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PREFACE

In the last part of the 1970's we experienced a dramatic and exciting
explosion of our knowledge about the other planets in our Solar System as
NASA's Pioneer, Voyager and Viking spacecraft swept past Jupiter and
Saturn, orbited Venus and Mars, and entered the atmospheres of Venus and
Mars. For the first time we obtained comprehensive information on the
composition and dynamics of these varied atmospheres. New observations
resulted in new demands for supporting laboratory studies. Data were
needed for a variety of molecular species to better understand the spectra
observed from the spacecraft, to interpret atmospheric structure
measurements, to aid in greenhouse and cloud physics calculations, and to
plan the next generation of experiments which would build upon the findings
of this generation of exploration.

It was in this exciting and hopeful atmosphere that some 75
physicists, chemists and planetary astronomers gathered in Annapolis to
exchange their current findings and identify their needs as individuals and
as a group. The interaction was fruitful. New ideas were spawned and our
knowledge of the structure of things large and small, of planets and of
molecules, was expanded.

As this volume goes to press, the original purpose is clouded by an
uncertain future. The next generation of spacecraft experiments now
appears to belong to the next generation. It is our hope that it will not
be so for long. But if it is, then here is a piece of our wisdom...for the
next generation.

Robert E. Murphy
Discipline Scientist
Planetary Atmospheres
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INTRODUCTION

This workshop was sponsored by Dr. Robert Murphy, Head of the Planetary
Atmospheres Program at NASAHeadquarters, who recognized the need for an
intensive inter-disciplinary scientific meeting devoted to assessing the
current status of, and present and future needs for spectroscopy supporting
the study of planetary atmospheres. Initial discussions between Dr. L.
Wallace and Dr. M.J. Mumma,co-chairmen, and Dr. _urphy produced a concensus
for a workshop of limited size and scope. The size was restricted to forty
participants with a goal of providing several experts in each sub-discipline
needed to adequately address the topic. The scope was restricted to
vibrational-rotational spectroscopy in order to keep the length of the
workshop manageable. The important topic of electronic molecular
spectroscopy, corresponding roughly to the visual through extreme ultraviolet
wavelength range, deserved thorough treatment but was beyond the scope of this
workshop. In contrast to ultraviolet spectroscopy, infrared studies
of the planets generally probe lower altitudes where the chemistry and
compositions are often very different. Furthermore, the infrared
spectroscopic and theoretical communities are essentially independent of their
counterparts working on electronic-transitions, and adequate representation of
both communities would have dictated a much larger group, hence a less
favorable environment for in-depth discussion and free exchange of ideas.

The organizing committee (M.J. Mumma,L. Wallace, K. Fox, V. Kunde) chose
a three-day format for the workshop, with approximately one-half of the
available time allocated to formal talks and one-half to discussion. Because
the participants' backgrounds and fields varied greatly, we decided to devote
the first session to general reviews of current knowledge and problems in
areas directly related to planeta_, spectroscopy, such as radiative transfer
and remote sensing, theoretical molecular spectroscopy, laboratory molecular
spectroscopy, and observational capabilities from spacecraft and from the
ground. Subsequent sessions were usually keyed to a specific planet and
typically began with an invited review on current understanding and problems
relating to that atmosphere, followed by more specific papers on detailed
topics such as supporting laboratory spectroscopy of particular molecules,
planetary observations, or planetary modelling. Highlights included a panel
discussion on future space-borne observations of planets ("Prospects for
Observations in the Next Decade") and a working session on Recommendations and
Conclusions. The papers reproduced in this volume represent the substance of
the talks, all of which were invited. Discussions followed each paper and
were transcribed from tape recordings. These were reviewed by the editors,
who made typographical corrections of grammar, and deleted unintelligible
comments. Wherever possible, the nameof the discussant has been provided.

The papers presented here represent the state of our knowledge as of
March, 1980. Therefore new results obtained by the Voyager flyby of Saturn
and its satellites are not reflected in these papers.

Topics for invited talks were chosen by the Organizing Committee to
provide foci for discussion and a structural framework for the workshop. The
specific topics chosen reflect, unavoidably, some professional preference on
our part, but we hope this was minimal.
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Executive Summaryof Recommendations

Certain general themes and many specific problems were identified as

needing further study (in some cases, a first study). The participants

felt that a vigorous program in theoretical and experimental spectroscopy

was essential to enable full interpretation of planetary infrared spectra

now in hand or expected to be obtained in the near future. Specific

recommendations, listed below, were distilled from the discussions

following individual papers from the Working Session on Recommendations and

Conclusions, and from written comments solicited from the participants.

Recommendati ons :

1. Theoretical molecular studies are vital to the interpretation of

planetary spectra, and NASAshould increase its support of this area.

Three particularly important areas for planetary spectroscopy are: I)

Reduction of fundamental molecular constants from measured laboratory

spectra, 2) ab-initio calculations (particularly of band strengths and

positions) for those planetary molecules which are particularly difficult

to study in the laboratory, mainly free radicals and ions, and 3)

theoretical analysis of line shapes and pressure-shifts. For the latter

case, a unified theory of pressure broadening is needed and this requires

good inter-molecular potential energy curves for planetary constituents.

2. A well-structured program concerning laboratory spectroscopy of

planetary molecules is essential, and should be established.

A vigorous program supporting measurements of spectroscopic data under

conditions simulating planetary atmospheric conditions, as closely as

possible, is critically important. Because the pressure regimes

encountered in the interpretation of planetary infrared spectra vary from

the very high (many atmospheres) to the very low (micro-bars), it is
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imperative to support laboratory studies over a wide range of spectral

resolutions, from the Doppler-limited low pressure domain to the highly

pressure-broadened domain. Laboratory studies at low temperatures (typical

of tropopause regions for the outer planets, or _ lOOK), and at both long
and short path lengths are very important. Particular attention must be

given to the temperature dependence of the pressure-broadening coefficients

for self-and foreign-gas broadening and to determination of the temperature

dependence of line strengths. Theoretical and experimental work must be

supported on the shapes and shifts of pressure-broadened molecular lines in

cases where they are not well known (most cases). Determination of

frequencies, strengths, quantum identifications, and lower state energies

for the individual spectral lines comprising a molecular band are

critically important, and reduction of these experimentally determined

parameters to molecular constants must be supported as discussed in

Recommendation 2. Relaxation coefficients are needed for interpretation of

vibrational energy transfer in regions of planetary atmospheres where

non-equilibrium effects are important. Independent confirmation of

spectroscopic data is imperative and is closely connected to a critical

evaluation of the data, mandating that depth be established in the number

of groups supported.

3. A National repository or central data facility for s?ectroscopic data

relevant to planetary atmospheres should be established.

The purpose is to make existing data more easily accessible to the

planetary spectroscopy community. The Repository staff should maintain a

continuously updated and critically evaluated data base which is closely

coupled to planetary needs and therefore to the planetary community.

Support for this Repository must come from NASA, since it is the agency

principally responsible for planetary research. A proposal for a National

Spectroscopy Center was discussed, but no conclusion was reached regarding

the wisdom of establishing it.

4. Coordination and communication amon_molecular theorists atmospheric

modellers, laboratory spectroscopists, and planetary observers must be
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improved.

Current scientificmeetingssponsoredby professionalsocietiesdo not

providea sufficientlyfocussedyet broad forum for this purpose,and do

not allow sufficienttime during scheduledsessionsfor in-depth

interactionand discussion. For example,the annualmeeting of the

Division of PlanetaryAstronomyof the AmericanAstronomicalSociety

attractsmany planetaryastronomers,some atmosphericmodellers,a few

laboratoryspectroscopists,and virtuallyno moleculartheorists. One

acceptablebut not exclusivemethod for providinga programmatically

focussed forum would be to establisha bi-annualworkshop such as the

presentone. We recommendthat the PlanetaryProgramOffice sponsorsuch

an appropriateforum.

5. Many specificspectroscopic problemswere identifiedas needin_studY

to resolvecurrentproblems in planetaryatmospheres.

The needs are numerous,and are discussedin some detail in the

sectionof this Proceedingslabeled "Summaryof the Working Session." A

few key problemshave been abstractedfrom the Summary and are given here

as examples:

o A key to understandingthe greenhouseeffecton Venus is

availabilityof better data on the opacityof the mixtures C02:N2,

C02:C02, and H20:CO2 at high pressuresand temperatures.

o Photochemicalmodels for Mars and Venus need to be verifiedby

spectroscopicdetectionof OH molecules (H202,H02, e.g.) for Mars

and sulfur-and chlorine-bearingspeciesfor Venus (SO2, SO3,

C_2, C_O, e.g.)

o Collision-inducedopacitymeasurementsamong (H2, HD, He, CH4, N2)
are needed for interpretingspectraof the outer planets,as are

high resolutiondata (for H2, CH4, NH3, PH3, e.g.). High and
moderate resolutiondata are needed for constituentssuggestedby
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thermo-chemical or photo-chemical models (CH2, CH3, C3H8,

H2S, e.g.).

o Doppler-limited spectroscopy is needed for wind measurements and

for sounding and abundance determinations. This is important

for the major planets and is critical for comets.

o Laboratory measurements are needed on the spectra of condensed

phases (i,e., ices, liquids, and snows) for interpretation of

aerosols and solid-surface compositions of planetary bodies.

Additional important problems are identified in the "Summary of the Working

Session."
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The Space Telescope

John Caldwell

The Space Telescope will be launched in early 1984 into polar orbit. It

consists of a 2.4 meter telescope with room on board for five scientific

instruments. The f-ratio is dependent upon the secondary objects within the

range of the various scientific instruments, but varies from at least 12 to

200. In the first complement there will be two cameras, a high-speed

photometer capable of 16 microsecond temporal resolution, and two

spectrographs. The mission is planned for a 20-year lifetime but will be

refurbishable at about 2-I/2 year intervals, at which times the scientific

instruments can be replaced.

The first of the two spectrographs in the initial complement of instruments is

called the faint-object spectrograph. The emphasis here is on faint. The

idea is to get spectra of cosmologically distant objects, but it's also of

interest to planetary workers. Its maximumspectral resolving power is about

103 and its spectral range is from Lyman-alpha to 7,000 _. The second

spectrograph is the high-resolution spectrograph and here the emphasis is on

hig.__._h.Its spectral resolving power is up to 105. Its range may be

disappointing to many of you; from Lyman-alpha to only 3,000 . The reason is

that the people who built it were very worried about leaping into long

wavelength parts of the spectrum, and they didn't feel they could shield their

instrument adequately. That's controversial, but that's the way it will fly.

In terms of infrared capabilities, I do like to stress that real opportunity

exists. If somebody fancies himself to be an instrument builder, there will

be occasions for new instruments and any proposal would be welcomed, although

competition will be keen. If you like to do that kind of thing, let me give

you typical instrument parameters. The current generation instruments

typically weigh about 600 pounds, consume about 150 watts of power when

they're working, and are allocated about 50 watts in the hold mode. The

latter seems to be necessary to keep them in mechanical alignment, and to keep

the electronics alive, etc. Their physical shape can best be described by

saying that those who build them refer to them affectionately as "the coffins."
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I can't give you any specific results here, but let me point out one favorite

hobby horse of mine. Reinhard alluded to it. That is, that the spectrum

indeed does not stop at I micron but extends to the ultraviolet. One can

detect molecules there. As an example, Warren Noos and his colleagues at

Johns Hopkins have observed spectra of Saturn with the International

Ultraviolet Explorer. They found that absorption peaks in the lab spectra of

acetylene coincide with minima in the reflection spectra of Saturn. To the

best of my knowledge, people who do ultraviolet spectroscopy don't worry very

much about things like pressure broadening and so on, but I can think of no

reason why we shouldn't be concerned about it if we are trying to do

qualitative work there. This spectrum contains every bit as much information

as the _5 fundamental at 13.7 microns, and is an independent way of measuring
a remote planetary atmosphere. I think it's good to pursue it. The planetary

community would be remiss in not pushing the laboratory types to remember that

there are electroniG transitions and that they do contain very important

quantitative information.

Question: How close to the Sun can the telescope point?

Answer: That is somewhat a function of how hard you want to work at it. The

telescope can get to Venus but it has to do it during part of an orbit; you

slew during the nighttime. Yet it turns out that the question has a political

side, too. If one takes as a given that you want to point as far away from

theSun as possible to minimize the zodiacal light and thereby enhance the

cosmological capabilities, then it becomes prohibitively difficult to slew

down to Venus in the daytime and get a quick spectrum, l've had some

discussions with the project on this and maybe the planetary people will have

to get together and make our collective weight felt. The cosmologists pay the

penalty of very long exposure times, and we may pay other penalties but

planetary studies may require a comparable investment of time.

Question (George Birnbaum): You put in a request for pressure-broadening

information in the hard UV where Doppler widths may be quite significant. You

have to go to high pressures to see the pressure-broadening effects. Can you

estimate whether, for the type of spectra you are looking at,

pressure-broadening is important at these frequencies?

Response: If you can convince me that it's not, l'd be grateful. I speak not
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as an expert on how pressure affects the molecules, but I know that in the

past people have been very cavalier.
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The Future of Ground-Based Near-IR Observations

Uwe Fink

I decided to break the subject down into wavelength areas, the first one being

from about 1 to 2 1/2 microns, where we are still detector-noise limited in

Fourier spectroscopy. We are not background-noise limited, and that means

that the full multiplex advantage of Fourier spectroscopy holds, and therefore

cons lerably better signal-to-noise ratios can be achieved if we can make

improvements in detectors. So in this particular region the major emphasis

should be on detector improvement, so that we can get the best possible

spectra.

Consider first the terrestrial planets - Mercury, Venus, Mars. There doesn't

seem to be much sense in looking at Mercury since it doesn't have an

atmosphere. Very high resolution spectra of Venus have been obtained by

Connes, but some argue that more observations on Venus are necessary. I don't

know whether I would agree with this too strongly since I feel that the Connes

data themselves (the latest Connes data from the 200-inch) have never been

really totally analyzed or carefully looked at.

Comment (Andrew Young): This neglects the problem of temporal variations. For

example, we see variations from day to day in CO2 absorptions. There are big
variations in both spatial and temporal water absorption, and also for minor

constituents like HC_ and HF. We need to understand how they interact in the

dynamics and photochemistry of the cloud, and this requires spatial and

temporal resolution as well as spectral resolution.

Answer: That's true. The spatial resolution is going to be somewhat hard to

get, especially for Venus, since you have to observe in the daytime when the

seeing is usually bad. But you can certainly get temporal resolution. My own

personal bias is that sometimes you can spend an awful lot of time and very

great effort for very small scientific return. Alternatively, one can be

surprised and discover some very unusual phenomena. I would certainly think

that some effort and time should be devoted to that type of research.

On Mars I feel there is even less to do than on Venus since we have the Viking
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lander there which analyzed the atmosphere in situ. The atmosphere is thin.

I don't believe it has any more unknown constituents, at least not in major

proportions, and therefore it really wouldn't make much sense to do an

extensive Fourier spectroscopy program on Mars.

Now for the major planets. They are dominated by methane atmospheres, and I

will discuss this further in my talk on laboratory spectroscopy. For those

bands, we certainly could get better spectra at high resolution. However,

even now we are stuck with interpreting what we have, and the hang-up here is

really laboratory spectroscopy; we really have to unsort the whole spectrum of

methane (CH4 and CH3D) from I to 3 microns before we can make any progress.

There is also a third area: If we can make sufficient improvements in our

detectors (that's certainly feasible; basically it's just a question of money)

we can get Fourier transform spectra of some of the fainter satellites in the

Solar System, and also spectra of Pluto and Triton. Those two would be the

final objects from 1 to 2.5 microns. We are, as we said, not background-noise

limited.

Now a few comments about the region from 3 to 5.5 microns (I understand that

Alan Tokunaga will talk about longer wavelengths). Jupiter has a very

prominent 5 micron window in which many interesting molecules have been

discovered. The resolution limit in this particular window has not yet been

reached, but this has to be tackled from the C-141. Our group is working on

this and I think high resolution spectra of Jupiter can be obtained in this

window. Saturn has two sufficiently interesting windows. It has a very nice

window at 4 microns in addition to the 5-micron window; both windows look very

interesting, and I think should be explored more. The 4-micron window can be

partially explored from the ground, but again the C-141 is better suited to
it. Five-micron data fromthe C-141 become somewhat difficult because Saturn's

flux is way down and it becomes difficult to cancel the thermal background

from the sky, especially in the moving airplane where the telescope is not as

steady as on the ground. For the 5-micron window on Saturn we have a spectrum

from the ground, and I think with the opening of the Hawaii Infrared Facility

much better data should be possible in the 5-micron region of Saturn. The

ground-based spectra, particularly on days when the atmospheric water content

is very low - may produce some interesting results in that area.
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The Next Decade in Space-Based Observations

Rudi Hanel

The most significant step forward will be the shuttle-based infrared

telescope, a Coude telescope, which will allow the use of cooled detectors and

cooled interferometers. As far as free flyers are concerned, progress will

hinge on the technology, and again on the cooling technology. Will it be

feasible to have a cool device which can last long enough to get you to

Jupiter, Saturn, or Neptune, and still provide you with a cool detector? That

would allow a quantum step over the spectra I showed you this morning, which

are admittedly from a "Model-T" instrument. The next advance will come when

spaceborne instruments become background limited; you then have to go to

something like a post-dispersion system where the output of the interferometer

is dispersed across a detector array so that each individual detector may

still be limited by its own noise level rather than by the background, and you

retain the benefit of the multiplex advantage. Technologies like that, and

the cooling, will play a major role over the next decade.
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Next Generation InfraredSp,ectroscopyof the Planets

Michael J. Mumma

We've been asked to address advances in space in planetary

spectroscopy in the next ten years. Considering that there will be no

high-resolution infrared spectrometer on Galileo (there is one with low

resolution for studying surfaces of tile satellites), none on VOIR, and that

the instrument weight budgeted for a possible fast-flyby of P/Halley

precludes an infrared spectrometer on that mission as well; there appears

to be very little prospect for infrared spectroscopy from planetary

spacecraft in the next decade. This is extremely unfortunate, because it's

clear not only from Rudi Hanel's presentation this morning, but also from

some of the work that A1 Betz described, that there are significant data

which cannot be obtained in any other way.

We therefore need to look to earth-orbiting facilities to provide

high-resolution spectroscopy in the next decade. Fortunately, SIRTF does

become viable in this time frame with the possibility of having a high

resolution spectrometer on board, capable of good planetary and stellar

astronomy.

The one point that has not yet been adequately stressed in the

workshop is that a truly different class of information is obtained when

lines are observed to their true limit in spectral resolution (as opposed

to the instrumentation limit). For this reason, an instrument such as a

Fourier transform spectrometer operating from I to 20 microns with both

post-dispersed detector array and cryogenic temperatures, coupled with a

very high resolution instrument such as an infrared heterodyne

spectrometer, would together give an extremely complementary and complete

picture of the physics occurring in planetary atmospheres.

Our current knowledge of the better known atmospheres may be

summarized (simplistically) as follows: We understand Mars in a gross

sense (in terms of the temperature structure and major atmospheric

constituents), the same is true for Venus, may be true for Saturn, and is
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certainly true for Jupiter. A major thrust for the next decade should be

an investigation of the minor constituents, i.e., trace species that occur

let's say in the stratosphere or even in the troposphere, and in many cases

control the local chemistry. Even on Hars, which we all agree has probably

one of the best understood atmospheres, we have not yet detected most of

the minor constituents, so we don't know to what degree current chemical

models are correct (e.g. Yuk Yung's paper). Only by studying the trace

species can we understand fully the photochemistry of extra-terrestrial

atmospheres and be able to relate them to our own.

Another more-or-less neglected area of planetary spectroscopy (because

the focus has rightly been on determining the temperature fields, major

constituents, and related first order parameters) is that of the detailed

physics occurring in various regions in the atmosphere and its effect on

different states of the molecules in question. A good example of this is

provided by the v3-2_ 2 (lO_m) band of CO2 on Mars. The Einstein-A

coefficient for the v3 band is about 420 sec-I, and the collisional
relaxation rate is unusually small (K _ 3 x 10-15 cm3 sec"I at 20OK)

suggesting that on _ars the v3 level should go out of LTE at about 2

millibars pressure (_ 5 Km altitude). By contrast, _2 of CO2 should go out
of LTE at about 50 km altitude. Recent analysis of fully resolved shapes

of v3-2_ 2 lines by the Goddard group shows that vibrational LTE fails in
the first 12 Kmabove the surface, in agreement with prediction.

Furthermore, an unexpected non-thermally pumpedemission at line center was

discovered by A1 Betz and is being studied further by the Goddard group.

At even moderately high (say 104) spectral resolution these lines would

appear in absorption, completely masking the non-LTE phonenoma.

As a final point, I think it's clear from this workshop that

substantially more laboratory spectroscopy is needed (relevant to the

interpretation of planetary atmospheres) particularly on such parameters as

absolute line strengths, line-by-line frequencies, pressure-broadening

coefficients and their temperature dependence. Most importantly, it is

essential to couple into the effort those first-rank molecular theorists

who can perform ab initio calculations of line strengths or integrated band

strengths for radicals and ions that are not readily measurable in the

laboratory, and for interpretation of observed laboratory spectra.
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Question (Andrew Young): Let me say a couple of words about Mars

since you raised the issue of trace constituents there. Several people

here have said, "Oh, we don't need to worry about Mars because we have

Viking." But let's remember that the 02 and COlimits on Mars are both
still based on ground-based infrared spectra. Viking didn't do a thing for

those limits. Various aeronomical models exist for these species; they're

supposed to vary with time but nobody has ever observed this. Two guys

have observed oxygen on Mars, got about the same numbers, and everybody

said, "That's it!", and quit.

Response: I think your criticism of incompleteness is valid. That is

one reason I asked Yung a question here today on whether he and Don Hunten

agreed on the peroxide abundance on Mars. Yuk gave us the impression

earlier that the photochemistry of Mars was well understood, that we knew

what all the minor constituents were, and that we knew what the important

processes were. I spoke with him a little later and he said, "Well, what

he really meant to say . . . was that as far as the model can be checked or

has been checked, it seems to be consistent." However, no one has ever

observed peroxide or HO2 on Mars. There are data on water vapor, and a few
other species on Mars but that's it. Wejust don't know what most minor

constituents are doing. By analogy with the Earth's atmosphere, those are

the important constituents in terms of understanding stratospheric

chemistry.
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The I0 _m Region

Alan Tokunaga

I shall be very brief. The best way to extrapolate is to show what we

can do today. So here is a figure (missing from text-Ed.) of some data on

Jupiter taken in the I0 micron region; most of the absorption is due to

ammonia and there is some emission by ethane at 12 microns. The point is,

this spectrum was taken 2 years ago using the 4-meter FTS spectrometer at

Kitt Peak; Steven Ridgeway of Kitt Peak deserves the credit for the quality

of the spectrum. That was 2 years ago, and just recently (just this

month) there was another observing run using the same instrument in which

we believe we can do a factor of 2 better on signal-to-noise, and so the

advances are continuing. My best guess for the future is that in the next 5

or I0 years, a spectrum of this quality can be obtained on Jupiter with a

resolution somewhere in the range of .01 or .02 cm"I.

It's going to be a challenge to interpret spectra of this quality and

resolution, given the relative lack of laboratory data at low temperatures.

This is, as you know, a low-temperature spectrum, say between 120 and 145K.

Very little laboratory work has been done on parameters such as the line

width as a function of temperature (the line profile even for ammonia is

under some question, I believe). Also in parts of this spectrum, when I

did the analysis, there was some question about the line intensities,

especially for high-J transitions (e.g., for the Q-branch, for J greater

than I0) at low temperatures. I think there are some temperature-dependent

effects that are not known or haven't been studied yet. Furthermore, note

the emission spectrum of ethane. This is still the best published

low-temperature spectrum of that gas, and so clearly more work needs to be

done at low temperature: a subject which hasn't been discussed very much

today.

Comment (Beer): You should point out the 1950 cm"1 ammonia band as it

is perhaps more visible.
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Response: Yes, there are also 15 ammonia transitions which are very

poorly studied, although Prasad Varanasi has been doing some work lately on

that gas.

Comment IMike Mumma): Can you leave the viewgraph (Figure ?) up for a

moment? I just wanted to point out that if you look at the peak intensity

of the ethane Q-branch and estimate the temperature it comes up to about

145 K even though the instrument does not resolve the structure of the

branch. I guarantee that the individual line intensities, if looked at by

a sufficiently high resolution spectrometer, would be well in excess of

that brightness temperature.
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Future Developments

Reinhard Beer

I'II mention a couple of future developments that I think are very

interesting. First, there have already been a few beginning stumbling

attempts made in the short wavelength (2.5 micron region I think) infrared

with a combination of imaging detectors and Fourier spectrometers; a very

potent combination. One attempt was made by Mike Belton at Kitt Peak, who

used a 200 x 200 silicon CID. The problem one runs into is one that Jack

Margolis alluded to this morning, i.e., the terrifying data processing. On

a somewhat more modest scale, a 32 x 32 indium antimonide CID array imager,

or a combination of that and the Fourier spectrometer offers exceedingly

interesting possibilities. One can also use the identical kind of array

with grating spectrometers in a background-limited mode, whereby you use

one dimension of spatial dispersion and one dimension of energy. I think

that's a very promising future development that could in fact be beginning
now.

The second development is one that Jack Margolis mentioned in

passing, and I think is worth emphasizing, gas correlation spectrometers

combined with frequency shifters (apparently active frequency shifters are

about to become a reality). You need the frequency shifter because the gas

correlation spectrometer works on a lab rest frequency; just because of the

Earth's orbital motion, for example, Jupiter has a ± 26-27 km/sec orbital

radial velocity charged on frequency shifts at 5 microns. That's almost

0.2 cm-I which, with a correlation spectrometer, would be enough to move

you clear out of the range. So frequency shifters have to be part and

parcel of it. With that, I think one can start measuring in the near

infrared with the kind of precision that the heterodyne people were talking

_o about. For radial velocity, one can think in terms of measuring the

velocity down to the order of a few meters per second; and abundances down

to almost any number you care to think of, because you're looking at the

whole spectrum, the whole time. It really is a multiplexing technique, and

I think it's something that deserves a lot more future development.
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Comment: That's a limb-scanning method that you're talking about,

i.e., using the correlation spectrometer.

Response: I think it can be used on planetary disks if you can get

the frequency shifters.

End of Session

26



INTRODUCTION TO PLANETARY SPECTROSCOPY

Page

Molecular Spectroscopy and Planetary Exploration
from Space - Rudolph Hanel ............ . • ..... • • • .......... . 29

Radiative Transfer and Remote Sensing - Barney J. Conrath ........ 47

Rayleigh, Raman and Particulate Scattering - William D. Cochran .... 63

27





Molecular Spectroscopy and Planetary Exploration from Space

Rudolf A. Hanel, NASA/GSFC

Molecular spectroscopy and planetary astronomy have been closely

connected for many decades. Even before man's adventure into space,

astronomers have learned much about the composition of planetary atmospheres

by interpreting spectroscopic data recorded at ground based telescopes.

Molecular spectroscopy from a spacecraft passing close to a planet, or even

better from an orbiter, has a number of advantages over ground based

techniques: it is possible to obtain spectra over a wide spectral range (I)

without the obscuring effect of Earth's atmosphere, (2) at much higher spatial

resolution, and (3) from directions and with phase angles inaccessible from

Earth. For example, the polar regions of Mars have been explored at low

emission angles by Viking and the dark side of the Galilean satellites have

been investigated by Voyager.

Except for data obtained by the atmospheric probes and landers on Venus

and Mars, most information on the planets has been obtained by remotely

sensing either reflected sunlight or thermal and, in some cases, non-thermal

emission. Reflected sunlight and non-thermal emission, particularly in the

ultraviolet, yield information on atomic constituents because many atomic

resonances fall into this spectral range. More complez molecules have their

vibration and rotation spectra at longer wavelength in the infrared and it is

for that reason that the exploration of the infrared spectrum of the planets

has been so important. Furthermore, in the thermal infrared, the spectral

radiance, the quantity which is measured by spectroscopic instr_ents, is

intimately linked with the local temperature through the Planck function which

appears in the radiative transfer equation. Therefore, analysis of the

thermal emission spectrum yields atmospheric temperatures as well as

information on the chemical composition.

In this talk, I will show examples of the role which molecular

spectroscopy has played in the interpretation of the thermal emission spectra

of Earth, Mars, and Jupiter (Fig. I). Earth was explored by the Michelson

interferometers (IRIS) on Nimbus 3 and 4 launched in 1969 and 1970,
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Figure 1. The thermal emission, spectra of Earth, Mars and Jupiter recorded by Nimbus 4, Mariner 9,
and Voyager 1, respectively. The spectra are shown in terms of brightness temperatures. Mars
and Jupiter are on the same scale. Earth is vertically displaced to avoid overlap with the
Martian spectrum. The inserted scale applies to the Earth spectrum.
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respectively (Hanel et al., 1969; Conrath et al., 1970; Hanel et al., 1972a;

Kunde et al., 1974; Prabhakara et al., 1976). An advanced version of the

Nimbus interferometer was flown on the Mariner 9 orbiter around Mars in

1971/72 (Hanel et al., 1972b; Hanel et al., 1972c; Conrath et al., 1973). In

1977 two Voyager spacecraft were launched on a long journey to Jupiter, Saturn

and possibly further on to Uranus. In March and August 1979, the Voyager I

and 2 spacecraft, respectively, passed through the Jovian system and the

infrared instruments have obtained information on the planets and on the

Jovian satellites (Hanel et al., 1979a; Pearl et al., 1979; Hanel et al.,

1979b). Molecular spectroscopy and the theory of radiative transfer have

provided the basis for the interpretation of the data. In many cases it was

apparent that our present state of knowledge of molecular parameters is

inadequate. A vigorous effort in laboratory spectroscopy and molecular theory

are of fundamental importance for space exploration. Before exploring the

planetary spectra further, I will briefly discuss the IRIS instrument and

summarize the theory of remote sensing in the thermal infrared.

The Infrared Interferometric Spectrometer (IRIS)

The first Nimbus interferometer was patterned after a breadboard which

was constructed by L. Chaney from the University of Michigan and our group at

the Goddard Space Flight Center. After a successful balloon flight and

extensive laboratory testing, the Michigan team pursued further balloon

activities and the GSFC team space application. The conceptual layout of the

interferometer is indicated in Fig. 2. Texas Instruments, Inc. in Dallas,

Texas, built all of the space flight versions of the instrument.

The first launch in 1968 was a disaster due to a malfunction in the

guidance system of the rocket; the spacecraft fell into the Pacific Ocean. A

year later Nimbus 3 was launched and the interferometer functioned well (Hanel

et al., 1970). On Nimbus a conventional grating spectrometer, SIRS, and IRIS

obtained vertical temperature profiles of the atmosphere; in addition, IRIS

obtained water vapor and ozone distributions (Wark et al., 1969; Hanel et al.,

1969). On Nimbus 4 the resolved sPectral interval was decreased from 5 to 2.8

cm-I and several other design changes contributed to the generally better

performance of this instrument, as compared to its predecessor.
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A major design change was implemented in the next generation of IRIS,

earmarked to fly on Mariner to Mars. In the Nimbus instrument, the potassium

bromide beamsplitter material limited the spectral range to wavenumbers

greater than 400 cm-I (Hanel et al., 1971). However, the range between 200

and 400 cm-I contains strong rotational water vapor lines, crucial to the Mars

investigation. A change to cesium iodide was therefore made, although CsI is

very soft, hard to polish and difficult to maintain flat (Hanel et al., 1972).

Again one of the two spacecraft, Mariner 8, was lost, this time in the

Atlantic Ocean, but after a 6 month cruise Mariner 9 reached Mars. IRIS as

well as the spacecraft performed beyond expectation.

The largest and most ambitious step in the evolution of IRIS came in

response to demanding requirements for exploration of the outer planets.

Temperatures there are only slightly higher than that of liquid nitrogen;

under these circumstances the measurement of the thermal emission spectrum is

not an easy task. Moreover, the instruments had to survive for years in space

and had to function in the severe high-energy particle environment which

exists in the vicinity of Jupiter (Hanel et al., 1980).

The optical layout of the Voyager IRIS is shown in Fig. 3. The whole

instrument, including the half-meter telescope, weighs only 18.4 kg and

operates with an average power of 14 Watt. The Cassegrain telescope forms an

image of the object at the focal plane aperture which limits the field of view

to 0.25° full cone angle. A dichroic mirror channels the visible and near

infrared portion of the spectrum into a radiometer, and the lower wavenumbers

into the Michelson interferometer which analyzes the spectrum between 180 and

2500 cm-I with a 4.3 cm-I apodized resolution. The main interferometer and

the reference interferometer (which controls the motor speed and the

wavenumber calibration) are shown for convenience in Fig. 3 in the plane of

the paper, although they are in reality perpendicular to it. As all previous

IRIS, the Voyager instrument is thermostatically controlled by thermally

insulating the entire assembly from the spacecraft, and allowing the

instrument to cool by radiating to space. The instrument is held at a constant

temperature of 200 K by the thermostatic action of small electrical heaters.

Voyager IRIS has three independent thermostats, one for the interferometer
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proper, one for the primary, and one for the secondary telescope mirror. The

Voyager interferometers have performed well although a slight optical

misalignment, more pronounced on Voyager 2 than on I, has been noted.

Remote Sensing Concept and Results

The art of remote sensing is to infer physical and chemical conditions

from radiance measurements at different wavenumbers and zenith angles. This

task must be based on radiative transfer theory. The physical quantity

measured by these interferometers is the spectral radiance expressed, for

example, in W cm-2 sr-I (cm-1)-I. Sometimes it is more instructive, as in the

case of Fig. I, to plot the spectra in units of brightness temperature,

defined as the temperature of a blackbody which emits, at a particular

wavenumber, an equal amount of radiation as the object under investigation.

Restricting the case to thermal emission from a plane parallel atmosphere

in thermodynamic equilibrium, of optical thickness _I' above a lower boundary

of emissivity €G and temperature TG, the spectral radiance can be expressed
by (Hanel et al., 1977)

TI

_ __ 7_i ----
I(o,_) = CGB(TG) e _ + 1 B[_(T)]e P dr. (I)P o

B is the Planck function and cos-1_ the emission angle. All quantities in Eq.

I, except p and T, depend on the wavenumber, _. The optical depth _ is

defined by

co

T(_,Z) : I Z [ki(_,z',T) pi(z',T)] dz', (2)
z i

where ki and Pi are the absorption coefficient and density of gas i, and z and

z" are altitudes. Eqs. I and 2 are valid only for monochromatic radiation; a

convolution with the instrument function is required before computed and

observed radiances can be compared.
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The first term in Eq. I represents emission from a solid surface and the

second term emission from atmospheric layers. In cases of the Galilean

satellites (except the 1350 cm-I range of Io) only the first term needs to be

considered. In a deep and opaque atmosphere, such as that of Jupiter, only

the second term is important. On Earth and Mars both terms are significant

depending on the actual value of the optical depth, _, at a particular

wavenumber. The task of deriving atmospheric temperatures from a measurement

of I requires an inversion of the integral equation I which, in the early

days of remote sensing, was often compared to the task of reconstructing an

egg from its scrambled state. However, much has been learned about this

process in the last decade so that today the inversion technique is generally

not a limiting factor in the interpretation of planetary spectra (see eg.

Deepak 1977).

One can always compute a synthesized spectrum by assuming a vertical

profile of temperature and a reasonable distribution of atmospheric

constituents, comparing the calculated to the observed spectrum, making

adjustments to the assumptions, and iterating the process until agreement

exists across the spectrum. A careful error analysis must be performed

because solutions are not always unique. All inversion procedures ass_ne that

the absorption coefficients of all absorbers involved are adequately known as

a function of temperature and pressure. Line by line computational methods

must be applied which require a precise knowledge of line position, line

strength and their dependence on temperature and pressure (Kunde and Maguire

1974). Within a band even weak lines and lines from isotopes must be taken

into account. Even for CO2, which has been studied extensively because of its

importance for the retrieval of vertical temperature profiles in the Earth's

atmosphere, it was necessary to include many very weak bands and even bands of

isotopes, including 13C and 170 into our molecular models before the spectrum

of the 667 cm-I Martian CO2 band, shown in Fig. 4, was fully explained

(Maguire 1977).

Furthermore, the theory of line shape needs to be better understood,

particularly the contributions of the wings of strong lines far away from the

center. Absorption by the far wings affects the continuum transmission of

spectral windows such as the 8-12 _m window on Earth and the 5 pm window on

Jupiter.
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Figure 4. Comparison of measured and synthesized spectra of Mars in the region of the strong
667 cm-1 CO2 band. The main spectral features are labeled with a three-digit number
representing the isotope; thus 16013 C180 is abbreviated 638. Unlabeled features are
due to the main isotope I6012C160. The synthetic spectrum is displaced 20.3 K.

37



Earth

Emission spectra of the lower Sahara region, of the Mediterranean Sea and

an Antarctic spectrum are shown in Fig. 5. The highest spectral radiances
-I

occur in the most transparent part of the atmospheric window near 825 cm

indicating a surface temperature of about 318 K. In contrast the arctic

spectrum indicates surface temperatures below 200 K. The CO2 band centered at

667 cm-I shows also marked differences between the low latitude and the arctic

cases. Without going through a formal inversion of Eq. I, one can say that at

low latitudes atmospheric temperatures must fall with height to a temperature

minimum and then increase again because the intensities generally fall between

650 and 700 cm-I and the Q branch at 667 cm-I shows an opposing trend. In the

arctic all bands of CO2, H20 and 03 appear in emission indicating that

atmospheric temperatures throughout the troposphere and stratosphere are

higher than the temperature of the surface.

Mars

The most dominant spectral feature in the mid-latitude spectrum of Mars

(Fig. 6), the 667 cm-I CO2 band, shows great similarity in the overall shape

to the same band in the Sahara spectrum. However, intensities are much

smaller (due to the generally lower Martian temperatures) and the Q branch at

667 cm-I appears in absorption and not in emission as on Earth which indicates

the absence of a stratospheric temperature inversion on Mars. The north polar

spectrum (it was late fall in the north at the time of measurement) shows

again a warmer atmosphere over a very cold surface at about 145 K, very near

the condensation point of CO2 at the Martian surface pressure.

The south polar spectrum is more complicated because a large fraction of

the frost deposit has already evaporated exposing the darker underlying

surface which heats in the Martian midnight sun to much higher temperatures

than the still frost covered fraction within the field of view. The CO2 band

indicates a warm atmospheric layer sandwiched between a colder surface and a

colder upper atmosphere. Water vapor lines and features of atmospheric dust

are also apparent in the spectrum. J
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Nimbus 4 in April 1970.
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Figure 6. Thermal emission spectra of the north and south polar regions and of mid-latitudes on Mars recorded by
Mariner 9 in Dec. 1971 and Jan. 1972.



Jupiter

Examples of a Jovian spectrum are shown in Fig. 7 and 8. Jupiter has a

predominantly hydrogen atmosphere with about 20% helium per mass. Small

fractions (NH 3, PH 3, CH4, C2H2 and C2H 6) exist and their signatures are

indicated in Fig. 7. The spectral intensities of the broad pressure-induced

S(0) and S(I) lines of H2 at 350 and 600 cm-I have been used to derive

atmospheric temperatures and the helium abundance on Jupiter. The major

uncertainty in the helium abundance is not in the spacecraft measurement but

in the associated coefficients of pressure induced hydrogen and helium

absorption, pointing again to the need of better supporting laboratory

measurements. Interesting features appear at 354.4 cm-I and 557.1 cm-I, the

S(O) and S(I) lines of the free H2 molecule. The features are small and

difficult to see in the figure. Their shape, reminiscent of a dispersion

curve, and their true nature have not been fully explained.

A Jovian hot spot spectrum is reproduced in Fig. 8. Brightness

temperatures up to 260 K have been observed. The region below 1800 cm-I is

obscured by NH 3 and above 2200 cm-I by PH3 and CH4. A quantitative

explanation of the appearance of the lines of H20, CH3D and GeH 4 remains to be

done. In this spectral region great difficulties exist in assessing the

continuum absorption provided by the wings of strong nearby bands. The

presence of haze of unknown composition and particle size distribution may

complicate matters further. However, the Voyager spectra with their

radiometric accuracy (although at moderate spectral resolution) in conjunction

with radiative transfer and molecular absorption theory will certainly advance

our understanding of the Jovian atmosphere.

The displayed sample spectra reflect only a small fraction of the

available data. I have no time to dwell on the interpretation of the spectra.

However, I hope to have conveyed to you the important relationship which must

exist between the interpretation of planetary spectra and laboratory as well

as theoretical spectroscopy. If researchers in both fields, that is in

astronomy and in molecular science, pay attention to each others' needs,

science as a whole will be well served. It is the purpose of this workshop to

establish better communication between both disciplines.
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Figure 7. Thermal emission spectrum of Jupiter between 200 and 1400 cm-1 recorded by Voyager 1 in March 1979.
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Radiative Transfer and Remote Sensing

Barney J. Conrath (NASA/GSFC)

Introduction

Radiative transfer is the basic theoretical tool for the quantitative

interpretation of planetary infrared spectra such as those discussed in the

preceeding paper. It links the remotely sensed data to the properties of the

atmosphere (composition, thermal structure, dynamics, etc.) which we wish to

infer. This paper gives a brief overview of the remote sensing problem as it

pertains to the interpretation of planetary spectra. The presentation is

tutorial rather than exhaustive.

First, an outline will be given of the basic theoretical formulation

generally used in calculating the spectral radiance from a planetary

atmosphere, followed by a discussion of how this formulation is used in

interpreting measured spectra, both through the use of model atmospheres and

by means of inversion methods. The information content of spectral

measurements will then be examined. Finally, examples of applications to

planetary data will be presented.

The Remote Sensing Problem

Examples of thermal emission spectra of Jupiter measured by the Voyager

infrared spectrometer (IRIS) are shown in Fig. I (Hanel et al., 1979). The

remote sensing problem is basically that of using data such as these to infer

information on the atmosphere of the planet. With a knowledge of line

positions of candidate species, it may be possible to make qualitative

identifications of many spectral features. However, to quantitatively infer

information on thermal structure and the abundances and vertical distributions

of gases, it is necessary to have a theoretical representation of the spectral

radiance in terms of the relevant atmospheric parameters. Such a

representation is provided through radiative transfer theory.

The spectral radiance I (u) at frequency 9 and emission angle cos-I u at

the top of a plane-parallel atmosphere can be obtained from solutions of the
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Figure 1. Spectra from selected areas on Jupiter obtained from the Voyager infrared
spectroscopy experiment (Hanel, et al., 1979). A synthetic spectrum calculated
from a model atmosphere is shown for comparison. Spectral features associated
with several gaseous constituents are identified.
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radiative transfer equation, which for purposes of this discussion can be

written in the form

: -- A F e- + -- _ (Zb)Iv(_) _ v v p v

-T (Zb)/_v
+ (I-A v) Bv (eb) e

+ $ B [e(z)] _ -Tv(z)/_
v _-{ [e ]dz. (I)

zb

The geometry is illustrated in Fig. 2. The solar flux F is incident at the
-I

top of the atmosphere at solar zenith angle cos _o" Av is the albedo of the

lower boundary of the observable atmosphere (cloud or planetary surface),

(z) is the perpendicular optical depth of the atmospheric column betweenv

altitude z and the top of the atmosphere, and the subscript b denotes values

at the lower boundary. It has been assumed that local thermodynamic

equilibrium (LTE) holds, and the source function is given simply by the Planck

radiance B(6) at the kinetic temperature e. This assumption is reasonable for

many applications involving medium resolution spectra, but with the advent of

ultra-high resolution planetary spectroscopy such as heterodyne techniques,

interesting non-LTE situations have been found. However, for simplicity, only

cases for which LTE holds will be considered here.

