalance  matrix, g6 is  a  control-sur€ace  mass-unbalance  vector, fi6 
is a  control-surface  moment  of  inertia  vector, Jrj is  the  moment  of  inertia  about 
the  control  hinge,  and V defines  the  wing  panel  containing  the  control  surface  as 

6 

v = [o 0 1 0 0IT 6 

The  wing  structural-stiffness  matrix K, is  defined  as 

/Kh 0 O 1  

O I  

where  Kh is the  bending-stiffness  matrix, K, is the  torsional-stiffness  matrix, 
and w6 is  the  control-surface  structural  radian  frequency.  Both  Kh  and R are 
full  matrices  and  are  calculated by taking  the  inverse  of  their  respective  flexibil- 
ity  matrices. 

a 

The  control-torque  input  matrix Gs is  defined  as 

The  matrix Gs has  one  column  relating  to  the  single  control  surface  being  used.  In 
this  analysis,  the  control  is  modeled  as  a  torque.  The  actuator  torque  is  applied to 
the  control-surface  rotation  axis,  and  an  equal  and  opposite  torque  is  applied 
directly  to  the  corresponding  wing  section. 

Aerodynamics  Model 

The  unsteady-aerodynamics  model  contains  Jones’  exponential  approximation  of 
Wagner‘s  indicia1  loading  function  for  incompressible  two-dimensional  flow  (refs. 14 
and 15) as  a  scalar  multiplier  of  the  three-dimensional  steady-state  lift  and  moment 
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distribution  for  the  wing.  Jones  assumed  a  time-response  function K,(t) as 
follows : 

Ka(t) = 1 - 0.165  exp vt) - 0.335  exp b (A9 

where V is  the  airspeed  and  b  is  the  semichord.  The  unsteady-aerodynamics 
states X, are  functions  of  both  the  wing-position  states  Xw  and  wing-velocity 
states 9, as  follows: 

0 0 

X a = A X  + B  X + B  X a a  la w 2a  w 

In  return, X, causes  changes  in  La as follows: 

0 

La a a  la  w 2a w = C X  + D  X + D  X 

where X, is defined to have  two  five-element  states Xla and X2a: 

since  Ka(t) is  shown  to  have  a  second-order  response. 

The  aerodynamics  matrices  are  defined  as  the  following: 

AL 
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B = (VI 2a 

0 

L 

0 

I 

0 

(A171 

I 1  

- 
- 1-0.01365 $,)I (-0.3455 !)d 

b 

(A161 

(A181 

where 

and  where A is  the  influence-coefficient  matrix  for  the  steady-state  aerodynamic 
lift  distribution, E is  a  diagonal  matrix  with  elements  equal  to  the  distance 
between  the  elastic  axis  and  the  aerodynamic  center  at  the  ith  station, C is  a 
diagonal  matrix  with  elements  equal  to  the  distance  from  the  center  of  pressure  of 
the  control  surface  to  the  hinge, L is  a  diagonal  matrix  with  elements  equal  to  the 
distance  from  the  three-quarters  of  the  chord  to  the  elastic  axis, k6 is  the  ratio 
of  control-surface  'lift  slope  to  wing-section  lift  slope at the  wing  section  contain- 
ing  the  control  surface,  q  is  the  dynamic  pressure, p is  the  density, I is an 
identity  matrix, V is  the  airspeed,  and  b  is  the  wing  semichord. 

- 
& 

External-Disturbance  Model 

The time  response  Kd  for  the  external  disturbance  has  a  form  similar  to  that 
for  the  unsteady  aerodynamics.  The  model  used  is  the  Kussner  function  (ref. 16) for 
the  indicia1  response  to  a  step  of  vertical  gust  velocity  defined  as 

Kd(t) = 1 - 0.5 [ exp ( -0 .13  - F) + exp(-Fj 
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In  a  manner  similar  to  the  wing  unsteady  lift  and  moment,  the  two-dimensional 
response Kd  is  used  as  a  scalar  multiplier  to  the  steady-state  three-dimensional 
aerodynamic  lift  and  moment  distribution. As shown  in  equation ( 2 9 ) ,  the  differen- 
tial  equation  for  the  external-disturbance  state  vector  Xd  is  a  function  of  the 
wind-gust  velocity : 

w9 

< d = A X  + B W  d d   d g  

with 

Ld = CdXd 

Since Kd is  a  second-order  response,  Xd  has  two  states: 

