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SUMMARY

Major research accomplishments under NASA Grant No. NSG 5341 are

described 
in 

this report. The major conclusions of our research are as

follows:

1) Numerical simulation of convective otorms in a number of

differing environments suggest that the time evolution of

storm dynamico and storm movement are sensitive to the

description of initial and evolving environmental fields.

Also,, details in microphysical parameterizations affecting

growth of precipitation have 
a 

significant influence on

the intensity and dynamjr4 of the storm.

2) As a result of our first conclusion we speculate that the

consistent accurate production of individual convective clouds

will require three-dimensional observations of the environ-

ment with detail sufficient to initialize a numerical model

on scales of I km. over the region to be modeled. Also

evolving forcing at the lateral boundaries of a limited

area model, must be provided in some manner as well.

3) Our simulation e, :k,7 the Heymsfield (1981) Northern Illinois

storm has agoin supported conclusions (1) and (2) although

some observed features were simulated.

4) Our past studies in which we have simulated overahiuc)ting

tops indicate no direct linkage to surface wind gusts. We

do find, however, that overshooting tops may lead to strong

stretching at mid-levels which may locally enhance entrain-
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ment and force a downdraft. Such a downdraft would then

lead to surface wand gusts.

5) Our modeling results show a poor correspondence between

anvil expansion rate and horizontal velocity divergence.

6) The morphology of mature MCC's have been analyzed and the

following features have been documented.

i) the interaction of the MCC with the remains of the

previous day's MCC

ii) the intrusion of dry, high momentum air into the

back of the storm at 500 mb

iii) a broad region of high momentum outflow from the

storm Just below the tropopause

iv) a significant meso=anticyclone. at 200 mb which was

not present prior to the formation of the MCC

v) lack of direct intern%:ti,on with the polar front jet

well to the north

vi) divergence profiles similar to tropical clusters

vii) virtually no evidence of poleward meridional heat

transport associated with the Duo-'e' as one would

expect in a baroclinic system.
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1.0 INTRODUCTION

In this report we summarize major reseaarch accomplishments that have

been achieved under support of NASA Grant No. NSG 5341. The research

has concentrated in the following areas:

i) an examination of observational requirements for predicting

convective storm development and intensity as suggested by

recent numerical experiments

ii) interpretation of recent 3D numerical experiments with regard

to the relationship between overshooting tops and surface wind

&Jsts

iii) the development of software for emulating satellite-;inferred

cloud properties using 3D cloud model-predictud data

iv) simulation of Neymsfield (1981) Northern Illinois storm

v) the development of a conceptual/semi-quantitative modal, of

eastward propagating, mesoscale convective complexes forming

to the lee of the Rocky Mountains.

2.0 OBSERVATIONAL REQUIREMENTS FOR PR',rDICTING CONVECTIVE STORM DEVELOPMENT
INTENSITY, AND MOVEMENT AS SUGGESTED BY RECENT NUMERICAL EXPERIMENTS

During the course of this grant we have conducted five case studies

of convective storms in 1) a South Florida environment, 2) a hurricane

I,	 environment, 3) another South Florida environment, 4) the environment of

a high altitude plateau, and 5) the environment of the Illinois plains.

Unlike investigations such as Klemp and Wlhelmson (1978a,b) Schlesinger

(1975); Miller and Thorpe (1978); Miller and Pearce (1974) our

studies have dealt with environments of relatively weak shear. As a

result we ;find in general a greater dependence of storm properties on

the details of the immediate mesoscale environment: before and during the

k
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storm in question. Such mesoscale forced storms usually produce less w

than thv highly sheared storms, but may produce similar or higher rainf

amounts. Because these storms are such a strong function of the local

environment the thrust of our research over the past four years has dell

with understanding the initialization of these storms.

For the purposes of this grant we have also attempted to make some

general conclusions, based on our studies, on what environmental factor

must be observed in order to accurately predict storm development and

movement. The ultimate goal beyond the scope of this grant would then

be to observe the proper variables by satellite with current or future

technology and make accurate pro-'Actions of storm occurrences.

The first study which we will diecuss is our investigation of cumulus

initiation in the South Florida environment. This study (Tripoli and

Cotton, 1980) demonstrated that cumulonimbus intensity was strongly

dependent on mean environmental law level convergenc es. However it was

concluded the structure and movement seemed to be more closely linked to

the intensity of the local initiating mechanism. This conclusion is

important because it shows that definition of mean convergence and the

thermodynamic and wind profiles on the scale of 30-50 km will tell us

something about the ultimate intensity of a storm in that environment

but the structure and movement is dependent on initial motions on the

scale of 1-10 km. We feel such motions are usually the 	 of pre-

vious or concurrent convection near the region in question. Therefore

to accurately forecas t- an individual convective storm in the South
Florida sea breeze environment, detailed cumulus scale motions $ especially

in the boundary layer, must be observed and forecasted.



The second study which we will discuss is oi

cumulonimbus cloud in a hurricane environment. A

5

simulation was presented at the 13th Technical Conference on Hurricane

and Tropical Meteorology 1-5 December, 1980, held in Miami Beach, Florida.

We were motivated to perform this study by recent re ,%earch of McBride

(1979) which implied the importance of deep convection to the overall

momentum budget of a hurricane. We attempted to simulate a cumulon-

imbus cloud in the composite environment of different hurricane sectors

to find if any differences in vertical momentum redistribution might

occur. Our initialization techniques were those used in the Florida

study by Tripoli and Cotton (1980) where a storm is perturbed by both

a mean and focused convergence. Because we lacked any observational

data on convergence we first decided to use the convergence profile

used in our previous study in Florida. Such an initialization was unsuc-

cessful in producing deep convection using composite enviroments in

F., veral storm sectors. We concluded that this was due to the fact that

such composites were averaged over 'hurricane sectors which included cloudy

and noncloudy regions. These environments were therefore not moist

enough or unstable enough to be characteristic of the environment in

a rainband. We therefore next searched for a sounding obviously taken

within a rainband. Initiating the storm in this environment again failed

to produce deep convection but instead produced a stratus-like cloud.

Our conclusion was that the convergence profile we assumed was not deep

enough. We there acquired a very deep and strong convergence profile

typical of peak rainband convergence found in the Hack and Schubert

(personal communication) hurricane model. This profile was

then used for the mean and a focused convergence. Our results
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were again dissapointing. We found such convergence only led to de!;sp

tropospheric stable lifting and uniform rainfall in the absence of any

cumulonimbus activity. In a "last ditch" effort to initiate convection

we again used the hurricane model derived convergence field, but limited

the initial focusing to lower levels so thet moisture would be drawn

primarily from the very moist levels. This initialization led to the develop-

ment of a cumulonimbus cloud which was weak below 400 mb, but became very

strong aloft.

The results of this study have again demonstrated a strong sensitivity

of cloud growth to magnitudes and distribution of initial convergence

on the scale of the cloud. We find the hurricane environment in general

is very stable and strong forcing is necessary to produce unstable moist

convection. In order to predict the location and intensity of convection

within rainbands not , only is the mean rainband convergence important, but

so is the nature of the-localized forcing which initiates the cumulonimbus

cloud.

Another major case study undertaken by our group was the weather

modification study of a cumulus over South Florida. A preliminary

report of this case study is given by Nehrkorn (1981). We chose to

simulate a highly observed cloud line of 25 August, 1975 south of Lake

Okeechobee. Based on surface mesonet data we estimated initial conver-

gence assuming a vertical profile similar to the Tropoli and Cotton

(1980) study. A symmetric focused component was also assumed and ad-

justed through a number of test cases to obtain the weakest cloud growth

while still having convection possible. This was done so we could find

the strongest response to seeding we could. Because this experiment was

our first experience with the ice phase we discovered oversights in the

formulation and implementation of the code that led to an unrealistically
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vigorous response to our seeding. After correcting these problems we

found very little dynamic response to seeding.

After further analysis of the data and discussions with John Cunning

of NOAA we decided to improve the initialization technique we used.

Instead of using a mean initial convergence spread evenly across the

domain, we approximated the closely linear convergence observed by the

mesonet stations by a line. The focused convergence was then applied

along the line. Instead of using the same abritrary convergence profile

again, we attempted to infer the vertical profile from wind shifts in

the pibal observations taken northwest of the convergence line. The

initial field was then constructed in order to reproduce the observed

winds northwest of the simulated :Line as observed. We also assumed

a conceptual model of the flow southeast of the line based on the

existence of a sea breeze front. This simulation led to a much more

realistic cloud growth pattern than before. The cloud was so intense,

however, that there was lit:-le that seeding such a cloud could have

done".to enhance its growth.

Later discussions with John Cunning revealed that the observed

cloud had no rain at the ground until cloud top reached above 10-12 km

MSL and experienced a marked surface pressure d',rop prior to the rainfall.

Our cloud began raining when cloud tops reached only 5 km MSL and surface

pressure responded by rising. We concluded the warm process was too

intense, As a result, adjustments in our conversion and accretion formulas

of raindrop growth were made and we were then successful in delaying rain

slightly. We found, however, that even this slight delay led to much

lowered pressure beneath the cloud as observed. however, when rain began

the pressure rose quickly near the surface. Also the onset of rain ,led

to deep growth of the cloud and the natural initiation of the ice phase. x
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Further comparisons with John Cunning's observations showed we

also formed large ice particles much more quickly than obser-.ed. As

a result we made some improvements to our graupet parameterization by

making the number of assumed graupel particles A function of the total

mass of graupel computed. This adjustment led to a delay of the ice

phase. However, more vigorous explosive growth occurred later when

the ice phase commenced.

Finally, we conr,luded that rain should be delayed even more

if the simulated onset of rain was to properly match observations.

Because the rain was responsible for the rapid glaciation once the ice

phase began, we felt its onset was of high importance. Also, our

examination of foil impactor data revealed that very little rain actually

existed within the cloud even as it grew to 10 km. At this point, we

decided to consider the findings of Sax et al. (1981). contrary to

popular belief he showed that the CCN (cloud condensation nuclei)

number concentrations vary considerably across South Florida,

becommng very continental near the interior, where our simulated

cloud was found. He found average concentrations to range from 500

to 2000 cm 3 . We have been assuming a mild continental concentration

of 300 cm-3 . So our next experiment was to try again with a CCN con-

centration of 1000 cm-3 . The result was no rain at all while the cloud

grew lethargically to 10-12 km. This cloud compares favorably

with observations prior to seeding,, At this time our experiments on

this case study are continuing.

Our conclusions appropriate to this contract are there is large and

unexpected sensitivity of cloud and cloud system growth to details of the

t_ - ^_ate
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microphysics in addition to the detailed three dimensional configuration of

the initial convergence. Because of the high variability of CCN across

the Florida peninsula, a cumulus may develop explosively in one region

and not rain .40 all in another. This can occur even with the same

initial convergence and thermodynamic profile simply because of differences

in CCN which Sax et al. (1981). 	 found to occur. As a result we conclude

that observations of CCN are important in Predictigg individual cloud

growth and intensity in South Florida.

The next case study we completed recently was the case of a large

quasi-steady cumulus which developed over South Park, Colorado on

19 July 1977.. 	 South Park is a high mountain plateau of 3.1 km NSL where

we conducted the South Park Area Cumulus Experiment (SPACE). The storm

we chose to simulate was analyzed by Cotton et al. (1982) and Knupp and

Cotton (1982a,b) using triple doppler radar, radiosonde, and a PAM

network. The gausi-steady storm which we simulated, was unique among

other storms in the same vicinity because 1) it moved northwest while

other storms moved north or northeast, and 2) its lifetime was greater

than any of the other storms. As shown by Cotton et al. (1982) initial

development of the storm took place along a north-south convergence line

where thermally driven south-easterly valley winds met the well -mixed

south westerlies to the west. During the storm development, a meso-cold

front passed from the north shifting the surface winds to a uniform

northerly direction. At the time of frontal passage, the storm grew

much larger and began its relative movement toward the west. So we ask

what wa14 it that made that cell change direction and become steady whereas

other cells along the line did not? We also ask was the steady storm

structured after the initial environment, the post frontal environment

or both.
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In our first simulation we initialized the storm uaing a modified form

of the gust front iuitialization technique developed by Miller & Thorpe (1981).

Since there was no apparent mean surface convergence in the PAM stations

after the passage of the meso-front, we felt the storm must be forced by

a local convergence. The result of this circulation was a line of cells

whose structure in the meridional direction resembled the cell of

interest, but which differed greatly in the zonal direction. We next

considered the possibility that the forced westward movement may have

resulted from the interaction of the outflow of the simulated cell with

other storms along the previous convergence line. The direc0.on of pre-

ferred development in regions of intersecting gust fronts has been

extensively discussed by Purdom and Marcus (1982) based on studies of satellite

movie loops. Our next experiment was therefore an attempt to find if a

westward moving cell would be favored if a point of intersection between

outflow from the convective line to the north and the simulated cell

moved westward. We found no enhanced ,vertical motion at the intersection

point and no tendency for a westward moving cell to be favored.

Next we attempted to simulate the storm in the pre-meso front

environment, which was characterized by the convergence line. We

simulated a weaker short lived northward moving storm similar to the

prefrontal storms observed. However, the type of cell we observed after

the front passed was not formed.