The first term on the right hand side of equation (I) represents the

contribution to the outgoing radiation of the direct solar flux reflected from

the lower boundary, attenuated by absorption along thetwo-way path through

the atmosphere. The second term is the thermal emission from the lower

boundary at temperature Ob, also attenuated by the atmospheric absorption.

The third term represents the thermal emission from the atmosphere. The

diffuse radiation field associated with particulate and molecular scattering

would contribute additional terms to (I); however, these have been omitted in

the interest of simplicity.

The radiance measured by an instrument with finite resolution can be

related to the monochromatic radiance of (I) by
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Figure 2. Geometry of the radiative transfer formulation discussed in the text. The
atmospheric radiance is measured at emission angle cos-1 /_ by a sensor
above the atmosphere. The solar flux is incident at angle cos-1 It.
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I-(_) : I ¢(_,_)I (_) dv (2)
Av

where ¢(_,_) is the normalized spectral response of the instrument, which

defines a pass band of width A_ with central frequency _.

The physical parameter which links the state of the atmosphere to the

measured radiance is the absorption coefficient k(_). The optical depth for

gaseous absorption is given by

_ (z) = I z ki(_) pi(z') dz" (3)
z i

where ki and Pi are respectively the absorption coefficient and density of the

i-th gas, and the summation is taken over all optically active gases. The

absorption coefficient for a molecular absorption band can generally be

written in the form

ki(_) = _ Sij f(_; _ij' _ij ) (4)
J

where S.. is the strength of the j-th line of the i-th gas, and _.. and ao.
ij ij ij

are respectively the central frequency and half-width. The summation is taken

over all lines which contribute to the absorption at frequency v. Thus, to

specify the absorption coefficient at a given point in the spectrum, it is

necessary in principle to specify the strength, position and shape for every

line of every constituent active in that portion of the spectrum. This of

course is where laboratory and theoretical spectroscopy come into the picture.

For interpreting sufficiently low resolution measurements, it may be

possible to use models of the gaseous transmittance which take into account

only the average properties of the lines within an interval, but do not

consider each line individually. As planetary measurements have become

available at higher spectral resolution, increasing use has been made of

direct line-by-line calculations. This requires a compilation of line

parameters, usually on magnetic tape, which can be combined with information

on line shape, and can then be inserted into equation (I) to calculate a
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synthetic spectrum from a given model atmosphere. The calculation involves

summations over individual lines and constituents, integrations over

atmospheric slant paths for essentially monochromatic radiation, and finally

convolution with the instrument response function. This is a formidable

computational problem. Although large amounts Of computer time may be

required, the problem is usually tractable.

To illustrate certain aspects common to most remote sensing problems, the

specific problem of retrieving vertical temperature profiles of a planetary

atmosphere from remotely measured infrared spectra will be considered. Let us

assume the measurements are within an absorption band for which the

atmospheric transmittance can be specified: that is, the vertical distribution

of the relevant absorbers and their line strengths and widths are known. It

will also be assumed that the reflected solar component and lower boundary

emission terms in (I) are negligible. The theoretical expression for the

measured radiance then becomes

I-(_) = I B-[e(z)] _ dz (5)
v v _zo

where the atmospheric transmittance is defined as

-T IB

T-(B) : Y ¢(_,v) e v dr, (6)
Av

and it has been assumed that the variation in the Planck function over the

spectral interval Av is negligible. From a set of measurements of I as a

function of _ within the absorption band or as a function of emission angle

-I
cos B or both, we would like to infer information on the temperature profile

8(z). For purposes of illustration we will consider here an inference based

only on the dependence on _. To estimate the sensitivity of I_ to 8(z), we

shall consider perturbations AS(z) about a reference profile 8o(Z). The

resulting perturbation of the measurements AI_ is then given to first order by

nl- : s K(_,z)As(z)dz (7)
o
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where

: (8)
T --jo

0

The kernel or "weighting function" K is evaluated using Co(Z), as indicated.

Examples of weighting functions for Jupiter as given by Conrath and Gautier

(1980) are shown in Fig. 3. Those with maxima at levels deeper than 100 mbar

are associated with the S(0) and S(I) pressure induced hydrogen lines while

the upper three correspond to selected points in the _4 CH4 band centered near
-I -I

1304 cm . The calculations were made for a spectral resolution of 4.3 cm .

The weighting functions associated with strongly absorbing spectral regions

peak higher in the atmosphere while those from regions of weaker absorption

have maxima deeper in the atmosphere. Thus, a set of measurements from

selected points in the spectrum can provide information on the thermal

structure over a vertical range of the atmosphere which in this case extends

from approximately I mbar down to 500 mbar.

A fundamental property of the radiative transfer process is illustrated

in Fig. 3. The weighting functions are broad and strongly overlapping; thus,

the radiative transfer process acts essentially as a low pass filter which

prevents retrieval of fine scale information in the vertical structure. The

high spatial frequency components are weakly represented in the measurements,

and in the presence of realistic instrument noise they are inaccessible. The

measurement process as it pertains to the remote sensing problem is

illustrated schematically in Fig. 4. Information on the atmospheric structure

and composition is degraded by the low pass filtering of the radiative

transfer process and the introduction of instrumental noise and systematic

errors. The problem then is to take advantage of whatever information is

contained in the measurements of I- while recognizing their intrinsic

limitations.

Methods of Solution

The two general approaches to the inference of quantitative atmospheric

information from measured thermal emission spectra are direct modelling and

inversion. The basic objective of both approaches is of course the same,
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i.e., to find a set of physically meaningful atmospheric parameters which

yield theoretical radiances in agreement with the measured radiances to within

some specified level of tolerance. The philosophies of the two approaches

are, however, somewhat different.

The direct modelling approach is illustrated schematicallY in Fig. 5.

Several candidate models are defined based on plausibility, a priori

information, etc. These models are used with the radiative transfer equation

in direct calculations of synthetic spectra. These spectra are then compared

with the measured spectrum, and a "best fit" is chosen based on some

arbitrarily defined set of criteria. If necessary the chosen model may be

fine tuned by introducing small changes in the parameters and repeating the

procedure. An example of the comparison of model calculations with a Mariner

9 IRIS spectrum used to obtain water vapor abundance in the Martian atmosphere

is shown in Fig. 6. _

The inversion approach is illustrated schematically in Fig. 7. The

measured radiances are introduced directly into the radiative transfer

equation, forming an integral equation for the unknown atmospheric profile.

An inversion algorithm is then used to solve the integral equation to obtain

vertical profiles of temperature or composition. The limitations on the

information content of the measurements can be analyzed and dealt with

explicitly in the inversion approach. As discussed previously, the filtering

action of the radiative transfer process surpresses information on small

vertical scale structure in the profiles. As a result, the solutions are

non-unique, in the sense that to any solution we can add high statial

frequency components of arbitrary amplitude and still satisfy the integral

equation to within the noise level of the measurements. For this reason all

successful inversion algorithms introduce filtering constraints, either

explicitly or implicitly, which exclude spurious high frequency components

from the solutions. For a given set of weighting functions and known

measurement noise level, formulations exist for the analysis of information

content in terms of vertical resolution and error propagation (see for example

Conrath, 1972; Twomey, 1977). Several inversion algorithms are currently in

use for the analysis of remotely sensed data, but these will not be reviewed

here. The interested reader is referred to inversion conference summaries
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Figure 3. Weighting functions used for the retrieval of vertical temperature profiles on Jupiter
from Voyager IRIS measurements (Conrath & Gautier, 1980). Those with maxima
below 100 (mb) pertain to spectral intervals within the S(0) and S(1) pressure in-
duced hydrogen lines. Those above 100 mb are from the v4 methane band.
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Figure 4. Schematic of the measurement process as it pertains to the remote sensing problem. The radiative transfer process
acts as a low pass filter on atmospheric structure, and the information content of the measurements is further
degraded by noise and other instrumental effects.
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Figure 5. Schematic of the direct modelling approach to the retrieval of information from remote radiation measurements. A "library"
of model atmospheres is used to calculate synthetic data which is compared with the measurements. On the basis of this
comparison a best fit model is chosen.
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Figure 6. Example of the inference of water vapor abundance on Mars by comparison with synthetic data calculated from a model. The data
in this case are from the Mariner 9 infrared spectroscopy experiment.
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Figure 7. Schematic of the inversion approach to the retrieval of information from remote radiation measurements.
The measured radiances are employed in an integral equation which is then solved. To prevent spurious
features in the solution, the algorithm makes use of appropriate constraints based on a knowledge of the
filtering introduced by the radiative transfer process and the instrument noise level (see Figure 4).



edited by Colin (1972) and by Deepak (1976) which contain review papers on the

various techniques. Examples of Jovian temperature profiles retrieved from

Voyager IRIS data are shown in Fig. 8.

Both the direct modelling and inversion approaches are extensively used.

The inversion technique has found its widest application in the inference of

atmospheric thermal structure and to a lesser extent in the retrieval of

gaseous profiles. Direct modelling is especially useful in situations where

the formulation of an explicit integral equation may be difficult or

inconvenient, eg., in the inference of information on haze or cloud particles.

With either approach it is imperative that the limitations on the information

content of a given set of measurements be fully understood, otherwise, serious

misinterpretation of the data may result.

Concluding Remarks

The use of radiative transfer theory for the quantitative interpretation

of planetary spectra, both by direct modelling and through inversion

techniques, requires a knowledge of gaseous absorption coefficients

appropriate to the spectral region employed. It is not possible to make

general statements concerning the uncertainties in the absorption coefficients

which can be tolerated in remote sensing applications. Rather this question

must be treated on a case-by-case basis. The sensitivity of temperature

retrievals to absorption coefficient errors depends on the atmospheric lapse

rate, the temperature range, and the spectral region. For example the

inference of upper stratospheric temperatures from measurements within the

Q-branch of the _4 CH4 band is relatively insensitive to absorption

coefficient errors because of the low lapse rate in this portion of the

atmosphere. However, the use of the P- or R-branches of this band to infer

C/H puts greater demands on absorption coefficient accuracy. In any event,

determination of sensitivity to absorption coefficient errors should form a

part of any complete remote sensing analysis, along with determination of

information content of the measurements.
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RAYLEIGH, RAMAN AND PARTICULATE SCATTERING

William D. Cochran

Astronomy Department and McDonaldObservatory
University of Texas
Austin, TX 78712

In analyzing the visible and near infrared spectra of planetary atmospheres,

it is absolutely essential to consider the multiple scattering of photons within

the atmosphere. Within this spectral region, virtually all of the photons detected

are solar photons which have been scattered by the gas and particles in the plane-

tary atmosphere. This is seen clearly in Figure 1 which shows the incident and

emitted fluxes for a hypothetical planet with an effective temperature of I00 K.

Here I have plotted _BX vs log _ so the area under the curve is proportional to

the total flux. For this hypothetical planet, which radiates the same amount of

energy it reaeives, all of the light at wavelengths less than about 8 microns is

scattered solar light. For a planet like Jupiter, the dividing point between

scattered solar flux and emitted thermal flux is at a somewhat shorter wavelength

since Jupiter radiates about twice the energy it receives from the sun and has an

effective temperature of 125 K.

In order to begin to understand the information contained in the absorption

spectrum of a planetary atmosphere we must first understand the various scattering

processes these photons undergo within the atmosphere. There are three different

physical processes we must worry about: Rayleigh scattering and Raman scattering

by _he gas molecules, and scattering by any cloud or dust aerosol particles in the

atmosphere.

Let us briefly examine the physics of each of these processes.

63



0.1

T = 5770

1.0 10.0

i\ <.« M)

100.

Figure 1. Incident and emitted fluxes of solar photons for a hypothetical planetary atmosphere with an
effective temperature of 100 K.



Rayleigh Scattering

Rayleigh scattering is the scattering of radiation at a nonresonance frequency

by any system which possesses an electric dipole polarizability. The size of the

cross section depends on the polarizability of the particle within the radiation

field, and thus depends on the index of refraciton. The classical Rayleigh scatter-

ing cross section is given in Table I. We note that there is a dependence of

the cross section on wavelength. This increase in cross section with decrease of

wavelength does not, of course, continue indefinitely. The scattering cross section

will level off at a value of twice the geometric cross section as the wavelength

approaches the physical dimension of the particle. Rayleigh scattering will result

in some absorption if there is an imaginary part of the index of refraction.

On the lower part of the table we see the Rayleigh scattering cross section

for molecular hydrogen given by Victor, Browne, and Dalgarno (1967, Proc. Phys.

Soc., 92, 42). The constant terms are the same as for particles, but Victor et al. i

are able to calculate the polarizability and anisotropy as a function of wavelength.

Similar calculations have also been made by Ford and Browne (1973, Atomic Data,

307).

The Rayleigh scattering cross section for a molecule is fairly small, but for

a deep atmosphere or for ultraviolet radiation, Rayleigh scattering can be a signif-

icant effect. A good rule of thumb is that the molecular hydrogen Rayleigh
o

scattering optical thickness at 4000A is about 0.01 per km-amagat. Table 2 shows

the Rayleigh scattering optical thickness per kilometer-amagat of several common

gases.
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Table 1
Rayleigh Scattering

FOR PARTICLES:

2

_ _ A6 M2 - 1O"S M2 + 2

8 F/2A3 ( M2-1 )O'-A - -- _ IM M2 + 2

M = INDEX OF REFRACTION

A = PARTICLE RADIUS

FOR H2

O..= 128//'5 (3(X(_)2+ 2_(_)2)914 3

CX. = POLARIZABILITY

= ANISOTROPY
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Table 2
RayleighScatteringOptical Thicknessper Kilometer-Amagat

_(A) H2 HE CH4 CO2 N2 AR

2000 0,1520 0,0094 1,3632 1,5604 _,69_4 0,6256

4000 0,0095 0,0006 0,0852 0,0975 0,0434 0,0391

6000 0,0019 0,0001 0,0168 0.0193 0,0086 0,0077

8000 0,0006 - 0.0053 0,0061 0.0027 0,0024

10000 0,0002 - 0,0022 0,0025 0.0011 0,0010
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Raman Scattering

Raman scattering is an incoherent nonresonance scattering of photons. An

incident photon of frequency _0 is scattered and emerges at frequency v0 + _v

where A_ is the frequency of the Raman transition of the molecule. The cross

sections for rotational and vibrational Raman scattering by H2 are shown in

Table 3. We see the same i-4 dependence on wavelength as in Rayleign scattering.

This is to be expected since the physical processes are very similar.

Brinkmann (1968, A__J., 154, 1087) first realized that Raman scattering

could have a detectable influence on a planetary spectrum when he identified

rotational Raman scattering by N2 and 02 as the cause of the filling in of

Fraunhofer lines in the spectrum of the Earth's daytime sky. Since then, several

papers have been published by various authors discussing the influence of Raman

scattering on the visible spectra of the planets. Raman scattering fi_llSin

the cores of the solar lines and causes Raman shifted ghosts of the solar spec-

trum to appear in the planetary spectrum. It also has a strong influence on

the shape of the UV albedo curve.

Particulate Scattering

Scattering by anything other than molecules or very small particles is

lumped into the category of aerosol scattering. This includes scattering by dust

or haze particles as well as condensate and chemical cloud crystals or droplets.

Aerosol scattering is the dominant source of scattering in most of the planetary

atmospheres, and yet it is the process we understand the least. We have no way

of predicting, apriori, the scattering properties of most of the cloud or dust

layers we may expect in a planetary atmosphere. In fact, we have to turn the

problem around and use the observational data to place constraints on the
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Table 3

Raman Cross Sections for H2

S (J ) O"(J-"J+2,_)= 128tr5 (J+l)(J+2) _,(/_)2
9/_,4 (2J+3)(2J+l)

0 ( J ) O"(J-_J-2,_): 128/75 J (J-l) y(_)2

9 /I'4 (2J-i)(2J+l)

VIBRATIONAL(_V-"V+I,_)-128/75 13(X'(A)2+2_.__'(A)I(V+I)H9 2,4 3 8r/.2._VE
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scattering properties of the aerosols. From these scattering properties we try

to determine the physical characteristics of the aerosols.

There are two major methods of incorporating aerosol scattering in radia-

tive transfer calculations. The first is to assume an aerosol single scattering

albedo and a convenient functional form of the scattering phase function. The

phase function is then expanded in either Legendre polynomials or a Fourier

cosine series, depending on the radiative transfer calculation scheme. The most

popular functions are shown in Table 4.

The simplest and unfortunately a quite commonly used phase function is the

isotropic case. The great advantage of this phase function is that many radia-

tive transfer problems may be solved analytically and be reduced to Chandrasekhar

X and Y functions. The disadvantage is that it is unrealistic. There is no

particle in nature that I know of which scatters isotropically.

The easiest way to add some anisotropy to the phase function is to add a

cosine @ term. This is sometimes called the Euler phase function. This phase

function is easy and convenient to use, but has the disadvantage that it cannot

represent strongly anisotropic scattering. The maximum value of the asymmetry

parameter (the mean value of the scattering angle, @) is only 1/3.

One of the most commonly used phase functions was developed by Henyey and

Greenstein (1941, Ap. J., 93, 70) in a study of interstellar grains. It has a

somewhat complicated functional form, but the asymmetry parameter G may vary

all the way from 0 to i. The major disadvantage of this phase function is

that it is strongly forward scattering, with no backscattering lobe. This

problem is easily alleviated by using a simple linear combination if two Heyney-

Greenstein functions, one with positive G and the other with negative G. This

will result in both forward- and back_scattering lobes in the phase function.
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Table 4
Scattering Phase Functions

1) ISOTROPIC

P(O) = i

2) EULER

P(O) = i + X Cos(O)

O<_X<I

<CosO> : X/3

3)
A) HENYEY - GREENSTEIN

1 - G2
P(0,G):

(1+ G2.- 2GCOS(O))3/2

0<G.<I

< Cos(O)> : s

B) DOUBLE HENYEY - GREENSTEIN

p(B,GI,G2) = AP(B,GI) + BP(B,G2)

A+B=I

GIG2 < 0
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Tomasko, West, and Castillo (1978, Icarus, 33, 558) have found this double

Henyey-Greenstein function to be quite useful for parametrizing the scattering

properties of the clouds of Jupiter.

The second approach in dealing with aerosol scattering is to assume the

physical characteristics of the particles and then to calculate the phase func-

tion for these particles. The usual technique here is to guess at the index of

refraction and particle size distribution and then use Mie theory to calculate

the single scattering albedo, phase function and, if polarization is included

in the calculations, the Stokes parameters. The index of refraction and size

distribution are then adjusted so that the calculated model will fit the observed

data. The use of Mie scattering makes the assumption that the scattering particles

are spheres. This is probably a valid assumption for Venus, but it is quite

doubtful for the outer planets and Titan.

Scattering Models

I) Reflecting Layer Model

How do we incorporate these various types of scattering into our radiative

transfer models? The easiest way is to simply ignore all of the scattering.

This is known as the reflecting layer model. In this model, a clear gas layer

in which Rayleigh and Raman scattering are not considered sits above a reflecting

surface. This surface is considered to be the tcp of a dense cloud deck or the

actual surface of the planet. The only interaction of photons with the gas is

molecular absorption. This is a very simple model that we can all easily

compute with a hand calculator. The only problem is that when we apply it to

any body in the solar system which we know definitely has an atmosphere, the

reflecting layer model does not work. In the case of Venus and the outer
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planets it fails miserably. It gives the wrong variation of equivalent widths

with position on the disk and solar phase angle. The gas abundances derived

depend on the strength of the feature observed. The reflecting layer model

even gives incorrect results for the thin atmosphere of Ma_s. We have learned

by bitter experience that scattering must be included in the analysis of spectra

of any planetary atmosphere. The only excuse for publishing a reflecting layer

model today is to place upper limits on possible atmospheres of bodies such as

Triton and Pluto.

2) Inhomogeneous Models

Now that we have been forced to include multiple scattering in our models,

how do we go about doing it? It is possible to analytically calculate homogeneous

multiple scattering models using many of the techniques developed by Chandrasekhar.

Unfortunately, most planetary atmospheres are strongly inhomogeneous. We can

have clear gas layers which fade into clouds, which then end at some altitude,

etc. Fortunately, with the wide availability of large, high-speed scientific

computers we may now calculate radiative transfer models of atmospheres with

virtually any vertical inhomogeneity. There are a large variety of different

radiative transfer techniques in use: doubling and adding, Monte Carlo,

invariant imbedding, and Markov chains to name a few. FORTRAN programs have

been published for many of these methods, and tested codes may be easily obtained

for most of them. In fact, these codes are so widely available now that there

is little excuse for not using some sophisticated radiative transfer technique.

It should be fairly evident that these inhomogeneous anisotropic scattering

models have a large number of free parameters. We must specify the abundances

of all of the gases, as well as the position, optical thickness, single scattering
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albedo, and phase function of all of the cloud layers. Obviously, a single

spectrum can not constrain all of these parameters simultaneously. We must use

a wide variety of data to constrain our models.

The largest difficulty in interpreting spectra is trying to simultaneously

constrain both the gas abundances and the cloud scattering parameters. In order

to illustrate this point, I would like to present the results of some calculations
o

we have recently made of the profile of the 6190A methane band in the Jovian

atmosphere. Figure 2 shows the variation of the equivalent width of the band

as a function of optical thickness of the upper ammonia cloud. Curves are shown

for four different methane mixing ratios ranging from the value expected from a

solar C/H ratio to four times that value. We can easily get the same equivalent

width for this band by having a large methane abundance and a thick cloud or by

having a low methane abundance and a thin cloud. In fact, since these curves

turn over at low r, a given methane abundance may result in the same equivalent

width for two different optical thicknesses.

If we consider the cloud single scattering albedo instead of the optical

thickness, we have a similar problem as shown in Fig. 3. We can obtain a

desired equivalent width with a bright cloud and a low methane abundance or with

a darker cloud and a higher methane abundance.

A single measurement of the equivalent width of the band will tell us

nothing about the methane abundance or the cloud scattering properties. Addi-

tional data is needed to constrain one or the other of these properties of the

atmosphere. Such additional data could be a continuum limb darkening curve or

observations of the center-to-limb variation of the band. With the large number

of free parameters, we must analyze a great deal of observational data to con-

strain a full inhomogeneous scattering model.
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The method we have just discussed works quite well if our goal is to

determine the cloud scattering structure as well as the gas abundances of a

planetary atmosphere. An excellent example of this type of thorough analysis

is the recent study of the Jovian atmosphere by Sate and Hansen (1979, J. Atmos.

Sci., 36, 1133). We should note that abundances determined in this manner are

still model dependent. We certainly use all available data to constrain the

models, but we are still bound by the limitations of that model.

Alternative Models

The calculation of a full inhomogeneous scattering model clearly requires

a large amount of data and is a lot:of work. However, our goal is not always

to derive a new model for the atmosphere. Often, we wish to determine the

abundance of a newly detected atmospheric constituent, or we wish to use new

laboratory data to redetermine the abundance of some gas. For these investiga-

tions, there is no point in calculating a full inhomogeneous scattering model.

Our new data will not tell us anything new about the cloud structure.

One approach to this type of problem is to assume someone else's published

cloud structure model and then calculate the abundance of the gas in question.

This is a perfectly valid approach, but it does have a few drawbacks. First,

the derived abundance is still model dependent. Secondly, no matter how fully

and carefully you justify your selection of a particular model, there will

probably be disagreement as to which published model is the best.

An alternative approach which avoids these problems was recently summarized

by Combes and Encrenaz (1979, Icarus, 39, i). They describe a method of

deriving abundance ratios which completely detours the entire process of calcu-

lating a scattering model. This method has been used in various forms by several

different investigators. 77



Let us consider two lines or bands formed by two different absorbers. If

these two lines or bands are properly chosen and fulfill a set of four conditions,

then a ratio of the abundances of these two absorbers may be derived which is

valid regardless of the scattering process involved. The four conditions we

impose guarantee that the scattering process has been the same for both lines

and that the only difference between the lines is the abundance of the absorber.

The four conditions are shown in Table 5. The first condition is that

the lines or bands considered be at the same, or nearly the same, wavelength.

As we saw earlier, the Raman and Rayleigh scattering cross sections have a

_4 dependence. Particulate scattering c_oss sections usually vary about as

_l This first condition insures that the scattering cross sections will be

about the same at the wavelength of the two features considered.

The second condition requires _thatwe compare features of equal strength.

This is the most crucial of the four conditions. It requires that the two lines

fall at the same position on the curve of growth. Multiple scattering within a

planetary atmosphere has a strong influence on the shape of the curve of growth.

Weak lines are more affected by multiple scattering than are strong lines. For

weak lines the photon may be scattered several times before a molecular absorp-

tion occurs. For strong lines, the absorption usually occurs on the first

scattering. This condition guarantees that the photon mean free path has been

the same for both lines.

The third condition is that the abundance ratio of the two gases, which is

what we want to determine, is constant with altitude in the visible portion of

the atmosphere° The species under study should not be condensable, or if they

are both condensable they should follow the same depletion law. In other words,

determination of an ammonia to hydrogen ratio on Jupiter is risky, but measuring

15NH3/14NH3 is allowed. 78



Table 5
Combes and Encrenaz Conditions for Determining

Abundance Ratios

i) LINES OR BANDS AT THE SAME WAVELENGTH

2) LINE DEPTHS MUST BE THE SAME

3) N1 / N2 CONSTANTWITHALTITUDE

4) 0(1 /0(2 CONSTANTWITH ALTITUDE

1,2,3,4 ---->Nlo<1 = N2c¢<2
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The fourth condition is that the ratio of the two absorption coefficients

is constant with altitude. This means that the line formation processes must

have the same dependence on pressure and temperature. This is usually satis-

fied fairly well at line centers, as long as we are not considering pressure

induced lines.

Of these four conditions, the second and the third are the most important.

Reasonable deviations from the first and the fourth will not invalidate the

conclusions. If these four conditions are met, the abundance ratio we wish to

determine is just the reciprocal of the ratio of the absorption coefficients.

Conclusions

From all of these examples, we have seen that line formation in the visible

spectra of the planets is dominated by multiple scattering in inhomogeneous

atmospheres, The physics of some of the scattering processes such as Rayleigh

and Raman scattering is well understood. Scattering by aerosol particles may

be treated only ,by a parametrization process. Techniques exist for making

radiative transfer calculations in vertically inhomogeneous atmospheres with

anisotropic scattering. These atmospheres may be either plane parallel or

spherical. Little progress has been made on including horizontal inhomogenieties

in the calculations. A large amount of data is needed to constrain these

multiple scattering models. For the much more limited goal of determining

abundance ratios, we do not need to calculate such a fancy model. By adhering

to a set of conditions which guarantee that the scattering has been the same

for both lines in question, a model independent abundance ratio may be calculated

directly.

This work has been supported by NASA Grant NGR 44-012-152.
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Discussion

Comment (L. Wallace): It seems to me that Combes and Encrenaz have left out a

fifth condition: that the line shapes should be the same. The mathematics

screws up totally if you try to compare hydrogen quadrupole lines which are

pressure narrowed with methane lines which are pressure broadened.

Respons____e:That condition is folded in here, "the line formation process must

be the same," so that would include line profiles.

Comment (L. Wallace): So this technique would basically be limited to methane

isotopes.

Response_: In their paper, they go through an argument for deriving ratios

against ammonia. I'm not sure it is correct but they word it fairly

convincingly. The method is for isotopes, or any other new constituents we

may detect in the future. But in the visible part of the spectrum, you are

right: all we can really see is methane, ammonia and hydrogen, unfortunately.

Comment (A. Goldman): Is it possible to get a new continuum from the Rayleigh

and Raman scattering?

Response: Rayleigh and Raman scattering will determine the shape of the

continuum quite definitely, for the ammonia bands in the ultraviolet. In

fact, Raman scattering causes a peak in the albedo near 2400_ due to the shape

of the solar spectrum.
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Comment (R. Beer): I agree with Lloyd Wallace's comment. There are very few

species for which the Combes and Encrenaz method is applicable. For all the

really interesting species you want to look at, you don't really have a way of

solving the problem. I also want to ask a question. It's been proposed that

on Venus there is a haze of very, very small particles, called mode O, and

this wonderful haze somehow or other is much more strongly absorbing in the

infrared than in the visible. How does that go along with this strong

wavelength dependence? The particle sizes are supposed to be hundredths of a

micron or 100 angstroms plus.

Response: For scattering by visible light, particles of that size would be in

the Rayleigh regime.

Comment (R. Beer): Well, what they're telling us is exactly the reverse.

Response: I think that's probably telling us something about these particles;

they may perhaps not be of that size. It is hard to get the scattering

properties of aerosol particles to differ drastically between the infrared and

the visible, because the scattering cross-sections just don't vary that fast.

Comment (M. Tomasko): You normally think that if a particle is not very

important in the visible, then it's even less important at longer wavelengths,

in the infrared. But that is true only if you have approximately the same

index of refraction in both regions. Some species, like sulphuric acid, have

whopping imaginary parts in the infrared but don't do much in :the visible.

That's one way you can make it work. There are a lot of other objections to

these small particles, but at least in principle you can have stronger
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scattering in the infrared.

Respons____e:Yes, you can change the absorption coefficient by adjusting the

imaginary part of the index of refraction, even though the scattering cross

section isn't going to vary much.

Comment (M. Mumma): Your very elegant talk seemed to me a pretty damning

indictment against the abundance determinations in the visible.

Comment (L. Wallace): That is absolutely right.

Comment(M.Mumma): You are sayingthatyou reallywant to go as far intothe

infraredas feasible.

Comment (L. Wallace): We only want to do that until we learn the problems in

that region.

Comment (M. Mumma): There certainly will be problems there, but the Rayleigh

scattering problem will be absent.

Response (W. Cochran): I don't think that spectroscopy in the visual region

is as hopeless as you seem to feel it is. I agree that it is difficult to

determine model-independent abundances from visible spectra. What you really

determine from the visible spectra are the cloud scattering properties, since

cloud scattering is dominating all that can be seen. In the infrared, where

the scattering is due to molecular rather than aerosol processes, we may learn

about the abundance, temperature, and pressure of gas. In order to fully
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understand the structure of an atmosphere, we must study both the aerosol and

gas properties.

Comment (G. Orton): I'd like to make the same point. I'm not sure I believe

any scattering models or abundance determinations made on the basis of the

analysis of near-visible spectra, unless we know what the real temperature

dependence of all these things are.

Comment (B. Lutz): Switching from the visible to the infrared is not

necessarily a panacea; as soon as you do that, you don't know what the

continuum is. You don't know where you are, until you start model fitting

everything.

Response: I agree. You still end up with model-dependent abundances in the

infrared.

Comment (J. Caldwell): A couple of comments on what people have said. I came

to the same conclusion that Mike Mumma stated: the visible is a tough place

to work. If you go into the ultraviolet, you can handle Rayleigh scattering.

If you go into the infrared, there are advantages you can at least attempt to

apply. In this connection, the 10-micron spectra of Saturn and Titan are

instructive. On those two planets the continu_ seems to be quite depressed

_ith respect to the emission bands from the stratosphere, even more so than on

Jupiter. On both these planets there is an immense ethane emission feature,

methane sticks up quite nicely above the continuum, and on Titan you can even

see traces of ethylene. When you are dealing with the emission from the

stratosphere there is a good chance that you are away from particle scattering
84



effects, although the absolute abundance that you derive depends on the

temperature p_ofile, as Barney Conrath illustrated in his talk yesterday.

Relative abundances in that regime, between species like ethylene, ethane,

methane and so on, offer some potential for really good results.

85





REVIEW OF THEORETICAL AND
EXPERIMENTAL SPECTROSCOPIC METHODS

Page

Prediction of Molecular Infrared Band and Line
Intensities - WillisB. Person ................................. 89

New Theoretical and Experimental Methods for Pressure-
Broadened Linewidths and Their Interpretation - Jack J. Gelfand .... 125

Laboratory Molecular Spectroscopy - Jack Margolis ............... 149

Microwave Rotational Spectroscopy - H. Pickett ................. 171

87





PREDICTION OF MOLECULAR INFRARED BAND AND LINE INTENSITIES

Willis B. Person

Department of Chemistry

University of Florida

Gainesville, Florida 32611

ABSTRACT

The general problem of predicting infrared intensities is examined, with

an introduction intended to define the problem to be considered and also the

concepts involved. After some rather non-specific discussion of the problem

of predicting line intensities, attention is focussed specifically on the

problem of predicting vibrational strengths (or total band intensities). Two

methods are considered: predictions based on ab initio quantum-mechanical cal-

culations, and predictions based on the transfer of atomic polar tensor

parameters from small model molecules to the molecule of interest. Compari-

sons of predicted spectra with experimental spectra are shown for CH30H,

CH3OCH3, C2H5OH, and HOCk. It is suggested that the most important application

of this work may be to the prediction of intensities for free radicals, ions,

and reactive intermediates so that the infrared spectrum can be used in the

quantitative analysis for these interesting species.
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INTRODUCTION

Although this audience is familiar with traditional studies of infrared

intensities, it is still perhaps worthwhile to take a few minutes to review a

few elementary concepts and define the problem of predicting infrared intensi-

ties. First of all, it is worth remembering that literally hundreds of

thousands of low resolution survey infrared spectra have been recorded for all

kinds of molecules that occur in the laboratory. Figure l shows an example in

the form of a survey spectrum showing the infrared absorption of a gaseous sam-

SF6.1 This spectrum shows the two allowed fundamental absorption bandsple of

(_3 at 950 cm"l and _4 at 615 cm-l) in SF6 as very strongly absorbing features,

with a few other weak absorption bands due to some of the allowed combination

bands. This low resolution spectrum (spectral slit width about l cm l) never-

theless serves to pose the primary question to be answered by a prediction of

infrared intensities; namely, why is the absorption by _3 so very strong, and

why is that by _4 so weak (not much stronger, in fact, than some of the absorp-

tion by combination bands)?

We all know that we can look at one of these absorption bands with higher

resolution and see much more detail about the band. For example Figure 2 shows

-l observed2 with a Nicolet Fourier transform infra-
the _4 band near 615 cm as

red (FTIR) spectrometer at a resolution of 0.05 cm-l We see there that the

nice smooth envelope from _4 seen in Figure 1 is misleading, and that it is due

to the convolution in this region of a very large number of individual vibration-

rotation lines with the large spectral slit width. A number of other complica-

tions begin to show up at higher resolution: for example, the Q-branch absorption

by 34SF6 is marked, and we see a set of hot bands at
cm -Iabout 614 and a number

of sharp Q-branches from other hot bands superimposed on the main 0 . l Q-branch

at 615 cm-l, as well as the weaker vibration-rotation hot band peaks between the

strong sharp vibration-rotation lines for the main 0 . l transition. At this
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Figure 1. Survey infrared spectrum of SF6 gas (about 2 torr, in a 10 cm cell) taken with a Perkin-Elmer Model 457 grating spectrometer at
about 1 cm-1 resolution. (Figure taken from Perkin-Elmer Infrared Bulletin 36.1 We are grateful to the Perkin-Elmer Corporation
for permission to reprint this figure.)
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Spectrosc.)



level of resolution, we see that we might want the theory to predict not only

the total absorption intensity due to all the individual lines in the band, but

also we might want to predict the intensity of each individual vibration-

rotation line or the intensity of each of the different "hot bands" (transitions

(v4 = O . l) occurring in molecules which already have one or two (or more)

quanta of excitation in vibrational modes -- for example, a molecule excited in

the state with v6 = l may absorb a 16 _m photon to reach the state with v6 = l

and v4 = l).

As complicated as this spectrum may seem, we find that the situation becomes

even more interesting when the spectrum is examined with an infrared diode laser

with a spectral resolution of about lO-5 cm-l Figure 3 shows the appearance of

one of the vibration-rotation "lines" (P(39)) when it is examined with a diode

2
laser. Now we see that the "prediction" of intensities must concern itself not

with the intensity of just one vibration-rotation "line," but instead with the

intensity of each of the many components of this line.

Hence, we see from these three figures that the "prediction" of infrared

intensities must be considered on several different levels of sophistication,

depending upon the quality of the experimental data. At the present time, inten-

sity theory is primarily concerned with predicting the total band intensities of

Figure l, but we shall outline here some ideas on how this kind of prediction

can be extended to predict the "line" intensities of Figure 2, or even to pre-

dict the "component" intensities in Figure 3.

DEFINITIONS

The term "infrared intensity" is used here to indicate the integrated molar

absorption coefficient

A = (I/C£) !band £n(Io/I)d_" (1)

Here C is the concentration in moles/liter (for gases C = p/RT, where p is
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Figure 3. The absorption spectrum inP(39) of v q  of gaseous SFg, taken with a 16 p diode laser at about cm-I resolution. 
(Figure taken from Fig. 4 of reference 2, with permission from J. Mol. Spectrosc.) 



pressure in atm , T is temperature in K, and R is 0.08205 _-atm K-I mole-l),

-l
is the pathlength in cm, _ is the wavenumber in cm , and the integration is

carried out over each individual component of Figure 3 to get a "line component

intensity," over all the components in a line to get the "line intensity" or

over all the lines in the entire band to get the total "band intensity " Note

that the total band intensity in general includes the intensity contributions

from all the hot bands, as well as the contribution from the 0 . l transition,

but the individual line intensity measures intensity for a single rotational tran-

sition for the 0 . l vibrational transition (for example) Hence the intensity

of the latter depends on the population of molecules in the ground vibrational

state (hence also on the temperature) while the total band intensity includes

all contributions from all the molecules (vibrationally excited as well as ground

state molecules), and so is independent of temperature.

The units of A from Eq. l are cm millimole"l (or "darks"); this value of

A(cm mmole-l) can be converted to A(km mole-l) by dividing by lO0: A(km mole-l)

= (I/lO0)A(cm mmole-l) = [A(cm-2 arm-l) at T OK)] x (RT x IO-5), with R =

82.05 cm3-atm K-l mole-l. Other conversion factors are given, for example, by

Pugh and Rao.3

Another commonly used measure of intensity is r defined by 4

F = (I/C_) fband _n(Io/I) d(_n _). (2)

For many theoretical applications this measure of intensity is preferred4 0ver A.

two quantities are related: 105 x A(km mole-I) _ [_O(cm-l)] x F(cm2 mole-l),These

where _0 is the band center. In most of the rest of this article we shall mean

A in km mole-l when we refer to the "intensity," and we shall specify whether

it is band, line, or component intensity that we mean.

Experimentally, the total integrated band area, A, is obtained not by inte-

grating over each line in Figure 2 and summing, but by pressure broadening the

lines by adding several atmospheres of inert, transparent gas (for example,
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I0-50 arm of N2) so that the lines overlap and give a smooth envelope of absorp-

tion over the entire band so that the integrated absorbance can then be measured

accurately.4'5 Otherwise, curve of growth methods4'5 can be used to obtain ex-

perimental band intensity values.

LINE INTENSITIES

In principle the integrated line intensity value for the transition from

state i to state f is related to the quantum mechanical transition dipole matrix

element Pij (= <vjRjlPFIViRi>) by:

K,8_3Nav_O _ (l_e-hC_o/kT) gie-Bhc J(J+l)/kT

Aij = SIJ 3 hc TO Zv
(3)

x I<vjRjI rlviR >l2

Here x)0 is the wavenumber of the band center in cm 1 x) is the wavenumber for

the i . j transition Z and ZR are the vibrational and rotational partition' V

functions, gi is the degeneracy of the i state, B is the rotational constant, J

is the rotational quantum number, v.R. designates the wavefunction for the UpperJ J
A

state of the transition, PF is the F component of the dipole moment operator in

a space-fixed coordinate system, K' converts units to consistent values, and the

other symbols have their usual meanings. If A4 (or Sol(v4)) is given in km

-l o
mole and the transition dipole is in eA, the constants in the expression on

the right hand side must be K = K'8_3Nav/3 hc = 173.3. This expression, obviously,

is applicable to a diatomic molecule, where Ej = BJ(J+l).

The F component of the dipole moment operator is related to the components

of a dipole moment operator expressed in molecule-fixed axes, 0_,by the direc-

tion cosines _F_ between each pair of axes in the two coordinate systems:

A

PF = _ P_ _F_" (4)

Hence the transition moment integral can be expressed as a sum of products:

A A

<vjRjIPFIViRi>2=c_;_<vj v.><R,jI Ri>, (S)
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and

l<vjRjl_FlViRi>]2-- S l<vjI  Ivi>l2 I<Rj  F lai>l2 (6)(Z

Substituting into Eq. 3, we obtain finally

-Bhc J ] /kT
g.e

S. = K_0 _ (l-e-hc_o/kT) (J+)-- ' x [f(J,K)]S O (7)
lj _0 Zv ZR v

!r

= Population Factors x Line Strength x Vibrational Strength

Here the line strength factor f(J,K) is the contribution to the total transition

:i moment from the integral of the direction cosines over the rotational wave

functions. In principle it is known (or can be evaluated) from the theory of

6 0
rotational spectroscopy. The vibrational strength factor, Sv related to the

vibrational transition moment <vjIl_c_IVi>,is obtained from the total integrated

intensity over the entire vibration-rotation band, as discussed below.

Unfortunately, the integrated line strengths (Sif) in a real vibration-

rotation band for any real molecule usually do not obey the simple theory out-

lined here and summarized in Eq. 7. This is because the energy levels are per-

turbed by interaction with nearby energy levels from other vibration-rotation

states. This perturbation means that the simple harmonic-oscillator-rigid-

rotor wavefunctions in Eq. 5 are no longer correct, and the correct wavefunction

for the v.R. state (for example) is
J J

OR O> vbORbO>.Ivja.>j = alVa a + bl (8)

oRO>
and IvbORbO>are the zero order wavefunctions for the twoHere Iva a

inter-

acting states and a and b are their coefficients in the perturbed wavefunction.

In general

b = Xab / (EaO - EbO); a2 + b2 = ]. (9)

Here Xab is the matrix element for the Hamiltonian operator; its non-zero value

causes the perturbation between levels a and b. For the Corlolis interaction

between vibration-rotation levels of _3 and those of _4 in tetrahedral or
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octahedral molecules7 (like CH4 or SF6, for example)

b = - 14B_34 (_3_4)I/2/(_32 " _42)]m. (lO)

Here m = -J for P-branch transitions, m = J+l for R-branch transitions or m = 0

for Q branch transitions; B is the rotational constant, and _34 is t_e Coriolis

coupling constant.

Hence, the transition moment integral in Eq. 5 is

OR 0 ^ b<vbORb0<vjRjl_FlViR.>,= a<Va a I FIvR>,, . l FlVR,i (Ill

Substituting into Eqs. 5-7, we find

(l_e-hCVo/kT) gie-Bhc J (J+l)/kT
Sv0 F(m). (12)

Sif = KUO(_/VO) Zv ZR

The correction factor F(m) for line intensities in the _4 band due to the

Coriolis interaction in this example is

F(m) = [l + [4B_34 (_3_4)I/2/(_32-_42)](p3/P4)m]2 (13)

Here P is the dipole moment derivative with respect to dimensionless normals

coordinates, _P/_qs' and the other terms have been defined previously.