The  matrices  for  external-disturbance  states  are  the  following: 

. 1 3  - V 

b2 

0 1 
- 

V2 - 0 . 1 3  - V -1 .13  - 
b2 b - 

b 

Bd = 

Wind-Gust  Model 

(A25 1 

A  Dryden  wind  model  is  used  to  simulate Wg for  the  transverse  direction.  The 
Dryden  spectra @w for  turbulence  velocity  (ref. 17) is 

9 

2 9  L [ l  + 3 ( L  Q 1 2 ]  
$w (62 1 = (J 

9 n[l + (L Q I 2 l 2  
g 9 9  

(A271 
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where S-2, is the spatial  frequency, L is  the  wind-turbulence scale length  (533 m 
(1750 f t )   i n   r e f .  17) , and is the rms wind-gust i n t ens i ty .  By using  the rela- 
t i onsh ip  between spatial  frequency  and temporal frequency w as 

g 

g 

w = Q V  
g g  

and by assuming a d i s c r e t e  randownumber generator  with  sampling  period T and 
band-pass  frequency 2n/Tg , the  equations of  motion  and matrices become g 

and 

w = c x  
g g g  

where X has two states and Wc is the  white  noise of un i t   i n t ens i ty .  
g 

The matr ices   for   the wind-gust model are  the  following: 

A =  
g 

B g =  ‘[d 0 

where 

V 

3 

Compensator Model 

(A30 

(A321 

There are  occasions when in-line  compensation,  such as a l a g   c i r c u i t ,  a lead  
c i r c u i t ,  or a combination, is t o  be in s t a l l ed .  A compensator  has  been i n s t a l l e d   a t  
the  input   to   the  actuator  and is driven by a control-feedback  signal A, as follows: 
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and 

u = CfXf + EfAc  (A361 

where Af! B f ,  Cfr and Ef are  compensator  matrices  and Xf is  the  compensator 
state.  Glven  a  transfer  function  with a lead  frequency w and  a  lag  frequency 
w and  a  gain E f r  the  compensator  terms  become If 
2f’ 

Af - - W  - 
2f 

c f = w  - w  If  2f 

Complete  Model 

The  equations  described  previously  are  combined  in  block  diagram  form  represent- 
ing  the  complete  open-loop  system  in  figure  21.  The  key  equations  are  given in the 
blocks  and  the  equation  numbers  are  given  above  the  blocks.  The  measured  output 
Yo is  shown  as  a  function of all  the  states  (eq. (41)). Equation  (A2)  requires  some 
rearranging  to  get  it  into  proper form €or  analysis.  Combining  equations  (All), 
(A22),  and  (A36)  with  equation  (A2)  yields 

.. 
X = D X + A  X + GaXa + GfXf + G X  + B A  
W w w   w w   d d   c c  

where 

D W = M S -1  [-Cs + Dla] 1 
A, - - Ms-l[-Ks + D  2a ] 

- 
Ga - Ms a -lc 

Gf - - Ms ‘GsCf 
- 
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With  these definitions, the matrices €or equation (1)  are 

1 

- 
DW Ga 

Bla B2a  Aa 

I 0 0 

0 

0 

0 

0 

0 

0 

0 0 

Derivation for Structural-Damping Matrix Cs 

The homogeneous differential equation for the wing structure is 

M X  + C z  + K X  = O  s w   s w   s w  

9y using the modal transformation, 

xw = uszs 

(A421 

The equation of motion in modal form becomes 

.. 
Z + D Z  + A s C s = O  
S s s  

where 

Ds = Us  lMs"CsUs 
- 

(A461 
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A = U  -1  -lK 
S s Ms s s  

Equation (A47) is completely  decoupled  with  each d i f f e ren t i a l   s t a t e   equa t ion  of the 
f o m  

Cs = MsUsDsUs -1 
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APPENDIX B 

DERIVATION  OF  FEEDBACK  GAINS  FOR  POLE-PLACEMENT  APPROACH 

This  appendix  presents  the  derivation  and  final  equations  for  calculating  the 
stability  feed'oack  gains  €or a discrete  control  system,  in  which  the  desired  pole 
locations  are  either in the  unit  circle  €or  discrete  pole  placement  or  in  the  stan- 
dard  S-plane  for  continuous  pole  placement.  The  derivation  is  €or  a  complex- 
conjugate  plant  with  one  control  input A,. 