Finally we initiated the storm as before in the prefrontal environ-

ment and introduced a cold front from the north to pass underneath our

developing cell at the same point in its lifetime as was observed in

South Park. The result was that we were successful in reproducing the

relative westward movement of the observed cell off of the convergence

line and in obtaining a relatively steady circulation that matched
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observations well. We also found that the movement and development were

sensitive `,,% details in the wind profile specified initially on either

side of the convergence line. We found it was necessary to specify a

well-mixed westerly component to the west and a low level circulation

to the east in order to obtain a storm circulation similar to observations.

From this case study we again support evidence that storm structure

is strongly forced by details of initial conditions. We also find that

storm structure, movement and intensity may be strongly influenced by

changes in the environment while the storm is developing. Therefore,

a forecast of this particular storm's behitvior would have to be based

on both the initial environment and the correctly forecasted evolution

of the environment.

The last simulation case study is that of the Heymsfield May 1978

cell analyzed by Heymsfield (1981). Our simulation of the observed

cell A-5, supported under this grant, is described extensively

in section 5 of this report. The results of that ,;V ;v as with our

other studies, demonstrate a strong dependence of the storm structure

and evolution on the detailed description of the initialization fields.

Most notably we concluded that the updraft/downdraft structure of cell

A-8 mimt. be obtained by the forcing of a previous cell's outflow.

In summary, we conclude that the accurate prediction of the evolu-

tion of a convective storm depends upon accurate observations of 1) mean

environmental convergence, 2) initial'donvergence on the cloud-scale and

related temperature perturbations found in outflow convergence, and 3)

microphysical properties of the air mass, i.e., CCN. We also find that a

detailed description of the evolution of the environment in the vicinity

of the storm during the storm's development may,., ° also strongly influence

the structure, movement and intensity.

e. rnM .x^r,gnry^d# wk#ii+1'§dW^NW%M1IW':'y.e...^ gY^f e{1yx jam.



12

3.0 INTERPRETATION OF 3D EXPERIMENTS WITH REGARD TO RELATIONSHTP BETWEEN
OVERSHOOTING 'FOPS AND SURFACE WIND GUSTS

As part of this grant, we have also studied the communication

between upper tropospheric convection behavior and lower tropospheric

convective phenotaena. An objective of this study was to further

examine the relationships between "explosively" rising convective

towers (or overshooting tops into the stratosphere) and severe

wind gusts and/or tornadoes. Fujita and Byers (1977) reported on the

analysis of a cumulonimbus which produced a severe surface wind gust or down-

burst and exhibited an overshooting top behavior on satellite imagery. Fujita

and Byers (F & B) hypothesized a cell. model to ecplain the dynamic linkage

between overshooting tops and downbursts. The model involves tops over-

shooting the anvil, thoan collapsing into a strong dowt_a,;t (located at ap-

proximately 10 km) and a trail of precipitation. It is hypothesized that

entrainment at the top transports dry air and large horizontal momentum

downward. Ice crystals are hypothesized to rapidly sublime in the sub-

saturated entrained air, thereby taking up heat from the air resulting in

a cold, negatively buoyant downdraft. The collapsing top and entrained

air accelerate the train of precipitation and import fast horizontal momen-

tum front the stratosphere. A successive rise and fall of the top are

hypothesized to create a family of downburst cells that moves away from

the parent thunderstorm. A major weakness in the F & B theory is that

the magnitude of 0 e of tropopause-level, air is so large that very large

forcing or ice-phase diabatic processes are required for ai-c to descend

to the surface.

In recent years, we have obtained two significant cases of over-

shooting tops in our simulation of cumulus clouds with the CSU three-
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dimensional (3-D) cloud model (Tripoli and Cotton. 1980). In both cases,

tile simulation of 
all 

overshooting top was ►ortuitous.

Tit the first ca3o, which tins been reportod in tile first-year report

to NASA u►idor Cratit No. NSG 5341, all ovorshootil ►g lop Was fortuitously oh-

taLtiod Iii it simulation of the dynamic respotive of a cloud to massive sooklinp,.

Being otir first exerelso of tile model with the ice-phase model activated,

artifJOally largo ice-pha qe growth tondencies were generated when scoded

crystal micentrations were introduced. As a coIisequauca of not olleclans

the tendoncles to determine If more ice wars 	 gont-rated than a y.-Illal)lo-

water, ink artificially larpte ice s mass was produced and all excess latent

hoat release was generated. T!ilc inWated a vigorous oxplosivoly growing

tower	 penetraLcd vloll iiito the stratosphere, Corisis-tont 00 Fujita

mid Byor,,, J' & 11) model, the tower plunged batic Into tile troposphere and

illitiatt)d a 10 111 , 1 -1 dowtidraft noar the tropopiune (sou F1g. 1). However,

the	 of 0011 ►munIcatioti hetwevii the overshooting top and the aurfao.o.

as envisajll^ rl by V & 11 W4,04 IIOL Ov 'Ident: ill the Simulation. Instead, as tile

towor, hog an to v\j)lo ,.ivt.Jy rise, low-valued 0 
0 
;,air existing in the lower mid-

troposphere was entrained into tile w4kc, of the vigorously rising bubble, forming

a vigorous downdraft. Tito downdraft penetrated to the surface and formed an

intense 1,1114.1 f uwt. Tliuu, we concluded Oiat the b ►s'le mochas nism linkiiig
overstiL,,, i.Ing tops and hurt aces wind gusts Is the dynamite entrainmoat asso-

clited wi,th vertical mas,-4 flux dJvergence due to "explosive grovth". The

howevor, can intenso dovnibur-sts bc gatie-rated under con-

ditions of o more roallstically created mass flux divergence?

hurt I ' Ir Support for tilis hypoLhusio was Obtaint'd ill O^►r secolld over-

shooting t) ,.) simulitjc ti. A dQSc,-,'.': 1 tJ,on of this s4m ►laLion was pro tinted

at they 	Tech►iical Cotift^rctice on Hurricanes and 'Propical Metoorology

3-5 Vcceinbe:, 1980, held In Miami, Peach, Florida, In this case, a cumulo-

F"°`,'
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M .'11M ►► ell-COation StIrted In thc	 r.Oble lowev trot o-

sphere environmont-, of a hurricooe were met by fzIllure, In a frustrated

attempt to generate a deep convective cloud before the conference presen-

tation, the initially-imposed cloud-scale vertical motion was greatly

enhanced over prior simulations, such as reported in Tripoli and Cotton (1980).

Tile result was a convective tower which rose through the stable environ-

ment of the lower troposphere and grew explosively once it encountered

the lessor stability in the upper troposphere. Again, the explosively

rising tower overshot the tropopause, plunged back into the troposphere

and generated downdrafts of the order of 10 m s -1 
just below the tropo-

pause. In this casu, however, the air entrained into the storm in the

wake of the explosively rising tower did not have a pronounced minimum

value of 0 e. 	 As a consequence, a lower tropospheric downdraft was pri-

marily driven by water loading and damped in intensity as the air warmed

while descending to tile surface. No significant surface wind gust was

detected in the simulation. This further supports our contention that

surface wind gusts and/or downdrafts have their origin in the entrainment

of low-valued 0 e air in the lower mid-troposphere. The association of

surface wind gusts with overshooting tops does not appear to be a cause

and effect relationship.

Clearly, what we need is a well-documented (i.e., multiple Doppler radar,

surface mesonets, etc.) case in which an explosively rising convective tower

penetrates the tropopause and a surface downburst or microburst is observed.

Simulations with the 3-D model of such events should better establish a

causal/effect relationship between upper tropospheric convective behavior

and surface phenomena. It should be noted that in the simulation of the
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cumulonimbi in a tropical cyclone, associated with the explosively growing

tower was a low-level meso-vortex having tornado-like characteristics, simi-

lar to observed updraft mesocyclones in tornadic storms (Brandes, 1978).

Thus another mode of low-level conve c tive phenomena associated with upper

tropospheric convection can be investigated with the model.

4.0 THE DEVELOP IMENT OF SOF114ARE FOR EMULATING SATELLITE-INFERRED CLOUD

PROPERTIES USING 3D CLOUD MODEL-PREDICTED DATA

Before leaving 0(11' ^',VOLIJ) and joinii ►g G.E. MATSCO to work with NASA,

Mfr. NMark Stephens began the development of algorithms to emulate the analy-

sis of satellite-derived eloiAd top isotherms using data predicted with the

3D cloud model. The algorithm involves a search for cloud top and mapping

of a satellite plane of data (i.e.. cloud top temperature-). Using dati

predicted by the model in its non-icephase version, he then computed the

rate of expansion of isotherm area 	
In

( d
	A

dt 

Stephens then compared the predicted 
d 
In 

A

dt to the predicted	 -

zontal velocity divergence D. The divergence was computed at the height

having an average horizontal temperature corresponding to the isotherm

used In calculating 
d In A	

Also, the D was evaluated over the area of
dt

the isotherm projected onto the plane on which D is to be computed.

The rate of isotherm expansion was also compared with predicted total

edd y ki.notic energy and the location and amplitude of maximum updraft

speed as well as precipitation intensity.

I	 In the test case, Stephens found generally poor correspondence be-

tureen 
d In A

d t	
and D. The best correlation occurred at the time that the

storm was at its peak kinetic ener gy early in the cloud's life history11

(30 to 40 min). After this time, other factors affecting isotherm expan-

sion became more influential. Some of these factors were model dependent,

11
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especially for the stage of model development at that time. Factors af-

fecting isotherm expansion other than velocity divergence include:

1) The anvil not only expands outward from a central point, but also

extends its area by cloud water condensing or moving upward through

it region. This effect can be expected to be of greater importance

when the Lce-phase is included in the model predictions.

2) Since the anvil is composed of cloud water, it is more influenced

by evaporation than a similar anvil composed of ice particles.

3) The above-mentioned evaporation of the anvil also leads to a

disorganized anvil structutre which contributes to a noisy esti-

Ina te of 
d In A

dt

The calculation of	
dt	 must also be terminated when the anvil

reaches the lateral bou^idary of the model.

5.0 SIMULATION OF HEYMSFIELD'S NTMROD CASE,

As part of this grant, we attempted to numerically simulate the

observed structure of cell A-5 which was observed as part of the NIMROD

(Northern Illinois Meteorological Research on Downbursts) experiment

near Chicago in Spring 1978 (Fugita, 1979). An extensive analysis of

the triple doppler data of cell A-5 was presented by Heymsfield ( 1982).

Based 
on the results of that study, Heymsfield calculated updraft and

downdraft trajectories in a coordinate relative to the updraft maximum.

These trajectories are shown in Fig. 2. It is interesting that the up-

draft trajectory points primarily downshear while the downdraft trajec-

tories are in a relatively upshear direction. Presumably the updraft

moves upshear in Lhe lowest 2 km where horizontal cross sections show

inflow from the northeast. Based on these trajectories, Heynisfield

drew a conceptual model of the structure of call A-5 given in Fig. 3.
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The downdrafts labeled L, R, and DV were forced by flow convergence at

midlevels upshear of the updraft. Downdraft R was weak at midlevels such

that no trajectories from 7-8 km MSL penetrated below 4.6 km MSL.

However a low level downdraft from 2.1 km (shown in Fig. 3) did reach the

ground. The upshear downdraft to the left did appear to be stronger and

penetrated to the ground. Although Heymsfiel,d showed no trajectories

indicating where the air in downdraft DD finally ended up, the downshear

downdraft was consistently observed with radar and inferred to be weak.

In order to help explain the principal dynamic mechanisms which

led to the observed structure we attempted to simulate the lifecycle

of A-5 with the CSU 3 dimensional cloud model. After obtaining all

radiosonde and mesonet observations made on the storm day we next

needed to construct an initial field representative of the storm

initiation environment. Based on the advice of Dr. Heymsfield we

first decided to use radiosonde observations at 1800 1ST. At that

time the mesonet stations seemed to show a convergence line running

southwest to northeast at about 210°. The vertical convergence pro-

file was not shown so we had to guess on its variation with height.

To do so, we subtracted the mean vector of 	 13.1 ms-1 wind at 210°

from the observed wind profile and viewed the cross convergence line

component observed to the left of the line. We found a noticable

w:indshift at 2.8 km AGL below which the cross line wind blew toward

the convergence line and above which the cross line wind blew out from

the convergence line. We then assumed that the cross convergence line

wind to the right of the convergence line below 4.1 km would blow opposite

to that observed to left. Hence an associated vertical motion is implied.
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In order tc perturb an unstable updraft we had -to initially move

surface moisture and potential temperature up to cloud base in addition

to supplying a focused (see Tripoli and Cotton, 1980) vertical motion.

The disadvantage of such a perturbation is that until a downdraft is

established the base of the updraft will advect downwind of the source

air thus initially tilting it upshear with height. When precipitation

or entrainment initiates downward motion it then must always be downshear.

If the cloud, however, was initiated with surface convergence forced

by outflow from the upsheat direction, the translation of the downshear up-

draft base would be opposed giving low level upshear updraft tilt. This may

lead to the downshear downdraft more effectively. Unfortunately when

initiation is performed with initial outflow other problems occur. First

any updraft tilt is forced to occur only downshear and therefore other

possibilities are eliminated. Hence, we force a structure we are trying

to determine. Second, the outflow tends to form an arc of cloud cells

where in nature a single cell would be preferred with more complex

terrain and cell interaction. Third, it is difficult to determine how

fast to move, how long to perturbate, and how intense to make the

initial outflow source region without extensive trial and error simulations

in three dimensions.