This example illustrates the effect of one kind of perturbation on the line

intensities. Similar treatments are required for all possible perturbations.

In general, the situation can be very complicated, indeed, especially, if a

transition is perturbed by more than one of the nearby states. In principle,

all these complications can be treated, so that line intensities could be pre-

dicted, using Eq. 12, for any line, provided that the value of the vibrational

0
strength Sv is known.

Without any intent to minimize the difficulty of this calculation of line

intensities, however, let us now focus our attention on this vibrational strength

factor S O. Our point of view for the remainder of this survey is that __ifwe can
V

predict S O, we can in principle predict the individual line strengths using Eq.
V

12.
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0
VIBRATIONAL STRENGTH, SV

0
The re]ationship between the vibrational strength, S , and the transitionv

moment integral is given by:

SvO = A(km mole-l) = K_ol<lilPlO> 1.2 (14)

It has been shown4'8 that A (the total integrated band intensity, including the

contributions from all the hot bands) is just equal to S 0 Hence we can ob-v

tain S 0 experimentally either by measuring the total band intensity4 or by
V "

measuring the intensities of several individual vibration-rotation lines9 and

0
evaluating Sv from Eq. 12. If all the measurements are done properly and if

the vibration-rotation theory has been properly worked out (particularly so

that F(m) is known) then the two experimental techniques provide the same value

0 lO
for S .

V

To go the other way, and predict the vibrational band strength, we must

evaluate the transition moment integral. For harmonic oscillator wavefunctions,

and after expanding the dipole moment in a Taylor's series in the normal

coordinates:

0 _(_2/_Q i= _ + _(_/3Qi)Q i + (I/2) _ _Qj)QiQj + ..., (15)ij
neglecting second (and higher) order terms, we find that

PO] = <lilpl°> = (1°16h/8_2c)1/2 [(_P/3Qi)/Vo I/2]' (16)

Hence

S 0 = 976.6 lap/aQi 12 (17)V

Here SvO = A is in units of km mole -] and _/_Qi is in esu "1/2

The dipole moment derivative ap/aQi is different for each molecule; substi-

tution of a deuterium atom for a hydrogen atom, for example, changes the form of

Qi' and thus a_/aQi changes. Thus, it is useful to transform from normal coordi-

nates to cartesian coordinates to determine dipole derivatives (aM/3x , etc.)

that are well defined for all atoms in a molecule. The reason to do this is
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that we might expect to be able to evaluate the change in dipole moment for

movement of the H atom, for example, in a CH bond in methane and then have some

expectation that the same change might be produced for the same movement of an

H atom in a CH bond in ethane.

There are a number of possible coordinate systems that could be chosen,

but it turns out that expressions in space-fixed cartesian coordinates for each

atom are particularly useful. These derivatives form a tensor, called the

"atomic polar tensor" by Biarge, Herranz, and Morcillo,II who first introduced

this concept. The atomic polar tensor for the c_thatom is"

PX_ = 3px/3X_ 3Mx/3Y_ 3Px/_Z__apy/aX 3py/ay_ 3py/3Z (18)

3Pzl3X_ _PzI3Y_ _PzI_Z_i •

The total 3 x 3N polar tensor for all the atoms in the molecule is formed by

juxtaposition of the individual atomic polar tensors:

_ _X2 ' PXm_.1 : : ...: _X_l ... : (19)_X = X , , , ,

The experimental data are, of course, the values of As (or the vibrational

strengths for each of the fundamental vibrations of the molecule). These

values (or thei_ square roots) can be arranged in a "polar tensor" in normal

coordinate space:

_Q = f3Px/_Q1 3Px/3Q2 8Px/3Q3N-6 "_

3_y/3Ql 3Py/3Q2 "'" 3Py/SQ3N-6] (20)

_Pz/3QI 3Pz/3Q2 3Pz/3Q3N_6/

These derivatives are obtained from the experimental values of SvO (As) using

Eq. 17, and the signs are determined as described below. If the molecule has

some symmetry, then the cartesian coordinates can be chosen parallel to the

principal axes of inertia, and we can expect at most only one component in each
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column in Eq. 20 to be non-zero.

The relationships between the polar tensor in normal coordinate space (_Q)

and that in the space-fixed cartesian coordinate space (PX) were described in

detail elsewherell'12 and we summarize them below:

PX = PQL-IB + P (3 (21)

and _PQ= _PxA L (22)

Here L (and its inverse, L l) is the normal coordinate transformation matrix,

R = L_L (or Q = L-IR); and B is the transformation matrix between the 3N-6 inter-

nal coordinates (R) and the 3N cartesian coordinates (X):
N

Q-I-!--QLI-i X (23a)

and X = (A "c0 /R \ (23b)

Here p is the 6 x l column matrix of translations and rotations and p = _X is

the statement of the six Eckart conditions. The Pp_ term in Eq. 2] is the

"rotation correction" term; see references ]] and ]2 for definitions and further

discuss ion.

PREDICTION OF INTENSITIES

Basically, there are two different approaches that can be made to the

prediction of infrared intensities. The first is to use quantum mechanics to

calculate the transition dipole moment (or perhaps to calculate _ as a function

of atom position to obtain a quantum mechanical prediction of _x/aX , for

example). The second is to evaluate the atomic polar tensor elements for the

H atom, for example, from experimental studies of CH4, and then assume that the

atomic polar tensor for the H atom in C2H6 is the same and transfer the H atom
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polar tensor from CH4 to predict intensities for C2H6.

A slight modification of the latter approach, which is the one that we use,

is to use the quantum mechanical calculation to help us choose the correct sign

for 3p/3Qi (or to choose signs for those parameters that give signs for the

derived atomic polar tensors that agree with those from the quantum mechanical

calculation). This "sign choice" is a very important step in analyzing experi-

mental data to get atomic polar tensors to transfer to other molecules.

The quantum mechanical calculations help, also, in testing to see whether

or not we can expect the atomic polar tensor to transfer from the simple

molecule to the more complicated molecule. For example, we know that the hydro-

gen atom attached to the oxygen in CH30H is chemically different from the hydro-

gen atoms attached to the carbon atom. We might expect to be able to transfer

the H-atom polar tensor from CH4 to the CH3 hydrogen atoms, but not to the OH

atom. A quantum mechanical calculation can help us predict how much change to

expect in the polar tensors for the two different hydrogen atoms. These "cali-

bration" quantum mechanical calculations can be very important in helping us to

understand the intensity parameters (atomic polar tensors) in different

molecules.

Method for Predicting intensities, based on Quantum-Mechanics. -- The

"ab initio" quantum mechanical calculation of infrared intensities can be done

in principle by calculating the wavefunctions and thus the dipole moment at

equilibrium:

_o(Re) = <Ol_lO>Re" (24a)

Here lO>Reis the ground state wavefunction evaluated at the equilibrium configu-

ration. Solving the quantum-mechanical problem again at a different configura-

tion, R (for example, move atom H1 in the positive x direction by 0.02 _), gives

_(R) = <OIGIO>R, (24b)
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SO

~ A/AR= <01 10>R- <01 10>R /2s/
e e

R- R
e

o .

For our example above, AR = AXH1 = 0.02 A, and we would have calculated _/3XH1

Most of our calculationsl3 have been made in this rather cumbersome manner.

Recently much more elegant schemes have been introduced 14 for making these cal-

culations, so that it is not necessary to do complete quantum-mechanical calcula-

tions at several configurations to obtain ab initio values for Ap/3R. Even so,

the inelegant procedure we have used can give calculated values for all the

atomic polar tensor elements for CH3OH, for example, using the Gaussian 70 pro-

gram15 with a 4-31G basis set,16 with a few minutes of computer time on a CDC-

7600 (or equivalent) computer.

Having obtained "ab initio" predictions for the atomic polar tensor ele-

ments for the different atoms in the molecule, the values of the 3p/_Qi's are

predicted using Eq. 22, and the intensities then are predicted using Eq. 17.

Some examples are shown below.

Method for Predictin_ Intensities by Transferring Intensity Parameters. --

The other approach to the prediction of infrared intensities is to evaluate

intensity parameters from studies of simple molecules, and then use these

parameters for the same atoms (or bonds, or functional groups) when they occur

in similar chemical environments in more complicated molecules. We believe

that atomic polar tensor elements are particularly useful parameters for trans-

ferring, partly because the space-fixed cartesian coordinates are well-defined,

and there is no "rotation correction" needed (beyond that defined in Eqs. 21

and 22) when we use H-atom intensity parameters to predict the intensities for

the corresponding deuterated molecules, for example. (Other intensity parame-

ters may not exhibit this property; see reference 17.)
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Other workers use other intensity parameters in their predictions. The

most commonly used of these other parameters are the "electro-optical parame-

ters" introduced by Gribov 18 and used also by Sverdlov and coworkers19 in

Russia, and also extensively by the Italian group (Zerbi, Gussoni, and co-

workers)20 in predictions, for example, of intensities in polyethylene.21 We

prefer to use approximate atomic polar tensors in our attempts to transfer

parameters because there are fewer parameters involved than in the use of

electrooptical parameters. Our choice may result in errors in the predicted

spectra, when compared with experiment, but it has the advantage of simplicity.

Severalexamples of spectra predicted in this way are presented in the follow-

ing section.

COMPARISON OF PREDICTED SPECTRA WITH OBSERVED SPECTRA

We began our predictions with the series of fluoromethane molecules,

UF623 XF5 24,25CFxH4_x .22 We extended the predictions to SF6 and and to molecules.

These predictions were remarkably successful, even for UF6, using the F and H
26

atom polar tensors from CH3F. This work was reviewed previously.

At the time we first began to report these results, we were told by our

friends that we should have expected to find such good transferability for the

F-atom polar tensor. "After all, everyone knows that fluorine is so electro-

negative that it does not matter (in its electronic properties) just what atom

it is attached to." In order to meet this kind of criticism, we decided to

look at the problem of predicting infrared intensities for other kinds of

molecules. We chose to study oxygen-containing organic molecules: alcohols,

ethers, ketones and aldehydes. This work has been done by Jerry Rogers27 in

our laboratory, and I should like to preview it briefly for your information.

Certainly, no one has ever said that we should expect H-atom polar tensors in

these molecules to be successfully transferable, and the oxygen atoms might
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surely be expected to be different. Hence these molecules provide a severe test

of the concept of transferable polar tensors.

The first molecule in this study was cH3oH. Figure 4 shows the spectrum

predicted for CH30H vapor (at 3.04k Pa (=22.8 torr) pressure in a 10.2 cm cell) com-

pared with the survey experimental spectrum measured under thoseconditions with a

Nicolet Model 7199 FTIR spectrometer. This prediction is based on ab initio

atomic polar tensor elements calculated for the hydrogen, carbon and oxygen

28
atoms using the Gaussian 70 program with a 4-31G basis set using the normal

coordinate transformation29 generated from the force constants given by

Mallinson.30 We see in Figure 4 that our predicted intensities are really in

very good agreement with the experimental spectrum. The intensity predicted

for the OH stretching fundamental near 3667 cm-I (22 km mole-l) agrees per-

fectly with the experimental value (22 i I km mole-l). The prediction over-

estimates (by about a factor of two) the intensity in the C-H stretching region

-I
near 3000 cm and also overestimates that in the C-O stretching region near

lO00 cm-l, and the distribution of intensities in the CH2 bending region near

1400 cm-l may not be exactly perfect, but the overall agreement is gratifying,

indeed. It is important to emphasize here that even though the predicted

values for A differ from the experimental values by factors of two or three
S

in some cases, still the pattern predicted for the spectrum as shown in Figure

4 is in very close apparent visual agreement with the experimental spectrum.

In Figure 5, we show the comparison between the spectrum predicted for

CH30H using atomic polar tensor elements for the H atoms in the CH3 group trans-

ferred from CH3F, APT's for the H and 0 atoms in the OH group transferred from

H20 , and obtaining the C atom polar tensor using

m_ = O. (26)

Again the agreement between predicted and experimental spectra is most
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7,

Figure 4. Predicted spectrum of CH3OH (upper figure) based on ab initio quantum mechanical
calculation compared with experimental spectrum (lower curve) of gaseous CH3OH
measured at 0.5 cm-1 resolution with a Nicolet FTIR spectrometer.
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Figure 5. Predicted spectrum of CH3OH (upper figure) based on transfer of APT's from
CH3F for methyl H atoms and from H20 for O and H atoms (see text) compared
with experimental spectrum of CH3OH vapor (lower curve). See Figure 4, and text.
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satisfying. Certainly thi.sagreement is good enough that we can believe that

we have the Correct signs for the calculated dipole derivatives (especially

since the signs of all the APT's from the 4-31G ab initio calculation agree

with all those for the APT's obtained by transfer of APT's from CH3F and H20).

Although the agreement between the predicted and experimental spectra for

CH30H is pretty good for either prediction, it is not perfect (factor of two

errors in As). Some of the discrepancy is probably due to a real non-transfer-

ability of APT's all the way from CH3F and H20 to CH3OH. Hence, it seemed ta

us to be appropriate to evaluate "experimental" APT's for CH30H from the exper-

imental intensities (which we had also remeasured27) using the separation of

intensities from the overlapping bands proposed by Serrallach, Meyer and

Gunthard.31 These "experimental" APT's for the C and H atoms rn the CH3 group

in CH30H were then used to predict the intensities for CH3OCH3. (The APT for

the 0 atom was obtained using Eq. 26.) Figure 6 compares the predicted spectrum

with the experimental spectrum for CH3OCH3. We have used the force field given

by Levin, Pearce and Spiker32 to obtain the normal coordinate transformation

matrices needed in the prediction.

Once again, the agreement between the predicted spectrum and the experi-

mental spectrum seems quite satisfactory. We note that there are.discrepancies:

for example, the relative intensities in the CO stretching region (near lO00

-l
cm ) is not quite correct, Nevertheless, this agreement (again typical of

"factor-of-two" agreement between the numerical values predicted for the inten-

sities and those measured for the intensities) is good enough to give a pattern

for the predicted spectrum that is close enough to the observed spectrum to be

Useful in verifying assignments, etc. It is not clear at present whetherthe

remaining discrepancies are due'to errors in the assumption of transferability

or to errors in the normal coordinate calculation.
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Figure 6. Predicted spectrum of gaseous CH3OCH3 (lower curve) based on transfer of CH3 APT's
from CH3OH compared with experimental survey spectrum (taken from Sadtler collec-
tion, with permission).
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The ethanol molecule (C2H5OH) forms another test case. Here we have some

problems in finding a good normal coordinate analysis (and thus a reliable

force field) in the literature. We found one force field by Zemlyanukhina and

Sverdlov,33 based on assumed transferability of force constants from similar

molecules. Using that force field and transferring APT's for the C and H atoms

in the CH3 group from ethane, APT's for the OH atoms from CH30H (and also trans-

ferring the H atom polar tensor for the CH2 group), adjusting the C-atom polar

tensor in the CH2 group by Eq. 26, we calculated the predicted spectrum. Before

comparing it with experiment, we wanted to examine the effect on the predicted

spectrum of a change in the force field assumed for the normal coordinate cal-

culation. Hence, we deduced our own force field by examining the "ab initio"

force fields calculated by Blom, Otto and Altona28 for CH30Hand by Bl0mand

Altona 34 for CH3CHCH2. We transferred the appropriate force constant from

these two molecules to the CH3CH20H molecule, adding about 5 more from the

Zemlyanukhina-Sverdlov field33 for the interaction constants between CH3 and

OH groups (fo,r example, the force constant for the CCO bend). The new force

field fit the experimental frequencies very well, and its use with the same

APT's used in the other C2H50H calculation gave the predicted spectrum shown

compared with the experimental spectrum in Figure 7. The effect of the differ-

ent normal coordinate treatments can be seen in Figure 8 which compares the two

predicted spectra. The normal coordinates do indeed have an effect on the pre-

-l
dicted intensities (see especially the region near 1450 cm in Figure 8).

Nevertheless, the general pattern predicted from either set of assumed force

constants (Figure 8) is within "factor-of-two" agreement with the experimental

spectrum (see Figure 7).

One more example of the kind of agreement that can be expected between

either kind of prediction (ab initio or transferred APT's) and experimental
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Figure 7. Predicted spectrum of gaseous C2H5OH (lower curve) based on our force field and
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and for OH APT's compared with simulated experimental spectrum (from a com-
puter fit to survey spectrum on Nicolet FTIR).
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Figure 8. Predicted spectrum of gaseous C2H5OH (upper curve) based on Zemlyanukhina-
Sverdlov force field33 with APT's as in Figure 7, compared with predicted spectrum
(lower curve) based on our force constants and described also in Fig. 7.
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35 which is of somewhat more interestspectra is provided by the HOCk molecule,

to this group. For HOCk, the intensities have been calculated by Komornicki

14 .
and Jaffe In an ab initio quantum mechanical calculation using their elegant

new technique with a fairly large gaussian basis set, including polarization

functions on the oxygen atom. Their predicted spectrum, plotted out in our

standard format, is compared with the simulated experimental spectrum (from Su,

Calvert, Lindley, Uselman and Shaw36) in Figure 9. Just to show what can be

done using transferred APT's, we show in Figure lO the comparison between the

experimental spectrum of HOCk and that predicted using the force field given by

Schwager and Arkell37 and transferring the H atom APT from H20 and the Cg atom

APT from C_CN.38 Neither prediction (in Figures 9 and IO) agrees very well

with the experimental spectrum, but both predictions are within "factor-of-two"

agreement. One is off in one direction, the other prediction was off in the

other direction. Either one gives better than 'Jorder-of-magnitude"estimates

for the intensities of the three fundamental vibrations of HOCg.

As impressive as these comparisons may be, the object of predicting infra-

red intensities is not to predict values to compare with spectra that can be

measured more accurately in the laboratory. We believe that the most important

contribution the predictions can make is in reasonably reliable predictions of

infrared intensities for species which are hard to study in the laboratory.

For example, we think it is possible to predict spectra of free radicals, of

free gaseous ions, or of other reactive intermediates that will be as accurate

as are the predictions for spectra of molecules shown here in this survey.

Using these predicted integrated molar absorption coefficients (A) we can then

measure the infrared spectrum of the free radical ("on the fly" with an FTIR

instrument in the course of a reaction, perhaps, or maybe trapped in an argon

matrix at low temperatures) and determine its concentration. I know of no
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Figure 9. Predicted spectrum of gaseous HOC1(upper curve) based on ab initio quantum mechanical
calculation reported by Komornicki and Jaffe 14 compared with simulated experimental
spectrum (lower curve) based on results reported by Suet al.36
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CICN and H atom APT from H20 compared with simulated experimental spectrum for HOC1
vapor (lower curve) based on results reported by Suet al.36
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other way to getthis kind of information about these reactive molecules.

We have previously published39'40 an illustration of this technique applied

to the spectrum of CF2 and CF3 radicals trapped with the final CF4 product
41

molecule in an Ar matrix after uv photolysis of CF2N2 molecules in the matrix.
4O

We have already reported this procedure in sufficient detail that we do not

need to repeat the description here. Suffice it to say that we believe it would

be entirely feasible to determine the concentrations of these radicals accurate
4O

to better than a factor of two, by using the predicted intensities. Surely

this kind of ability to predict intensities for this kind of reactive species

has potentially interesting applications in the study of photochemistry occurring

for example in planetary atmospheres.
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DISCUSSION

Question (R. Beer): I have two questions. The first is, how much

work is it to do one of these computations? Is it something you can do

in minutes, hours, days or months?

Response: The problem is that you have to know the normal modes,

which takes several days or months of computation and experiment. If

those are known for a molecule from prior work, prediction using the

transferred polar tensors takes just a few minutes. The prediction via

an ab initio calculation takes quite a bit longer: a few days.

Question (R. Beer): My second question is, can you reverse the

procedure? If I give you a spectrum, can you identify the molecule?

Response: I don't know. In principle, it should be possible.

We'd have to try it.

Comment (L)we Fink): In your ab initio calculations you need some

parameters. You use normal coordinates, so you have to have a set of

fundamental frequencies, you also need the interaction force constants.

What sort of experimental data are needed for these so-called ab initio

calculations?

Response: In principle, you can tell the computer what atoms are

in the molecule and their approximate locations. Then you do a set of

calculations at several different geometries to find the one with

lowest energy, which is supposedly also the equilibrium geometry.

During this search we shall have generated information to get predicted

force constants, hence the normal modes. So in principle you can do the
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ab initio calculation without any data, and compare with experiment at

the end, provided you have enough computer time. Of course, one should

be cautious about these procedures.

Question: can you comment on the calculation of the individual

line shapes that go into the band shape?

Response: We haven't looked into that problem very carefully.

We just fit the overall envelope by a function that approximately

matches its shape.

Question (H. Pickett): The a__b_binitio calculations generally over-

estimate the dipole moments. Does the same thing happen with the

derivatives?

Response: Yes, the numerical values of the derivatives are usually

not predicted correctly; sometimes they are over-estimated, but sometimes

underestimated. There is a reason for that: for the calculations to be

practicable you must use fairly small basis sets. Even when the calcu-

lated dipole moments are wrong, however, the derivatives may be in better

agreement with experiment. The errors in the derivatives are not

correlated one-to-one with errors in moments. I would expect the calcu-

lated vibrational band strength to be within a factor of two of the

correct value, but it could be high or low.
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Question: Whenyou determine atomic polar tensor matrix elements

from experimental data, is there any sign ambiguity?

Response: Yes, there is a problem in determining signs°

Question: Can the ab initio calculations help to resolve the sign

ambiguities?

Response: Yes, we think that they are a big help in determining

signs. If the basis set is too small or if configuration interaction

calculations are not made, the predicted signs can be wrong. However,

we believe the ab initio predictions of signs for dipole derivatives

will be correct most of the time. The sign problem is one reason that

transferability of intensity parameters was never expected to be possible.

In the early days (20 years ago), there were so many sign possibilities

that had to be considered in analyzing experimental data that it never

seemed possible to decide which of them was right.

Question: Can you comment on the prospect of improving the accuracy

of the predictions of vibrational strengths? Do you think we can get

them within 10%?

Response: I think so. However, I don't really understand why things

work as well as they do already. In order to study this question, we now

try to compare the transferred polar tensors with the polar tensors that

were calculated by ab initio methods, and then try to understand any

discrepancies. Whenwe transfer a polar tensor, we are assuming that the

atom has the same environment (as far as its electrical and vibrational
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properties) in both the old and new molecules In the HOCkmolecule, the

chlorine probably affects the environment of the hydrogen atom differently

than another hydrogen would, so the hydrogen in HOCkis in a slightly

different environment from that in H20. If we can understand this kind

of effect and build it into the way we transfer polar tensors, we can

improve the accuracy of the prediction to ± I0 percent.
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NEW THEORETICAL AND EXPERIMENTAL METHODS FOR PRESSURE-BROADENED
LINEWIDTHS AND THEIR INTERPRETATION

Jack J. Gelfand (Princeton Univ.)

In this presentation I will attempt to review recent progress

in the theory of collisional line broadening, particularly the im-

pact of recent advances in collision dynamics calculations. Also,

I will discuss some new approaches to the interpretation of experi-

mentally measured linewidths and their impact on planetary atmos-

phere research. Finally, I will mention some new experimental

techniques which may have some advantage in providing pressure

broadening data at very low temperatures.

As we all know, pressure broadening is caused by collisions

that interrupt the emission or absorption of a photon. The calcu-

lation of pressure broadened linewidths then must involve some

form of collision dynamics computation. During the course of this

workshop many investigators have expressed dissatisfaction with

the available data on pressure broadened linewidths, especially

with regard to their behavior at low temperatures. I believe that

recent advances in the ability to perform the necessary collision

dynamics computations should help this situation in the near future.

An upsurge in computational capabilities has paralleled the

development of very large computer systems in the past few years.

The impetus for the development of computing techniques in colli-

sion dynamics in particular, along with the necessary funding, has

been provided by a number of very practical applications to lasers,

laser induced chemistry, and combustion. There has been, for some

time, a moderate amount of activity in the modelling of many of the

collisional interactions that are believed to be important for un-

derstanding the interstellar medium. This is because the molecular
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systems encountered are quite simple. In addition, the inter-

stellar environment is at an extremely low temperature where very

few rotational states are populated and the kinetic energies are

small. These factors make the problem relatively simple. The

spectra encountered in planetary atmospheres, on the other hand,

involve molecules that are somewhat more complex than those that

have been studied in interstellar medium. Furthermore, pressure

broadening in planetary atmospheres usually involves molecule-

molecule collisions and the temperatures encountered are high enough

such that an appreciable number of rotational states are accessible.

These factors make the total number of state changes encountered

much larger than in interstellar medium problems. For this reason,

the ab initio calculation of linewidths for systems of interest to

planetary scientists has been typically beyond the capabilities of

available computer systems and computational techniques. I feel,

however, that the recent advances in the capability to do complex

dynamical and intermolecular potential calculations will make its

impact felt in these areas in the near future.

I would like to briefly review some of the important concepts

involved in the capabilities and limitations of the present state

of theory in collision dynamics. This review is by no means meant

to be comprehensive, rather I will discuss these topics using some

representative examples chosen to illustrate certain tradeoffs and

capabilities. The important points to be made here are not in the

specific examples, but rather, in outlining in broad terms where

present limitations overlay the needs of planetary astronomers.
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Pressure broadened linewidths are obtained by starting out

with a potential function for the collision partners of interest.

This potential function is substituted into the Schrodinger equa-

tion, and the Schrodinger equation is then solved to obtain state-

to-state cross sections for the collision processes that are the

components of the desired linewidth. By appropriate summing and

averaging, collisional rates are computed. These rates can then

be used to obtain the linewidth.

Some simplifications are usually made in order to make this

problem more tractable. In the linewidth computation method due

to Anderson one considers only long range electrostatic multipole

1
interactions. An arbitrary cut-off is usually made for the short

range intermolecular potential. Furthermore, one assumes straight

line classical trajectories for the collision path and a perturba-

tion theory approach is used in solving the Schrodinger equation.

This procedure works moderately well for highly polar molecules,

but begins to break down in non-polar systems. It has also been

found to give unsatisfactory predictions of the temperature de-

pendence of collision broadening.

It is possible at present to do fully quantum mechanical cal-

culations for systems that include up to about i00 states which

are accessible in the collision process. This limitation is dic-

tated by the size of the basis set that must be used. More than

i00 states presently strain the capabilities of available comput-

ing systems to perform the matrix operations involved. Investiga-

tors are attempting to develop computational schemes that may allow

for computations with as many as 1000 rotational sub-states. These
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restrictions on the size of the basis set translate to a limita-

tion of temperature and the complexity of rotational structure

of the systems involved. Molecules with many rotational levels

at higher temperatures obviously have more states populated and

therefore their collision dynamics are much more difficult to cal-

culate.

A further complication arises in the need for accurate inter-

molecular potential surfaces. It appears that the most accurate

intermolecular potential functions can be obtained for those cases

where the potential can be calculated entirely ab initio. Gordon-

Kim or electron gas type potential function calculations have been

found to be satisfactory for systems where of the collision part-

2
ners has as many as four atoms. The limitation is in the number

of points at which the potential must be calculated in order to

accurately specify the intermolecular potential surface. This

number of points grows rapidly with the number of individual par-

ameters needed to specify the system. For a diatomic molecule

colliding with an atom, one need only know the potential surface

as a function of the distance between the collision partners, the

vibrational spacing of the diatomic molecule, and the angles need-

ed to specify the orientation of the collision partners. One can

see that the dimensionality of the problem increases rapidly as

one goes to molecules with a larger number of atoms. Satisfactory

surfaces have been generated for formaldehyde-atom collisions and

ammonia-atom collisions, as well as for some diatomic molecule-

3,4,5
diatomic molecule systems.
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From the above discussion we see that there are limitations

in the capabilities of both dynamical calculations and potential

surface calculations. These translate into the complexity of the

system that can be handled, i.e. the number of atoms in each of

the collision partners, the rotational level structure, and the

temperature. A survey of the literature indicates that the com-

plexity of the systems for which dynamical calculations have been

made exceeds that of the available ab initio potentials. For

example, dynamical calculations have been made on the CH4-He sys-

tem to test certain features of methane-helium scattering, but a

best guess intermolecular potential was used simply to demonstrate

the effect and the capabilities of the computation.6 However, ac-

curate quantum mechanical calculations utilizing the best possible

intermolecular potentials do exist for systems in which there is

sufficient practical interest. For example, some good calculations

exist for the collision dynamics in the HF-HF system for which a

7
pressing need exists in the design of powerful HF chemical lasers.

In summary, the capability exists to perform satisfactory

fully quantum mechanical computations of the component collision

processes of pressure broadened linewidths for many systems that

would be of interest to planetary astronomers. The appropriate

intermolecular potential functions, however, are not available in

the literature simply because of a lack of overlap between these

systems and systems that have been of interest to the collision

dynamics, laser design or combustion community. Another problem

exists in that computations in the literature are usually not

user oriented. Most dynamical calculations are done to demonstrate
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some particular effect or calculate some small number of rates of

interest. It is necessary to compute the rates for all

of the collisions which interrupt the absorption of a photon for

both the upper and lower states of the spectral transition. You

cannot just thumb through the Journal of Chemical Physics and say,

"Ah-ha, here are all the component rates for my line in a methane

band, and I'm going to put in this pressure broadening coefficient."

It is encumbent, then, upon the planetary physics community to en-

courage the appropriate workers in the collision dynamics commun-

ity to first produce calculations of intermolecular potentials for

the systems that are important in planetary atmospheres and, second,

to do dynamical calculations which are sufficiently complete and

user oriented so that they can be employed in generating the pres-

sure broadening linewidths that are needed.

Other possible approaches to producing linewidth data exist

and I would like to discuss a method which may be of some benefit

in the areas discussed in this workshop. Two important problems

seem to arise repeatedly in many different applications in the

interpretation of spectra in planetary atmospheres. One is the

generation of band shapes or low resolution spectra from individual

line parameters and the other is the extrapolation of pressure

broadening data at or near room temperature to other temperatures,

especially lower temperatures. We discussed in the first section

of this talk approaches to calculating pressure broadening data

which involve full quantum mechanical calculations along with the

necessity of calculating or measuring very accurate intermolecular

potential functions. Some work that I am doing in the area of
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collision dynamics and linewidths may have some bearing on simpli-

fying this task.

As I discussed earlier in this presentation, those phenomena

which immediately precede the generation of pressure broadened

linewidths are the state-ot-state rates of the component collision

processes. Utilizing a procedure developed by DePristo and Rabitz

it is possible to actually obtain state-to-state rates by direct
8

inversion of appropriately measured linewidth data. Having the

appropriate set of rates and other dynamical factors obtained in

this fashion, it may become possible to generate information from

experimental measurements which can then be used to generate other

needed linewidths and aid in extrapolating the linewidths to other

temperatures.

The determination of any individual collision transition rate

from a single bulk experiment, such as pressure broadening, has

been considered difficult in the past because the pressure broaden-

ed linewidth is not very sensitive to any one component rate. In

this approach to the inversion of linewidths to yield state-to-

state rates, we are utilizing recently developed scaling relation-

ships which fix the ratios of many rates within a family to a fun-

damental rate in that class, e.g., rotation-rotation or rotation-

translation collisions.9 The small number of fundamental rates

can then be determined by a small number of independent linewidth

measurements. Also determined are dynamical factors which allow

one to calculate the elastic contributions such as dephasing, and

the change in the various contributions to the linewidth with the

vibrational excitation of the collision partners.
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An example of the results of such a study are shown in Figure

i.I0'II The experimental points are the pressure broadened line-

widths for self-broadening in HCI. The fitted points are those

generated by the component rates and dynamical factors derived from

the inversion of the experimental data. An examination of the ex-

perimental points in Figure 1 reveals that the magnitude and form

of the variation of the pressure broadening coefficient within a

branch change as one goes from the fundamental to the higher over-

tone bands. One can see that within each branch that the peak val-

use of the pressure broadening diminishes and the shape of the curve

becomes flatter. The pressure broadening shows a peak because of

the predominant contribution of near resolution R-R collisions.

Because both collision partners must be in nearby rotational states,

the probability of these types of collisions is controlled by the

Boltzmann distribution and the degeneracy of the rotational states.

The pressure broadening then varies in a manner which is similar

to the probability function for the states of the collision part-

ners. The lower peak pressure broadening coefficient and flatten-

ing of the curves for the higher overtone bands qualitatively in-

dicates a diminished contribution of these types of collisions as

the vibrational excitation of the spectrally active collision

partner increases.

The results of the qualitative discussion above are confirmed

by the actual rates some of which are displayed in Figure 2. These

rates are for collisions between HCI molecules in the j = 6 rota-

tional state and HCl molecules in the ground vibrational state as a

function of the rotational state, J2' of the collision partner.
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Curves are shown for the molecule in j = 6 in various vibrational

states from the ground state to the sixth vibrationally excited

state. As pointed out in the discussion above, the rates peak for

the resonant collision of the molecule in j = 6 colliding with

the molecule j = 5. We can also see that these rates diminish

with the vibrational excitation of the j = 6 collision partner.

This might be expected because the rotational spacing in HCl _imin-

ishes with vibrational excitation thereby making collisions with

molecules in the adjacent rotational state less energetically reso-

nant.

I would like to speculate on how the procedure which I have

just outlined might be of some help in atmospheric modelling prob-

lems. If it is possible,utilizing a number of linewidths in a

particular vibration-rotation band,to generate all of the component

rates, then a set of basic information is available to generate

other linewidth data for that band. This could be of great help

in generating band shapes and synthesizing low resolution spectra.

But more importantly, I think it may become possible to use these

underlying rates as a basis for providing practical temperature

scaling and temperature interpolation information.

The change in pressure broadening with temperature arises be-

cause of the change in the Boltzmann distribution of the energies

of the collision partners. In computing the pressure broadened

linewidth, it is necessary to calculate cross sections for colli-

sions over the entire energy range of the Boltzmann distribution

at that temperature. Different energy ranges are required as the

temperature changes. An approximate way of doing this is simply
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to assume that the cross sections have no energy dependence and

to scale the linewidth as a function of the average collision

frequency. This results in the familiar TI/2 gas kinetic line-

width dependence. The possibility of breaking linewidths down

into their component collisional mechanisms may allow for a much

more sophisticated temperature scaling of pressure broadening.

Having obtained the individual rates one may scale each with its

own temperature dependence. This may become possible due to re_

cent progress in formulating simple energy scaling relations for
12

the underlying cross sections. This treatment may in the future

provide a very elegant way of generating linewidths for atmospheric

modellers over a wide range of conditions.

It is obvious from what I have reviewed up to this point that

the kind of information that astronomers want at low temperatures

for all of the systems needed will not be available immediately.

Some day you will be able to ask someone to give you a pressure-

broadening coefficient at 95° Kelvin for methane colliding with

H2, but at present if we want to get information in this area we

are going to have to do some measurements. It is very difficult,

however, to make these measurements on gases at temperatures where

their vapor pressures are so low that there is hardly enough mater-

ial in the cell to produce a detectable absorption. One of the

answers to this problem may be the sensitive techniques that have

been developed in various applications of laser spectroscopy. Some

of these techniques were reviewed here at this workshop by Margolis

in an earlier talk.
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In the various direct absorption methods, one modulates a

laser incident on an absorption cell. This can be frequency mod-

ulation, or one can simply switch back and forth between a gas

cell and a reference cell, or one can modulate the gas employing

the Stark effect. Some workers have produced direct laser absorp-

tion measurements with sensitivities equivalent to absorption

-5 13
coefficients in the vicinity of i0 /cm.

Another method which was developed originally for air pollu-

tion measurements is the photoacoustic technique. A typical con-

figuration is diagrammed in Figure 3. A cell is placed inside

the cavity of a laser which is modulated at audio frequencies.

The molecules in the cell are excited by absorption. They can re-

ceive either rotational, vibration-rotation or electronic excita-

tion. As they collidewith each other they relax producing a slight

increase in the translational energy in the cell. This is then

detected as an increase in pressure by a microphone. Patel at
i

Bell Laboratories has pushed this experimental technique about as

far as I think it can go, and he has been able to measure absorp-

-i0 14
tions down to the vicinity of 10 per cm. Microphones have

been made which work at liquid nitrogen temperatures as well as

for corrosive gases. One uses the intracavity configuration to

take advantage of the high circulating power in the laser cavity.

Not much power is being absorbed and one needs many incident pho-

tons to produce a detectable signal. Typical intracavity circulat-

ing powers are on the order of tens of watts, and for absorption

coefficients of 10-6 cm-I, about ten microwatts of energy are deposited

in the cell. This level can easily be detected by the microphone.
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Figure 3. Schematic diagram of the laser photoacoustic spectrometer.
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Another advantage of the laser based system in addition to high

sensitivity is that you can perform very accurate wavelength cali-

brations. One can use fractional order wavelength comparisons

with emission lamps, for example. Pressure broadening measure-

15
meritscan be easily done using photoacoustic spectroscopy. Fig-

ure _ shows an example of some unpublished spectra of the so-called

5__1 band of NH3 at 6450 _ taken at various pressures.

Question: Does the high intensity of the laser beam affect

the shape of the line?

Response: Not we are not anywhere near the power-broadened

regime for the absorption. The reason is that the laser is not

focussed. The photoacoustic signal that you get does not depend

upon whether the beam is small or fills the entire cell; it just

depends on the deposition of energy. So if one were worried about

multiphoton absorption or other kinds of nonlinear effects, one

could simply expand the laser beam such that the energy density

would be low enough to avoid these effects.

There is another method which is similar to photoacoustic

spectroscopy, but uses the detection of the change in index of

refraction to monitor the translational energy. This technique,

developed by Davis and known as Phase Fluctuation Optical Hetero-

16
dyne Spectroscopy, uses a Mach-Zender interferometer configuration.

A beam from a single'mode He-Ne laser is divided into two parts

at the input beam splitter. The reference beam passes through

one arm of the interferometer to a photodetector. The other beam

is routed through the other arm of the interferometer, through

the gaseous sample under study and is recombined at the photodetector
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Figure 4. Photoacoustic spectra of a por-
tion of the 6450A ammonia
band taken at various pressures
from 22 to 280 torr.
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with the reference beam. The sample must of course be transparent

to the probe laser. Another laser, collinear with the probe laser,

is tuned to the spectroscopic transition being studied. As before,

absorption of energy eventually produces a change in the transla-

tional.energy which causes a change in the gas density. This gas

density change produces a phase modulation on the probe beam which

is detected by detecting the frequency side bands in the heterodyne

detector. Index of refraction fluctuations smaller than I0-II can

be detected with this method and this translates into a limiting

equivalent absorption coefficient which is comparable to photoacous-

tic spectroscopy, about i0-I0 per cm.

Many of the laser detection techniques have been utilized

successfully primarily because they have been mated with tunable

dye lasers at visible wavelengths. As was stated in Jack Margolis'

presentation earlier, tunable dye lasers are very well behaved

sources. It would be nice to utilize some of these sensitive laser

detection techniques further out into the infrared, especially to

get to the fundamentals of some of the ammonia and methane bands

for example. Though,pulsed tunablelasersourcesare availablewhich op,

erate in these regions, they are not as suitable for quantitative

spectroscopic measurements as CW lasers, primarily due to poor

pulse-to-pulse amplitude and frequency stability problems.

I would like to briefly mention that there have been some new

developments at Bell Laboratories on a laser source capable of pro-

viding tunable CW radiation over the range from approximately 8000

to 3.5 microns wavelengths. This source, known as an F-center laser,

utilizes color centers generated in alkali-halide crystals as the
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active medium.17 Defects can be produced in alkali-halide crystals

which absorb light in the visible and fluoresce in the infrared.

Laser action is initiated by pumping the F-center crystal with

either a visible or near infrared laser and tuning it in a cavity

in much the same way as one operates a CW dye laser. One set of

crystals with defects known as F2+ color centers can tune from

about 8000 _ all the way out to 2 microns. Substitutional color

centers can go all the way to about 3.5 microns. These lasers ap-

pear to work as well as dye lasers in that they have good narrow

frequency output behavior and smooth tuning characteristics. One

of the drawbacks is that the color center crystals are expensive

to produce and must be stored at liquid nitrogen temperatures. Rap-

id development is proceeding on this device and it appears that

room temperature crystals which lase in the infrared will be pro-

duced in the near future. We have done some preliminary work on

the spectrum of methane in the region of 9800 _ and find that this

laser system works quite satisfactorily.

Sensitive measurements at wavelengths longer than approximate-

ly 3 microns are still the domain of direct absorption studies with

diode lasers and very good Fourier transform machines. I do think,

however, that there will be some developments in far infrared mix-

ing schemes in the near future. Unfortunately all of the laser

techniques suffer from very small tuning ranges. For an F-center

laser or especially a diode laser one has to work through a parti-

cular absorption band one piece at a time.
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DISCUSSION

Comment (K. Fox): There may be an intermediate position; for

a particular band, get measurements on several or a few key lines,

to interpolate and extrapolate.

Response: That's right. We need appropriate interaction

between the experimentalists and the theoreticians in this area.

The theoreticians may have some particular relationship they feel

can be extrapolated over some temperature range. They can come

to the experimentalists, and say, "If you can give me a certain

number of lines in this band, I can work out a generalization."

I think that kind of interaction is necessary to crack the problem.

Question (B. Lutz) : What were the conditions for the ammonia

spectrum at 6475?

Response: The cell had a five centimeter path length, and

the intracavity power in the laser was probably in the vicinity of

five watts.

-i0 -i
Question: You mentioned a sensitivity of i0 cm . Is

that difficult to achieve?

Response: Yes, that is with a signal-to-noise ratio of unity,

and a lot of work. Realistically, you can get 10-8 cm-I. Anyone

can build preamplifiers and utilize fairly common microphones and

put a photoacoustic cell together and achieve a sensitivity equiva-

leng to an absorption coefficient of 10-8 cm-I.

Question: Do the windows limit your sensitivity?

Response: That depends on the scattered light in the cell.

The windows scatter a very small fraction of light, which then hits

the walls and produces a small amount of heat. This masks itself

as an absorption. So it is very difficult to make good continuum

measurements, although you can do it, if you are careful.

Question: What was your effective resolution on that ammonia
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Response: Probably 0.5 _. That resolution was achieved with

just one intercavity etalon and a birefringent tuning element.

In contrast to spectrographs, with lasers you don't lose power as

you narrow the linewidth to get better resolution. For each intra-

cavity element inserted, you lose maybe 10 or 20% in intensity,

but the resolution goes up by a factor of ten. It's just that

life becomes extremely difficult because when there are intercav-

ity elements in the laser cavity, you have to synchronize all the

tuning and its a real show. You have stepping motors all over the

place, and need some sort of microprocessor to control it all.

Question: When you do photoacoustic measurements you get out

a photoacoustic signal, which bears a nonlinear relationship to the

intensity. How reliably can you deduce the pressure broadening of

the optical absorption from the pressure broadening of the photo-

acoustic signal? !

