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I. INTRODUCTION 

The topics which this talk has to cover range in size from 

about 100 Pc to 100 MegaPc but in many respects are remarkably 

similar. In all cases we are considering hot tenuous plasmas 

with tebnperatures in the range lo6 + 3.10e OK and densities of 

lo-' + lo-' ~m'~. The dominant radiation processes are thermal 

bremstrahlung and collisional line excitation and all except the 

very hottest objects will have observable X-ray emission lines. How- 

ever the most important unifying point is the anaular scales involved. 

For the interstellar gas one may expect structure ranqing ir? size 

from about 10' (shadowing by IS clouds; Fried e t  a l .  1980: to 

tens of degrees (nearby evolved supernova remnants (Nousek e t  a l .  

1981). Nearby (distance ~ 1 2 0  M Pc) irregular clusters will have 

structure on qalaxy scalelengths of a few minutes, which is similar 

to the core sizes of distant. more regular clusters (e.9. Fvrman 

and Jones 1982). The cores of very distant clusters at z=l 

will be resolvable at 30'' -c 1' [ e . g .  Henry e t  G T Z .  19791. 

Superclusters will have sizes of degrees [e.g. Murray e t  a l .  19781. 

Thus there are an enormously wide range of problems which 

an instrument with a spatial resolution of $ *  -c 1' and a field of 

view of degrees could tackle. Though there are problems in these 

areas which such an instrument could not cover,* I think it is 

fairly clear that what we need most is an instrument of this 

general type. 

*Examples are t!-.e spatial mapping of cooling flows in clusters 
(Fabian c t ,  J I .  1981) or the mapping of gas around galaxies in 
distant irregular clusters. 
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Of the three classes of problems listed in the title the 

only one on which we have really excellent X-ray data is the 

clusters [e.g. Forman and Jones 19821. We have a good deal of 

information on X-ray emission from the interstellar gas both from 

rocket flights and the HEAO 1 and SAS C experiments [e.g. Fried 

et aZ. 19801. Finally we have very little solid information of 

any sort on the superclusters. Despite this diversity in 

existing understanding, the way to the future in all three areas 

must be through larger collecting areas.* In the rest of the 

talk it will be seen that there are many problems where a highly 

s p e c t r a l  resolution [R n- 100-1000] would be useful or even essen- 

tial. However, we could make a great deal of progress with an 

instrument of moderate resolution (R \r 10) provided ;it? could 

obtain the necessary increase in sensitivity. 

A rather incomplete list of important problems in these 

fields is as follows: 

Interstellar Cas: 

Mapping at moderate ( 1 ' )  spatial Morphology of individual structures in 
resolution: the IS gas 

Separation of stellar and gaseous con- 
tributions to the soft X-ray background 

Interstellar cloud shadowing 
Structure o f  the galactic halo 

(High Spectral Resolution 
Studies : 1 

Chemical composition of the galactic halo 

X-ray absorption line studies of the disk 
and halo 

Spectroscopy of individual structures 

*The necessity for large area applies irrespective of the spectral 
resolution. 
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Clusters : 

Mapping at 1' resolution: 

(High spectral resolution 
studies: 1 

Superclusters: 

(Figh spectral resolution 
studies:) 

Samples of distant clusters/c:uster evolution 

Outer halos of rich homogeneous clusters 

Interaction of galaxies and cluster gas 
in irregular clusters 

Morphology of gas in clusters 

Spectroscopy of the centers of radiatively 
cooling clusters 

Abundance gradients 

Primordial material in irregular clusters 

retection and mapping of hot gas 

Interaction bekween clusters and superclusters 

Chemical enrichment in intercluster qas 

I've split the .'.ist into experiments which could be performed 

without high spectral resolution and those in which it is essen- 
! 

tial. I think it's worth noting that roughly 504, of the experiments I 

require hiat spectral resolution as well as the imaging capability. 