We therefore elected to first try the focused convergence initial

perturbation and hope that a secondary updraft will form downshear

resulting from precipitation. A cross section taken along the convergence

vine at 1000 s simulation time is shown in Fig. 4. As expected a strong

updraft of 14-17 ms-1 developed and moved upshear with very

little tilt downshear. After 1500 s (Fig. 5) precipitation commences

downshear of the updraft initiating a strong downdraft from 4 km to the

21.
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Figure 4: Flow and condensation field for x-z (northwest to southeast)
cross-section through 3D numerical simulation of cloud at 1000s simulation
time in environment observed by 1800 CST sounding. Wind vectors are scaled
as shown. Heavy dark contour surrounds region of saturation and contours
are of total, condensate beginning with lg kg

-1 
and intervals lg kg-1.

Small circles indicate presence of rain water and triangles indicate the
presence of graupel water.
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Figure 5: Same as Fig. 4 except at 1500s simulation time.
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ground. The downdraft intensity reached nearly 17 ms-1 , originating

up to 3.2 km AGL. However, at 2000 s simulation time (Fig. 6) surface

outflow is evident, but necessary updraft development downshear is

not taking place. The ho.izontal cross-sections at 1000, 1500, 2000 and

2500 s also demonstrate this (see Figs. 7 - 10).

The observations of cell A-S were made between 2000 and 2100 LST.

However, our first simulation was based on a sounding observed at 1800

LST. Further study of the 2000 LST data showed a substantiallly greater

bhear in the lowest 6 km in the vicinity of the convergence line, than

wav found in the 1800 LST sounding. We concluded that the weak secondary

dow.1shear updraft development was likely due to the weak shear at low

levels in the earlier sounding. We therefore took the 2000 LST sounding

and derived another convergence profile. The newer convergence field was

considerably weaker than that derived from the 1800 LST data. The

convergence Line was less visible on the mesonetwork as well. Using

the 2000 LST data we then initialized the model and performed a simulation.

The result was no direct development at all. We attributed this to much

increased stability near the surface in the 2000 LST sounding as night-

fall arrived. After studying the mesonet data more carefully we found

that near the sounding site sur ce temperatures were substantially

cooler and drier than those along the line where cell A-5 developed. In

the vicinity of cell A-5 surface temperatures and dew points were much

more like the earlier 1800 LST observations. Perhaps clear skies away

from the convergence line allowed increased radiational cooling and

drying subsidence f,r4;,m the convective line helped produce the clear

skies.
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Figure 9: Same as Fig. 7 except at 2000s simulation time.
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Therefore we elected to again try to simulate cell A-8 in the 2000

LST environment except for using the warmer temperatures and dew points

of the 1800 LST observations in the lowest 1 km. This simulation did

produce a convective cloud of a somewhat different nature than the first

simulation. A cross section of the simulation taken along the convergence

line at 1000 s is given in Fig. 11. The updraft tilts downshear with

height as in the first experiment, however the increased northeasterly

momentum near the surface increases the tilt and forces precipitation

further northeast of the updraft core. By 1500 s (Fig. 12) intense

precipitation cuts off the updraft inflow as in the first experiment.

The low level flow at this time (Fig. 13) shows the surface outflow

pattern and the remaining split updraft core upshear. By 2500 s the

conti,uad surface outflow led	 to the demise of the original cell and

the formation, of a small new cell downshear (see Fig. 14). The new

cell continues to develop and grows to the size shown in Fig. 15 by

3500 s. The secondary cell, however was too weak to develop enough

precipitation and associated downdraft to maintain its surface con-

vergence. Therefore as the effects of the original cell's outflow

diminished, the secondary cell, slowed its movement downshear, assumed

I	 no .tilt and precipitation fell. on the updraft. This structure finally

led to the dissipation of the cell. There are a number of possible

explanations why the secondary cell failed to obtain sufficient intensity

to force its own existance. First, the forcing from the first cell may

have been too weak to kick off a cell of sufficient magnitude to encourage

further growth. Second, the outflow from the first cell may have been

too dry because of improperly modeled characteristics of the first cell.

For instance, the forcing cell for A-5 may have had an upshear tilt with
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height and a greater volume of saturated air at low levels downshear of

the downdraft. This may have led to a downdraft which was supported more

by the rapid evaporation of cloud water rather than ;dust rain as in our

simulation. Obviously, an improper simulation of the microph,,sical

growth of rain will affect the timing and intensity of the simulated

downdraft adversely as well. Finally, the environment of the secondary

cell may have been altered so that it was unsuitable for more intense

convective development.

We attempted one additional simulation of cell A-5 under this contract.

In that experiment a convergence field within the 2000 LST observed

environment was set up initially. Next, a cooling wcs imposed at

levels below 2.5 km and within a radius of 4 km at the domain center.

Such cocking was hoped to initiate a surface outflow which would force

a cell downshear. However, the cooling was insufficient to force the

initial cell and the experiment was terminated at one-half hour of

simulation. At this point we terminated our work under this contract due

to lack of funding.

Many transient features of the first 2000 LST simulation compared

well with the analysis of Heymsfield, For instance during the growth of

the simulated cell through mid-levels the structure shown , in Fig. lb was

obtained. This can be compared to Heymsf ield's Doppler radar depiction of

cell A-5 shown in Fig. 17. The flow structure compares well at this

level. Most notably the model has reproduced the downshear vortex

couplet and the downshear downdraft DD. The anticyclonic vortex does

seem to be more powerful than observed, however. The downshear down-

draft resembles convergence of flow downstream of an

obstacl e:: and the drag and melting of graupel falling from the downshear

tilting updraft above. Lower down (See Fig. 18) the downdr a ft intensifies
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and is shifted upshear. This downshear tilt with height was shown

on the trajectories of Heymsfield shown earlier. The downdraft near

the surface is shown in Fig. 13 at 1500 s and Fig. 19 at 2500 s. The

downdraft core is moving upshear with time. We would expect trajectories

of the time variant model, predictions to be very similar to Heymsfield

although the cloud circulation itself never becomes as steady as the

observations indicated.

The results of th`,se experiments again suggest a strong dependence

of storm structure on the initial environment of the storm and perhaps

the evolving environment during the Life of the storm. Our shortcomings

can be directly linked to an insufficient description of the environment

at the time of the storm. Because we had to make assumptions pertaining

to the environment (to which we demonstrated a high sensitivity in our

simulations), it is not suprising that we were unsuccessful in producing

a storm exactly like A-5. It is our experience that the individual

cumulus cloud is much like synoptic scale disturbances in its require-

ment for specification of initial conditions. We would not expect to

accurately simulate an occluding front and low pressure trough approach-

ing Detroit based on a single sounding taken in Omaha the previous

evening. Likewise the accurate simulation of an observed cumulonimbus

storm requires perhaps tens or hundreds of points around the disturbance

at which the atmosphere is sampled through its entire depth. If such

data were available, we would then need to study more advanced dynamic

initialization techniques in order to incorporate the detailed analysis

into the model. We believe this is where small scale modeling must go

if the individuai cell structure of clouds such as A-5 are to be

accurately simulated.

M

L 
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6.0 DEVELOPMENT OF A CONCEPTUAL/SEMI-QUANTITATIVE MODEL OF EASTWARD
PROPAGATING, MESOSCALE CONVECTIVE COMPLEXES FORMING TO THE LEE
OF 111E ROCKY MOUNTAINS

The development of a conceptual/semi-quantitative model of eastward

propagating, mesoscale convective complexes has been concentrated on

the analysis of convective complexes forming during the period 3 August

to 10 August, 1977. A two-part paper has been submitted and revised

for publication in the Monthly Weather Review entitled: A Long-Lived

Mesoscale Convective Complex, Part I The Mountain Generated Component,

and Purr II Morphology of the Mature Complex (see Appendices 1 and 2).

A condea-ied version of Part It was presented in a paper at the 12th

Cont:erence on Severe Local Storms in San Antonio, Jan 1982 (see Appendix

3) .

Part I is basically a synthesis of George's (1979) thesis. The paper

follows a scenario of convective ev(llution from the eaar.l,y morning micro-

meteorological scale, to the mid-day ridge/valley circulation and

mountain cumuli/cumulonimbus, to mid-afternoon plains cumulonimubs and

squall lines, to the formation of a mesoscale convective complex (MCC).

In Part. II, the pre-MQC synoptic field is re-analyzed and the

morphology of the mature MCC Is described including:

i) the interaction of the MCC with the remains of the previous

day's MCC

it) the intrusion of dry, high momentum :sir into the back of the

storm gat 500 mb

iii) a broad region of high momentum outflow from the storm just

below the tropopaause

iv) a significant meso-anticyclone at 200 mb which was not present

prior to the .formation of the MCC

F-11 .
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v) crack of direct interaction with the polar front Jet well

to the north

vi) divergence profiles similar to tropical clusters

vii) virtually no evidence of poleward meri,dional heat transport

associated with the MCC as one would expect in a baroclinic

system.

It is concluded that the MCC's shidied Are basically tropical in

nature and their dynamics are dominated by buoyant accelerations. Asso-

ciated weak baroclinic features, such as a surface stationary front,

serve to trigger and direct the release of convective instability. It

is suggested from this analysis that a certain amount of barocliricity

may be compatible with an MCC, but as the baroclinicity increases the

convection either tends to organize itself into the linear structure of

• squall line or the system as a whole undergoes a transformation into

• rapidly occulding cyclonic wave.

The two-part MCC, paper stresses mesoacale processes for the pre-

MCC developmental stage and shifts emphasis to the synoptic scale for

the mature MCC stage. This synoptic analysis for two specific, mature

MCCs complements well the composite MCC studies by Maddox (1981, 1982)

and the MCC modelling results of Fritsch and Maddox (1981). Relying

primarily on synoptic rawinsonde data, these studies have not extended

into the meso-^ scale (-20-200 km) sub-structure of the meso-a (.,200.

2000 km) parent system. Under support of this contract, we have isttempted

to refine the conceptual MCC model to include these smaller scales by

continuing the investigation of the 3-10 Aug 1977 MCC episode, focusing,

on the MCCs meso-^ scale sub-structure.
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In papers presented at the IAMAP Third Scientific Assembly (Hamburg,

Aug 1981) and the Fourth Conference on Hydrometeorology (Reno, Oct 1981)

[see Appendices 4 and 5], we showed that the MCC displays and internal

radar echo structure more complex than the near-circular cloud-top

shield and synoptic studies would imply. This meso-S scale complexity

is manifested spatially and temporally within a given MCC, as well as

in the great variability displayed from one MCC to another. Despite

this complexity, consistent meso-S scale characteristics were identified

for several of the MCCs. For example, the component meso-R scale

centers of convective activity were located consistently along meso-a

to synoptic scale features (such as fronts, the previous day's MCC

outflow boundary, or a lee-side line of orogenic convection). The

core of the MCC characteristically developed from a meso-O scale

convective cluster that intensified near the intersection of two

such meso-a scale features. A much more restricted area of low-level

radar echo and precipitation was consistently observed than what the

conceptual meso-a scale vertical circulation might imply (suggesting

that the extensive cold cloud shield is more a result of diverging

convective cloud debris than organized meso-a scale ascent, and/or

that there is significant sub-anvil evaporation of the meso-a scale

precipitation).

Furthermore, significant differences were observed between those

MCCs in the episode that formed to the immediate lee of the Rockies

and those that formed another 500-800 kin to the east. The western

systems all involved the orogenic line of convection induced by a

meso-a scale mountain/plains diurnal circulation, while the eastern

systems formed without the benefit of this particular .forcing mechanism.
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Also, the eastern systems generally displayed less mesa-Q scale

complexity and better fit the conceptual model of a single-cells

meso-a scale MCC.

This meso-O scale analysis of the 3-10 Aug 1977 MCC episode is

continuing on a more quantitative basis, utilizing hourly precipitation,

radar, and enhanced iR satellite data. We believe that the improved

conceptual/semi-quantitative model, extending into the meso-S scale,

will contribute significantly to the current understanding of the MCC

life cycle. A paper on this topic is currently in preparation for

submission to the Monthly Weather Review.
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THE DYNAMIC STRUCTURE OF THE MESOSCALZ
CONVECTIVE COMPLEX--SOME CASE STUDIES

Peter J. Wetzell , William R. Cotton 2 , and Ray L. McAnallyZ

IGoddard Laboratory for Atmospheric Sciences, NASA/Goddard
Space Flight Center, Greenbelt, MD 20771

2Department of Atmospheric Science, Colorado State University,
Fort Collins, CO 80523

During the summer months, a nocturnal
precipitation maximum occurs over a broad region
of the ce..cral High Plains. More than 60% of all
precipitation during the months of June. July, and
August falls between the hours of 2000 and 0800
local time within an area covering all of Nebraska,
Kansas, Iowa, and northern Missouri. Evidence
suggests that this precipitation frequently comes
from assoscalre systems which originate as after-
noon convection over, or immediately leeward of
the Rocky Mountains and move eastward, growing in
response to the high moisture content of the air
over the Great Plains.