Response: It's not nonlinear. The photoacoustic signal is

linearly related to the energy deposited in the gas. The spectrum

that you get is certainly good to within 5% of the true spectrum,

by examination. Experiments are in progress in my lab at the pre-

sent time to find out what the limiting accuracy is. I have spec-

tra that were taken at Kitt Peak in the HCI overtone bands with

20,000 to 1 signal-to-noise ratio. I'm going to compare them to

photoacoustic spectra. There is no reason why the photoacoustic

spectrum can't be an exact reproduction of the optical absorption;

it's not nonlinearly related, it's linearly related to the energy

deposited. But I'm not going to stand here and tell you that it's

going to be perfect. People have pushed it to where they can say
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that it's good to within 1% of the true spectrum. I haven't seen

anybody who's bothered to take the trouble to really push it fur-

ther than that. I have the need in my own measurements to work at

this level so I am investigating this at present.

Question (H. Pickett) : In connection with the last question,

there will be a problem in getting the broadening, because the

photoacoustic line profile will depend on the process that converts

the optical absorption to heat, and not only on the shape of the

optical absorption.

Response: Yes, the absorption has to be converted to heat.

You have to be very careful about cell design, and chopping frequen-

cy. The cell must be large enough so that excited molecules do not

diffuse to the wall and do not relax on the way. (That's a big

problem at low pressures.) You also have to make the chopping time

slow enough so that you allow for the total relaxation of the mole-

cules. If you want to try to do a photoacoustic spectrum of hydro-

gen, it can be a problem because hydrogen relaxes extremely slowly.

But for molecules like ammonia and methane, which have very fast

relaxation times, it's not much of a problem.

Question: Is any work done in the time domain?

Response: Doing it in the time domain is another problem al-

together. It is also a very active area of research.

Question: Are the scaling relations recursion relations?

Response: They are not recursion relations. You always use

the same fundamental rate in the scaling relationship.

Question: With what accuracy can you scale these rates?

Response: We call it a "working-man's theory". It's good to

approximately 10%.

146



Question (G. Birnbaum) : I'm puzzled about the rates. You

don't use potentials. But a transition probability per unit time

is calculated quantum mechanically by taking matrix elements of

the potential. If only one part of the potential is important for

a particular rate, that rate can be scaled. So you need different

rates for each part of the potential.

Response: That's right. What I showed was a relationship

containing a fundamental rate. You need a fundamental rate for

every family of interactions. So you need a fundamental rate for

the rotation-to-rotation transitions, which depend upon the long

range dipole part of the potential. For example, in HCI you have

about six or seven fundamental dynamical quantities, but you have

about 20 linewidth values, so the problem is well determined.

Question (G. Birnbaum) : If you have onerate per piece of

potential function, I grant that it can be scaled. But you still

have the problem which has always been central to pressure broad-

ening calculations. How would you relate the various rates, phase

shifts, and the very strong perturbations: during the close part

of encounters the perturbations become huge. All of these things

have to still be solved to get a linewidth.

Response: Each of these types of interactions has a fundamen-

tal rate associated with it or dynamical factors which specify its

contribution to the linewidth. That is the power of this procedure.

For a full treatment on this subject, I refer you to a paper by

Andy DePristo at the University of North Carolina, which will appear

shortly in the Journal of Chemical Physics.
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LABORATORY MOLECULAR SPECTROSCOPY

Jack Margolis (JPL)

I'd like to comment briefly on the relationship between astronomers and

spectroscopists. It has been usual for astronomers to prefer to have spectro-

scopists try to simulate planetary atmospheres in the laboratory under conditions

spectroscopically similar to those on the planet. This is a satisfactory pro-

cedure only for a crude analysis of observational data since all conditions of

spatial and thermal inhomogeneity cannot practically be re-created in a real

laboratory. Because of the obvious physical constraints of the laboratory

environment, what they must deliver to the astronomers is enough spectral data

so that the complete planetary atmosphere can be simulated in some other way,

presumably a numerical simulation in a computer. In many ways this is a pre-

ferable procedure. The computer simulations can be used in several different

ways, for example:

i. Various different atmospheric models can be calculated to compare

simulated measurements with actual observations° The consistency

between these can be used to deduce information about the physical

parameters of the atmosphere.

2. The spectral data can be inserted into different atmospheric models

in order to best design strategy for experiments, instruments or

observations.

These are really kind of obvious remarks, but they point out the importance

of completeness. In order to synthesize an atmosphere, what you need is all the

information about the spectrum in some particular spectral region. This is
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actually an immense tas_ and one which is not commonly undertaken. For example,

if you look at the details of the spectrum in the vicinity of some particular

vibration-rotation band, there may be many more than just a few infrared-active

bands. In the case of methane, which is an interesting molecule to atmospheric

scientists, there may be literally thousands of bands in a given spectral

region, interacting in a complicated way and passing through each other.

Admittedly, for some purposes complete spectroscopic information isn't necessary,

but it certainly is important to matters like radiometric studies of atmospheres.

The traditional mode of operation for spectroscopists is to analyze

a single band or a single set of interacting bands at a time. This produces

a set of assignments and vibration-rotation parameters and this is what has

scientific value to the spectroscopic Community, whereas a simple listing of

the lines in a given spectral r_gion has little value although that may be exact-

ly what the astronomers are after. Looking at a single band or a group of bands

tends to leave out lots of probably weak lines which may add up to a lot of

opacity in the atmosphere, or may contribute importantly to the signal in some

sort of "correlation spectrometer, or perhaps contribute to the signal in some

other kind of instrument in some unexpected way.

These preceding remarks are significant because the spectroscopic methods

which are of the most general value to the astronomers are those which acquire

and can handle large volumes of spectra in digital form, or in a form which

is compatible with computer analysis, and in a form which is at least internally

consistent. Not all spectroscopic instruments do that sort of thing, and the

ones that do may not be adequate to make the kinds of measurements that are

desired and necessary. Also, in order to get the kinds of data that are important
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in the planetary sciences, there are certain combinations of instruments and

devices which are necessary, and these combinations only rarely appear

together.

Now I'd like to make some preliminary remarks about the spectroscopic

state of the art. First of all I will discuss the precision that is required

to make the necessary measurements. The remarks are directed specifically to

vibration-rotation spectra rather than continuum absorptions. The ultimate

precision that's required for line positions is related to the width of the

lines which may be no narrower than the Doppler width. It is really necessary

to know the position of the lines to some small fraction of the Doppler width

in order to characterize the way in which lines are blended together when

they do blend together (and that is a very common spectroscopic situation).

That requirement means that the line position precision must be some small

fraction of about 0.01 cm-I at one micron (that is the Doppler width for

moderately heavy molecules which appear in the atmosphere), or about 0.001 cm-I

at ten microns for those same kinds of molecules. That is a very tough re-

quirement for line positions in the thermally interesting region around ten

microns. Perhaps even higher precision is required to measure parameters like

pressure shifts of the lines. Pressure shifts haven't been addressed so far,

but they may be important in looking at winds, which can be detected and measured

accurately to a few meters/sec by observing Doppler shifts in some sensitive way.

This may be done for stratospheric and higher winds where pressures are low

enough that the lines are not broadened much. At the present time absolute

line positions are generally being determined consistently with accuracies

within a small integer times a milli-wavenumber throughout the entire one to ten

micron spectral range.
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There does not seem to me to be any natural limit to the precision

with which strengths need to be measured. It seems to me, though, that if

individual lines can be measured to 5 percent, that's probably good enough for

most applications, and well within the state-of-the-art for many kinds of

spectroscopic instruments these days. It doesn't really strain the state-of-

the-art for the best spectroscopic methods to do that job. Continuum absorp-

tion is difficult to measure; Dr. George Birnbaum will tell you about that

later.

Line widths in the infrared are being determined these days to about

5 percent, and normally only at room temperatures. In all cases the precision

of the measurements is much higher in those cases where the spectrum is open

and unblended. That's a satisfactory situation for the very sparse spectrum of

hydrogen. For most other molecules of interest, there is frequently lots of

blending going on to make things complicated, and the kind of precision needed

for determining the physical parameters of interest depends on just how thorough-

ly the lines are blended. They can be seriously blended, indeed, for molecules

like acetylene, methane, ammonia, carbon dioxide, and water.

A frequently used technique for clearing up the spectra is to cool the

gas. This reduces the strength of the hot band lines as well as high J lines.

But coolable absorption cells with long optical paths are rare.

The most versatile kind of instrument for laboratory spectroscopy is a

Fourier transform spectrometer. This has the special, desirable attributes that

were brought out before by Dr. Rudi Hanel. It multiplexes the spectrum so that

a wide wavelength range can be covered with a high signal-to-noise ratio, with

the highest spectral through-put. It has a high potential resolution, which
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can be extended to the _oppler limit or almost to the Doppler limit in atmos-

pherically interesting spectral regions simply by extending the mirror motion

to lengths that are not really unreasonable with today's technology. The data

is acquired automatically in digital form, and in a form which is suitable for

manipulation in the computer. There are few examples of really high quality

Fourier transform spectrometers and laboratory spectrometers now existing, and

I apologize for not mentioning every one and not mentioning everybody's work.

Thereare several in France; one at Meudon which has acquired spectra with a

spectral resolution of 5 milliwavenumbers and better. There's one at Orsay

which has gotten down to 5 milliwavenumbers. There's one at Air Force Geo-

physical Laboratories with a spectral resolution of i0 milli-wavenumbers, and

one at Kitt Peak which operates at i0 milliwavenumbers and has been made to

operate at 5. There are lots of others around the world and in this country

which operate at .02 wavenumbers. These instruments have been remarkably pro-

lific in producing spectral data of valueto the atmospheric sciences. For

example, an immense amount of work on methane molecules has been produced, but

not all at the ultimate quality. Let me illustrate the quality that can be

attained with FTS instruments by giving an example of a spectrum that was obtain-

ed at Kitt Peak observatory. This is a spectrum of hydrogen, the 4-0 line.

Notice that the transmission covers a range of only 0.1%. The signal-to-noise

in the line itself is greater than 50 to 1 and this was acquired with about 3

atmospheres of hydrogen in the absorption cell, at approximately 1/2 km of

path length.

Question: What is the integration time required for the S/N obtained?

Answer: That represents 25 scans of the FTS at about 7 min/scan integration

time. Another qualification I should make about that too--not every spectrum

that comes out of there has that quality.
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Talk resumes: The signal-to-noise in the continuum is something like 105 to i;

That may be the world's record for FTS instruments. The Kitt Peak device can

be coupled to a number of short cells, including the 1 meter baselength White

cell and a 6 meter baselength White cell, with paths up to about 1/2 km. The

reason I bring this up is because the high signal-to-noise ratio, which is

possible with the FTS, obviates some of the need for very long path lengths;

the very long path lengths which are necessary to observe really weak absorp_

tions like the quadrupole absorption in hydrogen, and which become spectro-

scopically important in planetary atmospheres which can have very extensive

absorption paths. The instrument at Meudon can be coupled to a temperature

controllable White cell, which has an 80 cm path length, and has been run down

to 150 ° Ke!vin.

There are a number of grating instruments which are competitive in

resolution to the best FTS devices. These exist in various places around the

country: at Ohio State, University of Texas, Florida State, the NBS, and also

at the Herzberg Institute in Canada. These instruments have gained strongly by

resolution enhancement, that is, the deconvolution of the instrumental function

from the observed spectra. That's done, however, at the expense of signal-to-

noise. Also, because of the way the gratings are driven in real spectrometers,

the wavelength precision in grating spectrometers may not be as good as an FTS

instrument. The wavelength calibration is a function of grating position in

grating instruments, whereas all that is necessary for the absolute calibration

of the wavelengths for an FTS instrument is the accurately known position of a

single line. Even if this is not available, the relative positions of the FTS

measured lines are well determined. This is an important advantage of the FTS.
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There are a few _ther high resolution incoherent techniques: Fabry-

Perot etalon, SISAM instruments, Hadamard transform instruments, and also a

number of laboratories use correlation spectroscopy.

I'd like to go on to talk about laser methods. There are a few laser

methods which operate over the interesting IR wavelength range, primarily lead

salt diode lasers, which operate from 15 microns to about 3 microns. There are a

number of disadvantages to working with diode lasers; I'll mention these before I

get to the advantages. First of all, they need to operate at very low temperatures,

that is, temperatures below about i00 ° Kelvin. They tune continuously within

a single mode only over a very short wavelength range; typically the wavelength

tuneability in a single mode is about a wavenumber. It's frequently less than

that--infrequently more. That's true especially at the longer wavelengths where

they are most useful, because of their high resolution and because the FTS

instruments are most inadequate there. They also h_ve a very complex mode

structure (that is, complex in frequency as well as spatially) and they fre-

quently emit several modes simultaneously, which creates a spectral purity

problem. They don't tune linearly, and they tune non-linearly differently in

different modes. That's a problem for frequency calibration. However, a group

at the NBS recently used heterodyne methods (that is, heterodyning the diode

laser against a stable CO 2 laser) to directly measure the frequency of the i0

micron diode laser; that sort of wavelength calibration can be carried out with

very high accuracy. Diode lasers are noisy, especially when several modes are

being emitted simultaneously, and they're delicate. Those are the disadvantages.

They do possess a number of characteristics which are so attractive that they

frequently offset the disadvantages. First of all, they have extremely high
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resolution when they're properly operated; you can get absolutely Doppler-

limited spectra using them even at i0 microns and longer. They can be tuned at

high speed, in fact, at a kiloHertz rate, and that makes it possible to do de-

rivative spectroscopy. This is an attractive mode of operation, because it

makes it easy to measure or detect weak absorption. The record for weak ab-

sorption measured in this way is an absorption of one part in 10 5 (that was

measured by a group at McMaster University in Canada, using diode lasers), and

that sensitivity has also been achieved at JPL. You can see how being able to

detect weak absorption sensitively is an advantage in reducing the size of

absorption cells. Sometimes the diode lasers can generate modestly high

power; milliwatts at the short wavelengths, and a tenth of a milliwatt or so

at the longer wavelengths. The amount of power that they produce appears to be

unpredictable; the construction of diode lasers evidently appears to still be

an art, not a science. They may be developed to the point of being suitable

for quiet operation; if so, they can then be used as local oscillators in

heterodyne detectors. This sort of operation has been demonstrated and is very

desirable from the standpoint of achieving quiet detection in the IR.

Comment: In fact, it's in general use.

At shorter wavelengths there are dye lasers which have been extensively

used for spectroscopic purposes from the very near IR to the UV. They can be

made to operate in a single mode and very quietly. Their operation in this

wavelength range, however, is competitive with the FTS which is superior in

several respects:

i. wavelength coverage

2. calibration and internal consistency

3. data format
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However, dye lasers may be superior in terms of the ultimate S/N obtainable,

and therefore, the weakest absorption detectable. That's important in the short

wavelength region, because we are really dealing with high overtone and combina-

tion bands there, which are intrinsically weak. Because they can emit a great

deal of power in a single mode (a few hundred milliwatts is not difficult to

achieve) and can be made to be fairly noise free, they can approach photon

noise statistics. It has been shown that the ultimate sensitivity may be a

few powers of i0 of the number of detectable molecules.

The best application of dye lasers to the kind of spectroscopy of

interest to this meeting may be the Allan Pine beat frequency parametric oscil-

lator. He beats a single mode stabilized dye laser against an argon ion laser

in a temperature tunedLiNb0 3 crystal. This limits his frequency of operation

to 2.2 _m _ _ _ 4.2 _m, and his output power to submultiples of _watts.

Nevertheless, with good InSb detectors (which have NEP's _i0 -II watts _z) and

reasonably short integration times, Pine is able to:get marvelously high signal-

to-noise ratios, on the order of 104, and moderately long tuning range per mode.

A high signal-to-noise ratio is the key to getting really good frequency

calibrations at high sensitivity. This method produces absolutely Doppler-

limited spectra at these wavelengths, and Pine gets very good frequency cali-

brations, on the order of a milliwavenumber, and really superior line strength

determinations. The precision of his line strength determinations is at least

on the order of a percent, probably much better than that, and they are obtained

just by measuring the peak height. These strength determinations are among the

best ones around.
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An interesting _pplication of laser methods in high sensitivity detec-

tors is opto-acoustic spectroscopy. This has been carried out with high sen-

sitivity at Bell Labs by Patel, who has claimed a sensitivity on the order of

I0-I0 per cm. This sort of thing is being carried out in other places as

well, namely, at Princeton University and at Washington University in St. Louis,

where there is some effort being made to apply the method to molecules of

planetary atmospheric interest. Frequently, the opto-acoustic detector is

operated in an inter-cavity mode in a dye laser, and that's most useful for the

short wavelength bands which show up in extensive planetary atmospheres and

which are weakly absorbing. What's attractively advantageous about this tech-

nique is that the opto-acoustic cells are really small physically, and so it's

much easier to control the temperature, for example, and determine the temp-

erature dependence of the parameters of interest.

The prospects for using lasers directly for high sensitivity detection

in weak absorptions are intriguing; I'll give an example of that. Modern

detectors are available in all wavelength ranges these days, with small NEP,

and sometimes with a large dynamic range. With laser sources of even modest

power, the controlling noise is in the laser itself. As the lasers are im-

proved, the ultimate limit will be the quantum statistical noise of the photons

themselves. The signal-to-noise ratio will then increase as_intensity and can

get to be very large even for a small laser intensity. Although real lasers

always possess greater noise power than the quantum limit, some of them do

pretty good. For example, a Canadian group at McMaster University claims to

have detected an absorption of _ 10-5 using an exceptionally quiet single mode

diode laser and a 2nd derivative method. Shimoda has used a CO 2 laser to obtain
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Stark modulated spectra of CH3CI and indicated that his ultimate sensitivity

was _ 106 molecules.

There appears to be no good reason why correspondingly high sensitivity

should not be achieved in other spectral ranges covered by different tuneable

lasers, for example FCL, beat frequency lasers, dye lasers or TEA CO2 lasers.

A numerical example will illustrate the kind of measurements it may be

possible some day to do:

R(1) of the 3D 3 band of CH4 has a strength of 10-5 cm-2 atm -I. The

peak absorption of an unbroadened line in a i0 cm cell at 0.i atm

pressure will be Speak _ 0.5 x 10-3 .

The quantum statistical signal-to-noise for a i_ watt laser at 1.0_m is _ 2 x 106 .

This implies that, even for a noise power 100x greater than the quantum statis-

tical noise limit the R(1) line could be detected in an absorption cell of very

modest proportions. This kind of sensitivity greatly alleviates the require-

ments on long absorption cells and large amounts of sample material. [Samples

can become very expensive when some rare isotopes are considered, and these are

almost invariably lost _ The smaller physical size will, as mentioned earlier,

alleviate the difficulties of varying the temperature in the absorption cell.

Let me talk about prospects, dividing them into long-term and short-

term without really saying how long or how short.

It seems to me that the best short term prospects for obtaining spectra

of the highest quality over wide spectral ranges are those using conventional

methods and especially the FTS method. The best FTS instruments are, in fact,
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capable of producing data for almost any of the problems proposed for planetary

atmospheric spectroscopy, and there appears to be no inherent difficulty in

extending their capabilities. For the short wavelength ranges starting at

about 1 1/2 micron, a one meter total path instrument is adequate to resolve

the Doppler widths of any atmospheric molecule. For wavelengths longer than

1 1/2 microns, where high resolution is required to resolve the line widths,

many of the difficulties in making the instruments decreases, e.g. the precision

requirement on knowing the moving mirror position is relaxed as are the optical

quality requirements.

The best long term prospects I think are with laser spectroscopy. I

don't really know how to prove the truth of that statement; I'm merely stating

it as a matter of faith more than of knowledge. Nevertheless, the technology

of high-power tunable low noise single mode lasers or laser devices continues

to be improved, and to be applied to interesting problems in spectroscopy.

These applications are important to the production of high quality, high reso-

lution, high sensitivity spectra. As the power of these devices increases, their

signal-¥o-noise increases, and the speed advantage of conventional multiplex

spectrometers decreases. This leads to a serious problem for both the conven-

tional and laser spectroscopists, namely, that as the volume of spectrum pro-

duction increases, it reaches a limit beyond human capabilities to analyze it.

In fact, the modern FTS instruments already produce a data rate that surpasses

an individual's capacity to examine it at each stage. The best FTS produce data

at such a rate that even a small group of people can't really keep up. So

I would like to conclude by saying it is really going to become necessary to

wed the spectrum to a computer, in order to comprehend it. The detection and

the determination of the frequency of spectral lines is already carried out at
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high speed this way, for the great mass of FTS spectraldata produced. At

present,effortsare being made to extendthis kind of computeranalysis

to the determinationof shapesand strengths. The method seems to work

well for isolatedlines, and I think needs to be improvedfor blendedline

widths.
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Discussion

Comment: Everythingyou said about certaintypes of instrumentationand

spectroscopictechniquesis in some sense true, and it points out that you

need to look at them not as individualmethods,but to look at them in a

coordinatedsense. Your diode laser is a good example. When you are

lookingat diode laser spectra,you like to have either high resolution

FTS or grating spectrato comparewith, and that'san indirectcomparison.

Another is, of course, to connect the diode laser with one of these

instruments,an FTS or grating,as was done at Ohio State. That combines

the best of two worlds. My secondcommentappliesto your closing

statementsabout the volume of spectroscopicinformation. If you think of

what you do when you have a set of data of varying accuracies,either

intensityor frequency,you weight them by roughlythe squareof the

accuracy. Thatmeans that as resolutionand accuracyon intensityand

frequencyimprovelinearly,the spectralinformationcontentimproves

quadratically,and when coupledwith the broad band width attainablewith

an FTS instrument,it's not surprisingthat thingsare getting out of

hand. Of course,that doesn'tmean we want to stop! There is much more

spectral informationin the high resolution,high accuracydata obtained

today,and automateddata handlingand data bases are important.

Comment (M. Mumma): I think we can go furtherthan that. In the past,

say more than five years ago, there was a kind of publicworks projectfor

spectroscopists.Measurementswere primarilyinstrumentationlimited,

meaning that with each improvementin the instrumentationone might re-do

the spectroscopy,re-do the calculationof band constantsand strengths

and so forth, and get an improvement. Now we're at the point where we can

really do definitivespectroscopyon many molecules,spectroscopythat
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doesn'thave to be re-done. We can fully resolvethe lines and get

absolute line frequenciesto an accuracythat's sufficientlygood for any

purposeyou can imagine. Line strengthscan be measured to the accuracy

with which you can determinethe pressureand cell length. We've got an

opportunitynow to do the fundamentalsonce and for all, and to begin on

the overtonesand intercombinationbands,as you pointedout, and from

that standpointI think spectroscopyis changingright now. The number of

diode laser systemsthat have been sold in the past fiveyears is really

phenomenal;tremendousnumbersof articlesare appearingin print,

reportingwhat I call "final spectroscopy"on many of these band systems.

Response (J. S. Margolis): I'd like to say somethingabout the diode

laser systems. They do produceDoppler-limitedspectra,but it really is

difficultto calibratethem in frequency. I think we really want to know

the line positionsto do somethingon the order of a tenth of the Doppler

width. That's tough to do with diode lasers.

Comment (M. Mumma): Well, we're workingon that problem;a number of

clever approacheshave been developedrecently,but I think we're a long

way from solvingit. You mentioned heterodyningagainsta known laser

line; that's one approach. A second is varactormixing: the gas laser is

mixed with a microwaveoscillatorand a tunablediode locked to a

particularline. The third is referenceto standardlines. You're quite

right in highlightingthe problem,but I think it's well on its way to

solution.

Comment (B. Lutz): I am afraid what you said about the FTS or other good

spectrometerobviatingthe necessityfor longer paths is not always true.
\

It is true if you consider singleisolatedlines,but when you start
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looking at manifolds or places where the line density is high, you can't

tolerate three atmospheres or even one atmosphere. In the case of

ammonia, you can't tolerate 50 torr or even i0 torr. You need very, very

low pressure and then al so very long path length.

Comment (L. Brown): But you don't need to get the maximumoptical density

by using long path lengths at high pressure. You can put in long paths at

low pressure and still get good sensitivity.

Response: You can detect very weak absorptionby virtue of having very

high signal-to-noiseratio.

Comment(B. Lutz): But I think you still have cases where you need long

paths. With very, very weak absorptions you can't get enough column

density in a single path cell, even with a 6 meter cell.

Response (J. Margolis): Well, by having high signal-to-noiseratio,you

can reduce the requiredpath.

Comment: But you increase the pressure broadening.

Comment (L. Wallace): You didn'tmention line shapes;line shapesare a

very importantproblem these days.

Response: I am not biased against line shapes, but I don't have much to

say about them.
\

Comment (A. Tokunaga): You mentioned IndiumAntimonidedetectorshaving

an NEP of 10-12, or approachingthat anyway. I have noticeda tendency
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for laboratoryspectroscopiststo use techniqueswhich are not truly

optimized, in the background-limited-sensethat astronomersuse. It would

be interestingto know if you have a flux-limitedexperimentin a lab.

Comment: I am interestedin experimentsat high pressure. Are the

current intra-cavityopto-acousticdetectionsystemscapableof working at

high pressures?

Response: Yes. They work better at high pressures. They have been used

up to atmosphericpressure.

Question: And above?

Response: They can be made to work; it's just a matter of keepingthe

windows on. I don't know of anybodywho operates at above atmospheric

pressure.

Comment (J. Caldwell): I think most of the commentsI've heard just

recentlyare from peoplewho are looselycalled spectroscopists.Let me

make an astronomicalcomment. I would like to take sharp disagreement

with one of your introductoryremarksabout whetheror not laboratory

people shouldattempt to simulateconditionsin a planetaryatmosphere

when they take their data. I could cite n_merousactivitieswhere not

doing this caused an error. The alternativeyou suggest,simulatinga

band on a computer,I think is not desirable;I just don't have confidence

that you guys know enough to do that correctly. I have here a viewgraphI

would just love to showyou, of a band which as far as I know nobody

predicted. It was observed first in planets. This is a spectrumof

liquidmethane,but it happensto correspondvery nicely to gaseous
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methane. The importantfeaturehere is that the temperatureis 96 Kelvin.

This little featureis the wing of the well-known8800 Angstromband out

here, and you see it is very strong indeed. There is a real featurehere.

This spectrumwas taken in 1977. At that time the existingmethane

spectrawere essentiallyall at room temperature(at least all of the ones

my colleaguesknew about),so the high-Jline was populatedout here and

there was no way in the world anybodycould tell that there was something

extra here. Now this featuredoes exist: you can see it in the spectrum

of Titan. 96K is a fairlygood representationof the middle atmospheric

temperatureon Titan. One could imagineplanetaryscientistsgoing

throughall kinds of troubletrying to interpretthis featurein terms of

an exoticmolecule,when in fact it'sjust methane, which everybodyknows

is there in copiousamounts. There are many other moleculesthat people

have tried to fit to so-calledunidentifiedfeatures. The whole point is

that if you were working at room temperature,you would miss this feature.

I don't know of anybodywho could predictthis featureon a computer. My
/

point is that in trying to simulatethe planet,you can get insightsabout

temperatureeffectslike this.

Response: Let me make my remark again and add a qualificationthat I

missed the first time. What the spectroscopistsshould report to the

astronomersis a complete set of data, includingthe line positions,the

strengths,and the temperaturedependenceof the strengths.

Comment: That normallyrequiresan analysiscomputedto know the ground

state energiesand the transitions.

Response: Generally,it's good enough to know the ground state energies

approximately,and these can be determinedsimplybe measuringthe
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strengthsat, say two temperatures.

Comment (R. Beer): That isn't going to help you with the kind of extra

featureCaldwellwas talkingabout.

Response: Well, if you knew the temperaturedependenceof the strengths

of the lines you would know what the appearanceof that band is going to

be.

Comment (R. Beer): Isn't Caldwell'spoint that this extra featurecan't

even be seen at room temperatures,becausetoo much else is emittednear

it?

Comment (K. Fox): Well it's not as bad as that. It's possibleto scale

the spectrumby temperature...

Comment (M. Mumma): If you know the constantsand all that.

Comment: That'smore efficientthan trying to simulateall conceivable

conditions.

Comment (L. Brown): If you have a quantitativeand completelist of

molecular constantsor temperaturedependences,you really can predictthe

spectrum under differentconditions. You can satisfythe needs of people

lookingat a lot of differentatmospheresthis way. Now your case

involvesa spectralregion that hasn't been well investigated. If you had

been lookinginsteadat the 7-micronregion, I thinkyou can predictmore

of what's going to pop up at a lot of differenttemperatures°

167



Comment (K. Fox): And that could also be done if an astronomerrequested

a focus on a certain spectrumor band.

Comment (J. Caldwell): If you don't know somethingis there,you can't

request such a focus. Those who requestthe focusingare probablygoing

to be diffuseabout what they want.

Comment (K. Fox): That's right,but you must have had a clue.

Comment (J. Caldwell): No, we didn't.

Comment (R. Beer): Part of a spectrumcan have a little bump, a little

wiggle in it somewhere. That is in fact the intentof my questionto

Willis Person: If I give you a spectrum,can you tell me what it'smade

of? Otherwise,allwe can say is "Gee whiz, we've got a new molecule."

Unless you can give me a lab spectrumpertainingto conditionsthat at

least approximatethose I'm seeing,how am I ever going to proceed?

Comment(P. Varanasi): You didn't have time to mentiona couple of

aspectswhich have remainedproblemsall the while that sourcesand

detectorswere being improved. These aspectsare importantin the

measurementof intensities,line widths, shapes,and so on. In

determiningthe intensitiesfrom the data (even at high resolution),there

is a questionof noise, not only in the sourcesand detectors,but also in

the conditionsof the gas. Even if you know the frequencyand intensities

very precisely,you may not know very accuratelyhow much ammoniayou

have, or its pressure,or whetherthe temperatureis the same everywhere

in the cell. Especially if you have a cell of very large volume, the

ammoniawill stick to the walls of the cell. Where do we stand on these
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problems?

Answer: We all suffer from these problems. I don't know how to answer

that question. It's a tough problem.

Comment (K. Fox): I think we'll come back to some of these same questions

throughoutthe workshop. They are liable to pop up again.

Comment (U. Fink): To come back to this problemof simulatingatmospheric

conditions,you do need actual data; calculationsare not enough. You

might think that methane in the 7-micron region is a good counter-example.

We know all the fundamentals. There are very few new bands that you think

can happen there,but I can showyou some methane spectraat three or four

kilemeter-amagatswhich show bands in absorptionwhich you have never

predictedbefore.
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MicrowaveRotationalSpectroscopy

H. Pickett (JPL)

I will concentrateon two topics. First, I want to urge you to take

advantageof the region upwardof i millimeter,which hasn't been discussed

much at this conference. Second,I want to describeapplicationsof this

region: how microwave,millimeterand submillimeterspectra (the so-called

rotationalspectra)can fruitfullyinteractwith infraredspectral

measurements.

Figure i shows that frequentlythe rotationalbands of moleculescan be

quite strong,comparedwith vibrationalbands. I have plotteda typical

rotationalabsorptioncoefficientfor a linearmolecule in a low-J state with

a dipolemoment of about one Debye. The solid curve representsan absorption

coefficientat a pressurewhich is high enough to producethe

pressure-broadenedlimit, (I assume that the spectralresolutionis great

enough to resolvethe line), and the brokencurve representsthe absorption

coefficientin the Dopplerlimit. The vibrationalcase was chosen similarly:

the transitiondipole moment used for the vibrationalcase is typicalof CO at

the peak of its rotationaldistribution. This is a moderatelyfair comparison

of strongabsorptionsin both regions. The low pressurecurves show that, in

the high atmosphere(clouds),the rotationalspectrumhas the potentialfor

giving much greatersensitivitybecause of the largerabsorptioncoefficient.

Rotationalspectracan also providemuch informationon high altitude

parametersthat often cannot be obtained from higher frequencyspectra.
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Figure 2 shows the transitionfrom the pressure-broadenedlimit to the

Doppler-broadenedlimit,at a varietyof frequencies. At pressuresnear 0.1

atmosphere,the 10 um shapes are alreadygoing into the Voigt and Doppler

profiles. It wou]d be difficu|tto get informationabout the compositionand

temperatureat low altitudesfrom this infraredspectrum,whereas such

informationwould be obtainablefrom the rotationalspectrum,which is in the

pressure-broadenedlimit. Since the pressurecross-overvalue scales

directlywith the frequency,by a wavelengthof i millimeterthe half-width

has become very small.

On the other hand rotationalspectraalso give informationon trace

speciesat high altitudes. In particular,they are useful for measuring

photochemicaltrace speciesat higher altitudes. The resolutionneeded for

this would probablyrequirea heterodynesystem,for example. For heterodyne

detectionof thermalemissionyou have to use a modifiedPlanck function,

namely,the Planck functionmultipliedby the square of the wavelength.

Figure 3 shows the modified Planck functionas a functionof frequency.

It providesa measure of the efficiencywith which temperaturecan be

determinedfrom the input power. At about 10 microns only 10% of the power at

a particulartemperaturewill be effective,comparedto the efficiencyat

lower frequencies. Combinedwith the absorptionthis can tell you about

absorptionin the submillimeterregionby speciesin the upper atmosphere.

To be fair, I should mention some of the disadvantagesof the

submillimeterregion. Absorptionby the Earth'satmosphereis large enough to

force you to use an airplane,balloonor spacecraftplatform. Also, the
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wavelength and pressure.
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Figure 3. The normalized effective Planck function seen by heterodyne receivers (see text). 



developmentof local oscillatorsand_eterodyne mixers is much less advanced

in the far infraredor the submillimeterregion than it is for lower or higher

frequencies.

Now I'd like to switch to my second topic: how laboratoryspectroscopy

in the lower frequencyregion can interactquite favorablywith infrared

measurements,as well as being a help to astronomersusing the lower frequency

region.

Table 1 shows some parametersfor NO, which can be consideredto be a

planetarymolecule if we includethe Earth in our list of planets,derived

from our work on the pure rotationallines resolvingthe hyperfinestructure

of NO up to 500 GHz. Surprisinglyenough,we were able to use the same

Hamiltonianthat is used in the infrared;it is quite uncommonto be able to

do so. The parametersof this Hamiltonian are compared in Table I with those

derivedfrom a very high qualityFourier transformspectrumin the infrared.

We get rather good agreementwith the infrareddata. Moreover,the pure

rotation data determinethe parametersof the four-frequencyfit much more

preciselythan the infrareddata can.

Anotherexample is the spectrumof CH3D (Fig. 4). This molecule has a

dipolemoment of about 5 x 10-3 Debyes for this transition,very weak and also

(becausethe dipolemoment is small) hard to _nodulate.T_e peculiarshape is

an artifactof the differentway in which absorptioncoefficientsare measured

in this region. My point is that it i__sspossible to measure specieslike this.

Its rotationalspectrum,and thereforethe ground-stateenergiescan be

determinedquite accurately. Using molecularconstantsderivedfrom Fourier
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Table 1
14N160 Parameters (MHz)

Adjusted From

This Work Amiot et al 4 Hallin et al

Ao 3691453. (assumed) 3691453.(4) 3691438.(16)

B0 50849.2276(20) 50849.24 (11) 50849.22 (5)

ADo 10.4217 (11) 10,421 (9) 10.43 (8)

Do 0.16415 (8) 0.16400 (17) 0.1637 (12")

p -350.34512(16) -350.44 (24)

q -2.85507 (8) -2.850 (22)

Pj -0.000228 (4) O.

qj -0.0000420(12)
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Figure 4. Laboratory measurement of sub-millimeter rotational line of CH3D. Arrow indicates predicted position based on infrared
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transformmeasurementsin the infrared,Chackerian6 was able to predictthe

frequencyof the centralline (Fig.4). Their predictionis shown by the

arrow, only 40 KHz away from the measuredmicrowavetransition. At least for

frequencydeterminations,the values determinedby the high-accuracyFourier

instrumentsand the precisionmicrowavefrequencymeasurementshave converged

in the last five years or so. Note that the whole of Figure 4 covers a range

of only about 0.0001 cm-I.

Figure 5 shows an exampleof what can be done with trace speciesby using

the rotationalregion of the spectrum. Fig. 5 is a spectrumof the ClO

radical. This was taken at 649 GHz, the highestfrequencyat which a free

radicalhas been observedusing microwavetechniques. The splittingis about

6 MHz and is due to lambda doubling in the 2
73/2 state. At lower frequencies

we have also measured the temperaturedependenceof the line width of C_O for

pressurebroadeningby nitrogen. An advantageof the microwaveregion for

free radicaltrace species,is that once the dipole moment is known, the line

strengthcan be calculatedaccurately,withouthaving to make absolute

measurementsof the density.

Figure6 is a spectrumof phosphine. It shows the J=K=O to J=l, K=O

transitionat 266 GHz. The spectrumappearson our spectrometeras one line,

but the rf modulationgives it the shape seen in the figure,the result being

essentiallya coarse-grainedsecond derivative. We have developeda new

procedurefor fittingline widths when workingwith these modulatedspectra.

We take the low pressurespectrumand convolveit with a Lorentzian,adjusting

the width and shift of the Lorenzianuntil the result agrees with the high

pressurespectrum. Then we plot the residualto evaluatehow well the
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Figure 6. Illustration of measurement of pressure-broadening of PH3 by H2.
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synthetichigh pressure spectrumagrees with the low pressure spectrum. This

method doesn'trequireany knowledgeof the form of the modulationwe use (the

instrumentfunction,so to speak),or the amount of Dopplerbroadening.

Table 2 shows some resultsof our measurementson phosphine(to about 5%

accuracy)and (to a little bit better accuracy)for phosphinewith hydrogen

and helium broadening. These measurementswere taken only at room

temperature,but it certainlywould be possibleto measure them at lower

temperatures. Note that the hydrogenbroadeningin this case is not much

larger than the phosphineself-broadening.To repeata warning that I made

yesterday, the line shift for this transitionfor phosphineself-broadeningis

only a factor of 10 smaller than the width.

Finally, a simple expression for line widths, valid in both the microwave

and the infrared region is: line width =<l-SiiSff*>. It involves a

scattering S-matrix for the initial and final states. Without going into

details, it can be seen that the S matrix (and therefore the width) is an

average over the vibrational state: an expectation value of sorts. Therefore

the microwave line width is expected to be the same as an infrared line width

with similar rotational quantum numbers to the same level of accuracy that a

P-branch width is similar to an R-branch width involving the same rotational

quantum numbers. As a rule of thumb, this typically is accurate to better

than 5%.
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Gas Olfferentlal'pressure Width Shift Width/pressureShlft/Fessure

(mtorr) (HHz) (HHz) (HHz/torr) (HHz/torr)

PH3 26 0.146 0.0098 5,615 0.392
102 0.576 0.0450 5.647 0.441

152 0.852 0.0943 5.605 0.620
average: 5.62 0.56

+0.02 ?_0.08

H2 I12 0.495 0.001 4.42 0.009
225 0.951 -0,013 4.23 -0.058

335 1.448 -0,005 4.32 -0,015
445 1,945 +0,004 4.37 0,009

560 2.417 0.012 4.39 0.022

675 2.996 0.023 4.44 0.034

average: 4.39 0.000
+ .06 +0.033

He 83 0.177 0.0017 2.135 0.020

164 0.354 0.0013 2.161 0.008
272 0.613 0.0046 2,252 0,017

3790 0.856 0,0116 2.258 0,031

485 1.101 0.0070 2.278 0,014

585 1.340 0.0093 2.291 0,016

787 1.798 0.0121 2.284 0.015

1021 2.335 0.0197 2.277 0.019

average: 2.24 0.017
+0.08 +0.007

Table 2
PhosphineBroadeningand PressureShift
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DISCUSSION

Comment: A general lesson can be learned here, about CH3Din particular, but

also about other molecules. According to molecular theory, it is possible to

use regions of the spectrum where certain instruments can obtain highly

accuratemolecularconstants,and then use these constantsto calculateother

regions of the spectrumwhich may not be accessible. The ground state of

methane is an example.

Response: Anotherexample is the spectrumof vibrationallyexcited states.

Vibrationallyexcited statescan often be measured in the microwaveregion,

and rotationalparameterscan be obtainedfor those excited states.

question (K. Rao): Can you commenton the differencebetweenyour resultsand

the Soviet resultsfor the frequenciesof CH3D lines?

Response: We have found a number of cases where frequencycalibrationshave

been importantfor frequencymeasurementswith this number of significant

figures. For our calibrations,we run our frequencycounterdirectlyout of

the wall from the hydrogenmaser at JPL. So I am confidentthat our frequency

measurementsare quite good. Frequencycalibrationsmay or may not play a

role in the particulardiscrepancyyou mentioned.

question (K. Rao): You showed some very nice phosphineand 14N160 spectra.

Do you have similarinformationfor 15N0 and N180?
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Response: We plan to work with NI50 and we are planningto look at the

vibrationallyexcitedstates.

Comment: I agree that the line widths of the microwavelines are similar to

those for the vibrationallines, with one possibleexception: that is, at

certain temperaturesor for particulartransitionsof non-polarbroadeners.

Response: Very peculiarexchange affectscan occur for non-polarbroadeners,

particularlyfor self-broadening.We have also glossedover the collisional

phase shiftsbetweenthe upper and lower state. These will affect the line

shift more than the widths. These phase shiftsenter as a sine in the former

and as a cosine in the latter.

Comment (B. Lutz): How do molecularconstantsobtainedby your group agree

with those found by other groups. Both Alan Tokunagaand I feel that there is

far too little criticalinter-comparisonof resultsobtaine(_by different

groupsworking on the same molecule.

Response: For a molecule like NO we had difficultycomparingour resultsto

their results. The signs of some of the parametersare ambiguousin the

literature,particularlyfor large moleculeswhere the sign dependson whether

the interactingstate is assumedto be a sigma plus or a sigma minus state.

To properlyinter-compareinfraredand microwaveresults,the data itselfmust

be involvedin the fitting. A co-variancematrix is not usuallyavailable

from the previousauthor'sdata.

Comment: For severalmolecules,such as phosphine,no two sets of

186



measurementsgive the same valuesof the molecularconstants.

Response: There is no hope of reconcilingmolecularconstantsbased on

differentmeasurementsunless error bars are publishedwith the measurements.

Papers on vibrationaltransitionsoften give the differencebetweenobserved

frequenciescalculatedfrom molecularconstants,but hardly ever show error

bars on either.

Question: With the accuracycurrentlyavailable,are the pure rotational

experimentssensitiveto the pressure,and the temperature? Can you detect

pressureshifts?

Response: Yes.

Comment !A. Young): This seems to be one of the first places where pressure

shifts have reallycome up for discussion. Mike Munma mentioneda situationa

little while ago, where you reallyneed absolutefrequenciesin order to get

Dopplereffects,e.g., when you are talkingabout wind speedson the order of

meters per second. In these cases the pressure shiftscan be comparableto

the meters-per-secondDopplereffectsthat you are tryingto measure, so you

do need to take them into account.

Question (K. Rao): Do you have plans to go into higher frequencyregions?

Response: we can routinelywork up to 650 GHz and have made several

measurementsto 850 GHz. We run into a stone wall there, becauseour
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The JPL Millimeter, Sub-Millimeter,

and Microwave Line Catalo 9

Herbert Pickett (JPL)

Our catalog includesmoleculesof interestin the interstellarmedium, in

planetaryatmospheresand in the Earth'satmosphere.