Clearly if both sensitivity and high spectral resolution could be 

obtained this would he ideal. 

t 

f 
I now want to consider a few of these topics in more detdil. ! 

t 

The choice is somewhat arbitrary and I have avoided topics which i 1 are touched on elsewhere (in particular in the talks of Fabian 

and of Shull). i 

I I. SUFZRCLUSTER GAS 

It seems increasingly probable that the general intergalactic 

gas lies at temperatures less than lo6 O K  and probably cannot be 

detected by its X-ray emission (e.g. Sargent e t  a ? .  1979). ks 
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yet the arguments and observations of this point are in no way 

compelling but it seems worthwhile to focus our attempts to 

detect the IGM in the X-rays on those regions where the heat 

input is most likely to be concentrated. 

The best location for this is probably in the intercluster 

regions of the superclusters. Bookbinder st a t .  (1980) have argued 

that galaxies of present visual luminosity L, = L release 

about lOb1.’ ergs into the intergalactic gas at temperatures 

around lOgoo K in their early stages of evolution. 

0 

Such material 

will not be bound to any cluster of which the galaxy is a member. 

At this stage the cluster would then possess a hot outflowing 

wind. * 
Assuming that the net visual luminosity of a typical super- 

cluster is around lOI4 Lo, the total energy release would amount 

to about 2x106’ ergs. If this occurred at z=5, allowing for 

adiabatic expansion losses, it would heat a gas of density 

= 9.6~10-~Rh~ ~m’~, (h = Ho/lOO km s-l Mpc-l), filling a radius ”e 
of 20 Mpc to a temperature of ~2xlO~R”h‘~ OK.** 

itlass of gas in t h e  superc lus ter  is 1316Ch2 ;-la while the galaxies 

will have released about 5 ~ 1 0 ~ ‘  Ma of processed gas or about lOI4 

The total 

*As was first pointed out by Ostriker (1979), this has two very 
attractive features. Firstly it drives out any primordial gas 
which would like to fall into the cluster. Secondly, by removing 
very metal enriched qas from the cluster it can solve various 
abundance problems of the type discussed by deYoung (1978). 
* *A  complete self consistent calculation would follow the evolution 
of the blast wave generated by the overlapping cluster winds and 
calculate the temperature from this (Ostriker and Cowie 1981). 
The result is very close to the quick estimate given above and 
the present radius of the blast wave is around 20 Mpc for  R=l. 

I 

i 
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Mo of metals (Bookbinder et a l .  1980) .  The metallicity may 

therefore be a substantial fraction of cosmic particularly if 

R is less than 1. 

Assuming that the emissivity is around n2 ergs cm3 s-’, e 
a temperature of about 200 ev-1 Kev, as is suggested by the above 

calculation, the total luminosity of the supercluster would be 

around lo4’ Q2h4 ergs s-’ and its surface brightness about 5 ~ 1 0 ’ ~  

R2h4 ergs/cm’* s-l ster” or a fraction of the diffuse X-ray 

background at these energies. 

In general terms and independent of this rpecific model it 

is clear that the most important requirement for a supercluster 

search is the ability to exclude member clusters and other X-ray 

objects from the field and to consider only the intercluster com- 

ponent. This requires an angular resolution of at least a 

fraction of a degree. The experiment must also be capable of 

imaging the whole supercluster which would generally mean a FOV 

of several degrees for relatively nearby superclusters. 

For a supercluster of radius 3 O  at a distance of 500 Mpc we 

can estimate that a 30 detection above fluctuations in the back- 

ground would crudely require a source with 10% of the diffuse X- 

ray flux in the same region (Levine e t  a t .  1977,  Schwarz 1 9 8 0 ) .  

This would imply that a sensitive experiment could reach surface 

brightness limits of about 2x10’’ ergs cm’2 sec” ster” (Fried e t  aZ. 

1980) and constrain R < 1 or so for an individual supercluster. 

Clearly a survey of a large number of superclusters could provide 

very interesting constraints on the IGM density. 
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A spectroscopic instrument, measuring the relative line 

strengths, could also constrain the metallicities of the gas. 