During the period from 3 to 10 August
1977, mesoscale convective-complexes (MCC's) were
observed Lo develop daily n:;ar the Colorado Rockies
and move generally eastward along a surface sta-
tionary front, sometimes maintaining their identity
for several days. Figure 1 shows the tracks of
these systems as well as a number of others which
developed further east in Missouri and Iowa.
During this episode, an excessive amount of
precipitation fell in a 100-200 km wide band just
south of the stationary front and extending from
Colorado to the Atlantic coast. In the seven day
period from 1200 GMT 4 August to 1200 GMT 11 August
1977, a total of 102 mm of precipitation was
measured at Goodland, Kansas, 100 am at Kansas
City, 124 mm at Chicago, and 129 mm at Buffalo,
New York. Minor flooding occurred in a number of
locations along this band; for example, on
6 August, Parke County in west central Indiana
received 175-225 mm of precipitation) in six hours
and a total of 250-325 mm in 24 hours.

Figure 2 is representative of the
synoptic pattern which produced this episode. The
episode began when a strong blocking ridge developed
off the west coast of the United States and ex-
tended northward across eastern Alaska. This
development initiated a slow steady flow of cool
Canadian air southward to meet tropical air from
the Gulf of Mexico and Form the stationary front
mentioned above. Weak shortwaves were observed
circulating around the stationary 50 kPa low
center over Hudson Bay. These were occasionally
associated with particular convective systems
during part of their lifetime. In Figure 2, the
uatlina of the -52 0C isotherm associated with MCC
no. 2. (Figure 1) is seen associated with a short
wave in the central United States. The two short-
wsves entering the northwestern part of the county

contribute to the development of system no. 2.
Some aspects of the dynamic structure of MCC's 1
and 2 near the time of their mature stage are
discussed below.

At 12Z 4 August 1977, system no. 1 was
just past its mature, or most intense phase. It
has been shown by Maddox at al. (1981; that upper
tropospheric flow patterns are drastically modified
by MCC's. primarily in the form of a broad anti-
cyclonic pattern of wind anomalies near the
tropopause. Such a pattern is evident in the
vicinity of system no. 1 (see Figure 3); however,
as shown by the representative wind profiles of
Figure 4, the region of anvil outflow which pro-
duces the anticyclonic pattern, although having
broad horizontal dimensions, is very shallow in
the vertical. The wind profile within the MCC
produced "Jet" apparent in Figure 3 is very dif-
ferent from a typical synoptic scale jet in which
the vertical wind shear is spread uniformly through-
out the troposphere. Because the MCC outflow is
so shallow, 12 hour forecast errors in the wind
field when convection is omitted are limited to
a narrow band near the tropopause. 300 mb wind
forecasts, for example, are found to be much more
correct. The shallowness of the outflow also
accounts for the fact that at all levels the
observed wind field shows very little effect of
the MCC after 24 hours.

The anticyclonic flow pattern is also
apparent near system no. 2, both in the wind
pattern and the 200 mb height contours. Figure 5
shows a distinct storm scale anticyclone at a time
shortly after the mature stage of this system.
This feature was not apparent 12 hours earlier and
it disappears 12 hours later; however, during the
most intense phase of the system it is clear that
significant upper tropospheric warming is produced.
This is also apparent in the 500-200 mb thickness
change from 00.'0 to 1200 GMT 5 August (Fig. 6).
The maximum thickness increase of over 60 m,
corresponding to a mean warming in this layer of
over 3 K. was centered over the MCC and was
focused to the length scale of the system.

Divergence in the vicinity of both
MCC nos. 1 and 2 was calculated at two levels
using the method of Bellamy (1949), which employs
the rawinsonds data directly and requires no pre-
analysis or interpretation of the reported winds.
Divergence maps are presented in Figure 7. At
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Figure Z. Traoke of the oentroid of the fourteen MCC le which developed during the episode of 3-10 August
1977. Circled number is the system number.	 The date is given near the 0000 WC symbol.
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Figure J. Upper tropospheric maximum wind at 1200
GAl!' 4 August 1977, plotted and analysed in knots,
with pressure level of corresponding wind vector
in kPa.

Figure 2. 500 mb analysis for 120C Cliff 4 August
1977. Dashed Zines mark positions of shortwave
troughs. Also outlined in the central U.S. is the
-520C infrared isotherm of the ACC in that area.

200 mb (Figures 7b, d). the expected broad region
of divergence is seen in thR vicinity of both
systems. Surrounding each tq5 tem was a ring of
presumably compensating convergence. In both
cases, the strongest horizontal gradient of
divergence occurred on the southeastern flank 	

P"
of the system. A more surprising result is the
divergence pattern at 500 mb--supposedly near the
level of can-divergence in barocli .nically driven
storms. In Figures 7a. a we see a distinct
divergence -convergence couplet associated with
each storm and imbedded within a field of near
zero divergence values. This feature may be
reflective of the process of entrainment of
middle level air into the rear flank of the storms.

Figure 4. Wind velocity'profil4a at 1200 CMf
4 August 1977 for Peoria, IZi. !solid), Salem, ril.
(dashed) and Little Rook, Ark. (dotted).
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Figure S. 20 kPa height analysis for 1200 GMT
5 August 1977, with the area of eate,ltite obeeived
apparent ;black body temperature leiw than -5200	 Figure 6. 12-h ohange in 50-25 kPa thickness (in
shaded and outlined by a heavy solid line.	 maters) from 0000 GMT to 1200 CMT 5 August 1977.

Negative-valued contours are dashed. Area with
satellite observed apparent black body temperature

lees than -520C at 1200 GMT 5 August is shaded.
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Figure 7. Maps of divergence .(convergence negative) calculated using the method of Bellamy (1949) for
(a) 50 kPa at 1200 2C 4 August 1977; (b) same as ^a) fur 20 kPa; (c) 50 kPa at 1200 GMT S August 1977;
(d) same as (0) for 20 kPa. Contours analyzed at intervals of 2zI0- 5 sea-1.
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Figure 8. Vertical profiles of divergence as
reported by Ruprecht and Cray (1978) for tropical
cloud olur• ters, and as calculated using the method
of BeZlarrj (1049) within polygons surrounding the
AK,C ►e studied here. For 1200 GAIT 4 August 1977,
the polygon used has an area of 51,000 kM2 and
has at its boundary the following stations
Oklahoma City; Arnett, Alissourti; Salem, Illinois;
Peoria, Illinois; Ornaha, Nebraska; North Platte,
Nebraska, and Amarillo, Tests. For 1200 Gaff
S Aug,4at 1977, the polygon used has an area of
5:3,000 km2 mid has at its boundary the following
stations: OkZahoms City; A.'onctt; Peoria; Huron,
South Dakota; North Platte, Nebraska; and Dodge
City, Kansas.

Vertical profiles of mean divergence
In 50 mb layers lit the vicinity of the two MCC's
were also calculated and appear in Figure 8. These

profiles were constructed using data obtained from
stations arranged in a polygon surrounding each

MCC, again using the technique discuss4rA by Bellamy

(1949). The area within the polygon selected for
1200 GMT 4 August was 512,000 km , and 523,000 km2
for the following day's MCC. Also shown on

Figure 8 for comparison are composite calculations
of divergence profiles in tropical cloud clusters
as presented by Ruprecht and Gray (1976). The
area within Which Ruprecht and Cray calculated

divergence is only about 40% of that used for the
MCC's, so direct quantitative comparison of these
curves is'not possible. The smoother, less
detailed nature of the cloud cluster profiles can
be attributed to the large number of soundings and
storms combined into these composite profiles;
nevertheless, the similarities between MCC and

cloud cluster divergence structures stand out
clearly. Both have a general convergence through-

out the lower and middle troposphere with a narrow
layer of relatively strong divergence centered at
20 kPa associated with the storm outflow. The
magQitude of the divergence values presented in
Figure 8 is comparable to that produced by a typical

haroglinically driven mid-latitude cyclone; and
since the polygonal area used in the divergence
calculation (equivalent to a square 700 km on a
side) would also encompass the circulation of
such a cyclone, one may .conclude that the magni-
tude of mass displaced by an MGC is similar to that
of a conventionx, cyclone.

Figure 8. Vertical profiles of nine statio►w
average mridionar heat transport for the two

We's and for a mature winter cyoZone centered
at the eame point. The nine stations used for
each profile are the following: North Platte,
Nebraska; Omaha, Nebraska; Peoria, Illinois;
Topeka, Kansas; Dodge City, Kansas; Salem,
Illi.nois; Oklahoma City; Monett, Afissouri; and
Little Rook, Arkansas.

As a further comparison between
baroclinically driven systems and MCC's, the
vertical profiles of average meridional sensible
heat transport by the two storms are plotted in
Figuro 9 along with the profile from a mature
winter cyclone centered at the same location.
Each profile was constructed by calculating a nine
station, 50 mb layefi mean temperature for each
layer from the surface to 100 mb. Each individual
station's deviation from that mean. T', was then
multiplied by the meridional wind component V
(equivalent to V' since the mean value of V is
assumed to be zero), and the nine values of VT'
were averaged arithm,Ctically. The. results show
that the winter cyclone generated a strong north-
ward transport of heat through the troposphere
while little northward heat transport was produced
by the MCC's. In fact, throughout much of the
troposphere, except near 6ne tropopauso and the
surface. there was a slight southward transport of
heat by these systems. The low-level transport
can probably be attributed to the effects of the
low-level ,jet. Ftom Figures 8 and 9, one is led
to the conclusion that a weather system which
displaces as much mass as a baroclinic system
without transporting significant sensible heat
pole-ward must be operating in a predominantly
barutropic environment and must be basically
driven by convective instability in a manner
similar to tropical cloud clusters.
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1.	 INTRODUCTION

The mid-latitude Mesoscale Convective Complex (MCC) has been identified

and described by Maddox (1980) as a unique class of convection, organized

on the meso-al scale (250-2500 km; see Orlanski (1975) for a detailed dis-

cussion of scale terminology), which accounts for much of the convective

season precipitation over a large portion of the United States (US) mid-

section. The predominantly nocturnal occurrence of thunderstorms in this

area has been long established (Means, 1944; Wallace, 1975), and previous

attempts to describe their mesoscale organizational characteristics have

generally invoked the squall line conceptual model (Porter et al., 1955;

Miller, 1967). However, based on the relatively new geostationary satellite

vantage, Maddox (1981) demonstrated that the MCC has distinctly different

structural and dynamical characteristics from the squall line. Among its

distinctive features are a long-lived, near circular cold cloud shield,

large areas of light precipitation (with embedded, locally heavy precipita-

tion), a mesoscale mid-to-upper tropospheric warm core, and a large-amplitude

anticyclonic outflow in the upper troposphere that strongly perturbs the

larger-scale environment. Fritsch and Maddox (1981) have further described

the upper-level structure of the MCC and, with numerical model support,

have inferred that a mesoscale region of mean ascent in the mid-to-upper

'Hereafter, a and 8 will be referred to as a and b, respectively.
I,

1
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troposphere is a fundamental aspect of the MCC that explains many of the

observed features.

The previously cited MCC ,studies concentrated on their gross satellite-

based characteristics, synoptic-network data, and a rather coarse mesoscale

numerical model, and were therefore focused and somewhat limited to the

meso-a structure and the macroscale (>2500 km) environment of the MCC. 14hile

Maddox (1980) recognized the role of intense meso-b scale (25-250 km) con-

vective systems in initiating the MCC and in continuing to produce locally

heavy rains within the larger, mature complex, no systematic study of the

meso-b structure of the MCC has been made. A more detailed description of

the meso-b substructure of the MCC would lead to a better understanding of

the processes by which the mature meso-a system evolves from its incipient

meso-b components, persists for several hours, and then fragments and loses

its organized characteristics. Given the consistent meso-a features of the

MCC on one hand and the more capricious nature of convective scale processes

on the other, this paper describes,,, intermediate meso-b characteristics of

the MCC that are observed to be somewhat consistent from case to case.

2. CASES STUDIED AND DATA UTILIZED

As evidenced by Maddox's (1981) two-season MCC climatology, successive

MCCs often develop daily over a several day period when a slowly evolving

large-scale circulation pattern becomes favorable for their formation. The

MCCs studied here composed such an eight-day episode, 3-10 Aug 1977, in which

r-	 afternoon and evening convection developed upscale each day into one or more

MCCs that persisted well into the night. The quasi-stationary synoptic

pattern at 50 kPa during this episode consisted of a strong low centered in

the Hudson Bay region, a ridge off the west coast extending well into eastern
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Alaska, and a polar jet running southward in western Canada and turning

zonal along the US-Canadian border. A low-level deformation field and weak

cool surges maintained a quasi-stationary surface front extending from the

Nebraska region to the Great Lakes and New England, with a low-level souther-

ly flow of maritime tropical air to the south of the front on the west side

of the Atlantic subtropical high.