We use slightlydifferentunits than those on the AFGL tape, but they

containmuch the same information. For citing line frequenciesin the

microwaveregion,we decidedto includeon the tapes either the experimental

errors or the propagationof errors from the fit. This gives an estimateof

how accuratethe frequenciesare. The intensityunits are definedas follows:

the logarithmof the intensityunit is the cross-sectiontimes the frequency

in MHz. This is essentiallythe same unit as on the AFGL tape, but contains

fewer factorsof the speed of light. We don't list line widths,but we ao

includethe upper-statedegeneracy. The upper-statedegeneracyis an

importantquantity,since the spin degeneracymust be properlytaken into

accountwhen calculatingthe EinsteinA-coefficientsfrom the intensities.

Table I shows some of the moleculespresentlyon the tape.

The catalogis availableto the scientificcommunityeither as a tape or

on microfiche(filmedin frequency-sortedand molecule-sortedformat). The

upper frequencylimit in our fittingcalculationis 100 cm-1.
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DISCUSSION

Question: What is the lower cut-offon line strengthsfor a line to be

includedin the catalog?

Response: The cut-offfor the line strengthsvaried from molecule to

molecule. For every molecule,there'sa write-upwhich includesthe strength

cut-off and a cut-offin J (if one was used). It also includesthe partition

functionthat would be used at 300°K; in consideringresolvedline structure,

you have to make sure that everybodyagreeson the partitionfunction,and

that the values of the dipole moment appearcorrectly.

Question: Are you planningto includeline widths in the future?

Response: We didn't includeline widths becausewe are interestedin both

atmosphericand planetaryapplications,and we couldn'tdecidewhich

broadeninggases to use.

Question: How can you get copies of the catalog?

Response: We do not have a mailing list. Ifyou write to us we'd be glad to

tell you how to oDtain a copy. For a tape copy, you would send us a clean

tape, and we'll sendyou back a tape, 9-track,blocked in 720 characters,

ASCII. Microfichewill also be available;this is actuallya very convenient

form.

Question: can you possiblyfit 90,000 lines on microfiche?

Response: The lines fit on 8 fiche at 42X reduction.
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Table 1
Index of Species

I001 H-Atom 34001 0-18-0 51001 HCCCN
2001 D-Atom 34002 H2S 51002 CIO
3001HD 34003 PH3 52001HCCC-13-N

12001 C-Atom 34004 H202 52002 HCC-13-CN
13001C-13-Atom 35001HDS 52003 HC-13-CCN
14001 N-Atom 36001 HCI 52004 HCCCN-15
14002 N-Atom-D-State 38001 HCI-37 52005 DCCCN
16001 O-Atom 40001CH3CCH 52006 HOCI
17001 HO 41001CH3CN 53001C2H3CN
17002 NH3 41002 CH3CC-13-H 53002 CI-37-0
17003 CH3D 41003 CH3C-13-CH 54001CH2CHC-13-N
18001 DO 41004 C-13 H3CCH 54002 CH2C-13-HCN
18002 N-15-H3 41005 CH3CCD 54003 C-13-H2CHCN
18003 H20 41006 CH2DCCH 54004 CH2CDCN
18004 NH2D 42001CH3CN-15 54005 HOCI-37
18005 H20-u2 42002 CH2CO 55001C2H5CN
19001 HO-18 43001CHDCO 56001 CH3CH2C-13-N
19002 HDO 44001CS 56002 CH3C-13-H2CN
27001HCN 44002 SiO 56003 C-13-H3CH2CN
27002 HNC 44003 CH3CHO-A 56004 C2H5CN-15
28001 CO 44004 N20 56005 CH2DCH2CN-S
28002 HC-13-N 44005 CH3CHO-E 56006 CH2DCH2CN-A
28003 HCN-15 45001 C-13-S 600010CS
28004 DCN 45002 Si-29-0 60002 SiS
28005 HNC-13 45003 NH2CHO 61001 0C-13-S
28006 HN-15-C 46001 CS-34 61002 0-18-CS
28007 DNC 46002 Si-30-O 62001Si-29-S
29001 C-13-0 46003 H2CS 62002 O-18-CS
29002 HCO+ 46004 C2H50H 62003 Si-30-S
29003 CH2NH 46005 HCOOH 62004 SIS-34
30001 C0-18 47001 H2C-13-S 63001HN03
30002 HC-13-O+ 47002 HC-13-OOH 64001 S2
30003 DCO+ 47003 DCOOH 64002 S02
30004 H2CO 47004 HCOOD 75001HCCCCCN
30005 C-13-H2NH 48001 SO 76001HCCCCC-13-N
30006 CH2N-15-H 48002 SO-vl 76002 HCCCC-13-CN
30007 CH2_D 48003 H2CS-34 76003 HCCC-13-CCN
30008 NO 48004 03 76004 HCC-13-CCCN
31001HCO-18+ 48005 03-v2 76005 HC-13-CCCCN
31002 H2C-13-0 48006 03-uI,3 76006 HCCCCCN-15
32001 02 50001 S-34-0 76007 DCCCCCN
32002 02-vl 50002 SO-18 80001HBr-79
32003 CH30H 50003 03-SYM-O-18 82001HBr-81
32004 H2C0-18 50004 03-ASYM-O-18 95001Br-79-O

97001Br-81-O
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The AFGL Molecular Line Atlases

Laurence Rothman (AFGL)

I will describe the current status of the AFGL line

compilations. For those of you who may not be familiar

with them, there are two compilations extant, the main

Atlas and the Trace Gas Atlas. The main Atlas has been

available for about five or six years, and includes the

major absorbers in the Earth's atmosphere approximately in

the wavenumber region shown in Table I. There have been

several updates. The present version is distributed for

us by the National Oceanographic and Atmospheric Adminis-

tration in Asheville, North Carolina.

Currently, the main Atlas includes about 150,000

lines (the Trace Gas Atlas is 30-40,000 at the moment).

The information on each Atlas is essentially a card image

per line, which includes the frequency (in vacuum wave-

numbers) of the transition, the line strength at a standard

-i
temperature of 296 Kelvin (given in cm per molecule per

square centimeter), and the half width of the line. The

lower-state energy is the fourth parameter, E", shown in

the last line of Table 1 (a -i is put in place of E" for

transitions which have not been identified as yet, so that

people using transmission/emission codes have a flag to

avoid incorrect temperature extrapolation). Then there is
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Table 1
AFGL Data Bases

• MAINATLAS

AFGLATMOSPHERIC ABSORPTION LINE PARAMETERS COMPILATION

MAJOR TERRESTRIAL ABSORBERS FROM 0-20000CM'1

(H20, CO2, 03, N20, CO,CH4, 02)

•TRACEGAS ATLAS

POLLUTANTS, UPPER ATMOSPHERE, PLANETARY ATMOSPHERES, LABORATORY

(NO, S02, N02, NH3, HN03, OH, HYDROGEN HALIDES, Cf0, ETC,)

INFORMATIONPER TRANSITION

_, S_(To),_(To),E:, QUANTUM IDENTIFICATION, DATE, ISO, MOL,



quantum identification field, giving the vibrational

transitions, rotational information, and other quantum

index information such as electronic level or splitting

code. Finally there is a0data code that provides a means

of referencing a particular line, and finally an isotope

and a molecule code. For calculating transmission and

emission strengths in LTE conditions, only the first four

parameters and the molecule identification are needed to

determine whether corrections to the molecular parameters

are needed.

The work currently in progress has mainly been

driven by water (see Table 2). In the case of updates on

pure rotation, we found quite a number of strength dis-

crepancies in the vibrationally excited _2 rotation, and

we are in the process of regenerating the eigenvectors for

that transition. This is a rather tricky problem since we

must avoid the bad minima_in the least-squares fitting

process, but we expect to have it finished shortly. By

the way, I hope to have both the main compilation and the

trace gas compilation out by the summer of 1980. (At that

time, there will be the third meeting of a workshop that is

being held under the auspices of the Upper Atmospheric

Division of NASA. A great deal of input on the trace gases

has been coming out of workshops of this type). In the

case of the 6.3, 2.7, 1.9 and 1.4 micron regions, we
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Table 2
Updates to Main AFGL Data Base for 1980 Version

1, H20
• (010-010)PUREROTATION

• 6,3.:_.,2_-_.,_.-_,_-
• 2,7_: 2_, M ,_3

• 1,_: 3_,I;I+_,_ +_

• (181):_ +_, _ +

2, CO2
• UPDATEDCONSTANTS ,

• CORRECTPI-LEVELSFORASYMMETRICSPECIES

4, N20
• HOTBANDS
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Table 2
Updates to Main AFGL Data Base for 1980 Version (Continued)

5, CO

• PUREROTATIONISOTOPES

• ALLBANDSRECALCULATED

6, CH4

O 7,71_.

• 3,3VU.

• 2,3_

• CH3D

7, 02

• 1,2_' (x's
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Are incorporating the dat_ of the French, which Car_y-peyret,

Flaud_ and Toth have analyzed_ We Are comparing these to

the data on the AFGL tape, replacing them when necessary

or updating the frequencies of certain AFGL transitions

that the French data did not include (very weak lines,

generally of the type &K=5, and so on). An example of the

kind of shifts this comparison yields, especially in the

fundamental, is shown in Figure i. This is not a comparison

of observations, unfortunately; instead it shows a direct

comparison of the two theoretical extrapolations. But it

does show the large shifts that result from comparing the

French frequencies to what was previously on the tape; the

frequency scale is in wavenumbers, so we expect quite an

improvement. The shift is actually more than 3 wavenumbers

for the bars truncated on Figure la. You're dealing with

a whole band of lines here. For example, the center of

the second plot is a strong domain, around the center of

the band. The scale represents ratios. This band - the

fundamental band of Vl- is one of the bands that required

updating on the tape. We've already seen quite an improve-

ment from the change we've made in _2" Recent measurements

at BOOK by Jimmy Sakai at our lab have shown that using

the French _2 for water gives quite a substantial high

resolution improvement, and we're about to put those on

the tape. We consider this region (6.3Dm) now to be in
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pretty good shape_ The transition, 4_2 in Table 2, was

just recently observed by the French; it was not previously

on the taper To my knowledge, it has never been observed

180 is alsobefore. The last item for H20 , _i + _2 of H2

a new addition to the tape.

In the case of CO2, the people at NASA!Goddard

recently pointed out to me that the asymmetric species

(628-627) has an alternating error in the lines that involve

pi-levels. Since it is a major effort to get the correction

onto the tape, we're updating the constants with the

correction at the same time. We try to bootstrap; we take

recent measurements of fundamentals and fix the molecular

constants, then apply them to the laser transitions and.so

on, and work our way up. Everything is coupled; we have

about 560 bands, counting the isotopes, on the main

compilation.

For ozone I recently updated the two regions shown

in Table 2, again with measurements by the French, at the

University of Reims. Some of these ozone absorptions were

never on the compulation before, for example the two

overtones 2_1 and 2_3. We feel this represents quite an

improvement over the fourth-order expansion work, which

is quite old.

In the case of nitrous oxide there is quite a bit

of work that will be done. I hope by this summer to get
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some improvement on the hot bands of nitrous oxide_ There

is another set of results that was published by Amiot_ which

we might be able to get on tape.

!n the case of carbon monoxide (Table 2), we've

re-done all the old work on the tape. We've lowered the

cut-off so there are now a few more transitions than

heretofore. Also we were missing isotopic variations and

pure rotation transitions, and they have been included in

the new update.

I will not say much _bout°m_thane here since

many people will be discussing it later. But I should

mention a few items about methane. Presently available

to me is some work in the 7.7_m region that Glenn Orton

has provided, and at the moment it is the best I have

available. I know there is a lot of other work being done

in this region, but this data is already in the AFGL for-

mat and is therefore easy to add to the Atlas. Two band

areas, 2.3 and 3.3_m, are awaiting more identification

work. I know Bob Toth and Linda Brown have been working

on monodeuterated methane; I don't know if it will actually

be ready in time for inclusion in the 1980 tape. We hope

to get it on shortly.

There is a minor improvement to be made with the

half widths of oxygen in the 1.27_m region.

I think the updates to the constituent data base

will be of interest to many of the people here (.see
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Table 3
Updates to Constituent Data Base

for 1980 Version

8, NO

• (2-0)BAND

• ISOTOPES

• REMOVEDUPLICATELINES

9, SO2
• PUREROTATION

10, NO2

• CORRECTS-])2

11, NH3

oS-¢ 2

12, HNO3
• PUREROTATION

• 2_,_ 5

13, OH

• PUREROTATION

o_V = 1 SEQUENCE

• OVERTONES
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Table 3
Updates to Constituent Data Base

for 1980 Version (Continued)

14, HF
m PUREROTATION

m FUNDAMENTAL,OVERTONES

15, HCI

m PUREROTATION

m FUNDAMENTAL,OVERTONES

16, HBR

• PUREROTATION

• FUNDAMENTAL,OVERTONES

17, HI

• PUREROTATION

• FUNDAMENTAL,OVERTONES

18, CI0
• FUNDAMENTAL
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Table 3), We have Added data on the overtones of nitric

oxide, and have corrected some errors in the pure rotation

transitions that were on an earlier version of the tape.

The new version of this second compilation should appear

at the end of the summer of 19804

In the case of N02 there was an intensity error in

the _2 band; it has been corrected_

For NH3 there seems to be a serious question about

the band strength of _2" What has been published and put

on the tape is quite different from what some groups have

found. It would be nice to have this issue resolved.

Obviously, if we could get _4 and some of the other bands,

it would be of great interest for studies of planetary

atmospheres.

For nitric acid, we now_have pure rotation, 2_9, _4'

and _2 on the tape, and we are trying to separate out from

the 2_9 region some of the _5 lines.

We hope to soon have included the hydroxyl radical;

eventually the whole sequence of bands.

For the case of hydrogen halides I have all of the

information in the AFGL format, and am still working on

some compromise for the half-widths of molecules 16 and

17. The fundamental of CIQ was provided to me by Jack

Margolis of JPL.

In addition to these molecules, it is likely that
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we will have formaldehyde and possibly methyl chloride

included in the compilation in the near future.

There &re a few things I want to mention in closing.

It is essential for people to send us their data. We

don_t have a large group of people working on the AFGL

catalog, so it would be very helpful if it were sent to

us in the AFGL format. We would also like to be notified

when you find discrepancies between your measurements and

what is on the AFGL tape, so we can make corrections as

soon as possible.

In the future, I hope to get out a newsletter

similar to that put out by NASA/Ames, to find out where there

is data available, which molecules are of interest to the

atmospheric science community and other communities, and

to review the data that come out of the various workshops,

and get them on the tape so that they can be used

efficiently.

•DISCUSSION

Q11_e_n_: For CO2 and CO with carbon 13, are the intensities

on the tape measured intensities, calculated

intensities, or are they simply scaled by some

factor?

_?_e- Some of both. The weaker bands are scaled. A

lot of the strengths come from prehistoric times,

and their basis rests with Prof. Benedict.
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Cnmm_nt (W_ Fn_: Some recent measuremnts on methane taken

at the University of Tennessee disagree

with the conventional wisdom. I am

working on a theory that may help to

explain intensities that vary from band

to band for 12C/13C.
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THERMALBALANCEOF VENUS

Martin Tomasko (Universityof Arizona)

The PioneerVenus missionmeasured severalparametersof the atmosphere

of Venus which pertainto its temperaturestructureand thermalbalance.

Among them are the temperatureprofile,the compositionof the atmosphere,the

solar fluxes throughoutthe atmosphere,and the thermalfluxes throughoutthe

atmosphere.

Figure 1 is a plot of the temperaturestructureof Venus compiledby A.

Seiff, who has the atmosphericstructureexperimenton PioneerVenus. The

main thing to notice is that the atmosphereis essentiallyadiabaticbelow

about 35 or 40 km, but from there up to the bottomof the lower cloud (at ,,,47

km altitude)there is a subadiabaticregion. For reference,the dashed line

is an extensionof the adiabaticprofileof the lower atmospheresto higher

altitudes. In the middle and lower clouds there is a secondadiabaticregion,

followedby a second radiativeregion above_55 km.

In addition to the temperaturestructure,the PioneerVenus SounderProbe

containedan experimentto measure the solar flux. The solar zenith angle at

the Sounder probe entry site was about 67°. The easiestplace to measure the

net solar flux is right at the ground,becausethere the upward flux is low,

the downward flux is significant,and one needn'twork.with the difference

between nearlyequal numbers. It is interestingto comparethe PioneerVenus

flux measurementsat the ground with fluxesmeasured by Veneras8 through12.

Figure 2 shows how the net solar flux varies with the cosineof the solar
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Figure 1. Temperature profiles measured by various Pioneer Venus instru-
ments as indicated - Atmosphere Drag experiment (OAD), Orbiter
Neutral Mass Spectrometer (ONMS), Bus Neutral MassSpectrometer
(BNMS), Orbiter Infrared Radiometer (OIR), and the Atmospheric
Structure experiments on the probes.
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Figure 2. Net solar flux at the surface of Venus as a function of the cosine of the
solar zenith angle. Dashed lines represent constant fractions of the incident
solar flux as indicated. The solid line represents the variation computed
for a forward scattering cloud model adjusted to pass through the Pioneer
Venus measurement at the Sounder probe site (labeled PV). This measure-
ment and those measured at the Venera 8 (labeled V8), Venera 9 and 10
(V9, 10) and Venera 11 and 12 (Vll, 12) sites are quite consistent as
discussed in the text.

213



zenith angle. The dashed lines are constantpercentagesof the incidentsolar

flux. PioneerVenus found that a little less than 2% of the incidentsunlight

reaches the ground at this location. Venera 8 measured about 1% and Veneras9

through12, which landedmuch nearer the subsolarpoint, found about 3% of the

incident flux reachesthe ground. For forward-scatteringcloudsmore of the

incidentflux is expectedto reach the ground at the subsolarpoint than at

the glancinggeometries,where the solar zenith angle is smaller. In fact a

scatteringmodel which includesthe forwardscatteringnatureof the particles

and is scaled to go throughthe Pioneer-Venusdata point is remarkably

consistentwith the other measures. The amountof sunlightreachingthe

ground is thus prettywell known: averagedover the planet,about 2.5% of the

sunlightincidenton Venus is absorbedin the ground.

In additionto the net solar flux at the ground,measurementswere also

made of the net flux of sunlightas a functionof altitudeat the Sounder

Probe entry site. Figure 3 shows the measured net solar flux plottedagainst

altitude. The nominalcalibrationof the solar flux radiometer(LSFR)gives

the lower curve. Consideringthe uncertaintyin that calibrationprocedure,

the solar flux profileprobablyis no higherthan the upper curve.

The PioneerVenus mission also measured the solar flux at the top of the

atmosphereusing the Orbiter;there are two separatemeasurements. A

measurementof the albedo of the planet indicatesthe absorptionof sunlight

to be about 150 watts/m2, averagedover the planet. There is also a

measurementof the thermalemissionfrom the planet. This gives a slightly

highervalue, althoughthe sizeof error bars in the presentdata reductions

are too large to allow strong statementsabout the presenceor size of any
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Figure 3. Globally averaged bolometric net solar flux versus altitude. The PV
measurements in both the "broad-band" and "combined" channels
(above 35 km altitude) each scaled up to include energy outside the
LSFR filters and averaged over the planet using a forward scattering
cloud model are shown in the curves (nearly superimposed) labeled
"nominal solar". Also shown is the highest solar net flux profile
(labeled "high solar") consistent with relative and absolute calibra-
tion uncertainties in the LSFR upward and downward looking
detectors. The dashed curve above 60 km altitude is a model calcu-
lation. The triangle corresponds to the net thermal flux and the dot
to the net solar flux measured for the top of the atmosphere by the
orbiter.
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energy imbalance. The dashedcurve in Figure 3 shows the solar flux computed

from a model consistentwith the cloud structuresobserved from the probes.

Notice that the amountof sunlightabsorbedbelow 30 km altitudelevel is

about 40 watts/m2 or less.

It is interestingto comparethe profilesof net solar flux with the

profilesof net thermalflux measured on the probes. Verner Suomi's

experimenton the three Pioneer Venus small probes had a broad passbandthat

includedboth the solar and the thermalpart of the spectrum. One of these

probes landed on the daylight side of the planet,near the terminator. For

this probe the solar contributioncan be estimatedfrommodels and then

subtractedoff to estimatethe thermalflux alone. The other two small probes

landed on the night side, and give the thermalnet flux directly.

The resultsof these measurements(shown in Fig. 4) are surprisingin

severalrespects. Firstly,the thermalflux profilesvary considerably- from

20 to 80 watts/m2 at 30 km altitude,for example. If the measurementsare

right, the thermalopacity in the lower atmospheremust vary considerablyfrom

place to place. One possibilityis that small variationsin the abundanceof

someminor constituentmight be effectivein controllingthe flux passing

throughwindow regionsin the opacitydue to CO2. Another surpriseis the

fact that the averageof the three thermalflux profilesexceedsthe solar net

flux profile. Taken at face value, this indicatesthat thermalradiation

escapesfrom the deep atmosphericlayers fasterthan it is replacedby the

absorptionof solar energy. I don't think such a conclusionis really

justifiedon the basis of these three measurementsof the thermalflux. For

one thing, the variationin the three thermalprofilesis so great that their
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Figure 4. The SNFR thermal net flux measurements at the night, north, and
day probe sites are compared with the globally averaged bolometric
net solar fluxes as a function of altitude.
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simpleaverage is unlikelyto be a good approximationto the true globally

averagedthermalflux profile. Also, the globallyaveragedsolar net flux

profilecould certainlydiffer somewhatfrom the one shown if the cloud

structurevaries over the planet.

It seems clear that the abundanceof water must be very low to reproduce

the high thermalfluxesmeasured. Figure 5 shows severalestimatesof the

water mixing ratio plottedagainstaltitude (or pressure). The water mixing

ratios determinedby the gas chromatograph(LGC) on the PioneerVenus entry

probe are shown by the three points,and the solid curve is a preliminary

result from the optical spectrometerexperimenton the Venera 11 and 12

probes. The Venerameasurementsare more than an order of magnitude smaller

than those of the LGC. Calculationsusing the LGC water abundancegive

thermal fluxesthat are very much smallerthan the values Suomi has given.

The Venerawater measurementsand small variationsaround them corresponding

to curves 1, 2 and 3 on Fig. 5 lead to the thermalfluxes shown in Fig. 6.

Here the dots are Suomi'smeasurementsfrom the two probes that entered in the

night side of the planet,the crosshatchedband correspondsto the uncertainty

in the thermalflux at the day probe site due to generousestimatesfor the

uncertaintyin the correctionsfor the net solar flux there. The three curves

are the resultof thermalflux calculationsmade using a thermalopacity table

providedby Jim Pollack. The curve labelled"1" is for the nominalVenera

profilethat was shown in Fig. 5 while the curves 2 and 3 are for variations

in the water mixing ratio of factors3 to 5 about the nominalVenera profile

as indicatedon Fig. 5. For this particularopacity table rather large

variationsin the thermalflux can be obtained,dependingon the water mixing

ratio, includingsome profilesindicatingeven greaterfluxes than appear in
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Figure 6. Thermal net fluxes predicted by the nominal model using the three
water profiles of Fig. I2. The SNFR flux profiles are shown for
comparison. Local variations in water abundance can make large
changes in the thermal net flux and may explain the variability
between the different small probe entry sites.
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Suomi'smeasurements. Howeverit is difficultto assess the accuracyof

thermal flux calculationsfor the lower part of Venus'atmospherebecause

generallyonly relativelycrude, broadbandopacitytables are used. The

tables are based on measurementsat room temperatureand don't includehot

bands, which are potentiallyvery importantin the lower Venus atmosphere. It

seems clear that the true thermalflux should be somewhatlower than these

calculations,but how much lower? If not much lower, then the thermalflux

measurementsmay still be correctwith all they imply about new heat balance

mechanismson Venus. If the opacityof CO2 along at high temperaturewere

shown to be considerablyhigher than in the broadbandmodels, the implication

would be that the Venus thermalflux measurementsare likely to be wrong.

This is a good reason for measuringthe opacityof CO2 at high temperatureand

high pressuremore completelythan heretofore.

If the LGC water profile is used in the flux calculations,the computed

thermal flux profileis much lower than any of the thermalflux measurements

(see Fig. 7). In this case the thermalflux is easily low enough to allow the

greenhousemechanismto producethe observed surfacetemperature,but another

seriousproblemresults,as shown in Fig. 8. Here the solid curve is the

observed temperatureprofile,and the model (basedon the LGC water abundance)

is representedby the dashed curve. Notice that the model is convective

everywherebelow the upper cloud. The radiativeregion representedby the

kink in the observedprofilebelow the clouds is not reproducedby this model,

with its large thermalopacity.

On the other hand, calculationsby Pollackusing the Venerawater profile

and revisedgaseousopacities(to includeSO2 and some improvementsin the
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treatmentof water and CO2) give the thermalfluxes labeledVll, 12 in Fig. 7.

This set of opacitiesgives temperaturesprofilesas shown in Fig. 9 when used

with the nominalor "high" solar net flux measurementsas indicated. Notice

that the models now reproducethe radiativeregion observedbelow the cloud

bottomsas revealedby the kink in dashed curve between35 and 50 km altitude,

in additionto bracketingthe observedground temperature. The abilityto

reproducethe kink in the temperatureprofilemay be a clue that the opacities

used in this calculationare fairly reasonable,at least just below the clouds

where the temperatureis not much above room temperature. It would be nice to

have similarconfidencein the opacitiesat lower altitudeswhere the thermal

flux measurementsare so large and variable.

I would like to call your attentionto one more problemin the Venus

data. Notice that the calculationsshown in Fig. 7 give _200 watts/m2 at the

top of the atmosphereas opposed to the observedvalue of 140-150watts/m2.

The calculationsincludeCO2, SO2 and a very small amountof water above the

clouds. A ratherconsiderableamountof opacity still seems to be missing

from the models. One proposal (Soumi,et al., 1980) is to add aerosolsof a

particulartype to the upper atmosphere. The aerosolsmust be sufficiently

small that their opticaldepth in the visible is not very large, to prevent

them from conflictingwith visible-regionmeasurementsmade from the probes.

Nevertheless,if they contain sufficientmass per unit area theymay be able

to provide significantopacity in the thermal infrared. Whether or not these

particleswill be able to accountfor all of the opticaland thermal

measurementsis still very unclear,but unlessa significantsourceof gaseous

opacityhas been overlooked,aerosol opacitymay well be required to resolve

the flux problemsnear the top of the atmosphere.
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DISCUSSION

Question: What is the sourceof your opacitytables?

Response: We got these opacitytables from Jim Pollack. The curves in Figs.

7 and 9 are due to some recentmodificationshe has made since the

calculationsin Fig. 6 were done. Still,a large portionof the flux in the

lower atmosphereis carried in regionsnear 2.5 _m where many possibilities

for hot bands exist, so I'm not at all sure that the actual fluxes should be

as high as the calculations.

Comment: That whole region from 3.5 to 4 micronscarries a very large

fractionof the black body radiationspectrumescaping from the ground, and it

is very importantto read it carefully.

Comment (A. Young): Louise Young is workingon these problemsto some extent.

She is calculatingopacitiesfor hot CO2, and large paths appropriateto

Venus; I already presentedthe first sectionof those resultsto the DPS

meeting last fall. As far as the whole region is concerned,a much greater

opacityhas been derived by the Russianswho have done this, and they find

that they can make the greenhousework just fine.

Response: A great deal of work is requiredto do the calculationsproperly,

and so people have tended to wave their hands and say, "Oh, it will probably

all work out and it will be okay; there is plenty of spectraloverlap,there

are plenty of hot bands, and they'll take care of everything." On the other

hand, Suomi has his measurements,and he keeps saying there's nothingwrong
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with them. They give high fluxes. So you have one body of peoplewho say CO2

will have plentyof opacity,although they don't have quite the calculations

all done in the way to prove it, and on the other hand,you have Suomi who

says that his measurementsare fine and that there are significantwindows in

the C02, with the opacity in these windowsbeing controlledby minor

constituents. I think it's interestingto figureout which of these two

picturesis closer to the truth.

Question: Ifyou put somethingelse in there,do you get less opacity?

Response: we get more opacitywith somethingelse in there. The questionis

how much more. Is it enough to indicatethat Suomi'smeasurementsare

incorrect?

Question (M. Tomasko to A. Young): How do you explainthe fact that Suomi's

measured thermal flux in the lower 20 km is variableby a factorof 4 from one

place on the planet to another?

Response (A. Young): Becausehe°s lookingat the wake of his spacecraftand

he can only see a couple of centimetersdown there in CO2. He's not seeing

the free atmosphere. He's just seeing the flow patternand the temperature

distributionaround the probe.

Response (M. Tomasko): You will have to argue with him about that. I'm not

going to try to defend what he's seeing and what he's not. I'm not sayinghis

measurementsare right or wrong; I'm saying it's an interestingcontroversy.

Comment(A.Young): Well,I say theyare wrong.
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NEUTRAL SPECIES IN THE ATMOSPHERE OF VENUS

Andrew Young (Texas A&M)*

About 97% of the Venusian atmosphere is C02, with the balance

comprised of various trace constituents. I will first discuss species

other than CO2 that have either been found in Venus' atmosphere or have

been sought unsuccessfully, and then will return to problems connected with

the spectrum of CO2 itself.

Species Other than CO2

A number of species- in particular, nitrogen and argon- have no

dipole moment, and so cannot be detected by infrared spectroscopy. They

can be detected by mass spectrometry and gas chromatographs. On Venus,

nitrogen is present with a mixing ratio of about 3% (this n_ber is

uncertain by 50%), and argon with a mixing ratio of about 10-4 . Other

species can be detected spectroscopically, and some of them have also been

observed by direct sampling. These include $02, H20, CO, HC£, and HF.

SO2 has been detected spectroscopically, although by its electronic

(ultraviolet) rather than vibration-rotation transitions. It has also been

detected by gas chromatographs and mass spectrometers. According to the

gas chromatographs (and to a lesser extent, the mass spectrometers), the

* Present address: Ban Diego State University, San Diego, CA 92182
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abundance of SO2 is about 2xi0 -4 below the clouds, but the spectroscopic

observations from outside the planet show that this mixing ratio falls very

drastically with increasing altitude, i.e., through and above the clouds.

The SO2 is presumably drifting up from below and being converted into

sulphuric acid by way of sulphur trioxide, by some chemical or

photochemical processes that are still not well understood.

Water has been observed on Venus. It was first measured by the

Russian chemical experiments, below the clouds. It has also been measured

spectroscopically at the top of the clouds, and most recently it has been

measured (by Moroz' equipment) all the way down to the surface. MorozI

obtains a mixing ratio of about 2-3xi0-4 in the clouds, and 2-3xi0-5 at the

surface. Louise Young and I re-analyzed these spectra in early 1981, and

found the mixing ratio of water to be close to 10-4 throughout the lower

atmosphere. (This will be reported in detail at the Ames conference on

Venus, Fall 1981).

CO was detected very plainly in the Connes' spectra and the resulting

analysis required a mixing ratio of about 2xi0 -5. More recently the CO

mixing ratio has been studied extensively by microwave techniques: it is

about 10-4 in the region from 90 to 100 kin, and drops drastically at lower

altitudes. CO is apparently being produced at high altitudes by the

photodissociation of CO 2, and is consumed by thermal chemical reactions at

lower altitudes. This may be related to the destruction of sulphuric acid:

the oxygen that was added to SO2 to make SO3 and then H2SO 4 may be
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transferred back to CO to make CO2 in the hot lower atmosphere, but the

details are not well understood.

The Connes' spectra also showed HC£ and HF. This is the only

published observation of these species: all we have is one spectrum, and

these species are likely to have quite variable abundances. (The abundance

of HF should be particularly variable, because HF reacts strongly with

sulphuric acid). This one observation may give the order of magnitude for

the abundances near the cloud tops: 4xi0 -7 for HC£ and 10-8 for HF.

Some species have been searched for unsuccessfully: ozone, bromine,

chlorine, NO2, and other sulphur bearing molecules (see above for S02). At

least above the clouds, the mixing ratio of ozone must be less than about

10-8. Moroz has analyzed the short wavelength (electronic) absorption in

his spectra, and finds upper limits of 10-10 for bromine, 10-8 for chlorine

and 5xi0-I0
for NO2, at least in the lower part of the atmosphere. One

candidate for the ultraviolet absorption is sulphur, but sulphur forms so

many different compounds that it is difficult to decide whether it is

indeed responsible. Some little wiggles in Moroz3 spectra were at about

the right wavelength to be the 5200 Angstrom band of $4, and there was a

shoulder near 4000 Angstroms which might be S2, S3, $6, S8 or almost any

sulphur molecule. These sulphur molecules have little or no dipole moment,

so they are very difficult to observe in the infrared.

Some of these undetected species have been looked for in ultraviolet

spectra taken from rockets and satellites, but unfortunately these spectra

have all been taken at large phase angles (the phase angle is the angle at
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the planet between the Sun and the observer). The equivalent widths of

spectral lines observed from outside the planet depend strongly on the

phase angle. When the phase angle is small, Venus is fully illv_inated but

we see it on the far side of the Sun, where itsapparent diameter is small.

When the phase angle is near 180 degrees we see only a thin crescent,

because Venus is then on the near side of the Sun.

The dependence on phase angle, just discussed in connection with the

undetected species, also occurs for the dominant species on Venus, CO 2.

This is illustrated in Figure I, which shows two spectra taken from the

ground by our group.2 In the spectrum taken at a small phase angle, the

7820 Angstrom band is very strong; in the spectrum taken at a phase angle

of 165 degrees only a few CO2 lines are still visible, and even those few

are very much feebler. Expressed quantitatively, the strongest equivalent

-I)width would be about 0.30 Angstroms (i.e., about 0.050 cm in the small

phase angle spectrum, and the strongest equivalent widths are of the order

-I
of 0.005 Angstroms (i.e., about 0.010 cm ) in the 165o phase angle

spectrum. These lines appear to be quite weak when we see Venus

illuminated tangentially.

As noted earlier, the phase dependence of the strengths points to a

weakness in the oft-proposed strategy of trying to detect minor

constituents by looking tangentially through the atmosphere. With

tangential viewing, you only see the very top of the clouds - a high

altitude, low pressure region. Tn such a region the lines are highly
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Figure 1. Spectra of Venus taken at phase angles of 8.1° and 165.5°. The sketches at the right show the
phases and apparent diameters of Venus, with vertical lines indicating the positions of the
spectrograph slit. The upper spectrum was taken near superior conjunction, and required a 40-
minute exposure; the lower spectrum was taken near inferior conjunction, and required a 2
1/2 hour exposure. The solar lines at the bottom are due to iron, oxygen, cyanogen and nickel,
each labeled by its equivalent width in milli-Angstroms.
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saturated, so their equivalent widths are very small. The opposite

situation, nearly vertical viewing is better. Although the geometric path

in the cloud is shorter, you see down to regions of much higher pressure:

the lines are broadened, and have nice equivalent widths. These two

viewing extremes are illustrated in Figure 2. Bear in mind how faint the

spectrum is at a phase angle of 165 degrees, for comparison with the

spectra to be discussed next.

One of the weakest bands ever observed on Venus is a higher

combination band at 7158 Angstroms - a shorter wavelength than the previous

features. At small phase angles, it looks about like the 7820_ band at

large phase (cf. Fig. I). (At Kitt Peak I recently took some newer spectra

of this band, with about five times the dispersion shown in Fig.l, and

using a bigger telescope. Although the resolution is no better, the

signal-to-noise ratio is much higher on the new spectra, and they show many

lines). This weak band is very difficult to observe in the laboratory:

when Herzberg studied it using a 5.5 km path length at 10 atmospheres, he

was only able to see the band head! (Of course, at this high pressure the

rotational structure is wiped out by pressure broadening, so individual

lines can't be distinguished). But in the Venusian spectrum the band is

quite observable, and is suitable for determining rotational constants.

This illustrates the fact that Venus is still the best absorption cell

available for CO2. It provides very low pressures (about 50 millibars) and

very long path lengths: a couple of km-atmospheres of gas. A perfect

combination: a tremendous amount of absorbing gas, at a pressure low

enough to allow structure to be resolved. To really resolve all the
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structure (i.e. individual line shapes) in Venus' CO2 spectrum would

require an order of magnitude better resolution than in the current

spectra. The current spectra show only the instr_nental profiles, not the

actual line profiles.

To contrast Venus with Mars, recall the Mars CO2 spectrum in Rudy

Hanel's paper, where various isotopic bands showed up as little blips. We

see about a hundred times as much CO2 above Venus' cloud tops as we see

above the surface of Mars. The little blips from rare isotopic CO2

molecules, would be big, black bands on Venus. This should be remembered

in calculating the greenhouse effect. The amount of CO2 above the surface

of Venus is about a thousand times more than that above the clouds (the

pressure is only about a tenth of an atmosphere above the clouds, while it

is almost a hundred atmospheres at the surface). So, even the weak band at

7158_ is black at the surface of Venus. A tremendous amount of absorption

by CO2 occurs within and below the clouds of Venus.

More quantitatively, in a laboratory spectrum at 1 atmosphere, about a

centimeter of CO2 is sufficient to black out the spectrum at 15 microns, in

the bending mode fundamental. The amount of gas above the surface of Venus

is about 108 times greater. This means that in considering whether there

are a___nyholes in the greenhouse you have to include extremely weak bands in

the lower atmosphere. For example, a band that is 10+4 times weaker (per

molecule)than the fundamental,producedby a rare isotopewithmixing

ratio 10-4 will still be black. The hot bands are important for the same

reason. At room temperature kT is about 1/40 eV, and the lowest

vibrational transition for CO2 is about 1/25 eV, so the Boltzmann factor
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strongly suppresses the higher states: the Bolt_ann factor falls by

roughly a factor of 20 for each successively higher vibrational state, at

room temperature. At the surface temperature on Venus (750 degrees), kT

beoomes .06 eV, which is almost equal to the first vibrational quantum.

The Boltzmann factor falls by only a factor of four for each successive

harmonic. To compensate for a factor of 108 you have to go up 13 times the

fundamental vibrational quantum. Admittedly, the partition function

increases by about a factor of 10 in going to these high temperatures, so

lets conservatively say that 11 or 12 vibrational states are important. If

10 or 12 hot bands are included for every fundamental, the spectrum fills

up very quickly. Louise Young has been saying for years that CO2 takes

care of the greenhouse entirely by itself, and the Russians say that at

most a mixing ratio for water of 10-5 is enough to plug all the holes in

the greenhouse - and there is certainly that much water present. So the

huge thermal fluxes and other peculiar features found by Suomis'

Pioneer-Venus experiment are very implausible. Both the large fluxes and

many of the other peculiar results of this experiment are readily explained

if the instruments were seeing the thermal wake of the probe, rather than

the atmosphere. 3

Before closing, I want to convey to you Louise's request that the pure

rotation spectrum of CO2 be looked for on Venus. CO2 is not ordinarily

thought to have a pure rotation spectrum because the common isotopes

(12C1602, 13C1602, 12C1802, etc.) give a sy_netric CO2 molecule. But CO2

made from the less common isotopes (e.g. 13C 160 170) will have a small

dipole moment, and should have a pure rotational spectrum. The long path

length and low pressures on Venus should be ideal for detecting such

spectra.
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Discussion

Question: Does the 10-micronCO2 windowmake a hole in the greenhouseon

Venus?

Response: In Louise'scalculation,the transmittancefrom20 to 30 km
-206

altitudeabove the surfacewas only e . The exponent

register for the 20-bit floatingpoint word on the CDC 6600

computer isn't big enoughto expressthe tiny transmittances

from below 20 kin,so they come out as zero on the computer.

Nothingis comingout of the "windo%# from below about 30 kin.

Comment: Given the large amount of CO2 on Venus, there are other sources

of opacity besides isotopic bands and hot bands You can have

pressure-induced transitions, double vibrational transitions

with C02+C02 or CO2 and any minor species.

Response: Yes. Many transitions that are ordinarily forbidden can be

important on Venus, e.g., quadrupole and hexapole radiation.

We are just not used to an atmosphere 100 times as massive

as the Earth's and made of an infrared-active gas.

Comment: I want to make two points in connection with the high thermal

fluxes found by Suomi's Pioneer-Venus experiment. I agree

that these thermal flux measurements seem remarkably high. A

fair amount of work went into making those measurements, and a

fair amount of work should now be done on greenhouse
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calculations, to close the loop. These calculations take a

great deal of effort even for narrowly defined spectral

regions; I hope someone will decide that they are worth doing.

Now my second point. Although there isa tremendous amount of

CO2 opacity in the lower atmosphere, where the pressures are

about 50 bars, the greenhouse tends to run into trouble not

where the pressure is 50 bars, but higher up, in the clouds

where the pressure is only I bar. To make the greenhouse work,

CO2 and other species have to be opaque at these altitudes.

Response: I agree. The problem is that the lab data don't provide the

information we need to settle this issue. In the middle of

the cloud, say between 55 and 60 km, a couple of kilometer-

atmospheres of CO2 at I bar are available as an absorber.

The lab data are already becoming inadequate for such

large amounts of absorber. Below the cloud all sorts of

mechanisms (unobservable in the lab) contribute to the

absotption.

Comment: (H. Pickett): Absorption from CO2 containing 018 has now

been observed in the laboratory. The cells were only

3 meters long and the gas was at 1/10 tort pressure. The

permanent dipole moment turned out to be about a hundreth of a

Debye.

Comment: (U. Fink): The kind of calculations described earlier by

W. Person seem well suited to the questions we are discussing
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now. The band intensities of CO2 are known for the major bands

and for the simple hot bands, but those for the higher hot

bands are very difficult to measure. I wonder how difficult it

would be to predict them for Person's theory.

Question: (R. Beer): Aren't the pressures getting too high for

extrapolations based on nearly-free molecules?

Comment: At 100 bars the corrections are not very important yet.

Response: (A. Young): The deviations from the perfect gas law are

less than about 10%.

Question: (Y. Yung)" Do you still think that the sharp kink in the

profile of CO is due to its destruction by thermal chemistry

below the clouds?

Response: (A.Young): I thinkit is likely.

Comment: (Y. Yung): But that disagrees with what is expected from

strong vertical transport. If part of the CO profile is due to

strong vertical transport then it will be well mixed and its

profile will not have the sharp curvature that is observed.

The only way I can see to produce such a curvature is by

additional destruction just above the clouds.
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Response: (A. Young): But the CO can't be destroyed photochemically

at these depths. At altitudes just above the clouds all

the short-wavelength ultraviolet has already been soaked up

by CO2, and isn't available for photochemistry.
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Transient Species on Mars _nd Venus

Yuk L. Yung (Cal. Tech.)

Although my topic is transient species on Mars and Venus, I will often

compare them to the Earth as well as to each other. The chemistry of the

Earth's stratosphere has striking similarities to that of the atmosphere of Mars

and the stratosphere of Venus.

The transient species in all three atmospheres are the offspring of the

parent species listed in Table I. Table 2 shows the transient species, and

contains most of the substance of my tal_. This table has been assembled from

diverse sources, and I wish to disclaim responsibility for some of the entries.

To emphasize thls "caveat emptor," please regard Table 2 as a painful compromise

between published results (some of which I do not believe) and my own guesses

(which have not been worked out fully).

Our understanding of the transient species in Mars' atmosphere is fairly

satisfactory, and the corresponding entries in Table 2 should be fairly

reliable. The number densities of the important transient species on Mars are

shown as functions of altitude in Figures I and 2. Note that the number

densities of HO and NO compounds in Mars' atmosphere are comparable to thosex x

in the Earth's stratosphere. Our understanding of Venus' stratosphere is far

less satisfactory, and will occupy the rest of my talk.