This could be of crucial importance, if and when the superclusters 

were detected, in distinguishing between cluster heating of the 

intracluster gas as discussed above and alternative heating 

mechanisms such as gravitational in-fall. The history of cluster 

X-ray emission studies should remind us how important such 

information can be. 

111. CLUSTER X-RAY SOURCES 

I want to say relatively little about this topic, 

since the problems are so well known to everyone. 

be found in the reviews of Cowie (1981) and Forman and Jones 

(1982). Briefly, a large are3 imaging instrument is needed to 

study distant clusters and to ex:.end the Einstein results of Henry 

and coworkers (e.g. Henry e t  al. 1979). Realistically there is 

little hope of obtaining cosmological information from this type 

of measurement but a very large sample of distant clusters may 

allow us to obtain t h e  evolution of the average X-ray luminosity 

and gas core radius f : r  inlividual classes of cluster. Hopefully 

we may at least determine if there has been any evolution of the 

potential of the cluster over recent ( z  5 1) times. However, 

one should contrast the results of Cowie and Perrenod (19791 

with those of Perrenod (1977) to see how small the expected dif- 

ferences are. 

Discussion can 

A second direct application of a large area imaging detector 

would be the study of gas lossage by galaxies in irregular 
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clusters (e.g. Fabian e t  al. 1980). Pushing existing results 

farther back in z would probably help us understand the nature 

of galaxy stripping in clusters, gas evolution in galaxies and 

cluster galaxy evolutionary effects such as the color changes 

described by Butcher and Oemler (1978). Models for the formation 

of cluster atmospheres such as those by Norman and Silk (1979) 

or Sarazin (1979) make detailed and testable predictions of the 

evolution of the gas distribution in clusters which could be 

checked. 

There are a number of additional problems which a spectro- 

scopic instrument could tackle. Perhaps the most interesting 

would be an extension of the fascinating Einstein SSS and FPCS 

results (e.g. Canizares e t  at. 198U, Mushotzky e t  aZ. i981) 

on the cooling central cores of clusters out to more distant 

clusters. Refinement of the cluster metallicities which can be 

obtained in this way could be of primary importance in under- 

standing galaxy evolution within the clusters and cluster gas 

evolution. 

IV . INTERSTELLAR GAS 

In this section I want to consider two very specific experi- 

ments, one of which illustrates what could be done with a large 

area imaging detector and one of which would additionally require 

high resolving power. 

a. Cloud Shadowing of the Soft X-Ray Background 

The great majority of the soft X-ray background appecrs to 

be truly diffuse, arising primarily from a local hot spot in the 
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galactic disk and from. a hot gaseous galactic halo (Marshall and 

Clark 1981). About 20-30% at 1 Kev and substantially less at 

200 eV arises from dM stars (Rossner e t  aZ. 1981) with about 10 

stars in each square degree contributing most of the flux. 

The fractional contributions from Pop 11 stars to the halo emis- 

sion may still constitute a problem. However if the soft X-ray 

background could be imaged on a scale of minutes, fluctuation 

analyses of the type given by Levine e t  a l .  (1977) at larger 

scales should allow us to obtain a stringent limit to the stellar 

contribution. Imaging of the X-ray background at such scales is 

a demaneing problem however, since the high galactic latitude 

photon arrival rate in the 200 eV-1 Kev range is only around 

5~10'~ ph cm'2 sec" (a')-'. 
with long exposure and a low background are necessary. 