The tracks of 14 MCCs in this episode are shown in Fig. 1, based on

GOES infrared (IR) satellite-defined centroids of convection associated with

each MCC. (The darkened tracked indicate periods when the convection met

Maddox's [1980] areal and thermal criteria f pr a mature MCC.) There are

two general genesis regions cvident, one along the eastern slopes of the

Rockies and High Plaias, and the other further east in the Missouri and

Missisp ippi River basins. Other notable features in Fig. 1. are that the

MCCs tended to occur in the vicinity of, and track along, the quasi-

stationary surface front, and that the remnants of decayed complexes per-

sisted as identifiable regions of loosely organized convection for long periods

(up to 3 days) that occasionally reintensified into mature complexes. Cotton

et al. (198) analyzed the mountain generation and High Plains evolution of a

north-south meso-b squall line of 4 Aug 1977, and Wetzel et al. (1981) fur-

ther documented its role in the formation of MCC number 2 in Fig. 1. Wetzel

et al. examined the three-dimensional structure of systems 1 and 2 in as

much detail as could be inferred from the synoptic data at 1200 GMT on 4 and

S Aug, respectively (.when both systems were several hours past this maximum

inteasity). In this paper we examine the meso-b structure and evolution

and precipitation characteristics of systems 1, 2, and 3, generated on the

High Plains, and systems 6 and 8, which were generated in the eastern region.
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Radar data sources include PPI radar film from six National Weather Service

(NWS) sites, observation logs, summary charts, manually digitized radar

(MDR) plots, and multi-tilt digital PPIs from the High Plains Experiment

(HIPLEX) site in western Kansas. GOES IR imagery, hourly precipitation

data, and conventional surface and upper-air data are also utilized.

3. THE MESO-B SUBSTRUCTURE AND EVOLUTION OF THE MCCs

In this section, summaries of the evolution of five of the more well-

defined MCCs cf the episode are presented in order to emphasize certain

features that are common to many of these systems and which therefore

help to generalize their lifecycles. Figures 2-4 illustrate several im-

portant evolutionary features of systems 1, 2, and 3, which were successively

generated on the High Plains in the first three days of the episode,

reaching their maximum extent in the Kansas/Nebraska region. Included in

these figures are GOES-east IR apparent blackbody isotherms of -40 and

-620C, meso-b clusters and lines of relatively strong convention, and

approximate displacements of those features since the previous map time

or over the provious 3 h (if in existence for that long). The identifi-

cation of meso-b features was subjectively based primarily on WS radar

film which was generally of a poor quality as far as quantitative intensity

resolution was concerned. However, the temporal resolution of the PPI

data was generally excellent, so an amalgamation of intensity inferences,

using all data sources, allowed the reliable identification of relatively

strong meso-b scale echo entities that persisted for well over an hour.

Each meso-b feature depicted may represent near-solid echo coverage, or

alternately, simply a cluster or line of discrete echoes that maintains

a meso-b cohesiveness. Some areas of weak echo, isolated echoes, and
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meso-b echo features that apparently had lit

ment are omitted for the sake of clarity.

Figure 2a shows some of the synoptic features at the time when the

pre-MCC convection was beginning to organize, 0000 GMT 4 Aug. A weak

70 kPa shortwave extended from western Nebraska to the Texas panhandle,

with the low-level jet in the same region. A surface trough was located

along the lee side of the Rockies, with another trough dipping into south-

eastern Nebraska. An area of mid-level moisture and weak residual convec-

tion from the previous day extended from southeastern Missouri northwest-

ward through eastern Kansas.

The satellite and radar map for OjOO MIT (Fig. 2b) depicts three

meso-b convective clusters (labeled A, B, and C) in a north-south line in

western Nebraska and Kansas. These had formed in the Wyoming and Colorado

foothills along the trough shown in Fig. 2a and are typical of the orogenic

convection induced by difference in the mountain plateau and plains diurnal

heating cycle (Cotton et al., 1981). Cluster A formed earliest and was

most intense, producing the bulk of the cold cloud shield which met MCC

criteria by 0200 GMT. Storms in this cluster produced strong winds and

large hail in western Nebraska. Another group of meso-b features (D, E,

F) formed in a northwest-southeast orientation along the residual moisture

axis in Fig. 2a. These were newer and less intense that the orogenic

clusters, but were beginning to intensify rapidly as the faster eastward

propagating orogenic line approached.

By 0500 GDfT (Fig. 2c), clusters A and B had moved eastward and as-

sumed meso-b squall-line characteristics. This was likely due to their

propagating into the low-level jet region, thereby increasing the low-

to-mid-tropospheric shear (50 kPa winds were fairly uniform, -15 m s-1

^:o-.'   
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and northwesterly). The motion of clusters A and B over the previous 5 h

(Fig. 2b, c) was confluent, perhaps steered by the confluent 70 kPa wirds

displayed in Fig. 2a for LIC, LBF, and DDC. This confluence of meso-b

convective ;features may be instrumental in forcing the development of the

MCC. As tree meso-a line (composed of meso-b clusters A, B and C) in

Fig. 2b, moved east and .formed a triple intersection with the E-F meso-a

line and the surface trough shown in Fig. 2a, the mesa-b features nearest

the region of intersection (A and F) intensified. The western portion

of F merged into the northeast end of A, while the southeastern portion

of F split into a right-moving severe storm that produced a 50 km hailswath

and merged with the meso-b band E.

Over the next 2 h, lines A and B continued their confluence, merged,

and overtook F, creating a single .large meso-b (or small meso-a) band of

intense convection by 0700 GMT (Fig. 2d). A tornado occurrence and a 200 km

track of severe surface winds accompanied the merging of these lines (these

and other severe weather events are extracted from Storm Data, published

by the National Climatic Center). Cluster b lost its discrete identity

as it became lost in an expanding echo of uniform intensity that merged

into the A-B-F band.

The max mt= intensity of the MCC, as ,fudged by the largest areal

extent of tha coldest enhanced IR contour (not shown), occurred at 0800 GMT.

Despite the large cold cloud shield and weaker cells and patches of echo

both ahead of and behind the intense meso-b echo depicted in Fig. 2d,

nearly all of the hourly precipitation reports are confined to the de-

picted meso-b region.

By 1000 GMT (Fig. 2e), the single intense meso-b cluster had frag-

mented into several smaller meso-b clusters. Whereas up until the time
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of maximum MCC intensity the meso-b convective features displayed a con-

fluent tendency, in the weakening stage they became difluent, with the

northern bands propagating easterly, the southern ones more southeasterly.

This difluent propagation may be due: to further growthbeing forced at

the boundary of the expanding surface meso-high, which intensified most

rapidly during the period of concentrated meso-b convection at MCC maxi-

mum intensity. Another mechanism that might explain the difluent propa-

gation is a difluent low-to-mid tropospheric shear, where enhanced moist

layer inflow relative to the moving st:arms would favor growth in the

difluent direction. The vector difference between tho 50 kPa wind and the

centroid of the surface, 85 kPa and 70 kPa wind vectors (which crudely

estimates a mean moist-layer wind) at 1200 CMT is displayed at several

sites in Fig. 2e. The difluenee displayed by these shear vectors is some-

what consistent with the observed meso-b cluster motions. This differen-

tial motion led to a commonly observed feature in dissipating MCCs, whereby

the cloud shield lost its circularity and lengthened in a northeast-

southwest orientation and assumed more of a meso-a comma cloud configura-

tion that is more typical of a short-wave disturbance.

The next day's MCC, system 2 in Fig. 1, displayed similarities to,

but also some significant differences from, MCC number 1. At the pre-MCC

stage at 0000 CMT 5 August (Fig. 3a), the 70 kPa height field displayed

only a very weak trough extending from northwest Colorado to Oklahoma.

' The low-level jet was again established in the Texas panhandle, and sur-

face features consisted of a cold front advancing into Wyoming and South

Dakota, stationary fronts through southern Nebraska and across southern

Kansas into Illinois (the latter was the outflow boundary from the previous
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day's MCC as it tracked on eastward), and a strong meso-high on the Colorado

and New Mexico High Plains, produced by the afternoon orogenic convective

line. This meso-a north-south line o.f storms was similar to, but farther

south than, the previous day's orogenic line.

By 0300 GMT (Fig. 3b), the orogenic line, consisting of three meso-b

clusters (A, B, C), had moved eastward, with B producing severe surface

winds and hail in southeast Colorado. New meso-b lines (D, E), oriented

east-west, developed in Kansas, the southern one (D) occurring along the

stationary front separating the cooler, moister wake of the previous day's

MCC from the unmodified maritime tropical air to the south. This was one

hour prior to MCC initiation, as determined by IR cloud shield area.

As the eastward moving meso-a orogenic line (A, B, C) intersected

the western end of the newer meso-a east-west line (D, E), the meso-b

entities at the region of intersection (B, D) intensified rapidly, as was

the case the day before. By 0600 OW (Fig. 3c), the MCC was well esta-

blitfhed and centered on cluster g , which merged with the western end of

D, developed rapidly towards line E to the east, and produced local

hourly rainfalls of 60 mm. A new meso-b line, F, developed in central.

Nebraska along the east-west stationary front shown in Fig. 3a.

The MCC had achieved maximum intensity alad was beginning to weaken

by 0900 GMT (Fig. 3d). A and L had mergej and expanded into a large

precipitation region, but not too intense. Line D split off of B and,

as with the southernmost echoes in the previous day's weakening system,

displayed a southeastward propai ►gation. Bands E and E, both originating as

east-west lines, remained essentially stationary in the westerly steering

flow as individual cells propagated eastward along the complexes. E



r"

-9-

developed in areal extent as the A-B cluster approached it.

The squall-line characteristics displayed by the intense meso-b line

during the mature phase of the first MCC (see Fig. 2d) did not occur in

MCC 2, probably because the low-to-mid tropospheric shear was not as strung

(west-northwesterly 50 kPa wind of only 5-10 m s-1 ). In the dissipation

stage (1200 GMT, Fig. 3e), the A-B cluster split, with B merging into E

and A merging into F to give two weak meso-b bands with a squall-like

configuration. The A-F band propagated east-northeastward while the E-B

band moved southeasterly, again consistent with the difluent moist layer

to 50 kPa shear.

The third MCC in Fig. 1 had similarities with and differences from

the previous two. The Wyoming-South Dakota cold front in Fig. 3a had

advanced into northern Kansas and eastern Colorado by 0000 GMT 6 August.

Two north-south waves of orogeric convection developed from the upslope

conditions north of the front and were separated by about 4 h and 200 km.

A me!^oscale band of weak convection developed in a northeast-southwest

orientation along the front in southern Nebraska and northern Kansas.

By 0300 GMT (Fig. 4), the most intense meso-b cluster of the first orogenic

wave (A) had approached the weak frontal band (C) and intensified, followed

shortly by the rapid intensification of meso-b cluster B in the second oro-

genic wave, together producing the MCC. A and C merged into a meso-a

band from southeast Nebraska to southwest Kansas and remained the most

significant feature of the MCC as cluster B weakened rapidly by 0600 MIT.

The front apparently had a strong controlling influence on the organization

of this MCC, as evidenced by the A-C band remaining strongly tied to the

frontal position, by less complex meso-b substructure and by little di-

fluent propagation of meso-b features occurring with MCC dissipation.
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The High Plains MCCs, described above, were all characterized by their

upscale intensification being centered on a meso-b component in a north-

south meso-a orogenic line that intersected another meso-a feature to the

east. While this quite regularly observed orogenic component is instru-

mental in many of the western plains MCCs, the eastern genesis region does

not have the strong topographic forcing to help generate its MCCs. We

now briefly summarize the evolution of systems 6 and 8 in order to point

out similarities and differences to the western plains systems.

Figure 5a shows some synoptic features at and around 0000 GMT 7 Aug

that help explain all three of the MCCs formed on this day (systems 4, 5,

and 6). The 70 kPa height field has a shortwave trough through the eastern

Dakotas, with a weaker, shorter wave through Colorado into the Texas

panhandle. At 0300 GMT, when the initial convection of system 6 appeared,

surface features consisted of a warm rrt^nt extending from Colorado through

central Iowa and a trough from South Dakota to northeast Colorado.

The western MCC (system 5) developed at the triple intersection of an

orogenic meso-a line and the surface front and trough in northeastern

Colorado. 9 hours earlier, at 1800 GMT 6 Aug, the position of the surface

warm front (broken warm front symbol) was across northern Missouri, where

it was intersected by a north-south band of residual moisture from the

dissipated system 3 ( line of circles). MCC number 4 initiated at this

intersection at that time. At 0.300 GMT 7 Aug, system 4 was a mature MCC

centered over Indiana and had left a wake boundary trailing to the north-

west where it intersected the warm front in western Iowa. This feature

was barely evident in high resolution visible satellite imagery, but it

was also supported by surface observations. Wane moist air to the west
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of tha outflow boundary and to the south of the warm front was being

advected northward toward the intersection.

The initial convection leading to the MCC appeared after 0300 GMT

in extreme northwest Missouri within the warm moist surface air. By

0600 GMT (Fig. 5b), this cluster (labeled A) had gradually produced a

large meso-b cloud shield centered over southeastern Iowa. Another meso-b

echo feature, line B, had first appeared about an hour earlier. Line B

developed within a broad weak band of convection that was apparently

triggered by the weak outflow boundary in Fig. Sa and advecting northeast,

as evidenced by an advancing northwest-southeast cloud band that had just

reached enhanced levels in the IR imagery (-32 0C in Figs. 5 and 6) and

appeared as an eastward extension to the meso-b cluster A cloud shield.

About this time, meso-b scale interaction apparently developed be-

tween cluster A and line B and rapid development into an MCC ensued in

the region of the intersecting outflow boundary and the warm front. By

0800 GMT (Fig. 50, line B had transformed into an intense meso n-b cluster

and the eastward extending cloud shield had broadened considerably, con-

tinuing to develop toward the east. Figure 5d (1000 GMT) shows that cluster

B propagated rapidly eastward (out of our radar data coverage), with the

overshooting IR tops showing it to persist as the core of the MCC. Cluster

A remained anchored to the west side of the MCC as an intense meso-b

entity, fed by a strong southwesterly low-level flow in:^;) the storm.