The most interesting classes of compounds in Venus' stratosphere are C_Ox

and SO . Both classes have also received a lot of attention in the Earth's
x

stratosphere. For comparison, Venus' atmosphere has about 600 parts per b_llion

of chlorine, while the Earth's atmosphere has only about 2 parts per billion;

there are about 8 parts per million of sulphur compounds of all types on Venus,

compared with less than one part per billion on the Earth. Both classes are far
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Table 1
Abundances of Parent Moleculest

Venus Mars Earth

(Stratosphere) (Stratosphere)

Altitude > 60 km > 0 km > 20 km
Range

Pressure < 200 mb < 6 mb < i00 mb

Temperature _ 250 K _ 150 K _ 200 K

02 _ i ppm 0.13% 20%

H20 i ppm I00 ppm 5 ppm
,

H2 I00 ppm i0 ppm 0.5 ppm

N2 3.5% 2.5% 80%

HCI 600 ppb - i ppb

SO2 3 ppm - 0.i ppb

Abundance given in volume mixing ratio, I ppm = ix10 -6 , 1 ppb = ix10 -9 •
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Table 2
Maximum Concentrations of Transient Speciest

Venus NaPs Earth

(Stratosphere) (Stratosphere)

0 0 I0IIx 4x109 4x 109

03 108 2x109 5x 1012

HO H 108 107 5x107x

OH 106 2x 106 2x107

H02 109 108 3x 107

H202 1011 5x 109 108

NO NO 109 109 109x

NO2 3x107 4x107 109

HNO3 1x106 5x104 6x 109

CIO HCI 3x 1012x - ix 109

C1 108 - 5 x 105

ClO 108 _ 108

FO HF 6x 109 - 108x

1012SO H2SO4 3x -X

SO 1010 _

SO2 2x1013 - 3x 108

SO3 106 _ _

H2S 2x 1013 ? - _

t
Concentrations in molecules cm"3.
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Figure 1. Number densities of Ox and HOx
species in the Martian atmosphere,
taken from McElroy, Kong and Yung,
J. Geophys. Res. 82, 4370, 1977.
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Figure 2. Number densities Of NO x species in
the Martian atmosphere, taken from
Yung, Strobel, Kong and McElroy,
Icarus, 30, 26, 1977.
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more abundant on Venus, so there are advantages in studying them on Venus.

The photochemistry of Venus' stratosphere was first studied by Prinn and

McElroy, and Sze and Yung. Dissociation of HCR, was recognized as playing a

crucial role as a source of the HO radicals. The composition of the upperx

atmosphere now seems to be understood in a preliminary way. But unfortunately

the coupli.ng between the HO and CR,O families was subsequently found to be much
x x

stronger than originally assumed. This demands a drastic revision of the entire

chemistry of the upper atmosphere, and the results are not entirely satisfactory

yet.

To further complicate the picture, Stewart's group (Univ. of Colorado)

showed that the SO family can couple wi th the oxygen chemi stry. To show what
x

difficulties this causes, I will briefly review some of his calculations; this

will al so give a good picture of the current state of Venus modelling. The

abundance profiles of the sulphur compounds are shown in Figure 3. (The S02

profile was determined by Charlie Barth's group). There is as much S02 in

Venus' atmosphere as there is ozone in the Earth's stratosphere. S02 can be

oxidized to form sulphuric aCid, by a chain of reactions. Stewart's model

predicts 100 ti.mes more O
2

than the spectroscopic upper limit allows, because

the model doesn't have enough hydroxyl radicals to turn the oxygen into H
2

S0
4

,

One possible solution is to suppose that H
2

is present, with an abundance of

about 100 parts per million. This number has been bruited about for a few

months, but the data on Venus' chemistry is so bad that I don't know whether it

should be believed or not. If this large H
2

abundance is true, i.t would save

the hydroxyl radicals: Ct would react primarily with H
2

and leave the hydroxyl

radicals alone, leaving them free to turn oxygen into H
2

S0
4

, But even if thi s

solution is true, it does not solve the problem of the CO abundance in the lower

part of Venus' atmosphere, namely, how to destroy CO after your chemical sources
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have been turned off.

Photochemical models can probably yield the other sulphur compounds

satisfactorily. Starting wlth 302, oxidation yields SO3. The SO2 can also

dissociate to give SO, which in turn can dissociate to give S.
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Ouestion (M. Mumma): When you say that the chemistry of Mars' atmosphere is
i

well understood, are you claiming that all the species in Table 2 have been

measured at the same abundances predicted by the models?

_esDonse: Yes. Extensive work by M. B. McElroy's group at Harvard has given us

a complete understanding of the photochemistry Jn Mars' atmosphere, and its

evol ution.

Ouestion (M. Mumma): Do you then agree with Don Hunten on the abundance of

peroxide on Mars?

ResDonse: The peroxide abundance was definitely settled _n the thesis of my

colleague T. K. Kong at Harvard. Although Hunten is not here to verify my

statement, I believe he agrees with Kong.

Comment (M. Mumma): I have a comment for the many spectroscopists in the

audience. The test of any theory is a good experiment, and your talk has

highlighted a number of species for which spectroscopic work _s badly needed,

both in the laboratory and _n observations of Venus.

_esoonse: I've listed about 15 species, both to indicate those of greatest

interest and to roughly _ndJcate their abundances, to encourage such

observations.

_est_on (K. Fox): In the list of transient species in Venus' atmosphere, the
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maximum concentrationquoted for H2S is followedby a questionmark. What is it

trying to say?

Response: There are theoretical reasons for supposing H2S to be present, but it

hasn't been detected yet. The estimated value in Table 2 is based on a

theoretical analysis by John Lewis. _s model predicts H2S, as well as OCS and

CS2 in the lower atmosphere.

Comment (A. Young): I'd 11_e to comment on the estimate of three parts per

million as the concentration of H2S. Venus' atmosphere has about 200 parts per

million of SO2. Attributing to various oxidation states of sulphur__l! of the

ultraviolet absorption observed at the bottom of the atmosphere, the Russian

data give a mixing ratio of 2xi0-8; this assumes thermochemical equilibrium,

which is probably not correct, but the result should be indicative, and in any

case it agrees fairly well with the 2x10-8 just cited. These two estimates are

at least two orders of magnitude below the mixing ratio for SO2. Your estimate

of H2S claims that a still further reduced species will be more abundant than

that. That is very implausible.

251





SPECTROSCOPY PERTINENT TO THE INNER PLANETS

Page

Gaseous Infrared Absorption in the Lower Atmosphere
of Venus - C.Chackerian, Jr. and R. W. Boese ................... 255

The Spectroscopy of Venus - Reinhard Beer ..................... 271

Spectroscopic Measurements of Mars and Venus with
Heterodyne Techniques - Albert Betz ......................... 277

Infrared Absorption by OH-Containing
Compounds - John J. Hillman ............................... 295

Infrared Absorption of Sulfur-Bearing
Compounds - Arthur Maki .................................. 311

253





Gaseous Infrared Absorption in the Lower Atmosphere of Venus

C. Chackerian, Jr. and R. W. Boese (NASA-Ames)

The recent Pioneer-Venus and Venera missions to Venus have provided us

with a large body of information on that planet's atmosphere. These data

include measurements of the vertical pressure-temperature profile and the

mixing ratios for a number of atmospheric constituents. The vertical pressure-

temperature profile has yet to be fully explained on the basis of theoretical

modeling of the Venusian atmosphere. It has been shown, however, that the

greenhouse effect is a dominant mechanism in determining this profile. Therefore,

a knowledge of the infrared opacity of relevant atmospheric constituents in

the mid- and far-infrared over the appropriate range of gas conditions (pressure

= 90 bar to 200 mbar, temperature = 760 K to 220 K) is central to the theoretical

modeling.

It is the object of this talk to identify the possibly important sources

of infrared opacity in the Venusian atmosphere. The mixing ratios of various

atmospheric constituents are shown in Table I. We will see, that CO2,

which is the major atmospheric constituent comprising about 97 percent of the

atmosphere, is the dominant infrared opacity source. Not shown is N2 which

comprises about 3 percent of the atmosphere. The mixing ratio of water vapor

varies considerably with altitude but falls in the range of about 20 to 200

parts per million (ppm). The mixing ratio of S02 falls in the range of 100-200

ppm. This number is about 5000 times larger than estimates obtained earlier

via earth-based observations. The abundance of some of the other minor con-

stituents is also shown. While these constituents are not important in the

mid-infrared their importance for the opacity beyond 20 microns has not been

established. Other minor constituents such as CO and HCZ may not play a

role in the greenhouse effect.

The first five figures show the development of the mid-infrared CO2 spec-

trum at room temperature as the gas abundance is increased. In Fig. 1 we see
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Table 1
Venus'Atmospheric Gases

CONS'l"1"1"UENT ABUNDANCE.

CP,FtflON O1.OX.1DE. 950,000 PPM.

I,,II:I._ERVAPOR. 20 -. 200 PPM.

SULPHUR. O]OX.lOE. tO0 -. 200 PFM

H¥OROCEN SULFIOF. 1. -- l.O PPM.

E.THIqNE. 0 ,..5".-, 5". I_P.M.

5ULPHUFI.I C. l::;IC] O

5ULPHER. "[1=1! OX] DE.
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the mid-infrared transmission spectrum of CO2 at a pressure of 10 tort and a

path length of 331 cm. In this case the mid=infrared is transparent except

for absorption in the region of the bending and the asymetric stretching

fundamental vibrations. In Figure 2 the pressure is increased by a

factor of 10, and two hot bands near 1000 cm-I and two combination bands

-I
near _ 1900 cm already begin to contribute to the gaseous opacity. In

Figure 3 the pressure is increased to 5 a%mospheres_nd the normally

infrared inactive Fermi diad near about 1550 cm-1 is seen to absorb. These

bands are made infrared active by forces between molecules; their intensity

is therefore proportional to the square of the density. The sharper line spec-

-I
trum centered about 1600 cm is due to uncancelled atmospheric water vapor.

In Figure 4 the gas pressure is increased to I0 atmospheres. At this

abundance the absorption intensity of the Fermi pressure-induced diad at 1350

-1 -I
cm has become greater than the hot bands centered at 1000 cm Finally in

Figure 5 we have increased the pressure to 20 atmospheres and the path

length to 30.7 meters. The transmission windows remaining at this abundance

will surely be closed in the lower reaches of the Venusian atmosphere where

the pressures are greater than 20 atmospheres and the temperatures greater than

295 K.

The opacity for all the bands is expected to grow toward the lower fre-

quencies as the temperature is increased. Nevertheless at appropriate altitudes

in the atmosphere, windows in the CO2 transmission will develop. It is likely

that SO2 can act as a "plug" for these windows. In the Tab]e 2 we indicate

the location for some of the absorption bands of SO2. The intensity for some

of these bands has been measured at room temperature, and on the basis of these

-I
measurements we can estimate the contribution of SO2 to the 1150 cm window

at saythe20atmospherelevel.InFigure6 weagainlookattheCO2

room temperature spectrum recorded at a total pressure of 20 atmospheres and a'
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Table 2
Location of Some Sulphur Dioxide

Absorption Bands

2.7.15 WI:;IVENUMSER5(CM-])

2500

2298

187B

1665

15B5

IB61

1151

I025

519
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-1
path length of 30.7 meters. We estimate the contribution of SO2 at 1150 cm

assuming an abundance of 100 ppm and absorptivity data of Chan and Tien. The

dotted line indicates the contribution of SO2 to the opacity if it alone were

the absorbing species in this frequency region. We see that SO2 effectively

"plugs up this hole" in the CO2 spectrum. The positions of other infrared

active SO2 bands are indicated by the horizontal lines. Some of these fall in

other window regions. On the basis of this we would expect that SO2 will make

significant contributions to the Venusian mid-infrared opacity at appropriate

altitudes. Water may also contribute significantly to the opacity in the 1600

-1
cm region of the spectrum at the higher altitudes.

Two of the molecules we have been talking about, namely CO2 and S02, have

significant opacity in the far-infrared. Figure 7 illustrates the far-

infrared absorption coefficient of C02. Notice that the absorption coeffi-

cient is proportional to the square of the pressure. Since this is a pressure-

induced feature we expect that the opacity will be influenced by the tempera-

ture. Figure 8 shows the far-infrared spectrum of S02 which was obtained

by Larkin et_tal.2 N2 also has a pressure-induced spectrum in this region, but

no data exist for the N2-C02 system. C02 has a rather large quadrupole

and the induced spectrum of N2 could therefore be significant.

On the basis of the laboratory data that we now have, we anticipate that

CO2, S02, and H20 will be the dominant contributors to the opacity in the mid-
-i

infrared. The far-infrared at frequencies less than 140 cm will be dominated

by SO2 and CO2. The importance of the N2-C02 pressure induced spectrum to this

region is unknown. At appropriate altitudes a window is expected to develop

-l
in the C02-S02 spectrum extending from about 200 to 400 em .

Here H20 and possibly HC_ could be significant sources of opacity.

In conclusion the mid- and far-infrared opacity of the Venusian atmosphere
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is dominated by CO2. SO2 probably makes important contributions. Both of

these molecules should be studied in the laboratory under conditions of

elevated temperature (760 _ and pressure (90 bar). The opacity of H20 is also

needed,but here account should be taken of the distribution with altitude,

and:somewhat less extreme conditions are probably necessary.

References

i. S. H. Chan and C. L. Tien, Journal of Heat Transfer 9_33,172 (1971).

2. R. J. Larkin, R. Lovejoy, P. Silvaggio, and R. Boese, J.Q.S.R.T.
(submitted).
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DISCUSSION

Question (A. Young): What temperature is used in obtaining yo,r absorption spectra?

Response (C. Chackerian): These spectra were obtained at room temperature,

and of course the Venusian surface temperature is

on the order of 760K. Ona should reaZly take the data and

somehow use them to predict the spectrum at higher temperatures or

get higher temperature data.

Comment (A. Young): I just want to point out that the laboratory conditions

for which you showed CO2 spectra are only appropriate for the

atmosphere above the cloud tops. On Venus, a thousand

times more CO2 lies underneath the cloud tops.

Comment (C. Chackerian): I would like to emphasize that we do not have

laboratory data for CO2 opacity which are appropriate to the low

atmosphere of Venus; nevertheless Pollack, Toon, and Boese, in

recently completed work, have reproduced closely the observed

surface temperature and lapse rate structure using estimates for

CO2 opacity in their greenhouse model.

Question (K. Fox): Have you considered the collision-induced absorption

induced in N2 by CO27

Response (C. Chackerian): No. I do not know if laboratory data exist for

the pressure-induced rotation-translation spectrum of N2. The

rotational constant of N2 is about five times greater than that of

CO2 so it is possible that this spectrum of N2 could contribute

to the opacity shortward of the CO2 rotational band. We know

from Pioneer Venus that N2 accounts for about three percent of the

atmosphere.
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THE SPECTROSCOPY OF VENUS

Reinhard Beer (JPL)

Venus has not been an especially active field for spectroscopy in the

past ten years for two possible reasons: first, the almost total domination

of the spectrum by CO2 (including almost every conceivable isotopic

combination) makes the search for other species very difficult, and the CO2

bands themselves have been deeply analyzed by L. D. Day Young and her

colleagues; second, the knowledge that no wavelengths short of the microwave

penetrate through the Venus cloud decks (or even very deeply into them) means

that, at best, UV, visible and IR remote sensing can investigate only the

middle and upper atmosphere, and even there quantitative analysis is vastly

complicated by the intense multiple scattering.

Since G. P. Kuiper's pioneering efforts in the early post-war years, the

infrared spectroscopy of Venus is largely the story of Pierre Connes and his

associates. They transformed the field by their complete resolution of the

hundreds of near-infrared CO and CO2 bands and the dramatic discovery of HC_

and HF that lead to the proposal by G. T. Sill and A. T. Young that H2SO 4 is a

major cloud constituent on Venus. Since that time, new spectra by Connes have

revealed oxygen airglow emissions from the Venus upper atmosphere, and just

* Actually, most of the orbiter experiments are still functioning properly.
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prior to the Pioneer Venus encounter, E. C. Barker, using the powerful Reticon

scanner at McDonald Observatory, discovered SO2 from its UV bands on the

extreme edge of the atmospheric window. A large number of problems were still

unsolved: Where is the H20? the HBr? the I-0 band of HC_ (30 times stronger

than the readily-detected 2-0 band)?

Following the Pioneer Venus mission* a vast amount of additional

information has come to light, but primarily concerning the deep atmosphere.

Although it now seems certain that concentrated (75-90%) H2SO 4 is a major

cloud constituent, it is equally certain that it is not the whole story: at

least one component of the tri- (or even quadri-) modal clouds seems to be

crystalline. The Pioneer Venus Orbiter Infrared Radiometer (OIR) has

confirmed the existence of significant thermal anomalies near the terminators

and a dramatic polar "collar" and dipole (the latter unfortunately invisible

from Earth). The terminator anomalies are certainly amenable to ground-based

investigation as is one of the major discoveries of the OIR: a strong 30-50

_m absorber locked to the sub-solar region of Venus. This broadband channel

was installed as an H20 detector, but it is not species-specific.

Spectroscopy of Venus near the sub-solar point is very difficult, entailing

observation when the planet is not only close to the Sun in the sky but also

at its smallest apparent size. Nevertheless, the challenge exists: is the

absorber the long-lost H20?

The spectrum of Venus is reasonably well-explored below 2.5 _m, which is

not to say that further work is unwarranted: spectra of high spectral and

spatial resolution coupled to extreme photometric precision might well be

sought for evidence of isotopic fractionation in the CO and CO2 bands as a
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measureof mixing efficiencyfollowingCO recombination. The regionbetween3

and 4 Wn has not been attackedwith high resolution,and the 5-10 _11region is

virtuallyunexplored. It is probablyin this latter window (on Venus, that

is) that new discoveriesremain to be made. It is here, for example,that the

DC£ fundamentallies. Since it has been hypothesizedthat Venus has suffered

major hydrogenloss, the D/H ratio shouldbe markedly enhancedover the

canonical5xi0-5 solar system value. In addition,recent spectraobtainedby

Beer and Ridgewayusing the Kitt Peak 4 m telescopeshow a substantial(and

unidentified)absorberin the 5 um region. Explorationat wavelengthsbetween

5.5 and 8 _m will require extra-atmosphericbases such as Space Telescope*.

Regrettably,none of the announcedVOIR instrumentswill addressany of these

problems,so it seems that whateverprogressis to be made within the

foreseeablefuturewill come from the concertedactivitiesof ground-based

observationand laboratoryspectroscopy.

* Near Venus maximum elongation. Most current space platforms (such as SIRTF)

may not point closer than 90° of the Sun, effectively eliminating the inner

solar system from further study.
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Discussion

Question (K. Fox): Can you see the 3-0 band of HC£?

Response: Not to my knowledge.

Question (U. Fink): Is the I-0 band lost in the CO2 absorption?

Response: No, its actually in the clear. It should be visible. There are

lines that aren't in the clear, and we have looked very diligentlY for them

and not seen a thing. I think that if you could get the resolution down to

considerably better than 0.I cm-I it could be done.

Comment (A. Young): The problem is that this band lies in the region where

sulphuric acid absorbs. The albedo is only a few percent there, and you don't

have enough power to work with.

Response: Clearly, there are reasons why it hasn't been done. I'm just

saying that here is a piece of spectroscopy waiting to be done. Another piece

of spectroscopy, while we're on the subject of the hydrogen halides: A long

long time ago Godfrey Sill said that there should be a measureable amount of

HBr in the atmosphere, and it should be spectroscopically detectable. It has

not been spectroscopically detected. It's a job for someone to do.

Comment (A. Young): One of the problems that arises, in connection with the

observed hazes, is that observed differences in limb-darkening have to be
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attributed to opacity by sulphuric acid. However, you cannot have high speed

winds at these altitudes, because the sulphuric acid takes something like a

couple of months to fall or coagulate or otherwise get cleared out of a region

where it exists. Also, there are apparent height differences of the order of

several kilometers between the day side and the night side° Either you have

to make these hazes entirely out of something other than sulphuric acid, that

can be both formed and destroyed on a very short time scale (less than a day),

and be absent during the night, or you have to do away with the 100 meters per

second winds at these altitudes.

Response: I think I00 meter per second winds are reasonably well established.

I don't think you can argue those away. There is now too much evidence for

them. Since we're supposed to be talking about spectroscopic problems, let me

just add one final comment. One of reasons why I think the spectroscopy of

Venus went into the doldrums, was that we had all these wonderful spectra but

could never interpret them. That's half the arg_ent we've been hearing

today - interpretations of the data - and one of the reasons was the lack of

just the kind of information I'm showing you. We didn't know where to look on

Venus to see what we wanted to see. Now we have more clues.

Comment (A. Young): Ed Barker has observed water at many different parts of

the planet on the same day. His data don't show the kind of distribution of

water that you attribute to your 50 micron absorber. He sees definite

thatching in the water distribution, but it's a very irregular kind of

thatching, not at all locked to the Sun. So I think that attributing the 50

micron absorption to water is inconsistent.
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Response: That may well be, but then you have to find something else

absorbing like hell at 50 microns. That might be an even worse problem.

Question: Wouldn't that have changed the altitude of the SO2 cloud also,

leaving some kind of .....(interrupted)

Response: Unfortunately, SO2 has almost no opacity at 50 microns, certainly

not for the abundances that have been reported.

Comment (M. Mumma): There is an important paper by Hanel and Kunde on

-I
observations in the 10 micron region taken with a resolution of .02 cm . It

very clearly shows sulphuric acid haze absorption, with many different bands

of CO2 .....(interrupted)

Response: I don't think anyone disbelieves for one moment that there's

sulphuric acid on Venus.

Comment (M. Mumma): I wasn't saying it for that reason. I don't disagree

either. But the fact is that modelling such spectroscopic data, including the

absorption due to haze, requires the complex index of refraction for sulphuric

acid droplets. I think its very pertinent to the purposes of this Workshop to

identify quantities like that which are needed for modelling.

Response: We have in fact tried to model the new 30-50 _m region with

sulphuric acid. No plausible amount will work without having pools of

sulphuric acid up there.
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SPECTROSCOPICMEASUREMENTSOF MARSANDVENUS

WITH HETERODYNETECHNIQUES

Albert Betz

Department of Physics
University of California

Berkeley, California 94720

Introduction

In the time provided, I'II try to illustrate the new types of

planetary observations made possible with the high spectral resolution

of heterodyne spectroscopy. The ability to observe individual line

profiles with arbitrarily high resolution and yet essentially perfect

frequency calibration opens up some new areas for spectroscopy in the

study of planetary atmospheres, but it also stiffens the requirements

for supporting laboratory measurements. Our applications of the

heterodyne technique to planetary spectroscopy have included measurements

of the exact shapes of CO2 absorption lines in Mars and Venus to deter-

mine the vertical pressure-temperature structure, accurate measurements

of absolute wind velocities in both the mesosphere and stratosphere

of Venus from the Doppler shifts of narrow CO2 lines_ and, more recently,

searches for minor molecular species of interest in modeling the

stratospheric photochemistry of Mars and Venus.

This work supported in parts by NASAGrant NGR05-O03-452.
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Instrument

To begin, let's review the basic characteristics of the spectrometer.

The schematic form illustrated in Figure 1 is identical to that of a micro_

wave spectral line receiver of the type commonly used in radio astronomy.

This spectrometer, designed for the 10 _m region, is operationally

equivalent but is implemented with the technology appropriate to the

infrared. The distinctive component difference is the use of a laser

as the local oscillator (LO) in the infrared receiver, The laser beam,

of course, does not actively probe a remote gas sample, as is normally

the case in laboratory laser spectroscopy, but rather it acts to provide

an extremely stable reference frequency against which the collected source

radiation is mixed, or heterodyned, and then amplified. The local oscil-

lator and signal beams are first combined by a NaCl beam combiner and

then are focussed on an infrared diode photomixer. The mixing process

between the monochromatic laser frequency and continuous band of signal

frequencies produces a band of difference frequencies in the radio frequency

region. The bandwidth of this difference frequency output, more commonly

called the intermediate frequency (IF) output, is determined by the speed

of response of the diode photomixer, and in our particular mixer is 1500 MHz

(.05 cm-l). Infrared frequencies within a band of 1500 MHz above or below

the laser frequency are consequently down converted into the radio fre-

quency region where they can be amplified, frequency converted a second

time in a RF mixer, and finally filtered into a number of spectral channels

before power detection. This "double-sideband" mixing of the infrared

frequencies gives us a total spectral window of 0.i cm-1 centered around

the accurately known laser frequency. The laser used in our observations

is a carbon dioxide gas laser capable of oscillating on any one of a
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hundred discrete rotational-vibrational transitions in the 10 _m region.

Various isotopic variants of CO2 may be used in the laser to further

extend the number of LO frequencies to _I000. Since the lasing frequen-

cies of CO2 have been measured in various laboratories to better than I

part in 108 absolute accuracy, and are resettable to better than 1 part i

in 1010, the spectrometer has an essentially self-calibrated frequency

scale. The burden of stability is placed on the laser for instrumental

frequency accuracy; and since the laser frequency is in turn dependent

on a resonant molecular process, extremely accurate frequency calibration

is easily achieved. (The importance of such accuracy will become apparent

from the observations mentioned later). Because of the large ratio between

infrared and radio frequencies, and the inherent stability of the laser,

the frequencies of the filter elements at the right of Figure I need only

be measured to _I part in 103 to get an overall spectrometer accuracy

of I part in 108. By the way, we prefer to use 5 MHzchannels (.00016 cm-I) I
i

for planetary observations rather than the 20 MHzwidths illustrated.

The wider channels are more appropriate for spectral lines in circumstellar

gas around late type stars. The 5 MHz channels are especially necessary

for shape measurements of thermally-broadened emission line profiles

from planetary mesospheres. Because of changes of the Doppler shift

from the Earth's rotation (_2 MHz/hr), a second tunable oscillator is

provided to track out these predictable shifts and keep the line centered

in the filter bank.
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Sensitivity.

The big question is whether a spectrometer with all this resolution

can achieve an adequate signal to noise ratio on a planet in a reasonable

length of time. What is the sensitivity? The signal level, of course,

is proportional to the continuum temperature and has for the most part

a blackbody distribution in frequency. The noise level is primarily

determined by the shot noise of the laser power on the photomixer. How-

ever, the electric field strength of the laser power in effect amplifies

those infrared signal frequencies which are down-converted into the

radio region. For sufficiently strong laser powers (practically about

0.5 to 1.0 mW), the resulting signal-to-noise ratio per channel is inde-

pendent of laser power and is proportional to (Bt) ½ (eh_/kT-1) "I, where

B is the channel width and t the integration time. Figure 2 illustrates

the dependence of the S/N ratio on frequency for the continuum temperatures

of various planets. For this calculation, a full bandwidth of 1500 MHz

and an integration time of I second is assumed, as well as a 100%quantum

efficiency for the photomixer, In practice, mixers with _35% quantum efficiency

are used and so the actual S/N ratios are several times worse than depicted.

Also, the filter widths for spectroscopy are only 5 MHzwide, and so

integration times of 300 seconds are needed to achieve the indicated S/N

ratios. In any event, the curves show that the continuum radiation can

easily be detected at 10 _m for planets with temperatures >200 K; conse-

quently, from a detectability standpoint, Mars, Venus, and Mercury are

suitable sources for absorption line spectroscopy. At longer wavelengths,

the cooler outer planets become detectable. The 135 K continuum of

Jupiter would easily be seen at 20 _m whereas it is just barely detectable

at I0 _m, as our measurements have confirmed. Of course, any process
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which producesline emissionstrongerthan these continuumtemperatures

would help in line observationsof the cooler planetsat the shorter

wavelengths. For example,both ethaneand acetylenehave been seen with

non-heterodynetechniquesto be in strongconstant emissionin Jupiter.

Given that from a sensitivityviewpointwe are confinedto Mars

and Venus for 10 _m absorptionline spectroscopy,it's time to decide

on the particularmolecularlines to,observe. The discretefrequency

nature of the CO2 laser restrictsour spectralcoverage to _0.i cm"I

windows centeredon the laser frequencies. For these two planets,how-

ever, the llne choice is trivial,as CO2 is in both cases the most

abundant species. Furthermore,the terrestrialatmosphereis relatively

transparentaround the 10 um CO2 lines; and the frequencycalibration

necessaryfor Doppler-velocitymeasurementsis guaranteed,since the

planetaryCO2 lines involveexactlythe same energy levelsas those

responsiblefor the laser emission (Fig. 3). Of course,other more

excitedbands of CO2 in the 10 _m region and also transitionsof molecules

such as NH3, C2H4, and OCS have frequencycoincidenceswith laser lines

and may also be of interestfor planetaryspectroscopy.
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Applications

As an example of a well-resolved line profile, Figure 4 shows the

13C1602 in Mars. Each channel is 5 MHzand theP(20) absorption line of

effective integration time is 32 minutes. This line is part of data

taken to model the vertical pressure-temperature structure of the atmos-

phere. A simple 4-parameter model was used to fit simultaneously a

13C1602 and 12C1602 absorption line profiles [1]. The wingvariety of

12C1602 line in Figure 5 shows the effect of varying theof the P(16)

surface pressure parameter in this model. Each of the other three para-

meters: ground surface temperature, atmospheric surface temperature,

and lapse rate, has its own effect on some part of the line profile.

The integration time for Figure 5 was 40 minutes. Before attempting

pressure estimates from line-shape modeling, it's of course necessary

to have good lab data on the CO2 self-broadening coefficient as a function

of temperature. Fortunately the CO2 laser bands are popular with labora-

tory spectroscopists, and such data is available. Figure 5 also shows

two other interesting features. The absorption dip on the right is the

P(23) transition of 12C160180 which occurs 1680 MHz lower than the 12C1602

P(16) line. The P(23) line is in the opposite infrared sideband from

the P(16), and shows the overlap blending problem which can sometimes

occur with a double sideband heterodyne receiver. At the left of Figure

5, the central core of the P(16) line is seen to be in emission. The

width of this Gaussian-shaped re-emission component is only 35 MHzand

yet is easily resolved with the heterodyne spectrometer. The line width

of the emission component implies a gas kinetic temperature of 170 K at

the altitude of formation, and yet the emission intensity is much stronger

than even that from a blackbody at this temperature and suggests a
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nonthermalexc,itati6nmechanism. The detectionof similarand stronger

re-emissioncores in 12C1602absorptionlines on Venus, as shown in Figure

6, strengthensthe interpretationthat the nonthlerma_excitationcomes:

from direct solar pumpingof the short wavelengthCO2 bands such as

3 _3 and 5 _3' with subsequentcollisionalequipartitionof the _3 quanta

[2] [3]. Direct radiative de,excitation via,4.3 _m photons to t.he g_ound

state is trapped, leading to the observed 10 _m emission from the _3 level.

The emitting CO2 lies high in the mesospheres of the planets (75 km on

Mars, 120 km on Venus), where CO2 densities are _3 x 1013 cm-3 and colli-

sional effects cannot de-e_cite the_ 3 level and therefore quench the lO_m

"fluorescence." Figure 6 also shows the appearance of the P(16) re-emission

core for three different positions on Venus at elongation. The top two

lines required 16 minutes of integration time; the bottom one took 32

minutes. Sunlight illuminates the disc from the left in this diagram

and is strongest at position I, close to the subsolar point on the planet.

The strength of emission is clearly seen to be proportional to the incident

solar intensity. No emission is seen from the dark half of the planet

at the right; only the relatively flat residual continuum level at the

center of the very broad 12C1602 absorption line is detected. On Venus,

the column density of carbon dioxide is so high that absorption lines of

12C1602 are "saturation broadened" to be much wider than our photomixer

bandwidth. The linewidths of the Venus emission lines indicate that the

kinetic temperature is close to 200 K at the 120 km altitude of line

formation, thus giving us our first thermometer for this previously unsam_

pled altitude. The complete profiles of weaker lines of 13C1602 can readily

be seen in absorption, however. For Venus, the Doppler-shifts of both the

mesospheric 12C1602 emission components (120 km) and 13C1602 stratospheric
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absorption lines (80 km altitude) have been monitored for several years

to get the averaqe wind patterns at these altitudes [4]. The measurement

accuracies are primarily limited by the signal-to-noise ratio on line

detection; systematic errors associated with the spectrometer calibration

are small. Doppler-velocity accuracies of 2 m/sec on 12C1602 emission

lines and about 15 m/sec on 13C1602 absorption lines have been achieved.

I should stress that the velocities actually measured are absolute

line-of-sight wind velocities at specific positions on the planet and

are not differential velocities such as from limb-to-limb or center-to-limb.

The line-of-sight velocities from different locations on Venus are measured

independently.

In the stratosphere the 13C1602 absorption lines show us a retrograde

zonal circulation with an average surface velocity of 90 m/sec, but with

real variations up to ± 40 m/sec about this average. (The variations do

not appear to fit any simple 4 or 5 day periodicity.) The western eQua-

torial limb is seen to be approaching at 90 m/sec,on the average,while

the eastern limb is receding at this value.

12C1602 emission lines formed at altitudes aroundIn the mesosphere

120 km show us that the circulation there is essentially a symmetric

subsolar to antisolar flow, with the velocity starting near zero at the

subsolar region and accelerating to a velocity near 130 m/sec as the flow

crosses the terminator. At times of elongation the subsolar region of

Venus is at the limb and line-of-sight velocities near zero are observed,

as reported in our initial publication on the emission lines [2]. However,

at subsequent superior and inferior conjunctions, high velocities of

recession and approach, respectively, are seen at the limbs close to

the terminator. Especially in the weeks before and after inferior con-
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junction,when a small spot exactlyon the limb can be monitored,the

accelerationof the flow toward the terminatorcan be seen as the phase

angle of the planet varies. Additionalobservationsat latitudesup to

± 500 at the limb show that the flow is reasonablysymmetricabout the

subsolar-antisolaraxis. At the poles, however,deviationsfrom a per-

fect symmetryare noted.

As illustratedin Figure 7, these resultsindicatethat a fast

retrograde rotation of the atmosphere extends at least as high as 85 km

altitude, but that the circulation breaks down into a reasonably symmetric

subsolar to antisolar flow before altitudes of 120 km are reached. In

estimating the 85 km altitude of line formation for the 13C1602 absorption

lines, it is important that only the central core of 200 MHz be used for

velocity measurements. The wings of the entire absorption profile are many

times wider, and their inclusion would produce only a velocity average for

a broad altitude range below 85 km. In addition it is important to confine

the measurement to a narrow altitude range so that the necessary corrections

for pressure shifts in line frequencies may be properly applied [4].

The magnitude of these pressure shifts in CO2 can easily be measured with

CO2 laser techniques in the laboratory.

Itwould be desirable to probe an intermediate altitude between 85

and 120 km to get a better idea of where the circulation changes. To do

this we may need to look at a high-J 12C1602 line which does not have the

nonthermal emiSsiOn core. Because of the 89:1 ratio between 12C and 13C,

12C1602absorption lines of will become optically thick before those of

13C1602 and thus will probe higher altitudes. Since CO2 in the mesosphere

is at _200 K, a high-J line will not show the nonthermal emission that

would fill in the absorption at line center from 12C1602 at _100 km
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altitude. For wind measurements,it may also be possibleto use another

molecule such as OCS, which has strong fundamentalabsorptionbands

around 9.6 and 11.6 um. Recent laboratoryspectroscopyby an NBS group

has determinedOCS line frequenciesto a few MHz absoluteaccuracyand

-indicated a numberof frequencycoincidencesbetweenOCS absorptionand

CO2 laser lines. With our own spectrometerwe have remeasureda few

OCS - CO2 frequencydifferencesaccurateto about 100 kHz, which trans-

lates to _1 m/sec Doppler-velocityuncertainty. There is, of course,no

guaranteethat OCS lines in Venus will be strong enoughfor Doppler-velocity

measurementsor even detectableat all. On the other hand, the observations

are not difficult,andcertainly an attemptshould be made.
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DISCUSSION

Question (A. Young): How large must the OCSmixing ratio be for you

to detect it?

Response: The detection limit depends somewhat on where the

line is formed relative to the I0 um continuum.

For gas in the stratosphere above 70 km, I would

estimate a practical limit of 10-7 , if the OCSis

uniformly mixed.

Question (A. Young): There is also a problem of the vertical distribution

of the OCS, because it's destroyed very rapidly by

solar UV light.

ResPonse: Yes. Since we are most sensitive to narrow lines

and hence those formed high up, dissociation may

prevent the detection of OCSin the stratosphere.

In that case we would try a high-J 12C1602 line

to probe the upper atmosphere around 100 km.
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INFRARED ABSORPTION BY OH-CONTAINING COMPOUNDS

John J. Hillman (NASA/GSFC)

ABSTRACT

A review of the current state of spectroscopy of the relevant OH

compounds as it applies to the inner planets is presented. Critical problems

will be addressed and a projection of the future spectroscopic needs will be

made.

INTRODUCTION

Carbon dioxide accounts for all but a few percent of the Martian and

Cytherean atmospheres(I,2). Incident solar flux at wavelengths less than about

210 nm provides for photodissociation of CO2 into CO + O. In these

atmospheres, it is difficult to reconcile the relatively low values observed

for the abundances of CO and 02 (the direct recombination of CO and 0 into CO2

is inefficient). This apparent contradiction is relaxed if HOx catalytic
cycles are active(I) in both atmospheres, in which case the resultant

atmospheric stability is due to the catalytic effects of very dilute reactive

(3) (See Table I.) At the present time,
species, in particular, HO2 and H202 .

we have no ground-truth observational data for HO2 or H20 predicted by the
various photochemical models for the Venus and Mars atmospheres. We do have

recent data(4' 5) for both of these species in the Earth's stratosphere.

In this talk I will discuss the current state of spectroscopy of the

species H20, H202, and HO2. The major thrust will be on their
vibration-rotation transitions, although I will say a few words about the pure

rotational transitions in the vibrational ground state of H20, since they

contribute to opacity in the middle infrared region. I will address critical

problem areas and summarize future directions suggested for experimental and

theoretical efforts.
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Table I

C02 STOICHIOMETRY

leo]/
0 CO2 + h_ . CO + O; R _ [02] = 2
MARS

o R _ 1/2 -- NEED EXTRA SOURCE OF 02, PERHAPS

H20 + h_ . OH + H

OH + HO2 . H20 + 02

VENUS

o > 50 -- WHERE IS 02 ? TIED UP IN H20 ?

VENUS AND MARS -- HO CHEMISTRY
..... X

0 CO2 + hv . CO + 0

0 REFORM CO2 FROM CO & 0

CO + OH . CO2 + H

(CO + 0 . CO2, TOO SLOW)

o CATALYSIS COMPLETED (i.e., OH REFORMED)

i) H + 02 + M . HO2 + M

HO2 + 0 . OH + 02

ii) H + 02 + M . HO2 + M

2HO2 + 0 . H202 + 02

H202 + h_ + 20H

o MARS MAIN SOURCE OF ODD HYDROGEN

0 PHOTOLYSIS OF H20 .

0 H2, H20 + O(ID) .
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Table I (Continued)

VENUS MAIN SOURCE OF ODD HYDROGEN

o HCI + h9 . H + Cl

net 2H

CI + H2 . HCI + H

BOTH SCHEMES REQUIRE LARGE SOURCES OF H2

o H + HO2 . H2 + 02 (MAJOR H2 SOURCE)
o VENUS - ADDITIONAL SOURCE MAY BE

CO + H20 . CO2 + H2 (DEEP ATMOSPHERE)

0 EFFICIENCY OF CATALYTIC SCHEMES DEPENDSON ABUNDANCEOF

RADICALSWHICH IN TURN DEPENDON SOURCESAND ON RADICAL

REMOVALPROCESSES

o MAIN HOx SCAVENGING REACTIONS

o OH + HO2 . H20 + 02

o H + HO2 . H2 + 02

. H20 + 0

o OH + H202 . H20 + HO2 (LESSER EXTENT)

o ADDITIONALLY, FOR VENUS

OH + HCI . H20 + CI

C1 + HO2 . HCI + 02

297



SPECIES-SPECIFIC CONSIDERATIONS

Water is the most studied molecule in the HO x family, and has three

infrared-active fundamentals. Dr. Chackerian discussed the role of the 2

band (1595cm -I) as a potential major contributor to opacity in this spectral

region and considered its efficiency as a thermal trap (Venusian Greenhouse

effect). A summary of the state of spectral knowledge is given in Table II.

Although line positions and absolute line strengths are in relatively good

shape, our understanding of the line broadening process is weak.

Historically, the calculation of line widths of H20 broadened by N2 was
(6)

carried out within the framework of a modified Anderson theory in 1959.

Subsequent to that work, a discrepancy was observed in 1972 revealing that the

measured widths were much less than calculated (7). This discrepancy

increased with the angular momentum quantum number, varying from 40 percent

narrower to a factor of 4 narrower than predicated. In 1978, a quantum

many-body theory (8) was applied to this problem. (This work will be included

on the Rothman, AFGL tape(9).) In the low J region up to about J=7, both the

Anderson(10)(ATC) model and the quantum Fourier transform (8) (QFT) model are

in generally good agreement with experiment (where experiments exist). The

ATC model is still able to use a minimum impact parameter of 3.22_: the

kinetic theory result (6). (This result is weighted to low J -- occupied

states-- and therefore, provides little information on the appropriate impact

parameter for high J transitions.) In the intermediate J region, 8 < J < 13,

both the ATC and QFT theories provide reasonable agreement with experiment, if

the minimum impact parameter is reduced to ,I'1.5_ in the ATC theory. Above

J=13 the ATC half-width saturates at about 0.01 cm-I arm -I independent of J,

and the QFT results are also somewhat less than acceptable. It is now

generally agreed that any calculation which treats the interaction as a sum of

a short- (classical hard sphere) and a long-range potential will not provide

an explanation of the narrow lines at high J for the H20:N 2 system. Table III

summarizes our current understanding of this line broadening problem.

Often postulated but seldom observed, the hydroperoxyl radical, HO2, is a

molecule that has not been studied extensively by spectroscopists. Table IV

summarizes the state of spectral knowledge. Of the three infrared-active
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Table II

SPECIFICSPECIES-- H2_

o MOST STUDIED MOLECULE IN THE HOx FAMILY

o ACTIVE IR FUNDAMENTALS (THREE)

BAND POS (cm-I) RES (10-3 cm-I) BAND (cm-2 atm -I @ 296K)

vI 3652 5 10.2

v2 1595 5 308.

v3 3756 5 172.

o ALL OF THE FUNDAMENTALS AND MANY OVERTONES AND COMBINATION

BANDS HAVE BEEN STUDIED IN TERMS OF LINE POSITION,

STRENGTHS, AND ASSIGNMENTS

o INDIVIDUAL LINE STRENGTHS HAVE BEEN MEASURED AND CALCULATED

-- GENERALLY IN GOOD SHAPE _ 10% to 15% ABSOLUTE

o PURE ROTATIONAL SPECTRUM EXTENDS FROM MICROWAVE TO ABOVE
-I

1000 cm -- EXTENSIVELY STUDIED IN TERMS OF LINE

POSITIONS, STRENGTHS, AND ASSIGNMENTS

o BROADENING -- GENERALLY IN POOR SHAPE BOTH EXPERIMENTALLY

AND THEORETICALLY
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Table III

LINEBROADENINGIN H.20-- STATUS

O H20-N2 LINE WIDTHS CALCULATED WITHIN FRAMEWORK
OF ATC THEORY - (1959)

o TDL SPECTROSCOPY REVEALS WIDTHS 2X TO 4X NARROWER

THAN CALCULATED - (I972)

o QUANTUM MANY-BODY THEORY APPLIED - (1978)

o CURRENT STATUS:

LOW J (J . 7) - ATC/QFT GENERALLY GOOD - QFT _ 5%

SMALLER THAN ATC (b . : 3.2A)
mln

INTERMEDIATE J (8 e J _ 13) - GENERALLY GOOD IF

bmin = 1.5A IN ATC

HIGH J -ATC SATURATES AT ABOUT 0.010 cm-I/atm

(bin _ 0)

o CONSENSUS -- NO THEORY WHICH TREATS THE INTERACTION AS THE

SUM OF A SHORT- AND LONG-RANGE PART CAN PROVIDE AN

UNDERSTANDING FOR THE NARROW LINES AT HIGH J

o HIGH J LINES STILL IN NEED OF THEORETICAL UNDERSTANDING
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TableIV

SPECIFIC SPECIES-- H02

o ACTIVE IR FUNDAMENTALS (THREE)

BAND POS (era -1) RES (cm -1) BAND STR (cm -2 atm -1 @ 296K)

_I 3410 8 274.