The  modal  equation  of  motion  is  given in equation (4): 

and  the  discrete  form  solution  for  the  unstable  flutter  mode  is  presented  in 
equation  (23 ) : 

Equations  (24)  and  (25)  define  the  control  feedback  as 

where 

Finally,  the  closed-loop  expression  in  equation  (26)  is 

In  the  preceding  equations,  subscript  i  is  deleted  €or  convenience. 

Subscripts  m  and  c  and  the  arguments Tm and  to  will  be  dropped  in  the 
remainder  of  this  paper  €or  simplicity. If the  desired  poles Ad are  located  in  the 
continuous  plane,  the  first  step  is  to  calculate  the  equivalent  poles Z in  the 
discrete  plane.  Defining Ad and Z in  terms  of  the  real  and  imaginary  parts  gives 

ZI = exp(adT)  sin ( w  T) d (B2 1 
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where  ad  and md are  the  real  and  imaginary  parts of Ad# ZR and ZI are  the 
real and  imaginary  parts  of Z ,  and T is  the  sampling  period. 

and 

By defining 4 ,  y, and  g  in  terms of their  components,  equation  (23)  becomes 

With  the  definitions 

v1 = y11g1 + y1292 

the  closed-loop  expression  in  equation  (26)  is 

where 

4 2  - 412 
- + v k  1 2c 

- - 
421 - -12 + V2klc 

- 
422 = 411 + V2k2c 

%IAc 92 
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The  closed-loop  eigenvalues  of  equation  (B6)  are  found  by  using 

- 
- 411 -41 2 

- 

= o  

- 
-42 1 - 422 

- 

with  the  solution 

Substituting  equation  (B7)  into  equation  (B10)  yields 

For  complex-conjugate  eigenvalues, 

Equating  the  real  parts of equations (I3131 and (I3141 yields 

= -(2ZR 1 - 2e11 - v k 1 k2c v2 1 IC 

For  the  two  real  eigenvalues,  either  distinct or equal, Z is  expressed as 
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or 

1 
k 2 ~  = Y('R1 R2 1 IC 

+ Z  -2@,, - v k  ) (5191 
2 

Subtracting equation (B19) from equation (B18) and substituting for  k2c yields 
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APPENDIX C 

DERIVATION FOR TRANSFORMATION MATRIX RELATING EXTERNAL-DISTURBANCE 

STATES  TO  MODAL  COORDINATES 

The  Kussner  function  is  given  in  equation (A2 1) of  appendix A and  the  model 
given in equations (29) and (A23). The  solution  to  the  differential  equation  is 
shown  in  equations (30) to (33). The  differential  equation  (eq. (29)) 

0 

X = A X  + B W  d d d   d g  

and  the  general  solution  (eq. (33)) 

are  repeated  here  with  the  following  definitions: 

From  equation (A24) and  with 

= -0.13($) 

= -1.13 b 

the  following  definitions, 
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the  external-disturbance  force  and  moment  vector  is  written  as 

d m  (T = (v) {E d } [ -k Id X Id (T m - (%)X 2d (T m ] 
Substituting  equation  (33)  and  combining  terms  gives 

where 

$1, - -kld@lld - 0*5k @ - 
2d  21d 

‘2,  Id  12d 2d  22d = -k @ - 0.5k 4 

Yd - -kldYld - 0*5k Y - 
2d  2d 

With  actual  values  the  following  are  obtained: 

Qld = 0.065  ?;(exp(AldT) + exp(h2dT) ) V 

‘d = 1 - 0.5(exp(h T) + exp(AZdT)) Id 

The  general  solution  for Gm is  given  in  equation  (34)  as 

Using  equations  (A44),  (A22),  and  the  solution  for  Gd in equation (A41) we  get 
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Substituting  equation ((27) yields 

where 

{h,) = (:) [Urn -1 ]&lEj ------ 

where  the  three  convolution  integrals  are 

and  with  equation (35) 

Gm = [+g +dl  

the  discrete  solution  for  the  modal  coefficients  in  equation (11) becomes 

c (T 1 = CD c (t + rmGmAc(to) + @ W (to) + +dXd(to) m m  m m  o g g  
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The  solution  for  each  convolution  integral +,, and +2d is  shown below. A 
typical  block  matrix  €or am is given in equations (16) and (17) with elements 
defined  in  equations (Rl) and (53). The  equations  for @2d, and yd are 
defined  in  equations  (C11) to ((213). Combining  all of these  equations,  the  solution 
for equations ((2181,  (12191, and (C20) can  be determined. The result below does not 
include the final  multiplication by vector h which would only affect the  final 
gains. Since  this is a  typical block, subscrlpt m' i is dropped for convenience. 