Maximum intensity of the MCC occurred about 1100 GMT. By 1200 GMT

(Fig. 5e), an east-west meso-b convective line (C) had developed and

separated from the parent cluster A. The beginning of this line develop-

ment was evident 2 h earlier in Fig. 5d. It developed southwestward along

t
„„	 .	 w	 ....
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a meso-b scale band of mid-level moisture (source unknown) that was ap-

parent in IR images. The propagation of line C away from its parent

cluster, as the MCC weakened and assumed more of an east-west line or

structure, was a difluent motion between meso-b entities, also observed in

}
the western MCCs as they began to decay.

`

	

	 fhe thermal discontinuity along the mesohigh outflow boundary in

Fg. Sa, which helped to trigger MCC 6 early on 7 Aug. was strengthened

and maintained by the convection associated with MCC 6 in eastern Iowa,

northeast Missouri, and Illi^.ois. Through the mid-day hours of 7 Aug,

mostly sunny skies to the southwest of this boundary in Missouri and

overcast to the northeast permitted a differential PBL heating that fur-

ther reinforced the boundary. A meso-b remnant of the decayed, western

MCC 5 was triggered as tt crossed eastward over this boundary in north-

west Missouri, and it reintensified into a small mature MCC by 0000 GMT

8 Aug. This further maintained the boundary as much precipitation fell

east of it. The position of this MCC is superimposed on the 0000 GMT

8 Aug synoptic map (Fig. 6a). The thermal boundary through Iowa and

Missouri was very well defined at this time, and the synoptic front had

become stationary from eastern Colorado across Wisconsin. As each day

before, a 70 kPa short-wave trough was in Colorado. A northeast Colorado

meso-b cluster, part of an orogenic meso-a string of clusters, interacted
3

with the front to produce a western MCC, system 7, in western Nebraska

by 0500 GMT. The warm tongue of southerly flow intruding into Iowa

was wedged between the two surface thermal boundaries and was ripe for
3

convective development.

By 0500 GMT (Fig. 6b), linearly organized meso-b convective features,

A and B, had developed and were aligned westward, just to the south of the

Fes,.
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warm front, and southward along the mesoscale thermal boundary, respectively,

from the point of intersection of these features in east-central Iowa. Another

meso-b clustee , C, was along the warm front in northeast Iowa. Confluent motion

of cluster C towards the intersection of lines A and B resulted in a consoli-

dation of intense convection that produced a mature MCC within an hour. The

meso-bPerged into a single large meso-b cluster A-B-C, with an east-west

axis that persisted for 3 h (see Fig. 6c at 0700 GMT) as it slowly propagated

eastward into central Illinois (and out of radar data coverage) without major

structural evolution. Difluent fragmentation of meso-b features did not

develop as much in this case as in most of the decaying MCCs, which may

explain its very gradual demise; 7 h elapsed from the time of maximum

intensity at 1000 GMT until it fell from meeting MCC criteria, compared

with a normal period of 5 h.

4. PRECIPITATION CHARACTERISTICS OF THE MCCs

u.^pite the large uniform cold cloud shield in an MCC, the rainfall

rates at a given time are far from uniform. Virtually all of the measurable

hourly precipitation reports for the three western MCCs studied occurred

within the shaded meso-b region indicated in Figs. 2-4 (and for intermediate

hours not shown). At the most, the combined meso-b areas were less than

half of the area within the -40 0C isotherm, and substantial portions of

the -620C area were also rain-free. Even within the meso-b structures,

the hourly reports show much variability that is characteristic of convec-

tive rainfall in general. An isohyet analysis for MCC 2 over Kansas (Fig. 7)

illustrates the total storm variability (in which much of the temporal

variability of the traveling meso-b systems is smoot'.ied out). Note that

the three sites in central Kansas reporting less than 0.25 inches are within

the -620C area in Fig. 3d and are nearly in the center of the MCC. The

most uniform and widespread hourly precipitation reports occurred in

i
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east-central Kansas in conjunction with the quasi -stationary meso-b com-

plex E in Fig. 3. Alon g with the controls on meso-b structure exerted by

the active cold front on MCC 3, discussed in Section 3, the front also

produced a more uniform precipitation distribution 	 to systems 1

and ^.., both overall and for hourly periods, due to the reduced mesa-b

substructure complexity.

The mature eastern MCCs in Figs. 5 and 6 also had cold anvil tops

with areas that exceeded the total meso-b echo regions areas (and areas

of measurable precipitation by about a factor of two. The spatial and

temporal coherence of the meso-b features and the associated precipitation

reports was more evident, being more persistent and slower to evolve

than in their western counterparts. This difference may be due to the

nature of upscale intensification in the few cases studied. The western

MCCs evolved from two or more well-defined, pre-existing meso-b scale

clusters, such as discrete orogenic clusters that interacted with each

other and with other discrete, meso-b clusters along a discontinuity to

the east. The eastern MCCs, however, developed more on a single meso-b

cluster that originated on a frontal, or other thermal, boundary. Thus, the

more complex meso, -b structure of the western pre-MCC allowed more possi-

bilities for centers of MCC development and more combinations of meso-b

scale interactions that can lead to rapidly evolving patterns. In the

eastern systems, the development of the initial meso -b features into

MCCs with predominant east-west axes resulted into more steady-state

systems, in which convective cell movement was oriented approximately

along the meso-b axes and structural evolution was not as volatile.

To investigate the precipitation intensity of the MCCs, the hourly

rainfall reports from three western complexes (MCCs 1, 2, and 3) were
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eastern systems (6, 8, and 9) were composited into an eastern MCC. Com

positing of the precipitation reports was with respect to beginning hour

of the MCC, ending hour, and the hour of maximum intensity, all based on

enhanced IR criteria (Maddox, 1980), The resultant composite complexes

were both nine hours long with the maximum intensity occurring at the

sixth (0800 GMT) and fifth (0900 GMT) hours for the western and eastern

systems, respectively. The measurable precipitation amounts were strati-

fied into various classes, with the percent of reports exceeding those

thresholds plotted as a function of composite MCC time.

The eastern MCC rainfall distribution is shown in Fig. A. The

plots are indicative of what fraction of the active rain areas are intense.

The results suggest that the percent of active rain areas exceeding all

hourly thresholds (0.1, 0.2, 0.5 and 1.0 inches) increased from the initial

pre-MCC convection to about 2 h after MCC initiation, at which time the

fractional coverage of heavy precipitation (0.5, 1.0 inches) fell off

steadily. This implies that the most intense convection (and severe

weather potential) is early in the mature MCC stage when the meso-•a

complex is still developing. The fractional coverage of precipitation

exceeding the less intense thresholds (0.1, 0.2 inches) continues to in-

crease through the time of maximum MCC intensity, suggesting the spread

of more uniform, light to moderate tainfall as the meso-a system develops.

After maximum intensity, all thresholds decrease, suggesting that the

precipitation in the diminishing MCC is more residual in character, be-

coming weaker and/or more intermittent.

The western composite MCC trends (Fig. 9) are similar, except that

the more intense thresholds remain stable or slightly increase until MCC
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maximum intensity, just as the lower thresholds, suggesting that intense

convection persists further into the life cycle for the western system.

This is also consistent with the more complex and more volatile meso-b

substructure of the western system. The fraction of light precipitation
5

,i
	 (<0.1 inches) is greater for the western MCC, perhaps due to a reduction

`	 of moderate intensities by evaporation in the sub-cloud layer.

Figure 10 is a similar type plot of manually digitized radar (MDR)

intensity distribution associated with the western composite MCC. While

the areal coverage of echoes increases until MCC termination (number of

non-zero MDR blocks curve), the plots show that the fraction of intense

echoes maximizes about the first hour or two after MCC initiation, and

then drops off steadily. This suggests that the severe weather potential

(per unit area) is greatest in the early stages, but is somewhat incon-

sistent with the heavy precipitation reports persisting until MCC maximum

intensity (Fig. 9). This may be explained by increased precipitation ef-

ficiency as the system moves east towards a moister environment and as

the MC'_ region becomes more saturated through precipitation evaporation.

Early in the west plains systems, when radar may be detecting a rela-

tively large fraction of intense reflectivities aloft (1-3 km AGL), much

of the precipitation is lost to virga.

With a limited amount of 3-dimensional (3-D) digital radar data from

northwest Kansas, the 3-D morphology of portions of MCCs 2 and 3 were

examined. An immense anvil overhang was observed in system 3, to the
w

north and west of meso-b cluster B shown in Fig. 4. The outlines of the

5 dBZ echo at 3, 5, 7, and 9 km AGL are shown in Fig. 11. The region to

the west of the radar is characterized by a 100-km anvil overhang echo,

the top of which is uniform at 12-13 km and contributes to the uniform
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IR satellite appearance of the MCC cloud shield. A north-south cross

section through this feature (Fig. 12) shows it to be similar in dimen-

sion and shape to the anvil cloud associated with tropical cloud clusters

(Houze and Leary, 1979; Zipser, 1977), but quite different in that the

MCC anvil is echo-free below it. Thus, while "anvil," rain may account for

much of the precipitation in maritime mesoscale systems (Zipser, 1977),

virga probably robs much of this precipitation in continental MCCs, es-

pecially in the semi-arid High Plains. The cold, uniform MCC cloud shield

may be indicative of mid-to-upper tropospheric meso-a scale ascent and

precipitation generation (MAddox, 1980), but radar and hourly precipita-

tion records show that surface rainfall is largely restricted to convec-

tion on the meso-b scale.

5. DISCUSSION AND SUMMARY

From a detailed examination of five MCCs occurring in an episode

of 14 total MCCs, the following conclusions are inferred:

1. MCCs originating on the High Plains often develop from the

growth, interaction and merger of multiple discrete meso-b con-

vective clusters. These meso-b features tend to originate along

larger, meso-e scale features, such as the eastern slopes of the

.Rockies,surface troughs or fronts, or regions of residual con-

vection and mid-level moisture. The orogenic line of meso-b

clusters is the most important, probably participating in most

MCCs forming in western Kansas and Nebraska.

2. In all the western MCC cases, more than one meso-a feature as

described .above was important. The region of most intense meso-b

convective development and, MCC rapid growth is near the point

i
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where these meso-a features intersect. Purdom (1979) has inferred

from satellite imagery that convective development is preferential

along discontinuities, such as fronts, arc cloud mesohigh boun-

daries, and dry lines, especially at the intersection of one of

these features with another boundary or a cumulus field, due to

superimposed vertical motion fields in such regions. While his

work has concentrated on convective scale development on meso-b

boundaries (e.g., arc clouds, requiring high-resolution visible

imagery), the same thing appears to be occurring on a larger

scale with MCC development. Meso-b convective clusters are

spawned on meso-a scale features, and the intersection of the

meso-a features reinforces the convection and activates its up-

scale development into an MCC.

3. The MCCs generated in the Missouri and Mississippi River basins did

not evolve from the ,interaction of pre-existing, active meso-b con-

vective clusters. However, they did develop at the intersection of

meso-a and/or meso-b features, such as fronts and outflow boundaries

and bands of mid-level residual moisture and weak convection. In

both eastern and western systems, generation of a cool wake, or

the reinforcement of a pre-existing thermal discontinuity, by an

MCC was important in triggering another MCC the following day.

4. The configuration and development of meso-b clusters were more

chaotic and random in the west, unless there were strong environ-

mental controls, such as an active cold front or strong vertical

wind shear. The latter tends to produce meso-b squall lines

oriented perpendicular to the shear and also maintains the

severe weather potential longer into the MCC lifecycle. The

8
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less chaotic nature of the eastern MCC mesa-b substructure may

have been due to the fewer number of intense meso-b clusters

that were involved in their genesis, limiting the modes of

possible meso-b scale interaction.

5. In the absence of strong controlling influences (such as fronts),

the decay of the MCC is characterized by (or perhaps caused by)

the difluent propagation directions of the meso-b elements.

6. 1•a precipitation produced by an MCC is largely confined to the

meso76 convective features. A meso-a scale pattern of "anvil"

rain, on the scale of the cold cloud shield, does not reach the

surface.

7. The potential for severe weather is greatest in the early MCC

stage, while the fraction of light to moderate precipitation in-

creases through MCC maximum intensity, dropping off sharply thereafter.
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LIST OF FIGURES

1. Tracks of the centroid of the fourteen MCCs which developed during the

episode of 3-10 August 1977. The circled sequential numbers chronologi-

cally identify the systems, with the data given near the 0000 GMT symbol.

2. (a) 0000 GMT 4 August 1977 70 kPa height contours (solid and thin dashed

lines, labeled in tens of meters) and wind •,,rectors (magnitude shown as 3-h

displacement), 85 Va maximum wind axis (broad arrow), surface troughs (heavy

dashed lines), axis of residual convection (line of circles), and 'lifted index

(plotted). (b) Infrared satellite and radar composite chart for 0300 GMT

4 August. Shaded regions (identified by letters) denote significant meso -S

scale convective lines or clusters, with the solid vectors giving the dis-

placement of their most intense centers over the previous 3 h or since the

previous depicted chart time in the sequence. The heavy dashed segments

extending from the shaded regions are axes of weaker convection along which

the more intense meso-8 features are imbedded. The outer and inner scalloped

lines are the IR apparent blackbody isotherms of -40 and -62 0C, respective-

ly. (c) Same as (b) except for 0500 GMT. (d) Same as (b) except for

0700 GMT. (e) Same as (b) except for 1000 GMT. The dotted vectors are

moist-layer to 50 kPa wind shear (defined in text) at tb- selected stations

(denoted by large dots) at 1200 (magnitude shown gives a 3-h displacement

at that speed).