'°2 1390 8 216.

_3 1097 LMR - 188.
DOPPLER LIMITED

o BAND STRENGTHS ARE THEORETICAL -NO EXPERIMENTAL
DETERMINATION HAS BEEN MADE

o v3 POSITIONS AND QUANTUM NUMBER ASSIGNMENTS IN GOOD SHAPE

o NO LINE STRENGTH DATA

o NO BROADENING DATA
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fundamentals, only _3 (0-0 stretch) has been studied with Doppler-limited

resolution (11). The other fundamentals have been observed either in matrix

isolation (12) or by gas-phase molecular modulation (13) at relatively low

resolution• The band strengths reported in Table IV were taken from the most

recent calculations (14) These calculations were based on an assumed total

dipole moment of 1.9 +_ 0.I Debye and with a specific orientation of the dipole

moment relative to the O-H bond angle which has subsequently been

experimentally determined to be in error by about a factor of 2 (15). In

general, the _3 line positions and quantum level assignments are held in high
confidence• Since these lines were determined by laser magnetic resonance, it

would be useful to make a zero-field confirmation of these absolute line

positions. I am aware of no line strength nor broadening data.

Since hydrogen peroxide is the sink molecule for the HOx family it is

expected to be in relatively high concentration in the atmospheres of Venus

and Mars. Theoretically, it is a very interesting species since it is the

simplest molecule in which there is an active hindered internal rotation (16).

A summary of our current spectroscopic knowledge is presented in Table V.

There are six fundamentals; five vibrational and v 4, the internal rotation.

The band strength estimates (guesses) were obtained from band-contour

integration of literature spectra. This technique, although not very

accurate, leads to the conclusion that _6 is the strongest fundamental in the

infrared. To my knowledge, there are no line strength or pressure broadening

data available.

Table VI is a summary of species-specific recommendations based upon

present data needs. It is by no means meant to be all-inclusive, and it is

not the first time that you have seen these requests today. Specifically, for

H20 , measurements of intensities of high J transitions within _2 are needed.

The line broadening in CO2 and N2, and temperature dependences must be

determined• Pressure shift data are required, even at low J. There is a

dramatic difference between the ATC and QFT predictions• Even the sign of the

shift tends to differ, so these data are urgently needed• High J,

N2-broadening data will be used to check the range of validity of the models.

Specific reco_endations for H202 include an accurate quantum mechanical

treatment of v 6. We also need experimental data on line strengths. Band
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Table V

SPECIFIC SPECIES-- H202

o SIMPLEST MOLECULE WITH HINDERED INTERNAL ROTATION

o ACTIVE IR FUNDAMENTALS (SIX) •

BAND POS (cm-I) RES (cm-I) BAND STR (cm-2 atm-I @ 300K

vI 3607.8 0.2 ---
3587.3

v2 1388 --- (Not observed experimentally)

v3 875 4 O.17 BCI

_4 317 0.3 ---

v5 3610.7 0.2 20.8 BCI (v5 and vI)

v6 1266 0.02, TDL 37.7 BCI

o ONLY THE FUNDAMENTALS Vl, v4, v5, and v6 HAVE BEEN STUDIED IN
ANY DETAIL. SOME COMBINATIONS HAVE BEEN STUDIED UNDER

HIGH RESOLUTION.

o NO LINE STRENGTH DATA

o NO BROADENING DATA
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Table VI

SPECIFIC RECOMMENDATIONS

MR0

o MEASUREMENT OF INTENSITIES OF HIGH-J TRANSITIONS WITHIN _2

ARE NEEDED (LONG PATH LENGTHS)

o CO2 - BROADENING AND TEMPERATURE DEPENDENCE MUST BE

DETERMINED (H2 AND He- JUPITER)

o PRESSURE-SHIFT DATA (EVEN AT LOW J)

o N2 - BROADENING AT HIGH J

H_20_2

o QUANTUM NUMBER ASSIGNMENT IN _6

o EXPERIMENTAL LINE STRENGTHS

o BAND STRENGTH DATA FROM EXPERIMENT AND AB-INITIO DIPOLE MOMENT

o CO2 - BROADENING AND TEMPERATURE DEPENDENCE

o BAND STRENGTHS EXPERIMENTALLY

o LINE STRENGTHS IN v2 --FIRST STEP SHOULD BE RIGID ROTOR

o CO2 - BROADENING AND TEMPERATURE DEPENDENCE

i
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strength determinations from experiments and from ab initio dipole moment

derivatives are required. Finally under H202, C02-pressure-broadening data

and temperature dependence are needed. For H02, my list is not quite so

large, but in light of the high reactivity of the species, it is a very

ambitious undertaking. We need experimental band strength determinations, to

check the most recent calculations in the literature (14). An attempt should

be made to calculate line strengths in _2 using the available ab initio band

strength. Perhaps, a rigid-rotor, simple harmonic oscillator calculation

(F-factor set equal to one). The effects of spin-rotation must be taken into

account in this calculation. Also, and finally, we need C02-broadening and
temperature dependence data.

In conclusion, in this paper I have tried to review the current state of

our spectroscopic knowledge of the relevant OHx compounds (H20, H02, H202)
with emphasis on the available high resolution data. In any review of the

current literature, one is confronted with the reality that, at best, you are

a year behind present day research. Ehen possible, I have included tentative

results based on unpublished, submitted, or work in progress. I have

addressed some of the critical problem areas and summarized the future

directions for experimental and theoretical efforts.
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Discussion

Comment (C. Chakerian): I would like to grant one of your wishes, the

intensitiesof the _6 band of H202 at temperaturesranging from ambientdown
to 190Khave been measured at NASA,Ames.

Response (J. Hillman): Have these data been published?

Comment (C. Chakerian): No, the data were obtained about one month ago.

Response (J. Hillman): I talked with Dr. Bonomo about 3 months ago and

he told me of these plans, but they were having some equipment problems at the

time.

Comment (M. Mumma): I'd like to make a comment directed to Prof. W.

Person and any other band intensity theorists. The experimental groups have a

very hard time measuring densities for radicals like H02, and so even a factor
of 2 accuracy in an ab initio integrated band strength is extremely useful,

because it's often better than the accuracy with which you can determine the

radical density.

Response (W. Person): This is exactly our approach, kb have to use ab

initio HO2 dipole moment derivatives right now. But that's a step in the

right direction. It's absolutely necessary.

Question (W. B. Olson): In hydrogen peroxide, you showed numbers for the

band centers of _I through _6" What is your definition of those centers?

Answer (J. Hillman): These numbers were simply ball-park figures,

telling one approximately where this species absorbs when activated in that

particular fundamental mode. These numbers are only approximate. For
-I

example, for u6, one of the most studied bands, I listed 1266 cm for that
band, value dated from circa 1948.

Comment (J. Gelfand): The discussion about the comparison of the two

theoretical approaches to the pressure broadening brings out something I said

in my talk. I find in talking to people that they tend to discuss these
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things in terms of which theory is right, when in reality, in a particular

case, they may just have a lousy potential. They piece together the potential

functions from different measurements; the repulsive part of the potential

is obtained from one measurement, the attractive part of the potential from

another, and similarly for the intermediate region. It may well be that this

is as important a contributor to the errors that you discussed as the theory

itself.

Response (J. Hillman): Yes, this is exactly what I meant by one

statement I made earlier. "No theory which treats the interaction potential

as a sum of a short-range and long-range term (or any kind of potential

characterization you want to make) will provide a basic theoretical

understanding of the narrow lines at high-J." The characterization of the

potential, not the collision model, may indeed be a major source of error.
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Infrared Absorption of Sulfur-Bearing Compounds

Arthur Maki (NBS)

INTRODUCTION

The sulfur-bearing molecules of most interest in studies of planetary

atmospheres are the simple, stable hydrides and oxides, H2S, H2SO4, SO2,

and SO3, and the carbon-containing species OCS and CS2. This paper will

deal primarily with those molecules.

A number of less stable molecules, such as CS, SO, HSO, H2SO, etc.,

may well participate in the chemistry of planetary atmospheres, but their

abundance is probably too low to be observed in the near future.

For interpreting spectroscopic observations, the properties that must

be known are:

i) transition frequencies

ii) transition intensities

iii) transition assignments in terms of quantum number assignments and

lower-state energy levels

iv) pressure broadening constants (including their temperature

dependence)

These are rather general spectroscopic requirements which (if

completely known for all molecules) would suffice for the interpretation

of any spectroscopic observations, although specific observational data

may require specific ensembles of these properties. For example, a

heterodyne laser radiometer may require a single specific transition
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frequency,intensity,and lower-stateenergy (to calculatethe intensity

over a range of temperatures). It may also requirethe pressure

broadeningparametersfor the specifictransitionover a broad range of

temperatureand broadeningpressuresfor a specificmixture of broadening

gases. On the other hand, a low-resolutionFourierTransformSpectrometer

may requireband shape and band intensitydata for a specifictemperature

or range of temperatures. Such data can be calculatedas a sum of

transitionswhose propertiesare known.

Of the four properties listed above, pressure broadening constants

are the least tmderstood and least well measured. The few molecules that

do have pressure broadening data usually have data only for

self-broadening and nitrogen broadening, and the data are usually taken

only at room temperature.

For the remainder of this paper I shall consider each of the

important molecules listed above and discuss briefly what spectroscopic

data are available. Then I will summarize what I believe to be the most

urgent future measurement needs for each molecular species. The end of

the paper contains a bibliography of papers describing spectroscopic

measurements on some sulfur-containing molecules. This bibliography is

not complete, but may be a helpful starting place for anyone interested in

the spectroscopy of these molecules.
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PRESE_TrSTATUS OF SPECTROSCOPIC DATA

OCS

Carbonyl Sulfide (OCS) is the spectrosoopist's favorite molecule. I

believe that more data are available on OCS than on any other sulfur

containing molecule.

The frequencies of the strongest OCS lines are very well kno_. ',/e

have recently measured the _, and 2v2 bands by laser heterodyne
I

techniques and Joe Sattler (Harry Diamond Laboratories, Washington, DC)

2
has verified and extended the 2_2 measurements. Guelaschvili has

measured the v3 fundamental bands very precisely. In addition, Dr. Andre

Fayt (University of Louvaen, Belgium) has calculated a great many OCS

absorption lines from data in _he literature, and we have our own

compilation of over 3000 OCS absorption lines for the bands Ul, 2_2, Ul +

2v2, 2Vl, 4v2, and v3.

Our knowledge of the intensities for OCS is less satisfactory. Quite

a bit of intensity information is available, but the data are probably not

accurate to better than +-20%, so there is room for improvement. Most of

the intensity information is in the form of integrated band intensities,

but OCS is _ll-behaved and line intensities can be calculated from band

intensities without great errors, if high rotational quantum nunbers are

avoided.

A number of papers have reported pressure broadening "neasurements on J

OCS, mostly in the microwave region. Some are accurate to +-I_. So:_ed_ta

are available on the temperature dependence of pressure broadening. But

there are very few really accurate data on infrared transitions over a
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range of rotational transitions and temperatures. There is also very

little information on the pressure broadening of OCS by CO2 or other

broadening agents that are mainly of interest for applications involving

planetary atmospheres.

For both OCS and SO2 many data are available frommicrowave

measurements. This means that the pure rotational spectrum (far-infrared

and microwave spectrum) is well characterized. All but the most recent

microwave data are given in a monograph on microwave spectral tables

compiledby FrankLovas3.

Although many infrared data on SO2 are available, very few high

resolution (i.e. Doppler-limited) measurements have been made on SO2.

Thus, there is a need for new measurements, particularly for

Doppler-limited measurements of frequencies and intensities. Measured

line intensities would be valuable for comparison with line intensities

derived (with the help of theoretical models) from band intensities.

Surprisingly few data are available on H2S. The quite extensive•work

done many years ago has not been followed up by modern measurements taking

advantage of newer, more powerful spectroscopic technologies. This is a

serious deficiency since H2S is one of the molecules for which llne

intensities cannot be readily deduced from band intensities.

As is well known, in H2S there is a great disparity between the

R-branch intensities and the P-branch intensities. H2S is also notorious

for the weakness of the infrared absorption in all its bands, which makes
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it difficult to observe in the infrared unless high concentrations are

present. There are very few intensity measurements and I could not find

any pressure broadening measurements in the literature. Much work needs

to be done on this molecule.

H2SO4

So far, no one has been able to obtain a resolved infrared spectrum

of sulfuric acid (H2S04), even with the use of tunable diode lasers. This

difficulty is not surprising. In order to get enough vapor pressure to

observe H2S04, it is necessary to heat it to about 200°C. At such high

temperatures such a heavy molecule will have a very high density of

absorption lines. Apparently the high density of overlapping lines has

prevented resolving the individual transitions for H2SO4 even though

Doppler-limlted-resolution measurements have been made. For application

to planetary atmospheres it may be necessary to simply measure the

unresolved band shapes and intensities over the range of temperatures and

pressures that are of interest.

Microwave and far-infrared measurements are in much better shape for

H2SO4 since the Doppler widths are much smaller at lower frequencies. The

microwave spectrum of H2SO4 has recently been measured by Kuczkowski et

al__4

s_%
Sulfur trioxide (SO3) is a planar symmetric top molecule which has no

intrinsic dipole moment. It has no microwave or far-lnfrared spectrum,

apart from possible pressure-induced transitions. Very little

high-resolution spectroscopy has been done on it. The only spectrum

measured with sufficient resolution to allow a detailed analysis of the

315



line structure was that made by Kaldor and Maki.5 That work was done

using a high resolution grating instrument. Considerable improvement

could be obtained by taking advantage of the Doppler-limited resolution

now available.

The intensity of the strongest band of SO3 (at 1395 cm-I) has been

measured by Majkowski et al.6, but no other intensity measurements seem to

have been published.

No pressure broadening data are available for SO3.

c._As2

Like SO3, CS2 has no dipole moment and consequently it has no

microwave or far-infrared spectrum. In the infrared, the CS2 spectrum has

been extensively studied with the aim of understanding the energy levels

and the frequencies of the infrared spectrum. The band intensities of the

two infrared fundamentals have been measured, but very little else. No

pressure broadening measurements have been made on CS2.

Other Molecules

Of the other, less stable, molecules that might be of interest for

planetary atmospheric studies, the most information is available for CS

and SO. However, only absorption frequency and energy level information

is available for these molecules. Microwave and far-infrared frequency

and intensity data are available for CS, SO, and HSO, but no other

intensity data are available. No pressure broadening measurements have

been made.
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Future Needs

OCS - The frequencies of the strongest and most important bands are

adequately known, but more intensity measurements should be made,

-I
especially in the 2100 cm region. Pressure-broadening measurements

should also be made with 02, N2, and other atmospheric gases as the

broadening agents.

SO2 -The frequencies of the fundamental bands of SO2 are fairly well

known, so not much is needed in the way of new frequency measurements.

More intensities are needed especially line intensities. A few more

pressure broadening measurements would be desirable, particularly pressure

broadening versus temperature. The weaker bands have not been very

thoroughly studied, except v1+v3, so a lot more work is needed if the

weaker bands are of interest.

H2S- Much more needs to be done on H2S. All the bands shouldbe

measured. For the fundamentalbands, these re-measurementsshouldbe

at Doppler-limitedresolution. Since line intensitiescan't be deduced

from band intensitiesfor H2S, individualline intensitiesshouldbe

measured. Pressurebroadeningmeasurementsare also needed and the

effectsof collisionalnarrowingneed to be taken into account,since such

narrowing will be important for H2S.

H2SO4 -Present indications are that resolved spectra are unattainable,

although perhaps another attempt should be made. For applications to

planetary atmospheric studies, it may be necessary to measure unresolved

band profiles in the range of temperatures and pressure of interest.
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SO -More band analysesare needed,includingintensitiesand pressure

broadening.

CS2 -The frequencies are well known, but intensities should be updated

and improved, and pressure broadening should be measured.
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THERMAL STRUCTURE OF JUPITER AND SATURN

Glenn Orton (JPL)

I'ii be using terms which may not be familiar to all of you; to

save time I've listed them along with relevant explanations in the first

figure.

Temperatures in the sensible regions of the atmospheres of the

outer planets are quite cold. Figure 2 is a summary of temperature

structures for Jupiter, Saturn, Uranus and Neptune, derived from the

equilibrium models of Appleby and Hogan (1980, in preparation). In this

figure, T is the assumed effective planetary temperaturee

I will discuss the means by which we derive the vertical temperature

profiles for Jupiter and Saturn, the molecular spectroscopic data which

form the basis for this type of analysis, and the problems involved

with these models for molecular absorption and with the recovery tech-

nique in general. I'll also give some results for Jupiter and SaSurn

from the Pioneer and Voyager infrared experiments and try to indicate

how future experiments might improve on what we can do now, as well as

what the present and future requirements are for molecular spectroscopic

data. To save time, I will rely on Barney Conrath's exposition of the

techniques of temperature sounding, without reviewing them again.

Why is temperature so important? Thermal structure is extremely

basic, and needs to be known before any physics can be worked out for

phenomena observed in the atmospheres, particularly for phenomena that

are functions of altitude. Figure 3 serves as a brief summary of the

imperative reasons for determining temperature as a function of height.
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TERMS

• MIXING RATIO = NUMBER OF MOLECULES OF A GIVEN SPECIES
TOTAL NUMBER OF MOLECULES

• BRIGHTNESS TEMPERATURE = EQUIVALENT BLACKBODY TEMPERATURE CORRESPONDING

TO AN OBSERVED BRIGHTNESS

_Q

-i
• WAVENUMBER -CM

. EMISSION ANGLE COSINE (P) = ANGLE AT WHICH RADIATION IS EMITTED FROM A

PLANETARY "SURFACE", MEASURED FROM THE LOCAL NORMAL

Figure 1.
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Figure 2. Derived pressure-temperature models for the outer planets (after Appleby and Hogan).



IMPORTANCEOFTHERMALSTRUCTUREKNOWLEDGE
_ J i i

• KEY ELEMENT IN DEFINING BASIC CLIMATE AND WEATHER

• DEFINES FUNDAMENTAL ENERGETIC CONTROL

• DEFINES BOUNDARY CONDITION FOR INTERIOR MODELS

• NECESSARY FOR INTERPRETING ABSORPTION AND EMISSION OF THERMAL

RADIATION BY GASES AND AEROSOLS

• PROVIDES CONTEXT FOR ASSOCIATIONOF GAS AND AEROSOL VERTICAL PROFILES

WITH COMPOSITION VIA EXPECTED PHASE CHANGES

• STRENGTH AND DIRECTION OF THERMAL WINDS IMPLIED BY TEMPERATURE

VARIATIONS ALONG ISOBARS

Figure 3.



The hydrogen(H 2) collision-induced dipole is the most important

opacity source in the thermal infrared for the outer planets. It domi-

nates so much of the outgoing thermal emission, that it is not only

useful for temperature sounding, but also controls much of the radiative

equilibrium process. The plot in Figure 4 shows the location of unit

optical depth (the peak of the weighting function is very close to this

level) in the atmospheres of Jupiter through Neptune (assuming mixing

ratios of 90% for H2 and 10% for He). The graphs for Uranus and Neptune

are virtually identical on the scale in this figure. It is easy to see

a translational component at low frequencies, and the first two rota-

tional lines. You can see that our vertical sounding capability covers

the region from 1 bar to 0.i bar. H2 is a good opacity source because

it is a pressure-squared absorber, so it has narrow weighting functions.

The H2 spectral features are quite broad, which means that you don't

need to lose much vertical resolution when you increase the bandwidth to

gather more signal. The hydrogen abundance is reasonably well known.

(In the worst case, a guess of 50% mixing ratio would probably be correct

to within a factor of two!)

This opacity source has been used by itself in broadband work done

on early spacecraft experiments: the Infrared Radiometers on Pioneers

i0 and ii. These instruments have two channels centered near 20 _m and

45 _m, with filter functions shown in Figure 5. A corresponding model

spectrum is also shown in the figure. The 20 _m channel sees a region

somewhat higher in the atmosphere (near 120 mb) than the 45 Dm channel

(near 500 mb).
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Since the Jovian work is somewhat passes I'ii show you very recent

results for Saturn from Pioneer ii (no doubt they will also be obsolete

after Voyager's flyby in about six months). You can see the appropriate

weighting functions in Figure 6. With the IRR instrument, we've had to

use not only changes in spectral response, but changes in emission angle

from a given point being sounded. That was impossible with Pioneers i0

and ii, because we never saw any single point on the planet more than

once, because the instrument's cone angle was fixed with respect to the

spacecraft. We therefore had to assume longitudinal homogeneity in the

atmosphere. As a result, we are examining just the average structure

of regions. For Jupiter, these regions are the rather obvious belts and

zones, the prominent light and dark bands encircling the planet. On

Saturn we are tempted to use a similar scheme (even though visual dif-

ferences between various latitudes are not so prominent), for reasons

which I'll get to in a moment. We cover Saturn's atmosphere vertically

from about 400 mb to about 70 mb. Figure 7 shows the thermal structure

derived from the data for two regions on the planet; results from one

of the warmest regions is shown on the left, and results from one of the

coolest is shown on the right. I refer to these as a "belt" and a

"zone", respectively, because they follow the same correlation of infra-

red and visible radiation as for Jupiter. "Belts" are warm and dark,

"zones" are cool and light.

Details of recovered structures are given in a report by Orton and

Ingersoll (1980) now in press for the Journal of Geophysical Research.

Regions around "zones" may not have lower kinetic temperatures, however:
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they may be covered by clouds around the 124 K level if kinetic temper-

atures in "belts" and "zones" are identical. Another point to note is

that the thermal structure near the temperature minimum is very shallow,

compared with the relatively sharp drop and subsequent steep rise with

height in the Jovian atmosphere. Our use of different assumptions about

the temperature structure overlying the 70 mb level is clearly marked in

the figure and it has some effect on the recovered temperatures. We are

also making what now appears to be an almost canonical assumption - that

the temperature lapse rate is adiabatic in the deep atmosphere. Figure

8 shows a smoothed plot of temperature as a function of latitude for

Saturn. The only thing I can point out is the very deep apparent drop

in temperatures around the equator, roughly coincident with the bright

equatorial band (possibly a "zone").

If we generate synthetic spectra from the estimated temperature

profiles, integrate the total infrared output, and then plot the results

of the various regions covered as a function of latitude, Figure 9

results. There is a dramatic drop in flux around the equator, again

roughly coincident with the bright equatorial region.

Comment (L. Wallace): That's a minimum temperature?

Response: The minimum local effective temperature (near the equator)

is around 95 K, the maximum is just under 97 K, and they are all substan-

tially higher than the equilibrium temperature.

Question: What fraction of the disk did you integrate over? _

Response: That's a good question. We only covered 10°N to 30°S

latitude, and we have rings obscuring part of the northern latitudes.

(Talk resumes).
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Figure 8. Temperature vs. pressure at various latitudes on Saturn from the Pioneer II
Infrared Radiometer observations.
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Figure 9. Effective brightness temperature and total outgoing flux vs. latitude for Saturn.
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What are the problems with using hydrogen? We need to know the be-

havior of the collision-induced dipole over a broad range of frequencies

and a wide range of temperatures. The temperature range includes a low

point around 45 or 50 K for Uranus or Neptune, and temperatures inter-

mediate to those where laboratory measurements have been made (roughly

77 K, 200 K and 300 K). We need to know the absorptions characterized by

different ortho-H 2 vs. para-H 2 ratios. We have no substantial handle on

what the ratio of these is in the atmospheres of the outer planets.

Another source of worry is the appearance of other opacity sources with

spectrally broad features, such as the distant wings of Nil3 rotational

-i
lines around 200 cm , and the effect of aerosol absorbers such as NH 3

ice. Figure i0 shows the effect on the Jovian thermal spectrum of the

addition of an NH3 ice haze with a 1 km scale height, a base at 670 mb

(147 K), and a narrow distribution of particle sizes centered near 3 _m.

Unfortunately, the number density values got reversed when this figure

was drawn up. The haze has a tremendous effect on the thermal spectrum

and can't really be differentiated from the H2 absorption by a clear

spectral signature. Even at 50 _m wavelength the haze has a tremendous

effect in reducing the total outgoing flux. I worry about this in trying

to recover temperatures in the "deep" atmosphere, but so far it's some-

thing that no one, including me, has really paid sufficient quantitative

attention to.

In order to extend our coverage up into the stratosphere, we use the

opacity provided by the methane _4 band. You can see in Figure ii the
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location of the weighting function peak vs. frequency for a Jovian atmo-

spheric model (in which other opacity sources have been ignored). At

-i
the 4 cut resolution element used in these calculations (close to the

spectral resolution of the Voyager IRISexperiment), we can extend out

coverage of the atmosphere from i00 mb to I0 mb. In fact, the higher

the resolution, the higher we can sound in the atmosphere. IRIS results

based on data from spectral regions dominated by H2 and from those &omi-

nated by CH4 are illustrated briefly in Figure 12, which is taken from

Hanel et al., (1979) Science 204, 972. These are spectacular results,

showing detailed latitudinal features. There is a large area ofdepressed

temperatures associated with the Great Red Spot, and the prospect of

detailed analysis of these results is very exciting.

If we wish to, we can extend our coverage to higher in the strato-

sphere. Figure 13 is a plot of weighting functions based on infinite

spectral resolution and centered around the R(0) line of _4 CH4" It shows

that we could go quite high in the atmosphere. We'd have no signal, but

we could get that high in the atmosphere. Our problem would be that we

would have to contend with a non-local thermodynamic equilibrium (non-LTE)

source function in that area.

Question (M. Mumma): Why do you say you have no Signal?

Response: The band pass in these calculations is infinitely narrow.

Comment: Yes, but your high weighting function and your low weighting

-i
function are separated by 0.006 cm .

Response: That's right. So you have to have essentially infinite

resolution; I'm separating out the very center of a line from a point
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somewhere just off in the wing not really very far away. (Talk resumes).

Temperature sounding of the Jovian atmosphere with methane has its

own share of difficulties, starting with the problem of determining a

good value for the atmospheric mixing ratio° In the thermal infrared we

-I
could take advantage of a spectral region around ii00 - 1200 cm , where

CH4 vertical coverage appears to overlap that provided by H2 in the

tropopause (refer to Figures 1 and ii). However, flux from this spectral

region is probably highly influenced by NH 3 ice absorption. To carefully

model Nil3 ice haze characteristics, we need to know the optical properties

of NH 3 ice in this spectral region, and also the absorption provided by

the far P-branch of the _4 CH4 band and the far R-branch of the _2 NH3

bands.

Another difficulty with CH4 opacity has been demonstrated by Wallace

and Smith (1976, Astrophys. J. 203, 760) and myself (Orton, 1977, Icarus

31, 41). The left panel of Figure 14 shows the CH4 weighting functions

-i

associated with channels which are about 20 cm wide (as well as two H2

weighting functions). In the right panel I've plotted the contribution

of each level to the outgoing intensity for the same frequencies. This

is simply the weighting function times the Planck brightness function at

-i
each level. For the 1240 - 1280 cm region, the temperature increase

with height in the stratosphere produces an enormous change in brightness.

As a result, the origin of the outgoing radiation at each frequency is

not as well defined as the weighting functions themselves, and we are

extremely dependent on whatever is assumed for temperatures in the over-

lying stratosphere. The temperature sounding problem is no longer well-

352



Figure 14. Weighting functions (left) and contributions to the emergent intensity at several frequencies on Jupiter.



posed, in that a small change in boundary conditions may produce a large

change in the solution.

There are other problems with CH4: there is at least a 20% uncertainty

in the knowledge of the _4 line intensities; for Uranus and maybe_Neptune,

CH4 condenses out of the vapor phase; and there may also be confusion with

weak bands of C2H 2 (the _4+V5 band) and C2H 6 (the _6 or D8 bands).

We can also extend our coverage deeper into the atmosphere. For

Jupiter this can be done via the 5 Dm region, which Virgil Kunde will

address. It can also be done for all the outer planets using radiation

at microwave frequencies. I won't elaborate on this, but Figure 15 shows

a composite of the microwave spectra of the outer planets. In the case

of Uranus and Neptune, we have some indication that the H2 collision-

induced dipole is still dominating the atmospheric opacity out to 2 or 3

mm wavelength.

Question (G. Birnbaum): At what pressure are you seeing hydrogen in

the microwave spectrum?

Response: For Uranus and Neptune, somewhere around 3 to 5 bars. Let

me point out that in the case of Jupiter and Saturn, I suspect that we're

seeing rotation and inversion lines of NH3 predominantly, rather than H2.

For Uranus and Neptune, NH3 condenses sufficiently deep in the atmosphere

so that outgoing radiation isn't influenced by it. (Talk resumes).

Now I'd like to make one illustrative compariso n of infrared results

to results obtained by other means. I apologize for the busy nature of

Figure 16, but it compares Voyager 1 IRIS results for 3 regions with 3

Voyager radio occultation results and with 2 of the equilibrium models

of Appleby and Hogan. The bump in lower stratospheric temperatures
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MICROWAVE SPECTRA OF THE OUTER PLANETS
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Figure 15. Brightness temperatures of the outer planets from microwave
measurements.
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Figure 16. Experimental results and equilibrium models for the temperature-
pressure profiles on Jupiter.
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observed by the radio occultation experiment (for the Voyager i ingress

signal) would not be resolved in the infrared temperature retrieval

process, for reasons Barney Conrath alluded to earlier. The equilibrium

model can approximate the bump by distributing "dust" (or some sort of

insolation absorber) in a layer at this point in the atmosphere so that

it absorbs about 4% of the incident sunlight at this level. In other

respects, the thermal structures are very close to one another, particu-

larly below the tropopause.

In conclusion, I've summarized several of the requirements of present

and future attempts to sound the atmospheres of the outer planets, and

I've listed them in Figure 17.

Question (P. Varanasi): What do you mean by overall strength?

Response: I'm distinguishing that from individual line strengths;

that is, I don't believe any of the line strengths for the V4 CH4 band

are known with an absolute uncertainty better than 20%. (Talk resumes).

Let me make a couple of explanatory comments about Figure 17. An

accurate model for H2 opacity in the microwave region will allow us to do

temperature sounding in the deep atmospheres of Uranus and Nepturn. Again,

I'm emphasizing the P-branch of v4 CH4 because that is the region where

CH4, NH 3 vapor and NH3 ice may all be important contributors to the total

atmospheric opacity. The CH4 _4 relaxation time constant is an important

but poorly known quantity in the determination of the CH4 non-LTE source

function. The low frequency boundary window for Jupiter is provided by

the NH3 _4 band, but its line parameters have never been published in any

extensive form; line strengths in particular are difficult to predict
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SUMMARYOFPROBLEMSNEEDINGRESOLUTIONINVOLVINGMOLECULARPROPERTIES

H2: • ACCURATE MODEL FOR TEMPERATURE DEPENDENCE

- BETWEEN77,195,297K

- BELOW 77K

• DIFFERENTIATION BETWEEN PARA-H Z AND ORTHO-H 2 PROPERTIES

• ACCURATE MODEL AT VERY LOW FREQUENCIES

CH4: • ACCURATE OVERALL LINE STRENGTH FOR _4

• ACCURATE PARAMETERS FOR WEAK 94 P-BRANCH LINES (9_ 1200CM-1)

• RELAXATION TIME CONSTANT FOR H2 COLLISIONS (AND HE COLLISIONS)

• PARAMETERS FOR LINES, ESPECIALLY TEMPERATURE DEPENDENCE, (BR GROSS
I

TEMPERATURE DEPENDENT PROPERTIES) IN 1100-17000CM- REGION

GENERAL; • PARAMETERS FOR NH3, INCLUDING SHAPE, FOR ROTATIONAL LINES AND FOR

v4 AND 2v2 LINES

• PARAMETERS FOR PH3FOR INFRARED AND SUB-MM, LINES

• PARAMETERS FOR "WEAK" LINES IN 1800-2300CM'IREGION

• PARAMETERS FOR CzHZ AND CzH6 LINES

• OPTICAL PROPERTIES (Ni, -NR) OR ICES: NH3,CH4,NH4SH

Figure 17.



theoretically in a simple way because of the strong interactions taking

-i
place between the v4 and the 2_2 bands. PH3 has bands in the ii00 cm

-i
and the 2300 cm regions and contributes substantial to the opacity in

these regions, in the Jovian atmosphere. Some very recent data is

available from Sill, Fink and Ferraro on NH3 ice properties, but work

should continue for other candidate ices: NH4SH deeper in the Jovian

atmosphere and CH4 in Uranus and Neptune.

Author's note: A complete description of techniques and results of

temperature sounding in outer planet atmospheres can be found in the

following reference, which was completed a few months after the above

discussion took place:

G. S. Orton, "Atmospheric Structure of the Outer Planets from Thermal

Emission Data", In International Astronomical Union Symposium 96:

Infrared Astronomy, D. Reidel Publishing Co., Dordrecht. 1981.
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DISCUSSION

Question (K. Fox): Regarding the intensity in the 7 _m band of

methane, what are your requirements for the present and foreseeable

future (say, five to ten years) for line strength accuracies?

Response: I'd be happier at the moment with anything better than 20%.

Five percent would be fine for most studies. Ultimately, I'd like to

see 1%, unless that's ridiculous for any except the strongest lines.

Comment (K. Fox): I'm going to show some data this afternoon that I

think will demonstrate that the intensities are known to possibly better

than 20%, but not as well as 5%.

Response: It may be useful to compare more recent results, such as

yours, with comparable lines in the work that Robiette and I did. We

took a total band strength from the grand canonical average that Chedin

et al., (1978, J. Molec. Spectrosc. 71, 343) used. I'd like to see

individual line strengths covered by other techniques.

Comment (M. Mumma): I'd like to address the question of relaxation

coefficients for a minute. I think that's an extremely important param-

eter that's been grossly neglected in laboratory spectroscopy.

Question: Are there any measurements?

Comment: No, but there have been a number of elegent calculations

on cross sections for that system, for individual rotational as well as

vibrational transitions (I assume the latter are not part of the processes).

They should be good calculations, and I think that perhaps there is some

shock-tube data.

Response: There are measurements for hydrogen-methane and methane-

methane combinations in the laboratory, but somehow people do not like
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shocking hydrogen-methane combinations in the laboratoryt

Comment (M. Mumma): My comment is really directed at the general

problem of relaxing vibrational states in polyatomics° That's a terribly

neglected problem.

Comment (J. Caldwell): Let me ask you to comment on the Saturn

profile that you showed; your result and also Arv Kliore's radio occulta-

tion method. It shows the temperatures at the i0 mb level or higher to

be much less than other models. There is a very good ground-based

observation by Gillett at 8 microns; it gives a brightness temperature

around 135 K. The models that you're showing there can't reproduce that,

because you are some i0 - 15 K cooler, at least.

Response: You can do something if you vary the upper temperature

any amount. I mean, as I've alluded to in the Jupiter problem, you may

have really difficult problems in separating out the contributions to

the outgoing intensity from regions in the upper and in the lower strato-

sphere. Probably all bets are off once you allow the temperature to do

anything in the upper atmosphere.

Comment (L. Wallace): You still have a good point. The real temper-

ature has to go to 135 K somewhere.

Response: Sure. I'm saying it can certainly do that above the

highest region where temperatures were determined (to a level of accept-

able uncertainty) by the radio occultation results. But you're basically

right; otherwise, it is very difficult to get a given temperature, even

when you vary the CH 4 to H2 mixing ratio to help yourself out.

Comment (P. Varanasi): I have just one general comment. You men-

tioned the need for methane and amonia data and so on. If I can
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elaborate on it, the type of data that we need from lasers and high

resolution measurements has not been determined yet. In many "high

resolution" measurements, you can't determine line widths at all from the

spectra, so that the line intensity could be dependent on the line widths

that are used, introducing systematic uncertainties along with the data.

Some of the discrepancies that you mentioned in the line strengths, that

were discussed earlier, might be resolved once and for all. You didn't

explicitly mention line width measurements in your list.

Response: I said "line parameters".

Comment (P. Varanasi): Line widths should be included. If you look

at the available data on methane and amonia, whether the data come from

my laboratory or another laboratory, there are still significant differences

in the line widths.

The other point is about line intensities in CH4 _4" You said you

would be very happy if the line intensities were known to better than 20%.

I don't think you would be happy with that at all, particularly if it were

measured by one person.

Comment (M. Mumma): An interesting point. It is not sufficient to

have just one measurement of a line strength to one percent. You have to

have agreement between several laboratories, using a variety of techniques.

362



COMPOSITION OF JUPITER

Ronald Prinn (MIT)

I will very briefly review our understanding of the

chemistry of Jupiter's atmosphere. At the same time, I

will indicate which remote observations of the planet are

most likely to yield new knowledge, in other words, Which

types of observations would be most useful, according to

these models.

Figure 1 simply summarizes the various molecules

that have been discovered on Jupiter. As far as chemistry

is concerned we are interested in all of these compounds:

methane, ammoni_water, ethane, acetylene, carbon monoxide,

phosphine, and germane. I talked to Hal Larson and he

still believes that he has definitive evidence for germane.

Germane is not unexpected in the atmosphere if there is

very rapid convection, as I'll discuss shortly.

Those were the compounds that have been discovered,

but of course we naively believe that the elemental com-

position of Jupiter is roughly solar, perhaps enhanced

somewhat in some of the elements heavier than hydrogen and

helium. Recall that our list of observed gases took us
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through the elements (Figure 2) down to germanium (if indeed

you believe that germane is present in the atmosphere). So

it is interesting to look further up in Figure 2 and see

what we haven't observed. Since for germanium we have

detected abundances as low as a few parts in i0I0, what

interesting gaps among the lighter elements might we hope

to fill?

One of them is selenium. You can expect reasonable

amounts of hydrogen selenide in the deep atmosphere, perhaps

a few parts per billion. I don't know anything about the

spectroscopy of hydrogen selenide; maybe nobody does.

Fluorine is a little higher up on the list of elements, and

we would also expect observable amounts of,hydrogen fluoride,

at about i00 parts per billion; i.e., O.l parts per

million. We would expect to observe hydrogen selenide and

hydrogen fluoride only if we can look down through the

water clouds, i.e., in regions where temperatures are

greater than 300°K.

Question: Are their vapor pressures very high?

Response: Not in the upper atmosphere.

As I just mentioned they can be seen in the vapor phase

only if you look down below the water clouds at say
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temperatures (depending on the species) of about 300 to 500°K.

You'd see essentially the solar ratio for something like

hydrogen selenide at 500°K and the same for hydrogen fluor-

ide at 300°K. The problem with hydrogen fluoride is that

it has a condensation reaction that involves precipitation

of ammonium fluoride, and you've got to get below that

condensation level. That again is around 300°K so you want

to look down into hot spots to see these more exotic species.

But they are well worth searching for, because they are

further tests of the solar-composition hypothesis. (Talk

resumes)

Figure 3 shows some other species, and our present

idea of what the clouds are composed of. This is a highly

idealized model, that involves assuming thermo-chemical

equilibrium at every layer in the atmosphere. As I'll show

shortly this is not always a very good assumption, but

nevertheless it gives you some idea of the compounds to

expect. Ammonia solution is a possible cloud condensate be-

ginning at temperatures around 280° K or somewhat less.

Water ice, ammonium hydrosulfide and ammonia are toward the

top of the Figure 3.None of these compounds are colored,

of course. The figure shows the concentrations of methane,

ammonia, hydrogen sulfide and water vapor. Water vapor

hydrogen sulfide and ammonia precipitate out in the ammonia

solution and ice clouds, ammonium hydrosulfide clouds, and
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ammonia crystal clouds respectively. Thus their mixing

ratios decreasevery, very rapidly with altitude.

Figure 4 shows why the assumption of thermo-chemical

equilibrium is no good. UV light is penetrating into the

atmosphere, and dissociating essentially all the species

of interest that were in the previous graph: methane,

phosphine, ammonia and even hydrogen sulfide are all photo-

dissociating.

To me, the most intereSti_ng observation that could come

in next couple of years would be some stringent upper limit

on the abundance of hydrogen sulfide, or even better, the

discovery of the gas on the planet. We expect it to be

there. At its expected abundance, it should be easily

observable if we can look down in the hot spots where pre-

sumably we are seeing below the water cloud base.

I'm going to go briefly through our ideas of the

chemistry of methane, ammonia, hydrogen sulphide,and phosphine,

pointing out along the way that although the models look

very elegant, in fact they are based upon incredibly

little observational evidence.
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Methane

We know that methane is present, and we can deduce the

way in which it would photodissociate. Then, based on

models, we can predict abundances for various compounds:

methane, ethane, ethylene and acetylene, as shown in Figure

5. Acetylene and ethane have been observed. The abundances

are not known very well, to say the least, particularly

for acetylene, but they are in the right ballpark according

to the models. Ethylene has not been observed, and it

would be nice to observe it: with a model as simple as

this (this is a relatively simple chemical model), simply

having these two compounds (acetylene and ethane) observed

with abundances within factors of 3 or 4 of what you'd pre-

dict is really unsatisfactory for testing the model. So we

need better abundances, much better abundance estimates for

acetylene, and it would be really nice to observe ethylene,

to get some further idea as to how well we understand the

photochemistry of methane on Jupiter.

The other things that are missing from this diagram

are the higher hydrocarbons. Any search for higher hydro-

carbons is worthwhile, to the extent that it will tell us

whether this simple picture is all there is to the chemistry

of carbon in the upper atmosphere. Based on what we know
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at the moment, I don't think that you could rule out somewhat

more complex hydrocarbons (they would be aliphatic most

probably) than those indicated on the graph.

Ammonia

The ammonia system is shown in the Figure 6. It

appears to have relatively simpler chemistry, although you

have probably noted from Figure 4 that

there is some overlap between the ammonia and methane photo-

dissociation regions. Of course we often naively ignore any

potential cross-products, although there have been some rough

estimates of these particular cross-products; in actual

fact I don't think that the problem of the crossing of the

ammonia, phosphine, and methane photodissociation regions

has been fully developed. So there are good reasons for

looking spectroscopically for species like methylamine,

for example, as probable cross-products of the ammonia and

methane photodissociation schemes that we've been discussing.