With  the  definitions 

the  elements of each  matrix  are  the following, with equations (1225) and (C26) relat- 
ing to equations (C27) and (C28) relating to +2d, and equations (C29)  and 
((230) relating  to : 

'9 

( a  - A ~ ~ ) ~  + w2 ,/ 

. 

(C25) 
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where y11 and y12 are  defined  in  equations  (21)  and  (22). 

Portions of the  derivation  presented  here  are  also  used  to  derive  Wm  and Fm, 
used  in  equation  (40).  Equation (1) is given  as 

W 

'm m m m c  m d  = A X  + B A  + D X  

Using  equations (A23), (A44), and  the  solution  for Gd in equation  (A41)  the  distur- 
bance  term  becomes 

We  can  now  define 
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AC 

Ad 

9n 

Bd 

Bm 

BO 

CO 

cm 

DC 

SYMBOLS 

Symbols Applicable  to  Entire  Paper 

control-feedback  signal 

external-disturbance  state  matrix 

open-loop-model  state  matrix 

external-disturbance  forcing-function  input  matrix 

open-loop-model  control  input  matrix 

augmented  discrete  modal-control  input  matrix 

augmented  discrete  output  modal  state  matrix 

modal-amplitude  vector 

control-feedback  gain  matrix 

Dm  open-loop-model  disturbance  input  matrix 

DO augmented  discrete  output-control  input  matrix 

Fm discrete  matrix  relating  external  disturbances to Yo 

Gc transformation  matrix  relating  estimated  modal-amplitude  vector  to  modal 
amplitude  used  for  control 

Gk Kalman  gain  matrix 

control  input  matrix  for  modal  equation Gm 

transfer  matrix  €or  output  measurements 

ith  element  of  matrix Gm 

wing  displacement  €or  ith  panel 

wing  displacement  for  fifth  panel 

identity  matrix 

imaginary  number 

control-feedback  gains 

vector  relating  external  random  wind  to  state  vector 

covariance  matrix 

X0 

QO variance  of  measurement  noise 

39 



q  dynamic  pressure 

R state  process  noise 

S I  1 'S I   2 'S2   11822  submatrices  for  discrete  closed-loop  state  matrix 

s 

T 

Tm 

t 

t0 

'm 

U 

wg 

will 

'a 

'd 

Xf 

X0 

XW 

YO 

a i 

a wI i 

a 5 

rd 

rm 

ym,  i 

6 

6t 'G 

40 

Laplace  transform 

sampling  period  for  control 

time  at  end of sampling  period 

time 

initial  time 

eigenvector  matrix 

control-torque  input 

wind-gust  velocity 

discrete  matrix  relating  wind  gust  to Yo 

unsteady-aerodynamics  state  vector 

external-disturbance  state  vector 

compensator  state  vector 

state  vector  for  complete  open-loop  model 

augmented  discrete  modal  state  vector 

wing  state  vector 

measured  acceleration-output  vector 

real  part  of  eigenvalue 

wing  torsional  rotation  for  ith  panel 

wing  torsional  rotation  for  fifth  panel 

vector  defining  discrete  transformation  between  initial  value  of  wind  gust 

'm, i 

and  external-disturbance  state 

control  input  matrix  in  the  discrete  modal  solution 

ith  element  of 

trailing-edge  control-surface  displacement 

Kronecker  delta 

rm 



c damping  ratio 

Gaussian,  discrete  white  measurement  noise 
yr e measurement-noise  intensity 

Am 

0 

open-loop  eigenvalue  matrix 

A ith  element of m, i Am 

'ld"2d eigenvalues  of  Ad 

E Gaussian,  discrete  white  plant  noise 

5 process-noise  intensity 
n 

Q standard  deviation 

7 time  variable 

7 first-order  time  constant  for  wind-gust  approximation 
4 

@m 
discrete  modal  state  transition  matrix 

discrete  transition  matrix  for  external  disturbance 'd 

'm, i ith  element  of @ m 

'd submatrix of 'In 
'g 

submatrix  of 6, 

'm discrete  transition  matrix  relating  external-disturbance  states  to  the 
modal-amplitude  vector 

wi 

Superscripts: 

imaginary  part  of  eigenvalue Am 

- mean  value 

A estimated  value 

N variance 

-1  inverse 

T transpose 

Special  operators: 