3. (a) Same as Fig. 2a except for 0000 GMT 5 August 1977, with surface fea-

tures including east-west fronts, a north-south mesoscale ridge and

bubble-high boundary. (b), (c) and (d) Same as Fig. 2b except for 5 August
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at 0300 GMT, 0600 GMT, and 0900 GMT, respectively. (e) Same as

except for 1200 GMT 5 August.

4. Same as Fig. 2b except for 0300 GMT 6 August 1977.

^. 3 DOD O4-er7A-w	 ±~7'

5. (a) Same as Fig. 2ahr Also included is the 6-h earlier position of the
&.44 J1.e of rt^idr.il «tJ .1.w ..+' f/^+..t^

11'M G S .
warmfront at 1800 GMT 6 Aug (broken warmfront symbol), and the 0300 GMT

7 Aug positions of an MCC over Indiana (scalloped -320C IR contour) and the

boundary of its wake to the w4at. 	 "' (00 5`"'"`c 1q)	 )'
060 dS'o 0 i^c j a• J j.too C'M T 7	 q 	 K^^+cn"^'"J ,

6. (a) Same as Fig. 5a, except for 0000 GMT 8 .Aug. A small active MCC is

centered over western Illinois, and there are no off-time features shown.

(b) and (c) Same as Fig. 5b except for 0500 and 0700 GMT 9 Aug, respectively.

7. Isohyet analysis over Kansas for MCC number 2. Contours of 0, k and 1

inch are drawn. MCC total precipitation for hourly recording stations

is plotted to the nearest tenths of inches.

8. Composite eastern MCC measurable precipitation intensity distribution.

Systems 6, 8, and 9 from Fig. 1 were composited, with their times of

beginning maximum, and ending maturity normalized with respect to an

idealized, average system. The percentages of measurable precipitation

reports equal to or exceeding 0.1, 0.2, 0 . 5 and 1.0 in/hr are plotted

against the composite hour, with the total number of measurable reports

plotted at the top.

i

9	 'ame as Fig. 8 except for composite western MCC, derived from systems

1, 2, and 3.



10. Composite western MCC manually digitized radar intensity distribution.

Composting is the same as for Fig. 9, and included in the composite are

all non-zero MDR blocks subjectively judged to be associated with the

MCCs. Plotted are percentages of non-zero MDR blocks exceeding or equal

to VIP levels 2, 3, 4, and 5, and the system-average number of non-zero

blocks, as a function of composite time.

11. 5 dBZ echo boundary at 3 km (hatched line; hatches point toward higher

reflecLivities), 5 km (dot-dashed), 7 km (dashed), and 9 km (scalloped)

above HIPLEX radar site at Goodland, Kansas for 0230 GMT 6 Aug. Shaded

regions denote reflectivities above 40 dBZ from the 1 0 PPI. The range

blanking (inner circle radius) is 25 km, and the maximum range (outer

circle) is 150 M. Line A-B locates the cross section in Fig. 12. The

echo overhang west of the radar is located under the cold cloud shield at

the northwest lobe of the MCC depicted in Fig. 4. The 40 dBZ area south-

west of the radar is the core of meso-B cluster B in Fig. 4.

12. Vertical cross section throguh anvil overhang along line A-B in Fig. 11.

The dashed contour is the minimum detectable signal or 0 M. The solid

contours are in increments of 10 dBZ beginning at 10 dBZ, with the 20

dBZ contour drawn heavir, and regions exceeding 40 dBZ shaded. The heavy

dashed line is the upper limit of data collection (12 0 elevation) at

nearer ranges. Other analyses indicated that reflectivity surfaces above

that :Line were essentially horizontal.
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THE MESO-8 SCALE STRUCTURE AND PRECIPITATION CHARACTERISTICS
OF MIDDLE -LATITUDE MESO-a SCALE CONVECTIVE COMPLEXES

Ray L. McAnally and William R. Cotton

Department of.Atmospheric Science
Colorado State University

Fort Collins, Colorado 80523

J. INTRODUCTION

Maddox (1980) indeotified an important type

1

f nocturnal convective system, the Mososcals Con-
active Complex (MCC), that is organized on the
eso-o scale l (250-2500 km) and which possibly ace
ounts for much of the convective season precipi-
ation over the central United States. The pro-
ominance of the nocturnal thunderstorm in this
rea has long been recognized (Means, 1944;
allace, 1975) and most studies of its mesoscale
'ganizational characteristics have generally &t-
empted to describe them In relation to a squall
ine conceptual model (Porter at al„ 1955; Miller,
967). However, the relatively new satellite van-
age has allowed the identification of the MCC as
unique system with structural and dynamic pro-
erties quite distinctive from a squall line
Maddox, 1981). Among its distinctive c;,,aracter-
stics are a long-lived, near-circular cold cloud
hield, large areas of light precipitation (with,
mbedded, locally heavy precipitation), a memo
cale mid-to-upper tropospheric warm core, and a
arge-amplitude anticyclonic outflow perturbation
n the upper troposphere that strongly modifies
he larger-scale environment. Fritsch and Maddox
1981) have further described the upper-level
tructure of the MCC and have inferred (with nu-
erical model support) that a mesoscale region of
can ascent in the mid - to-upper troposphere is a

fundamental aspect of the MCC that explains many
bf the observed features.

The previously cited MCC studies have focused
n the meso-a structure and the macroscale (>2500
) environment of the MCC. While Maddox (1980)

ecognised the role of meso-8 scale (25-250 km),
ntense convective systems in initiating the MCC
nd in continuing to produce locally heavy rain-
all. within the larger, mature MCC, no systematic
Ludy of the meso-8 structure of the MCC has been
de, In particular, given the consistent meso-a
eatures of the MCC on the one hand, and the more
apricious nature of convective scale processes on
he other, what degree of generality can be drawn
bout the memo -8 substructure and evolution of the
CC'. This paper gives the initial results of a
tudy with that objective in mind.

R. CASES STUDIED AND DATA UTILIZED

The MCCs investigated here occurred in an
eight-day episode, 3-10 Aug 1977. The quasi-
tutionary synoptic pattern at 50 kPa during this

1
See Orl anski ( 1975! for a detailed discussion of
scale terminology.

period consisted of a strong low cantered in the
Hudson gay rebton, a ride off the west coast ex
tending well into eastern Alaska, and a polar jet
running southward in western Canada and turning
basically zonal along the U.S,-Canadian bordeal.
A diffuse quasi-stationary surface front extended
from the Nebraska region towards the Croat Lakes
and New England. with southerly low-level flow to
the mouth of the front on the west side of the
Atlantic subtropical high.

Each afternoon, convection originating on the
eastern slopes of the Rockies, the High Pl ,sins and
the Central Plains, underwent nocturnal intensi-
fication into one or more MCCs. which tracked
eastwards as long-lived entities of enhanced con-
vection (up to three days). Fig. I depicts the
aatellite-based tracks of the centroids of the
convection associated with each MCC. (The darkened
tracks indicate periods when the convection met
Maddox ' s (1980) areal criteria for a mature MCC.)
Cotton at al. (1981) analyzed the mountain genera-
tion and High Plains evolution of a north-south
meso-8 squall line on 4 Aug, and Wetzel at al.
(1981) further documented its role in the fortha-
tion of MCC number 2 in Fig. I. Wetzel et al.

(1981) examined the three -dimensional structure
of systems 1 and 2 in as much detail as could be
inferred from the synoptic data at 1200 GMT on
4 and 5 Aug. respectively (when both systems were
several hours past their maximum intensity). In
this paper, we look closer at the evolution of
systems l•. 2, and 3, utilizing GOES IR imagery.
NWS radar data ( film from five sites, observation
logs. summary charts, and manually digitized radar

:[MDR digitial products). conventional surface and
upper-air data, and hourly precipitation data.

3. THE MESO-8 SUBSTRUCTURE OF THE MCCs

Figures . 2-4 illustrate several important evo-
lutionary features of MCCs 1, 2, and 3, respec-
tively. Included in these figures are infrared
GOES-east apparent blackbody isothzrms of -40 and
-620C, meso-3 scale clusters and lines of rela-
tively strong convection, and approximate dis-
placements of these features since the previous
jmap time or over the previous three hours (if in
existence for that long). The identification of

^he meso-9 features was subjectively based primarily
on NWS radar film, which was generally of a poor
4uality as far as quantitative intensity determina-
tion was concerned. However, the temporal resolu-
tion of the PPI data was generally excellent. so  an
I
malgamation of intensity inferences, using all data
sources, allowed the reliable identification of
relatively strong meso -6 scale echo entities that
persisted for cell over an hour. Each meso-B

a:.,	 t
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MCCe tuhi.eh developed during the epi4ode
,mi	

o6
chotogicaUy identi f y the ey4 terra, u:i.LTi the

Ifeature depicted may represent near-solid echo
coverage, while at other times it may bo a cluster
for line of discrete echoes that maintains a mesa-
18 cohesivenesv. Omitted for the sake of clarity
are other areas of weak echo, isolated echoes, and
some meso-8 regions of echo, if these seem to have
had little influence on the MCC development.

Figure 2a shows some of the synoptic features
'at the time when the pre -MCC convection was begin-
ring to organize, 0000 GMT 4 August. A weak 70 kPa
'shortwave extended from western Nebraska to the
Texas panhandle, with the low-level jet in the
same region. A surface trough was located along
the lee side of the Rockies, with another dipping
into southeastern Nebraska. An area of mid-level
moisture and weak residual convection from the pre-
vious day extended from southern Missouri north-
westward through eastern Kansas.

The satellite and radar map for 0300 CMT
(Fig, 2b) depicts three meao-8 convective complexes
;(A. B, C) in a north-south line in western Nebraska
and Kansas. Therm had formed in the Wyominc and
Colorado foothV,1.s -;ilong the trough shown in Fig.
2a and are typical at the orogenic convection in-

fduc,2d by differences in the mountain plateau and
'plains diurnal heating cycle (Cotton et al,, 1981).
Complex A formed earliest and was most intense,
producing the bulk of the cold cloud shield which
met MCC criteria by 0200 GMT. Storms in this com
plex produced strong winds and large hail in wes-
'tern Nebraska, Another group of meao-8 complexes
'% E, F) formed in a northwest-southeast ori.enta
,tion along the residual moisture axis Sn Fig,. 2a.
These were newer and less intense than the uro-
genic complexes, but were beginning to intensify
rapidly as the faster eastward pro ,̂ Nagating oro-
genic line approached.

By 0500 GMT (Fig. 2c), complexes A and B had
moved eastward and assumed meao-d squall-line char-
acteristics, This was likely due to their pro-
pagating into the low-level, ?et ree,ion, therebv
increasinc the low-ta-mid-trwposphoric shear (50
kPa winds were fair!-.- uniform, ^.15 m s -i anti north-
westerly), the motion o , inplexes A and B over
the previous, 5 houri iFi, • :b,c) was confluent,
perh;inu steere?l l :, cite confluent 70 %Pa ;wind;

displayed in Fig. 2a for LIC, LBF and DDC. This
confluence of meso -8 convective complexes may be
instrumental in forcing the development of the D1CC.
As the A-B meso-a line in Fig. 24 moved east and
intersected the E-F meso-a line, the meso-8 com-
plexes nearest the region of intersection (A and F)
Intensified. The western portion of F merged into
the northeast and of A, while the southesstern par-
Lion of F split into a right-moving severe storm
that produced a SO km hailawath and merged with
the meso-8 band E.

Over the next two hours, complexes A and B
continued their, confluence, merged, and overtook F.
creating A single large meso-8 (or small meso-s)
band of intense convection by 0700 GMT (Fig. 2d).
A 200 km track of severe surface winds accompanied
the merging of these complexes. Complex D lost
its discrete identify as it became lost in an ex-
panding echo of uniform intensity that merged into
the A-B-F band.

The maximum intensity of the MCC, as judged by
the largest areal extent of the coldest enhanced IR
concur (not shown), occurred at 0800 GMT. Despite
the large cold cloud shield and weaker cells and
patches of echo both ahead of and behind the in-
tense meso-8 echo depicted in Fig. 2d, nearly all
of the hourly precipitation reports are confined to
the depicted meao-8 region.

By 1000 GMT (Fig. 2e), the single intense meso-
8 complex had fragmented into several smaller maso-
8 complexes. Whereas up until the time of maximum
MCC intensity the meso-8 complexes displayed a con-
fluent tendencv, in the weakening, stage they dis-
played a difluent tendency, with the northern com-
plexeK propagating easterly, the southern ones more
southoasterly. This difluenc propagation may be due

to further growth being forced at the boundaiy of
the expanding surface meso-high, which intensified
most rapidly during the period of concentrated meso-
8 convection at MCC maximum intensity. Anothet
mechonism that might explain the difluent propaga-
tion is	 .iifluent low-to-mid-tropospheric shear
vector, where enhanced moue laver inflow relative

to this moving complexes would favor growth in the
ditluent diro,:tion. The vector difference between

j}J ^'^. ni i,_wii-,d_and.the cen4roid of Lhe iiUria" ,
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Fig:ute 3. (a) Sane as Fig, 2a exccht jo-t
0000 GMT 5 August 1977, With sutSace Seatittes
inceuding cast-tree t 6aortts, a no .tth- s. uth
mesoscate 14dge and bubbtc-high boundaty.
Ib), (cl turd (di Same as Fig. 2b encepe Got
5 August at 0300 Gmr, 0600 GMT, acrd 09J0 GSiT,	

1UOectivebf- , lei Same as Fig. 2e except 6ct
1200 GMT 5 Acua,ss.r.