Nobody has observed hydrazine in the atmosphere. Yet

the models do predict amounts of hydrazine which, if it

remains in the gas phase, would be easily observable. It

would be nice to get some evidence pro or con for the

presence of gaseous hydrazine or droplets of hydrazine.
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I presume that the Galileo entry probe is going to

find the molecular nitrogen in the cycle shown in this

figure.

Hydrogen Sulphide

Hydrogen sulphide(Figure 7) has never been observed,

so any observations will help us. We think hydrogen sulfide

is there, simply because sulfur is very, very abundant in

a solar composition model. A chemical reason for hoping

for hydrogen sulfide is that it photodissociates with

reasonably rapid rates, and gives rise to elemental sulphur,

and hydrogen and ammonium polysulfides, and these species

are all colored. They range from dark brown to very light

yellow. Of course, we know that there are dark browns

to light yellows on the planet. So this is one of the

leading candidates for explaining some of the colorations

on the planet. It would be very nice to get definitive

evidence from remote spectroscopy of at least the presence

of hydrogen sulfide. Again, this is an example of where,

to see measurable amounts, one would have to look down into

the warmer regions of the planet, not just up at the

ammonia cloud tops, because hydrogen sulfide precipitates

as ammonium hydrosulfide. Figure B is a Voyager photograph

of one of the structures that the meteorologists now call

a "raft"; there are a number of them. All the evidence
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about these rafts indicates that they are regions of sinking

air, and are relatively clear of the upper white clouds.

In other words, when you are looking at these rafts you

are seeing deeper into the planet than you are in the regions

surrounding them. The rafts are the deep brown color that

one expects from the photodissociation of hydrogen sulfide

and of ammonium hydrosulfide in the particulates one would

produce. It would be very interesting to get the sort of

spatial resolution that enables you to look at a feature

like that (there are many other rafts in the same class),

and ask, "Is hydrogen sulfide present?"

Phosphine

Phosphine shown in Figure 9 was discovered

several years ago on the planet. The interesting thing about

the photochemistry of phosphineis that it can also lead to

colored particulates, and in particular to red phosphorus.

There are some intermediates that are all relatively short

lived. There was an identification of P2 on the planet about

a year or two ago but unfortunately it had to be withdrawn,

so the only evidence we have for the validity of all the

chemistry shown in the figure is: (i) we have observed

phosphine; (2) phosphine mixing ratios decrease with altitude;

(3) there are red colors, in particular in the Great Red

Spot. You expect this scheme to apply when you have rapid
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upward mixing, as indeed we now suspect occurs in the Great

Red Spot. The most intense cycling through this scheme occurs

in regions where there's very rapid mixing of the atmosphere

from the deep levels, around 800° Kelvin, all the way up to

the visible levels; under those conditions, you would expect

the highest rates of production of red phosphorus.

Figure i0 shows the Great Red Spot. It is my under-

standing from the meteorology, that these white spots adja-

cent to the Red Spot are similar to it in the sense that

there is upwelling in these regions. We then have to ask

why they are bright white while the Great Red Spot is red,

right in the same region. The answer is presumably in the

rates of convection; you are able to most rapidly bring up

the precursors of the colored species from very deep in the

Great Red Spot. Again this points out the need for spatial

resolution in looking at Jupiter.

Minor Species

We now look in Figure ii at the carbon system very,

very deep in the planet. I'm going to temperatures that

will range up to 1500° K or so, and you suddenly see in

thermochemical equilibrium the appearance of carbon monoxide

here, deeper in the atmosphere. It is interesting to ask
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if we can mix the carbon monoxide up to the cool parts of

the upper atmosphere more rapidly than carbon monoxide can

be converted to methane; if so, then we will mix a species

that is stable only in the deep atmosphere right up into

the visible atmosphere. We have in fact studied the chemistry

for converting carbon monoxide to methane. You can work

out the rate at which it occurs, compare that to a transport

time, and determine whether you expect to see carbon mono-

xide in the atmosphere. The result is shown in Figure 12,

which gives you as a function of the rate of vertical dif-

fusion the carbon monoxide mixing ratio which one would see.

If for the vertical diffusion rates you take typical values

that people believe from free convection from the internal

heat source of Jupiter, you see an expected abundance of

carbon monoxide of parts in 109.

Question (M. Mumma) : Where is that? At what altitude?

Response: That would be at all altitudes. It would

be mixed up from the ii00° K level all the way through the

atmosphere, except at the very top where there is going to

be a little photochemistry going on.

Question (M. Mumma): Beyond the tropopause?

Response: The tropopause is where the photochemistry

will begin, so yes, up to the tropopause. (talk resumes)
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You can do the same for nitrogen, with the ammonia-

nitrogen system (Figure 13). Nitrogen gets more and more

stable very deep in the planet and since in fact it approaches

mixing ratios exceeding a part per million in the very deep

atmosphere you can ask the same question: Is the conversion

of nitrogen to ammonia slow relative to the rate at which

you mix a parcel of gas from the deep part of the atmosphere

to the upper atmosphere? If it is indeed slow, then the

mixing ratio you see for nitrogen deep in the atmosphere

applies throughout the troposphere. I've gone through some

calculations of this (and they are more complicated to do,

because this reaction is catalyzed on iron particles), and

it appears from this scheme that you might expect a part per

million of nitrogen in the atmosphere.

There is another source of minor species: extra-

Jovian inputs to the planet. One such source (Figure 14)

is meteorites. If the meteorites are carbonaceous chondrite

material, this input could provide plenty of Oxygen in the

upper atmosphere in the form of H20 if you believe the

meteorite fluxes that some people predict. So there is a

source of oxidizing material pouring into the top of the

atmosphere; that is another very plausible explanation for

the observed carbon monoxide. There are other species

that come along with this theory. Silicon monoxide is also

produced if you are ablating meteorites; its detection would

be a crucial test of the theory that meteoritic material is
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coming into the upper atmosphere, providing an oxidizing

agent, which is producing unexpected oxidized species in

Jupiter's atmosphere. There is also another idea put forward

by Strobel and Yung (both present here) who suggested that

inputs from the Jovian satellites could also provide oxidiz-

ing material. Again, these theories provide numerous compounds

that are worth looking for. We've already seen carbon

monoxide in the atmosphere. I hope the search for oxidized

species will not stop at carbon monoxide. We should look for

several other interesting oxides in the atmosphere, perhaps

even nitrogen oxides, to explore this chemistry further.

The last figure (Figure 15) summarizes my suggestions

for future directions and the potential payoffs.

(i) First, better spatial resolution would let us

study the horizontal variability of phosphine, acetylene,

carbon monoxide and water vapor absorptions, between the belts

and zones,or between the red and white spots, and so on, and

would be very, very helpful. Of course, we have already

observed all these species, but if we can get the spatial

resolution necessary to look at small parts of the planet, it

would be very, very helpful in understanding the chemistry

going on in the visible regions. At the same time, better

spatial resolution might help us in the search for species we

haven't observed: hydrogen sulfide, hydrogen selenide,

hydrogen chloride, hydrogen fluoride, silane, H3BO3 (surprisingly,
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i. BETTER SPATIAL RESOLUTION

(a) horizontal variability of PH3, C2H2, CO, H20,

etc. between belts, zones, red and white spots,

etc.

(b) search for H2S , H2Se, HCI, HBr, HF, SiH4, H3BO3,

ASH3, AsF3, GeS, CH3SH, CH3NH2, etc. in dark-

brown "hot spots" (e.g., in "rafts")

2. BETTER SPECTRA (e.g., improved spectral resolution and

observing platforms in space).

(a) search for C2H4, P2' N2H4' CH3NH2' CH3PH2' SiO,

HCN, etc. in addition to species tabulated in

l(b) above

(b) rotational temperatures to help determine ver-

tical distributions (e.g., for CO, H20)

(c) confirmation and/or improved abundance estimates

for GeH4, C2H2, etc. and for N_:_ andCH4:H 2 ratios

3. BETTER INTERPRETATION

(a) laboratory spectra for line positions, strengths,

half-widths, etc.

(b) mult_plescatteriggmodels including horizontal

as well as vertical variability for abundance

estimates (e.g., are the C:H and N:H ratios 2

and 1.5 times solar,and are the NH4HS clouds

thin or absent as recently suggested?)

Figure 15. Remote spectroscopyof Jupiter: Future d_ections and potential payoffs.
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if you could look down below the clouds you might expect it

at about i0 parts per billion; I bet nobody knows its

spectroscopy), arsine, germanium sulfide, methyl mercaptan,

methyl amine. These are the sorts of species that we would

potentially be able to see if we looked down into these

hotter spots, and were able to resolve them and run the

spectrometer long enough.

(2) Better spectra: Simply improved spectral resolu-

tion and observing platforms in space. I think the most use-

ful thing is to search for ethylene, for the P2 species in

the upper atmosphere, for hydrazine, for methyl amine, for

cross-products between the phosphine and methane chemistry

(for example, this particular organic phosphorus compound,

methyl phosphine CH3 PH2, and also a great number of other

ones that you can suggest), and finally for Si0 (gas phase)

in the very high atmosphere. HCN can be expected in rather

small amounts, but perhaps our ideas about its abundance are

wrong, and perhaps it is present in observable amounts. It

would be well worth searching for HCN. The rotational tem-

peratures are very, very helpful to understanding the chemistry,

because they give us some idea of the altitude distributions.

We would like to know with better accuracy the rotational

temperature for carbon monoxide and water vapor (in fact for

all of the species, but those are the two that are in my

mind right now). It would be very, very useful to know their
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rotational temperatures with better accuracy than what we

have at the moment. The confirmation and/or improved abund-

ance estimates for germane (improved spectroscopy of germane:

at the moment we have only Larson's data, one Q-branch line

only), acetylene and the ratios NH3:H2 and CH4:H2.

(3) Finally, better interpretation. The most important

thing besides improved laboratory spectra is improved inter-

pretation. There is in fact only one comprehensive inter-

pretation of Jovian data I've seen, that really tries to

take everything into account: a recent paper by Sato and

Hansen, in the Journal of Atmospheric Science, I think is a

first step in this direction. There's not much use in going

and learning all the laboratory parameters for these spectra,

if at the same time you don't develop the sophisticated

models that you require to interpret the absorptions on the

planet itself.
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Figures

Fig. 1 See Table II of Ridgway et al., in Jupiter (ed.

T. Gehrels, Univ. of _rizona Press, 1976) p. 384.

Fig. 2 See Table I of Prinn and Owen, in Jupiter, ibid.______,

p. 319.

Fig. 3 See Figure 3 of Weidenschilling and Lewis, Icarus,

20, 465, i.

Fig. 4 See Figure 2 of Lewis, in Chemical Evolution of

the Giant Planets (ed. C. Ponnamperuma, Academic

Press, 1976) p. 13.

Figs. 5"7 See Figures 5, 6, and 8 of Prinn and Owen, ibid.

Fig. 8 Voyager 1 photograph, March 2, 1978, 13-18°N.

Fig. 9 See Figure 9 of Prinn and Owen, ibid.

Fig i0 Voyager i photograph, March i, 1978, GRS region.

Figs. 11-12 See Figures 1 and 2 of Prinn and Barshay, Science,

!98,1031,1977.
Fig. 13 See Figure 3 of Barshay and Lewis, Icarus, 3_33,

593, 1978.

Fig. 14 See Figure 2 of Prather et al., Astrophys. J., 233
1072,]978.

Editor's note: Facsimile reproductions of Figure 1-14 were not made
available to us. References to the Figures are given
above. Weapologize for the inconvenience to the reader.
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DISCUSSION

Comment (A. Young): Concerning sulfur compounds; These are

only colored appreciably at room temperature and temperatures near

room temperature, so for the most part as soon as you get them down

another 50 o or so they become colorless. Also the polysulfides are

pretty unstable to photodecomposition, and if you got them high

enough to be irradiated by sunlight, I would expect them to be

converted to sulfur pretty quickly, and again, at low temperature

sulphur is essentially white, not yellow or brown. So I think it

is not a terribly good idea to try to attribute these colors on

Jupiter to sulphur compounds.

Response: I can only say that I disagree I00 percent with

what you said. First of all, the colors that I am talking about

are indeed being formed at reasonably high temperatures, perhaps

even around 250 or 270 o Kelvin. Secondly, ultra-violet irradiation

of ammonium hydrosulfide produces visible and near-ultra-violet

absorptions even at much cooler temperatures.

Comment (A. Young): At those temperatures these things are

white.

Response: They are not white at 270 o Kelvin. Ammonium poly-

sulfide and hyrogen polysulfi!de are colored at this temperature.

Comment (A. Young): At 250 o they're white

Response: You are looking at different temperatures than I

am. Incidentally, why would they turn white by decreasing the

temperature?
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Comment (A. Young): What you are looking at is the

wing of a Gaussian band which is centered at about 2800

Angstroms. If the temperature goes down, that band contracts

very rapidly, and that's the reason why these things turn

white.

Response: The polysulfides absorb right into the

visible, they have visible absorptions.

Comment (A. Young): There are no bands in the visible.

You are just seeing the wing of a band in the ultraviolet.

That's the reason for the color in these things.

Response: I disagree. There has been a lot of spec-

troscopy done on the sulfur and polysulfide species by Meyer,

Lebofsky, and others. The polysulfides have visible and

near ultra-violet bands when produced by ultra-violet

irradiation of solid ammonium or hydrogen sulfide.

Comment (A. Tokunaga) : There is another possible way

to be sure photochemistry is going on, using ammonia and

phosphine. There is no evidence of emission from these gases

at i0 microns. That suggests to me that they're being de-

stroyed in the stratosphere, and we can put a very stringent

limit on how much ammonia and phosphine there is, based on

our data at high spectral resolution. So there is another

possible way to be sure that there is photochemistry.
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Response: Yes. There is already something along that

line of evidence from the UV, of course: the fact that one

doesn't see the UV absorptions.

Comment (L. Wallace): And besides, you have UV sun-

light hitting the planet!

Response: Yes!

Comment (J. Caldwell) : Let me comment on your call

for confirmation of the acetylene abundance. There is a

paper which I think appeared in the February 15 APJ, although

I haven't actually seen it on the newstands yet. The IUE

spectra of Jupiter, published by Toby Owen and a cast of

thousands do in fact show evidence for acetylene on Jupiter.

Jack Margolis has convinced me that the absorption coefficients

used there are not in bad shape after all, and the mixing

ratios derived are in rather good agreement with the infrared

analysis by Glenn Orton and his colleagues. So the techniques

are sufficiently different, and I think the numbers are in

agreement to within a factor of 2. The numbers are so good

and the agreement is so good that I think it will be a long

time before you get better than that.

Response: I wasn't aware of that work. It would cer-

tainly suggest that further confirmation is not required.
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Comment (V. Kunde) : Additional evidence confirming

the acetylene abundance comes from the Voyager IRIS spectra.

A strong Q-branch is evident at 729 cm-I, and this spectral

feature is being used to derive the latitudinal distribution

of acetylene on Jupiter.

Question: You mentioned several things you might see

in the hot spots. To the best of my knowledge, the highest

temperature after Westphal's initial observation is 260° K,

and this implies maybe 290° K. How many of these compounds

can be seen at those temperatures?

Response: It depends on the water vapor abundance.

The condensation of water can remove a lot of these species.

If the water vapor abundance that Larson and company observed,

which is only a part per million,is in fact present in these

relatively clear spots, then I think there's a chance of

seeing these species even at temperatures below 273° K.

Hydrogen fluoride can be removed by ammonium fluoride conden-

sation. So if ammonia is dried out in these so-called hot

spots, then perhaps you might see hydrogen fluoride. I would

be very doubtful myself of hydrogen fluoride. For H3BO 3,

for example, which dissolves in water, the hope would be that

the water vapor abundance is depleted in these hot spots so

that perhaps one can see it. Admittedly, this is grasping

for straws, but I hope that we will look into some of these
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hot spots. I see higher spatial resolution and looking at

details on the planet as theaFeas'where really good advances

can be made in our understanding of atmospheric chemistry.

Comment (V. Kunde): We see the highest 5-micron tem-

perature in the Voyager IRIS spectra when we are at the best

spatial resolution (about 1 degree in latitude). In this

case we see about 262° K, which represents a vertically

averaged temperature. The region of formation for this 5-

micron radiance is roughly from 2 to 6 bars, corresponding

to atmospheric temperatures in the range from 210 to 300° K.

Either the water cloud or continuum opacity sources seem to

preclude our seeing substantially deeper in the atmosphere.

Question (R. Prinn to H. £arson): What was your

estimate of the water vapor rotational temperatures? Do you

have any estimate at all?

Comment (H. Larson): I think they were about room

temperature, 300° K, with error bars.

Comment: In connection with Virgil Kunde's last

comment, I'm not sure that we can see that high a temperature.

At the hot spot, I believe the continuum is determined by

the pressure-induced vibration-rotation spectrum of hydrogen.
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So that opacity limits your optical depth to a temperature

that is around 270°or so; just what you observed. Higher

resolution won't let you deeper into the atmosphere because

you really have a continuum of pressure-induced vibration-

rotation absorption in hydrogen, and you've got a continuum

on a lot of things.

Comment (V. Kunde) : We'll come back to that after my

talk.

Question (Y. Yung) : I want to ask the time constant

for converting phosphine into red phosphorus, that is,into

P4" I checked your paper, and your time constant is more

than 6 months. In that time the red compounds will all get

diffused, so how can you concentrate them in localized areas?

Response: I don't think it was 6 months; I thought

it was only about 12 days or something like that.

Comment (Y. Yung): Yes, 12 days for the dissociation

of phosphine itself, but you have to use a four-center reac-

tion, PH + PH making P2 and that reaction takes much longer

than 12 days.

Response: Well, because we don't know the PH abundances,

I am not prepared to estimate whether P2 formation takes

longer or shorter than 12 days.
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Question (D.Strobel) : With regard to the shopping

list of sulphur compounds, I recall that in a model that

Yuk Yung and I put together we also predicted significant

quantities of CS and CS2.

Response: I will add them to the shopping list.
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Voyager IRIS Measurements of the Jovian Atmosphere

Virgil G. Kunde (GSFC)

Abstract

The scientific interpretation of the Voyager IRIS data is limited in many

instances by a lack of knowledge in the basic molecular data. The most

significant of these is the far wing collisional line shape of CH4 and NH3 as

iteffects interpretation of all Jovian "window" regions. It is recommended

that a focused theoretical and laboratory effort, similar to that for H2 in

the 0-2000 cm-I region, be carried out for these two gases to quantify their

far wing line shape.

Introduction

In this report, I will review some of the Jovian atmospheric observations

from the Voyager infrared investigation (IRIS). At the same time I would like

to emphasize several spectroscopic problem areas presently limiting scientific

interpretation of the data.

For perspective, the Jovian structure for the North Equatorial Belt (NEB)

is sum_narized in Fig. I. The temperature profile in the .015-.8 bar range has

been obtained by inversion of the radiative transfer equation, using IRIS

measurements of the NEB (see Figs. 2, 4, 6) at selected wave numbers in the

1304 cm-I CH4 band, and in the S(O) and S(I) hydrogen lines. The dashed

portion of the curve represents an extrapolation of the IRIS temperature

profile to deeper atmospheric levels along a 2.1K/km adiabat. Also shown in

Fig. I are the base levels of the three principal cloud layers predicted by an

adiabatic, solar composition, thermochemical equilibrium model (Lewis, 1969):

an ammonia cloud at the 148K level, an NH4SH cloud at the 210K level, and a

H20 cloud at the 273K level. Observations seem to be in agreement with the

upper white cloud deck being NH3 condensate. No conclusive observational

evidence exists for the two lower cloud decks.
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Figure 1. Jovian atmospheric structure.
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The columnar amount of gas for the three most abundant infrared active

molecules is shown on the right hand side of Fig. I. For a belt region, we

"see" into the atmosphere to approximately the 5 bar level which corresponds

to _200 km arm for H2, 200 m atm for CH4, and 50 m arm for NH3. To infer
physical parameters from infrared remote sensing measurements, such as Voyager

IRIS, we must understand the molecular opacities for H2, CH4, and NH3 for the
temperature and path length conditions represented in Fig. I.

Observations

The Voyager IRIS experiment uses a Michelson interferometer to measure
-I

the thermal emission spectrum of the Jovian atmosphere from 180-2500 cm

(55-4_m) with an apodized spectral resolution of 4.3 cm-I. More than 50,000

spectra were acquired by Voyager I and Voyager 2. The narrow .25° field of

view permitted recording full-disk spectra 3 - 4 weeks before closest approach

with spatial resolution increasing to a maximum of almost 1/100 of the

apparent disk at closest approach. Included in the IRIS data are measurements

of the thermal emission for varying conditions of latitude, longitude, local

time, phase, and emission angles. Additionally, measurements exist for a

number of specific observational links which were designed to take advantage

of the unique advantages of the fly-by mission and to maximize the returned

composition information. Included in these links are the systematic mapping

of belts and zones at normal and high angle viewing, and high spatial

resolution mini-mosaics of selected hot spot regions.

The gross characteristics of the IRIS spectra are illustrated in Fig. 2

for a belt-like and a zone-like spectrum. The belt-like spectrum is an

average of 51 individual spectra from the North Equatorial Belt (NEB),

selected with an average brightness temperature in the 1950-2150 cm-I region

greater than 250K. The average emission angle is 15.8°, corresponding to an

air mass of 1.04. The zone-like spectrum is an average of 343 individual

spectra from the entire disk of Jupiter with the 1950-2150 cm-I average

temperature in the 180-210K range. The average emission angle is 19.7°,

corresponding to an air mass of 1.06. The spectra clearly show evidence for

H2, CH4, C2H2, NH3, PH3, H20, GeH4, and CH3D. Emission by C2H6 is evident in
high air mass spectra. Preliminary results concerning composition from these

.389



Figure 2. Observed Voyager IRIS spectra of Jupiter for the North Equatorial Belt (NEB)
and for a zone-like region.



spectra may be found in Hanel, et al. (1979a), Hanel, et al. (1979b), Gautier,

et al. (1981), and Kunde, et al. (1981).

The 5_m Jovian window is transparent to the dominant Jovian gaseous

absorbers, H2, CH4, NH3, and in the absence of dense clouds or hazes allows

infrared radiation from the deep atmosphere to emerge (Terrile and Westphal

(1977), Terrile, et al. (1979)). Only the clouds and/or aerosols provide

sufficient absorption to supply the varying opacity for the observed contrasts

in the 5_m region. The temperature contrast between the NEB and the zone-like

spectra of Fig. I is _ 5OK. The 5_m temperature contrast observed by Voyager

IRIS is further shown in Fig. 3 for three large scale morphological regions

ranging from a clear belt-like area to a zone-like area.

The NEB spectrum is shown on an expanded scale in Figs. 4 and 6. The NEB

spectrum divides naturally into two regimes: the 180-1400 cm'I region (Fig.

4) which corresponds to thermal emission from above the visible cloud deck,

and the window region from 1700-2300 cm-I (Fig. 6) corresponding to emission

from below the visible cloud deck. The altitude region from which the

emission originates for each spectral region is illustrated in Figs. 5 and 7,

which show the atmospheric level corresponding to unit optical depth. As the

maximum contribution to the emergent emission originates near that level, the

figures indicate the approximate level of the atmosphere sampled in each

spectral interval. The I/e levels have been computed from a Jovian model

atmosphere.

Radiative Transfer Aspects

The monochromatic radiance for vertical viewing for a planetary

atmosphere in local thermodynamic equilibrium is

I(_) : I B(v,T) dx(v,P) (I)

where the integration is through the planetary atmosphere from the top of the

atmosphere to the lower boundary, v is frequency in wave numbers, P is

pressure, T is temperature, and B is the Planck function at temperature T.

The monochromatic slant path transmittance through an inhomogeneous medium is
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•(v,P) = exp [- _ $ ki(p,T)dui ] (2)
i v

where the total molecular absorption coefficient and optical path length for

the i-th gas are ki and ui respectively. The total molecular absorption

coefficient at a specific wave number is the summation of the contribution

from each of the individual molecular absorption lines, _v'

ki(p,T) : Z hi (P,T) (3)
m m

where m is the summation index over the total number of lines for the i-th gas.

An individual molecular absorption line can be described by four

parameters: line position (re), integrated line intensity (S), relative line

shape (b), and line half-width (e). In terms of these parameters the

absorption coefficient for a single line is

(P,T) : S(T)b(v- v° e), (4)_)

where the relative line shape b(v - vo, e) depends on the type of line-

broadening mechanism considered. The mixed Doppler-Lorentz line shape is used

for b(v - vo, e) if the total pressure is less than 100 mb and the distance
-I

from the line center, Av = v - vo, is less than 0.2 cm . For higher

pressures and for Av > 0°2 cm-I the relative line shape is evaluated from the

classical Lorentz expression

b(av, e) : _ • (5)

_[av2 + e2]

where eL is the line half-width due to collisional broadening. The
collisional line half-width is

397



P T

aL(P,T ) : eL(Pc, To ) __ (__o)n (6)
Pc T

where n is the coefficient relating to the temperature dependence of _.

Kinetic theory predicts n = 0.5.

Computed monochromatic radiances are convolved with the IRIS instrument

function to obtain spectra with a resolution compatible with the measured

spectra. The numerical calculation employs a multi-layer atmosphere using

direct integration for the molecular absorption of H2, CH4, NH 3, PH3, H20,

GeH4, and CH3D.

Spectroscopic Problems in IRIS Data Interpretation

Shortcomings and uncertainties in our knowledge of line positions,

intensities, collisional half-widths, and collisional line shapes limit the

scientific interpretation of the IRIS spectra in a number of specific

instances. Some specific spectroscopic shortcomings are:

CH4: I) theoretical-analytical far wing collisional line shape (Au >

25 cm-I) for various broadening gases (H2, He, CH4, NH3).

2) laboratory measurement of temperature coefficient n.

NH3: " I) theoretical line parameters for bands in 1500-2500 cm-I

region.

2) theoretical near wing collisional line shape (_ < 25 cm-1).

3) theoretical-analytical far wing collisional line shape for

various broadening gases.

4) laboratory measurement of _.
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PH3: I) molecular analysis of bands in 1800-2200 cm-I
range.

2) laboratory measurement of _L and n for various broadening

gases.

-I
H20: I) laboratory measurement of aL for H20 lines in 1800-2100 cm

range.

Spectroscopic Continuum Problems in Jovian "Windows"

In this section I would like to illustrate only one of the above problem

areas, the serious and continuing spectroscopic problem in specifying the

proper collisional line shape for the far wings (Av > 25 cm-I) of

pressure-broadened molecular lines. The absorption due mainly to the

overlapping of the far wings of lines in strong vibration-rotation bands

determines the molecular continuum in four specific regions of the IRIS

spectrum. These four atmospheric "windows", evident in the NEB spectrum of

Figs. 2, 4 and 6 are at:

I) 1900-2200 cm-I - This "window" is defined on the low wave number side

by(1200-1600the far wingScm-I) of the v4 NH3 band (1500-1700 cm-1), the v4 and v^ CH4 bands
and the pure rotational lines of H2 (354, 587 cm-_)_ The

high wave number side is formed by the far wings of the vI and v PH^

fundamentals (2200-2400 cm-1), the v3 CH4 fundamental (2900-31003cm-_), and

the fundamental band of H2 (3800-4800 cm-1),

2) 1375-1425 cm-I - The low wave number contour of this window is due to

the v4 fundamental of CH4 (1200-1375 cm-1), and the high wave number side to

the v2 CH4 fundamental (1500-1600 cm-1), and the v4 NH3 fundamental (1500-1700-I
cm ),

3) 1125-1200 cm-I - The low wave number profile is caused by the strong

lines of the v2 fundamentals of NH3 (875-1075 cm-I) and high wave number side

by the v4 CH4 fundamental (1200-1375 cm-1), and,
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4) 180-250 cm-I - The pure rotational lines of NH3 (50-150 cm-I) create

the low wave number side of this "window", and the rotational-translational

lines (354, 587 cm-I) the high wave number side.

In general, the molecular continuum in the above four "window" regions are

determined by the far wings of H2, CH4, and NH3.

Although the Lorentz line shape is widely used for atmospheric

transmission computations in the far wings of lines, a large body of

experimental data now exists indicating substantial deviations from the

Lorentz shape for many gases (Winters, et al. (1964); Burch et al. (1970).

The line shape problem has been discussed by Birnbaum (1979). For the most

abundant Jovian gases, the far wings of H2 are now known relatively well due

to the experimental and theoretical studies of Cohen and Birnbaum (1981);

Birnbaum (1978); Birnbaum and Cohen (1976). However, there is no available

information on the far wing shape for CH4-H 2 collisions for the IRIS "window"

regions. For NH3, the only far wing information available is for the

2000-2200 cm-I region, the experimental work of Varanasi and Pugh (1973)

indicating a sub-Lorentzian behavior. However, the far wing line shape could

not be quantitatively analyzed due to local line absorption by the
A -I

uncharacterized 2_ _ and 2__ bands of NH3 at 1882 and 1936
cm respectively.

Thus for modeling and spectral analysis studies of Jupiter, the far wing line

shape of CH4 and NH3 must be assumed. For the IRIS investigations the Lorentz
-I

profile was computed out to A_ = 100 cm For larger distances from the line

center, the line profile was terminated. This simplistic treatment yields

sub-Lorentzian behavior which hopefully represents the actual line shape.

Thus the far wing shape of CH4 and NH3 is not known to a sufficient accuracy

to quantitatively establish the individual contribution of these gases in the

above "window" regions. This also means that we cannot absolutely establish

the pressure levels in the atmosphere which are being sensed.

The effect of the line cut-off on the emergent spectrum is illustrated in

Fig. 8 for the 5um "window". Increasing A_ from 200 to 500 cm-I decreases the

brightness temperature by _IOK. Another example is given in Fig. 9 for the

8.5um "window" for A_ = 100 and 200 cm-I. The resultant difference in the
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continuum of the emergent spectru_n at 1148 cm-I is 8K. A systematic error of

8K leads to uncertainty of a factor of two in the derived NH3 mole fraction

from this spectral region. Thus the uncertainty in the far wing line shape is

the dominant error in the retrieval of NH3 distributions at the .9 bar level.

Summary

The scientific interpretation of the Voyager IRIS data is limited in many

instances by a lack of knowledge in the basic molecular data. The most

significant of these is the far wing collisional line shape of CH4 and NH3 as

it affects interpretation of all Jovian "window" regions. It is recommended

that a focused theoretical and laboratory effort, similar to that already

accomplished for H2, be carried out for these two gases to quantify their far

wing line shape.
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Comment (Birnbaum): The importance of the far-wlng line-shape problem for

pressure broadened lines deserves additional comment. (I) In order to

calculate the absorption coefficient in the trough between neighboring lines,

it is necessary to use the theory for overlapping lines; it is not correct

just to sum the wing contribution from neighboring lines. The theory gives an

additional contribution which takes into account the effect of cross-

relaxation. (2) In the far wings, at frequencies removed from most of the

strong transitions, one must also deal with the effect of overlapping lines.

However, the Lorentz shape, which is adequate for frequencies not too far

removed from the resonance frequency, is incorrect in the far wings. Indeed,

it can be argued on general grounds that the absorption there must decrease

faster than predicted by the Lorentz function. (3) Apart from the problem of

pressure-broadened line shape in the far wing s and the effect of overlapping

lines, one should consider the possibility of collision-induced absorption.

Although this absorption is generally very weak compared with that produced by

allowed transitions, the latter becomes very weak in the far wings.
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Jupiter and Saturn from 2 to 6 um

Harold P. Larson (Univ. of Arizona)

I. Introduct|on

This paper summarizes some recent earth-based spectroscopic

observations that support current composltional and structural

analyses of planetary atmospheres. The lack of appropriate laboratory

measurements frequently prevents complete use of these astronomical

data, however. I will therefore identify some major interpretive

opportunities where laboratory spectroscopists can become productively

involved with planetary astronomers.

II. Overview of the IR Spectra of Jupiter and Saturn

The overview of Jupiter's IR spectrum in Figure I illustrates

a fundamental constraint to observations of the outer planets: atmos-

pheric studies are restricted to narrow, isolated windows defined by

the planetary absorbers H2, CH4, NH3, and PH3. Some of these planetary

windows, such as at 1.6 l_m,are accessible in ground-based observations,

but others, such as at 1.9 and 2.7 lJm,are totally obscured by terrestrial

H20. For this reason, high altitude sites, such as aircraft, balloons,

and spacecraft, have become essential for IR spectral studies of the

outer planets.

Saturn's composite IR spectrum would be similar to that of Jupiter

in Figure I. One important difference is Saturn's lack of NH3 absorption,

which leads, for example, to a wider 3 }_matmospheric transmission window

on Saturn. Another difference is that Saturn's 5 IJm thermal emission

spectrum is scaled to a lower temperature (T ~ 190 K) than for Jupiter

(T- 300 K).
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Figure 1. Top spectrum: Composite IR spectrum of Jupiter assembled from many sources. Bottom
spectrum: The transmission of the earth's atmosphere under typical mountain-top conditions.
Figure reproduced from Ridgway et al. (1976).
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For the purposes of this paper it is convenient to identify

three groups of spectral features in the planetary data:

Group A: Continuum features assigned to the atmosphere's major

spectroscopically active species. These molecules (H2, CH4, NH3)

have been known for decades, but their spectra] features are still

being interpreted in terms of abundance, pressure, temperature, mixing

ratios and elemental ratios. The distinguishing requirement of this

group, as far as laboratory measurements are concerned, is that the

detailed spectra] behavior of each of these molecules must be under-

stood for conditions appropriate to real planetary atmospheres (reduced

T, scattering, high abundance).

Group B: Obvious, non-saturated bands (Q-branches, rotational

lines} produced by trace constituents with mixing ratios with respect

to H2 between 10-5 and ]0 -9. Their identifications are firm because

of positional information, but the molecules may not be sufficiently

analyzed to permit precise quantitative measurements of other atmos-

pheric parameters (T, P, abundance). Most recent detections fall into

this group. For example, several obvious PH3 bands exist in Saturn's

airborne 3 ]_mspectrum (Larson et al. 1980),but their assignment to

specific overtone or combination modes is uncertain.

Group C: Vague features (shoulders, bumps, isolated l lnes, etc.)

that do not provide enough positional information to support assignment

to any molecule. This group is most likely to provide exciting, future

discoveries as better observational data are produced and laboratory

comparisons are extended to more exotic species.
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The following sections of this paper review the major regions

of transparency in the atmospheres of Jupiter and Saturn in terms of

these three groups of spectral signatures.

Ill. Near IR Region (;t< 21Jm)

There is no lack of observational data in this wavelength region

because the planetary atmospheric transmission windows coincide with

those in the earth's atmosphere (see Figure l). Although high spectral

resolution is required for most analyses, the composite of spectra in

Figure 2 demonstrates the value of broad spectral bandwidth, low resol-

ving power observations for comparing the hydrogen-rlch atmospheres of

the outer planets. Analyses of these data represent the use of Group A

spectral behavior in interpreting planetary observations. Some general

conclusions are: • "

I. Methane is the major, spectroscopically active constituent in

the atmospheres of all of the outer planets. Each planetary spectrum

mimics the characteristics (isolated transmission windows) of a long

path laboratory CH4 spectrum (bottom trace in Figure 2).

2. Molecular hydrogen also produces continuum features in the

near-IR, especially between 2-3 IJm. For example, the absence of a

2 l_mCH4 window on Uranus is because of the high H2 abundance in this

atmosphere.

3. Each spectrum is unique, although each is produced by the same

known constituents (H2, CH4, and, on Jupiter, NH3). The obvious differ-

ences in their continuum features are due to the different abundances,

scattering mechanisms, and vertical structures characterizing each atmosphere.
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Figure 2. Comparison of the near-IR spectra of the outer planets and Titan.
All spectra were produced by a Fourier spectrometer. (reproduced
from Fink and Larson (1979).
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Additional details on the interpretation of these data, and the

corresponding limitations of available laboratory measurements, are

discussed by Fink and Larson (1979).

At higher spectral resolution, attention turns to Group B spectral

features and the study of trace atmospheric constituents. Historically,

however, the near-IR spectral region has been unproductive in terms of

new detections on the outer planets. Requirements include very high

spectral resolution (R <_O.l cm-l), complete knowledge of the CH4 and

NH3 spectra, and accurate line measurements of candidate species. In

practice, ever higher resolution just reveals more CH4 lines. This

spectrum must first be better understood (interlopers, pressure broaden-

ing effects, temperature-induced intensity anomalies, etc.) before the

observational data can be used for more complex modeling tasks (scattering

mechanisms, cloud structure, etc.). The 3_3 CH4 band near 1.2 _m has

been exhaustively studied, for example, but even modest agreement on

the CH4 abundance has not yet been achieved (see discussion in Ridgway,

Larson and Fink 1976).

Figure 3 summarizes the trace constituent detection possibilities

available in the 1.6 pm planetary window. At this moderate spectral

resolution (3.6 cm-l), only upper limits to numerous species have been

-l
determined. In Figure 4, however, new observations of Saturn at 0.09 cm

(Davis et al. 1980) provide unprecedented sensitivity for searching for

trace constituents.

IV. 2-3 l_mRegion

Very little is known about the spectra of the outer planets in this

wavelength region. As the data in Figure l demonstrate, the two regions
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Figure 3. Illustration of the high resolution spectral detail in the 1.6 #m CH4 window
in the atmospheres of the outer planets. Telluric absorptions are identified
with the help of the solar-type comparison star. All planetary absorptions
seem due to CH4. The locations of numerous potential trace constituents
are marked, but none of them has yet been detected in this region. Figure
reproduced from Fink and Larson (1979).
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of transmission near 2.0 and 3.0 ]amon Jupiter are completely masked

by terrestrial H20. Other objects in the outer solar system with H2/CH4

atmospheres would be similarly obscured. The existence of Jupiter's 2

and 3 _m windows was first demonstrated by Danielson (1966) using a

balloon-borne spectrometer. His spectrum (Figure 5) emphasized the

importance of the l-O pressure-induced spectrum of H2 in interpreting

Jupiter's continuum spectrum. Molecular hydrogen is totally absorbing

between 2.1 and 2.5 l_n,and the wings of this band are potentially

significant diagnostic tools for establishing such atmospheric para-

meters as T, He/H, H2 abundance, etc. Even today, however, these

interpretive possibilities have not been fully exploited. Continuous

spectral coverage of the 2-3 ]amregion at high spectral resolution

has only recently been achieved, and, again, the incomplete knowledge

of the spectrum of CH4 is delaying interpretation of the H2 spectrum.

Figures 6 and 7 contain high altitude spectra of Jupiter and Saturn

in the 2-3 ]amregion. The spectral resolution of these data, compared

to that in Figure 5, represents a tremendous increase in information

content. All three groups of spectral features are present in these

planetary spectra. Molecular hydrogen (Group A) contributes continuum

features that fielpform the planetary windows, but broad, saturated CH4

bands must also be included in the analysis of the wings of the H2 lines.

The detections of PH3 (Larson et al. 1980) and C2H6 (Bjoraker et al. 1980)
I

on Saturn at 3 ]amare very obvious examples of Group B features. Strong,

unassigned lines in Saturn's spectrum near the CH4 v3 band at 3.3 ]am

illustrate the nature of Group C features. Other molecules important to

the detailed chemical structure of a planetary atmosphere, such as NH3,

H2S , HF, and HCN, have bands coincident with these planetary windows.
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Clearly, the availability of high resolution spectroscopic observations

from the Kuiper Airborne Observatory has added an important, new dimension

to planetary astronomy.

Figures 8 and 9 illustrate some laboratory comparison measurements

that were used in analyses of the planetary spectra in the previous two

figures. The C2H6 data, in particular, emphasize the frequently encountered

situation where only weaker, more obscure molecular bands are coincident

with planetary windows. A more favorable situation exists for searching

for HCN on Saturn. Its v3 fundamental mode coincides with Saturn's 3 Hm

window, thereby permitting a very sensitive upper limit determination

(O.l cm-amagat, Larson et al. 1980). By contrast, NH3 obscures the 3 pm

region of Jupiter's spectrum (see Figure 6), and the test for HCN in its

atmosphere was IOOx less sensitive (Treffers et al. I978), since a much

weaker HCN band near 5 l_mhad to be used instead.

V. 3-6 IJmRegion

THe spectral composite in Figure lO compares ground-based and air-

borne observations of Jupiter and Saturn in the 3-6 lJmregion. A portion

of the 5 IJmplanetary transmission windows is accessible from conventional

telescopes, but complete coverage of thespectra of these planets requires

the Kuiper Airborne Observatory and the high resolution spectrometers that

it accommodates.

Studies of Jupiter at 5 ]Jmhave been especially exciting since its

thermal flux emanates from holes in its cloud cover, thereby revealing

a chemical regime that would otherwise remain hidden from remote spectral

observations. Many of the recent detections and stringent upper limits to
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Figure 10. Comparison of the middle-IR spectra of Jupiter and Saturn from
conventional and airborne telescopes. In this region the planetary
windows are defined by CH4, PH3 and, on Jupiter, NH3 absorptions,
Only airborne observations permit complete spectroscopic coverage of
these planetary windows. Figure reproduced from Larson et al.
(1980).
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Jovian trace atmospheric constituents are products of these observations

in the thermal IR (see reviews by Ridgway, Larson and Fink ]976, and

Larson 1980). The combination of high spectral resolution and high

altitude has been particularly rewarding as regards Group B spectral

features. Figure ll compares two airborne spectra of Jupiter at 5 ]Jm

at spectral resolutions of 2.5 and 0.5 cm-], respectively. The spectro-

scopic detection and analyses of such molecules as H20, PH3 and GeH4

would not have been possible without NASA's support of high resolution

planetary spectroscopy from aircraft.

The observations of Saturn at 5 ]Jm in Figure lO are very recent

results. Figure 12 exhibits these data on an expanded wavelength scale.

This figure also includes supporting laboratory measurements used in the

detections of CH3D (Fink and Larson 1978) and PH3 (Larson et al. 1980)

on Saturn. Improved instrumentation and continued applications on the

Kuiper Airborne Observatory should produce even higher quality data in

the 1980's. This means that even more opportunities will become available

for spectral analyses, with new demands upon laboratory measurements

oriented to conditions in planetary atmospheres.

Vl. Major Requirements Upon Laboratory Data

The following molecules deserve special attention by laboratory

spectroscopists interested in planetary applications.

]. CH4" This molecule needs to be studied at all wavelengths,

particularly in the 2-3 IJmregion where planetary observations are just

becoming available.

2. H2" The use of the l-O pressure-induced dipole spectrum of H2

to generate atmospheric sturcture parameters is now feasible, given atten-

tion to the CH4 analysis above.
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3. NH3: Interpretation of the various observations of, or upper

limits to, gaseous and solid NH3 on Saturn is a particularly challenging

task facing planetary scientists.

4. PH3: This molecule has been detected with P/H values in excess

of the solar ratio in three of Saturn's atmospheric windows (3, 5, 10 lJm).

It is the only uniformly mixed constituent detected so far at 3 lJm,and

its spectrum could serve as a spectroscopic probe of Saturn's atmosphere

if the observed bands were analyzed.

5. Trace constituents: Laboratory comparison data are needed for

any molecule reasonably compatible with a reducing atmosphere with bands

fortuitously placed within the planetary windows.

This paper was presented with support from NASA Grant NGR 03-002-332.
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