E( I expected  value of a  vector 

exp  exponential 
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[ I  

cov[ 1 

(XIY) 

A 

A€ 

A9 

AW 

BC 

Bf 

B 
9 

B1a~B2a 

b 

‘a 

‘d 

Cf 

CS - 
C 
- 
C 6 

DS 

DW 

D1a~D2a 

E 

Ed 

matrix 

covariance 

conditional  density  of X given  the  value  of Y 

Symbols Applicable  to  Appendixes  Only 

influence-coefficient  matrix  for  the  steady-state  aerodynamic  lift 
distribution 

unsteady-aerodynamics  state  matrix 

compensator  state  matrix 

wind-gust  state  matrix 

submatrix  of  Am 

submatrix  of  Bm 

compensator-control  input  matrix 

wind-gust  forcing-function  input  matrix 

unsteady-aerodynamics  forcing-function  input  matrices 

wing  semichord 

unsteady-aerodynamics  output  state  matrix 

external-disturbance  output  matrix 

compensator-output  state  matrix 

wind-gust  output  matrix 

structural-damping  matrix 

defined  in  equation  (A14) 

diagonal  matrix  with  elements  equal to the  distance  from  the  center of 
pressure of the  control  surface  to  the  hinge 

modal  structural-damping  matrix 

submatrix  of 

unsteady-aerodynamics  forcing-function  output  matrices 

diagonal  matrix  with  elements  equal to the  distance  between  elastic  axis 
and  aerodynamic  center  at  the  ith  station 

defined  by  equation  (C3) 
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*f 

Ga 

Gd 

Gf 

GS 

H 6 - 
H 6 

% 

JW 

J 6 

Ka 

compensator-output-control input matrix 

submatrix of % 

submatrix  of Dm 

submatrix of Am 

control-torque input matrix 

defined by equation (AS) 

control-surface moment of inertia vector 

defined by equation (C16) 

diagonal inertia matrix 

moment of inertia about the control hinge 

time  response  for Jones' approximation 
.. 

Kd 

Kh 

time  response  for  Kussner' function 

bending-stiffness matrix 

wing structural-stiffness matrix 

torsional-stiffness matrix 

ratio of control-surface lift slope to wing-section lift slope at the wing 

KS 

K a 

6 
k 

section  containing the control surface 

kl d' k2d constants 

L diagonal matrix with elements equal to the distance from three-quarters of 
the chord to the elastic axis 

La 

Ld 

L 

aerodynamic lift and moment vector 

external-disturbance force and moment vector 

wind-turbulence scale length 

matrix containing structural mass and inertia terms 

9 

MS 

Mw diagonal mass matrix 

sW diagonal mass-unbalance matrix 

defined by equation (A41 

control-surface mass-unbalance vector 

sampling  period for wind-gust random-number generator 

S 
6 

6 

g 

- 
S 

T 
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us modal  transformation  for  free  vibration 

V airspeed 

V 6 wing  panel  containing  control  surface 

defined  respectively  in  equations (B4) and (B5) 

white  noise  of  unit  intensity 

v1 IV2 

WC 

X g wind-gust  state  vector 

X1arX2a components of unsteady-aerodynamics  state  vector X, 

'ld"2d components  of  external-disturbance  state  vector xd 

ZI discrete-plane  imaginary  root 

zR discrete-plane  real  root 

ZS structural  modal  coordinate 

'd 

'd 

real  part  of  desired  pole 

defined  in  equation  (C10) 

band-pass  frequency  for  wind  model 
yg 

y1d'y2d components  of 

elements  of  matrix 

rd 

Yll 'Y12 

% 
ymgm 

diagonal  eigenvalue  matrix  €or  structure 

desired  pole 

wind-gust  intensity 

'd 

Q 
57 

911412 elements  of  the  open-loop  discrete  modal  transition  matrix 

'd '1 ld"l2d"2ld'  $22, components  of 
"" 

91142'921'922 

@w 

elements  of  the  closed-loop  discrete  modal  transition  matrix 

Dryden  spectra 
g 

Q spatial  frequency  for  wind-gust  model 
g 

imaginary  part  of  desired  pole 

temporal  frequency  for  wind-gust  model w 
g 

44 

! 



9 f  w2f 

w6 

compensator frequencies 

control-surface structural radian frequency 

One dot over a symbol indicates first derivative with respect to time. Two dots 
over a symbol indicate second derivative with respect to time. 
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