Therefore both a large area detector 

As Fried e t  al. (1980) have recently pointed out, typical 

diffuse interstellar clouds with column densities of 3 ~ 1 0 ~ '  cm'* 

or more are opaque to radiation in the 200 eV energy range. The 

local hot gas behind such regions and, more importantly, the hot 

halo gas or halo star contribution will be substantially shielded 

by such regions. A typical line of sight ai. high latitudes is 

most likely to pass through exactly one cloud but has a finite 

possibility of passing through none or more than one (e.9. Spitzer 

1977). Since the cloud sizes are large compared to arcmins (at 

100 pc a 1 pc radius cloud has an angular radius of 30'1, indi- 

vidual clouds will appear as large shadowed regions on the diffuse 

X-ray background at low energy. Since we may also estimate the 

distance from the amount of missing soft X-rays this type of 
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measurement could determine the size spectrum of interstellar 

clouds a quantity of ctxial importance to theories of the ISM 

(McKee and Ostriker 1977). It is worth commenting that this 

quantity is remarkably difficult to determine by other methods. 

b. X-Ray Absorption Lines from the Hot ISM 

The possibility of making X-ray absorption line studies, 

analogous to the optical and W absorption line studies which 

have been so important in stvdying the interstellar medium, has 

only recently begun tn be considered. The rea.;ons for this are 

clear - the instrument requiremerts are quite severe both as 

regards effective w e a  and spectral resolutlon - but the poten- 
tial for studying the intergalactic medium (Shapiro and Bahcall 

1980) and the hot interstellar meJium and the galactic halo (York 

and Cowie 1981) are enormous. The reason for this is that the 

absorption lines directly measure column densities of a given 

ionization stage and remain sensitive to low density gas in 

contrast to the emission lines. 

In Table I, I have summarizec? from York and Cowie the strongest 

available lines together with the expected equivalent widths €or 

a 1018=s cm'2 column density of hot gas at the optimal tempera- 

ture. This value is representative of the hot ISM (e.g. McKee 

and Ostriker 1977). 

It can be seen from Table I that a resolution of at least 

R a 100 is required to discriminate neighboring strong lines. In 

addition, one may simply estimate on the basis of photon statistics 

the required instrument parameters. The necessary effective area 

! 
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Table 1 (adaptel from York and Cowie 1981). 

I 
I 

' Species 
i 

c v  
c VI 
0 IV 

o v  
0 VI1 

0 VI11 

Si VI11 

Line 
Wavelength 

eft, 

40.27,40.73,41.4 

33.7c 

22.86 

22.52 

21.8,21.6 

19.0 

61.0 

'Logarithmic Temp. 
at Which Species 

is Dominant 
Ionization Stage 

5.7 

6.0 

5.4 

5.4 

e o  
6.3 

6.0 

f 
(Oscillator 
Strength) 

0.65 

0 .42  

0.45 

0.62 

0.69 

0.42 

1.2 

A is given in terms of the sourc :;=tensity I by 

3 x 10'' 

1.6x10-' 

I. 6x10'' 

3 x 10" 

3 x io-' 

1.6x10-' 

10- 

[p$)lz J (kev/ (cm' s kev) I .  A(cm2)Rt(hrs) = 3 ~ 1 0 ~  n2/ 1 
1 

For a source with I = 5 kev cm'2 s-l kev" at 500 eV, such as the Crab 

(Charles e t  a l .  1979), a 3a detection of a line with WE/E = 3x10"' 

in an hour's exposure would require A(cm')R = 6000. 

terms this is a factor of 30 or so over the FPCS detectors aboard 

Einstein (Giacconi e t  a l .  1979). 

In rough 

There are a number of problems with this technique, of course, 

not least that of finding sufficiently string background sources 

with well defined continua in the rieighborhood of the absorption 

lines. in s3me cases (e.g. ScoX1) there may be relatively narrow 

emission lines which will confuse the absorption line studies. 

Synchrotron sources such as the Crab are ideal, of course. 

! 

1 
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I 

v. SUMMARY 

Clearly this has been an idiosyncratic apd personal view of 

a complex range of topics, but I think two pints are very clear. 

Firstly, a large area imaging instrument could cover a great deal 

of ground with or without a spectroscopic capability. However, 

high resolution spectral capability is highly desirable and would 

greatly enhance the power of such an instrument. Either class 

of instrument would be highly flexible, capable of dealing with 

a wide range of problems and of great general utility. 
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