85 kFa, and 70 kPa wind vectors (which crudely es-
timates a mean moist la yer wind) at 1200 01'T is

displayed at st:veral sites in Fig. 2e. The di-
Eluence displayed by these shear vectors is some-
what consi:;tent with the observed meso-9 complex
motions. Thih differential notion led to a com-
monl y observed feature in dissipating MCC4, where-
by the cloud Khieid lost its circularit y and leng-
then.d in a northeast-southwest orientation and
assumed more n1 a meso-n corma cloud coniiguration

that is more typical of a short-wave disturbance.

-4-

ORIGINAL PAGE IS
OF POUR QUALITY



ORIGINAL PACE IS
Of POOR QUALITY

The next day 's MCC, system 2 in Fig. 1, dis-
played .similarities to, but also some significant
differences from, MCC number 1. At the pre-MCC
stage at 000)GMT 5 August (Fig. 3a). the 70 kPa
height field displayed only a very weak trough ex-
tending from northwest Colorado to Oklahoma. The
low-level jet was again established in the Texas
panhandle, and surface features consisted of a
cold front Advancing into Wyoming and South Dakota,
stationary fronts through southern Nebraska and
across southern Kansas into Illinois ( the latter
was the outflow boundary from the previous day's
MCC as it tracked on eastward), and a strong meso-
high on the Colorado and New Mexico High Plaini,
produced by the afternoon orogenic convective line.
This maso-o north-south ;i, ina of storms was similar
4o. but farther youth thi:in, the previous day's
orogenic line.

By 0300 GMT (Fig. 3b), the orogenic line, con-
4isting of three meso-A complexes (A, A. C), had
Toved eastward, with B producing severe surface
Binds and hail in southeast Colorado. New meso-A
Ines (D, E). oriented east-vest, developed in

Kansas, the southern one (D) occurring along the
stationary front separating the cooler. mol,ster
wake of the previous day's MCC from the unmodified
maritime tropical air to the south. This was one
hour prior to MCC initiation. as determined by IR
cloud shield area.

As the eastward moving meso -a orogenic line
(A, B, C) intersected the western end of the newer
meso-a east-west line (D, E), the meso-A complexes
at the region of intersection ( B, D) intensified
rapidly, as was the case the day before. By 0600
GMT (Fig. 30, the MCC was sell established and
centered on complex B, which merged with the western
and of D, developed rapidly towards complex E to
the east, and produced ',oral hourly rainfalls of
60 mm. A new meso -B complex, F, developed in cen-
tral Nebraska along th(e east-west stationary front
shown in Fig. 3a.

The MCC had achieved maximum intensity and
was beginning to weaken by 0900 CHT (Fig. 3d); A
and B hod merged and expanded into a large precipi-
Cation region, but not too intense. Complex D split
Off of B and, as with the southerlmost complex in
the previous day's weakening system, displayed a
southeastward propagation. Complexes E and F. both
originating as east-west lines, remained essen-
Bally stationary in the westerly steering flow as
individual cells propagated eastward along the
complexes. • E developed in areal extent as the A-B
complex approached it.

The squall-line characteristics displayed by
the intense meso-S complex during the mature phase
of the first MCC (see Fig. 2d) did not occur in
MCC 2. probably because the low-to_ mid tropospheric

shear was not as strung (west-northwesterly 50 kPa
wind of only 5-10 m s- 1)- In the dissipation
stage (1200 CMT, Fib. 3e), the A-B complex split,
with R merging into E and A merging into F to
gf^le two weak meso-S bands with a squal -like con-
figuration. The A -F complex Propagated east-
northeastwnrd while the E-B complex moved south
easteriy , again consistent with the difluent mo%,t-
layer to 50 kPa shear.

The third MCC in Fig. 1 had simil\rities with
and differences from the pro,,vtous two. The

;Wyoming-South Dakota cold front in Fig. 3a had
advanced into northern Kansas and eastern Colorado
by 0000 GMT 6 August. Two north-south waves of
orogenic convection developed from the upslope
conditions north of the front and were separated

,by about 4 h and 200 km. A masoscale band of
,weak convection developed in a northeast -southwest
orientation along the front in southern Nebraska
and northern Kansas. By 0300 GMT (Fig. 4), the
most intense meso -8 complex of the first orogenic
wave (A) had approached the weak frontal band (C)

,and intensified, followed shortly by the rapid
intensification of meso-9 complex B in the second
orogenic wave, together producing the MCC. A
and C merged into a meso-a band from southeasr
Nebraska  to southwest Kansas and remained the
psost significant feature of the MCC as complex B

LP

ekened rapidly by 0600 GMT. The front apparent-
ly had a strong controlling influence on the or-
nization of this MCC, as evidenced by the A-C
mplex remaining strongly tied to the frontal
eltion, by less complex meso-A substructure .

nd by little difluent propagation of meso-d fee-
ures occurring with MCC dissipation.

F.igune 4. Same as Fig. 2b ezcert Set 0300 G,1T

6 August 1977.

4. PRECIPITATION CHARACTERISTICS OF THE `:CCs

Despite the large uniform cold cloud shield
`in an MCC the rainfall rates at a given time are
tar :'ram uniform. Virtually all of the measurable
hourly precipitation reports for the three MCCs
studied occurred within the shaded meso-A regions
'indicated in Figs. 2-4 (and for intermediate hours
not shown). At the most, the combined meso-3 areas
were less than half of the area within the -4000
Isotherm, and substantial portions of the -620C
area were also Cain-itee. Even within the meso-a
structures, the hourly reports show much varia-
bility that is characteristic of vonvective rain-

.,..

f
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Sall in general. An iaohyst analyst* for ?ICC 2
Ever Kansas (Fig, 5) illustrate* the total *torn+
variability (in which much of tho temporal vari-
ability of traveling meeo-6 systems is smoothed
but). Note that the three sites in central Kan*a*
reporting less ;han 0,2$ inches are within the
r620C area in Fig, 34 and are twarly in the canter
of the MCC.. The Post uniform and widespread hourly
Precipitation report* oc.urred in east c;tntral
Kansas in conjunction with the quasi-stationary
•sso-6 complex E in rig. 3, Alonp wit,; the con-
trots on meso-0 structure exerted by thi Prone on
HCC 3, discuased in Section $, the front ai,eo sp-
parently produced a more uniform precipitation
distribution,both overall and for hourly periods,
sue to the reduced meso-d substructure complexity,

^'`'^	 ^	 eft̀
4

1 ^ r	 ^^^• r jot

o-

F/gu,te 5, isoluiet ai.ttys.is over iiaisas 6o.ol
CCC iumbel 2. Co ►ttouts 06 0, '1. air( 1 inch
OAC diethyl. AICC tOtcti, ,t-ACCZPit%UOI 60A 11041ACy
Accoading s tntioas .i0 ptotted to the olem s t
tc;tths (16 4itcheA.

Because of the *parse ra,ingauge spacing in
the western plains, the nature of rainfall rate
distribution within an `tCC w** ostimnted by cam-
positing the ohotarv.ations from the ;, 5, and 6
Auyust.,)iyx toms, cith -rear sct to boginniuy. and, And
maximum intensity ti.:oes, all based un "nhancod-
11t 4rita.riA (Maddox, l'1S0), The rerultant com-
posite qutom is a.outture NCC for nine hours
with tho matetmun intdnAlty Oevurring at the sixth
hour, Th.a	 hourly precipitation amounts
fur - •±,Itvrtt CulariJo. Nabr.+al.a, RAnzAAs, 0 lahoMa.
and ^tikaouri war* btratt:"iud into various alossotk.
with the percent of measurable precipitation rs-
ports meeting those threaho.lds platted ctu it

 of composite `ICC tike (Fitt, b). The plots
are in,:icative of what :*action of the activ e
rain aroas Are intonue. The results suttgast that
from the time of We in'itiacion to About an hour
after maximum intensity, about 40-50„ ,10.'",°, and
l c!^ of ttto active riiin(All areu'm W01`0 h,tviny
hourly rainfall rates exceeding 0.1l, 0.21 5, and
0.50 iolhr. roshpoctivel y . The total, Arcs Of Ae-
Live vainfall could not be Jotva-nina, l because
C( the unequal cabuvrYAtton density AC rose the
ragion, hence, the incr,aaxina number of stations
reporting rain from pro. -`tCC to termination time
(plotta,t ,3101%9 th±e top .a? Fig, 6) rapru-sentm ,in
undetormincd combination of both till Areal expao-
sitan cat raintall with Xk4C growth and the traekinq
of the yvscem into ruition* of hietter obrtvrvation
densit y , Little confld,nce Is pl.;cod in the
curv#A Cur the pro-!!('c stand, hoca ►,1.4e of she voory
low number .it	 Avoiiabke from oawtern
Colurnio. where many of the important stria•6 nm-
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homd, and AtiAsoun .i. The time o6 tach system
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tile. scunc, ,us 6 kA Fig. b, sold iltct t^Ln( ii t'lte
cotnt.oWe Mot+ alt ;toot-:cto MOR Uock$ stib, ►̀ ec-
tZoeCu judged to lie associated witli tho, WCS.
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exceedwo on equat tit VIM' besets Y. 3, 4, aid
5..t ►td the ll-1 i;eno•av^.W90 lttunttw; 06 ue ►l-:eta
btoch>, tits it 61ale,tivot 06 cvmpvsit,; time.

plexes uory tlenor; ► tool, Th* decteaniog pvrcentagos
of intent►u precipitation after maxionam `ICC in-
tensity rcproaent the doecay of the T*toe-d eom-
ploxes Ovit support the metro- ^y systom..

= Figure 7 is a ttimilrar tvpe plat oat manually
digitiaeri radar (Ml?#t? inten ,4ity distribution

, Assucaatvd with the rompo,4WA 1,ICC. The plots
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show that a maximum percentage of into"** achoes
occults a4Naut the first hour or two after MCC in-
itialkiony aujiloottilo that the severe weath er po-
tott,U.. is groate*t in the earl y stages. Nowover,
tit* MDk intensities show Oiq.nif'icsnt steady ds-
etwAso from the early stage maximum to after the
wwximusn MCC 'intensity, while the intonse pracipi-

takioll percelitagosare steady or slightly increase

during this period (Fig, 6), This to likely due

to incroaAed precipitation sfficivllev as the
MCC roginn boromes saturated. Tito Groat toveraga
of ilct; precipitation. so implied by tits dotted
line in Fig. 7 showing the averags number of non-
taro `tt1R bloeks. steadily increase* to tit's hours
actor maximal+ iaitenaity. than docrAASea saarpl.l•
OO the system begins to decay.

S. SUMMARY

From a detailed exam•inatian of three MCC)
occurring In an episode of 14 ta:al MCC*. r,,e
Iollowi►ts conclusions Ora infort.-It

1. The important mes0-11 Otaie tOmplexea
which give birth to the MCC tend to originate
along larger, moso-a scale foatursO, Much SO
the lea- aide of the Rockies. surface. troughs or
fronts, or regioos of resiu;-i convection and mid

-level moisture, The or000nic flee of meso-O com-

plexas is rho momt important, proha,ily partict-

rating In mu*t of the tic" forming io woutorn
Kansaa slid Nkbraakr.. It i;. not OOOantiak, however,
as evidenced by those syst,,Mo originating further

east.

In all three cases, more than one meso-a
-m!:als feature as ditecribod ^h ve wera^important.
Tito ragion of moot intense meso-tl convective le-
vslf,pmen;` and MCC rapid grow"`h is near tits point
*theta than, moan-,a features intareact.

V

a. The configtsrati.a of maso-4 complax0a ap-
paws to b.4 e+imswhat, random., unleits control.li.ng
factors such as fronts or sitrotig anvirokimontal
shoar (orco a prilforreai arrangomont. Thoo lattor
tsn,ist to produ00 maso-d squall-Lines oriented par-
polutwular to till shear and also maantainit tile,
oovoro weather pote ntial longer into the MCC life

cycle.

4. In the ahAtlocen of strong synoittie con-
trollina; it.^"uanca* (such as fronts). the dro-,v of
tho Pigs i * charac tort zvd by (or perhaps 4sused ht')
the difluont propagation diroctloos of the masse-R
elemontA.

A. Tito precipitation prtsducsd by an MCC is
almoot totally amlociated With the moetet-A com-
ploxes, A widospread peoeipitatioti field doosi
not tsrcur on tho sc*le of the masao-,a cold cloud
shiold.

6. The potonttal for xovoroveAthk'r is
graaatost in tho oarly MCC at;k go. whilo tile poretsnt
area of Into"011 rai;tiall (x0.51; inlllr) remains
fairly xt"ady until an hour or two after `ICCmaximum
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